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Abstract

This thesis presents a decentralized algorithm for the coordinated assembly of 3D objects
that consist of multiple types of parts, using a networked team of robots. We describe the
algorithm and analyze its stability and adaptation properties. We partition construction in
two tasks, tool delivery and assembly. Each task is performed by a networked team of
specialized robots. We analyze the performance of the algorithms using the balls into bins
problem, and show their adaptation to failure of robots, dynamic constraints, multiple types
of elements and reconfiguration. We instantiate the algorithm to building truss-like objects
using rods and connectors. The algorithm has been implmented in simulation and results
for constructing 2D and 3D parts are shown. Finally, we describe hardware implementation
of the algorithms where mobile manipulators assemble smarts parts with IR beacons.
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Chapter 1

Introduction

We are interested in automating assembly and construction tasks. Currently assembly,

whether for complex places or buildings, is done using manually generated blue prints and

many skilled human workers. The completion time is dependent on the human performance

and regulated with respect to the number of hours a human team can perform. In this

thesis, we explore the use of robots to automate and optimize assembly tasks. Robots can

perform tasks that are (1) hard for humans (e.g. lifting parts), (2) dangerous for humans

(e.g. building a tall scaffold) and (3) they can be more efficient and accurate than humans.

Assembly line robotic automation has the further benefit of relieving humans from having

to execute tasks for long periods of time in ergonomically difficult positions.

We see construction as an important application for robotics because the nature of con-

struction is complex, yet it includes many routine jobs in which the robots have to pick up

and place regularly shaped source parts such as trusses, blocks, windows, and etc. The state

of the art in robotics for construction and assembly has yet to come to the versatility of a

human; however robots have proven to be more effective than humans for limited scope

operations including handling parts in a structured environment (for example, assembly

lines in factories). Many algorithms used in assembly can be applied directly or indirectly

to construction: task assignment algorithm, parallel algorithm, manipulation, navigation,

and many more.

Robotic construction is challenging because automating manipulation operations is

hard. One option for automation is to have robots learn from humans and copy their actions



Figure 1-1: Concept art for construction of a truss structure by mobile delivering robots
and truss-climbing assembling robots. Reprinted with permission from Jonathan Hiller,
Cornell University, USA.
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by following them. This could enable the step-by-step execution of a blue print.

Step-by-step execution can be carried out in sequence by one or more robots; however

effectively this method does not maximize the use of the robots with respect to parallelism,

nor does it guarantee the fastest completion time of a task. In this thesis we develop new

algorithms and systems that enable groups of robots to complete a complicated assembly

task using the maximal amount of parallelism afforded by the team and the task. To see the

difference between the benefits of such a method over incremental construction following

a blueprint step-by-step, consider the example in Figure 1-3, where that task is to build a

densely tesselated (grid-shaped) A-shaped structure using rods and connectors. Incremen-

tal construction by the robot team is one solution and the idea is illustrated in Figure 1-4.

Note that the incremental construction requires that each robot travels the entire blueprint

and this has several disadvantages. First, the robots move too much. Second, this hinders

parallelism, thus slowing completion. Third, the centralized solution requires knowledge of

the exact construction plan and the placement of each component ahead of execution time.

This renders the algorithms unadaptive to the amount of source material. For the A-shape

structure, we would like the flexibility to construct the scaffold as grid as dense as possible

given the amount of source materials. In other words, the shape will be approximated as a

coarse grid when the material is sparse, or as a dense grid when the material is abundant.

Fourth, collision avoidance may be a larger challenge than necessary if the robot team is

large and the robots attempt to work in the same cell.

We investigate a new approach to multi-robot construction that avoids the challenges

of the incremental approach and leads to highly parallel assembly solutions and optimal

construction times. Our vision for robotic assembly is illustrated in Figure 1, which shows

a heterogeneous team of robots creating truss-like structures by cooperation to support

parallelism and some specialization to enable efficiency in the performance of different

tasks. Our model includes two types of robots: part delivery robots, specialized for locating

and delivering parts, and assembly robots, specialized for joining the parts delivered to them

into desired objects. We wish to develop decentralized algorithms for such heterogeneous

teams that are (1) fully decentralized and distributed on the group, (2) adaptive to changes

in the environment and the group, (3) provably convergent, and (4) experimentally feasible.



Figure 1-2: An example of building an a-shaped bridge. The yellow region is a blue print to
be filled with red trusses stacked at the upper right corner. The blue robots are assembling
robots and the red robots are delivery robots.

The distributed controller is desired for a large system because of its scalability; the same

controller will work for thousafd robots as well as a single robot. Adaptivity will make the

controller flexible to change which can frequently happen during construction. Feasibility

is essential for transition of a robot system from a lab to the real world.

A typical assembly scenario requires that parts of different types get delivered at the

location where they are needed and incorporated into the structure to be assembled. We

abstract this process with two operations: (1) tool and part delivery carried out by deliver-

ing robots, and (2) assembly carried out by assembling robots. In this thesis, we consider

how a team of robots will coordinate to achieve assembling the desired object. Tool and

part delivery requires robots capable of accurate navigation between the part cache and

the assembly location. Assembly requires robots capable of complex grasping and manip-

ulation operations, perhaps using tools. Different assembling robots work in parallel on

different subcomponents of the desired object. The delivering robots deliver parts (of dif-

ferent types) in parallel, according to the sequence in which they are needed at the different

assembling stations. For practical considerations, we consider the case where the parts are
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Figure 1-3: Snapshots of the incremental solution for robotic construction. A team of the
assembly robots move together to build the structure block by block while the delivery
robots keep carrying the parts from the source cache.
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Figure 1-4: Snapshots of our solution for robotic construction. Each assembly robot now
takes care of its own region decided by the Voronoi tessellation.



(a) rods of different lengths and (b) connectors for connecting the rods into truss-structured

objects in our examples; however the algorithms are general and work with any parts. The

robots can communicate locally to neighbors. The delivering robots have the ability to

find the correct part type in the part cache, pick it up, and deliver it to the correct spot for

the assembling process requesting the part, and return to the part cache for the next round

of deliveries. The assembling robots have the ability to receive the part from a delivering

robot and incorporate it into the assembly.

We assume that the target object is given by a material-density function which encodes

the object geometry as a blue print and is known to all the robots. The construction pro-

cess starts by a coverage-like process during which the assembling robots partition the

target structure adaptively into sub-assemblies, such that each robot' is responsible for the

completion of that section. To achieve this division, the robots locally compute a Voronoi

partition, weighted by the mass of all the rods contained in the partition, and perform a gra-

dient descent algorithm to balance the mass of the regions. We extend this algorithm to a

discrete space where robots are in a graph composed of nodes with weights and edges. The

node weight corresponds to a density in the continuous domain. We explore the difference

from a continuous domain such as graph Voronoi tessellation and geodesic distance, and

propose the decentralized controller which turns out to require two-hop communication

rather than the one-hop communication required by the solution modeled using continuous

space.

The delivery robots also know the density function. They locate parts in a part cache

and bring the parts to the assembly robots. We wish to control this process so that each

assembly robot proceeds with its task at approximately the same pace as the other robots.

Since the overall assembly was partitioned into approximately equal parts, this process

guarantees that all assembly cells complete at approximately the same time. We developed

a new algorithm based on this intuition. Delivery occurs according to the demanding mass

for each subassembly, that is, the amount of work that remains to be done, measured in

the number of components that have yet to be added to the assembly. This idea can be

'The robot represents all the skills needed for each required assembly step; in some cases multiple robots
will be needed, for example the connection of two rods with a screw is done by three robots, one robot holding

each rod, and one robot placing the connector.



implemented as local search and guarantees global and local balance for part delivery.

A nice feature of our controllers for assembly and delivery is that the algorithms are

adaptive in multiple ways. Robustness and adaptation are desirable in complex systems

consisting of large numbers of robots, where failures and changes in the system flow may be

expected. We show the control algorithms are (1) robust to a failure of robots, (2) adaptable

to any order of construction, (3) capable of being used for reconfiguration between different

truss structures, and (4) adaptive to human changes.

We have implemented the algorithms for part delivery and assembly using a hardware

platform we designed and built in our lab. We used a team of 4 robots, two delivery robots

and two assembling robots. We used instrumented parts (see Section 8) to simplify object

location, grasping, and handoff. Each robot has an iCreate mobile base, a CrustCrawler

4DOF arm, and networked communication provided via the Meraki networking platform.

Our experiments show that the algorithms are effective at executing the assembly and de-

livery tasks.

1.1 Decentralized Control Algorithms

More specifically, this thesis proposes decentralized control algorithms for partitioning,

part delivery, and assembling steps. The partitioning algorithms are inspired by distributed

coverage introduced in [23, 100, 85] and use equal-mass partitioning as the optimization

criterion. The algorithms rely only on local information (e.g. neighbors exchange informa-

tion about their local mass). The partitioning controller has a form of gradient descent with

a cost function that is minimized when all the assembly robots are allocated with the same

amount of subassemblies (partition).

Using the delivery algorithm, each delivery robot chooses an assembly robot by per-

forming two steps: probabilistic deployment and local search for larger demanding mass.

Probabilistic deployment to an assembly substation for the next component does not guar-

antee that the group of robots will finish the subassemblies at approximately the same

time. Probabilistic deployment appears to guarantee a certain amount of the global balance,

however, our analysis shows the balance breaks out as a number of delivery components in-



creases. The local search algorithm is introduced to augment the probabilistic deployment

to ensure global balance in assembly completion. Local search works as follows. Each

delivery robot arrives at a subassembly station according to the probabilistic deployment

algorithm. At this point, the robot communicates with all the assembly robot neighbors to

find out who has the greatest need for a part (that is, who has completed the least amount

work). The delivery robot moves to that assembly station and repeats the query process

until the assembly robot with the greatest need for the part is identified. We prove this local

search very effective in reducing the unbalance.

In addition, the task allocation and part delivery algorithms are provably stable. They

are adaptive to the number of delivering robots and assembling robots as well as to the

amount of source material. We implemented these algorithms in simulation. Several 2D

and 3D truss-structures were created using our algorithms. Our hardware implementation

using 4 mobile manipulators shows that the algorithms are effective

1.2 Adaptive Construction

We extend the work to construction beyond trusses where the target consists of any given

number of parts from a set of part types. The density function is modeled as a sum of

separate density functions for each part, only if there is no dependency between the parts.

The dependency will be left for the future work.

Also we show how the algorithms can be adapted to (1) the failure of changing num-

bers of assembly robots and delivery robots, (2) dynamic constraints such as order of con-

struction, and (3) changes in the geometry of the target structure during assembly. We

demonstrate the performance of the algorithm in simulation.

1.3 Extension to Discrete Space

Most of the distributed coverage algorithms operate in continuous domains and controllers

for distributed coverage require a convex target area in Euclidean space as well as a con-

tinuous weighting function on the target area. However, many applications in assembly,
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Figure 1-5: Simulation result from 4 robot coverage on an A-shaped bridge. The final

configuration of equal-mass partitioning (a) in a continuous domain and (b) on a graph.

construction, transportation and resource allocation require coverage to operate in discrete

domains. For example, coverage of a structure that can be explicitly modeled as a graph,

such as a truss structure where truss elements are modeled as edges and connectors/screws

are represented as nodes [65]. Distributed coverage in a non-convex region with obstacles

is also possible with a mesh network in the target region.

In this thesis we describe two decentralized algorithms for distributed coverage on a

graph. The algorithms use a geometric approach based on graph Voronoi tessellation which

converges when robots reach the weighted Voronoi centroids. A node-weighting function

represents the importance of nodes. We investigate two types of coverage: (1) locational

optimization where a team of robots looks for the optimal set of locations with respect

to node weights, and (2) equal-mass partitioning which distributes equal weights to each

robot, and show that these problems are related and solvable with similar techniques. The

algorithms use vertex substitution to sequentially find the best partitions by checking every

possible movement of a single centroid (robot position in our case). We prove conver-

gence of the algorithms to local minima in solution space and experimentally demonstrate

that a large fraction of the solutions found by our algorithms are statistically close to the

global optima. A surprising result is that two-hop communication rather than single hop

communication to neighbors is required for the best performance.

We show results from an implementation of the algorithms on two graph topologies

which represent blue prints of bridges.

..... . ... . ..... . ..



1.4 Experiment for Distributed Robotic Construction

We discuss the differences between the theoretical and the practical algorithms and present

data from extensive subassembly partitioning and tool delivery experiments. We also dis-

cuss data from a preliminary planar implementation of the assembly algorithm that places

the parts in the correct sequence. We have implemented the decentralized construction

algorithms on a platform with 4 robots. The task is to build a planar truss. The system

takes as input the specifications of an object to be assembled from rods and connectors,

causes the robots (1) to identify the subassemblies that can be created in parallel, (2) de-

liver parts to each subassembly team so that the subassemblies are created in approximately

the same amount of time, and (3) place the parts in the required sequence to construct the

desired object. We use smart parts for the assembly. The smart parts have embedded two-

way communication systems that allow the parts to transmit their location (in the form of

a beacon) as well as their geometric and mass properties to the robots. The robots use

communication-enhanced grippers to locate, identify and grasp the objects. Our solutions

to problems (1) and (2) are general with respect to this grasping modality. Our solution to

problem (3) applies to planar objects and illustrates the correct position of the parts. The

actual assembly to create a rigid object is not yet solved.

The robot system for construction is composed of 4 mobile robots with a 4-dof manip-

ulator and two kinds of components (truss and connector) with embedded IR beacon for

communication with the robots. Each robot is also equipped with communication devices

for localization, inter-robot communication, and robot-part communication. The theoreti-

cal algorithms in [65, 103] guarantee stable and convergent controllers, but moving from

theory to hardware implementation requires changing the original assumptions and the al-

gorithmic details that rely on them.

1.5 Summary of Contribution

The main contributions of this thesis are:

1. proposal of distributed processes for coordinated robotic construction (Algorithm 1),
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cons. A snapshot of the GUI is on the right.

2. the distributed algorithm for equal mass partitioning of an assembly task using a

continuous space formulation (Section 4.2),

3. the provably correct decentralized delivery and assembly algorithms (Algorithm 5

and 6),

4. the two distributed algorithms for coverage on a graph (Algorithm 3 and 4),

5. the communication condition required for convergence of the distributed partitioning

algorithms on a graph (Section 5.2. 1),

6. the convergence proofs and evaluation for the algorithms (Section 4.2. 1),

7. the development of the hardware platform with the mobile manipulators,

8. the experimental implementation of the algorithms with the smart parts (Chapter 8).

1.6 Organization

This thesis is organized as following. In Chapter 2, we survey previous work in robotic

construction as well as distributed algorithms for coverage. We formulate our problem in

Chapter 3. The decentralized partitioning algorithms for assembly assignment are intro-

duced in Chapter 4 and Chapter 5 for a continuous domain and a discrete domain, respec-

.................................. ....... .............. . ....... .............



tively. Chapter 6 shows the control algorithms for delivery and assembly in a distributed

way and analyze the algorithms based on the balls into bins problem. The flexibility and

adaptability of the proposed algorithms are discussed in Chapter 7. In Chapter 8, the algo-

rithms are implemented in the robotic system with mobile manipulators and smart parts.
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Chapter 2

Related Work

The idea of robotic construction with a team of networked robots using elements from the

environment is not new, for example see Matthey et al's paper on stochastic strategies for a

swarm robotic construction [76] and references therein.

In this thesis, we explore the particular idea of maximizing the parallelism in construc-

tion by partitioning algorithms and efficient delivery algorithms, with an emphasis on stable

and provably correct controllers.

Our proposed systems and algorithms are further related to prior work in the fields of

robotic construction, distributed coverage, graph partitioning, and truss-handling robots.

2.1 Robotic Construction

Automated assembly is one of the most successful application of robotics. Factory-based

robotic automation for assembly operation has been a great success for robotics. Fanuc,

for example, has more robots than humans working in their plants. These robots operate

in very fixed and structured environments and perform repetitive and simple tasks. Sev-

eral important research projects have addressed how to extend this current use of robots to

increasingly less-structured environments and increasingly more complex tasks. Construc-

tion can be viewed as a kind of assembly, often carried out outdoors. Construction and

assembly share many of the challenges, properties, and desiderata. Next, we summarize

some of the key recent results in this space.



