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Abstract

Tissue deformation in ultrasound imaging is an inevitable phenomenon and poses
challenges to the development of many techniques related to ultrasound image
registration, including multimodal image fusion, freehand three-dimensional
ultrasound, and quantitative measurement of tissue geometry. In this thesis, a novel
trajectory-based method to correct tissue deformation in ultrasound B-mode imaging
and elastography is developed in the framework of elastography.

To characterize the change of tissue deformation with contact force, a force sensor
is used to provide contact force measurement. Correlation-based displacement
estimation techniques are applied to ultrasound images acquired under different
contact forces. Based on the estimation results, a two-dimensional trajectory field is
constructed, where pixel coordinates in each scan are plotted against the corresponding
contact force. Interpolation or extrapolation by polynomial curve fitting is then applied
to each trajectory to estimate the image under a specified contact force.

The performance of displacement estimation and polynomial curve fitting are
analyzed in a simulation framework incorporating FEM and ultrasound simulation.
Influences of parameter selection are also examined. It is found that in displacement
estimation, the coarse-to-fine approach outperforms single-level template search, and
correlation filtering in coarse scale provides noticeable improvement in estimation
performance. The strategies of image acquisition and order selection in polynomial
curve fitting are also evaluated. Additionally, a finer force resolution is found to give
better performance in predicting pixel positions under zero force.

Deformation correction in both B-mode imaging and elastography is
demonstrated through simulation and in-vitro experiments. The performance of
correction is quantified by translational offset and area estimation of the tissue
inclusions. It is found that, for both B-mode and elastography images, those
performance metrics are significantly improved after correction. Moreover, it is shown
that a finer resolution in force control gives better performance in deformation
correction, which agrees with the analysis of polynomial curve fitting.

Thesis Supervisor: Brian W. Anthony
Title: Research Scientist, Department of Mechanical Engineering
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Chapter 1

Introduction

Diagnostic ultrasound imaging technology is indispensable nowadays as it provides

inexpensive and non-invasive real-time imaging with high spatial resolution.

Ultrasound imaging is typically performed in a manner where a probe makes firm

contact with the skin for good image quality. In this procedure, deformation of the

underlying tissue is inevitable, and thus structures shown in imaging are distorted. This

phenomenon is shown in Figure 1-1, where the appearance of the same tissue changes

due to varying levels of probe compression. The blob of tissue enclosed by dashed lines

undergoes translational offset, and the cross-sectional area of the brachial artery

(enclosed by solid lines) shrinks with an increased compression level.

Figure 1-1 The ultrasound images of brachial artery under
compression

varying levels of probe

In most cases, this distortion effect does not impede diagnosis, since most of the

characteristics of tissue are retained under compression. In fact, tracking pixel

displacements in a sequence of compressed tissue images provides information to

discriminate between normal and pathological tissue in elastography. [1] However, for

applications where the undeformed appearance of biological tissue is required,

.................................................. ......... - ...... ..... .. .. . ........................................................ ....... ...I . I'll -W' " -_ . ... . ....... .......



avoiding or correcting tissue deformation becomes crucial. For example, in freehand

three-dimensional ultrasound (freehand 3D US), where the shape of tissue is

reconstructed by stacking two-dimensional (2D) slices acquired in varying probe

positions and contact forces, the corresponding pixels can be accurately aligned only if

the deformation patterns in each slice can be appropriately corrected. Furthermore,

deformation correction applied in 3D US facilitates quantitative measurement of tissue

volumes and analysis of the shape. [2] The need to correct deformation also arises in

multimodal image processing, in which tissue deformation in ultrasound scanning has

to be corrected before the image can be accurately registered with those from other

imaging modalities, such as X-ray, optical coherence tomography (OCT), computed

tomography (CT), and magnetic resonance imaging (MRI). Other applications that

could potentially benefit from the deformation correction method include

computational anatomy and image-guided surgery [3],[4].

1.1 Related Work

Several deformation correction methods have been proposed, aiming to estimate

B-mode images that would have been acquired in ultrasound scanning as if there had

been no probe contact. In the surface model method proposed by Burcher et al. [2], the

compression level of each scan frame are estimated using probe contact force

measurement. Inter-frame registration is achieved, but this method does not address

in-plane deformation of the underlying tissue. In [5], Treece et al. proposed a method

that is able to correct in-plane deformation along the axial direction, which is the most

significant effect due to probe compression. This method estimates tissue deformation

by combining probe position measurement and image-based registration. However, the

method becomes inadequate when it is important to characterize tissue deformation in

two or three dimensions. Also, in this method, tissue elasticity is assumed to be uniform

over the whole region of interest, but it is rarely the case in biological tissue.

A method that takes into account two-dimensional pixel movement was proposed

by Burcher et al. [2], where tissue deformation patterns are predicted based on contact

force measurement and finite-element modeling. Correction of deformation is

performed by an inverse approach. Nevertheless, this method incorporates a priori



knowledge of the spatial variation of tissue elasticity, which can be hard to measure in

clinical settings.

To reduce dependence on assumptions of tissue elastic property, a preliminary

study of trajectory-based deformation correction is described in the work of Burcher [6].

In this method, pixel trajectories under varying compression levels are estimated by

B-mode speckle tracking. [7] Linear polynomial functions are then used to fit the

trajectories to predict tissue geometry under a specified compression level.

Encouraging in-vivo results of inclusion contour prediction are presented. However,

this method models the mechanical behaviors of biological tissue deformation by linear

dynamics. This approximation is applicable only when the range of applied contact

forces is small.

1.2 Contributions

In this thesis, a novel deformation correction method developed within the framework

of ultrasound elastography is described. This method allows integration with the

existing elastography technique and requires no additional operator effort in the

workflow. The contributions include:

e A novel application of elastography to solve the deformation correction problem in

ultrasound imaging.

- The ability of this method to correct tissue deformation when the range of applied

contact forces is large

- Extension of deformation correction methods to addressing tissue deformation in

ultrasound elastography

e An ultrasound simulation platform incorporating FEM and Field II for the

verification of algorithms involving imaging of biological tissue in varying

compression states

1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, current technologies

in ultrasound imaging are briefly introduced, including B-mode imaging and

17



elastography. Chapter 3 describes the concept of the proposed trajectory-based

deformation correction method and details of the algorithm. This method is validated

by simulation and in-vitro experiments, which are presented in Chapter 4 and Chapter 5,

respectively. This thesis concludes in Chapter 6 with a summary of the above chapters

and a discussion of future work for possible improvement and extension of the

proposed method.



Chapter 2

Background

The deformation correction method proposed in this thesis is developed within the

framework of ultrasound elastography and is applicable to both ultrasound B-mode

images and elastography. This chapter provides an introduction to the existing

technologies related to this method. Section 2.1 describes the physics and process of

B-mode image formation. Section 2.2 presents the method to perform ultrasound

elastography using probe compression.

2.1 Ultrasound B-mode Imaging

Ultrasound imaging is an indispensable diagnosis tool due to its low cost and real-time

nature, and has been under active development for decades. This technology uses

mechanical waves modulated by a carrier frequency of higher than 20kHz to

interrogate the structures of the underlying tissue. The wave is generated from electrical

excitation of a piezoelectric transducer and propagates through the human body via a

layer of transmission gel. The transmitted wave is reflected in human body when

interfaces of mismatched acoustic impedance are encountered. Therefore, the reflected

waveform is determined by the spatial variation in acoustic impedance of tissue and

sensed by the same transducer. Envelope detection is then performed on the received

radio-frequency (RF) wave, as illustrated in Figure 2-1. After repeating this procedure

at preprogrammed positions, the acquired envelopes are post-processed and aligned to

form a brightness image, or B-mode image, that describes the tissue structure.

Examples of B-mode images can be seen in Figure 1-1.

Conventionally, three specific terminologies are used to refer to the directions in

ultrasound scanning; they are axial, lateral, and elevational directions. Axial and lateral

directions refer to the two dimensions that define the scan plane, with axial direction

being parallel to ultrasound beam propagation. Elevational direction is orthogonal to

the scan plane.



It should be emphasized that although only envelopes of the reflected waves are

used to form a B-mode image, the raw RF data provide additional information about the

phase of wave propagation, which is often useful for purposes other than image

formation. In Chapter 3, both the use of RF data and the envelopes for pixel

displacement estimation are discussed. The performances are analyzed in Chapter 4.

B-mode image

RF data

Figure 2-1 Only envelopes of the reflected signal are used for B-mode image formation,
but additional information about the phase is inherent in the RF data.

2.2 Ultrasound Elastography

Spatial variation of brightness in B-mode images can describe the structure of tissue

under the assumption that the acoustic impedance varies noticeably in different types of

tissue. However, this assumption does not always hold. There are times when

pathological tissue is not discernible from the surroundings in B-mode images. As a

result, imaging methods that can detect tissue properties other than acoustic impedance

are often desired.

Palpation has long been an effective method for diagnosis of pathologies. It is

based on the fact that pathological tissue normally has higher stiffness than the

surroundings. This observation implies that the ability to detect spatial variation in

tissue stiffness could potentially assist diagnosis. One of the most popular methods for

detecting this variation involves exerting a sequence of compression with an ultrasound

probe on the tissue, imitating the practice of palpation, and acquiring images at the

same time. Stiffness at each point of the tissue is then differentiated by tracking pixel

displacements in the acquired images.



In solid mechanics, stiffness is often characterized by Young's modulus, which is

defined as the ratio between stress and the induced strain at a particular point. Normally,

to detect tissue abnormality in ultrasound images, strain is estimated instead of the

Young's modulus. This simplification is based on the assumption that the stress field is

uniform over the region of interest.

The definition and estimation of strain in elastography are illustrated in Figure 2-2.

Suppose a rod with length L is squeezed by AL under a certain compression, as shown

in Figure 2-2(a). The induced strain e is defined as

AL
e = - (2.1)

L

The same concept can be applied to estimating strain from the displacement field

in Figure 2-2(b). It can be imagined that, when there is no compression, a tiny rod with

length s lies between (xo, yo) and (xo, yo + E), where , is the distance between

neighboring pixels. Under the compression, the spatial distribution of displacements in

y (the axial direction), v(x, y), can be measured. Note that since the tissue is seen with

respect to the coordinate system attached to the probe, points of the tissue in the image

appear to be moving upward during compression.

