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Abstract

This thesis presents a novel approach to address the challenge of planning paths for
real-world multi-agent systems operating in complex environments. The technique
developed, the Decentralized Multi-Agent Rapidly-exploring Random Tree (DMA-
RRT) algorithm, is an extension of the CL-RRT algorithm to the multi-agent case,
retaining its ability to plan quickly even with complex constraints. Moreover, a

merit-based token passing coordination strategy is also presented as a core component
of the DMA-RRT algorithm. This coordination strategy makes use of the tree of

feasible trajectories grown in the CL-RRT algorithm to dynamically update the order

in which agents plan. This reordering is based on a measure of each agent's incentive

to replan and allows agents with a greater incentive to plan sooner, thus reducing the

global cost and improving the team's overall performance. An extended version of
the algorithm, Cooperative DMA-RRT, is also presented to introduce cooperation
between agents during the path selection process. The paths generated are proven to
satisfy inter-agent constraints, such as collision avoidance, and a set of simulation and

experimental results verify the algorithm's performance. A small scale rover is also
presented as part of a practical test platform for the DMA-RRT algorithm.
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Chapter 1

Introduction

1.1 Motivation

Autonomous robotic systems continue to be called upon to perform a multitude of

tasks. As with humans, teams of autonomous agents are able to complete multiple

tasks in parallel, and moreover, are capable of performing far more complicated tasks

than a single agent operating alone. Consider, for example, an automated warehouse

as shown in Figure 1-1. The overall objective for the team of autonomous agents

operating in this warehouse is to manage the flow of inventory efficiently. To this end,

agents are assigned tasks such as taking inventory and moving items. However, as the

figure illustrates, agents must also avoid collisions with objects in the environment

and other agents while executing these tasks.

This highlights an obvious but fundamental requirement for virtually any multi-

agent system: the ability to navigate safely the environment in which the tasks must

be performed. In any practical setting, the agents will be limited in their mobility

by constrained dynamics, such as a minimum turn radius, as well as actuation limits.

These limitations become increasingly important as autonomous teams are deployed

in crowded environments, including indoor settings. Consequently, any practical

multi-agent path planner must explicitly account for these constraints in order to



Figure 1-1: A team of autonomous forklifts and ground-guidance robots operating in
a constrained warehouse environment

guarantee safe navigation.

As these teams increase in size and operate in larger environments, for example

in Intelligence Surveillance, and Reconnaissance (ISR) missions [1], there is a severe

increase in the complexity of the planning problem, quickly exceeding the processing

capabilities of a single, centralized planner. The communication required for a

centralized planner to manage all agents also becomes prohibitive for large scale

problems. This motivates the development of decentralized planners, where each agent

makes local decisions. However, this approach is not without its own challenges, and

any decentralized planner must be careful to avoid conflicting local decisions.

This thesis presents a new multi-agent path planning strategy that is designed

with these practical limitations in mind. The underlying path planner is selected to

provide an online planning capability that satisfies all constraints, and a decentralized

coordination strategy is developed to improve the overall performance of the team

while satisfying all safety requirements and maintaining scalability.

..... .... ............ ...... : .............. .



1.2 Problem Statement

This thesis examines the problem of planning dynamically feasible paths through

complex environments for a team of autonomous agents attempting to reach specified

goal locations. The agents are assumed to have constrained, nonlinear dynamics,

as seen in any practical system. As a result, agents may be incapable of following

paths generated by simple path planners, such as piecewise-linear paths, making

dynamic feasibility a crucial requirement. Agents must also be able to navigate

safely in cluttered or otherwise complex real-world environments. Furthermore, these

paths must satisfy all constraints placed on the interactions between multiple agents,

the most common example being collision avoidance between all agents. In general,

teams are assumed to consist of many agents that may be operating over a large

area, precluding the use of centralized planners to satisfy these requirements. Finally,

paths must be selected to minimize a given cost metric, such as travel time or fuel

consumption, across all agents in the team.

1.3 Previous Work

1.3.1 Path Planning

There have been numerous path planning algorithms developed for autonomous

systems [2], largely due to the fundamental role of path planning in any form of mobile

robotics. These approaches are usually categorized as either discrete or continuous

path planning algorithms, and methods from both categories have been used with

considerable success in different applications. This section provides an overview of

several of these popular techniques.

As the name implies, discrete search methods typically begin with a discretized

representation of the world, usually in the form of a uniform grid over the environment.

Standard search techniques such as dynamic programming [3], A* [41, and variants

thereof [5, 6] can then be used to explore this space to find paths. While these

approaches often provide completeness and convergence guarantees [7], they typically



do not scale well to large problems due to the rapid increase in the dimension of the

search space. Furthermore, the dynamic feasible requirement is difficult to enforce,

particularly in cluttered or constrained environments, without increasing the resolution

of the discretization and thus the dimensionality of the search problem [8].

Several continuous path planning algorithms fall into the category of optimization-

based planners. In these algorithms, the path planning problem is cast as an optimal

control problem and solved using standard optimization techniques. A notable example

of this is the Mixed Integer Linear Program (MILP) formulation in Schouwenaars et

al. [9] that, for the multi-vehicle case, easily embeds the collision avoidance constraint

in the optimization. Model Predictive Control (MPC) is another optimization-based

technique that has been adapted to path planning [10]. MPC uses a model of the

system dynamics to predict the system's behavior over a finite horizon and identifies

the optimal sequence of control actions for this finite horizon [11], subject to any

required constraints [12]. The first action from the sequence is applied and the

procedure iterates. While these methods enjoy the benefits of optimization, they

also scale poorly with the number of constraints imposed and the complexity of the

dynamics and environment, as a result.

A common technique is the use of potential fields to guide agents through the

environment. Goal locations contribute attractive forces to the field, while obstacles

contribute repulsive forces. Agents then use a feedback control policy to travel along

the net force vector [13, 14]. Potential field methods are popular due to their ease

of implementation and low computational requirements for many simple scenarios.

However, these methods inherently have difficulty with local minima and environments

with closely spaced obstacles [15]. Although a potential field without local minima

could be used to overcome the primary shortcoming, designing such a field is itself a

difficult problem [16].

Sampling-based motion planners constitute another set of continuous planning

algorithms that has gained popularity in recent years. These algorithms sample points

in the configuration space [17], often via random sampling, and build a set of feasible

paths by connecting these points. As a result, the planner is able to quickly explore the



configuration space and identify paths without incurring the complexity of constructing

the entire space [2]. This improved performance allows these techniques to handle

increasingly complex problems, but due to the sampling process, they sacrifice the

strong completeness guarantees given by other approaches. Instead, they provide

weaker notions such as probabilistic completeness. Probabilistic Roadmap (PRM)

planners generate these random samples and connect them using a fast local planner

[18], forming a roadmap of feasible paths through the environment. The local planner

is then used to connect the agent's start and goal positions to the roadmap before

searching the roadmap graph to find a feasible path from start to goal [19].

Another prominent sampling-based path planner is the Rapidly-exploring Random

Tree (RRT) algorithm [20]. This planner uses the random sample points to incre-

mentally grow a tree of feasible trajectories from the agent's current configuration.

For each new sample point, a branch is grown from the closest node in the tree (as

determined by a given distance metric) toward the sample by applying control inputs

to a model of the system [21]. These control inputs may be selected in several ways,

such as randomly sampling the input space or trying multiple inputs and selecting the

one that takes the system model closest to the sample point. After growing the tree

for a fixed planning time, the best path is selected according to a given cost metric.

Furthermore, this iterative process of growing the tree and updating the path lends

itself to online planning.

While the original RRT algorithm is a fast way to plan paths in complex, high-

dimensional spaces, it becomes much more useful as an online path planner for

autonomous vehicles with a few key changes. Consider, for example, the real-time

RRT algorithm proposed by Frazzoli [22] that was later extended by Kuwata et al. in

the form of the Closed-loop RRT (CL-RRT) [23-25]. The primary change from the

standard RRT is that rather than sampling control inputs to expand the tree, CL-RRT

simulates closed-loop system dynamics to select control actions and propagate the

states in the tree. As a result, it is able to handle the types of complex and constrained

dynamics found in physical systems by embedding the complexity in the simulation.

The work presented in this thesis builds upon the CL-RRT algorithm, and as such, a



detailed discussion of the algorithm is presented in Chapter 2.

1.3.2 Decentralized Planning

Decentralization is essential for large-scale multi-agent planning problems. Decompos-

ing the multi-agent problem into a set of single agent problems greatly reduces the

complexity of each problem. Furthermore, the single-agent path planning techniques

described above can then be used to solve these smaller problems. However, although

plans generated by individual decision makers may be feasible when considered indi-

vidually, in order to have global feasibility across all plans there must be some form

of coordination between the decision makers [26]. As a result, many coordination

strategies have been developed for decentralized path planning, and an overview of

several notable methods is presented in this section.

Consensus based approaches allow agents to coordinate actions by exchanging

information on quantities of interest that are based on the state of all agents in the

team [27]. These quantities of interest may take many different forms, resulting in a

variety of consensus based planners. Scerri et al. [28] propose a decentralized space

deconfliction strategy for agents in sparse environments. Whenever an agent generates

a new path for itself, it sends the path to its teammates to check for conflicts with

other known paths. The agent only begins to execute the new path after consensus

has been reached on the path's feasibility. While this reduces the amount of local

knowledge required to check for path feasibility, it also introduces considerable delay

into the planning process. Another notable approach is proposed by Purwin et al.

[29, 30] where agents reserve non-intersecting areas of the environment in which they

are free to move without the risk of collision. The agents must reach consensus on

any modifications to these reserved areas before selecting paths that exit the original

area. While this allows for some degree of asynchronous planning (as long as the

agents remain within their respective reserved areas), the coordination strategy is

conservative; any potential intersection between reserved areas triggers a consensus

check, irrespective of whether the intersection would correspond to a conflict in time

(and thus a collision) as well.