In [34], Fitcher introduced a basic theory and practical implementation of a stewart

platform based manipulator for construction.

Fahlman proposed a planning algorithm for robotic construction tasks [31], discussing

dependency of the parts and their correct order. The algorithm generates a plan for con-

structing specified structures given simple block-like objects. The paper considered usage

of extra blocks as temporary supports or counterweights during construction.

Nechba et al [82, 77, 78] launched a self-mobile space manipulator project, and they

developed several robots including a truss-walking inspection robot SM2 that manipulated

and assembled space station trusses. The focus of the project was to design a tele-operated

mobile robot with the controller for mobility and manipulability including gravity compen-

sation.

Stroupe et al [106] built a space robot team which was able to demonstrate component

placement to an already existing structure.

Staritz et al built a space robot Skyworker [105] which demonstrated truss-like assem-

bly tasks. The robot is a manipulator with serially connected links, and its hardware design

and workspace were reviewed for assembly tasks.

Werfel et al. [112, 109, 111, 97, 110] introduced a 3D construction algorithm for mod-

ular blocks. They assumed the blocks were capable of communicating to the robots, and

the algorithm outputs a provably correct sequence of assembly without a deadlock. They

compared performance in simulations by the robots with different capability.

Matthey et al's paper on stochastic strategies for a swarm robotic construction [76] sim-

ulated a robotic assembly by modeling change of robot states as chemical reaction equa-

tions.

Nease et al [81] introduced the approach of the Air Force for construction robotic tech-

nology which requires place construction and repair equipment.

Parker et al [84] implemented swarm construction algorithms on a small team of mo-

bile robots for blind bulldozing so that the robots can prepare for space missions. Their

experiments showed how a team of four robots prepare for nests by blind bulldozing for a

couple of hours.

Lee et al [69, 21] built a robot manipulator equipped with pneumatic actuators for con-



struction. The robot was controlled half-remotely and half-autonomously.

Yamada et al [116, 117, 115, 119, 120] studied a tele-robotic system for construction

with virtual reality. They made a servo-controlled construction robot which was tele-

operated by two joysticks on a 3-dof mobile base. 3D computer graphic of a virtual robot

as well as 3D stereo image were given to an operator to help efficient construction.

2.1.1 Modular robots for construction

Schweikardt built roBlocks [102], a robotic construction kit with cube-like modular robots

that can interact to each other physically and electronically. There are many similar modu-

lar robots for construction, more specifically self-assembly, which normally have a form of

lattice or chain.

Murata, et al's built "3D Fracta" [96] which works like a reconfigurable lattice. The

robot unit has rotatable connectors on each side of a cube so that it can move another unit.

A stochastic algorithm is used to control the units in a distributed way.

Kotay and Rus developed "Molecule" [57, 56, 55] which has male and female connec-

tors to assemble it to another molecule and can lift up the connected molecule in 3D. The

proposed controllers move a group of the molecules in a distributed fashion.

Rus and Vona built "Crystal"[25, 26, 27, 24] which expands and shrinks its body for 2D

reconfiguration. They introduced an algorithm to move a cube from one location to another

in a distributed way.

Unsal, Kiliccote, and Khosla made bi-partite "I-Cubes" [20] system which is hetero-

geneous with a cubic module and a link module. Centralized locomotion algorithms were

used with given combinations of the modules.

Lund, Beck, Dalgaard, Stoy et al developed ATRON [48, 53] which is a sphere rather

than a lattice. Each unit has an upper and lower hemisphere and the structure lead to a

complicated controller for 3D reconfiguration.

Duff, Yim, et al's PolyBot [28] is a chain-type module, and linked modules can re-

configure themselves to an arbitrary 3D chain. They showed how tens of the modules are

coordinated to change a global structure such as from a four-legged robot to a snake or a



Figure 2-1: Implementation of pick-and-drop of a bar with two Shady3D. Reprinted
from [19].

fully connected chain.

2.1.2 Our prior work for robotic construction

Our previous work on truss assembling robots includes Shady3D [63, 64, 19, 62, 66] that

utilizes a passive bar with active communication and may include itself in a truss structure,

and is controlled by locally optimized algorithms (See Figure 2-1).

We also proposed a centralized optimal algorithm to reconfigure a given truss structure

to a target structure [61]. The concept is shown in Figure 2-2. The paper proposed an

optimal set of paths for a robot to follow in terms of the total moving distance of trusses.

The optimal set guarantees connectivity of the structure during reconfiguration.

This thesis introduces a new approach in which robots are specialized as delivery and

assembly robots, and distributed algorithms control the assembly of a structure with multi-

ple kinds of source materials.

2.2 Distributed Coverage of Multi-robot Systems

Our assignment algorithm for sub-assemblies is inspired by distributed coverage for a

multi-robot system, which has been heavily studied to optimize locations of robots [23,

100], to find the best partition for vehicle routing [85], and to distribute workload equally [65].

We follow the notion of locational optimization developed by Cortes et al. [23], who

introduced distributed coverage with mobile robots.



Figure 2-2: Artist rendition of several hinge robots decomposing and recomposing truss
structures. Structural metabolism replicates properties of biological metabolism such as
autonomous disassembly and assembly, continuous reuse of modular elements, automated
design from functional requirements, and resilience to raw material variation. Reprinted
from [61].

The same optimization criteria was used in a distributed coverage controller for real-

time tracking by Pimenta et al. [87] in which a team of robots track a moving target while

maintaining the optimal coverage configuration. The target was modeled as a time-varying

factor in a density function so that it could be melt into in a framework of distributed

coverage.

Schwager [100] et al used adaptive coverage control in which networked robots learn

a sensory function while they are controlled for the locational optimization. The paper

showed consensus among only neighboring robots dramatically improved the speed of con-

vergence to the optimal configuration.

They also developed coverage algorithms to optimize camera placement for hovering

agents in three dimension [98]. The cost function incorporated camera specs such as a

focal length, and a gradient descent controller produced the optimal 3-D configuration of

quad-rotor helicopters.

This thesis inherits the distributed coverage concept, and pursues equal-mass partition-

ing in which every networked robot is controlled to have the same amount of construction

(in our case, truss elements and connectors) to be built, rather than optimal sensing loca-

tions.



Pavone et al. [85] have been independently working on equitable partitioning by the

power diagram, which was designed for equal work load for vehicles in a vehicle routing

problem.

Recently, the coverage algorithms have been extended to coverage of a non-convex

region.

The visibility based deployment problem was tackled in [39], where a team of robots

solve the art-gallery problem in which occlusion led to non-convexity.

In [18] a non-convex region is transformed to a convex region by a diffeomorphism.

[88] uses the geodesic distance measure for a non-convex region instead of Euclidean

distance.

Controlling mobile robots with proximity constraints was addressed for a known envi-

ronment with obstacles in [7].

The solutions work for specific environments, however finding a solution for all types

of non-convex environment is still an open problem.

2.3 Graph Partitioning

Graph coverage and partitioning have been extensively studied in order to find the optimal

locations of resources [107] and to distribute workload equally. For excellent surveys see

[91, 36].

This thesis revisits two classic problems: the p-median problem and graph partitioning,

which are NP-hard even in a centralized view.

The p-median problem is to find centroids of a graph which minimize the maximum

distance between nodes and the centroids. Polynomial time algorithms only exist for a

tree [42, 52], and all we can use for a general graph are heuristics such as greedy [68, 47],

approximation algorithms [67, 104], alternate [75] and vertex substitution [3, 107]. Since

the p-median problem can be re-written as an integer programming, LP relaxation [6, 11,

13] and the branch-and-bound heuristic [5, 4, 72] are widely used as an approximated

solution.

The graph partitioning problem is to find subsets of a graph so that each subset has the



same total node weights while minimizing the cut size that is defined as the sum of weights

of edges crossing between the subsets. Again the NP-hardness of the problem led to many

heuristics. Sequential algorithms such as the KL method [59, 35], simulated annealing [60,

22, 114], tabu search [43, 44, 10], and genetic algorithm [45, 95, 74], locally improve

partitions whereas global methods recursively bisect the graph until we have the wanted

number of subsets, using the recursive coordinate bisection [15], the inertial method [32,

70, 79], the recursive spectral bisection method [89, 50, 8], etc.

These methods were used in robotics [38]. Using an environment discretized by grid

cells, a centralized algorithm based on spanning trees directs the robots to cover the envi-

ronment.

In [29] a group of mobile robots are deployed to cover a discretized environment by

gossip communication. The paper proved convergence even with only one-to-one commu-

nication, though the amount of communication should be large.

We model a non-convex environment as a graph in which node weights correspond to

density in a continuous domain, and propose decentralized graph partitioning algorithms

for locational optimization and equal mass partitioning.

2.4 Variable Geometry Truss and Truss Climbing Robots

Variable geometry trusses (VGTs) can be viewed as a generalization of the serial-chain

hyper-redundant systems to more general kinematic topologies. Both fixed-topology sys-

tems like the NASA/DOE "SERS DM" [93] and manually-reconfigurable systems-notably

Hamlin, Sanderson, et al's TETROBOT [46]-have been considered. Also related are

robotic systems which assemble static trusses, for example, Everest, Shen, et al's SO-

LAR [51], and Howe and Gibson's "Trigon" system [1]. Such self-assembling and self-

reconfiguring truss systems are a promising direction for robotic assembly of large struc-

tures in space-for example, see Doggett's overview of automatic structural assembly for

NASA [113].

Truss climbing robots are also under active investigation, e.g. Amano et al's handrail-

gripping robot for firefighting [49], Ripin et al's pole climbing robot [118], Nechba, Xu,



Brown et al's "mobile space manipulator SM2" [77, 78], and Almonacid et al's paral-

lel mechanism for climbing on pipe-like structures [73]. Truss climbing also has been

acknowledged to have clear applications in inspection and construction of in-space struc-

tures [14]. Staritz et al's built Skyworker [86]. Kotay and Rus developed Inchworm" [54].



Chapter 3

Problem Formulation

The main contribution of this thesis is the theory for coordinated robotic construction, and

this chapter shows setup and background for the theory as well as experiments implemented

to prove the proposed algorithm.

3.1 Theory: Distributed Algorithms

We propose two distributed algorithms for construction by a team of networked robots: sub-

assembly assignment and uniform delivery. Decentralized algorithms are essential so that

they scale regardless of a number of robots and they are robust to a failure. The proposed

algorithms are provably stable and convergent, and they turn out to be very adaptive to a

failure of robots and dynamic constraints.

3.1.1 Domain

We are given a team of robots, n of which are specialized as assembling robots and the rest

are specialized as part delivering robots in Euclidean space Q c RN(N = 2,3) or on a

graph G = (Q, E) where Q is a node set and E is an edge set. Let Nd be the number of

delivery robots and Na be the number of assembly robots. The robots can communicate

locally with other robots within their communication range.

We differentiate the formulation according to the domain.



Euclidean space

The robots are given a target shape represented as a target density function #t : Q - R.

#t represents the goal shape geometry by specifying the intended density of construction

material in space. For example, in Figure 3-1 the yellow region has high density (many ma-

terials) while the white region has low density. If the components can be built independently

and an assembling robot is capable of assembling all of them, #t is linearly superposed as

z

Ot Uqpu(3.1)
u=1

where z is the number of the components that can be assembled by an assembling robot, and

#3 is a constant representing importance of the uth component. Importance can measure

time required to assemble the piece, time until the piece is needed in the assembly, etc.

Without loss of generality, we will focus the examples on truss structures built with two

types of components: connectors and links in order to simplify exposition and figures. To

represent truss structures, 4t is defined point-wise on the grid that corresponds to the truss.

The point density is proportional to the number of possible truss connection at the point.

We wish to develop a decentralized algorithm that coordinates the robot team to deliver

parts so that the goal assembly can be completed with maximum parallelism. We assume

that the robots movefreely in an Euclidean space (2D and 3D).

Graph

Suppose n robots cover an undirected graph G (Q, E) with the configuration {Pi, ..., p4},
where pi C Q is the position node of the ith robot. d(-, -) : E -+ R+ denotes the short-

est distance measure between two nodes. d(s, t) = oc when s and t are not connected.

The cost of an edge is strictly positive. Each node has a node-weight #t(q) denoting the

importance of a task at q, which we call the target density function.

Next, we divide G into graph Voronoi partitions [30]. Given a node q in G, the nearest

robot to q will execute the task at q. Each robot is allocated the task that includes its Voronoi

partition V in G.

Vi = {q E QId(q, pi) < d(q, pj), Vj fi}. (3.2)



Unlike Voronoi partitioning in a continuous space, we have to clarify the assignment of a

node that has the same distance to multiple robots. We give priority to the robot with the

minimum ID according to the following condition:

q E Vi --> i = min {jId(q, pi) = d(q, pg) (3.3)

By adding weights to robots, we have a generalized Voronoi partition as given by:

Vi={fq (E Qld(q, pi) - wi < d(q, pj) - j, Vj -f i}, (3.4)

where wi is a weight. A larger weight yields a larger region.

To ensure distributed setting, we make the following assumptions.

1. The environment (G, # (q)) is given to each robot.

2. The node weight 4t(q) is fixed.

3. The robots do not know the locations of the other robots.

4. The robots do precompute the distance matrix D of G as a I Q x IQ symmetric

matrix where the matrix element dig is d(qi, qg).

Because of the third assumption, the robots can not precompute the optimal configuration.

The matrix D can be computed with O(IQ Is) runtime by the Floyd-Warshall algorithm [37].

3.1.2 Control algorithms

Algorithm 1 shows the main flow of construction in a centralized view. In the first phase,

assembling robots spread in a convex and bounded target area Q which includes the target

structure. They find placements using a distributed coverage controller which assigns to

each robot areas of the target structure that have approximately the same assembly com-

plexity. In the second phase the delivering robots move back and forth to carry source

components to the assembling robots. They deliver their components to the assembling

robot with maximum demanding mass. The demanding mass is defined as the amount of



a source component required for an assembling robot to complete its substructure. In this

thesis, we restrict the source components include two types: unit-length truss elements and

connectors. However, the algorithm is general and can support any number of different

assembly components. After an assembling robot obtains a component from a delivering

robot, it determines the optimal placement for this component in the overall assembly and

moves there to assemble the component. The assembly phase continues until there is no

source component left or the assembly structure is complete.

Algorithm 1 Construction Algorithm
1: Deploy the assembling robots in Q
2: Place the assembling robots at optimal task locations in Q (Chapter 4)
3: repeat
4: delivering robots: carry source components to the assembling robots
5: assembling robots: assemble the delivered components
6: until task completed or out of parts

3.1.3 Example

Figure 3-1(a) shows a construction system with 4 assembling robots. Intuitively, robot 1

and robot 4 move towards the other robots in order to expand their partition, whereas robot

2 moves away from the other robots because it has the largest area. The moving direction

of the robots is determined by combining the normals to the Voronoi edges. Figure 3-1(b)

shows the red delivering robot carrying a red truss element driven by the gradient of the

demanding mass. The yellow region denotes the target density function <t (in Euclidean

space). The hashed region denotes completed assembly. The demanding mass of a region

can be thought of as the difference between the area of yellow regions and the area of

hashed regions.

Suppose a delivering robot is in the region of robot 4. Among its neighbors (robot 2 and

3) the maximum demanding mass is with robot 3. Thus the delivering robot moves to robot

3. The delivering robot finds that robot 1 has the maximum demanding mass among robot

3's neighbors, therefore it advances to robot 1 and delivers the truss component. Following

the maximum demanding mass gives a local balance for the target structure.
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Figure 3-1: Example of the equal-mass partitioning and delivery by the gradient of the
demanding mass. 4 mobile manipulators (assembly robots) are displayed in a convex region
Q that includes the A-shaped target structure. The yellow region has high density 4t.
The mass of a robot is the size of the total yellow region in its partition (Voronoi region).
pi(i = 1, 2, 3) denotes the position of the assembling robots and the red-dotted lines li are
shared boundaries of the partitions between two robots. AMv is the demanding mass.

