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Abstract

Electrosprays are a well studied source of charged droplets and ions. A specific
subclass is the ionic liquid ion source (ILIS), which produce ion beams from the
electrostatically stressed meniscus of ionic liquids. ILIS have several applications,
two of which include space propulsion and focused ion beam technologies.

An ILIS using the 1-butyl-3-methylimidazolium iodide (BMI-I) is characterized
with a focus on those properties that would impact its performance in a focused
ion beam (FIB) system. The currents obtained in the negative mode from this ILIS
are on the order of 100 nA, and composed of nearly 50% pure iodine ions with the
remainder composed of solvated ions. The energy deficit of the ion beam is seen to be
on the order of 15 eV, with full width at half maximum of about 12 eV. The angular
intensity is estimated to be 0.65 tA sr-1 .

The energy signal from the BMI-I ILIS contained several features that suggested
a significant amount of ion fragmentation in the acceleration region. This prompted
a secondary study using the the ionic liquid 1-methyl-3-methylimidazolium tetrafluo-
roborate (EMI-BF 4). The amount of fragmentation was seen to be up to 25% of the
ion beam. The impact of such fragmentation on the performance of an ILIS thruster
is examined. The effects are integrated into the definition of the polydispersive ef-
ficiency by characterizing the fragmentation products as two discrete populations of
ions and neutrals. This adjusted polydispersive efficiency is seen to be about 88%,
about 6% lower than values not taking into account the fragmentation.

Thesis Supervisor: Paulo Lozano
Title: Associate Professor



4



Acknowledgments

I would like to thank Professor Paulo Lozano for providing me with this opportunity,

as well for his support and instruction. His experience and knowledge have been a

great help for my work.

I would also like to acknowledge my funding, particularly the Department of Aero-

nautics and Astronautics and the Department of Defense (DoD) through the National

Defense Science Engineering Graduate Fellowship (NDSEG) Program.

Thank you to my fellow graduate students in the Space Propulsion Lab. Your

help with experimental equipment and suggestions were invaluable.

Finally I would like to thank my parents, Sharon and Peter. Their support and

encouragement of my education throughout my life ensured that I was well prepared

to continue to a graduate level.



6



Contents

1 Introduction 13

1.1 Electrospray Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Ionic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 The Prototypical Ionic Liquid Ion Source . . . . . . . . . . . . . . . . 15

2 Electrospray Physics and Applications 17

2.1 Electrospray Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Taylor Cone Formation . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Current Emission in the Cone-Jet Regime . . . . . . . . . . . 18

2.1.3 Field Evaporation of Ions . . . . . . . . . . . . . . . . . . . . 19

2.2 Electrospray Applications . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Space Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Focused Ion Beam Applications . . . . . . . . . . . . . . . . . 22

3 Experimental Techniques 25

3.1 Ion Source .. ........ ........ . .... ............... 25

3.2 Time of Flight Mass Spectrometry . . . . . . . . . . . . . . . . . . . 27

3.3 Retarding Potential Analyzer . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Vacuum Chamber and Electronics . . . . . . . . . . . . . . . . . . . . 33

4 Development of an Iodine ILIS 35

4.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Beam Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 36



4.2.1 Beam Composition . . . . . . . . . . . . . . .........

4.2.2 Energy distribution . . . . . . . . . . . . . . ..........

4.3 Estimated Performance in a FIB Column . . . . . . .........

5 Full Beam Measurements

5.1 Full Beam Time of Flight . . . . . . . . . . . ............

5.2 Full Beam Retarding Potential Analyzer . . . ............

6 Ion Fragmentation

6.1 Signs of Fragmented Ions . . .

6.2 Causes . . . . . . . . . . . . .

6.2.1 Collisions . . . . . . .

6.2.2 Internal Energy . . . .

6.3 Effects of Ion Fragmentation .

6.3.1 Performance of an ILIS

6.3.2 FIB . . . . . . . . . .

7 Conclusions and Future Work

7.1 BMI-I ILIS . . . . . . . . . .

7.2 Ion Fragmentation . . . . . .

. .. .. .. .. .......

. .. .. .. .. .......

. .. .. .. .. .......

. .. .. .. .. .......

. . . . . . . . . . . . . .

Based Thruster .............

. . . . . . . . . .. . .. .

. . . . . . . . . .. . . . . .

. . . . . . . . . .. . . . . .