An alternate approach is reachability based planning [31]. Each agent is provided

information on the state of the other agents, for example via vehicle-to-vehicle or

vehicle-to-infrastructure communication, and uses this along with models of the other

agents to compute their respective reachable sets. In some reachability based methods

[32, 33], a set a predetermined rules is then used to select or modify trajectories such

that they avoid conflicts in the reachable sets, yielding switching or hybrid control

laws. Aoude et al. [34] propose a different approach in which an agent estimates

the other agents' reachable sets via CL-RRT simulation. The agent then selects its

new path (also via the CL-RRT algorithm) so as to maximize the time to collision

with these estimated reachable sets. However, these reachability based methods are

typically concerned with agents that are not necessarily cooperative, such as two

vehicles approaching an intersection, and thus forced to consider worst-case scenarios

in general.

The extension of MPC to multi-agent path planning has also produced some

general decentralized planning strategies. Rather than solving one large optimization

problem with all agents and constraints embedded, Decentralized Model Predictive

Control (DMPC) reformulates the optimization problem as a set of subproblems

corresponding to each agent [35]. Then in each MPC iteration, agents solve their

respective subproblems to find a new control sequence and communicate the result

to the rest of the team. Agents typically plan sequentially (in a fixed order) in each

iteration, using the most recently communicated information about the other agents to

verify constraints [36, 37]. Venkat et al. provide an analysis of the optimality of these

approaches [38]. Citing the restrictive synchronization requirements of the existing

approaches, Trodden and Richards propose a different update strategy [39]. With

their single subsystem update method, one agent replans in each MPC iteration, while

all others continue executing their previously computed plans. This eliminates the

synchronization required to cycle through all agents in each iteration. However, there

persists the problem of agents taking time to plan, only to keep their current plan or

some minor variant of it. Though this typically does not disrupt the team's overall

functionality, inefficient use of planning time manifests itself in decreased performance,



especially for larger teams.

The primary motivation for this thesis is the current lack of path planning strategies

capable of planning efficiently for large teams of agents with the types of complex

dynamics and environments found in practical applications.

1.4 Contributions

This thesis presents the Decentralized Multi-Agent Rapidly-exploring Random Tree

(DMA-RRT) algorithm as a practical multi-agent path planning strategy. This is

an extension of the CL-RRT algorithm [22] to the multi-agent case, retaining its

ability to plan quickly even with complex constraints. Moreover, a merit-based token

passing coordination strategy is also presented as a core component of the DMA-RRT

algorithm. This coordination strategy draws inspiration from the single subsystem

update of Trodden and Richards [39], but makes use of the tree of feasible trajectories

grown in the CL-RRT algorithm to dynamically update the order in which agents

plan. This reordering is based on each agent's incentive to replan (as determined by

a potential change in path cost) and allows agents with a greater incentive to plan

sooner, thus reducing the global cost and improving the team's overall performance.

An extended version of the algorithm, Cooperative DMA-RRT, is also presented

to introduce some cooperation between agents during the path selection process.

The paths generated are proven to satisfy inter-agent constraints, such as collision

avoidance, and a set of simulation and experimental results verify the algorithm's

performance.

The structure of this thesis is as follows. Chapter 2 reviews the CL-RRT algorithm

and details the DMA-RRT algorithm as well as the merit-based token passing approach.

Chapter 3 then extends the algorithm with the emergency stop cooperation strategy.

Simulation and experimental results for the original and extended DMA-RRT algorithm

are presented in Chapter 4. Chapter 5 introduces a new robotic platform that has

been developed as part of a multi-agent team that will serve as a practical testbed

for the DMA-RRT algorithm. Finally, concluding remarks and suggestions for future

research directions are offered in Chapter 6.



Chapter 2

Decentralized Multi-Agent RRT

As discussed in Chapter 1, the Closed-loop RRT algorithm is very effective at planning

paths quickly for a single agent subject to complex constraints. This chapter reviews the

CL-RRT algorithm and then extends this planning capability to a team of cooperative

agents by embedding the CL-RRT in a framework that manages interactions between

multiple agents. As a result, only minimal changes to the CL-RRT algorithm are

required for the multi-agent case. Furthermore, a merit-based token passing strategy is

presented to improve system performance. This coordination strategy takes advantage

of the CL-RRT mechanics and intelligently modifies the order in which agents replan.

The resulting Decentralized Multi-Agent RRT (DMA-RRT) algorithm preserves the

benefits of planning using CL-RRT while also improving collective performance and

guaranteeing that the constraints imposed between agents are satisfied at all times.

2.1 Assumptions

This section outlines the key assumptions made in developing the DMA-RRT algorithm

presented below in Section 2.4. The extension to the algorithm presented in the next

chapter as well as the ideas discussed in Section 6.2 lay the foundation for relaxing

some of these assumptions.



2.1.1 Network

Network connectivity plays a crucial role in the performance of any algorithm for

multi-agent systems. It is assumed that all agents involved form a fully connected

network. Allowing each agent to talk directly to all other agents allows for fast

information transfer with minimal disruption to the algorithm's core functionality.

Teams consisting of a few agents operating in a relatively small environment, such as

an outdoor storage depot or inside a building, could reasonably form a fully connected

network. Of course, this assumption is much less likely to hold for large-scale scenarios

where network connectivity is limited by the agents' communication radius, but in

these scenarios it is often reasonable to assume that inter-agent constraints only need to

be enforced between agents that are sufficiently close, i.e. within the communication

radius. The sub-network formed by agents within the communication radius can

then be treated as fully connected. However, the problem of planning with multiple

sub-networks is beyond the scope of this thesis and is a topic of future research.

Communication on the network is also assumed to be lossless, and any delays

introduced are assumed to be negligible. These properties maintain data consistency

between agents and can be enforced with the appropriate selection of communication

protocols [40].

2.1.2 Agent Models

Each agent is assumed to have a model of its own dynamics to use as in the CL-RRT

algorithm. Furthermore, each agent's model is assumed to be known to all other agents,

allowing for heterogeneous teams. While accurate models will improve performance,

the robustness to modeling error [41] provided by the closed-loop nature of the CL-

RRT transfers to the DMA-RRT algorithm, potentially allowing even relatively simple

models to work well.



2.1.3 Environment

The environment that the team of agents operates in is assumed to be known and only

contain static obstacles. Since the behavior of the agents can be predicted accurately

given a model of dynamics and appropriate communication between agents, this

assumption enables each agent to anticipate the state of the world for some time into

the future and plan accordingly.

2.1.4 Inter-Agent Constraints

Finally, the set of constraints imposed between agents, such as collision avoidance or

rendezvous requirements, are assumed to be symmetric between agent pairs. That is,

if any agent i is positioned such that it satisfies the constraint with any other agent

j, then agent j's constraint with agent i must be satisfied automatically. In the case

of collision avoidance, this implies that all agents must maintain the same minimum

separation distance and compute this distance in the same way.

2.2 Closed Loop RRT

This section provides an overview of the Closed-loop RRT algorithm [24, 25] described

in Section 1.3. The CL-RRT algorithm is considered here due to its capability to

quickly plan paths for vehicles with constrained, nonlinear dynamics operating in

constrained environments. It is also easily adapted to handle other moving agents [34].

It was successfully demonstrated at the 2007 DARPA Urban Challenge (DUC) as the

path planning system for Team MIT's vehicle, Talos [23, 25], underscoring its utility

as a practical, online path planner. The CL-RRT algorithm can be broken into three

component algorithms: the tree expansion process, the main execution loop, and the

lazy check for feasibility.



2.2.1 Tree Expansion

Algorithm 2.1 CL-RRT: Tree Expansion
1: Sample point xsample from the environment
2: Identify nearest node Nnear in tree
3: k - 0

4: - (t + k) <- last state of Ncar

5: while ±(t + k) c Xfree(t + k) and ,(t + k) has not reached Xsample do
6: Compute reference input i(t + k) from Xsaple

7: Compute control input it(t + k) from feedback control law (2.1)
8: Compute next state i(t + k + 1) from propagation model (2.2)
9: k <- k + 1

10: end while
11: N <- r fnai
12: for each feasible node N produced do
13: Update cost estimates for N
14: Add N to tree

15: end for

The tree expansion process (Algorithm 2.1) for the CL-RRT algorithm begins by

randomly sampling a point Xsample from the set Xfree of all feasible configurations of

the agent in the environment. It then identifies the closest node Ne, in the tree.

This notion of closeness is based on various heuristics that can, for example, bias tree

growth towards exploring the environment or selecting lower cost paths [22].

Rather than sampling the input u from a set of valid control inputs as in the

standard RRT, the CL-RRT algorithm generates a reference r intended to guide ,

toward Xsample. This reference is typically of lower dimension than the vehicle model.

In the case of a ground vehicle, this could consist of a set of velocity commands and

a two-dimensional path for the steering controller to follow. It then uses a feedback

control law of the general form

u = r(r, x) (2.1)

to generate control inputs u that will track the reference r given the agent state x.

These inputs are fed into a model of the agent's dynamics

i = f (x, u) (2.2)



to propagate the agent's estimated state i(t + k) forward one timestep.

If the propagation model matches the actual system dynamics, selecting K(r, x)

to match the control law used on the system will result in trajectories that are not

only dynamically feasible, but also match the behavior of the system given the same

reference. Selecting ,(r, x) to be a stabilizing controller allows the CL-RRT to handle

systems with unstable dynamics, such as cars and helicopters. It also reduces the

error between the predicted states in the tree and the system's actual state while

executing the path [41]. The standard RRT, in comparison, is not able to compensate

for modeling errors, disturbances acting on the system, or measurement noise, causing

this error to grow over time [42].

This path expansion continues until i reaches the sample point or becomes in-

feasible, and a new node N is created from the final reference point fnal (the last

f(t + k) computed). While growing a path, intermediate nodes may also be added

at user-defined intervals. These nodes provide additional branching points for future

paths, thus improving the algorithm's ability to plan through complex environments.

A path cost estimate is then computed for each node produced and the path is added

to the tree. Nodes serve as waypoints when executing the path; each path is uniquely

characterized by a set of waypoints in addition to the dynamics and reference law

used to grow it between those points.

2.2.2 Execution Loop

The execution loop of the CL-RRT, outlined in Algorithm 2.2, uses Algorithm 2.1

to find paths that take the agent to some predefined goal region Xgoa. It first takes

the initial state Xinitial of the agent and initializes the tree of potential paths. Then,

during each iteration of the execution loop, the agent's current state x(t) is propagated

by the computation time At, and the resulting state estimate i(t + At) is used to

compute additional potential paths by the tree expansion process described above.