Under the compression, the strain in y at the position (xo, yo), ey (xo, yo), can be

approximated as v(xo, Yo) - v(xo, yo + e), the change in length of the rod, divided by

the original length &. Note that to observe only the variation in strain instead of the

exact values, the division by P can be omitted since it is a constant over the field.

Therefore, in the implementation of strain imaging, only the term v(xO, Yo) -

v(xo, yo + E) is used as the strain estimator for the given point (xo, yo).



Displacement field V (X, y)

LI 
_

AL _ _ _ _ _

(a) (b)

Figure 2-2 Illustration of strain estimation: in (a), a definition of strain is given; in (b),
the same concept is applied on a displacement field.

It should be emphasized that, in ultrasound image formation, the spatial sampling

distance in the axial direction is determined by the temporal frequency with which

reflected ultrasound waves are sampled, whereas the sampling distance in the lateral

direction is determined by the element width of the probe array. Therefore, the spatial

resolution in the axial direction is much higher than that in the lateral direction. For the

configuration of the Terason t3000 imaging system, for instance, the spatial sampling

distance is about 26 sm axially and 150 gm laterally. [8] As a result, strain estimation is

normally applied only in the axial direction for elastography, although the performance

could be improved by incorporating estimation of lateral strain. [9]

In the following, a simulated example of ultrasound elastography is described to

demonstrate the feasibility of detecting pathological tissue in elastography even if it is

invisible in B-mode images (see Chapter 4 for the simulation framework.) A

pre-compression and a post-compression B-mode image of a tissue phantom are shown

in Figure 2-3. The elasticity in a circular region of the phantom is set to be higher than

the surroundings to mimic pathological tissue, but the spatial distribution of acoustic

impedance is set to be uniform over the whole field. As a result, the simulated

pathological tissue region is not observable in the B-mode images.
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Figure 2-3 The simulated pre-compression and post-compression B-mode images.

The results of displacement estimation in y are shown in Figure 2-4 (a)

(see Chapter 3 for the displacement estimation algorithm.) By applying the strain

estimator on the displacement field, the strain image is acquired as in Figure 2-4 (b). In

the strain image, it is obvious that there is a nearly circular inclusion with less strain,

which implies higher stiffness in the region under the assumption of uniform stress.

This observation agrees with the simulation setup of tissue elasticity properties.

dsolacment estmaon in v strain imaire

0-02

755

-.

66 ~ -07 6

4870

-75 75

4M _1 _5 5 1 15 fwn 15 AD -5 0 5 10 15~~?if," fTW1 vT

(a) (b)

Figure 2-4 The displacement estimation results (a) and the corresponding strain image
(b) in the simulated ultrasound elastography
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2.3 Summary

This chapter provided a brief introduction to ultrasound B-mode imaging and

elastography. B-mode images are formed by aligning the envelopes of the received RF

data. Estimation of the displacement field due to probe compression can be performed

on either the RF data or the envelopes. Elastography is performed in the form of strain

imaging using the displacement estimates. Through simulation, it has been shown that

elastography can show pathological tissue even when it is invisible in B-mode imaging.



Chapter 3

Trajectory-Based Deformation

Estimation and Correction

In this thesis, the trajectory-based deformation estimation and correction method is

proposed to estimate the ultrasound B-mode and elastography images under a specified

compression level, in which zero compression is of particular interest. The method

involves modeling tissue deformation using pixel displacement fields and performing

extrapolation or interpolation in the fields. In this chapter, this procedure is described in

detail. Section 3.1 presents the high-level concept of the method. Section 3.2 covers the

design of a two-dimensional displacement estimation algorithm. Section 3.3 describes

the application of polynomial curve fitting to the estimated displacement fields to

perform extrapolation.

3.1 Concept

The trajectory-based deformation estimation and correction method is an extension to

the elastography technique. As described in Section 2.2, elastography uses a sequence

of compressed tissue images and the corresponding displacement estimates to

differentiate elasticity of the underlying tissue. Actually, these displacement estimates

could also be used to model tissue deformation between the compression states. Figure

3-1 gives an example of the displacement field of a homogeneous tissue under

compression.

To characterize the force-varying deformation patterns of the biological tissue

under investigation, a sequence of ultrasound images under different contact forces are

acquired, and the corresponding forces are measured by a force sensor installed in the

probe. A set of displacement fields is established by tracking each pixel over the whole

field of view along the image sequence, as shown in Figure 3-2. Here tissue

25



deformation in the elevational direction is assumed to be negligible and is ignored in

displacement estimation.

Figure 3-1 The B-mode image of a homogeneous tissue under compression and the
corresponding displacement field

contact force

axial

lateral

ultrasound image

tracking pixels
I
iI

Figure 3-2 Behaviors of tissue deformation under varying contact forces could be
characterized by tracking pixel movements along the ultrasound image sequence

Knowledge of contact forces and the pixel displacement fields allow the

construction of a trajectory field for the specific subject, in which pixel coordinates in

the scan planes are plotted against the corresponding contact forces, as shown in Figure

3-3. Pixel positions under a specified contact force are then estimated from the

trajectories. Specifically, the locations of pixels under a specified contact force within

26
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the acquired force range could be estimated from linear interpolation between two

neighboring forces. The images under contact forces beyond the acquired force range

could be estimated by extrapolation. One selection of particular interest is zero force,

which provides an estimate of the image that would have been acquired if there had

been no contact force.

contact force

0

Figure 3-3 The image under a specified contact force could be estimated from the
trajectory field, which describes pixel movement with changing contact forces.

3.2 Two-Dimensional Displacement Estimation

Displacement estimation is crucial in characterizing the force-varying tissue

deformation patterns and is pivotal to the performance of the deformation correction

method. Several methods have been developed to estimate pixel displacements in

ultrasound images in both the axial and lateral direction, including B-mode

block-matching [7],[10], phase-based estimation [11], RF speckle tracking [9],[12-15],

and incompressibility-based methods [16],[17]. Those methods all pose displacement

estimation as a time-delay problem, which has been extensively studied in the literature.

[18]

In this thesis, a 2D displacement estimation algorithm is developed based on an

iterative ID displacement estimation scheme, where lateral displacement estimation is

performed at the locations previously found in the corresponding axial estimation. [19]

Coarse-to-fine template-matching is performed axially, with normalized correlation

.............................



coefficients as a similarity measure. Subsample estimation accuracy is achieved by

curve fitting. [20] This estimation algorithm is summarized in Figure 3-4, and the

essential steps are detailed in the following subsections.

for axl displacement estmation

Computing correlation Coarse-scalecoefficient functions In correlation filtering eoad m ae thdinccoarse scale and peak detection temethin

Subsample
estimation

Figure 3-4 An overview of the 2D displacement estimation method

3.2.1 Correlation-Based Template Matching

Template matching is one of the most frequently used methods in motion

estimation. Figure 3-5 gives an example to illustrate the matching method in the axial

direction, in which the displacement field is to be estimated between pre-compression

(A) and post-compression (B) states. Suppose in image A, displacement of the location

indicated by the orange dot is to be measured. A kernel centered at that point is defined

to include the pre-compression segment sA(t), which is to be searched in image B. The

search starts from the corresponding location in image B and moves along the

post-compression waveform sB(t) to find the best match of the pre-compression

segment. In a similar manner, all of the waveforms in image A are axially divided into

overlapping kernels, and each of the segments is compared with the corresponding

waveforms in image B.
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Figure 3-5 Displacement estimation is performed based on a template-matching
scheme using the waveforms inherent in the ultrasound images

Among other frequently used similarity measures like MAE (Mean Absolute Error)

and MSE (Mean Squared Error), the normalized cross correlation coefficient function

p(t, t + T) is used here, which is defined by

f+T (sA( -r) - pA)(sB(V) - pa)dp
p(t, t + ) = , - (3.1)

GAGB

where t denotes the point of estimation in the axial direction and r denotes the lag of

the correlation coefficient function. Here T denotes the time span of the correlation

kernel. pA and pB are the mean values of sA(t) and sB(t), respectively. GA and GB

are the standard deviations. After p(t, t + r) is estimated, peak detection is performed

on this function. The lag that gives the peak is considered the location corresponding to

the best match. Note that only the sampled version of p(t, t + T) is acquired, so

interpolation is performed to find the peak of p(t, t + r) and the corresponding lag.

(See Section 3.2.4 for the interpolation method)

Note that here displacement estimation in tissue compression is approximated as a

time-delay problem, in which there is assumed to be no intra-kernel deformation.

However, when the chosen kernel length T is relatively large under the applied strain,

this approximation error becomes noticeable, and as a result, the location of correlation

peak might deviate from the true displacement value. On the other hand, increasing the

number of samples in correlation estimation could reduce the variance of estimation
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error. Therefore, in determining the kernel length T, one should consider the tradeoff

between minimization of the mean and the variance of correlation estimation error.

In addition to estimation accuracy, the dynamic range of the algorithm should also

fulfill the need of the specific application. The range is significantly influenced by the

search length in template matching, which is equivalent to the length of the estimated

correlation coefficient function. Although a larger search length makes displacement

estimation less limited, this flexibility comes at the cost of an increased probability of

incorrect peak detection. As a result, in determining the search length, there is also a

tradeoff between optimization of the dynamic range and the estimation error.

3.2.2 Coarse-to-Fine Search

As mentioned in Section 2.1, either the raw RF data or the envelopes can be used as

templates for displacement estimation, but they present different properties. Envelopes

characterize the tissue structure without the high-frequency component inherent in RF

data that might interfere with correlation peak detection. Hence, it is more suitable to

use envelopes to track large-scale displacement than to use RF data. On the other hand,
the additional phase information included in RF data can assist fine-tuning of

displacement estimation.

In this displacement estimation algorithm, a coarse-to-fine search approach is

designed to utilize the advantages of both using RF data and envelopes. Coarse-scale

search is performed by using envelopes with decimated samples. Localized fine-scale

search is then performed by using RF data around the location found in coarse scale.