A Drawings of the Full Beam Time of Flight Assembly



List of Figures

1-1 The configuration of a basic capillary electrospray source. . . . . . . . 14

1-2 The configuration of a basic ionic liquid ion source. . . . . . . . . . . 15

2-1 Diagram of a Taylor cone . . . . . ... . . . . . . . . . . . . . . . . . . 18

2-2 Simplified FIB column . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3-1 Scanning electron microscope image of an emitter tip . . . . . . . . . 26

3-2 ILIS assembly with a copper block for temperature control . . . . . . 26

3-3 ILIS assembly using polyethylene blocks . . . . . . . . . . . . . . . . 27

3-4 Schematic view of the interleaved comb-type ion gate . . . . . . . . . 28

3-5 Example TOF-MS Signal for an ILIS with two ion species . . . . . . 29

3-6 Schematic of the TOF-MS setup . . . . . . . . . . . . . . . . . . . . . 29

3-7 Sample RPA output for a monoenergetic source . . . . . . . . . . . . 31

3-8 Sample RPA output for a nonideal source . . . . . . . . . . . . . . . 31

3-9 Schematic of the RPA setup... . . . . . . . . . . . . . . . . . . . 32

3-10 Vacuum chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4-1 Current emitted from a BMI-I ILIS in the negative mode . . . . . . . 37

4-2 TOF-MS signals for a BMI-I ILIS operating at several different conditions 38

4-3 Mass spectra for a BMI-I ILIS operating at (a) -1900 V and (b) 1900 V 40

4-4 RPA energy spectra results for applied voltages of -1.5, -1.6, and -1.7 kV 41

4-5 RPA energy spectrum results for applied voltages of -1.5 kV . . . . . 42

4-6 Estimated angular intensity for a BMI-I ILIS . . . . . . . . . . . . . . 43

5-1 Cross section view of the vacuum chamber (dimensions in inches) . . 46



5-2 Full beam TOF collector assembly . . . . . . . . . . . . . . . . . . . . 47

5-3 Schematic of the full beam TOF assembly . . . . . . . . . . . . . . . 48

5-4 Non-inverting amplifier with a shunt resistor....... . . . . . .. 49

5-5 Full beam TOF output with the original amplifier . . . . . . . . . . . 50

5-6 Transimpedance amplifier . . . . . . . . . . . . . . . . . . . . . . . . 51

5-7 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . 52

5-8 Schematic of the full beam RPA assembly . . . . . . . . . . . . . . . 53

5-9 Output of the full beam RPA with an EMI-BF 4 ILIS operating at -1650V 54

5-10 Idealized energy distribution for an EMI-BF 4 ILIS . . . . . . . . . . . 55

5-11 Effect of beam divergence on an RPA current signal for an EMI-BF 4

IL IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6-1 RPA energy spectrum and current signal for a BMI-I ILIS operating

at -1.5kV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6-2 Mean free path of non-solvated ions in an EMI-BF 4 ILIS at 1500V . . 60

6-3 Effect of ion fragmentation on the polydispersive efficiency for an EMI-

BF 4 ILIS operating in the positive mode . . . . . . . . . . . . . . . . 63

A-1 Full beam TOF front plate . . . . . . . . . . . . . . . . . . . . . . . . 67

A-2 Full beam TOF secondary electron grid . . . . . . . . . . . . . . . . . 68

A-3 Full beam TOF collector . . . . . . . . . . . . . . . . . . . . . . . . . 68

A-4 Full beam TOF back plate . . . . . . . . . . . . . . . . . . . . . . . . 69



List of Tables

1.1 Properties of Selected Electrospray Source Media . . . . . . . . . . . 15

3.1 Electronic equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Expected flight times for a BMI-I ILIS operating at +/- 2kV . . . . . 39

4.2 Stopping potentials for products of ion fragmentation . . . . . . . . . 41



12



Chapter 1

Introduction

1.1 Electrospray Basics

Electrospray has been studied as a source of charged particles for applications ranging

from materials analysis to space propulsion. The basic electrospray configuration is

composed of a capillary tube filled with a conducting fluid facing an electrode plate,

as shown in Fig. 1-1. Briefly, the source is operated by applying a voltage difference

between the extractor plate and the capillary. The strong electric field at the liquid-

insulator (commonly air or vacuum) interface causes the meniscus to deform into

a conical shape, referred to as a Taylor cone after G.I. Taylor [21]. At the tip of

the cone, the electric field is intense enough to cause the emission of ions or charged

droplets, which are then free to accelerate to the extractor electrode. A more detailed

description of the physics of an electrospray source is contained in Chapter 2.

The conducting fluid used in the electrospray source can be of several different

varieties. Some commonly used liquids are doped solvents, liquid metals, and ionic

liquids. In addition to the previously mentioned capillary tube emitters, externally

wetted emitters can be used. In this configuration the liquid coats an electrochemi-

cally sharpened metallic (usually tungsten) needle. Capillary and electric forces cause

the liquid to flow to the sharp tip, where the Taylor cone formation can occur. This

thesis is concerned with the use of ionic liquids as the source media for an electrospray

using an externally wetted emitter.



Taylor cone Extractor

Liquid ion V Inba
souce Inbe

Figure 1-1: The configuration of a basic capillary electrospray source.

1.2 Ionic Liquids

Ionic liquids (ILs) are a type of salt that are in the liquid state at room temperature

(sometimes specifically referred to as room temperature ionic liquids)[19]. Being a

salt, these ILs are composed purely of positive and negative ions, with no solvent.