This tree expansion process has a fixed duration At, hence the state propagation

performed beforehand.

Once the new potential paths are added to the tree, the minimum-cost path p* in



Algorithm 2.2 CL-RRT: Execution Loop
1: t <-- 0, 1X (t ) <- xinmtal

2: Initialize tree with node at Xiitial
3: while x(t) ( Xgoa, do
4: Update current state x(t)
5: 1(t + At) <- x(t) propagated by At
6: while elapsed-time < At do
7: Grow tree using Algorithm 2.1
8: end while
9: if no paths exist in tree then

10: Apply safety action and goto line 19
11: end if
12: Select best path p* from tree using cost estimates
13: Recheck feasibility of p* using Algorithm 2.3
14: if rechecked p* is feasible then
15: Apply p*
16: else
17: Goto line 9
18: end if
19: t +- t + At
20: end while

the tree is selected. Although the tree expansion process guarantees that all paths

added to the tree satisfy the current constraints, these constraints may vary over

time in general. To prevent the selection of paths that have become infeasible, the

lazy check described in Algorithm 2.3 is performed on p* before confirming it as the

agent's new path. If p* is infeasible, the process repeats until a feasible path is found

or the entire tree is exhausted. If at any time the tree contains no potential paths, a

predefined safety action, such as applying maximum braking along the last known

feasible path, is executed to keep the agent in Xfree [43].

Lazy Check

The lazy check mimics the tree expansion process, but instead of generating new

nodes from random samples, it takes the nodes defining p* and re-simulates the agent's

trajectory through them. If at any point the simulated state -(t + k) violates a

constraint, the path is pruned beyond the last node tested. Thus p* is guaranteed to

be feasible once the lazy check is complete, confirming the property that the CL-RRT



Algorithm 2.3 CL-RRT: Lazy Check
1: for each node Ni E p* do
2: while x(t + k) e Xf.e(t + k) and x(t + k) has not reached Ni do
3: Compute reference input f(t + k) from Ni
4: Compute control input un(t + k) from feedback control law
5: Compute next state ,(t + k + 1) from propagation model
6: k +- k+ 1
7: if x(t + k) $ Xfree(t + k) then
8: Remove Ni and all children from p*, goto line 11
9: end if

10: end while
11: end for

algorithm only returns paths that satisfy all constraints.

2.3 Coordination Strategy

The most straightforward approach to decentralized, multi-agent path planning would

be to allow all agents to continuously plan their own paths subject to constraints

imposed by the other agents' paths. While this has the benefit of being a fully

asynchronous approach, it would could very quickly lead to conflicting plans if one

agent modifies the constraints while another is planning.

For example, consider the simple example in Figure 2-1. Agents 1 and 2 begin

with feasible plans, but then both of them find alternate plans that appear to be safe

given their current knowledge of the other agent. Since this is fully asynchronous,

the agents are allowed to update their plans at any time. However, if both update

at the same time, the selected paths are no longer safe since the constraints imposed

while selecting the paths do not reflect the constraints present when the agents begin

execution.

To compensate for this difficulty, this section presents a, coordination strategy to

ensure that the decisions taken by individual agents do not conflict. Furthermore,

this coordination strategy, while not asynchronous, does not require the level of

synchronization where, for example, agents are required to take actions at the same

time. The underlying logic for this strategy comes from the single subsystem update
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Agents 1 and 2 executing safe paths
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Agents 1 finds a new path Agents 2 finds a new path

Both update paths at same time
New paths conflict

Figure 2-1: Simple asynchronous planning failure

idea described for DMPC in [39].

As discussed in Section 1.3, the standard DMPC approach is to iterate though

the list of agents at each planning iteration and have them update their plans in a

fixed sequence. While this could be adapted to use CL-RRT instead of MPC, the

synchronization required between agents is impractical for large-scale systems. Agents

would be required to wait for the many previous agents in the planning order to finish

planning before being allowed to plan, and then must wait for the remainder of the

agents to finish before executing the new plan. This greatly slows down the planning

process. Instead, the single subsystem update technique as described in Trodden et

al [39] iterates through the list, selecting one agent at each planning iteration. This

agent is allowed to update its plan, while all other agents are required to keep their

previous plans. An immediate consequence of this requirement is that the inter-agent

constraints are guaranteed to be fixed while an agent is replanning. This approach

reduces the synchronization needed between agents to be able to plan in real time.



2.3.1 Merit-based Token Passing

However, the approach in [39] still requires the agents to cycle through a fixed

planning order, regardless of whether an agent will see any substantial benefit from

replanning. The alternative approach presented here relies on a measure of Potential

Path Improvement (PPI) that reflects an agent's incentive to replan, that is, the

improvement in path cost an agent expects to see if allowed to update its plan next.

The single subsystem update strategy is augmented with this PPI information

to form a merit-based token passing strategy. Rather than iterating through a list

of agents, a token is used to identify which agent is allowed to update its plan at

each planning iteration. Agents without the token compute their PPI and broadcast

these values as bids to be the next token holder. When the current token holder

is finished replanning, it passes the token to the agent with the best bid, i.e. the

greatest Potential Path Improvement. In the case of a tie, one of the agents in the tie

is selected at random to be the next token holder. This effectively produces a dynamic

planning order where agents that may benefit the most from replanning are able to

do so sooner, without having to cycle through the list and wait for other agents that

may have very little incentive to replan. As a result, agents that quickly find paths to

reach their goals will typically generate higher bids more often, allowing them to act

on these plans sooner and reach more of their goals.

PPI from RRT

Computing the Potential Path Improvement requires the agent to compare costs

between the plan it is currently executing and the new plan it would like to switch

to. For many path planning algorithms, this would amount to generating a new

path just to compute a PPI bid. However, the RRT algorithms provide additional

information in the form of the tree of feasible paths, and this can be used to compute

the PPI efficiently. In each planning iteration, the agent that is allowed to replan

simply continues to run the CL-RRT algorithm and updates its plan accordingly. The

other agents continue executing their previously selected plans, but also continue to



grow their own tree using CL-RRT. As a result, it is easy for agents to identify new,

lower-cost paths in the tree. The difference in path cost between the agent's current

path and the best path in the tree is its PPI. For example, if the best path in the tree

has a much lower cost than the path the agent is currently taking, the PPI would be

large and it would be beneficial to replan soon to select the better path.

2.4 Decentralized Multi-Agent RRT (DMA-RRT)

The DMA-RRT algorithm consists of two components that are run in parallel on each

agent. The individual component handles the path planning, while the interaction

component handles all information received from other agents.

2.4.1 Individual Component

The first component, described in Algorithm 2.4, embeds the CL-RRT algorithm.

The agent is initialized with some dynamically feasible path, po, that satisfies all

constraints imposed by the environment and other agents for all time. In the case of

a ground vehicle, this path could be as simple as a stopped state, provided it does not

conflict with any other agent's trajectory.

One agent is initialized as the token holder, with all others initialized to HaveToken

<- false. As in the CL-RRT algorithm from Section 2.2, the agent grows a tree of

feasible trajectories, and at the end of the planning time it identifies the best path,

p*, in the tree according to the cost function. The merit-based token passing strategy

then determines if the agent will update its plan to p* and pass the token to winner,

or if it will bid to be the next token holder, as described in the previous section.

If the agent updates its plan, the constraints imposed on the other agents must

also be updated accordingly. Due to the closed-loop nature of the RRT, any plan can

be characterized by a sparse set of waypoints and closed-loop dynamics (assumed to

be known as per Section 2.1.2). Thus, it is sufficient for the agent to broadcast its

new waypoints to allow the others to update constraints. This update occurs in the

interaction component, described in the next section.



Algorithm 2.4 DMA-RRT: Individual component
1: Initialize with po
2: HaveToken <- false except for one randomly selected agent
3: while Agent is active do
4: Grow CL-RRT (Alg. 2.2), identify best path p* satisfying all constraints (Alg.

2.1)
5: if HaveToken then
6: Pk P*k

7: winner <- agent with best bid

8: Broadcast waypoints of Pk and winner to all agents
9: HaveToken <- f alse

10: else
11: Pk +- Pk-1

12: bid <- (pk.cOst - pk .cost)
13: Broadcast bid
14: end if
15: k <- k + 1

16: end while

2.4.2 Interaction Component

The second component of the DMA-RRT algorithm, described in Algorithm 2.5, con-

trols interaction between agents by handling all incoming information. Communication

between agents involves two different message types. The first message contains a

list of waypoints corresponding to an updated plan as well as the name of the token

winner. The current token holder sends this message to all agents once it has finished

updating its plan. The second message contains only the PPI value used to bid for the

token. This is sent every time an agent other than the current token holder completes

the lazy check (2.3) in the CL-RRT and identifies a feasible path p*.

When a waypoints+winner message is received, the agent must update the con-

straints on its plans. Using a model of the others agent's dynamics, it can simulate the

other agent's path along the received waypoints. This greatly reduces the amount of

information communicated between agents, as the detailed, time-parameterized path

can be reproduced easily from a sparse set of waypoints and the dynamics (Section

2.2.1). This trajectory information can then be used in the CL-RRT's feasibility checks

to verify that the path satisfies all constraints imposed on it by the other agents.



Algorithm 2.5 DMA-RRT: Interaction component
1: while Agent is active do
2: Listen for messages
3: if received waypoints+winner message then
4: Simulate other agent's trajectory along waypoints, update constraints
5: if agent is winner then
6: HaveToken <- true
7: end if
8: end if
9: if Received bid message then

10: Update sender's bid
11: end if
12: end while

When the token winner receives this message, it can assign itself the token and begin

replanning as soon as it updates its constraints. Thus sending the waypoints and

the winner information together minimizes the delay before the winner is allowed to

update its path. When a bid message is received, it is simply added to the list of bids

to check after the next plan update. These bids are stored even when the agent does

not have the token so that once it does receive the token, it is not required to wait

for bids from the other agents. In addition, the assumption that the network is fully

connected, lossless, and introduces negligible delay (2.1.1) allows all agents to receive

all messages sent, maintaining data consistency across all agents.

If only a single agent is active, the HaveToken flag is always true, and DMA-RRT

reduces to the standard CL-RRT.