3.2.3 Correlation Filtering

In the correlation-based template matching method, robust peak detection and

displacement estimation rely heavily on the signal-to-noise ratio (SNR) of the

correlation coefficient functions. To increase the SNR, it is tempting to choose a large

correlation kernel, but the amplified intra-kernel deformation effect brings deviation of

the correlation peak from the true displacement value.

Lubinski et al. proposed a correlation filtering method that allows the use of a

short correlation kernel while maintaining a high SNR in the coefficient function. [21]

In the coarse-to-fine search scheme, this filtering method is applied in the coarse-scale
30



search to reduce the relatively high probability of error in peak detection resulting from

the large search range.

The correlation filtering method is based on the fact that displacement values are

similar in the neighborhood of a given location of estimation. See Figure 3-6 for an

illustration of this method. At each sample point along the axial direction, a correlation

coefficient function is estimated from template matching, as expressed in Equation 3.1.

For a given location of estimation t, the method weights and sums the correlation

coefficient functions from the neighboring points. The synthesized coefficient function

p(t, t + r) can be expressed as

Th/2

p(t, t + r)= h(<p) -p(t + (p, t + (p + T)d(p, (3.2)

subject to the normalization conditionITh/2
h(t) dt = 1, (3.3)

-Th/2

where Th is the length of the correlation filter. The Hanning window is chosen here as

the weighting function h(t).

axial Hanning window
direction

lag
Correlation functions
computed at different
axial positions lag

Figure 3-6 Illustration of the correlation filtering method.

There is a tradeoff between choosing a large and a small Th. Given that the

correlation filter includes only correlation coefficient functions that have a peak at the

same lag (called "in the same type" subsequently), SNR in the synthesized coefficient

function could be increased with Th. However, if Th is increased to such a length that

the assumption does not hold, the peak of the synthesized coefficient function might

start to deviate from the true displacement value.
31
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The tradeoff is further analyzed in Figure 3-7, where displacement estimation in

coarse scale is illustrated (in the coordinate system of the probe.) Under the assumption

that the applied stress and tissue elasticity are uniform, the axial strain is almost

constant over the depth of interest. The variables denotes the depth range within which

the coarse-scale displacement estimates are identical (i.e., the correlation coefficient

functions are in the same type.) h equals s times the strain value. In coarse-scale

correlation filtering, if the depth of interest is around the center of one of the "stair

levels" and Th is less than s, the included correlation coefficient functions are in the

same type. However, in the worst-case scenario, where the depth of interest is near the

"stair edge," correlation coefficient functions that are not in the same type are included

and the probability of incorrect peak detection could increase.

d x strain
.. real displacement

coarse estimation

displacement

0 depth d

Figure 3-7 Illustration of coarse-scale displacement estimation

To avoid this possible deterioration in the performance of displacement estimation

due to coarse-scale correlation filtering, the fine-scale search region is designed to be

larger than required. This design is illustrated in Figure 3-8, where red and black dots

represent samples in coarse- and fine-scale search, respectively. In this figure, suppose

that point A corresponds to the correct location of the overall displacement estimation

for a certain depth of interest. Accordingly, in the corresponding coarse-scale search,

point B should be selected. In the case where the point D is incorrectly selected in the

coarse-scale search, the fine-scale search region around point D still allows point A to

be examined in the fine-scale search. In this way, even if incorrect coarse-scale peak

detection occurs as in the worst case in Figure 3-7, this error could be corrected in the
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fine-scale search, as long as the magnitude of error is not greater than one coarse-scale

sampling distance.

axial direction

fine-level search
region of B C

B

D A

Figure 3-8 Design of the fine-scale search region to reduce possible peak detection
errors brought by correlation filtering

Note that since the computation of normalized correlation coefficient functions is

highly nonlinear, template matching using a short kernel with correlation filtering is not

equivalent to that using a large kernel without filtering. In fact, the equality can be

proved to hold if correlation functions instead of correlation coefficient functions are

used in template matching. A detailed analysis can be found in the work by Huang et

al.[22]

3.2.4 Subsample Estimation

The correlation-based template matching technique and the related searching strategies

are applicable to displacement estimation in the axial direction, but the spatial

resolution of the estimated displacement field is limited by the spatial sampling

distance. This limitation becomes even more serious in estimating lateral displacements

because in the lateral direction, the spatial sampling distance is even larger and the

magnitudes of displacements are generally smaller than those in the axial direction.

To achieve displacement estimation with subsample accuracy, interpolation is

performed on the sampled cross correlation coefficient functions. It is based on an

iterative ID estimation scheme, where estimation in the lateral direction is performed at

the locations previously found in the corresponding axial displacement estimation,

since pixel displacements in the two directions are physically coupled. [19]



Curve fitting through three sample points is used as the interpolation scheme. [20]

See Figure 3-9 for an illustration of this procedure. Suppose in fine-scale template

matching in the y-direction (axial), the position (0, 0) is found to give the maximum

sampled correlation coefficient, R(0, 0). By using the neighboring correlation

coefficient estimates, R(0, -1) and R(0, 1), the location that gives the maximum of the

correlation coefficient function can be found by curve fitting. This location is denoted

by (0, 8). For interpolation in the x-direction (lateral), the same curve fitting procedure

is performed on other neighboring correlation coefficient estimates to find R(-1, 5) and

R(1, 8), the coefficient estimates of the neighboring functions. Along with R(0, 8),

these estimates are used to compute y and R(y, 8), following the same curve-fitting

procedure.

x

Rf-1,-1) R 0,-1) R(1,-1)

0
y6 R1,O,8 ) ,O) R ,8)

o 0 *
7

Figure 3-9 Curve fitting using three sample points is applied in two directions for
subsample accuracy in displacement estimation

Several types of curve fitting have been developed and evaluated, including

parabolic [20] and cosine curve fitting [23]. In previous studies [19], it has been shown

that among these strategies, cosine curve fitting gives the best performance in this

particular displacement estimation problem, and hence this fitting method is used in

this thesis.

The formulas for cosine curve fitting are described in the following. Suppose for

the example in Figure 3-9, three coefficient estimates R(0, -1), R(0, 0), and R(0, 1) are

to be fitted by a cosine function R(0, t) = a -cos (wt + p). Since there are three

degrees of freedom in the cosine function and three constraints are given by the

coefficient estimates, the parameters can be found to be
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W = (R(o, -1) + R(0,1) R(0, -1) - R(0,1) (34)
2R(0,0) 2R(0,0)sino

We can then have

(p R(0,0)
; R(0,6) (3.5)

o costp

Similar computation can be performed to find R(-1, 6), R(1, 6), R(y, 6), and y.

3.2.5 Smoothing with Non-Uniform Spatial Resolution

The displacement estimation method described above relies heavily on robust peak

detection of the correlation coefficient functions. Nonetheless, the performance of peak

detection is often deteriorated by noise from various sources, such as an insufficient

number of samples in correlation estimation and intra-kernel deformation of the

templates. Among the resulting displacement estimation errors, peak-hopping errors

are the most visually discernible, which are defined as deviations from the ground

truths by at least half of the wavelength of the carrier waveform. A detailed discussion

of peak-hopping errors can be found in the work of Weinstein et al. [24]

Those errors manifest themselves as "pepper-and-salt" noise in the estimated

displacement fields and strain images. This noise could considerably degrade the

performance of pixel tracking and interfere with the interpretation of strain images.

Median filtering is the standard method to perform smoothing on the noisy results, but

this reduction in noise comes at the cost of degrading the spatial resolution.

In fact, median filtering is required only in the region where those artifacts occur,

but not in the whole field of view. Figure 3-10 shows simulated axial displacement

estimation results and the locations where peak-hopping errors occur (see Chapter 4 for

the simulation framework.) Figure 3-11 shows the spatial distribution of the correlation

coefficients computed from axial displacement estimation and the locations where the

coefficients are lower than the threshold value 0.5. The high correlation between the

occurrence of peak-hopping errors and low correlation coefficients is demonstrated



through the comparison of Figure 3-10 (b) and Figure 3-11 (b).

Based on this observation, a filtering scheme with non-uniform spatial resolution

is proposed to smooth the low-quality estimation results while reserving the spatial

resolution in the region of high-quality estimation. The value of correlation coefficient

is used as an indicator of the quality of displacement estimation. At the locations of

low-quality estimation, 9 x 9 median filtering is applied. Then the whole field of view

is smoothed by another 5 x 5 median filtering.
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Figure 3-10 (a) simulated axial displacement
indicate the occurrence of peak-hopping errors

peak-hopping errors in axial displacement estimation
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estimation results; (b) the black dots
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Figure 3-11 (a) computed correlation coefficients in axial displacement estimation; (b)
the black dots indicate the locations where the correlation coefficients are lower than
0.5



3.3 Polynomial Curve Fitting

After the trajectory field is established from the acquired sequence of ultrasound

images, the image under a specified contact force can be estimated from the field. If the

specified force lies within the range of the acquired forces, linear interpolation is

performed on the trajectories between the two acquired forces that enclose the specified

force. On the other hand, if the specified force is beyond the acquired force range,

extrapolation is performed on the trajectories.

Here the ordinary least-square curve fitting is used to perform extrapolation.

Polynomial curves with varying orders are examined, which can be expressed by

Equation (3.6a) and (3.6b)

N

Xij(f) = ai,j,k - fk (3.6a)

k=0

N

Yi,(f) = f#i,,k fk, (3.6b)
k=O

where xtj and yij are the lateral and axial coordinates, respectively, of the pixel located

at the position (i, j) of the reference image. a and plare the parameter sets that are to be

determined in the curve fitting procedure.fdenotes the contact force and N denotes the

order of the polynomial curves.

It is widely reported that, when compressed under a wide range of forces,

biological tissue exhibits significant nonlinear mechanical behaviors. [25] Therefore, to

characterize the pixel trajectories, polynomial orders up to the number of acquired

frames minus one are tested. The results are presented and discussed in Section 4.3.