3.1.4 Adaptiveness

Based on the assignment algorithm and the uniform delivery algorithm, we show their adap-

tation to failure of robots, dynamic constraints, multiple types of elements and reconfigura-

tion. Continuous execution of the assignment algorithm for coverage during construction is

a key to adaptiveness. While running the assignment algorithm, we can modify the density

function so that it includes more information such as connectivity constrains and locations

of trusses to be disassembled. Also, the algorithms can be used for general types of source

elements.

3.2 System: Networked Robots

Our hardware system consists of a team of mobile manipulators, smart parts each with an

embedded communication device, and a motion capture system. The robots operate on

a square area, and a source cache is located at the end of the workspace (See Figure 8-

16). Trusses and connectors are manually supplied to the cache during experiments. In
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Figure 3-2: Snapshot of a delivery experiment. Robot 4 in the left has two orange connec-
tors and one navyblue truss. The robot in the below is holding a truss and delivering. The
GUI shows the status of the robots and communication.

order to help grasping, each 3D-printed smart part contains a custom JR chip and a battery

designed to talk to the robots. The robots localize using data from the motion capture

system broadcast over a mesh network.

Figure 3.2 shows a snapshot of a delivery experiment with two assembly robots and

two delivery robots.

The details of the hardware are shown in Chapter 8.



Chapter 4

Subassembly Assignment: Equal-mass

Partitioning

This section describes a decentralized equal-mass partitioning controller which is inspired

by distributed coverage control [23, 100]. The algorithm allocates to each assembling

robot the same amount of assembly work, which is encoded as the same number of truss

elements. This condition ensures maximum parallelism. We continue with a review of the

key notation in distributed coverage, then give the mass optimization criteria and end the

section with the decentralized controller.

4.1 Distributed Coverage

Control of a robot group has become an important problem for robotics applications which

cover obtaining a desired formation, optimizing sensing quality, maintaining a network

connectivity, desirable sensory coverage, etc.

Based on applications, distributed coverage controllers optimize the cost and scope of

sensing over the region. For example, to maximize the sensory coverage, it has been proven

that the robots should minimize the following cost function No [23]:

No = |q - pifl 2 g(q)dq, (4.1)
i 2
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Figure 4-1: A group of SwarmBots are covering the square area to optimize sensing quality
of the light intensity by the distributed coverage controller. Reprinted with permission
from [99].

where 4(q) is a sensory function that corresponds to the target density function in this

paper.

Figure 4-1 shows an example of distributed coverage in which a team of mobile robots

react to the light intensity so that they can have a formation optimizing the sensory cover-

age.

Note that coverage implies dividing a target region into the same number of subregions

as a number of robots.

4.2 Equal-mass partitioning

Suppose n assembling robots cover region Q with a configuration {pi, ..., p.}, where pi is

the position vector of the ith robot. Given a point q in Q, the nearest robot to q will execute

the assembly task at q. Each robot is allocated the assembly task that included its Voronoi

partition Vi in Q.

Vi = {q E Q-p||q - pil| <;J ||q - pg| Vj # i} (4.2)

The target density function #t is the density of truss elements, and it is fixed during the

construction phase. Given Vi, we define its mass property as the integral of the target



density function in the area.

M, j 4t(q)dq (4.3)

Distributed coverage controllers optimize the cost and scope of sensing over the region.

It has been proven that the robots should minimize the following cost function WO [23]:

-o =q -qpI2 4(q)dq, (4.4)
i=1

where 4(q) is a sensory function that corresponds to the target density function in this

thesis. We wish for each robot to have the same amount of assembly work. We call this

equal-mass partitioning. The cost function can be modeled as the product of all the masses:

n

W - WO M, (4.5)
i=1

where 'Ho is a constant and the bound of the product term as:

(O M- - )= ( 0t(q)dq). (4.6)

The cost function is continuously differentiable since each Mv, is continuously differen-

tiable [87]. Minimizing this cost function leads to equal-mass partitioning, because of the

relationship between the arithmetic mean and the geometric mean.

1 M > (4.7)
i=1 i=1

where the equality holds only if all the terms are the same. Therefore the prefect equal-

mass partitioning makes the cost function zero. Using the cost function in ( 4.5), we have

developed a decentralized controller that guarantees W converges to a local minimum.



4.2.1 Controller with Guaranteed Convergence

We wish for the controller to continuously decrease the cost function: 7 ; 0, t > 0.

Differentiating R yields
n

(4.8)

When Ai is a set of neighbor robots of the ith robot, each term of the partial derivatives is

aw, - Eajapi=zi

l{i,Ai} j

OMv = ZZJ
M y,

H
k={1,...,n},k#j

aM

=iN ap k

Mvk

H

_Mva = M

Mij is computed along the sharing edges (sharing faces in 3D) liy between V and V as

in [87]:

Mij = 4t(q) u n1i dq =
8pi

# (q) q _dqIi p - pi||
(4.12)

where nje is a normal vector to lij as

*=vi n- V = Pj - P| (4.13)

Figure 4-2 shows the notion used in this thesis. We can rewrite equation 4.8 as

n

N = f- H MZ
n

aikEji,ArA},k:Aj
MVkP ,i (4.14)

where

Mvk

(4.9)

(4.10)

(4.11)
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Figure 4-2: Between two Voronoi regions(2D and 3D), lij and n y are defined as in these
figures.

Let J, denote the part of the partial derivative term H which is related with the set {i, MI}.

J = MV My (4.15)
kE{i,Ai},kfj

Note that Ji is a vector. Given a velocity control for each robot, the decentralized controller

that achieves task allocation is given by the control law:

#3=k *JI (4.16)
||jil 2 + A2

where k is a positive control gain and A is a constant to stabilize the controller even around

singularities where |Ji 112 = 0.

Note that all the equations can be computed in a distributed way, since they only depend

on the variables of the neighboring robots.

Theorem 1 The proposed controller guarantees that -1 converges to either a local maxi-

mum or a global maximum.

Proof: The proposed control input yi yields

n2
)4 IIJE Pll, l2$ =k l+2A, AMy. (4.17)

i=1 lg{iA4}



Since k and Mv, are positive, each term of 7- is always negative. In addition, the cost func-

tion is differentiable, and trajectories of robots are bounded in Q. Therefore, the controller

keeps the cost function decreasing unless all the Ji are empty vectors (relocating the robots

does not change the cost function), which implies a local minimum.' M

4.2.2 Equal-mass Partitioning with Locational Optimization

Although the proposed controller leads the robots to equal-massed regions, the shapes of

the regions may not always look intuitively right. For example, if the controller divides a

square Q with a uniform density function, it may give a set of vertically long strips rather

than a set of squares that is more desirable in a sense of traveling time and communication

range. Fortunately, the balanced region with respect to a density function can be thought as

the locational optimization with the cost function io, since minimizing uncertainty leads

to compact regions.

We add the locational optimization property to the equal-mass partitioning controller.

We re-define 'Ho as:
n

Ho = MV Cv - p 2 . (4.18)
i=1

since a solution of the locational optimization is to locate robots at their centroid Cy [23].

Differentiating the cost function with respect to pi yields [87]:

8N0 = -2(Lv + Ri - Mv pi) (4.19)api

where

R= M- CCv,) - E - Cv,) (4.20)
jEAM.2 V i3 -i~v V

and

Eggi = 4t(q) q q-i dq. (4.21)
Jii ||pi- pg||)T

'Pavone et. al [85] also developed equitable partitioning using power diagrams that are weighted gener-
alized Voronoi diagrams. They used a different cost function as the average of inverse of the masses. They
targeted a different application in the space of the multi-vehicle routing.



We can re-set the final cost function as a linear combination of W and Wo as:

'f = W + 4-o (4.22)

where 7y is a positive constant that can be tuned. Differentiating this with respect to time

gives:
n

= ( 7- (4.23)
89pi 8pi

Now we have a new Ji:

ji= (M - M )( ~a - ) - 2-y(Lv + Ri - My ps). (4.24)

If the control input is set:

k J,(v v ilPi = -(M M 2 + M |C p (4.25)

4 i+ A2 _jEAM

we have the same convergence property for W.

Figure 4-3 shows Vornoi regions from the three controllers: locational optimization,

equal-mass partitioning, combined controller. The equal-mass partitioning only gives skewed

regions although each region has the same mass. The combined controller shows the best

result in terms of locationally balanced regions and equal-mass. From now on, we denote

equal-mass partitioning as the combined controller.

4.2.3 Implementation

The equal-mass partitioning was implemented for building 2D and 3D structures. We use

side truss elements and connectors that lie at a single source location. We have built several

structures using these algorithms.

The first simulation demonstrates the construction of a bridge from a single source loca-

tion of trusses and connectors. The density function O and the final Voronoi regions result-

ing from using the equal-mass partitioning controller for 4,6, and 10 assembling robots are
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Figure 4-3: Density function for an A-shaped bridge and resultant Voronoi regions. The
blue circles are assembling robots. Yellow regions have dense #t. (a) locational optimiza-
tion only (b) the equal-mass partitioning only (c) the combined controller
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Figure 4-4: Density function for an A-shaped bridge and coverage by the equal-mass par-
titioning. The blue circles are assembling robots. Yellow regions have dense #t.

shown in Figure 4-4. We use a discrete system so that #t is defined at every node (integer

points). The unit length is the length of a truss element. At an arbitrary point q, #t(q) is

interpolated from 4 surrounding nodes by barycentric interpolation. The interpolation en-

sures continuity of # that is required for the cost function '. The robots are deployed from

randomly selected starting positions. Figure 4-4 shows that each robot has approximately

the same area of the yellow region. As expected, the masses converge to the same value

as shown in Figure 4-5(b), and the cost function 7 approaches zero as in Figure 4-5(a).

A little jitter in the masses and the cost function graphs comes from discrete numerical

integrals.
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Figure 4-5: Result from the equal-mass partitioning controller for 4 assembling robots. (a)
Cost function 7 (b) Masses of four assembling robots
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Chapter 5

Subassembly Assignment: Distributed

Partitioning on a Graph

5.1 Coverage on a Graph

In distributed coverage on a graph, a set of mobile robots uses local information to place

themselves in such a way as to optimally cover the nodes of the graph according to some

problem-specific metric. The robots, the environment, and the actions in such a system

are all discrete. For example, we can apply this method to decentralized construction (see

Figure 5-1(a)) where robots cooperate to assemble a complex structure out of discrete com-

ponents, possibly by dividing it into subassemblies. Most decentralized coverage solutions

for continuous spaces work with convex environments ([23, 100, 85]), but many indoors

and outdoors environments are not convex (for example see Figure 5-1(b)). Decentralized

coverage on a graph can be used to provide an approximated solution to continuous non-

convex domains by modeling the non-convex region by a mesh network as in finite element

methods (FEM).

Decentralized coverage on a graph for problem domains characterized by discrete struc-

ture such as construction, transportation and facilities planning has significant advantages

over using its continuous counterpart in which the discrete structure is modeled as a con-

tinuous density function. The advantages are:



(a) (b)

Figure 5-1: Applications of distributed coverage on graph. (a) Concept art for construc-
tion of a truss structure by mobile delivering robots and truss-climbing assembling robots.
Reprinted with permission from Jonathan Hiller, Cornell University, USA. (b) Coverage
of a complicated non-convex region. The blue robots are covering the 3rd floor of Stata
Center at MIT.

1. each coverage region ensures connectivity, while coverage computed

ous methods adapted to the discrete domain may lead to disconnected

graph within a single region.

2. robot neighbors are explicitly connected by edges, while neighbors

continuous coverage methods adapted to the graph domain may not

reachable.

with continu-

subsets of the

computed by

be physically

3. The graph can be a representation of a non-convex region.

Also, a robot failure can be handled transparently as in continuous domains [23].

The trade-off is the discrete method requires more computation than the continuous

approach especially when the number of nodes is large but a corresponding continuous

density function has good properties for the computation such as numerical integration. As

we will see in Section 5.2, the runtime of our algorithm has order of square of the node

number.

Next, we describe the partitioning problems studied in this thesis: locational optimiza-

tion and equal-mass partitioning. We focus on solving the locational optimization, and the

solution is extended for equal-mass partitioning.

M - - .. - - . . ....... .... . ............ .



5.1.1 Locational optimization

Locational optimization has been extensively researched in operations research for a vari-

ety of optimization problems such as placing facilities to minimize costs (distances). For

example, how should we locate post offices to minimize the total distance from inhabitants

in the area? Recently the locational optimization was revisited in robotics and control, for

distributed coverage of multi-robot systems ([23, 100]). In distributed coverage, a team of

robots cover an area of interest to optimize a cost function.

In graph theory, this problem is called p-median (not to be confused with the standard

way of denoting the position of a robot by variable p). The goal is to find the best set of

medians (centroids) of the given graph. The cost function is given as:

n

WLt (q)d(q, pi), (5.1)
i=1 V%

which is the discretized cost function used in locational optimization [23]:

'o = zJ ot(q) |pi - qf1 dq, (5.2)
i=1 iv

where q and pi are now position vectors.

The p-median problem is NP-hard for a non-tree graph [40]. A great number of heuris-

tic centralized solutions have been proposed [91]. Our approach implements distributed

coverage of multi-robot system on a graph and is new in that it provides:

1. a distributed controller for a mobile robot system,

2. a geometry-based solution using graph Voronoi tessellation.

5.2 Decentralized Control Algorithms for Locational Op-

timization

In this section, we propose decentralized controllers to achieve locational optimization. We

will extend the controllers for equal-mass partitioning in Section 5.3.



Algorithm 2 shows the main control loop. Each robot has two states:

e COMPUTE: compute the optimal node to relocate

e MOVING: move to the optimal node.

Algorithm 2 Distributed Controller
STATE: COMPUTE

1: Communicate with Ai
2: Construct a new Voronoi partition by {pi, p~i, p> }
3: Find the new optimal p* (Algorithm 3, 4)
4: if pi -# p* then
5: state = MOVING
6: end if

STATE: MOVING
7: Move top*
8: if pi = p* then
9: state = FIND

10: end if

In contrast to the distributed coverage controller in a continuous domain [23] where

each robot requires only information about its neighbors Mi, in the graph case each robot

needs to know information about all the neighbors of its neighbors N,- as well. This is

because relocation of the robot on a graph can not be infinitely small as in the controllers

for the continuous domain. Therefore the relocation may change the Voronoi region of

Nyv. Figure 5-2 shows an example. The initial graph's Voronoi tessellation is shown in

Figure 5-2(a). Each color represents its Voronoi region V. All the edges are unit distance

long. If robot 2 moves downward by an edge as in Figure 5-2(b), V3 changes although robot

3 was not a neighbor of robot 1 in the initial configuration.

In the COMPUTE state, the robot communicates and receives information about the

neighbors HM and the neighbors of its neighbors NM, to construct the graph Voronoi tessel-

lation. p* is the centroid of Vi denoting the desired location for robot i. Note that p* can be

different from the actual position pi while the robot is moving to p* in the MOVING state.

Therefore, the graph Voronoi tessellation should be built from the set of p*, not from p. Af-

ter building the current Voronoi tessellation, each robot determines the optimal node for its

relocation. Algorithm 3 finds the optimal node for locational optimization. The algorithms
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Figure 5-2: An example shows why a robot needs to know information of neighbors of the
neighbors NyM. Each node and edge have unit weight and cost. Colors of nodes denote
which robot they belong to.

guarantee decay of the cost functions. If the found p* is not pi, the robot switches to the

state MOVING and moves to p*.

5.2.1 Why 2-hop information?

Intuitively, we need 2-hop communication because we need to access the location of the

neighbors' neighbors. This can be done by 2-hop communication (contact the neighbors

to get their neighbors' locations). Alternatively, we can store the location of the neighbors

with each node and use 1-hop communication. The trade-off is that as the neighbors move

many updates (hence communications) may be necessary.

More specifically, we want relocation of robot i to change only the Voronoi regions of

itself and its neighbors, so that we can decouple the cost function as follows:

where

4= S(q)d(q, pi),
I=iEleN %i

................... _ . .......................



and

-i is a part of the cost function that can be changed by the relocation of robot i. It

includes only V and Vr, where V is Voronoi partition of robot i. We want the remaining

part 7-\j untouched while robot i is moving. To ensure this decoupling, robot i should

know the locations of Arv (neighbors of the neighbors). Note that we have shown that the

relocation of a robot may change the Voronoi region of Ny. Given the locations ANy, the

proposed distributed vertex substitution algorithm ensures no change in .N§l.