Many ionic liquids have properties that make them an attractive choice for the use

in an electrospray. Specifically, it is common for these ILs to have conductivities on

the order of 1 S/m at room temperature and have negligible vapor pressures, which

makes them ideal candidates for an externally wetted electrospray source operating

in vacuum. The two ILs addressed in this thesis are 1-ethyl-3-methylimidazolium

tetrafluoroborate ([C2-mim][BF 4] or EMI-BF 4) and 1-butyl-3-methylimidazolium io-

dide ([C4-mim][I] or BMI-I). Properties of these two ionic liquids are listed in Table

1.1 along with several other liquid ion sources. Notice the very large viscosity and

low conductivity of BMI-I as compared to the other liquids. The ability to obtain

significant currents from this liquid is something that does not mesh with current

theories regarding the behavior of electrically stressed ionic liquids [10].

w : .w : z zzzzmmm:::::::::' .. ........... ..... .... .... - -- :::: :::::::::: : W : ::::::: ::::::..:: - - - -. . .... ....



Liquid Melting Point (0C) Surface tension (N/m) Conductivity (S/m) Viscosity (cP)
Ionic liquids

EMJ-BF 4  12 0.052 1.3 (250C) 27.5(25 0C)
2.3(500 C) 12.6 (500C)

BMI-J <25 0.0547 0.069 (250C) 1100 (250C)
0.25(50 0C) 500 (500C)

Metals
Ga 30 0.711 >> 1 1.9
In 328 0.556 2.55
Cs 29 0.071 0.7

Table 1.1: Properties of Selected Electrospray Source Media

1.3 The Prototypical Ionic Liquid Ion Source

When an ionic liquid is used as the source media for an electrospray device and oper-

ated in a purely ionic mode, it can be referred to as an Ionic Liquid Ion Source (ILIS).

The basic ILIS consists of an externally wetted needle emitter (normally fabricated

from tungsten) coated with the ionic liquid. A high voltage is applied between the

needle and a planar electrode with an aperture in it, referred to as the extractor.

This causes charged particles to emit from the tip, and pass through the extractor. A

diagram of this setup is shown in Fig. 1-2. The extracted ion beam is then able to be

used for whatever application is required. It may be used in some sort of diagnostic

equipment for characterization (Ch. 3 and Ch. 5), some propulsive application (Sec.

2.2.1), a focused ion beam application (Sec 2.2.2), or some other application.

Figure 1-2: The configuration of a basic ionic liquid ion source.

. ........ . -_V- I- -=-W '_' --- , --- . ....... ...

Ion beam
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Chapter 2

Electrospray Physics and

Applications

2.1 Electrospray Physics

2.1.1 Taylor Cone Formation

When the meniscus of an electrically conductive liquid is subject to a strong electric

field, the liquid surface becomes unstable and forms into a conical shape called a

Taylor cone, as shown in Fig. 2-1. Details of the processes behind the formation of

this feature can be found elsewhere [7, 21]. A simplified analysis of this structure can

be performed if it is assumed to be static. In this case, the electrostatic traction must

balance the surface tension at all points along the cone, given by

1 2 2-
1 oE = (2.1)

where E, is the normal component of the electric field, -y is the surface tension of

the liquid, and Rc is the radius of curvature of the liquid surface, which is related to

the distance from the tip by Rc = r cot aO. The conducting liquid surface is assumed

static, and therefore an equipotential. The general solution to the Laplace equation

in spherical coordinates for this geometry, assuming axial symmetry, is



00

4(r, 0) = Zr'Pi(cos 0) (2.2)
1=0

where P is the Legendre function of order 1. However, the restriction of Eq. 2.1

requires that the electric field at the cone surface to be proportional to r-, therefore

the potential must be proportional to r. For the cone surface at 6 = 1800 - a to be

an equipotential, P1i(cos(1800 - aT)) must be zero. This requires 1800 - aT = 130.70,

resulting in the half angle of the Taylor cone being aT = 49.3'.

Elecho4atic
Pressurfe E

Siuface
Tension 2

Figure 2-1: Diagram of a Taylor cone

However, in this model of a perfectly conical surface, the electric field will approach

infinity as r goes to zero due to the r-2 dependence. This is obviously a nonphysical

solution, and something must break down. There are several possibilities for what

occurs near the tip, two of which are the cone-jet mode, discussed in Sec. 2.1.2, and

ion evaporation, discussed in Sec. 2.1.3.

2.1.2 Current Emission in the Cone-Jet Regime

In the region near the tip, the electric field becomes strong enough to overcome the

liquid surface tension, and the static approximation breaks down. The details of

what happens near the tip depend upon the exact operating parameters, but one

possibility is called the cone-jet mode, which is characterized by the formation of a

jet extending from the tip of the cone. This jet breaks up into droplets, which then

...... ...... ...........



form the spray of charged particles. This cone-jet is perhaps the most studied of

electrospray modes, with a large amount of literature focused on the regime [7, 2, 6].

The current produced in this regime has been found to depend on the flow rate Q,

as well as the liquid's surface tension -y, conductivity K, and permittivity E,

f E)-KQ) 1/2(23
(E

The size of the jet at the tip of the Taylor cone has been seen to decrease in size

as the conductivity of the liquid increases. When the conductivity of the liquid is

high enough, it is possible for the cone to operate in a purely ionic regime, as seen

with liquid metals [17] and certain ionic liquids [7, 14].