3.4 Summary

This chapter provided a detailed introduction to the trajectory-based deformation

estimation and correction method, which consists of 2D displacement estimation on the

acquired ultrasound images and polynomial curve fitting on the established trajectory



field. The displacement estimation method is based on a template matching scheme, in

which the search is performed using a coarse-to-fine approach. Correlation coefficients

are used as the similarity measure, and the correlation filtering method is incorporated

to improve correlation estimation. Two-dimensional curve fitting is used to provide

subsample estimation accuracy. Finally, a smoothing scheme with non-uniform spatial

resolution is proposed to filter out noise while preserving high spatial resolution in

regions of high quality estimation.



Chapter 4

Ultrasound Simulation Using

Finite-Element Methods

In this chapter, compression of biological tissue and acquisition of the corresponding

ultrasound images are simulated by using Finite-Element Methods (FEM) and the

ultrasound simulation software Field II [26],[27]. The setup of simulation is described

in Section 4.1.

Through the use of the simulated images and the FEM ground truth, performances

of displacement estimation, extrapolation by polynomial curve fitting, and deformation

correction are examined. These results are presented and discussed in Section 4.2-4.4,

respectively.

4.1 Simulation Setup

The simulation framework consists of breast tissue modeling both in FEM and Field II.

A numerical tissue phantom was built in FEM to characterize the mechanical behaviors

of breast tissue under probe contact. A corresponding phantom was built in Field II for

simulating ultrasound images of the numerical phantom in FEM under varying

deformation states. Note that although simulation in this chapter is performed assuming

that breast tissue is under investigation, the framework described is applicable to any

kind of soft tissue.

4.1.1 FEM

A 100 mm x 60 mm numerical phantom that models breast tissue was built in

commercial FEM software (Abaqus 6.8, HKS, Rhode Island). Inside the phantom, a

circular region with a radius of 7.5 mm was delineated to mimic pathological tissue,
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and the center was placed 22.5 mm below the top surface of the phantom. The whole

phantom was then meshed into 3724 plane strain quadrilateral elements with 3825

nodes, as shown in Figure 4-1. FEM simulation was set to be two-dimensional, that is,

in the axial and lateral directions. Deformation of the numerical phantom in the

elevational direction is ignored, which is consistent with the assumption in the

displacement estimation algorithm

measure the reaction
force at the point a fixed rigid Indenter that

mimics an ultrasound probe

pathological tissue

60rnm normal'tissue
i properties

~propertis

100mm

a rigid plane pushing
upward

Figure 4-1 The setup in FEM

The mechanical behaviors of the phantom undergoing finite strains were

characterized by hyperelastic models, as significant nonlinear behaviors of

compression on biological tissue are widely found.[25] In addition, the simulated tissue

was assumed to be isotropic and incompressible. Out of several hyperelastic models,

such as the Neo-Hookean, Mooney-Rivlin, Yeoh, Arruda-Boyce, and Ogden models,

the second-order polynomial model was selected as it has been suggested as a good fit

of the mechanical behaviors of compressed breast tissue. [28] The model is described

by the strain energy function in Equation 4.1.
2 2

U = Cij(I1 - 3)i (12 - 3)j +{ (=ei - 1)2i, (4.1)
i+j=1 =1

where Uis the strain energy per unit volume, h and 12 are the first and second deviatoric

strain invariant, respectively, and J,1 is the elastic volume strain. C's are the material

parameters with the units of force per unit area, and Ds are compressibility

coefficients that are set to zero for incompressible materials.

In the numerical phantom, normal breast tissue was characterized by the
40
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hyperelastic properties of adipose, and pathological tissue by those of low grade

invasive ductal carcinoma (IDC), as IDC is the most commonly observed breast cancer.

The hyperelastic parameters of those tissue types can be estimated from ex-vivo

experiments and are reported in [25] and [28]. These parameters are summarized in

Table 4-1.

Table 4-1 The hyperelastic parameters of normal and pathological breast tissue in FEM

C1  COI Cu1 C2 0  C02

Adipose 3.1 3.0 22.5 38.0 47.2

Low grade lDC 30.8 30.8 94.2 94.2 1390

unit: 104 N mm2

A rigid indenter mimicking an ultrasound probe (vermon LA 5.0/128-522) was

modeled and used to compress the phantom against the rigid plane at the bottom.

Compression was performed in a quasi-static manner for describing very slow motion

and ignoring inertial effects. It should be noted that, in ultrasound scanning, the subject

is scanned with respect to the probe. Therefore, features in the phantom would appear

to be moving upward in the image when being compressed, while they would actually

move downward physically. In order to describe tissue deformation measured in the

coordinate system of the probe, in the simulated compression, the probe was fixed and

the rigid plane was set to move upward.

4.1.2 Field II

To simulate the ultrasound images of the numerical phantom in FEM, a corresponding

phantom was modeled in the ultrasound simulation software Field II. 2x 105 scatterers

were randomly distributed in a 100 mm x 60 mm x 10 mm cube to simulate the

behavior of tissue reflecting ultrasound waves. The top surface of the phantom was set

to be 30mm below the probe. A sampled set of the scatterers is shown in Figure 4-2.

The circular region marked in blue corresponds to the simulated pathological tissue in

FEM and was set to have a higher average of acoustic impedance in Field II. The

rectangular region bounded by dashed lines indicates the field of view in the simulated

ultrasound scan. The ultrasound images of the numerical phantom in varying



deformation states were simulated by relocating the scatterers according to the results

of nodal displacement measurement in FEM deformation analysis.

Figure 4-2 A sampled set of the scatterers in ultrasound simulation

Here in the simulation, a linear probe array was modeled, with a center frequency

of 5 MHz and a sampling rate of 60 MHz. The transmit focus was set to be 55 mm in

depth. The pitch of the probe array was 0.3 mm, and 64 elements were used for every

scan line. An image was composed of 128 scan lines, with a spatial spacing of 0.3 mm

in the lateral direction.

4.2 Displacement Estimation

The displacement estimation method described in Section 3.2 is evaluated in this

section. Specifically, the performance improvement from using the coarse-to-fine

search scheme and incorporating correlation filtering are examined through the use of

the simulated data. Subsequently, the influence of parameter selection on the

performance of displacement estimation is examined.

4.2.1 Single-Level and Coarse-to-Fine Search

Section 3.2 describes a 2D displacement estimation method that incorporates
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coarse-to-fine search, correlation filtering, and subsample estimation. This particular

search scheme is termed "filtered coarse-to-fine" in this section. It is compared with the

single-envelope, single-RF, and coarse-to-fine search scheme. Single-envelope and

single-RF refer to the single-level correlation-based search scheme that uses envelopes

and RF data, respectively, of ultrasound waves for template matching. Coarse-to-fine is

the same as the filtered coarse-to-fine scheme except that correlation filtering is not

incorporated.

The parameters in each implementation of the search schemes are summarized

in Table 4-2. Under the simulation setup, the axial search length of 3 mm corresponds

to a maximum detectable strain of 5%. For single-envelope and single-RF, the search is

performed on the original spatial resolution as in RF data acquisition, with a sample

spacing of around 12.8 tm. For the coarse-to-fine scheme, 4-to-i decimated samples

with a spacing of around 50 pm are used in coarse scale, and the original resolution is

used for fine scale. Note that given these parameter settings, the computational cost for

the coarse-to-fine search schemes is less than 10% of that for single-level search.

Table 4-2 Parameters for the search schemes

search scheme parameter # samples value (mm)

single-envelope kernel length 311 4

axial search length 234 3

single-RF kernel length 311 4

axial search length 234 3

coarse-to-fine kernel length (coarse) 77 4

axial search length (coarse) 58 3

kernel length (fine) 155 2

axial search length (fine) 7 0.09

correlation filter length 29 1.5

In addition, to examine the influence of noise on the performance of each search

scheme, three major sources of waveform decorrelation are modeled. They are:

1. Applied strain: when the strain becomes larger, the intra-kernel deformation effect

between pre- and post-compression waveforms becomes more prominent, thus

making it less appropriate to approximate displacement estimation as a time delay
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problem. The examined strain levels are from 1% to 5%, with a spacing of 1%.

2. Elevational offset: the spatial shift of the probe in the elevational direction

introduces decorrelation between the pre- and post-compression waveforms. The

examined elevational offsets are from 0 to 0.4 mm, with a spacing of 0.1 mm.

3. Signal-to-noise ratio (SNR): the quality of signal could also be influenced by other

factors, such as the thermal noise inherent in the hardware, the reverberation of

ultrasound waves, patient motion artifacts, and so on. They are collectively

modeled as additive white Gaussian noise (AWGN) in this analysis. The examined

SNR levels are from 10 dB to 50 dB, with a spacing of 10 dB.

In the above framework, the estimation accuracy and robustness of each search

scheme are compared. The accuracy is quantified by the mean absolute errors (MAE)

between the displacement estimation results and the FEM ground truth. The robustness

is characterized by the occurrence rates of the axial peak-hopping error, which is

defined as an error larger than half of the carrier wavelength. At each noise setup in the

following analysis, each search scheme was evaluated 25 times. For each independent

trial, there was a different realization of the ultrasound simulation (i.e. different random

locations of Field II scatterers) and random AWGN. The curves indicate the mean

values of the results, and the error bars indicate one standard deviation.

Figure 4-3 shows the change in MAE and peak-hopping errors with the applied

strain level in axial displacement estimation. The elevational offset is set to be zero, and

SNR is set to be 30 dB. As expected, when the strain becomes larger, estimation is more

error-prone for all the examined schemes. Nevertheless, it is obvious that the

coarse-to-fine search scheme is more accurate and robust than single-level search in the

presence of a high strain level, and coarse-scale correlation filtering brings noticeable

improvement in displacement estimation. Similar observations can be made from

analysis of elevational offsets (Figure 4-4), where the strain level is set to be 2% and

SNR is set to be 30 dB.
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Figure 4-3 The axial displacement estimation MAE (a) and peak-hopping errors (b)
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Figure 4-4 The axial displacement estimation MAE (a) and peak-hopping errors (b)
versus the probe elevational offset

Figure 4-5 shows the change in MAE and peak-hopping errors with SNR in axial

displacement estimation, where the strain level is set to 2% and the elevational offset is

set to 0. At a SNR higher than 10 dB, coarse-to-fine search schemes give better

performance than single-level schemes. Even when SNR is as low as 10 dB and

single-level search using RF data outperforms coarse-to-fine search, the addition of

correlation filtering to the coarse-to-fine search scheme still brings significant

improvement and gives the minimum estimation errors.
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Figure 4-5 The axial displacement estimation MAE (a) and peak-hopping errors (b)
versus SNR

From the above results, it has been shown that in axial displacement estimation,

the coarse-to-fine approach, combined with correlation filtering, outperforms other

search schemes under comparison. However, this is not the case in estimating lateral

displacements. As shown in Figure 4-6, this particular approach is inferior to the

single-level search scheme using envelopes, and has similar performance as other

schemes in estimating lateral displacements.