Without 2-hop information, we can not decouple the cost function.

Next we explain the details of the algorithms for locational optimization. The algorithm

is based on vertex substitution. Vertex substitution [107] is known as a typical solution for

the p-median problem [91]. We modify it to fit our problems and call the modified version

distributed vertex substitution.

5.2.2 Distributed vertex substitution algorithm

Algorithm 3 shows the distributed vertex substitution algorithm for locational optimization.

Given the position set P =pip>,p* , let D9 be a |Q x |Pi sub-matrix of D with

all rows and columns matching Pi.

Among the nodes qb in V, the algorithm finds the optimal node to substitute the current

position. The algorithm checks how the substitution will affect the Voronoi tessellation and

the cost function, by examining how q c {Vi U VgV U BM } will change. BV is a node set

that does not belong to but is connected to Vv,. Therefore, it represents the nodes of Afgv

that can be affected. We consider two cases for qj: whether q will belong to the robot or

not.

If so, substitution of p* by qb may lead to three different situations:

1. the new distance d(qj, qb) is closer to the current distance d(qj, pi)

2. d (qj,q.) > d (qj, qb) > d (qj, pi)

3. d(qj, qb) > d(qj, qs) > d(qj, pi).



For the first two cases, the cost function decreases by #t(qj)(dib - dyi), whereas, for the

last case, the cost function increase it by #t (qj) (d1 s - dji). The amount of change to the

cost function is denoted as y Abi.

If q, will not belong to the robot, the cost function increases by #t (qy) (dy, - dyi) only

when the closest robot rk to q, is in NA. If rk ( Mi, we may change VFK.. Therefore we do

not consider qb as a substitute for p*. This guarantees the algorithm will only change the

neighboring Voronoi regions.

The final node for substitution is chosen to reduce the cost function most among all Abs.

Ab, the minimum of Abi, must be negative. Otherwise, the algorithm returns null, that is,

the robot i does not move.

5.2.3 Analysis

The runtime of Algorithm 3 is O(n| Q12 ) due to the two loops. We expect this algorithm to

be used when the number of nodes in the graph is much larger than the number of robots.

In such a case the running time will be dominated by the term due to the size of the node

set and can be considered to be O(|Q 2).

Given the locations of the robots connected by a 2-hop communication, we prove Al-

gorithms 3 and 4 convergence to local minima.

Let Q be a set of all the possible configuration with n robots.

Theorem 2 Q is a bounded and invariant set.

Proof: The number of the possible configuration is (1Q), where |Q| is the number of

nodes in G. Therefore Q has a finite number of configurations, and it is bounded. Also, it

is invariant since it contains every possible set. D

Let M c Q be the set of critical configurations in which the robots do not reconfigure

any more (AWL = 0), given the distributed vertex substitution control algorithm.

Theorem 3 M is an invariant set.

Proof: Given the controller, robots do not move when A-L = 0. Therefore, once a

configuration yields A79 L = 0, this configuration remains constant. 0



Algorithm 3 Distributed Vertex Substitution Algorithm for Locational Optimization

1: DQ = D(:, p* U p U p*g )
2: for qb = {q G ViIq pi} do
3: for q {qE VU UV BAIq # pv} do
4: dyk <-- min(row(D9, j))
5: rk <-ID of the robot at k
6: d - 2nd smallest row(D9, j)
7: if ri = rk then
8: if db <; dji or (dgb > dj and dj, > dgb) then
9: jAbi = #t (qj) (dg - dji)

10: else
11: = bi = (qj)(dj, - dyi)
12: end if
13: else
14: if dyb < djk then
15: if rk NM then
16: discard qb
17: end if
18: jAbi= #i(q-)(dg dyk)
19: end if
20: end if
21: end for
22: A .bi = =1 jbi

23: end for
24: Ab = min Abi
25: if Ab > 0 then
26: return 0
27: else
28: return q*
29: end if



Theorem 4 Every configuration in Q converges to M.

Proof: Let -o be the minimum of WL in Q. A configuration with 710 is the global

optimum. No is the lower bound of IL, and the configuration with 7o should be in M.

Let c be the smallest negative change in WL between every possible pair of configura-

tions in (. Since Q has a finite number of configurations, e is also finite. Therefore, given

any configuration with the proposed controller, A-L is either 0 or less than e. If AWL = 0,

the configuration is in M. If not, the configuration converges to M within a finite num-

ber of runs T < , because the cost function decreases at least by c and it is lower

bounded by Ho.

Since M is invariant, any configuration in Q converges to the critical configuration. D

5.2.4 Implementation

We implemented Algorithms 2 and 3 and tested them on a suit of graph topologies. We

focus on reporting on two graphs with similar topology but different sizes representing

blueprints of bridge structures. The first structure shown in Figure 5-3(a) has 144 nodes and

240 edges. The second structure is shown in Figure 5-5(a). It has 384 nodes and 649 edges.

2~10 robots are tested for the small bridge, while 2~15 robots are simulated for the big

bridge. Each set of robots is simulated 20 times with randomly initialized configurations.

The simulations terminate when the Voronoi tessellation does not change after an iteration

of the robot control loop.

Note that the first structure represents a mesh-network of the non-convex shape with the

uniform density function shown as the yellow region in Figure 5-4. Therefore the resultant

partitions are approximated partitions from continuous distributed coverage which does not

exist yet. The finer mesh network will yield more precise approximation.

Figure 5-3(a) shows the resultant graph Voronoi regions of the small bridge obtained

by the proposed controller for locational optimization with 4 robots. The graph of the cost

function is shown in Figure 5-3(b). We see that the cost function decreases over time. By

comparison, Figure 5-4 shows the solution computed by a e distributed coverage controller

for a continuous domain, where robots move not only on the target structure but also in
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Figure 5-3: Simulation result from coverage on the small bridge. Nodes are filled circles
and edges are black solid lines connecting the nodes. The circles enclosed by the black
outline are robot locations. Each color represents a Voronoi region that belongs to the same
colored robot. (a) The final configuration of locational optimization on the small bridge by
4 robots. (b) The cost function '-.

free space (white region). The weighting function is continuously defined by interpolating

the node weights. The distributed controller in [23] is used for distributed coverage in Fig-

ure 5-4. The cost function for the continuous domain is shown in Equation 5.2. The final

locations of the robots look almost identical. However, we can clearly see our algorithm for

graph coverage ensures fully connected Vi and neighbors whose regions are physically con-

nected. The distributed controller in the continuous domain may result in V with separated

parts and physically non-connected neighbors. In Figure 5-4, you can see the upper-right

robot and the lower-left robot are neighbors, although they are not connected by the target

structure.

Figure 5-5(a) shows the final Voronoi regions from Algorithm 3 controllers with 15

robots on the big bridge. The result matches our intuition to locate the robots at the joints

of the bridge.

We used two centralized methods to compare our solution with centralized solutions

capable of computing global optima: integer programming [92] and Lagrangian relaxation

heuristics [94]. The first approach could not handle the problem complexity. We used

MATLAB and SCIP 1.2.0 [2] on 64bit Quad CPU Q9550. The software failed to compute

the global optimum even for the smaller graph in Figure 5-3(a), because the computation

load was too high.
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Figure 5-4: The resultant Voronoi regions by locational optimization with the continuous
density function. The yellow region denotes high-density area while the white region has
low density. The blue circles are robots.
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Figure 5-6: Performance comparison to the global optimum for the graph in Figure 5-
3(a). Data are obtained from locational optimization on the big bridge by 2-15 robots. (a)
the global optimum and the resultant cost function value from the locational optimization
controller (b) Percentage of deviation from the global optimum. Mean and error-bars are
shown.

Lagrangian relaxation [94] does not guarantee the computation of a global optimum but

outputs whether its computed solution is the global optimum or not. We used this method

to evaluate all the solutions computed in a distributed way by our method. Lagrangian

relaxation produces the global optimums 8 times out of 9 cases for the graph in Figure 5-

3(a), and 7 of 14 cases for the graph in Figure 5-5(a).

Figures 5-6 and 5-7 show the results of using Lagrangian relaxation (centralized method)

to compute the global optima. Deviation from the guessed global minimum slowly in-

creases as number of the robots increases, however it remains within 10%.

We are continuing research on centralized computationally tractable methods for iden-

tifying the global optimum and evaluating our algorithm on more general test sets such as

OR library [12].

5.3 Extension to equal-mass partitioning

Using a different cost function, we can extend Algorithms 2 and 3 for a related problem:

equal-mass partitioning. This problem is important in decentralized construction where

we seek to identify subassemblies that can be aggregated in approximately the same time

period [65] and in vehicle routing where we want each vehicle to cover the same workload
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Figure 5-7: Performance comparison to the global optimum for the graph in Figure 5-
3(b). Data are obtained from locational optimization on the big bridge by 2-15 robots. (a)
the global optimum and the resultant cost function value from the locational optimization
controller (b) Percentage of deviation from the global optimum. Mean and error-bars are
shown.

in its route [85]. We introduce the problem, describe the distributed algorithm, and evaluate

the algorithms for the same two graph topologies used to evaluate Algorithm 2 and 3

5.3.1 Equal-mass partitioning

The equal-mass partitioning problem is to divide an area of interest into pieces with equal

amount of workload. It is useful for balancing the workload in multi-agent systems. Mass

can be viewed as the physical measure of the weight associated with each region, or as

an abstract measure. Solutions have been proposed based on a centralized view [9, 16].

Recently, two groups introduced distributed controllers for equal-mass partitioning ([65,

85]).

Our problem is related to the graph theory problem called graph partitioning, for find-

ing subsets of a graph with equal node weights and minimum total weights of edges cross-

ing between subsets. The problem is useful in applications including designing VLSI,

efficient routing, parallel computation of finite element method (FEM), etc. Graph parti-

tioning is also NP-hard [41], and there are many results from heuristic solutions [36]. Many

distributed and geometry based solutions were proposed ([15, 71, 108, 83]). Our solution

is unique since we specialized the problem by adding two constraints:

'Our problem is also NP-hard and proof is omitted for space limit.



1. a node belongs to the nearest robot,

2. a robot can relocate itself only in its Voronoi region.

Many existing algorithms either arbitrarily assign a node to a partition (robot) or relocate

centroids to any nodes. In this problem, it is not important that we obtain the obtaining

minimum edge cut, since the cost of the edge cut does not affect the cost function that

drives our controller. We focus on dividing a graph into subsets with equal node weights.

More formally, given the Voronoi partition V, we define its mass property as the sum

of the target density function in the area.

Myv = t (q). (5.3)

If all the nodes have the same unit node-weight #t, then Mv is the number of nodes in V.

The cost function is given by:

NE (5.4)

Note that NE is minimized only if Mv, = Mv2 = . .. = Mv,,

5.3.2 Control algorithm

Algorithm 4 shows the distributed vertex substitution algorithm for equal-mass partitioning.

The setup of the algorithm inherits Algorithm 3, and the local cost function 'NE, is defined

as:

E - (5.5)
1=i,lEA V

Note that decay of 'NE, directly leads to the decay of the total cost function NE. As in

locational optimization, we check how the Voronoi regions change and following change

to the masses is j A, where 1 = i, 1 E NA. The substitution to qb that may lead to change

V~ga is discarded as in Algorithm 3. The changed NE, by substituting p* to qb is denoted by

'NE, and the optimal node for substitution is chosen so that it minimize NE,. The minimum

should be smaller than NEj, otherwise the algorithm returns null.



Algorithm 4 Distributed Vertex Substitution Algorithm for Equal-mass Partitioning

1: D? = D(:,p* U p~r U p )
2: WE, l=1iM

3: for qb = {q E Vilq # pi} do
4: for q3=
5: djk +
6: rk+-I
7: dj,
8: r,
9: if rj=

10: if(d
11: j
12: j
13: end
14: else
15: ifd
16: if
17:
18: e

19:
20:
21: end
22: end if
23: end for
24: Wb

25: end for
26: NEt = min

27: if NE, > h

28: return 0

,q cq : p{~q G V u VA( U BN~ r p do

min(row(D?, j)
D of the robot at k
2nd smallest row(D?, j)
D of the robot at s

rk then
b = di, and ri > r,) or djb >

o'j <-j - t(qj)

+-g A, + t(qj)
if

jb < djk or ( djb= djk
rk 0 X, then
discard qb

id if
xi +-j Ai + ot(qj)
Nk +- Ak - Ot(qj)
if

I=i,IeAi Mv + s As

dj, then

and rk > ri) then

'NbEh
E, then

29: else
30: return b* of NE,
31: end if
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Figure 5-8: Simulation result from 4 robot coverage on the small bridge. (a) The final
configuration of equal-mass partitioning on the small bridge. (b) The cost function 7 E and
the masses My,

5.3.3 Analysis

Theorem 5 Algorithm 4 converges to a local minimum.

Proof: The proof has the same structure as the proof for locational optimization in Theo-

rem 3. We replace WL by1E 1 .A -

5.3.4 Implementation

Algorithm 4 was implemented and tested on a suite of graphs including the graphs in Fig-

ures 5-3 and 5-5. Figure 5-8 shows the data for the small bridge in Figure 5-3. We see the

masses converge to approximately the same value as in Figure 5-8(b). Compared to loca-

tional optimization (Figure 5-3), the locations of the robots look irregular since the robots

do not have to be at the centroid. The resultant Voronoi regions from the distributed con-

troller in a continuous domain is shown in Figure 5-9 ([65]), and they look similar as well.

Algorithm 4 guarantees that V is fully connected while the distributed controller in [65]

does not.

Figure 5-10(a) shows the final Voronoi regions by the equal-mass partitioning controller

with 15 robots on the big bridge. The masses converge as shown in Figure 5-10(b).

Massescost function
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Figure 5-9: The resultant Voronoi regions by equal-mass partitioning with the continous
density function. The distributed controller proposed in [65] is used.
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Figure 5-11: Performance comparison to the global optimum. equal-mass partitioning on
the big bridge is implemented with 2-15 robots. (a) The global optimum and the resultant
cost function from the equal-mass partitioning controller (b) Percentage of deviation from
the global optimum. Mean and error-bars are shown.

For the equal-mass partitioning problem, we know the global optimum of 'HE:

'HEpt = M (5.6)

where Ma is the total mass of G. Therefore we can compare the result from our controller

to 'WEopt as in Figure 5-11. The two plots for the global optimum and for our controller

are almost identical. Figure 5-11(b) confirms that the deviation from the global optimum is

less than 1% independent of how many robots were used in the test.



Chapter 6

Delivery and Assembly Algorithms

Once the assembling robots are in place according to the equal-mass partitioning controller,

construction may begin. State machines drive the delivering robots and the assembling

robots. During construction we wish to distribute the source components (truss elements

and connectors) to the assembling robots in a balanced way. Global balance is asymp-

totically achieved by a probabilistic target selection of delivering robots that uses #t as a

probability density function. For local balance, the delivering robots are driven by the gra-

dient of demanding mass defined as the remaining structure to be assembled by the robot.

Robots with more work left to do get parts before robots with less work left. Each as-

sembling robot waits for a new truss element or connector and assembles it to the most

demanding location in its Voronoi region. Therefore, construction is purely driven by the

density functions regardless of the amount of the source components and it can be done

without an explicit drawing of the target structure. We ensure that all the processes of

the controllers work in a distributed way and each robot needs to communicate only with

neighbors. Details of the control algorithms are explained next.

6.1 Probabilistic Delivery with Local Gradient Search

delivering robots operate by a state machine as shown in Figure 6-1. Each robot has the

following states:

* IDLE



* ToSOURCE: moving to get a new element

" ToTARGET: moving to a picked point at the target area Q

" ToASSEMBLY: delivering the element to an assembling robot

Algorithm 5 describes the details of the state machine.1 Given an initially empty state,

a delivering robot changes its state to ToSOURCE and moves to S (the source location).

At S, the robot picks a source component if one exists. Otherwise, it stops working. The

state is switched to ToTARGET and the robot moves to a randomly chosen point in Q
following the probability density function #t. Therefore, materials are more likely to be

delivered to an area with a denser #$. After arrival at the chosen point, the robot changes the

state to ToASSEMBLY and moves following the gradient of the demanding mass AMv
of assembling robots. Delivery by the gradient of the demanding mass yields a locally

balanced mass distribution. Note that the global balance is maintained by the randomly

chosen delivery with density #t. When the robot meets the assembling robot with the

maximum demanding mass, it checks if the state of the assembling robot is WAITING and

passes the material. The state changes to ToSOURCE and the robot repeats delivery.