2.5 Path Feasibility

As described in Section 2.2, any path added to the tree in the CL-RRT algorithm

will be, by construction, dynamically feasible for that agent. In addition, when the

best path is selected from the tree, the lazy check ensures that it satisfies all current

constraints. Together, these properties guarantee that any path returned by the CL-

RRT algorithm will be dynamically feasible and will satisfy all constraints. However,

since trajectories returned by the CL-RRT will be of a finite length, an additional



constraint is introduced:

For a nominal trajectory Pk {x(k), x(k + 1),... , x(k + N)} of length N + 1

timesteps, the agents' states must satisfy

{x(k + M) E Xf lVM > N} (2.3)

Xf C Xfree (2.4)

where the invariant set Xf can be entirely characterized by a set of time-parameterized

waypoints. With this constraint enforced, an agent's behavior is both well-defined and

feasible even if it reaches the end of its nominal path, allowing other agents to plan

accordingly. Examples of simple invariant terminal sets include a stopped state for a

ground vehicle or a loiter pattern for a fixed-wing aircraft, provided the set is feasible

when entered [44-47].

These properties allow for a much stronger statement to be proven: any path Pi,k

generated by agent i at iteration k using the DMA-RRT algorithm is guaranteed to

satisfy all constraints at all times.

Theorem 2.1. Given a set of n cooperative agents and a set of inter-agent constraints

satisfying the assumptions of Section 2.1.4, if the initial set of paths {pi,OlI = 1, ... , n}

satisfies all constraints, then using the DMA-RRT algorithm, the set of all future paths

{Pi,kl% = 1, ... , n and k > 0} will satisfy all constraints.

Proof. Assume the set of all agents' paths {Pi,k i 1,... , n} at planning iteration

k, satisfies all constraints. Then at iteration k + 1, let agent j be the token holder.

Agent j updates its path

PJ,k+1 - Pj,k+1 (2.5)

while all other agents keep their existing paths

{Pi,k+1 = Pi,k i # j} (2.6)

Since Pj,k+1 is generated by the CL-RRT algorithm, it is guaranteed to satisfy all

constraints (Section 2.2.2). As a result, the set of constraints imposed on other agents



is only changed such that their existing plans continue to satisfy it (Section 2.1.4).

Then Pi,k satisfying all constraints implies that Pi,41 satisfies all constraints for i f j.
Thus, the set of paths {pi,k+i = 1, . . ., n} at iteration k + 1 satisfies all constraints.

Since, by assumption, {Pi~k i = 1,... , n} satisfies all constraints for k = 0, then by

induction, {Pi,kli = 1, ... , n} satisfies all constraints for all k > 0

2.6 Summary

The Decentralized Multi-Agent RRT (DMA-RRT) algorithm presented in this chapter

is a combination of two core components. The underlying path planner is the Closed-

loop RRT (CL-RRT), selected for its ability to quickly find dynamically feasible paths

even in complex environments with constrained, nonlinear agent dynamics. The second

component is a new coordination strategy that uses merit-based token passing to

create a dynamic planning order in which agents that may be able to improve their

paths significantly are allowed to plan more often. This increases the efficiency of the

team and their overall performance. The DMA-RRT algorithm is proven to satisfy all

constraints for all time, for appropriate initial conditions. However, no completeness

guarantees can be given for the DMA-RRT algorithm as it is, since the individually

greedy path selection process can lead to deadlocked situations where agents prevent

each other from reaching their goals. An extension to the DMA-RRT algorithm is

presented in the next chapter to introduce cooperation between agents. Simulation

and experimental results are then presented in Chapter 4.



Chapter 3

Cooperative DMA-RRT

Although the DMA-RRT algorithm as described in the previous chapter implements a

coordination strategy using merit-based token passing, each agent is only motivated to

minimize its own path cost when selecting a plan. This individually greedy approach

does not necessarily minimize the global cost, i.e. the total cost across all agents

in the team. This chapter introduces a cooperation strategy that allows an agent

to modify its own path as well as the path of another agent in order to minimize

the combined path cost. Truly minimizing the total cost would typically require

modifying plans for all agents, as in the case of a centralized planner. However, this

pairwise coordination begins to mimic the advantage of the centralized planner without

sacrificing the decentralized implementation or incurring the communication penalty.

This Cooperative DMA-RRT algorithni introduces emergency stop nodes along each

agent's path where the agent could safely terminate the path if asked to by another

agent. The decision to terminate another agent's path is based on a cost comparison.

In addition, agents are assumed to be rational and cooperative, such that agents will

stop if asked to do so by another agent.

3.1 Modified DMA-RRT Algorithm

While the emergency stop based cooperation strategy affects the interaction between

agents, most of the algorithmic changes required to implement the emergency stop



Algorithm 3.1 DMA-RRT: Individual component with emergency stops

1: Initialize with po
2: HaveToken <- false except for one predetermined agent

3: while Agent is active do
4: Grow CL-RRT ignoring other agents' paths, identify best path p*
5: if HaveToken then
6: if p. conflicts with some agentj then
7: Check emergency stops (Algorithm 3.2)
8: end if
9: if p* conflicts with some other agentj then

10: p* pruned at conflicting node to avoid conflict with agentj

11: end if
12: Identify emergency stop nodes on p*
13: Pk +- Pk*
14: if agent-j's plan was modified then

15: next-agent +- agent-j
16: else
17: next-agent <- agent with best bid

18: end if
19: winner +- agent with best bid

20: Broadcast waypoints of pk (with emergency stops) and winner to all

agents
21: HaveToken +- false
22: else
23: Pk <- Pk-1

24: bid +- (pk.cost - pk*cost)
25: Broadcast bid
26: end if
27: k <- k + 1
28: end while

logic occur in the individual component of the DMA-RRT algorithm (Algorithm 2.4).

The modified version of the individual component is presented in Algorithm 3.1, with

the additions (highlighted in red) discussed below.

When some agent-i selects a plan p*, it can also identify scvcral nodes in the plan

where it could stop if necessary. These emergency stop nodes can be selected by

taking every nth safe node or selecting the next safe node every n seconds along the

path, where safe indicates the agent can stop at the node for all future time without

violating any constraints. When the agent broadcasts its plan, it also indicates which

nodes in the plan correspond to these emergency stop locations. As with the terminal

. .. .. ... ...... ..................... .............. ............ .......... ........ ..... ... -..... ......



node on the path, these nodes block off areas where the agent can stop safely for all

time. Thus no other agents can select paths going through those areas, unless they

do so before agent-i is expected to arrive. These nodes already have costs associated

with them from the tree-growing process of the CL-RRT, so other agents know the

cost of forcing this agent to stop at one of these nodes.

Paths are no longer tested for conflicts with other agents' paths when growing

the tree. Instead, the algorithm relies on the Emergency Stop Check described

in Algorithm 3.2 to maintain feasibility relative to the other agents paths. If the

path selected by agent-i does not come into conflict with another agent's path, the

algorithm proceeds normally. However, if the path conflicts with some agent-j, the

the Emergency Stop Check is performed.

There are several options if the path conflicts with more than one agent, ranging

from ignoring emergency stops for all agents to checking all combinations of stops for

all agents involved. The option of ignoring all emergency stops defeats the purpose of

introducing this cooperation strategy, particularly in scenarios where the agents are

operating in close proximity to each other, while with the latter option, the number

of combinations that must be considered grows exponentially with the number of

conflicting agents. The approach considered here is an intermediate option where

emergency stops are checked for the first conflicting agent, agent j, but not for any

subsequent conflicting agent j'.
For each of the emergency stop nodes agent j published, agent-i will identify the

last node in its path p* that it can stop at. When performing this check, the only the

emergency stops considered viable are those that are far enough ahead in time that

agent j will not have passed them by the time agent-i is done planning.

Since agent-i knows the costs associated with each of its own nodes, as well as

agent-j's costs for stopping early, it can select the combination of terminal node and

emergency stop node that yields the best total cost across both agents. If this requires

agentj to stop early, a message is sent indicating at which emergency stop node it

should terminate its path.

Then agent-i passes the token to agent j so that it can update its plan but adds



Algorithm 3.2 Emergency Stop Check
1: if check-estops then
2: for all viable emergency stop nodes N, in agentfj's path do
3: Assuming agent j stops at N, find last node in p* that is safe to stop at
4: TotalCostj = cost of path ending at this node + agent j's cost to stop

at Ni
5: end for
6: Select the terminal node and N that minimize TotalCostj
7: if N is not agent j's original terminal node then
8: Send message to agent j to stop at N
9: end if

10: if selected terminal node is not the original terminal node then
11: p* pruned past new terminal node
12: end if
13: else

14: p* +- p* pruned to satisfy all constraints
15: end if

the caveat that agent j cannot use the emergency stop logic on this planning iteration.

This prevents cycles between agent-i and agent j that may be triggered by each agent

finding an incrementally better path that forces the other agent to stop early. At

the very least, agent j will then broadcast the truncated version of its old plan, thus

updating all other agents and preventing them from detecting conflicts with the path

segment that was removed.

Only minimal changes are required to Algorithm 2.5, the interaction component of

the DMA-RRT, to implement this emergency stop logic. These changes are highlighted

in red in Algorithm 3.3. When an agent receives an estop message indicating it must

terminate its current path early, it prunes all nodes in its current path Pk after the

emergency stop node specified in the message. It also sets the check-estops flag to

false so that it will not attempt to check against other agents emergency stop nodes

during its next planning iteration, as described above.

The resulting algorithm, DMA-RRT with emergency stops, is illustrated by the

following example.



Algorithm 3.3 DMA-RRT: Interaction component with emergency stops
1: while Agent is active do
2: Listen for messages

3: if received waypoints+winner message then
4: Simulate other agent's trajectory along waypoints, update constraints

5: if agent is winner then
6: Have-Token +- true

7: end if
8: end if
9: if Received bid message then

10: Update sender's bid

11: end if
12: if Received estop message then
13: Terminate Pk at node stop specified in estop

14: check estops <- f alse

15: end if
16: end while

3.2 Example

Figure 3-1 shows a simple two-agent scenario where this cooperation strategy would

be beneficial. The agent in green is the current token holder. The first column shows

the performance of the original DMA-RRT algorithm. Agent 2 plans a path that ends

at the entrance to the narrow hallway. Agent 1 then finds a path to the goal but is

forced to terminate the path in the hallway to avoid a conflict with Agent 2's path

(assume in this scenario that Agent 2 will arrive first due to its shorter path). This

leads to a deadlock scenario where neither agent is able to progress toward its goal,

due to selecting paths purely based on local cost functions.