It should not be surprising that the single-level envelope scheme has significantly

different behaviors than the other three in lateral estimation, since it is the only search

scheme that uses envelopes to compute fine-scale correlation coefficients, on which the

estimation of lateral displacements solely depends as described in Section 3.2.4. The

results imply that, in the 2D curve-fitting framework, lateral displacements of tissue

under compression are more suitably characterized by envelopes, since the phase

information inherent in the RF data can not contribute directly to lateral estimation.
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compression, where tissue movements in the axial direction are predominant, the

coarse-to-fine approach combined with correlation filtering is the most suitable.

4.2.2 Analysis of Parameter Selection

In Section 3.2, the tradeoffs in selecting parameters in the filtered coarse-to-fine

scheme are described. In this section, the influences of three parameters on the

performance of displacement estimation are demonstrated and discussed through

simulation. These parameters include the kernel length in coarse scale, the kernel

length in fine scale, and the correlation filter length in coarse scale. In the following

analyses, if not otherwise specified, the selection of the parameters is as summarized

in Table 4-2. At each parameter setting in the following analysis, estimation at each

strain level was evaluated 25 times. For each independent trial, there was a different

realization of the ultrasound simulation (i.e. different random locations of Field II

scatterers) and random AWGN. The curves indicate the mean values of the results, and

the error bars indicate one standard deviation.

Figure 4-7 shows the change of displacement estimation errors with the

coarse-scale kernel length under strain levels of 1 % to 5%. As expected, errors are large

at the two ends of the curves, since too small a kernel length gives a small sample

volume and makes correlation estimation less robust, and too large a length amplifies

the intra-kernel deformation effects. The minima of the curves occur at kernel lengths



around 4 mm and 5 mm.
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Figure 4-7 The axial displacement estimation MAE (a) and peak-hopping errors (b)
versus the coarse-scale kernel length

Figure 4-8 shows the change of displacement estimation errors with the fine-scale

kernel length, where the trends of the curves in (a) and (b) are in opposite directions.

This observation implies that, in the range of kernel lengths under investigation, MAE

is more sensitive to the intra-kernel deformation effect, while the peak-hopping error

rate is more sensitive to the sample volume in estimation of correlation coefficients.

This should not be surprising, since intra-kernel deformation normally brings moderate

increase in estimation errors, which is characterized only by MAE, while a small

sample volume in estimating correlation coefficients could lead to peak detection errors

large enough to be considered peak-hopping errors. The different trend of MAE from

that of the peak-hopping error rate also indicates the limited scope of influence of

fine-scale search on peak-hopping errors. This results from the fact that the search

length in fine scale is much smaller than that in coarse scale, and hence there is little

room for influencing the peak-hopping error rate.
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Figure 4-8 The axial displacement estimation MAE (a) and peak-hopping errors (b)
versus the fine-scale kernel length

Figure 4-9 shows the change of displacement estimation errors with the

coarse-scale filter length. It can be seen that as the filter length increases, both the MAE

and peak-hopping errors decrease. This phenomenon can be explained by Figure 3-7,

where the coarse-scale displacement estimation is illustrated. Note that in this

simulation setup, the spacing between neighboring coarse-scale samples is about 0.05

mm, which is denoted by h in the displacement-depth plot in Figure 3-7. Under a strain

level less than 5%, the variable s in Figure 3-7 is larger than 1mm. In other words, the

correlation filter lengths investigated in Figure 4-9 are less than 2s, which makes the

possible errors brought by coarse-scale correlation filtering recoverable in fine scale, as

explained in Section 3.2.3. As a result, in the scope of this analysis, correlation filtering

improves the quality of correlation estimation without deteriorating peak detection.
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Figure 4-9 The axial displacement estimation MAE (a) and peak-hopping errors (b)
versus the coarse-scale correlation filter length

Figure 4-10 shows change in the performance of lateral displacement estimation

with the three parameters. The results imply that the estimation is not severely

influenced- by the performance in coarse-scale search, but heavily relies on the

fine-scale correlation coefficient estimates. In Figure 4-10 (b), the increase of MAE

with the fine-scale kernel length also implies that, in the estimation of subsample lateral

displacement, the accuracy is markedly sensitive to the intra-kernel deformation effect.
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Figure 4-10 The lateral displacement estimation MAE versus the coarse-scale kernel
length (a), the fine-scale kernel length (b), and the coarse-scale filter length (c)

4.3 Curve Fitting

After the trajectory field of the acquired ultrasound images is established by
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displacement estimation, extrapolation is performed by polynomial curve fitting

through the trajectories for correcting tissue deformation. In this section, the

performance of extrapolation is investigated under a control-force scenario, where the

applied force onto the skin surface can be controlled by a mechanically actuated probe.

[29]

Selection of the constituent frames in the trajectory field is one of the crucial

factors to the performance of extrapolation. Since the main purpose of extrapolation is

to project the trajectories back to zero force, all the frames should be acquired under

contact forces close to zero. However, the resolution of force control is limited, mainly

by the given force sensor and mechanical design of the probe. Therefore, force

sampling in this thesis starts from the minimal discernible force and continues

increasingly with force spacing equal to the resolution. For instance, for a force

resolution of 20 mN, the images will be acquired under forces of 20 mN, 40 mN, 60 mN,

and so on.

Under this strategy, it is expected that there are tradeoffs in determining both the

number of constituent frames and the order of the fitting polynomial curve. With too

few frames, the hyperelastic behaviors of tissue compression might not be fully

characterized, but too many frames far from zero force might interfere with the

behaviors one wish to model and induce unnecessary computational cost from

displacement estimation. Similarly, a low order might fail to fully characterize the

hyperelastic behaviors, while a high-order polynomial tends to be less resistant to noise

in curve fitting, due to the overfitting effect. In the following analysis, the influences of

the number of frames and polynomial order are further investigated.

4.3.1 Noise Modeling in Displacement Estimation

In this analysis, the force resolution is assumed to be 20 mN, 50 mN, or 100 mN. For

each resolution, two to eight frames are acquired for extrapolation, as illustrated

in Figure 4-11. To build the trajectory field corresponding to each pair of force

resolution and number of frames, the displacement estimates are modeled based on the

FEM ground truth through Equation 4.1.

d = d x nf + na, (4.1)



where d is the ground truth displacement at a particular point between two specified

contact forces, and d' is the displacement estimate. nf is the multiplicative noise

induced by the inaccuracy in force control, and n, is the additive noise from the

inaccuracy of displacement estimation.

Selected Strain-Force Points from FEM
2A.

0 100 200 300 400 500 600 700 800
force(mN)

Figure 4-11 Selected strain-force points for varying force resolutions:
and 1OOmN

20mN, 5OmN,

The estimation of nf is illustrated in Figure 4-12, in which the displacement-force

curve from the FEM simulation is shown. Suppose that two forces fl and f2 are set to be

applied and the corresponding images acquired. Due to noise in force control, the real

applied forces and compression levels might deviate from those that are specified. nf

represents the ratio between the displacements from the real applied forces and the

specified forces, and could be estimated from the displacement-force curve in the FEM

simulation. Here the force noise is modeled as a Gaussian random variable with zero

mean. The standard deviation relates to the specified force resolution and is estimated

through the half-maximum criterion, as in Equation 4.2,

= 2 , 1n I (4.2)

where o denotes the standard deviation and p denotes the force resolution. Note that
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under the assumption of tissue incompressibility and constrained elevational movement,

the same estimated ratio nf is applicable to both the axial and lateral displacements.

n, is also modeled as a Gaussian random variable and separately estimated for

axial and lateral displacements. The means and standard deviations of the Gaussian

distributions are estimated by comparing the FEM ground truth with the displacement

estimation results between the ultrasound images under the specified forces.

dispi.

I I
i I

fi f2 force

Figure 4-12 Illustration of displacement error induced by noise in force control

4.3.2 Analysis of Parameter Selection

In the simulation framework described above, the relationship between the projection

MAE and polynomial orders was investigated for each pair of force resolution and

number of frames used. For each pair, polynomial curve fitting with an order of one up

to the number of used frames minus one was evaluated 100 times. At each individual

trial, different realizations of the random variables na and ny are used. The MAE is

computed from comparing the FEM ground truth and the results of projection back to

zero force.

Figure 4-13 shows a typical example of the relationship between the MAE and the

polynomial order, where eight frames are used with a force resolution of 100 mN. The

curve indicates the mean of MAE, and error bars indicate one standard deviation. It

appears that the 3rd- and 4*-order give a smaller average MAE than 1 - and 2"d-order.

However, note that as a higher order is used, the variance of MAE tends to be larger.

Therefore, in determining the polynomial order, there is a tradeoff between

minimization of the average projection error, measured by the mean of MAE, and
53
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maximization of the projection robustness, measured by the inverse variance of MAE.

Here the verification is focused on minimizing the average MAE. For each pair of

force resolution and number of frames, the smallest order that gives the minimal

average MAE is chosen under the criterion of statistical significance, which is tested

through the student's t-test with a threshold p-value of 0.05. This order is termed the

"efficient order" of the particular pair, and the efficient orders for all the pairs are

summarized in Table 4-3.

4
order

Figure 4-13 Projection MAE versus the polynomial order: eight frames with a 1OOmN
resolution

Table 4-3 The efficient orders for each pair of force resolution and number of frames

# frames used

2 3 4 5 6 7 8

20mN 1 1 2 2 2 2 3
fovrce

resolution 50mN 1 2 2 2 3 3 3

10mN 1 2 2 2 3 3 3

To give the best projection performance while maintaining low computational cost

for a given force resolution, the performance by using varying numbers of frames and

the corresponding efficient orders are compared. Figure 4-14 shows this comparison



for each force resolution. It can be seen that the projection performance improves with a

finer force resolution. In addition, the smallest number of frames that gives the minimal

average MAE under the criterion of statistical significance is considered the most

efficient for the specific force resolution. The numbers and the corresponding efficient

orders are summarized in Table 4-4.