6.2 Greedy Assembly Algorithm

Each assembling robot operates using a state machine as shown in Figure 6-2. The robot

has the following states:

" IDLE

" WAITING: waiting for a new component

" MOVING: moving to the optimal location to add the part

" ASSEMBLING: adding the component to the assembly

'The assembly and the delivery algorithms provably guarantee completion of the correct target structure.
In the interest of space, the proof is omitted. Empirical results in Section 6.3 shows correctness of the
algorithms since all the simulations with different initial conditions end up with the same final structure.



Figure 6-1: The state machine for a delivering robot. A delivering robot repeatedly passes
source components from the source location to an assembling robot. The initialization of
construction causes the delivering robots to start moving. The robots finish working when
there is no more source material left at the source location or the assembly is complete.

Algorithm 5 Control Algorithm of deliverii

STATE: IDLE
1: state = ToSOURCE
2: t = S

STATE: ToSOURCE
3: if reached t then
4: if source material remains then
5: pick a material element
6: t = q, q ~ 4t (q)
7: state = ToTARGET
8: else
9: state = IDLE

10: end if
11: else
12: move to t
13: end if

STATE: ToTARGET
14: if reached t then
15: state=ToASSEMBLY
16: else
17: move to t
18: end if
STATE: ToASSEMBLY
19: communicate with robot ri s.t. q e Vi
20: deliver yID = argmax(k=i,jC~r) AMVk
21: t = PdeliverylD

22: if reached t & state of ri = WAITING
then

23: pass the material
24: state = ToSOURCE
25: t = S
26: else
27: move to t
28: end if



the delivered material A source material
has been assembled -s delivered

ASSEMBLING MOVING

reached the target point

Figure 6-2: The state machine for an assembling robot. Each assembling robot waits for
the delivery of a source component, moves the component to the optimal spot and adds it
to the structure. The robot's task is complete when there is no demanding mass left.

Each robot has a graph representation Gi = (Ri, Ei) of the already built substructure. The

graph is composed of sets of nodes and edges in the Voronoi region. For simplicity of

exposition, we assume truss elements of two sizes: the unit-box size, and the unit box di-

agonal. The extension to multiple sizes is trivial. We design the density function according

to a grid. The unit length of the grid is the length of the truss element. Vertices of the

grid have density values equal to the number of truss elements at the vertex. The density

of the intermediate points in the space is interpolated. The interpolated value is used in

the coverage implementation only. We can generalize this cost function to be a continuous

function that encodes the geometry of the object. The demanding mass is defined uniquely

for each component type. As for a truss element, the demanding mass AM' is computed

as:

AM' = 4t(q)dq - J p(q)dq, (6.1)

where p(q) is the density function of the built structure, which increases as a robot assem-

bles truss elements. Note 4t(q) of the target shape is fixed. Therefore, a bigger demanding

mass means that more elements should be included in that area. The demanding mass for

connectors AMv is the number of required connectors <D' for the current structure Gi.



Note that AMv is a function of #(q). The demanding masses drive a delivering robot

according to gradients as in (Section 6.1). If a structure is composed of other components,

we can define the demanding mass for each material.

Algorithm 6 shows the details of the state machine. When construction starts, an as-

sembling robot initializes the parameters R, E, p, &J and changes its state to WAITING.

Once a new truss element is delivered, the robot finds the optimal place to add it to the

structure using Algorithm 7. Since we want the structure to gradually grow, the optimal

edge is chosen among a set of edges E1 that are connected to G. Let E2 be a set of edges

that have maximum demanding mass in E1 . The demanding mass of an edge can be com-

puted as the sum of masses of two nodes defining the edge. Each node of the edges in E2

should have a density value greater than the threshold preventing the robot from assembling

the component outside the target structure. In order to achieve a spreading-out structure,

priority is given to unconnected edges. If no such edge exists, we choose another seed edge

that is not connected to G and has the maximum demanding mass. This jump is required

in case that the robot covers substructures which are not connected to each other. If the

delivered material is a connector, the optimal location is a node v E 4DC that is connected

to the largest number of edges in E. The state machine sets a target location t according to

the optimal location and changes the state to MOVING. In the MOVING state, an assem-

bling robot moves to the target location t and changes the state to ASSEMBLING when

it arrives. Finally, a robot assembles the delivered material and updates the parameters. It

adds a node of the optimal edge to (D' if the node V 4z' and is connected to other edges.

If the material is a connector, the robot removes the node from V(. The state switches to

WAITING again.

6.3 Implementation

Figure 6-3 shows snapshots from the simulation after partitioning. We use 4 robots for truss

delivery and 4 robots for connector delivery. They deliver source materials which have 250

side truss elements and 150 connectors. The area with high density is gradually filled with

truss elements and connectors. Because the controller uses equal mass partitioning and the



Algorithm 6 Control Algorithm of assembling robots
STATE: IDLE STATE: MOVING

1: R ,E 0 18: if reached t then
2: p(q) = 0, 4Dc = 0 19: state=ASSEMBLING
3: state=WAITING 20: else

STATE: WAITING 21: move to t
4: if truss delivered then 22: end if
5: e=findOptimalEdge(R, E, #t, p) STATE: ASSEMBLING

(Alg. 7) 23: assemble the material
6: if e # 0 then 24: if the material = truss then
7: t = q(node1(e)+node2 (e))/2 25: update p(e)
8: state=MOVING 26: if node2 E R and nodej DC then
9: else 27: I c - nodej

10: state=IDLE 28: endif
11: endif 29: E -e
12: end if 30: R node,(e),riode2(e)
13: if connector delivered then 31: endif
14: V 45C 32: if the material = connector then
15: t qv 33: D C {V1

16: state=MOVING 34: endif
17: end if 35: state=WAITING

Algorithm 7 Finding the Optimal Edge to Build
1: E1 = 0, E 2 = 0, E 3 = 0

2: if Ei = o then
3: ept = argmaxe (Oje) - p(e)) n (Ot(e) > A threshold)

4: else
5: E1 <- e, (e 0 E, node(e) E R)
6: E2 <- argmaxeE 1 (t (e) - p(e)) n (t(e) > Athresh

7: if E2 = 0 then
8: eopt = argmaxe(#t(e) - p(e)) n (#t(e) > Athreshol
9: else

10: E3 <- e, (e E E2, {node1(e), node2 (e)} E {Ri, RjJE
11: if E3 # E2 then
12: eapt= random(E 2 - E 3)
13: else
14: e0at= random(E 2)
15: end if
16: end if
17: end if
18: return eo

old)

d)

A})

_Y



gradient of the demanding mass, the assembling robots maintain almost the same AzMv all

the time. Therefore, each Voronoi region has a balanced amount of truss elements. Note

that the control algorithms do not depend on the amount of the source truss elements. With

fewer elements, we obtain a thinner structure, while the availability of more truss element

yields a denser structure. At the end of the simulation, the assembling robot that has built

the least amount of the truss component has assembled 58 truss elements while the robot

with the maximum amount has assembled 63. The robot with the minimum number of

connectors assembled 33 connectors and the robot with the maximum number assembled

38.

Figure 6-4 shows the demanding masses for a truss part and a connector. All four

curves are completely overlapped, meaning all the substructures have been balanced at all

time. The demanding mass for a connector oscillates since it depends on the already built

substructure.

6.3.1 Constructing an Airplane

Figure 6-5 and Figure 6-6 shows snapshots of building a 3D pyramid and an airplane. 3D

grids are used and the target density functions are given and computed in the grids.

Figure 6-6 shows snapshots of building an airplane. 3D grids are used and the target

density functions are given and computed in the grids.

6.4 Analysis of the Algorithms

We now build on the algorithms and analyze the performance of the algorithms with respect

to balance among the substructures and completion time. Simulation data is obtained from

building the A-shaped bridge in Figure 4-4.

6.4.1 Balance of the sub-structures

Our goal is an algorithm that ensures the subassembly tasks proceed and get completed

at the same time. This ensures that the overall construction is well-parallelized and there
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Figure 6-4: (a) Demanding masses for a truss part and (b) a connector. 4 assembling robots
and 8 delivering robots are used. The assembly time is set to ten times the velocity. All the
graphs are almost overlapped.

is no unnecessary waiting for subassembly completion. Let us assume the equal-mass

partitioning is successful so that each assembling robot has the same amount of the target

structure. The probabilistic deployment of the delivery algorithm leads to the traditional

problem ball-into-bins where we throw m balls into n bins one by one with uniformly

distributed probability of placing a ball at a bin. This problem is also known as online load

balancing for distributed computation, where n servers are supposed to match m requests.

In both cases, the question is what is the maximum number of balls (requests) in any bin

(server).

Theorem 6 With only probabilistic deployment, the maximum deviation of delivery from

the mean ( ) is bounded by /2g log n with high probability.

Proof: In case m > n as ours, with high probability (normally > 1 - ), the

maximum number of balls [90] is smaller than

m m
--- -log n. (6.2)
n n

Since the mean number of balls is m, The maximum deviation from the mean is bounded

by /2 log n. 0

Figure 6-7(a) shows the demanding masses simulated from an example where 10 as-

sembling robots and 10 delivery robots are used and only the probabilistic deployment
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is implemented. We can see the demanding masses spread out as construction goes on.

Figure 6-8 shows maximum deviation of the demanding mass from the mean and the the-

oretical bound. The mean of the maximum deviation and the error bars are obtained from

10 simulations.

Algorithm 1 allows a delivering robot to find the assembling robot with the maximum

demanding mass after the probabilistic deployment, and that dramatically improves balance

as shown in Figure 6-7(b) and Figure 6-8. During construction, all the demanding masses

are within a range of a single truss element, which implies perfect balance. This local

search can be understood as picking multiple bins first and putting a ball at the bin with

the minimum number of balls. It is well known in the balls into bins problem that the

maximum load can be greatly reduced if we can choose two bins at random rather than

just one bin [80]. In the proposed algorithm, a delivering robot chooses where to place a

source component among neighboring robots of the robot that is picked by the probabilistic

deployment. This is equivalent to having the robot choose multiple assembling robots on a

graph.

Theorem 7 Algorithm 1 yields the maximum deviation bounded by log log with high prob-

ability.

Proof: The maximum load decreases into [58]

loglogn ±-2, (6.3)
log d n

where d is a number of bins we can choose. 2 Since we do not know how many neighbor

robots there are, we use a conservative bound with d = 2. E

The black dotted line is the bound with log log n Note that the maximum deviation is notlog 2

dependent on m.

2To qualify the equation, the graph should be regular with degree n' where e is not too small [58]. In our
case, we can not guarantee a degree of the graph that equal-mass partitioning would build. However, if the
target structure is fully connected, E should be at least greater than 2.
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6.4.2 Construction time and Travel distance

We conduct an empirical analysis of the construction algorithms, by testing several com-

binations of parameters. There are two major parameters that affect the total construction

time: velocity of the robot and assembly time required for an assembling robot to assem-

bling a part. If the assembly time is much larger than the reciprocal of the velocity, con-

struction time will be dominated by the assembly time. If the assembly time is very short,

the total time will be a function of the traveling distances of the robots. We evaluate the

algorithms with the following sets of parameters: Na E {1, 2, 4, 10}, Nd/Na c {1, 2, 4},

Ta E {1, 5, 20}. Ta is the assembly time.

When the assembly time is large, the construction time decreases proportional to the

number of the assembly robots, as shown in Figure 6-9(a). Therefore the control algo-

rithms yield good parallelism when a robot has a large assembly time. If the assembly time

is small, we may modify the criteria for a delivery robot to select an assembly robot by

incorporating expected traveling distance. This will be considered in our future work.

The average travel distance of the delivery robots is examined in Figure 6-9(b). Increas-

ing the number of delivery robots is more effective when the number of assembly robots

is small. However, too many delivery robots do not reduce the average distance and the

construction time much (the slopes become flat as the number increases.) Careful choice

of the robot numbers will yield the an appropriate tradeoff between robot numbers and

construction time. This will be investigated in the future.
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Chapter 7

Adaptation in Construction

The construction algorithms in Section 6.4 are adaptive to several cases such as failure

of robots, construction with dynamic constraints, multiple types of source elements and

reconfiguration between two structures. We next discuss each case.

7.1 Dynamic constraint: Construction in Order

Territorial construction is subject to gravity constraints which in turn imposes ordering

constructions on assembly job. For example, a 3D structure should be built from the ground

up. We extend our algorithm to incorporate this type of constraint in terms of connectivity.

Given 4t, we ensure connectivity by revealing only the part of 4t that is connected to the

current structure. Equal-mass partitioning and the computation of the demanding mass are

done with the revealed part of 4t, which is now a time-varying function. We model this

revealed part of 4t as a time-varying target density function pt. The assembling robots

perform equal-mass partitioning based on pt.

We update pt by Algorithm 8. Given the grid map Q, Re is a set of nodes that are

reachable, <bo is a unit density for each node of a truss element, and T" is an assembly

time to finish assembling a truss element. When an assembling robot starts to build a truss

element at an edge e pt, it checks whether the adjacent nodes of eopt are in R, or not. For the

nodes to be revealed q1, the density function increases by the rate - till time Ta. Therefore,

only the nodes connected to the current structure (Rc) are used in the current target density



Algorithm 8 Update the density function Vt during building a single truss element
1: qi +- a set of nodes incident to eopt and # Rc
2: q2 <- two nodes of eopt
3: set t = 0
4: repeat
5: 3t (qi) = tq

6: p(q2) =

7: update St and p
8: until t > Ta
9: Rc +- qi

function Vt. The next chosen edge eopt must be connected to the current structure.

The coverage control follows Algorithm 9. We modify it to incorporate the time varying

density function. Note that St varies smoothly since 53t is a constant.

Given the cost function 7 that is now a function of St replacing #t in Equation 4.5,

differentiating 7 yields

N=pi + Fi Mv). (7.1)
i=1 kgji,Ar}

The new term F comes from the time varying density function, and can be computed as

F = - A[v J t(q, t)dq, (7.2)

where c is given by Algorithm 8. If we set the velocity input as

yi = (k - F) (7.3)
|Jil|2 + A2

where
(9Mv

J i Mvk, (7.4)
j=i,A kE{i,,i},kfj

71 becomes
n1

N=- 2 ±2 (k + A2Fi) II Mv. (7.5)
gin o al71iAle

Theoretically, setting the gain k to a large value ensures 1 < 0 unless all Ji are zero.



We conjecture that F also becomes zero if all Ji are zero, however, we have not proven

this yet. In practice, a robot sets the gain ki that guarantees a local derivative of the cost

function ?-i < 0, which is defined as

E = 0j + Fj f Mvk). (7.6)
j=i'jEMi j k~fi{,Ni}

Theorem 8 F is bounded.

Proof: Mv and bt are bounded. Therefore, by Equation (7.2), F is bounded. E

We can show that F can be more tightly bounded in a discrete domain if we assume

that all the robots have equal mass before the change of the density function.

Fi < (M,(t_) - Mv (t_) + 2t max At) 2| max (7.7)

~4 Nill KitIn At (7.8)

where M,(t_) is the mass before change, t max is the maximum changing rate of the

density function, At is a control sampling time, and INI is the number of neighbors.

Theorem 9 The control input Ii is bounded.