The second column shows the same setup with the the algorithm modified to use

this cooperation strategy. Agent 2 generates the same plan but also identifies two

emergency stop nodes, indicated by the gray dots. Then Agent 1 finds the path to

the goal and compares the three different scenarios shown in the third panel. The

first leaves Agent 2's plan untouched, the second forces Agent 2 to stop at the second

emergency stop node, and the third forces it to take its first stop. Since the second

option allows Agent 1 to reach its goal without cutting too much off Agent 2's path,

that is the option it selects. Following through on these new plans allows Agent 2 to

........................ ....



plan a path to the goal as soon as Agent 1 passes.

3.3 Path Feasibility

The addition of this coordination strategy to DMA-RRT algorithm preserves the

path feasibility guarantee from Theorem 2.1. By construction, all emergency stop

nodes satisfy the safe stopping requirement imposed on terminal nodes in the original

algorithm. Thus, the modified path ending at an emergency stop node is a path

satisfying the terminal node requirement. As with the terminal nodes, these emergency

stop nodes are known to all agents, ensuring no other plans will be in conflict with

them.

Furthermore, the only emergency stop nodes that are considered are ones that are

sufficiently far ahead in time. This buffer compensates for any delays that may arise

before the other agent truncates its path, ensuring feasibility even during message

passing. Therefore, the modified set of plans across all agents is feasible before, during,

and after each planning iteration and the proof of Theorem 2.1 holds.

3.4 Limiting Case

As described in Section 3.1, emergency stop nodes for a given path are separated by

approximately equal intervals, either in time or by number of nodes. Maximizing the

interval size restores the functionality of the original DMA-RRT algorithm. Smaller

intervals provide greater flexibility in matching terminal nodes and emergency stops

at the cost of evaluating the additional combinations and blocking off more of the

environment. In the limiting case where the interval size is taken to be zero, all nodes

in the path can be treated as emergency stops. Although this will greatly increase the

computational requirements to check all the emergency stops, it also allows agents to

stop almost anywhere on their current paths without the risk of violating constraints.

A similar approach is described by Purwin et al. [29] where agents reserve non-

intersecting areas in the environment where they are free to plan without the risk of
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colliding with other agents. Whenever an agent needs to travel outside its reserved

area, it computes a new desired reserved area and identifies which other agents' areas

it would conflict with. The agents then use a priority assignment scheme to determine

whether each conflicting agent, including the one instigating the conflict, is allowed to

keep its reserved area or if it must be reduced to resolve the conflict. This allows higher

priority agents to override the reserved areas of lower priority agents. However, the

emergency stop logic retains one distinct advantage over this approach: the emergency

stop nodes are time parameterized. If an agent is expected to arrive at a node at time

t1, the section of the environment corresponding to that node is only infeasible for

other agents starting at time ti, rather than blocking the space for all time. This

allows agents to plan conflict-free paths through that space for any time t < t1 . Other

agents planning through that space for t > t1 must perform the emergency stop check

instead.

Allowing the agent to stop virtually anywhere on its path also introduces an

option for relaxing the static environment assumption from Section 2.1.3. If the

agents are operating in a world with dynamic objects whose behavior is uncertain but

non-adversarial, the ability to stop at any node typically is enough to avoid collisions

with these objects.

3.5 Summary

Motivated by the individually greedy approach each agent uses in the DMA-RRT

algorithm of the previous chapter, this chapter presents an extension to the algorithm

that adds pairwise cooperation between agents. This cooperation is introduced in

the form of emergency stop nodes that are placed along the agents paths. These

nodes indicate places where the agent can safely stop early if needed. By sharing this

information, along with the cost incurred by stopping early, agents are able to select

paths that reduce the total cost for a pair of potentially conflicting agents.



Chapter 4

Results

The DMA-RRT algorithm and the emergency stops extension developed in the pro-

ceeding chapters aim to improve the overall performance of multi-agent teams. This

chapter presents a set of simulation and experimental results from several scenarios

involving teams of different sizes and environments of varying complexity in order to

verify the performance improvement expected from these algorithms.

4.1 Simulation

4.1.1 Setup

The DMA-RRT algorithm is implemented in real-time Java as an extension of the

RRT-Sim software developed at the MIT Aerospace Controls Laboratory (ACL). As

the name suggests, this software package provides a modular simulation environment

for single-agent path planning using CL-RRTs. Additional details on the RRT-Sim

software are available in [48].

To maintain the decentralized nature of the DMA-RRT algorithm, each agent is

simulated on a different computer, with all the computers connected to the same local

area network. Each agent runs an implementation of Algorithm 2.4 to handle the

actual path planning and an implementation of Algorithm 2.5 to share data with other

agents. The CL-RRT from RRT-Sim forms the core of the individual component,



while network communication capabilities added to RRT-Sim enable the inter-agent

communication required in the interaction component.

Inter-Agent Communication

The User Datagram Protocol (UDP) is used for all communication between simulated

agents. UDP provides very low latency communication as well as the ability to

broadcast and multicast messages to an entire network. This capability facilitates the

implementation of a fully-connected network, as stated in the assumptions (Section

2.1.1). The tradeoff with UDP is that it does not in inherently guarantee data

reliability, and issues such as packet loss, must be taken into account when selecting

a communication protocol. However, UDP communication has been demonstrated,

in practice, to work reliably with low volumes of data transfer. The DMA-RRT is

designed to broadcast minimal amounts of data (Section 2.4.2), and as such, UDP is

a viable option for problems of the scale considered in this section.

The data communicated between agents consists of two types of messages. The

first is the bid message, which only contains the name of the sending agent and its PPI

bid. This small message is typically 16 bytes long and is sent at approximately 1 Hz

(a function of the CL-RRT plan time). The other message is the "waypoints+winner"

message described in Section 2.4. This message contains the sender's name, its current

state and reference, the nodes defining its current path, and the name of the next

token recipient. While the size of this packet varies with the number of nodes in

the path, it is typically between 150 bytes and 1500 bytes in length. However, this

message is sent much less frequently than the bid message, with the average frequency

dependent on the number of agents.



Implementation Details

All agents in the simulation are assumed to be identical two-wheeled, skid-steer

vehicles, whose dynamics in the global frame are given by the modified bicycle model

V cos 0

= v sinO (4.1)

*AV

Lw

where v = j(vL + VR), the average of the left and right wheel velocities, AV = VL - VR,

the difference between the left and right wheel velocities, and L" is the distance

between the left and right wheels [49]. Since vL and vR are also the two control inputs

to the agent, no additional velocity controller is needed. The pure-pursuit steering

control law is used to track the reference path with a smooth trajectory [23]. This

control law, adapted to skid-steer dynamics is given by

AV = -v L 7 ) (4.2)
L,+ 1a cos q

where Li is the pure-pursuit look-ahead distance, 1a is the distance of the anchor point

from the axle, and q is the angle from the vehicle to the look-ahead point on the

reference path. Details on the pure-pursuit controller and its adaptation to skid-steer

dynamics are presented in Appendix A.

The inter-agent constraint, collision avoidance, is implemented using RRT-Sim's

built-in capability to handle time-parameterized obstacle data, known as Layer Cake.

Whenever another agent's path information is received, the corresponding trajectory

is computed by simulating the agent's dynamics along the nodes in the path. This

trajectory is, by definition, the set of predicted time-parameterized states of the

other agent and thus can be embedded in the Layer Cake as a moving obstacle to

avoid. Then, without any modifications, the CL-RRT in RRT-Sim is able to check

the collision avoidance constraint for all other agents' trajectories when selecting a

path. Furthermore, each agent is assigned its own layer in the layercake, allowing the



emergency stop logic to identify specific conflicting agents.

Three simulation scenarios are presented in the following sections using this

implementation of the DMA-RRT. The results for each are based on 120 minutes of

simulation data (12 ten-minute trials), and performance is measured in terms of the

average number of goals each agent is able to reach in ten minutes.

4.1.2 Scenario: Ten Agents on Open Map

The first scenario involves a team of ten agents operating in an open environment.

Though there are no static obstacles (other than the perimeter), the density of agents

in this limited area increases the complexity of the environment through which they

must plan. Each agent is assigned one of the initial positions and one of the goal

locations in Figure 4-1. One arbitrarily selected agent starts with the token. Upon

reaching a goal, agents select the next goal in the list (looping back to the first goal

after the tenth) and resume planning.

DMA-RRT without Merit-Based Token Passing

This scenario is first run without merit-based token passing. Instead, the agents use a

round-robin approach, cycling though a fixed planning order.

Figure 4-2 shows the state of the world as seen by agent 1 (blue circle with red

arrow) at one instance in time. The other agents are represented by yellow circles

with blue arrows, and the current token-holder's arrow is highlighted 1 . The magenta

dots are the waypoint nodes along agent l's current path. The time-parameterized

obstacles produced by the other agents' trajectories are shown by the red-to-green

paths. Time is represented by the color gradient from bright red (current obstacles,

i.e. the other agents' current positions) to bright green (obstacles at least 10 seconds

ahead in time). The gray areas are the safe terminal nodes for each path. These are

all based on agent l's re-simulation of the other agents' trajectories.

On average, each agent reached a total of 12.5 goals in a span of ten minutes. In

iThe arrow is cyan in this case since one of the other agents has the token. If agent 1 were the
current token holder, its arrow would be green instead.
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comparison, a single agent operating on the same map averages around 40 goals in ten

minutes, so the performance drop per agent due to increasing the number of agents to

ten is not even a factor of four, let alone a factor of ten. The fixed planning order is

evident in the example replan start times shown in Figure 4-3.

DMA-RRT

The same test is then repeated with the full DMA-RRT algorithm, i.e. using merit-

based token passing. Each agent computes its path cost, and thus its bid, based on

the path's length in seconds (i.e. travel time). Adding the intelligent coordination

policy yields significantly better results. Each agent reached an average of 15.1 goals

in ten minutes. The dynamic planning order this token passing strategy produces is

also apparent from a comparison of the replan start times, an example of which is

shown in Figure 4-4.