Mean Absoke Error v s nurer of frames (under efhoent orders)
4.5 f

2OmN
4 ... . ......-....... ... .-. .- .-- .......... 50m N

1OOmN

E

05 ----- I ... . ......I I --- - - ---

1 2 3 4 5 6 7 8 9
number of frames used

Figure 4-14 Projection performance versus the number of frames used for varying force
resolutions

Table 4-4 The most efficient number of frames and the corresponding efficient order
for each force resolution

force resolution number of frames efficient order

20mN 4 2

5OmN 4 2

IOOmN 3 2

4.4 Deformation Estimation and Correction

In this section, the deformation correction method is applied to the simulated B-mode

and elastography images. The performance is examined through comparison of the

corrected, uncorrected, and uncompressed contours of the simulated pathological

inclusion. The contours were extracted by the Gradient Vector Flow for Snake
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(GVF-snake) algorithm. [30],[31] The GVF algorithm uses diffusion of the gradient

vectors derived from gray-level edge maps as an external force for active contour fitting.

The snakes were initialized using an interactive graphical user interface (GUI), and

then gradually shrunk to delineate the edges of the inclusions by iteration. The squared

magnitudes of the gradient fields derived from the images were used as the edge maps.

The GVF-snake algorithm has been shown to be relatively insensitive to contour

initialization and to be able to converge to boundary concavities.

In the following, the results of deformation correction with a force resolution of

100 mN are demonstrated. Subsequently, the performances obtained from using force

resolutions of 20 mN, 50 mN, and 100 mN are compared and discussed.

4.4.1 Deformation Correction with 100mN Force Resolution

According to the analysis in Section 4.3, when the force resolution is 100 mN,
deformation correction can be performed most efficiently (in the sense of statistical

significance) with three frames and second-order polynomial curve fitting, as also

summarized in Table 4-4. Therefore in this section, simulated ultrasound images under

100 mN, 200 mN, and 300 mN compression are used to build the trajectory field, and

extrapolation is performed with second-order polynomial curves. Note that although an

arbitrary selection out of the three images could be used for estimating the

uncompressed inclusion appearance, the results of correcting the image under 300 mN

compression, which corresponds to a strain of about 17%, are shown here as an

example.

Figure 4-15 shows the correction results, where the crosses in (d) indicate the

respective centers of area of the contours. The position of the compressed inclusion

deviates significantly from that of the inclusion in the uncompressed state. This

deviation is characterized by the translational offset of the center of area, as

summarized in Table 4-5. From both Figure 4-15 and Table 4-5, it can be seen that this

translational deviation is remedied after correction.

The improvement in estimating the uncompressed inclusion contour is quantified

by three parameters that characterize area estimation errors: true positive (TP), false

negative (FN), and false positive (FP). [32] The computation of those parameters is

illustrated in Figure 4-16, and the computed values of the contours are also summarized



in Table 4-5. After correction, it can be seen that the probability of correct area

estimation increases, and probability of error decreases.
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Figure 4-15 The B-mode image of the 300 mN-compressed inclusion (a) is corrected
(b). From the comparison between (a), (b) and the true uncompressed inclusion contour
(c), it is shown that the deviation in the position of the inclusion can be remedied. (d)
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estimated contour

FP "A'r: area enclosed by the uncompressed contour
A.: area enclosed by the estimated contour

TP

FP A U A

FN
FN me A-A.Al.

uncompressed contour

Figure 4-16 The performance of deformation correction is quantified by three
parameters that are derived from area estimation. They are true positive (TP), false
positive (FP), and false negative (FN).

Table 4-5 Performance of correcting the B-mode image contour under 300 mN
compression as measured by the translational offset from the true uncompressed
contour and the area estimation parameters

translational area estimation parameters
offset TP FP FN

uncorrected 3.88 mm 66.75% 28.32% 33.25%

corrected 1.73 mm 87.32% 13.32% 12.68%

The deformation correction procedure and performance analysis were also applied

to elastography images. From the above compression sequence, 100-200 mN and

200-300 mN elastography images were acquired. Here the 200-300 mN elastography

image is corrected as an example. The correction results are compared with the

uncompressed B-mode image since the true uncompressed elastography is not

obtainable even in simulation. The contours are demonstrated in Figure 4-17, and the

metrics of contour correction are summarized in Table 4-6. Again, after correction, the

performance metrics improve significantly. Note that the TP and FP values from

elastography correction are significantly higher than those from B-mode image

correction, and the FN value is lower. This phenomenon is due to the fact that the

inclusion shown in elastography is normally larger than that in B-mode imaging, which

results from template-based displacement estimation.
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Figure 4-17 The elastography image under 200-300 mN compression (a) is corrected
(b). From the comparison between (a), (b) and the true uncompressed inclusion contour
(c), it is shown that the deviation in the position of the inclusion can be remedied. (d)

Table 4-6 Performance of correcting the elastography image contour under 200-300
mN compression as measured by the translational offset from the true uncompressed
contour and the area estimation parameters

translational area estimation parameters
offset TP FP FN

uncorrected 3.48 mm 74.87% 30.00% 25.13%

corrected 1.91 mm 91.69% 18.08% 8.31%
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4.4.2 Comparison of Force Resolutions

In this section, the performances of correcting 100 mN compression using 20 mN, 50
mN, and 100 mN force resolutions are compared. According to Table 4-4, ultrasound

images under 50, 100, 150, and 200 mN were simulated for 50 mN force resolution, and

those under 100, 200, and 300 nN for 100 mN resolution. Both the polynomial orders

were two. For the 20 mN force resolution, images under 20, 40, 60, 80, and 100 mN

compression were used, and according to Table 4-3, second-order polynomial curves

were used.

The corrected and the true uncompressed contours are shown in Figure 4-18, in

which the crosses indicate the respective centers of area of the contours. It can be seen

that when a finer force resolution is available, the translational offset of the center

decreases and the corrected contour better approximates the true uncompressed contour.

These observations are quantified by the performance metrics of the contours, as

summarized in Table 4-7. The superiority of using a finer force resolution is further

visualized in Figure 4-19, which shows the absolute values of the pixel-wise difference

between the corrected images and the true uncompressed image. It should be

emphasized that the observation that a finer force resolution gives better correction

results agrees with the conclusions from the analysis in Section 4.3.2.

uncompressed
-2OmN

40 ---------- ---------- -5OmN

50mN
-- 100mN
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-10 -5 0 5 10
Lateral distance [mm]

Figure 4-18 Deformation correction of B-mode images: compare 20 mN, 50 mN, and
100 mN force resolution



Table 4-7 Performance of correcting the B-mode image contour under 100mN
compression using 20 mN, 50 mN, and 100 mN force resolution as measured by the
translational offset from the true uncompressed contour and the area estimation
parameters

translational area estimation parameters
force resolution

20 mN 0.64 mm 95.58% 6.90% 4.42%

50mN 1.18 mm 91.14% 10.05% 8.86%

lOOmN 1.63 mm 87.30% 13.09% 12.70%
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Figure 4-19 Difference images between the corrected B-mode images and the true

uncompressed imnage using 20 inN, 50 inN, and 100 mN force resolution

The correction performances in elastography obtained by using 20 mN, 50 mN,

and 100 mN force resolutions are also examined. Here, 100 mN compression was used

as the reference state in acquiring elastography. This image was compared with the

images under 120 mN, 150 mN, and 200 mN compression to obtain the displacement

field and the resulting strain images. For 50 mN and 100 mN resolution, the number of

frames and the polynomial order remained the same as in the above analysis of B-mode

images. For 20 mN resolution, 20-120 mN compression images were simulated to build

the trajectory field, with a spacing of 20 mN, and second-order polynomial curves were

used according to Table 4-3.

The comparison of the contours in elastography is shown in Figure 4-20. With a

finer force resolution, the center of area of the corrected contour is closer to that of the



true uncompressed contour. The performance metrics computed from those corrected

contours are summarized in Table 4-8. Again, it is shown that a finer force resolution

gives better performance in contour correction.
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Figure 4-20 Deformation correction of elastography: compare 20 mN, 50 mN, and 100
mN force resolution

Table 4-8 Performance of correcting the elastography image contour under 100-(120
mN, 150 mN, 200 mN) compression using 20 mN, 50 mN, and 100 mN force resolution
as measured by the translational offset from the true uncompressed B-mode image
contour and the area estimation parameters

resolution translational area estimation parameters
offset TP FP FN

20 MN 0.76 mm 98.77% 12.68% 1.23%

50 mN 1.02 mm 94.88% 14.96% 5.12%

100 mN 1.72 mm 90.52% 15.51% 9.48%

4.5 Summary

This chapter presented a simulation framework that incorporates FEM and ultrasound



simulation. Performances of displacement estimation, extrapolation using polynomial

curve fitting, and deformation correction are examined in this framework. It has been

shown that, in axial displacement estimation, the coarse-to-fine scheme performs better

than single-level search, and incorporation of correlation filtering brings noticeable

improvement. The influences of parameter selection in the filtered coarse-to-fine

scheme are also examined. For extrapolation using polynomial curve fitting, the most

efficient selection of the number of frames and the corresponding polynomial order is

found for a force resolution of 20 mN, 50 mN, and 100 mN. Finally, deformation

correction applied to both B-mode imaging and elastography is validated through

simulation, and it is verified that a finer force resolution gives better performance.
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Chapter 5

In-Vitro Experiments

In this chapter, the performance of the proposed deformation correction method applied

to a tissue phantom object is verified. In Section 5.1, the experiment setup is described.

In Section 5.2, the experiment results are presented and discussed.

5.1 Experiment Setup

In this in-vitro experiment, the commercial breast ultrasound needle biopsy phantom

(Model 052A, CIRS, Virginia) was used to validate the deformation correction method.