2.1.3 Field Evaporation of Ions

In an electrospray source with a high conductivity liquid source, such as a liquid metal

or certain ionic liquids, it is possible for the tip of the Taylor cone to develop electric

fields strong enough to cause the direct evaporation of ions. The current emitted in

this manner can be characterized by Schottky's field-enhanced thermionic emission

relation,

j = EoEnk e_ ( \T /G- (2.4)
h

where j is the current density, 6o is the permittivity of free space, k is the Boltzmann

constant, T is the liquid temperature, h is Planck's constant, q is the ion charge, G is

the solvation energy of the bound ion, and E, is the electric field normal to the liquid

surface. Copious ion emission will occur when the electric field satisfies the condition

47reoG'0
E, > q3 (2.5)

Typical values of G fall in the range of 1-3 eV [15], meaning that for extraction of

singly charged ions, the electric field needs to approach 1 V/nm.



2.2 Electrospray Applications

2.2.1 Space Propulsion

Electrosprays have found applications in space propulsion in several different forms.

Field Emission Electric Propulsion (FEEP) thrusters use an ion beam produced

from an electrospray from a liquid metal (the previously mentioned LMIS). Colloid

thrusters use a capillary source to spray droplets of ionic liquids or doped solvents [8].

Finally, ILIS based thrusters are being actively developed. ILIS sources can generally

provide on the order of up to 1 pA and 0.1 pLN per emitter. Therefore, current re-

search into ILIS thrusters has been focusing on microfabrication of very dense arrays

of emitters, in order to achieve higher thrust densities [4, 3, 12]. With these types

of arrays, it is possible to approach thrust densities on a level with conventional ion

engines [12].

An ILIS based thruster offers several attractive advantages as a means of space

propulsion. The ionic liquid is composed of both positive and negative ions, which

allows for the extraction of either type. This means that it is possible to simulta-

neously operate one ILIS in the positive mode and another in the negative mode in

order to maintain electrical neutrality, eliminating the need for an external cathode

neutralizer. They have been demonstrated to be operated with a variable specific

impulse [4, 20], which would allow for flexible mission design. The propellant feed

system for these thruster can be greatly simplified by using a porous substrate to

fabricate the tips, and relying on capillary flow to move the liquid to the emitters [3].

Finally, the ILIS thrusters are able to operate at high thrust efficiencies, estimated

to be up to 85%.

The details of the efficiency have been examined elsewhere [13], but are briefly

mentioned here. The definition of thrust efficiency, r, is the thrust power divided

by the supplied electric power

PT !F F2/mh
rT - P/- (2.6)PEIv0



where F is the thrust, rh is the mass flow rate, I is the power supply current and Vo is

the power supply voltage. The expression for the efficiency in Eq. 2.6 can be modified

by defining several other terms. The ionization efficiency, qjj, is defined to be the mass

fraction of ions emitted over the total mass flow rate (ions and neutrals). Ionic liquids

have extremely low vapor pressure, so the neutral flux is almost zero, meaning Th ~~ 1.

The transmission efficiency, 7tr, is defined as the mass ratio of ions leaving the device

and producing thrust to the ions being emitted from the liquid. This term is less

than one if any of the ions hit the extraction electrode on the way out. By properly

aligning the emitter and extractor electrodes, the intercepted current can be reduced

to below 1%, giving transmission efficiencies of lt, > 99%. The ions emitted from an

ILIS will have some angular distribution, f(0), about the axis. Previous studies have

shown that the distributions can be approximated by a quadratic function given by

Eq. 2.7 [13, 14].

f(2) = [1 -- (0/60)2] (2.7)

Only the portion of momentum from these particles that is directed along the

axis will contribute to thrust, which is expressed through the angular efficiency. The

angular efficiency qo is

00 2

7o = 0 f (0) cos(0) d6 (2.8)

where 0 is the beam envelope. For a typical ILIS divergence angle of about 200, Eq.

2.8 gives ro ~ 0.98, and for a less ideal case of 42' divergence the efficiency is still

relatively high at 7o ~ 0.90. The energy efficiency, 7)E, takes into account the con-

version of electrical power into kinetic energy of the particles, and for ILIS thrusters

it is generally very high, approximately 71E 0.98 [13]. The final contribution to

the efficiency is the polydispersive efficiency, 77u, which takes into account the energy

wasted accelerating charged particles of different specific charges. An ILIS operating

in the purely ionic regime will have ion species of the form A+(AB), or B-(AB)"

where n is the degree of solvation. For many ionic liquids, the n = 0 and n = 1 ions



will dominate the emitted beam. For this case of two ionic species, the polydispersive

efficiency can be expressed as

[1( fo] (2.9)
1 -(1 -) fo

where ( and fo are the specific charge ratio and the current fraction of non-solvated

ions in the beam,

-(q/m)1 _ Io
and fo = 10(2.10)

(q/m)o a o + I1

The polydispersive efficiency tends to be the most limiting factor in the efficiency

of an ILIS thruster, but still be relatively high. For example, an EMI-BF 4 ILIS will

typically produce an ion beam composed of approximately 50% pure ion and 50%

singly solvated (n = 1) ion, with masses of 111.2 amu and 309.1 amu, respectively.