Analysis

This simulation scenario demonstrates the DMA-RRT algorithm's ability to handle

large teams of agents. When using the round-robin strategy, all agents are given

equal opportunities to plan, irrespective of whether they need to replan at that time.

However, if an agent finds a new path after passing the token, it is forced to wait for

the token to pass through the entire team before receiving it again. As Figure 4-3

shows, the wait time is typically around ten seconds for this ten-agent scenario. In a

more complex scenario with additional agents and obstacles, this delay would only

increase.

In comparison, merit-based token passing enables agents to regain the token within

a second or two of passing it, if needed. An example of this is in Figure 4-4 around

12 seconds where agent 7 passes the token to agent 3 but wins the bid to get it back

from agent 3 immediately after. This reduces the effective "penalty" incurred in the

round-robin approach when agents with a large incentive to replan may be blocked

form doing so by agents with little incentive. Thus, agents that are able to update to

shorter paths can do so much more quickly, reducing the travel time between goals
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and increasing the number of goals that can be reached in a fixed amount of time.

The simulation results reflect this quite clearly, with a 20% increase in the average

number of goals per agent, from 12.5 to 15.1.

4.1.3 Scenario: Four Agents with Obstacles

The second scenario is in a complex environment containing several static obstacles

and two goal locations, as shown in Figure 4-5. Four agents are initialized at the

positions shown in the same figure. Each agent is given one of the two goals as its

initial target. Upon reaching a goal, the agent selects the goal at the opposite end of

the environment and continues planning.

DMA-RRT without Merit-Based Token Passing

Again, this scenario is first run using the round-robin approach. Figure 4-6 shows a

snapshot of agent 1's knowledge of the world during a sample run. On average, each

agent reached a total of 11.9 goals in a span of ten minutes using the round-robin

approach. The fixed planning order is evident in the example start times shown in

Figure 4-7.

DMA-RRT

The same scenario is again re-run with the full DMA-RRT. In this case, even with

merit-based token passing, each agent averages 11.9 goals in ten minutes. Figure 4-8

shows the times at which the token was received in a sample run.

Cooperative DMA-RRT

Finally, the emergency stop cooperation strategy is enabled and the same scenario is

run again. The stop nodes are placed approximately every four seconds along each

trajectory, as seen in Figure 4-9. With emergency stops enabled, each agent averaged

13.0 goals in ten minutes.



Figure 4-5: Obstacle layout, four starting positions, and two goal locations for the
Four Agents with Obstacles scenario
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Figure 4-6: State of the world as seen by agent 1 in the Four Agents with Obstacles
scenario
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Figure 4-9: State of the world as seen by agent 1 with emergency stops enabled in the
four-agent scenario. Gray areas along the other agents' trajectories indicate emergency
stop nodes.
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Analysis

For a team of only four agents, the merit-based token passing strategy is not expected to

provide a significant improvement in performance. This can be seen from a comparison

of Figure 4-7 and Figure 4-8. Even with the dynamic planning order, there are so few

agents that each receives the token almost as regularly as in the round-robin case.

Since each agent's ability to update its path is not significantly altered, the overall

performance cannot be expected to improve just by adding this token passing strategy.

However, introducing the emergency stop logic does make a difference due to the

narrow passages formed by the obstacles. As in the example scenario from Chapter

3, these passages are difficult to plan through, often resulting in agents stopping in

or near the openings. Therefore, an agent that is able to find a path through one of

the openings can use the emergency stop cooperation strategy to stop other agents

that would otherwise obstruct this path. Furthermore, a standard error analysis 2

shows the 95% confidence interval for the mean using just the DMA-RRT algorithm

in this scenario is [11.39, 12.49], while the 95% confidence interval for the mean

using emergency stops is [12.53, 13.47]. The lack of overlap between these confidence

intervals is a strong indicator that the emergency stops provide a statistically significant

improvement in performance.

4.2 Experimental Results

4.2.1 Setup

Hardware tests of the DMA-RRT algorithm were performed in the Real-time indoor

Autonomous Vehicle test ENvironment (RAVEN) at the MIT Aerospace Controls

Laboratory. The RAVEN setup (shown in Figure 4-10) is used to test planning

and control algorithms with a variety of autonomous air and ground vehicles [51,

52]. Algorithms are run on dedicated vehicle computers and the resulting actuation

2Standard error is computed as SE = s/fin, where s is the sample standard deviation and n is
the sample size. The 95% confidence interval is given by 2 + 1.96SE, where 7 is the sample mean
[50].



Figure 4-10: RAVEN at the Aerospace Controls Lab

commands are sent to the vehicles via a pair of xBee-PRO wireless serial modules.

Agent Tracking

The key feature of the RAVEN setup is the VICON MX-3+ motion capture system.

This system uses cameras mounted along the perimeter of the test area to track vehicles

operating in the visible volume. Each vehicle has a unique pattern of reflective markers

affixed to it, and the cameras track these dots to provide accurate, high-bandwidth

position and attitude estimates for each tracked vehicle. Additional information on

the RAVEN test area is available in [51, 52]. These state estimates are then used to

close the feedback loop on the vehicles for accurate closed-loop control.

Vehicle

The iRobot Create, shown in Figure 4-11, is the vehicle selected for these tests. It is a

small ground robot with one drive wheel on each side and a caster in front for balance

and, as such, can be modeled accurately by skid-steer dynamics (4.1). It is capable of

speeds up to 0.5 m/s and has on-board speed controllers to maintain the commanded

velocity. Due to their low inertia and high-torque motors, the Creates are also able to

stop almost instantly. xBee-PRO modules are connected directly to these vehicles in

............. ............. .



Figure 4-11: iRobot Create with xBee-PRO wireless serial module connected

order to send actuation commands.

Simulations Interface

The RRT-Sim software used for the DMA-RRT simulations is designed to interface

with RAVEN, allowing the user to maintain the Java implementation of the algorithm

used for simulation while replacing the simulated vehicles with iRobot Creates and

state feedback from VICON. Experimental results using this combination of RRT-Sim

and RAVEN are presented below.

4.2.2 Results

Both the DMA-RRT and Cooperative DMA-RRT were tested in RAVEN using a

team of five iRobot Creates. The open map with ten goals (Figure 4-1) was used in

both cases, and the agents were started at arbitrary locations.

A snapshot from a run of the DMA-RRT algorithm is shown in Figure 4-12. As in

the simulation runs, the color gradients on the trajectory visualization indicate the

time at which that area of the environment is expected to be occupied by a given

agent. The overlay of this visualization onto the the image shows the physical locations

corresponding to these time-parameterized obstacles.



(a) Snapshot of the vehicles and their trajectories

(b) Overlay of the trajectory visualization on the actual testbed

Figure 4-12: DMA-RRT in RAVEN
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Table 4.1: Minimum separation distance (m) between agent pairs (DMA-RRT)

Agent 1 2 3 4
5 0.720 0.554 0.436 0.732
4 0.586 0.417 0.476 -
3 0.365 0.505 - -

2 0.509 - - -

Table 4.2: Minimum separation distance (m) between agent pairs (Cooperative DMA-
RRT)

Agent 1 2 3 4
5 0.343 0.344 0.528 0.312
4 0.564 0.641 0.441 -
3 0.313 0.308 - -

2 0.565 - - -

Figure 4-13 shows one instance of the emergency stop logic activating. Agent 2

first plans a path terminating just short of its goal due to position of agent 5. Agent 4

then receives the token and finds a path to its goal, but identifies a conflict with agent

2's path. Since paths that reach the goal are preferred, agent 4 sends an emergency

stop message to agent 2 to terminate its path at its first stop node. Agent 2 complies

and upon receiving the token from agent 4, finds an updated plan that allows it to

stop closer to its goal without interfering with agent 4's path. The agents continue

along these paths, with agent 2 waiting at its terminal state for agent 4 to pass.

Table 4.1 shows the minimum separation distance between agents over the course of

a five minute run of the DMA-RRT algorithm. The distance between two agents placed

side by side is measured via the VICON system to be 0.30 i. The minimum separation

between each pair of agents is greater than this threshold for all combinations of

agents, indicating that the collision avoidance constraint is satisfied for the entire run.

Table 4.2 shows similar results for Cooperative DMA-RRT.



3

2

(a) Agent 2 plans a path, then agent 4 find a path to goal that conflicts with

agent 2

0

(b) Agent 4 sends an emergency stop message to agent 2, agent 2 terminates
its path early, and agent 4 is able to proceed to the goal

(c) Agent 2 reaches the end of its plan and waits for agent 4 to pass

Figure 4-13: Emergency stop logic in action
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4.3 Summary

The simulation results presented in this chapter demonstrate that the DMA-RRT

algorithm and the Cooperative DMA-RRT algorithm are able to handle large teams

and complex environments. The performance improvement between the round-robin

approach and merit-based token passing is evident from these trials, as is the benefit

of introducing the cooperation strategy. The experimental results presents here verify

that the collision avoidance requirement is met. Moreover, they demonstrate that

the DMA-RRT algorithm is a viable path planner for real-world multi-agent systems.

Future testing will expand these results to more complex environments and an even

larger team of agents.



Chapter 5

Rover Test-Platform

The work presented thus far has been motivated by the increasing use of autonomous

multi-agent systems. The Agile Robotics for Logistics project at the MIT Computer

Science and Artificial Intelligence Laboratory (CSAIL) is one such example [53]. This

project addresses the general problem of automating warehouses such as those of the

military supply chain. These warehouses are dynamic, human-occupied, mininially

structured environments, often with uneven terrain. Thus, fast, online algorithms are

required to be able to interact with and adapt to these complex environments. To

this end, the project aims to develop robotic systems that are able to operate safely

and efficiently in areas such as a military Supply Support Activity (SSA) alongside

normal personnel. The initial stage of the project focused on the development of an

autonomous forklift capable of manipulating palletized cargo with minimal human

supervision [53]. This chapter presents a small-scale rover that has been developed to

assist the forklift in completing its tasks by serving as a mobile sensor package, while

also performing auxiliary tasks, such as inventory management. As depicted in Figure

1-1, several of these rovers may be deployed alongside autonomous forklifts to perform

complex cooperative tasks. For example, a forklift may summon two rovers to act as

spotters while unloading a pallet from a truck in a confined space. The prerequisite

to this functionality is the ability to navigate autonomously and safely in the same

environments as the forklifts. To that end, the planning and control algorithms used

on the forklift are adapted to this smaller robot. This functionality lays the foundation



Figure 5-1: Agile Robotics forklift and rover

for a team of agents consisting of multiple forklifts and rovers - an ideal candidate

for future implementation of the DMA-RRT algorithm.