The volume of the phantom is about 600 cm3. Six cysts and six solids of varying sizes

are embedded at random locations in the phantom, as illustrated in Figure 5-1. Note that

this phantom provides a subject to examine the tissue deformation effects and to

validate the deformation correction method, but the elastic properties of this phantom

do not emulate those of real breast tissue.

Figure 5-1 The breast ultrasound needle biopsy phantom used in the in-vitro
experiment (from http://www.cirsinc.com/)

The experiment setup is shown in Figure 5-2. A novel force-controlled ultrasound

probe was used to control the contact force applied in scanning the phantom [29], and

the ultrasound images were acquired by using the Terason t3000 ultrasound imaging

system. [8] In the following, the force-controlled probe and the image acquisition

.... . .. .... ........................... ..



system are detailed.

force control GUI ultrasound imaging GUI

force-controlled
probe

ultrasound
imaging system

Figure 5-2 The in-vitro experiment setup

5.1.1 Force-Controlled Ultrasound Probe

In order to accurately control the contact force in an ultrasound scan, a novel robotic

probe system was developed. [29] The hardware is shown in Figure 5-3. The contact

force is measured by a six-axis force/torque sensor. Based on this measurement, the

servo motor moves the probe to a position where the specified contact force is achieved.

The gravitational effects are compensated by an orientation sensor. Figure 5-4 shows

the graphical user interface (GUI) of the force control system, which is built using

LabVIEW (National Instruments, Austin, Texas). This system provides a force

resolution of 100 mN. By using this probe with a mounting system (Manfrotto 143N

Magic Arm), a sequence of ultrasound images can be acquired at the same scan plane

under varying contact forces.



servo motor
I

six-axisforce/torque
sensor (behind)

orientation sensor ultrasound probe

Figure 5-3 The force-controlled ultrasound probe

Figure 5-4 GUI of the force-controlled probe
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5.1.2 Ultrasound Imaging System

The Terason t3000 system was used to perform ultrasound linear scanning using a

linear probe array (vermon LA 5.0/128-522) with a center frequency of 5 MHz. The

pitch of the array is 0.3 mm, and there are a total of 128 elements. The received

waveform is sampled at 30 MHz. Under the assumption that the speed of sound is 1540

m/s, the sampling distance is about 26 pim axially and 150 pm laterally. The physical

width of the acquired frame is 38.4 mm and the depth is 50 mm. Note that the time-gain

compensation (TGC) was set to be constant along the depth to avoid inhomogeneous

amplification that could deteriorate template-based displacement estimation. Figure

5-5 shows the GUI of the ultrasound imaging system.

~v. I-'
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Figure 5-5 GUI of the ultrasound imaging system

It should be emphasized that typically, commercial ultrasound imaging systems

provide only post-processed B-mode images. To extract the RF data for displacement

estimation, a program was developed in Microsoft Foundation Classes (MFC) by using

the streaming RF data software development kit (SDK) provided by Terason. Each
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acquired frame had 256 scan lines, each of which consisted of 1948 samples. For

B-mode image formation, the acquired RF data were demodulated in real time by the

Hilbert transform, which was implemented using the algorithm proposed by Marple.

[33] The required fast Fourier transform (FFT) operation was implemented using the

functions provided in the GNU Scientific Library (GSL). [34]

5.2 Experiment Results and Discussion

In this in-vitro experiment, the probe was positioned to scan a particular solid in the

breast phantom. The ultrasound images of the solid were acquired under 2.5 N, 3 N, 3.5

N, and 4 N compressions. Displacement estimation was performed on those images

using a filtered coarse-to-fine approach, with the parameters summarized in Table 4-2.

The deformation correction method was then applied using second-order polynomial

curve fitting. The B-mode image under 4 N compression was used to estimate the

inclusion appearance under 1 N compression.

Figure 5-6 shows the correction results in the same format as in Section 4.4, and

the performance of correction was analyzed in the same procedure. As can be seen

in Figure 5-6 (d), the corrected contour agrees with the 1 N-compressed one much

better than the uncorrected contour. Those results are quantified and summarized

in Table 5-1. After correction, the translational offset between 1 N and 4 N

compressions, as measured by the deviation of the centers of area, was reduced by

about 80%. Area estimation was also significantly improved.

Similar observations can be made from correcting the 3.5-4 N elastography image

to 1 N compression, as shown in Figure 5-7 and Table 5-2. After correction, the

translational offset was reduced, and area estimation was significantly improved.

However, it can be observed that the inclusion shape in the B-mode image is not very

faithfully characterized by that in elastography. This phenomenon could result from the

mismatch between the spatial distributions of acoustic impedance and elastic properties,

the loss of spatial resolution due to the displacement estimation algorithm, or both.
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Figure 5-6 The B-mode image of the 4 N-compressed inclusion (a) is corrected to 1 N
compression (b). From the comparison between (a), (b) and the true 1 N-compressed
inclusion contour (c), it is shown that the deviation in the shape and position of the
inclusion can be remedied. (d)

Table 5-1 Performance of correcting the 4 N-compressed B-mode image contour to 1 N
compression as measured by the translational offset from the true 1 N-compressed
contour and the area estimation parameters

translational area estimation parameters
offset TP FP FN

uncorrected 2.99mm 63.90% 26.75% 36.10%
corrected 0.57 mm 92.85% 6.78% 7.15%

uncorrected imna a 4N
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Figure 5-7 The elastography image under 3.5-4 N compression (a) is corrected to 1 N
compression (b). From the comparison between (a), (b) and the true 1 N-compressed
inclusion contour (c), it is shown that the deviation in the position of the inclusion can
be remedied. (d)

Table 5-2 Performance of correcting the elastography image contour under 3.5-4 N
compression to 1 N compression as measured by the translational offset from the true 1
N-compressed B-mode image contour and the area estimation parameters

translational area estimation parameters
offset TP FP FN

uncorrected 3.77 mm 60.97% 21.76% 39.03%

corrected 2.70 mm 85.30% 9.02% 14.70%

untedced sotawrag 3bN-4N



5.3 Summary

This chapter presented an in-vitro experiment to demonstrate deformation correction on

a tissue-mimicking object. A force-controlled ultrasound probe and an ultrasound RF

data acquisition system were used to acquire the ultrasound images under specified

forces. It was shown that the proposed deformation correction method reduces the

translational offset of the object inclusion and improves area estimation in both B-mode

imaging and elastography.



Chapter 6

Conclusions

6.1 Summary

In ultrasound imaging, tissue deformation due to probe contact is an inevitable

phenomenon and poses challenges for multimodal image registration, 3D

reconstruction, and quantitative analysis of the underlying tissue. Most of the existing

deformation correction methods rely on assumptions of tissue elastic properties, which

are not always measurable in clinical settings. Thanks to the rapid advances of

elastography and the related displacement estimation techniques, the reliance on a

priori knowledge of tissue elasticity for deformation correction could be reduced. In

this thesis, a deformation correction method that does not incorporate a priori

knowledge of tissue elasticity was developed in the framework of elastography.

Similar to elastography, a sequence of ultrasound images is acquired to

characterize the mechanical behaviors of the underlying tissue. A force sensor is used

to measure the applied force. Through displacement estimation, trajectories of pixels

during compression are estimated. Extrapolation or interpolation is then performed on

the trajectories to estimate the B-mode or elastography image under a specified contact

force.

To optimize the quality of trajectory building and performance of elastography, a

correlation-based two-dimensional displacement estimation method incorporating

several features was developed. A coarse-to-fine approach was used to utilize the

advantages of both using RF data and envelopes for displacement estimation, while

reducing the computational cost at the same time. Correlation filtering was

incorporated to improve the quality of correlation estimation with reduced loss of

spatial resolution. A two-dimensional cosine curve fitting strategy was used to achieve

subsample accuracy. Finally, a smoothing scheme with non-uniform spatial resolution

was used to reduce noise in the estimation results while reserving high spatial



resolution in regions of high quality estimation. The performance of this displacement

estimation method was analyzed in a simulation framework incorporating FEM and

ultrasound simulation. It was found that the coarse-to-fine search scheme outperformed

single-level search and correlation filtering in coarse scale brought noticeable

improvement in estimation quality. The tradeoffs in selection of parameters were also

examined and discussed.

The performance of polynomial curve fitting, the other important component of

the proposed deformation correction method, was also investigated through the

simulation framework and noise modeling in force control. The strategies of image

acquisition and polynomial order selection were evaluated. Furthermore, it was found

that, using polynomial curve fitting, a finer force resolution gave better performance in

predicting pixel positions at zero force.

Finally, the proposed deformation correction method was tested through

simulation and in-vitro experiments. The performance of correction was quantified by

translational offset and area estimation of the tissue inclusions. It was found that, for

both B-mode and elastography images, those performance metrics were significantly

improved after correction. Moreover, it was shown that a finer force resolution gave

better performance in deformation correction, which agreed with the analysis of

polynomial curve fitting.

6.2 Future Work

To accurately characterize the mechanical behaviors of biological tissue under probe

compression, it is important to find a good model for curve fitting. Currently,

polynomial functions are employed and promising results are shown, but various kinds

of functions, ideally inspired by the theory of solid mechanics, can be tested. Moreover,

non-parametric regression models, whose estimates can be updated solely by using the

newly acquired data, could be considered when adding samples on the fly is found to be

beneficial.

The characterization of the mechanical behaviors is also influenced by the speed

of compression. In the FEM simulation here, the compression is assumed to be

quasi-static, that is, the inertial effects are ignored. Actually, the speed of compression



could potentially affect the displacement-force relationship of biological tissue. This

factor should be examined if the speed of compression can be precisely and stably

controlled in the experimental setting. Note that the tested speed should still allow

stable compression by the practitioner as in elastography. Otherwise, the probe

elevational offset in acquiring the sequence of images will cause significant increase in

displacement estimation errors due to loss of waveform correlation.

In addition to using a linear array probe as an indenter, the proposed method could

also be extended to using convex arrays, which allow a larger field of view. The

extension involves modification of the displacement estimation method to allow

misalignment of the directions of compression and ultrasound beam propagation.