With these values, Eq. 2.9 gives the polydispersive efficiency to be , = 0.94.

The total efficiency is expressed in terms of the individual efficiencies as

7T- 2 (2.11)
77T= Oi7tr?7077E?7P

and for an ILIS can have values greater than 80%. This particular expression for the

efficiency fails to take into account the effects of ion fragmentation, which is discussed

in Ch. 6.

2.2.2 Focused Ion Beam Applications

Liquid metal ion sources, in particular the gallium LMIS, have been used extensively

in the field of focused ion beams (FIB) [17]. FIB technology uses an ion beam focused

to sub-micrometer dimensions to either examine or modify the surface of a target

material. Applications include milling, material deposition, microscopy, and others

[17, 9]. A basic FIB setup, as shown in Fig. 2-2 will have an ion source (typically a

LMIS), some beam defining aperture, a lens to focus the beam, a method of deflecting

the beam, and then the target. More practical systems often include multiple lenses,



filters, and more aberration corrections. As mentioned previously, the operations of

an ILIS is very similar to that of an LMIS. For this reason, ionic liquid ion sources

have been proposed to be used in FIB applications [24, 23, 18]. ILIS have several

properties that make them very attractive for FIB applications, including low starting

voltages, room temperature operation, and perhaps most importantly, the hundreds

of available ionic liquids. Initial studies into using ILIS in FIB have been promising,

and it is still an ongoing research subject.

Extractor W Einzel Lens Target

Deflection
Aperture Assembly

Figure 2-2: Simplified FIB column

One of the figures of merit of the performance of a focused ion beam system is the

beam probe size (the size of the focused ion beam on the target). To be useful for FIB

applications, the ion beam must be focusable down to micron or sub-micron levels

[17]. There are many parameters that can affect the quality of the beam probe, but in

general they can be split between properties of the ion source, and properties of the

FIB system. The important parameters of the ion source are the angular intensity,

the relative energy spread, and the source size. The angular intensity is defined to

be the current per unit solid angle, dI/dQ, and can be related to the beam current

by I = f - dQ. In a FIB column, the aperture angle ao is normally small, meaning

the angular intensity can be approximated as a constant, and the current is obtained

from

dI dI 2dI
I = AQI 27(1 - cos ao) ~ad . (2.12)

dQ dQ dQ'

The energy spread of the ion beam is characterized by the full width at half

.. ............ ........ ........ ... .... ........ ... ... .... ...



maximum of its energy spectrum, AWi/ 2 . The size of the source, D, may be on the

order of nm, and the FIB optics may act to magnify or demagnify this.

The parameters of the FIB optics are the spherical aberration, Cs, the chromatic

aberration, Cc, and the magnification, M. Each of these terms will contribute to the

spot size of the focused ion beam. The contribution of the magnification is simply to

magnify the source size, giving an effective spot size of

d9 = MD (2.13)

The spherical aberration causes particles farther from the central axis to be focused

more strongly than those that are closer. The effect of this term is that a point source

will focus to a disc, rather than a point, with the size being given by

13
ds = -aOZ Cs (2.14)

2

The chromatic aberration causes ions of differing energies to be focused onto

different spots along the optical axis, with the minimum size of the focused spot

being

AW1/2de = aoCc . (2.15)
W

The combined effects of these effects on the focused spot size can be combined by

summing in quadrature, to give

d2 = d + d2 +d2 (2.16)

which can be expressed in terms of the beam current and brightness by using Eq.

2.12

d2 7M3 ( )] + 1 /2 cW2 + M 2D2  (2.17)
(_rM2 ) 3 W 7rM2 ( d)



Chapter 3

Experimental Techniques

In order to characterize an ILIS device, several standard experimental techniques were

employed. All of the described experimental setups described in this chapter were

designed to be mounted on the Kimball Physics eV Parts system and then attached

to a vacuum chamber flange, allowing for simple construction and alignment.

3.1 Ion Source

The ILIS used in all experiments described in this thesis is based on the externally

wetted emitter design. The emitters were fabricated from a 0.5 mm DIA tungsten

wire. The fabrication process is composed of several steps, based on the process

described in Ref. [14]. The oxide layer on the wire is removed by an electrochemical

etch in a 2 N NaOH solution using 5VAC for several seconds. The wire is then

lowered into the solution by about 3 mm, and a 50 VDC etch is performed until

the submerged portion of the wire is completely etched away. The needle tip is then

shaped by etching under 15-25 VDC for 30-90 seconds. The surface of the emitter is

then roughened by submerging it in a saturated solution of K 3Fe(CN)6 in 1 N NaOH

at 90 C. The resulting emitter has a roughened surface to promote wetting, and a tip

radius on the order of 10 pm. An SEM image of an example tip can be seen in Fig.

3-1.