5.1 Hardware

In comparison to the forklift, the rover is a relatively simple robot comprised of three

main hardware components. A Pioneer 3 wheeled robot from MobileRobots forms

the base of the rover, and the two wheels on each side of the robot base are coupled,

mimicking a two-wheeled robot with skid-steer dynamics. The base has internal

speed controllers for each side that allow it to track left and right wheel velocity

commands. While the Pioneer 3 is capable of traveling at speeds over 0.7 m/s, velocity

command tracking performance degrades quickly above this speed. As such, 0.7 m/s
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is selected as the maximum velocity command for each set of wheels. Although this

maximum velocity is relatively low, the high-torque motors in the base make it a

highly maneuverable, all-terrain platform well suited to the SSA environment.

The rover is also equipped with a basic sensor suite. The base robot provides

velocity feedback from encoders mounted on the wheels, while an Xsens MTi inertial

measurement unit (IMU) provides linear acceleration, angular rate, and attitude

information. This data is used to estimate the rover's position in a local frame via

dead-reckoning, and GPS measurements from a Garmin 18X-5Hz GPS receiver then

map this local frame [54] into global coordinates. In addition, two laser range finders,

Hokuyo UTM-30LX and URG-04LX, are mounted on the rover to detect obstacles in

the environment. These components are illustrated in Figure 5-3.

All the sensor data processing and path planning is performed on a 3.06 GHz

dual-core laptop that is mounted directly on the rover base. The resulting left and

right velocity commands are sent to the rover base via a serial connection using the

MobileRobots Advanced Robotics Interface for Applications (ARIA) software library

[55]. The laptop supplies power to the IMU and GPS units, while an extra battery

powers the laser range finders.

The fully assembled rover measures 1.26m x 0.52m x 1.22m and is shown in Figure

5-2.

5.2 Software

One of the auxiliary purposes of the rover is to demonstrate the applicability of the

Agile Robotics software to robotics work in general. Just as much of the core software

for the forklift is adapted from MIT's entry in the DARPA Urban Challenge [56, 57],

the core software for the rover is adapted from the forklift. This is coupled with

the ARIA library to interface the Agile Robotics software and the Pioneer 3 base of

the rover. Then only a few changes must be made to the software for it to function

correctly on the rover.



Figure 5-2: Rover with all components mounted



(a) Pioneer 3 robot used as rover base

(b) Xsens MTi IMU - 0.05* angular resolution

(d) UTM-30LX - 30m range, 2700 FOV, 0.250
angular resolution, 40Hz update rate

(c) Garmin 18X-5Hz GPS Receiver - 15m
resolution, 5Hz update rate

(e) URG-04LX - 4m range, 240* FOV, 0.360
angular resolution, 10Hz update rate

Figure 5-3: Rover hardware components
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5.2.1 Controller

To generate actuation commands, in the form of steering, gas, and brake commands,

the forklift uses a pure-pursuit steering controller and a Proportional-Integral (PI)

velocity controller. The pure-pursuit steering controller is retained to track the

reference paths generated by the path planner. It is adjusted for skid-steer dynamics

as described in Appendix A, yielding the control law in (4.2), reproduced below:

L , sin 7
+ la cos r)

Again, L1 is the pure-pursuit look-ahead distance, 1,l is the distance between the

anchor point and the axle, and rq is the angle from the vehicle to the look-ahead point

on the reference path.

The smooth trajectories that arise from a pure-pursuit controller are well-suited to

vehicles with turn radius constraints following long reference paths. In scenarios where

humans and robots are working in the same environment, these smooth trajectories

also make it easier for the humans to anticipate the behavior of the robots and be

comfortable working near them. Thus the pure-pursuit controller is a suitable choice for

the rover in general. However, the rover's ability to pivot in place, due to its skid-steer

design, can be beneficial in certain scenarios. In particular, allowing the rover to turn

sharply at low speeds can help it avoid some of the looping trajectories often observed

in implementations of pure-pursuit controllers. Though this seems contradictory to

the nature of the pure-pursuit controller, no additional control strategy is required; the

pure-pursuit controller is capable of producing this type of behavior for appropriately

selected parameters.

The minimum L1 distance for the rover is set to 0.01m, and this extremely small

minimum L 1 is part of what allows the rover to make sharp turns at low speeds.

Due to the Pioneer 3's on-board speed controllers, no additional velocity controller is

needed for the rover. A speed designer (described below) generates velocity commands

Veda, which when combined with the turn command Av, can be translated into left



and right velocity commands for the skid-steer rover as follows:

AV
VL Vcmd± 2

vR =cmd - AV (5.1)

5.2.2 Path Planner

The forklift uses the CL-RRT algorithm to generate its reference trajectories, expanding

its tree using extended bicycle model dynamics [43]. This planner is almost directly

translated to the rover, as the rover's skid-steer dynamics can also be represented with

an extended version of the modified bicycle model (4.1), as given below:

=v cos 0

= v sin 0

Av
O=

a

VL + VRv = (5.2)
2

Av = VL - VR

|a < amax

Av < AVmax

|VL max

VRI Vmax

The control inputs to the rover are given by VL and VR. Rotation rate can be bounded

artificially by selecting AVmax < 2 Vmax, and a value of 0.3 m/s was found to allow the

rover to turn at a reasonable speed while avoiding jittery motion observed during fast

turns. The track L. (distance between left and right wheels) is measured to be 0.40m,

but a scale factor must be added to account for the pair of coupled wheels on each

side [49]. The resulting effective Lw for the rover is 0.58m.



During the tree growing process, a speed designer is used to generate velocity

commands to ramp up from rest and ramp down to stop at the end of its trajectory.

These velocity commands are used to compute the pure-pursuit steering commands

for the closed-loop simulation. Since the pure-pursuit L1 distance increases with the

velocity command, low velocity commands will produce small L1 distances, allowing

the rover to make sharper turns at low speeds. While this is an inherent property

of the controller, the effect is exaggerated on the rover by reducing the minimum L1

distance severely and introducing an attenuation factor on the velocity commands

that is a function of the previous turn command as given below:

Vcmd -cmd(1 - j ) (5.3)
" max

where Vcmd is the output of the original speed designer adapted from the forklift.

The net result is such that if the rover generates a sharp turn command, i.e., a

large Av, while it is moving slowly, this attenuation factor will prevent Vcmd from

ramping up quickly. Maintaining this lower speed keeps L1 small, which allows the

rover to finish making the sharp turn. As the rover approaches its desired heading

angle, the turn commands naturally decrease, allowing the speed command to ramp

up again. Once at higher speeds, the larger L1 distance prevents large Av commands,

reducing the effects of the attenuation term.

Table 5.1 presents a summary of the parameters used in the rover controller and

planner.

Table 5.1: Rover controller and planner parameters

L 0.28 m
Li 0.01 m - 1.00 m

la 0.01 m
Lw 0.58 m
amax 0.87 m/s 2

Vmax 0.7 m/s
AVmax 0.3 m/s



5.3 Experimental Results

5.3.1 Outdoor Navigation

The rover's CL-RRT and controller were tested in several outdoor environments,

including the SSA in Figure 5-4 at Fort Lee, VA.

Figure 5-4: Outdoor Supply Support Activity (SSA) at Ft. Lee, VA

The rover's knowledge of the world from one example run is shown in Figure

5-5. The large blue dots mark the perimeter, orange dots are potential goal locations

(storage bays, loading areas, etc), and the turquoise square is the current goal. The

perimeter and potential goal locations are defined in a pre-specified topological map

of GPS positions. All objects detected by the LIDAR are shows as green dots, and

the white pillars are the obstacles inferred from this data. The rover's selected path is

shown in yellow, surrounded by several other potential paths in the tree.

The rover plans in its local frame, avoiding all LIDAR-based obstacles. In addition,

it performs a coordinate transform using GPS data to map the goal and perimeter

information into this frame. Since the rover was operating in a relatively open part

of the SSA and started far from the goal, it selected a smooth path to the goal, as

expected from pure-pursuit.

. .........



(a) Birds-eye view of the SSA showing the RNDF, LIDAR obstacles, and CL-RRT plan

(b) 3D visualization of the rover and obstacles

Figure 5-5: Outdoor navigation to a goal defined in GPS coordinates



5.3.2 Sharp Turn

The ability to perform sharp turns at low speeds can be beneficial in both indoor

and outdoor environments. Constrained indoor environments are often difficult to

plan smooth paths through, while GPS jumps can lead to sudden changes in the goal

location in outdoor environments. The example in Figure 5-6 illustrates the GPS

jump scenario.

The rover's original path is designed to terminate inside the goal region after

reaching the heading angle specified for that goal. However, a sudden jump in the

GPS data moves the goal such that the original path no longer ends inside it. The

rover comes to a stop and grows the CL-RRT to identify a new path. Since the rover

is currently at rest and its new path leaves departs at a very different angle, it is able

to issue the maximum turn command to essentially pivot in place. Once it is aligned

with the new path, it increases its velocity and proceeds along the path to reach the

goal.

5.3.3 Summary

The small scale rover presented in this chapter is a key component in the expansion

of the Agile Robotics project to coordinated, multi-agent operations. The rover's

basic sensor suit allows it to localize itself relative to GPS data while also detecting

obstacles in the world. The CL-RRT implementation on the rover makes ftull use of

this capability to navigate in the types of complex environments found in military

supply areas. Moreover, this basic planning capability lays the foundation for the

DMA-RRT algorithm to be implemented on a team of rovers and forklifts, allowing

them to perform their tasks safely and efficiently.



(a) Original trajectory to stop in goal with
desired heading (indicated by the arrow)

(b) Goal moves due to GPS jump

(c) Rover stops and computes new path (d) Begins sharp turn to align with new path

(e) Completes turn (f) Follows new path

(g) Continues along path into goal area

Figure 5-6: Rover executing a sharp

(h) Reverses into goal with desired heading

turn to reach goal after GPS jump

- - .-M . :.M - - ...... ................ ..... ..... .. .. ...... .. .... .. ... ... .... .. ....