Proof: Because Fi and Mv are bounded, Ii is bounded by Equation (7.3) D

Figure 7-1 shows results from our implementation of the control algorithms with 2

assembling robots. The bridge is to be built from the lower left corner. Only the lower left

part of the target density function is revealed as in Figure 7-1(a). The more the robots build,

the more of #/ is used until the entire target density function #t is revealed. As shown in

Figure 7-2(a), the cost function is almost flat even though (pt changes during construction,

since the controller incorporate the time varying density function. We can see the masses

of two robots are almost identical at all time during construction as in Figure 7-2(b).
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7.2 Robustness to Robot Failure

Assembling robots are critical since each assembling robot covers a unique region. Fail-

ures of the assembling robots can be tolerated by executing the subassembly equal-mass

partitioning continuously as a background process. When a robot fails, its remaining sub-

assembly task will get reassigned and all the other assembly loads re-balanced. We assume

a failed robot disappears with an element if it is carrying any. Algorithm 9 shows the main

Algorithm 9 Assembly with Equal-mass Partitioning
1: repeat
2: assemble the delivered components
3: move to fi by Equation 4.16
4: update Vi, G, p, V
5: until task completed

control loop for assembling robots with continuous equal-mass partitioning. p describes

a density function for currently built structure, and (DI is a set of required connectors for

the current structure. The assembling robots reconstruct the Voronoi regions when the

surrounding network of the robots has changed. Since assembling robots move during con-

struction, we introduce the virtual center of the Voronoi region ni and move it instead of

a robot position, and reconstruct V around Pi. The assembling robots also need to update

the parameters such as the graph of the built structure and demanding mass for truss and

connectors. We assume that a robot can detect failure of its neighbor.

. . .. ....... .



Theorem 10 Continuous coverage during construction compensates for the failure of the

assembling robots

Proof: The coverage controller guarantees decay of the cost function N regardless of the

number of neighbors. Therefore, if a robot fails, N will decrease to a local optimum with

the changed configuration, as long as there are the remaining assembling robots. D

Figure 7-3 shows a snapshot from a simulation with a failed robot. The robot in the

upper right Voronoi region fails during construction as Figure 7-3(b), and the neighboring

robots adapt their Voronoi regions to fill the region of the failed robot while continuing

construction. Since the coverage control requires a significant amount of computation, the

robots end it when the cost function settles down as shown in Figure 7-4.

Failure of delivering robots is not critical in our approach, because the system is trans-

parent to that. Only the completion time would increase, since we have less number of

delivering robots after the failure.

7.3 Reconfiguration

The goal structure might change after or during construction. We extend the construction

algorithm to support adaptation to changing structure geometry during construction, in

order to build a new goal structure from the current structure. Suppose a target structure

#t3 has been built and a new target structure #t2 is given. Assuming the assembling robot

is capable of disassembly, Algorithm 10 shows how the original structure is reconfigured

to the new structure. Here we set the target density function as difference between two

structures lot2 - #t, for equal-mass partitioning, since disassembly also requires work of

assembling robots. We assume cost for disassembly is the same as assembly. If they are

different, we can generalize the target density function as:

q5t = (O2- qOtl)± + e(qOt, - 00 1(7.9)

where a is a workload ratio of disassembly to assembly and (.)+ represents positive only.

From now on, we set a = 1. The demanding mass is extended to two types: for assembly
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Figure 7-4: Cost function of the simulation in Figure 7-3. At time 500, the cost rises up
because of failure, however settles down by the equal-mass partitioning controller.

(AMv%) and disassembly (AMd) , which are defined as

AMGa J (#t2 (q) - # ) - pa(q)dq,

AMd= J(4t(q) - #t 2 (q))+dq - pd(q)dq,
JVi J Vi

(7.10)

(7.11)

where pa is the density function of the built structure and Pd is of the disassembled structure.

Algorithm 10 Reconfiguration Algorithm
1: Place the assembling robots by equal-mass partitioning with the density function

14t2 -0#t, I in Q
2: repeat
3: delivering robots: carry source components from (#t, - #t 2 )+ to the assembling

robots
4: assembling robots: assemble the delivered components in (#t2 - Oti)+

5: until task completed or out of parts

Assembly Algorithm

The state machine used for the assembling robot in [65] is adjusted for reconfiguration.

The robot has the following states:

" IDLE

* WAITING: waiting for a new component or request for a part

" MOVING.ASSEMBLY: moving to the optimal location to add the part



* ASSEMBLING: adding the component to the assembly

" MOVINGDISASSEMBLY: moving to the optimal location to detach the part

" DISASSEMBLING: removing the component and hand over it to a delivering robot

The last two states are added to the state machine in [65] for disassembly.

Algorithm 11 shows the details of the state machine for disassembly. The state machine

for assembly is in [65]. When reconfiguration starts, an assembling robot initializes the

parameters R, E, Pa, Pd and changes its state to WAITING. Recall that each robot has a

local graph representation G = (R, E) of the already built local substructure by itself and

neighbors. If it receives a request for disassembly from a delivery robot, it finds the optimal

location to remove a truss element in (#tJ -# 2 )+. The optimal location is chosen as an edge

with the maximum demanding mass for disassembly. The robot moves to the location by

setting the state to MOVINGDISASSEMBLY. In the MOVINGDISASSEMBLY state, an

assembling robot moves to the target location t and changes the state to DISASSEMBLING

when it arrives. Then it detaches the truss element and hand it over to the delivery robot.

After disassembly, it updates the parameters such as R, E, Pd. The state goes back to

WAITING.

7.3.1 Delivery Algorithm

Delivering robots also operate by an adjusted state machine from [65]. Each robot has the

following states:

* IDLE

" ToSOURCE: moving to a picked point in (#tl - #t2)+

* ToTARGET: moving to a picked point in (#62 - 4ti)+

" ToASSEMBLY: delivering the element to an assembling robot

" ToPICKUP: moving to get a new element from an assembling robot

" PICKING: getting the element from the assembling robot



Algorithm 11 Control Algorithm of assembling robots
STATE: IDLE

1: R +- nodes E #t,(V), E +- edges E #t, (Vi)

2: pa(q) = 0, Pd(q) = 0

3: state=WAITING
STATE: WAITING

4: if receive a request for disassembly then
5: e =findOptimalEdge(R, E, (#t1 - #t

2 )+, Pd)

6: t = q(node1(e)+node2 (e))/2

7: state=MOVINGDISASSEMBLY
8: end if

STATE: MOVINGDISASSEMBLY
9: if reached t then

10: state=DISASSEMBLING
11: else
12: move to t
13: end if
STATE: DISASSEMBLING
14: disassemble the material
15: update Pd(e)
16: E +- E - e

17: R +- R - {node1(e), node2(e)}
18: hand over the material to the delivery robot
19: state=WAITING



The last two states are for disassembly.

Algorithm 12 describes the details of the state machine. Instead of obtaining a source

component from a source cache as in [65], a delivering robot gets it from the redundant

structure (#t, - #t 2 )+ and carries it to the unfilled structure (#t2 - Oti )+. Given an initially

empty state, a delivering robot changes its state to ToSOURCE and picks a possible source

location with respect to the probability density function (#t, - #t 2 )+. This probabilistic

choice has already been used for finding an assembly location in [65], and we use the

same method to pick a source component here. The state ToSOURCE ends when the robot

reaches the chosen location and switches to ToPICKUP. In the state ToPICKUP, the robot

figures out an assembly robot with the maximum demanding mass that is a sum of A M -+

AM$k. To ensure there is a source component to be disassembled, the assembly robot

should have positive demanding mass for disassembly (AMd .) If the assembling robot has

the state WAITING, then it requests disassembly and moves to the robot, switching the state

to PICKING. The delivery robots waits for the assembling robot to finish disassembly and

receives the new truss element, changing the state to ToTARGET. The assembly procedure

for the state ToTARGET and ToASSEMBLY has been explained in [65].

7.3.2 Implementation

Figure 7-5 shows snapshots of reconfiguration from an A-shaped bridge (Figure 7-5(a)) to

an M-shape (Figure 7-5(b)). 4 assembling robots and 4 delivery robots are deployed. We

can see the density function l#t2 - #ti I for equal-mass partitioning has a cross-like shape

(the yellow region without the truss and the truss outside the yellow region in Figure 7-

5(b).) The partitioning results in new Voronoi regions as in Figure 7-5(c), and the delivering

robots carry a truss element from'redundant truss to the yellow region that is not filled by

the truss yet.

7.4 Multiple types of source components

Figure 7-6 shows snapshots of the simulation of building the A-shaped bridge with two

types of truss elements: side and diagonal. The density function is a simple sum of that for



Algorithm 12 Control Algorithm of delivering robots
STATE: IDLE

1: state= ToSOURCE
2: t ~ (#ti - #t2)+

STATE: ToSOURCE
3: if reached t then
4: state = ToPICKUP
5: else
6: move to t
7: end if

STATE: ToPICKUP
8: communicate with robot ri s.t. q E Vi
9: deliveryID = argmax =i,jEu),,Au o A V, + A M 

10: if ri = WAITING then
11: send a disassembly request to ri
12: state = PICKING
13: t = PdeliverylD

14: end if
STATE: PICKING
15: if reached t and get a truss element then
16: state = ToTARGET
17: t ~(# -

18: else
19: move to t
20: end if
STATE: ToTARGET
21: if reached t then
22: state=ToASSEMBLY
23: else
24: move to t
25: end if
STATE: ToASSEMBLY
26: communicate with robot ri s.t. q E V
27: deliveryID = argmax(k=i,jEi),A M~a >0 A MV +ZAM
28: t = PdeliverylD

29: if reached t & state of ri = WAITING then
30: pass the material
31: state = ToSOURCE
32: else
33: move to t
34: end if
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Figure 7-6: A-shaped bridge with two types of truss elements. 4 assembling
delivery robots are building the structure.

robots and 4

side and that for diagonal, since we assume assembling times for them are the same.

In the future, we will consider the case source components have dependency on each

other so that they have to be built in some order.

7.5 Adaptation to human input

Next, we wish to enable our system to take input from and adapt to human input during op-

eration. For example, when a failure such as misalignment between parts happens because

of a lack of fine manipulation, the robot can call a human helper to fix the problem rather

than try to solve it by itself.

To implement human input, a human robot interface is essential for a human to com-
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municate with robots. Fortunately, a mesh network is required for our system and can

be implemented as shown in Chapter 8, and a human helper can benefit from the exist-

ing network by bringing a device which can be connected to the network and send/receive

packets.

7.5.1 Human input

Humans may take either the role of a delivery robot or the role of an assembly robot.

Human delivery is straightforward. One can pretend to be a delivery robot as long as one

can send the same message as a delivery robot is supposed to send to an assembly robot. An

assembly robot is not able to tell the difference between human delivery and robot delivery

if the communication device of a human worker is compatible with the controller (UDP

communication by a netbook in our hardware implementation) of a delivery robot. In our

hardware implementation, this can be done by informing an assembly robot of the part that

has been delivered by a human and receiving acknowledgement from the assembly robot.

Before the delivery, a human must confirm the assembly robot has positive demanding

mass of the part, and this can also be done by listening to the demanding mass as a delivery

robot does in our implementation. In this way, a human intervention speeds up the process

when there is a bottleneck of supply.

Human assembly can not be done as transparently as human delivery. Since every

assembly should be checked by an assembly robot which has the assembly location in

its Voronoi partition, human assembly should be reported to the assembly robot via an

additional protocol. Implementation of human assembly is also straightforward. Once a

human assembled a part, one sends a message including the location of assembly, and the

corresponding assembly robot updates its map (p and <}C) as in ASSEMBLING state. To

avoid confliction, a human must check if the assembly robot has WAITING state.

7.5.2 Guide for build order

Assembly robots choose the order of construction by Algorithm 7. Human input can be

used to change the order when priority arises during construction. We define a set of prior-
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itized node R, as locations at which parts should be assembled prior than other locations.

The prioritized nodes are selected by human input during construction by sending out a

message in a mesh network. Algorithm 7 has been modified to Algorithm 13 so that it first

chooses an edge which is connected to the prioritized nodes. If there is no edge that is

adjacent to the prioritized nodes, then robots continue the original Algorithm 7.

Algorithm 13 Finding the Optimal Edge to Build with the Prioritized Nodes
1: if R =# 0 then
2: r R,
3: e <- edges(r) n (4t(edges(r)) - p(edges(r)) > 0)
4: if no more possible edges to r then
5: Rp = Rp - r

6: end if
7: return e

8: else
9: return e=findOptimalEdge(R, E, 4t, p) (Alg. 7)

10: end if

Figure 7-7 shows implementation of Algorithm 13. In the beginning, the two lower

robots have the prioritized nodes on the base, therefore they start construction from the

base. After a while, new prioritized nodes are given at the borders of the Voronoi regions,

and all the robots focus on assembling the trusses at the prioritized nodes before they fin-

ish the structure. In the simulation, the prioritized nodes are given by mouse clicks in

MATLAB GUI.

7.5.3 Reconfiguration during construction

The reconfiguration algorithms in Algorithm 11 and 12 can be used to change a blue print

during construction. We assume we have the ability to communicate to all assembly robots

the change of the density function. The assembly robots respond to the human input and

reallocate their work partitions. The delivery robots have two options for the next parts to

be delivered: the source cache and the components from the old structure that are no longer

necessary because of reconfiguration of the density function. Algorithm 14 shows the

modified control algorithm for delivery robots. Note that only the controller for the IDLE

state of the state machine has been changed. Unlike the reconfiguration in the previous
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Figure 7-7: Snapshots of building the A-shaped bridge by 4 assembly robots. The black
squares are the prioritized nodes which are selected by human input. Between (a) and (b),
the two lower robots are given the six priority nodes on the base, and the nodes are built
first as shown in (c). More prioritized nodes are given at the borders of the Voronoi regions
between (c) and (d). Each of six nodes are prioritized at each side, and each of three nodes
are at the top and the middle. The nodes are also built prior to other nodes as shown in (e)
and the robots continue the rest of the structure in (f).
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section, the robots do not know how many redundant parts there are since the goal structure

has not been done yet. Therefore, a delivery robot obtains a redundant part by changing the

state to ToPICKUP whenever a neighboring assembly robot has any redundant parts.

Algorithm 14 Control algorithm of delivering robots for human reconfiguration
STATE: IDLE

1: communicate with robot ri s.t. q E Vi
2: if AMI > 0 then
3: state = ToPICKUP
4: else
5: state = ToSOURCE
6: t = S
7: end if

Simulation data for the case of changing the A-shaped bridge to the M-shaped bridge

during construction is shown in Figure 7-8. We change the density function twice during

the simulation. (1) We cut off the left half of the horizontal bridge in the middle and add

the upper half of the vertical bridge. (2) The rest of the horizontal bridge is deleted and the

rest of the vertical bridge is added. After the changes, equal-mass partitioning based on the

updated density function is followed to equalized the changed workload.

7.5.4 Failure mode

When there is a failure of assembly or delivery, the failed part may need to be removed or

correctly re-assembled. If the recovery is beyond the robot capability, which is plausible

since we target an inexpensive system with the minimal functionality, a robot can call for

a human help through the network. Emergency protocol should be implemented so that

the message can travel to a human in a global way. Our future work includes the hardware

implementation of this protocol.
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Chapter 8

Theory to Practice: Experiments

In this thesis, we focus on delivery and assembly experiments. Experimenting equal-mass

partitioning is left for future work. Similar algorithms have been implemented before in

our prior work [99].

8.1 Experimental System

Our hardware system consists of a team of mobile manipulators, 3D-printed smart parts

each with an embedded communication device, and a VICON motion capture system. The

robots operate on a square area, and a source cache of trusses and connectors is located at

the side of the workspace (See Figure 8-16). The trusses and connectors are manually sup-

plied to the cache during experiments. In order to help grasping, each smart part contains

an IR beacon and a battery designed to communicate with the robots. The robots localize

using the motion capture system which broadcasts 3D poses over a mesh network.

8.1.1 Mobile manipulator

The robot consists of a commercially available iCreate mobile platform and a CrustCrawler

robotic arm with a custom chassis as shown in Figure 8-1. Specifications of each com-

ponent are in Table 8.1. An instrumented gripper which contains an IR communication

transceiver is attached to the arm. The gripper is contoured so that its closing aligns a

109



Figure 8-1: Side view of robot hardware with the Crustcrawler arm. From a fixed base, the
arm allows for grasping an object on the ground in a half-arc in front of it with a depth of
about 20cm.