The emitter is then mounted in one of two custom-made systems. The first ar-



Figure 3-1: Scanning electron microscope image of an emitter tip

rangement consists of attaching the needle to a copper block. The copper serves

as a point of electrical contact, as well as a heat sink. An electrical heater is at-

tached to the block, with the temperature monitored by a K-type thermocouple. The

block-emitter assembly is mounted on a 2-axis translational stage, which allows for

alignment with the 1.5 mm diameter hole in the stainless steel extractor plate. A

schematic of this setup is shown in Fig. 3-2. A tungsten crossbar is spot welded

to the emitter a few mm from the tip, in order to allow a place for a liquid droplet

reservoir to rest. Wetting is achieved by placing a drop of ionic liquid at the emitter

tip, and allowing it to fall to the crossbar.

Extactor

Cu Ion beam

V
a

Figure 3-2: ILIS assembly with a copper block for temperature control

The second ILIS configuration consists of two polyethylene (PE) blocks. The first

block has a small hole in the center, which allows an emitter to be held by a friction fit.

.............................................. ...................... ..... ..................................................... ............ ........ .......



The second block has a stainless steel cylinder in the center, which holds a reservoir

of ionic liquid. The extractor plate is placed after the second block. Alignment of

all of the parts is ensured by mounting on alumina rods. Wetting of the emitter is

performed by placing it into the first PE block, then sliding the emitter through the

cylinder full of liquid in the second block.

PE Blockl Extractor

. ... --. 5 .' Ion bean

SS Cylinder

a

Figure 3-3: ILIS assembly using polyethylene blocks

The current passing through the emitter in either of these configurations is mon-

itored by using a multimeter to monitor the voltage drop across a 1OOkQ resistor.

3.2 Time of Flight Mass Spectrometry

A charged particle of mass m and charge q accelerated through a potential, 'a will

have a kinetic energy given by

1
-mv 2 = qga. (3.1)
2

Thus, for a beam of charged particles of unknown specific charge, accelerated through

the known potential, the velocity will allow for the determination of the value of q/m.

The velocity is determined by measuring the time, t, it takes for a particle to travel

a known flight distance, L. The time is determined by gating the ion beam, and

measuring the time it takes for the beam front to reach a collector plate. The gating

is performed by an interleaved comb-type gate (also referred to as a Bradbury Nielsen
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Gate or BNG). This type of gate consists of two sets of parallel wires which are set

to ground potential when in the "off" mode, and equal in magnitude but opposite in

sign potentials while in the "on" mode. The strong electric fields present between the

wires when the gate is turned on cause the ion beam to deflect, but the fields decay

quickly (within a few wire spacing distances) along the beam path. A schematic view

of such a gate is shown in Fig. 3-4.

0
O Gate On

Ion Trajectory 0
® Gate Off

0
0

Figure 3-4: Schematic view of the interleaved comb-type ion gate

The gate is used to deflect the beam, and once the gate is switched off, allowing

the beam to continue, the current at the collector plate is monitored. The time it

takes the ions to reach the collector plate after the gate is switched off is given by

t = L .M (3.2)
2 q p a

However, as mentioned previously, the ion beam produced by an ILIS generally

contains several species of ions with masses, m, mi, etc. and unit charge. Each of

these ions will have a different flight time, given by Eq. 3.2. An example of the

expected collector plate current signal is shown in Fig. 3-5. As seen in the figure,

there are two distinct steps at times to and ti corresponding to the masses of the ion

species. The step size gives the relative amount of each ion in the beam. If there are

............................. . ........



any droplets present in the beam, there will also be a continues distribution of q/m

values, showing up as a gradually sloped region in the TOF output.

t

P t

Time

Figure 3-5: Example TOF-MS Signal for an ILIS with two ion species

The actual setup used for several experiments in this thesis is based on the design

by Lozano [15, 16]. A schematic of the setup is shown in 3-6. In addition to the ion

source and gate described previously, there is also an einzel lens. This lens serves

to focus the ion beam, allowing for a longer flight distance, and therefore a higher

resolution. Before the collector plate there are two grids. The first is grounded, while

the second is biased to -30V in order to suppress secondary electrons at the collector.

Gate

Einzel Lens L = 757 nni

Ion Beam

a 7 A

-30 V

Figure 3-6: Schematic of the TOF-MS setup



3.3 Retarding Potential Analyzer

An ion that has mass m and charge q that has been accelerated from rest through a

potential #,, will have an energy q#,,. In order to prevent this particle from passing

through a given region, an equal potential barrier of #a must be applied. In the case

of an ILIS, the actual acceleration potential the ion sees is different than the applied

extraction potential, #ext. It is of interest to find the actual energies of the ion beam

in order to determine performance parameters of the ILIS, such as thrust efficiency

in propulsive applications or the effects of chromatic abberation in focused ion beam

applications, both of which were discussed in Sec. 2.2. In order to measure the energy,

the ion beam is passed through a region with a controllable retarding potential, with a

collector plate beyond the potential barrier. Such a device is referred to as a retarding

potential analyzer (RPA). As the RPA voltage, #RPA, is varied, only those particles

that satisfy the following equation will be collected, assuming #a, q, and #RPA all

have the same sign.