Reducing the computational cost is also crucial to the practical use of the proposed

method. One of the possible means is to implement this method in a parallel computing

framework since estimation of the displacement field, the major source of computation,

can be divided into a large number of uncorrelated computational tasks. Additionally,

prior estimation results may be utilized to significantly speed up the computation. [35]

Finally, the proposed deformation correction method can potentially be extended

to reduce random noise in B-mode imaging and elastography. It has been widely shown

that random noise in ultrasound images can be reduced by spatial compounding, which

combines the images of the same object acquired with different specifications. [36-39]

Specifically, Li et al. proposed the strain compounding method, which combines

images acquired in two different compression levels. [40],[41] The reduction in noise

can potentially be enhanced in the framework of the proposed deformation correction

method, as the whole sequence of acquired images can be converted into images under

a single specified contact force, and the resulting images can then be compounded. In

other words, based on the proposed deformation correction technique, it is possible to

accomplish the following by one sequence of probe compression:

1. performing elastography

2. deformation correction in B-mode images and elastography

3. noise reduction in B-mode images and elastography

These possibilities will be further explored.



76



Bibliography

[1] J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: a

quantitative method for imaging the elasticity of biological tissues," Ultrasonic

imaging, vol. 13, 1991, pp. 111-134.

[2] M.R. Burcher, L. Han, and J.A. Noble, "Deformation Correction in Ultrasound

Images Using Contact Force Measurements," Proceedings ofthe IEEE Workshop

on Mathematical Methods in Biomedical Image Analysis (MMBIA'01), IEEE

Computer Society, 2001, p. 63.

[3] R.M. Comeau, A.F. Sadikot, A. Fenster, and T.M. Peters, "Intraoperative

ultrasound for guidance and tissue shift correction in image-guided neurosurgery,"

Medical Physics, vol. 27, 2000, p. 787.

[4] K.D. Paulsen, M.I. Miga, F.E. Kennedy, P.J. Hoopes, A. Hartov, and D.W.

Roberts, "A computational model for tracking subsurface tissue deformation

during stereotactic neurosurgery," IEEE Transactions on Biomedical Engineering,

vol. 46, 1999, p. 213.

[5] G.M. Treece, R.W. Prager, A.H. Gee, and L. Berman, "Correction of probe

pressure artifacts in freehand 3D ultrasound," Medical Image Analysis, vol. 6,

2002, pp. 199-214.

[6] M. Burcher, A force-based method for correcting deformation in ultrasound

images of the breast, University of Oxford, 2002.

[7] D. Boukerroui, J.A. Noble, and M. Brady, "Velocity estimation in ultrasound

images: A block matching approach," Lecture Notes in Computer Science, 2003,

pp. 586-598.

[8] "Terason t3000 Ultrasound System," http://www.terason.com/products/t3000.asp,

August 2010.

[9] E. Konofagou and J. Ophir, "A new elastographic method for estimation and

imaging of lateral displacements, lateral strains, corrected axial strains and

Poisson's ratios in tissues," Ultrasound in medicine & biology, vol. 24, 1998, pp.

1183-1199.

[10] J. Revell, M. Mirmehdi, and D. McNally, "Computer vision elastography: speckle

adaptive motion estimation for elastography using ultrasound sequences," IEEE

77



transactions on medical imaging, vol. 24, 2005, p. 755.

[11] X. Chen, M.J. Zohdy, S.Y. Emelianov, and M. O'Donnell, "Lateral speckle

tracking using synthetic lateral phase," IEEE Transactions on Ultrasonics,

Ferroelectrics and Frequency Control, vol. 51, 2004, pp. 540-550.

[12] M. O'Donnell, A.R. Skovoroda, B.M. Shapo, and S.Y. Emelianov, "Internal

displacement and strain imaging using ultrasonic speckle tracking," IEEE

Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 41,
1994, pp. 314-325.

[13] L. Chen, R.J. Housden, G.M. Treece, A.H. Gee, R.W. Prager, and T. Street, "A

hybrid displacement estimation method for ultrasonic elasticity imaging," IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, in press,

2010.

[14] R.G. Lopata, M.M. Nillesen, H.H. Hansen, I.H. Gerrits, J.M. Thijssen, and C.L.

de Korte, "Performance evaluation of methods for two-dimensional displacement

and strain estimation using ultrasound radio frequency data," Ultrasound in

medicine & biology, vol. 35, 2009, pp. 796-812.

[15] J. Luo and E.E. Konofagou, "Effects of various parameters on lateral

displacement estimation in ultrasound elastography," Ultrasound in medicine &

biology, vol. 35, 2009, pp. 1352-1366.

[16] M.A. Lubinski, S.Y. Emelianov, K.R. Raghavan, A.E. Yagle, A.R. Skovoroda,

and M. O'Donnell, "Lateral displacement estimation using tissue

incompressibility," IEEE Transactions on Ultrasonics Ferroelectrics and

Frequency Control, vol. 43, 1996, pp. 247-256.

[17] A.R. Skovoroda, M.A. Lubinski, S.Y. Emelianov, and M. O'Donnell, "Nonlinear

estimation of the lateral displacement using tissueincompressibility," IEEE

Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 45,

1998, pp. 491-503.

[18] G.C. Carter, "Coherence and time delay estimation," Proceedings of the IEEE,

vol. 75, 1987, pp. 236-255.

[19] R. Zahiri-Azar, 0. Goksel, T.S. Yao, E. Dehghan, J. Yan, and S.E. Salcudean,

"Methods for the estimation of sub-sample motion of digitized ultrasound echo

signals in two dimensions," Engineering in Medicine and Biology Society, 2008.

EMBS 2008. 30th Annual International Conference of the IEEE, 2008, pp.

78



5581-5584.

[20] R. Zahiri-Azar and S.E. Salcudean, "P1A-3 Real-Time Estimation of Lateral

Displacement Using Time Domain Cross Correlation with Prior Estimates," IEEE

Ultrasonics Symposium, 2006, 2006, pp. 1209-1212.

[21] M.A. Lubinski, S.Y. Emelianov, and M. O'Donnell, "Speckle tracking methods

for ultrasonic elasticity imaging using short-time correlation," IEEE Transactions

on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, 1999, pp.

82-96.

[22] S.W. Huang, J.M. Rubin, H. Xie, R.S. Witte, C. Jia, R. Olafsson, and M.

O'Donnell, "Analysis of correlation coefficient filtering in elasticity imaging,"

IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.

55, 2008, pp. 2426-2441.

[23] P.G. De Jong, T. Arts, A.P. Hoeks, and R.S. Reneman, "Determination of tissue

motion velocity by correlation interpolation of pulsed ultrasonic echo signals.,"

Ultrasonic imaging, vol. 12, 1990, p. 84.

[24] E. Weinstein and A.J. Weiss, "Fundamental limitations in passive time-delay

estimation. II: Wide-band systems," IEEE transactions on acoustics, speech, and

signal processing, vol. 32, 1984, pp. 1064-1078.

[25] A. Samani and D. Plewes, "A method to measure the hyperelastic parameters of

ex vivo breast tissue samples," Physics in Medicine and Biology, vol. 49, 2004,

pp. 4395-4406.

[26] J.A. Jensen and N.B. Svendsen, "Calculation of pressure fields from arbitrarily

shaped, apodized, and excited ultrasound transducers," IEEE Transactions on

Ultrasonics, Ferroelectrics and Frequency Control, vol. 39, 1992, pp. 262-267.

[27] J.A. Jensen, "Field: A program for simulating ultrasound systems," Medical and

Biological Engineering and Computing, vol. 34, 1996, pp. 351-352.

[28] J.J. O'Hagan and A. Samani, "Measurement of the hyperelastic properties of

tissue slices with tumour inclusion," Physics in medicine and biology, vol. 53,

2008, p. 7087.

[29] Matthew Gilbertson, Handheld Force-Controlled Ultrasound Probe,

Massachusetts Institute of Technology, 2010.

[30] "Active Contours, Deformable Models, and Gradient Vector Flow,"

http://www.iacl.ece.jhu.edu/static/gvf/, August 2010

79



[31] C. Xu and J.L. Prince, "Snakes, shapes, and gradient vector flow," IEEE

Transactions on image processing, vol. 7, 1998, pp. 359-369.

[32] A. Madabhushi and D.N. Metaxas, "Combining low-, high-level and empirical

domain knowledge for automated segmentation of ultrasonic breast lesions,"

IEEE transactions on medical imaging, vol. 22, 2003, p. 155.

[33] L. Marple Jr, "Computing the discrete-time "analytic" signal via FFT," IEEE

Transactions on Signal Processing, vol. 47, 1999, pp. 2600-2603.

[34] "GSL - GNU Scientific Library," http://www.gnu.org/software/gsl/, August 2010

[35] R. Zahiri-Azar and S.E. Salcudean, "Motion estimation in ultrasound images

using time domain cross correlation with prior estimates," IEEE Transactions on

Biomedical Engineering, vol. 53, 2006, pp. 1990-2000.

[36] S. Huber, M. Wagner, M. Medl, and H. Czembirek, "Real-time spatial compound

imaging in breast ultrasound," Ultrasound in medicine & biology, vol. 28, 2002,

pp. 155-163.

[37] C. Hansen, N. Hfttebrauker, W. Wilkening, S. Brunke, and H. Ermert, "Full angle

spatial compounding for improved replenishment analyses in contrast perfusion

imaging: in vitro studies.," ieee transactions on ultrasonics, ferroelectrics, and

frequency control, vol. 55, 2008, p. 819.

[38] R. Rohling, A. Gee, and L. Berman, "Three-dimensional spatial compounding of

ultrasound images," Medical Image Analysis, vol. 1, 1997, pp. 177-193.

[39] R.R. Entrekin, B.A. Porter, H.H. Sillesen, A.D. Wong, and P.L. Cooperberg,

"Real-time spatial compound imaging: application to breast, vascular, and

musculoskeletal ultrasound," Seminars in Ultrasound, CT, and MRI, 2001, pp.

50-64.

[40] P.C. Li and M.J. Chen, "Strain compounding: a new approach for speckle

reduction," IEEE transactions on ultrasonics, ferroelectrics, and frequency

control, vol. 49, 2002, pp. 39-46.

[41] P.C. Li and C.L. Wu, "Strain compounding: spatial resolution and performance on

human images," Ultrasound in medicine & biology, vol. 27, 2001, pp.

1535-1541.