Mobile iRobot iCreate
Model CrustCrawler SG5-UT
DoF 4
Reach 0.5 m
Payload 0.6 kg

Communication IR, UDP, xBee

Table 8.1: Specifications of the robot

grasped part. The special design helps the gripper with reliably grasping parts despite of

centimeter-scale uncertainty in a position of the parts, by passively aligning the gasping

point of the parts into a right orientation as the gripper closes. The robot has three commu-

nication protocols: IR, UDP and xBee, which are used for communication with the smart

parts, other robots and motion capture system, respectively. The controller is a Dell Insp-

iron Mini 10s netbook which runs a Java-based controller. The netbook has a WLAN card

for inter-robot communication over a wireless network, and the battery of the netbook also

powers the IR sensors and the xBee module.
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Figure 8-2: Smarts parts to be delivered: (LEFT) a blue truss (RIGHT) a red connector

8.1.2 Smart parts: Instrumented trusses and connectors

Smart parts enable grasping for robotic delivery and assembly via IR communication. We

explore the use of communication as an alternative to using computer vision for part iden-

tification and grasping. The IR communication devices are instrumented as shown in Fig-

ure 8-3 on the robots and within each parts. This allows a robot and a part to interact with

each other. A part can guide a robot to its location and tell the robot its part type.

Figure 8-2 shows two types of the smart parts: truss and connector. The angled design

of the connecting points aims to compensate for position uncertainty between the smart

parts during assembly. The parts interlock each other both horizontally and vertically for

scaffold-like structures. The connector is capable of linking 6 trusses in the North, South,

East, West, Up, and Down directions. Figure 8-4 shows a cube built from 8 connectors

and 12 trusses. Only centimeter scale accuracy is required for assembly, relying on the

contoured design of the mating surfaces to fall into place precisely. Every part has the spe-

cially designed grasping point that can be passively aligned to a fully constrained position

despite up to 2cm of misalignment. With a rechargeable 3.7v 210mAh lithium polymer

battery, the parts weigh 60 grams. The truss is 18 cm long.
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Figure 8-3: The small IR communication modules on a PCB that can be embedded in parts
to create a smart environment for the robots to sense. Figure reproduced with permission
[33]

Figure 8-4: This 3D-rendered image of a cube is constructed from 8 junctions, and 12
struts. Picture reproduced with permission [33].
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Figure 8-5: The hierarchical software architecture of the robot platform. Reprinted with
permission from [17].

8.1.3 Infrastructure for localization and communication

For localization, the robots receive precise poses from a Vicon motion capture system

which provides the 2D positions and the rotational headings with accuracy to millime-

ter and milli-radian at 10 Hz using a xBee radio frequency wireless mesh network. The

robots use a UDP multicast channel on the local network for communication. The UDP

packet contains a logical time-stamp, a robot ID, a current position, and a current target

robot of delivery. The robots also broadcast their states: whether they are currently carry-

ing or dropping off a part, which type of parts they are carrying, where they are carrying

this payload to, and the location of any other known placed parts.

8.1.4 Software Architecture

The software architecture of the main controller which runs in the netbook is structured

hierarchically and modularized. The highest level planners are derived from the same super
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planner. This modularity leads to assembly and delivery planners, one of which each robot

chooses according to its role to control the robot functions as shown in Figure 8-5.

All the software codes are written in Java and each module runs its own thread. The

planner thread mainly controls manipulation and navigation. The planner gives the naviga-

tion module a destination pose and obstacles, such as other robots and parts on the ground.

After navigation, The arm module receives two commands from the planner: pick up the

part or put down the part. The planner decides where and when to move and manipulate

parts given the information received by the communication module. The communication

module provides the most up to date information for the planner to make a next decision

on navigation and manipulation. Under the planner, three modules handle low level control

for the mobile, the arm, the manipulating IR sensors, and the communication messaging

hardware.

8.2 Extended State Machines

Implementing Algorithm 1 on the robot system requires revisiting its assumptions with

respect to what can be measured, implemented, and computed efficiently, and making cor-

responding changes to control loops. The main differences between the theory and the

practice are listed in Table 8.2. The most important components are manipulation and

navigation, used both for assembly and delivery.

8.2.1 Navigation

The original algorithm did not consider any collision between robots and already built

structures, and we extend the algorithm to allow the robots to physically move around other

robots and parts by passing required data in the communications messages. The navigation

software module shown in Figure 8-6 receives commands from the planner and moves the

robot as close to a desired pose as possible. The A-star algorithm drives a delivery robot

to approach a destination location on a grid map which divides the square area into 10

x 10 cm mesh. A proportional motion controller is appropriate for the iCreate platform.

The navigation module checks collision avoidance in real time, and prevents a robot from

114



Experiment Controller from [65]

Table 8.2: Controller from [65] Vs. Experiment

moving to a location blocked by an obstacle or other robots.

8.2.2 Manipulation

Manipulation is used for obtaining a part from the source cache, handing off the part to an

assembly robot and placing the part for assembly. In each case, the planner uses the arm

module to find, pick up and place the part. Algorithm 15 is the search-and-pick motions of

a delivery robot based on the robot-part communication via the IR beacon.

The field of view of the IR sensor of the arm can be widened and narrowed by opening

and closing the gripper, and the arm finds parts by iteratively scanning smaller and smaller

areas for an IR signal. First, the arm points the sensor directly at the ground to avoid

detecting any parts that are out of its reach. The first pass of an area requires scanning

by moving the entire arm in a 180 degree half circle around the front of the robot. The

arm module closes the gripper and narrows the sensors cone of view until it no longer sees

the part, and re-scans the small area until it finds the part again. This process continues

until the arm has been moved close enough to the part to grip the top of it and pick it up.
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* Nonholonomic robot dynamics arises posi-
tion errors and turning delays
" Noisy measurement of global position
" Robots with volume and dynamics, path plan-
ning required
" Collision avoidance algorithm required
" The next part to be delivered is dependent of
the current structure
" Pickup causes a bottleneck

" IR beacons for communication between
robots and materials
o UDP messaging system using acknowledge-
ments and logical time to recover packet loss
" Asynchronous propagation of information

" Hardware failure causes part to be dropped

" Holonomic robot

" Knowledge of exact global position
" Robots are point masses

" Robots pass through the environment
" No dependency between trusses and connec-
tors
* Picking up parts from supply cache takes very
short time
o Pin-point knowledge of types and locations of
materials
* Synchronous communication for complete in-
formation about surroundings
o Immediate update of information from neigh-
bors
* Parts never lost or dropped on map

Controller from [65]Experiment
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Figure 8-6: The motion planning FSM of the robot software. Reprinted with permission
from [17].

Algorithm 15 Arm Manipulation Part Search Algorithm
1: repeat
2: Open gripper for wide FOV
3: while IR sensor does not see part do
4: Arc scan back and forth 7r radians
5: end while
6: startTheta = current arm position
7: while IR sensor still sees part do
8: Radial scan forward.
9: end while

10: endTheta = current arm position
11: Narrow gripper field of view
12: while IR sensor does not see part do
13: Move arm in and out along radius while arc-scanning
14: between startTheta and endTheta radians
15: end while
16: Open gripper wide.
17: Lower arm on top of part
18: Close gripper
19: until Arm closed over part
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Narrowing down the possible locations of the part allows the arm to fine tune its signal to

be within 2cm of the top of the part. The arm confirms pickup by receiving a response from

the parts IR chip while the arms gripper, hold the part, is pointed up in the air. Snapshots of

grasping is shown in Figure 8-13. This search-and-pick algorithm is also used for hand-off

of an assembly robot with smaller search angles (± 10degree).

8.2.3 Communication

The communication module runs constantly in its own thread to provide the most recent

data to the task planner. The module maintains the latest state of all the robot broadcasting

in the signal range and stores the most recent message logical time of which is determined

by packet time-stamps implemented using distributed logical time. The module also broad-

casts out its own state on the same channel and keeps track of parts which other robots

have reported placing down on the field of construction already so that the robot avoids

them during navigation. Finally, for a handshake between two robots, the communication

module keeps track of parts expected by an assembly robot, whether a delivery robot has

delivered them yet, and whether the target assembly robot has acknowledged the delivery.

Since the robot is not equipped with a sensor to see the environment, the record of part

movements acts as the sensor. Any robot en route listens to neighboring robots, and it

records where parts are being placed and which robots are the targets in order to update

progress of construction. Since delivery robots deliver parts based on what other robots in

the field of construction demand, the dissemination of knowledge about where parts have

been delivered is crucial. Robots need an accurate internal map of the already built site

in order to calculate their own demanding mass value or to decide if they move, and the

communication module gives this information to the planner.

8.2.4 Delivery

The delivery algorithm is as a finite state machine as shown in Figure 8-7, which follows

the theory and accounts for the practical challenges of a multiple robot system including

collision avoidance, asynchronous communication, and dependencies between the parts. In
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Figure 8-7: The task planning event loop for the delivery robots. The main loop pauses
and loops back on itself at points where continuing requires asynchronous communication
from other robots. Reprinted with permission from [17].
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Algorithm 16 Delivery Robot Part Delivery Algorithm
1: repeat
2: Move to supply source
3: Pick up part
4: Move to random location on map
5: repeat
6: Listen for demanding mass from nearby assembly robots
7: until Sufficient network time passes.
8: Target assembly robot with highest demanding mass.
9: repeat

10: Inform target robot of our intent to deliver a part
11: until We receive a response from target
12: Move to delivery location
13: Put down part
14: repeat
15: Inform target that part has been delivered
16: until We receive a response from target
17: until No more assembly robots asking for parts.

the theory, the robots have access to perfect information about the all the parameters such as

locations and demanding masses of the surrounding robots, and we extend the theory by a

fault tolerant and asynchronous communication protocol which allows robots to learn about

the surrounding parts and robots. Another assumption of the original algorithm is that the

delivery order of parts will not affect the assembly of the structure. Given the hardware of

the trusses and the connectors, we use the practical delivery algorithm which incorporates

the order of construction in which parts are delivered can be factored into demanding mass

calculated. These extensions enable the algorithm to be carried out in the physical system.

The delivery algorithm is enhanced as shown in Algorithm 16 by the sub-modules han-

dling errors. The navigation module checks possible collisions when robots move to the

source and to other robots. A delivery robot awaits the source cache to be clear of other

robots and it acquires a specialized part from the supply as described in Algorithm 15.

Asynchronous communication is used for the robot to find an assembly robot with the

maximum demanding mass. After picking a part, the delivery robot listens for seconds

to any local robots within the broadcast range. Assembly robots with positive demanding

mass broadcast their needs every seconds. At each step of communication, the planner

makes acknowledgement before moving on.
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A delivery location is chosen so that the distance between the delivery robot and the

assembly robot is twice the default arm offset which is measured when a robot places down

a part on the ground. Therefore, if the delivery robot can locate itself exactly at the chosen

delivery location, the assembly robot would not need to translate but to rotate to pick up

the delivered part. If the delivery location is not reachable, the robot figures out the nearest

location from the chosen location. After reaching the location, the delivery robot places

down and send the assembly robot a packet which includes the part information as well as

the delivery location.

8.2.5 Assembly

The assembly algorithm, demonstrated as a finite state machine in Figure 8-8, adds to

the original algorithm similar systems as in the the delivery algorithm, including collision

avoidance and awareness of the local structure. We also completely replace the computa-

tion of the optimal edge to place next, and change the delivery mechanism from a direct

handoff to a passing of parts within the general vicinity of the assembly robot. In the origi-

nal algorithm we compute the least connected edge in our structure and add a part, and also

as the model does not consider collision it assumes there is always space for multiple robots

to perform a handoff. In our implementation we take advantage of a blueprint, and only

allow the placement of parts that both depend on no other parts to hold them up and that do

not prevent a robot from reaching the location of an unplaced part. Among these parts, the

optimal part is the one that most increases the number of placeable parts in the partition.

We also determine handoff points rather that requiring the delivery robot to directly access

the assembly robot inside the structure.

The update to the computation of demanding mass mentioned above is directly linked

to the update of the computation of the optimal placement of a part. A structure is now

represented as a blueprint of interdependent parts, where each part maps to a node on both

a directed graph representing the physical dependencies of parts (with an edge from any

part to any part that directly requires it to be placed) and an undirected graph of the part's

proximity to other parts (with an edge between any two parts within a robot's radius of
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Figure 8-8: The task planning event loop for the assembly robots.

each other). We define a part p as active if it has no parents on the directed graph and that

a path exists from every part the robot is responsible for to the edge of the map which does

not pass through p. By assuming that the density of parts is bounded, we can provably

recompute the set of parts which is active in sublinear time using discrete gradients. As the

only parts which can be placed without adding imposable constraints to the task are active

ones, we only use active parts when computing demanding mass, meaning the total mass

of a partition can both increase or decrease significantly after each placement. We uniquely

weight the contribution of a part on the blueprint to the demanding mass by the net change

it would have on the size of the set of active parts and break ties by assigning more weight

to parts which would remove more constraints from inactive parts, breaking further ties

by preferring the centroid of the robot's Voronoi partition. The optimal part placement is

determined by the active part with the greatest weight, which means robots place parts in

such a way as to allow more parts to be placed, if possible.

Due to the noise in the environment and a decoupling between motor control and lo-

calization, accurate locomotion over small distances is nearly impossible, requiring a more

careful approach to allow for the accurate placement of parts. By adding a virtual wall to

the constraints on the arm, we were able to achieve high fidelity placement despite the noise

to our navigation system. Rather than relying on the location of the robot for hand-offs,

while in close quarters (on the order of 10 cm), we switch to defining our position by the
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location of the robot gripper, allowing for significantly higher robustness with hand-offs.

8.3 Experimental Results

In experiments, we use up to 4 hardware robots, 2 assembly robots and 2 delivery robots

in a 5 x 5 meter rectangle. Poses of all the robots are captured by the Vicon system

provided with each robot and a GUI that displays and keep a log of all the activities and

communication data.

8.3.1 Coverage on a graph

The equal-mass partitioning algorithm on a graph in Chapter 5 is implemented in our sys-

tem. We use all 4 robots for coverage as if they are all assembly robots.

We test two graphs: square and an A-shaped bridge as shown in Figure 8-9 and 8-11.

The environment is a 3 x 3 square divided into the 0.1m grids. Nodes are connected when

they are adjacent either by side or diagonal. The bridge has two empty spaces as shown

in the right figures of Figure 8-11, which do not physically appear in the snapshots of the

experiment.

Figure 8-10 and 8-12 shows convergence of the masses during the experiments.

8.3.2 Delivery

Here we test the delivery algorithm only to see the probabilistic deployment and the local

gradient-following movement.

Test Delivery Scenario

For evaluation, we use a single blueprint for every test in order to demonstrate different

features of the physical system while the number and locations of the assembly robots

vary for each run. The blueprint is assumed to have two towers in a 5x5 meter rectangle,

and the delivery robots try to deliver as many parts as possible to the assembly robots that

are assumed to have the same demanding mass to construct each tower. In each run, the
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Figure 8-9: Snapshots of equal-mass partitioning on a graph. The right figures show the
partitions.
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Figure 8-10: Masses of 4 robots during the experiment. All of them converge to a single
value.

delivery robots start at random locations. We specialize the delivery robots as one picks up

only trusses and the other picks up connectors only. The source cache for parts is located

at the origin and manually supplied with the parts. We place both red joint parts and blue

truss parts together in the semi-circle shaped supply dock. The delivery robots can sense

the difference of parts by communicating with them over IR.

The goal of the scenario is to test load balancing between the assembly robots. Given

the blueprint and the assembly robot locations, he delivery robots are supposed to alternate

between the two assembly robots. In order to evaluate the system and to see adaptation, we

run a basic test and a variation in which an assembly robot quits demanding parts halfway

through the test. According to the algorithms, this failure of the assembly robot will lead

the delivery robots to adapt and deliver parts only to the remaining assembly robot.

Delivery Experiments

We made twelve runs of the the basic scenario all of which produced the expected alternat-

ing behavior of the delivery robots. Both the connector delivery robot and the truss deliv-

ery robot switched targets in each delivery and made successful deliveries to the assembly

robots, as seen in Figure 8-16. Also as expected, the alternating delivery was responded by
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Figure 8-11: Snapshots of equal-mass partitioning on a graph. The right figures show the
partitions.
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Figure 8-12: Masses of 4 robots during the experiment of partitioning the A-shaped bridge.

125

0 15 21



Figure 8-13: Snapshots of grasping. The arm moves along an arc to find a rough position
of a part and does fine search by radial motion. Grasping is done after confirming the part.
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Figure 8-14: The demanding masses of assembly robots, named robots 4 and 5, drops
whenever a part delivery occurs. Delivery robots changed targets to whichever robot had
the highest demanding mass at the time.

the step-like decay of the demanding masses reported by the assembly robots as shown in

Figure 8-14.