1mv2

# = 2#al q IRPAI (3.3)
q

So, for a completely monoenergetic ILIS ion beam, the current collected by the

RPA as the voltage is swept from zero to #et will be that shown in Fig. 3-7. As seen

in the figure, the current is constant until the retarding potential reaches the beam

potential, at which point all of the current is prevented from reaching the collector

plate. The energy deficit D, assuming unit charge as with most ILIS, is given by the

difference between the extraction potential and the stopping potential,

D = (ext - #a) (3.4)

For a nonideal ILIS, the RPA signal will not actually look like that as shown

in Fig. 3-7, instead it will look more similar to that shown in Fig. 3-8. The step

corresponding to the acceleration potential will have finite width about the ideal

location. There will also be secondary features in the signal, such as a secondary step



a :11ev

Retarding Potential

Figure 3-7: Sample RPA output for a monoenergetic source

at a lower voltage. This step is due to the fragmentation of solvated ions after being

extracted. For example a singly solvated ion of mass mi may break up into an ion

of mass mo and a neutral. Only the ion will be detected by the RPA, and it will be

traveling at the same speed as before the breakup, meaning that it will be stopped

by a potential given by

#3 = Oa. (3.5)

I I

pnml

Retarding Potential

Figure 3-8: Sample RPA output for a nonideal source

In order to obtain the energy distribution from an RPA signal, the derivative of

the curve as shown in Fig. 3-7 can be taken.



The experimental setup used for the RPA is based on the design in Ref. [16].

As with the TOF-MS, an einzel lens is positioned 8.8 mm from the extractor. The

lens serves to collimate the beam, in order to eliminate energy spread due to beam

divergence. After the lens is a grounded aperture and a shielded drift region of 12

mm. The RPA itself is at the end of the drift region. The basic form of the instrument

is taken from Ref. [25], and consists of a 25 mm inner diameter and 25 mm length

stainless steel cylinder placed within a grounded enclosure. Immediately prior to the

cylinder is a grounded plate with an entrance aperture of 3 mm diameter. At the

other end of the cylinder are a series of grids composed of 76 pm diameter tungsten

wire with spacing of 0.76 mm, giving a transparency of 90 % for each grid. The

collector used in the RPA is a Faraday cup connected to an oscilloscope through a

high impedance electrometer. The RPA is operated by applying a low frequency (33

mHz) high voltage triangular wave to the grids and cylinder. Postprocessing of the

collected signal involves low-pass filtering to eliminate noise, followed by a second-

order finite difference scheme to obtain the energy distribution.

Eizel Lens RPA Faraday Cup

OA

f

Vr

Figure 3-9: Schematic of the RPA setup
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3.4 Vacuum Chamber and Electronics

All experiments took place in a vacuum chamber at pressures below 5 x 10-6. The

chamber itself, shown in Fig. 3-10, is a cylinder constructed of stainless steel. The

main portion of the chamber has a 19.7 cm inner diameter and a length of 49.5 cm.

Attached to the back of the chamber is an extension tube of inner diameter 5.6 cm and

length of 36.5 cm. The chamber is evacuated using two Varian V-70 turbopumps, with

a Varian SD-40 mechanical pump providing the necessary back pressure. Pressure

inside the chamber is measured using either a Varian IMG-100 cold cathode gauge or

a Varian 571 Bayard-Alpert type ionization gauge.

Figure 3-10: Vacuum chamber

The electronics used in all the experiments are listed in Table 3.1

... . ............. ......... ... ..... ......... . ......



Table 3.1: Electronic equipment
High Voltage Power Supplies 2 x Matsusada AMS-5B6

Bertan 205B-05R
Bertan 205B-10R

Lab Power Supply Tenma 72-6615
Oscilloscope Agilent Infiniium 54835A
Electrometers Keithley 6517

Keithley 6514
Pulse Generator BNC-555
Pulse Amplifier DEI PVM-4210



Chapter 4

Development of an Iodine ILIS

4.1 Motivation

As mentioned previously, the use of ILIS in FIB is very appealing partially due to

the incredible variety of ionic liquids that are available. The choice for the study

of this particular ILlS, using the ionic liquid 1-butyl-3-methylimidazolium iodide is

motivated by the possibility of creating a beam of iodine ions. Though there may

be many uses for such an ion beam, there are two particular applications that are in

mind when investigating this ILIS.

The first is the use of an iodine beam to etch type III-V semiconductors, a class of

material including GaAs, InP, InSb and several others. The reactivity of iodine with

several of the component elements in the III-V group make it an attractive choice

for etching. The concept of using iodine for this purpose is nothing new, as it is

commonly used assist to FIB etching by injection of iodine gas in a process called gas

assisted etching (GAE) [11]. There have also been studies of directly using a positive

iodine ion beam for etching III-V materials [5], which showed it to be effective when

milling indium-containing semiconductors. This history of using iodine for milling

and GAE of these semiconductor materials is a strong motivation for this study.