Chapter 6

Conclusion

6.1 Summary

This thesis addresses the problem of path planning for cooperative multi-agent au-

tonomous systems operating in complex environments. As teams of autonomous

agents are deployed in increasingly challenging situations, the need for all agents in

the team to navigate safely and efficiently becomes crucial. To this end, this thesis

proposes the Decentralized Multi-Agent Rapidly-exploring Random Tree (DMA-RRT)

algorithm. This algorithm combines the Closed-loop RRT path planner with a new

coordination strategy, merit-based token passing, to improve team performance while

ensuring all constraints (dynamics, environment, inter-agent) are satisfied.

Chapter 2 provides an overview of the Closed-loop RRT (CL-RRT) algorithm as

a core component of the DMA-RRT algorithm. The use of CL-RRT as the baseline

planner is motivated by its success as a fast, online path planner that is able to handle

the type of complexity found in practical systems, such as constrained, nonlinear agent

dynamics as well as cluttered or restrictive environments. Its sample-based approach

enables it to quickly explore these environments, while the closed-loop simulation

used to grow the tree accounts for the complexity in the dynamics and environment

to produce feasible paths. The tree of feasible paths grown and maintained by the

CL-RRT contains valuable information about an agent's potential plans. Thus, the

merit-based token passing strategy is developed to use this information to coordinate a



team of agents in which each agent plans using the CL-RRT algorithm. By comparing

the cost of its current path to the cost of the best feasible path in its tree, each agent

is able to measure its incentive to replan, i.e. its Potential Path Improvement (PPI),

at any time. This allows the agents in the team to plan in a dynamic sequence where

agents bid to plan next according to their PPI. As a result, agents with more to

gain from replanning are able to do so more often, while agents with little reason

to replan do not disrupt the planning order. This improves the overall planning

efficiency of the team, which, in turn, improves overall performance. The DMA-RRT

algorithm encapsulates these two components and adds waypoint communication

between agents. From these waypoints, each agent is able to determine the other

agents' current trajectories and select plans that satisfy all inter-agent constraints. The

dynamic sequential planning order combined with this waypoint sharing guarantees

that all inter-agent constraints will be satisfied for all time. Furthermore, the low

communication requirements for this waypoint sharing and the use of an individual

CL-RRT on each agent allows the DMA-RRT algorithm to scale to large teams.

In Chapter 3, an additional cooperation component is introduced to the DMA-

RRT algorithm. In the normal DMA-RRT algorithm, each agent selects its paths

solely to minimize its local cost function. However, this individually greedy approach

does not necessarily minimize the global cost for the entire team. The Cooperative

DMA-RRT algorithm introduces pairwise cooperation between agents in the form of

emergency stop node checks. Agents identify nodes in their path at which they could

stop indefinitely, if needed, and the additional cost associated with stopping at these

nodes. This information is communicated to the team as part of the usual DMA-RRT

waypoint communication. Then when an agent replans, it gains the option to truncate

another agent's path at one of these emergency stop nodes if doing so enables the

replanning agent to select a far better path, thus reducing the combined cost for both

agents.

Chapter 4 verifies the properties of the DMA-RRT and Cooperative DMA-RRT

algorithms through a series of simulations and experimental results. True to the

nature of the algorithm, the simulations are performed across multiple computers



on a common network. The results show a significant performance improvement

with the merit-based token passing strategy, as opposed to a round-robin planning

order. Similarly, adding the emergency stop cooperation logic showed a significant

performance improvement over the normal DMA-RRT algorithm. The various team

sizes used in the simulations and hardware tests, particularly the ten-agent scenario,

demonstrate the algorithms' scalability. The experimental results also verify that the

collision avoidance inter-agent constraint is satisfied, and moreover, show that the

DMA-RRT algorithm is a viable path planner for real multi-agent systems.

Finally, Chapter 5 introduces a rover test platform being developed as part of

the Agile Robotics project. A team of these rovers is envisioned as a cooperative

multi-agent team capable of assisting an autonomous forklift and performing unique

tasks, such as inventory management. The software architecture for the Agile Robotics

project is designed to be applicable to general robotic systems, and as such, only minor

modifications need to be made to translate this functionality to the rover. A series

of experimental results demonstrate the rover's ability to plan using the CL-RRT

algorithm in real-world environments, such as an outdoor warehouse scenario with

rough terrain and LIDAR-based obstacles. This provides the core functionality needed

to implement the DMA-RRT algorithm on a team of rovers.

6.2 Future Work

There are many interesting topics for future research that will help extend the work

presented here to a more general class of multi-agent path planning problems. A few

key topics are discussed in this section.

The DMA-RRT algorithm is developed under the assumption of a static environ-

ment (Section 2.1.3). However in practice, agents will typically be operating in highly

dynamic environments. Furthermore, the CL-RRT algorithm is designed to handle

dynamic obstacles via the lazy check. Section 3.4 describes one potential approach

where emergency stop nodes are placed at every possible node along an agent's path.

This would allow the agent to stop safely anywhere on the path, either due to a



termination message received from another agent or in response to a dynamic obstacle

detected via additional sensors. However, this conservative approach requires each

agent to claim a potentially large portion of the state space, adding largely unnecessary

complexity to the planning problem in the form of frequent emergency stop node

checks.

Relaxing the assumption in Section 2.1.1 that the agents form a fully connected

network, for example by adding communication range limits, introduces the concept

of subnetworks. Consider an agent's subnetwork to be the set of all agents within

its communication radius. While each subnetwork on its own can be treated as a

fully connected network for the DMA-RRT algorithm, an additional framework is

needed to manage interactions and overlaps between subnetworks. The the constraint

satisfaction guarantee must also be revised due to the uncertainty in the environment

beyond the communication radius.

The problem of managing agents as they move between subnetworks can be

generalized to the problem of token creation and rejection. For example, in the

event that the token is lost, perhaps due to the token holder leaving the network,

agents must be able to create a new token. However, multiple agents in the same

subnetwork must not be able to generate tokens at the same time. Likewise, if an

agent were to introduce an extra token into a subnetwork, it must be rejected quickly

and the offending agent's plan must be accounted for to prevent constraint violations.

Token management algorithms [58] from the computer networking community may be

especially useful here.

As described in Chapter 5, implementing the CL-RRT algorithm on the Agile

Robotics rover is only the first step in that project. The goal is to have multiple

rovers cooperating with each other as well as with the autonomous forklift. To

transform the CL-RRT implementation on each rover into an implementation of the

DMA-RRT algorithm, an inter-agent communication protocol must be established. A

likely candidate for this is the Lightweight Communications and Marshalling (LCM)

library [57 currently used for inter-process communication. Furthermore, the rovers

and forklift typically operate on rough, uneven terrain. This introduces uncertainty in



their ability to accurately follow a selected trajectory. However, as described by Luders

et al. [42], bounds can be established on the tracking error for the CL-RRT algorithm.

These bounds can then be incorporated into the trajectory re-simulation step of the

DMA-RRT (Section 2.4.2) to generate more conservative, but safer, time-parameterized

obstacles.
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Appendix A

Pure-Pursuit Controller

The pure-pursuit steering controller has been used for many ground and air vehicle

applications [59, 60]. Kuwata et al. [23] describe the form of the controller considered

here and provide additional stability analysis. The overall goal of the controller is

to track a reference path by adjusting the steering angle to compensate for the error

in heading between the vehicle and a lookahead point located on the reference path.

The adaptation of this control law to skid-steer vehicle dynamics is described in this

appendix.

First, consider the basic kinematic bicycle model described by

= v cos 0

y v sin 0 (A.1)

6 =-tan(6)
L

where x and y specify the position of the rear axle and 6 is the vehicle's heading angle

relative to the x-axis. The control inputs are velocity v and and steering angle 6. The

parameter L is the distance between front and rear axles (wheelbase).

The pure-pursuit steering controller is given by

6= -tan Lsinq (A.2)
2+la"COSrT,



Anchor Point

LI

' -Reference Path

Figure A-1: Bicycle model with pure pursuit parameters labeled

where L1 is the lookahead distance that determines the position of the lookahead point

on the reference path, rq is the angle between the vehicle and the lookahead point, and

la is the anchor point distance from the rear axle, used to provide added stability. The

steering command is computed such that the anchor point is steered to the reference

path. These parameters are illustrated on a bicycle model in Figure A-1.

Substituting this control law (A.2) into the last line of (A.1) and simplifying yields

O as a function of r, (sin r/
0=-v J (A.3)

2 + lacos'q

Note that the wheelbase term L drops out.

The modified bicycle model for skid-steer vehicles is

x = v cos 0

= v sinG (A.4)

Av

Lw

where v = (VL + VR), the average of the left and right wheel velocities, Av - VL - VR,

the difference between the left and right wheel velocities, and L" is the distance

between the left and right wheels. Since there is only one axle, the wheelbase L is

assumed to be zero.

..................... .... ......... Wwa-MIRM



Since the objective is to steer the skid-steer model as if it were a standard bicycle

model, the 0 equations can be equated to produce a relationship between Av and rI

Av -v ( L sin In ) (A.5)
Li +a cos q

This provides a mapping between the pure pursuit heading term q and the left and

right velocity commands issues to the skid steer vehicle. Furthermore, this control law

does not depend on L, which does not exist for a two-wheeled skid steer vehicle, but

rather on L,.

The performance of the pure pursuit controller can tuned by appropriate selection

of the lookahead distance. A detailed discussion of how to select the L1 is given in

Kuwata et al. [23], but the key property is that the L1 distance is scheduled with

the velocity command issued to the vehicle. Larger L1 values prevent the vehicle

from making sharp turns, which improves performance and stability at higher speeds.

Furthermore, the velocity command is used rather than the vehicle's measured velocity

in order to avoid jitter in the steering command due to measurement noise.

On a skidsteer vehicle, setting the minimum L1 distance, corresponding to very

low speeds, to be small allows the agent to provide sharp turn commands, taking

advantage of the skid steer capabilities. Also, while the choice of anchor point distance

la > 0 provides additional stability, on a pure pursuit vehicle, setting la - 0 is often

reasonable to promote its ability to turn sharply. However, in other applications,

1a > 0 may be preferred to effectively "pull" the vehicle by some point in front of the

axle, thus smoothing out the trajectory.
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