For the adaptation test, in order to simulate a failure of an assembly robot, one of the as-

sembly robots was taken off the map during the experiment. The simulated failure promptly

resulted in the delivery robots delivering to the remaining assembly robot. In all runs, the

communication between delivery and assembly robots confirmed the deliveries and cor-

rectly updated the demanding masses of the assembly robots. Over all 12 test scenario

runs, the two delivery robots completed 45/48 delivery attempts. Three failed deliveries

came from an arm hardware failure on a single robot. A summary of test runs can be seen

in Table 8.3.

Run Time Empirical Analysis

Each delivery robot averaged 7 minutes for a round trip delivery, spending much of its time

dealing with the supply dock rather than the other robots in the system. The summary is

in Table 8.3. The robots spent a significant amount of time parked in the supply dock,

searching for parts: the robotic arm requires an average of 2.75 minutes (32% total time)to
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Movement path of a delivery robot responding to Assembly robot failure
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Figure 8-15: Adaptive behavior of the system: a delivery robot begins by delivering parts
fairly to robot 4 and robot 5. When robot 4 (on the left) fails in the middle of the test, the
delivery robot begins delivering only to robot 5.

Trial MMn S)m RAvg. Success FailureTal(MM:SS) Runtime ___

1 06:05 06:05 1/1
2 07:36 07:36 1/1
3 07:20 07:20 1/1
4 13:58 06:59 2/2
5 37:33 06:16 6/6
6 21:40 07:13 3/3
7 14:18 04:46 3/3
8 23:04 04:37 5/5
9 41:28 06:55 6/6
10 15:49 05:16 1/3 gripper weakened
11 71:05 05:55 11/12 dropped a part
12 23:17 04:39 5/5

Total 04:43:13 06:54 45/48

Table 8.3: Summary of Robot Delivery Test Runs
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Figure 8-16: Snapshots of a test run of the even demanding mass delivery scenario. As-
sembly robots begin positioned at 2 different points of highest demand for parts. As the red
connector parts are delivered, the maximum demanding mass for the entire map changes,
causing the delivery robot to change delivery targets, first to robot 5, then to robot 4.

search for and pick up the correct type of part. This large amount of time caused a backup

in the system: for all test runs in which both delivery robots ran at once, each delivery

robot spent an average time of 2.57 minutes per delivery waiting for the other delivery

robot to move out of the way. This is consistent with observations for the test runs in which

only one delivery robot operated, showing an average round trip delivery time of only 6.90

minutes, an immediate 20% time decrease. This large chunk of time suggests further areas

of research for the practical parallelization of the system.

8.3.3 Loose assembly

Preliminary tests of the assembly system add hand-offs of a part and placing down the part

at the designated location to the delivery experiment.

Assembly Scenario

We use a 0.6m x 0.6m square blueprint which consists of four trusses on each side and

four connectors at each corners. Figure 8-17 shows the blueprint on the GUI part of the

snapshots, where the red squares corresponds to the connectors and the blue rectangles are
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the trusses. For each location of the parts in the blueprint, we set a waypoint from which

an assembly robot approaches to the final assembly location. The waypoints are chosen so

that we can avoid the orientation problem due to the lack of degree-of-freedoms of the arm.

At the start of construction, the blueprint is automatically divided into pieces that have the

same number as a number of the assembly robots, according to the Voronoi partition which

is decided by the starting location of the assembly robots.

The handoff started from a delivery continues by moving an assembly robot to the

location the delivery robot has reported. Then, the assembly robot uses the search pattern

in Algorithm 15 with just ± 10 deg instead of t90 deg. After picking up the delivered part,

the assembly robot places down the part via the waypoint. Finally, it sends out a message

containing the location of the placed part so that the other robot may set the assembled part

as an obstacle. In the experiments, we use 0.2m x 0.2m square for the size of the obstacle

which is booked in the grid map of each robot.

Assembly Experiments

We ran several tests with various combination of robots: 1 assembly and 1 delivery robots,

1 assembly and 2 delivery robots, and finally 2 assembly and 2 delivery robots.

Figure 8-17 and 8-18 shows snapshots of the experiment with 1 assembly robot and 2

delivery robots. The second and third pictures show handoff between the delivery robot 2

and the assembly robot 4. After a 40-minute test, the robots could locate all the parts at

the designated locations. The loosely assembled structure had a few disorientations of the

parts mainly because of the lack of the arm's dof. Even though the motion capture system

provides up to millimeter accuracy, the mobile simply cannot achieve the precision and nor

can the arm. Fortunately, the parts are designed such that they can self-align despite of the

centimeter transitional and ten-degree rotational errors, we will try to assembly a tightly

assembled square in the future.

Figure 8-19 shows trajectories of the three robots in the experiment. Clearly, the as-

sembly robots drive around the parts on the blueprint, and we can speculate the waypoints

by the wiggling trajectories at some points. A large amount of traffic is seen at the source

cache (origin), and this indeed seriously slows down the execution.
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trajectory of the robots
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Figure 8-19: Trajectories of the robots. The blue rectangles and the red squares are
trusses and connectors respectively. We can clearly see the assembly robot runs around
the blueprint.

Robots Runtime Avg. Avg.
Assembly/Delivery (MM:SS) Handoff Placement

1/1 40:08 2:15 1:08 8/8
2/1 42:59 2:12 0:52 7/8 dropped a part

2/2 66:36 1:15 0:55 20/21 failed in grasping

Table 8.4: Summary of Robot Assembly Test Runs

The similar experiments with 2 assembly robots and 2 delivery robots have been done

as shown in Figure 8-20 and 8-21. The experiment was sped up to about 30 minutes, since

we used 1 more assembly robot and tuned the grasping algorithm. Figure 8-22 shows two

sets of the trajectories the robots have made through the experiments.

The experimental results are summarized in Table 8.4. Note that each success includes

delivery, handoff and placement. Therefore each assembly sequence is responsible for 4

manipulation sequences. The runtime is not much impro d ive robots-havery robots

since there is a bottleneck of picking up a part at the source cache.
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Figure 8-20: Snapshots of handoff and loose assembly by 2 delivery and 2 assembly robots.
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Figure 8-21: Snapshots of handoff and loose assembly by 2 delivery and 2 assembly robots.

8.3.4 Communication

UDP among robots

The delivery test runs of the robots requires that delivery robots communicate with assem-

bly robots in order to confirm the delivery of a part to the assembly robots. When not

engaged with a specific delivery robot making a delivery, each assembly robot broadcast

a desire for a part delivery at a rate of 1Hz to alert any nearby delivery robot, so delivery

robots trying to complete deliveries listened for assembly robots asking for a delivery and

respond asynchronously. To complete the communication loop, we required the rebroad-

casting and acknowledgement of all messages between 2 robots. Over 12 delivery test runs,

on each round trip delivery, the delivery robot required 4.8 message packets total to deliver

2 messages to the target assembly robot, meaning each message from a delivery robot had

to be resent at least once on average before a response was received from a target assembly

robot. The assembly robots spend part of each delivery robot's delivery round asking for

parts at a rate of 1Hz, meaning that during the average delivery, each assembly robot sent

out an average of 180.5 messages before a delivery robot could pick up a part and respond
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Figure 8-22: Trajectories of the four robots. The blue rectangles and the red squares are
trusses and connectors respectively. In the upper figure, assembly robot 2 has more as-
signed parts than robot 3. In the lower figure, the assembly robots have the same amount
of assigned parts.
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to a needy assembly robot.

IR between a robot and a part

The smart parts used in this experiment broadcast data about what they are and their relative

orientation to receivers mounted on the robot grippers. The parts also allow transmitters to

modify a message portion of the data they broadcast. In over 1000 tests, robots were able

to autonomously locate and grasp a part and modify its message with the part randomly

placed in a semi-circular region with a 33cm with a 99.3% success rate, and 100% failure

recovery.
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Chapter 9

Conclusion and Future work

This thesis described a framework for distributed robotic construction where a team of

networked robots which have specialized tasks (assembly and delivery of various parts)

cover the target structure which is given by a density function, and perform their tasks with

only local communication.

In order to divide the structure in equally-sized substructures, the equal-mass parti-

tioning controller is introduced, guaranteeing convergence of the cost function that is the

product of the all the masses. The algorithms construct Voronoi tessellations based on

positions of the robots, and find the optimal next positions, and they work not only for a

continuous domain but also for a discrete domain.

The graph partitioning algorithms enable mobile robots to cover a target graph with

minimizing the cost functions. The target graph represents environments that can be inher-

ently modeled by a set of nodes and edges or non-convex region. The two cost functions

for locational optimization and equal-mass partitioning are used and the corresponding al-

gorithms are designed based on vertex substitution. We show two-hop communication is

required for convergence of the graph partitioning algorithms while a single hop suffices in

a continuous domain.

An intuitive control criteria with probabilistic deployment and a gradient of the de-

manding masses is proposed to maintain a balance among the substructures. Implemen-

tation with two kinds of source materials (truss and connector) shows that the proposed

algorithms assign an equal amount of construction work to the assembling robots, and ef-
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fectively construct the target structures. We show the probabilistic delivery algorithm is

an instance of a classic problem: balls into bins. Analysis leads to theoretical bounds for

unbalance among the sub-structures that are empirically proven in simulation. Given the

assumption that equal-mass partitioning has found the global optimum, the local search

algorithm reduces the bound from /2P log n to *og*l*g

Based on the proposed approach, the algorithms are adaptive for several cases. For fail-

ure of robots, the convergence property is not affected by failure of delivering robots, and

keeping equal-mass partitioning makes the system robust to failure of assembling robots.

Construction with dynamic constraints is possible by incorporating the time-varying den-

sity function and corresponding controllers which is slightly modified from the original

controller. Non-dependent source elements can be used by superposing density functions

for the elements. Reconfiguration between two structures are implemented by substituting

the target density function for difference between target density functions of two structures.

As for hardware implementation, we make a transition of a complex decentralized algo-

rithm from theory to practice. The coordinated assembly by a multi robot system consists

of four mobile manipulators and smart parts with the IR beacons to help communication

between a robot and a part. In order to make the system demonstrate the desired algorithmic

behavior, we combined the high-level algorithms controlling the actions of the robots with

lower level controllers for viable communication channels, stable robot localization and

navigation, collision avoidance, and part manipulation. The resulting system demonstrated

a use for distributed robotics in industry that involved distributed control, autonomous and

mobile robots, and an active ability to change their environment. Our next steps are focused

on improving the capability of the assembly system, to demonstrate the use of the system

for building of truss-like objects such as boxes and bookshelves.
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9.1 Future direction and extension

9.1.1 Algorithm: partitioning

The proposed equal-mass partitioning algorithms divide a target structure into a number

of subassemblies that equals the number of assembly robots. We prove the algorithms

converge to local minima, however, we have not discussed the quality of the converged

configuration. In an extreme case, even the global minimum may not exist when we use

Voronoi tessellation. The power diagram can be a candidate to guarantee the existence of

global minimum [85], however it also has a limit in distributed implementation.

Another thing we should consider is a range of communication, if we do not have

enough assembly robots. Partitioning while maintaining connectivity may be challenging.

9.1.2 Hardware Implementation

Better mobility and manipulability will be necessary for the next iteration of the hardware

platform. The current system could show a flavor of assembly, however the tight assembly

will require much more sensitive control of both navigation and manipulation. Now we

only receive on/off signal from the parts, and capability of catching signal strength will

help manipulation.

The battery life of smart parts should increase for a bigger scaled construction. The

current battery lasts a couple of hours, and the electric circuits and the codes need to be

optimized to reduce power consumption.

9.1.3 Multiple Source Caches

This thesis assumes only one location of the source cache, however, we may have multiple

locations of the source caches which can be in the outside of the working area or scattered

in the inside of the Voronoi regions as shown in Figure 9-1.

The theory can be extended to cover the multiple source locations. In either case,

tracking of the remaining amount of source parts may be necessary for delivery robots.

There is tradeoff between memory storage to track it and increasing travel distance due
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Figure 9-1: Multiple source caches. They can be inside or outside of the working space.

142



to lack of the tracking information. For example, random walk of delivery robots will

guarantee to find a source part after considerable amount of time whereas precise tracking

of the remaining parts will lead to faster delivery. If the distribution of source parts S(q) is

known, we can use the same probabilistic deployment algorithm; as picking up a location

as q ~ dt(q) in Algorithm 5, a delivery robot tries to find a source part by moving to a

randomly selected location based on S(q) in the IDLE state.

Another option is that delivery robots may learn the distribution as in [101] if they are

able to sense the source parts. Each delivery robot initializes its distribution, and the con-

sensus algorithm which broadcasts any change of S(q) via the mesh network will update

the distribution of all the delivery robots in real time during delivery until the robots finalize

the distribution. The robots can also pick a random location given the current distribution.

Source caches inside the regions When source parts are scattered in the Voronoi regions

as shown in Figure 9-1(b), assembly robots can work as network hubs for delivery robots

inside their Voronoi partitions so that they track the remaining amount of source and help

delivery. Algorithm 5 can be modified so that the delivery robots skip the ToSOURCE

state and directly go into a Voronoi partition by running the ToTARGET state as if they

already picked a part. The assembly robot in the partition communicates with the delivery

robot to have the robot pick up a source part if any in the partition or send it to neighboring

partitions if there is no part in the partition.

In other way, the assembly robots may run the consensus algorithm to get the distribu-

tion of source parts before delivery starts, and let the delivery robot know the distribution

when they come into the Voronoi partitions. Once the delivery robots have received the

distribution, they can use the same algorithm for multiple source caches.

9.1.4 Scheduling algorithm for delivery

The delivery based on the probabilistic deployment algorithm and the local search algo-

rithm is intuitive and effective for uniform delivery. We may extend the algorithms for

faster delivery while keeping the uniformity by introducing a scheduling algorithm which

considers parameters such as (1) the distance between a robot location and a selected loca-
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tion from the probabilistic deployment algorithm, (2) speed of delivery robots, and (3) the

difference of demanding masses of the neighbor assembly robots. Particularly if we have

the multiple locations of source caches, the scheduling algorithm may want to send a deliv-

ery robot to nearby assembly robots in order to save the delivery time, by assigning priority

based on the distance from the delivery robot. Also, ignoring small difference in demand-

ing masses may speed up construction, which may arise a little unbalance. For example,

if a delivery robot picks up a part in the left source cache in Figure 9-1(a), it may want to

select an assembly robot nearby the left side rather than the right side because this biased

choice will save the travel distance. We have to have a cost function for the scheduling

algorithm so that we optimize it with the three parameters.

A scheduling algorithm has been extensively considered in computer science literature,

and we can customize the off-the-shelf algorithm for construction.

9.2 Lesson learned

The theory and practice work in this thesis has taught us several important lessons.

Algorithm: partitioning The equal-mass partitioning algorithms work well most of

time, however undesirable local minima was inevitable time to time. Guaranteeing the

global optimum has been the ultimate goal for distributed coverage, and our algorithms are

also in the same boat.

Algorithm: uniform delivery We have proposed the delivery algorithm based on prob-

abilistic deployment and local search, and performance has been analyzed using the balls

into bins problem. We have learned the local search algorithm needs to be tuned for adap-

tation because the algorithm always drives a delivery robot to a robot with the maximum

demanding mass, which works perfectly in a static case where the Voronoi partitions are

fixed during construction. However, when the partitions change during construction, the

algorithm may lead to unbalanced assembly work since the adaptation algorithm tries to

balance masses during assembly and this leads to change of the demanding mass. A suit-
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able scheduling algorithm will solve this problem.

Hardware Implementation The transition from theory to practice is always challenging,

and our system is not an exception.

Our main challenge was to keep the hardware operational. We have an inexpensive

platform and our platform was not very reliable. The Roomba iCreate mobile base does

not provide good odometry, therefore we had to rely solely on the external motion capture

system, which led to non-smooth navigation. A mobile base with encoders should be used

in the next iteration for better mobility. The arm has only 4-dof and we could not locate

parts in the right orientation even on 2D, which limits tight assembly. One more rotational

degree of freedom at the end of the gripper will suffice for our 2D assembly. Communica-

tion between the instrumented gripper and the smart parts greatly enhance grasping.
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