The second application in mind is for the use in secondary ion mass spectrometry

(SIMS). In SIMS, the surface of some sample is bombarded with ions, resulting in

the creation of secondary ions which can then be analyzed using mass spectrometry



techniques. There are several ion sources that can be used in SIMS, but only a few

different sources are available using negative ions. An iodine source is attractive for

this application because the relatively massive iodine particles would have a good

yield of secondary ions. A negative iodine source using surface ionization of iodine

gas has been previously constructed for this application [22], however the simplicity

of an ILIS makes it an attractive option.

4.2 Beam Characterization

With the guidelines from Sec. 2.2.2 in mind, the ion beam produced by a BMI-I ILIS

is investigated to determine the properties relevant to operation in a FIB system.

The experimental techniques discussed in Chapter 3 are used for this characterization,

with the ion source configuration being that shown in Fig. 3-2. Two different emitters

were used during the testing of the BMI-I ILIS, hereafter referred to as emitter A and

emitter B. The majority of experiments were performed with the ILlS operating in

the negative mode, due to the desire to create a beam of iodine ions as discussed in

Sec. 4.1, however some data on the positive mode is included for completeness.

Previous studies with this particular ionic liquid [23] were unable to achieve stable

current emission at room temperatures. In order to perform the experiments described

in this chapter, the ILIS had to be heated to 50'C to achieve stable emission. Unless

otherwise mentioned, all data presented was collected at this operating temperature.

After successfully achieving stable current, initial tests were performed to simply

measure the emitted current versus the applied extraction voltage. An example I-V

curve obtained is shown in Fig. 4-1. Emission began at voltages lower than shown,

but was stable only in the range of about -1.5 to 1.9 kV for this particular emitter

(emitter B). Other emitters have been operated at both lower and higher voltages,

therefore the curve shown in the figure should be taken only as an example.

Perhaps the most significant implication from this measured current is that it was

obtained at all. As seen in Table 1.1, the viscosity of BMI-I is about 20 times larger

than EMI-BF 4 and its conductivity is about 5 times smaller. Despite these significant
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Figure 4-1: Current emitted from a BMI-I ILIS in the negative mode

difference, the current obtained from this BMI-I ILIS was only about 4 times lower

than those seen with the well studied EMI-BF 4. This result is something that should

be investigated further in the future.

4.2.1 Beam Composition

The composition of the ion beam was determined by using the time of flight mass

spectrometry technique described in Sec. 3.2. Two sets of experiment studying the

beam composition were performed. The first, with emitter A, varied the operating

temperature and observed the mass spectra. The second, performed with emitter B,

varied the operating voltage. Several plots of the current signal collected from the

TOF-MS instrument for the BMI-I ILIS operating at +/- 2kV are shown in Fig. 4-2.

A summary of the species observed can be seen in Table 4.1. As seen with prior

studies of ILIS, the charged species contained in the beam are found to be singly

charged ions attached to a number of neutrals, being of the form (BMI-I)"BMI+ in

the positive mode and (BMI-I)I- in the negative mode. There is a strong presence

of degree of solvation n = 0, 1 species, and signs of a small amount of n = 2 in some

of these signals.Of particular interest in the figures are the plots for the ILIS in the
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negative mode, where nearly half of the current signal is composed of I ions, without

any sign of droplets.

Time (ps)

(a) -2000V, 57 'C, I 77 nA

0 10 20 30 40 50 6(
Time (ps)

(c) 2000V, 60 'C, I = 113 nA

(b) -2000V, 95 *C, I = 207 nA

Time (ps)

(d) 2000V, 97 -C, I = 200 nA

Figure 4-2: TOF-MS signals for a BMI-I ILIS operating at several different conditions

A second set up TOF-MS tests were performed for a second emitter (emitter B)

operating in the range of 1.5 to 1.9 kV in both the positive and negative modes. The

output data was subjected to a postprocessing scheme to convert the horizontal axis

from time to mass using Eq. 3.2, followed by low-pass filtering and a finite difference

differentiation to obtain the mass spectrum of-the ILIS, showing "peaks" rather than

a current signal. Results of this are shown in Fig. 4.2.1. There are distinct peaks

corresponding to the non-solvated and singly solvated ions in both the positive and

negative modes. Again, nearly half of the signal is composed of pure iodine ions in

the negative mode.



Polarity Ionic Species Ion Mass (amu) Time of flight (Is)
BMI+ 139 to

+ (BMI-I)BMI+ 404.9 ti
(BMI-I) 2BMI+ 670.8 t2
I- 126.9 to

- (BMI-I)I- 392.8 ti

(BMI-I) 21 658.7 t2

Table 4.1: Expected flight times for a BMI-I ILIS operating at +/- 2kV

4.2.2 Energy distribution

The energy distribution of the ion beam operating in the negative mode was deter-

mined by the use of the RPA as described in Sec. 3.3. Representative energy spectra

for applied potentials of -1500, -1600, and -1700 V are shown in Fig. 4-4.

These show distinct peaks at potentials slightly below the applied extraction volt-

age. The energy deficit, D, ranges from 9 to 15 eV in these case. The full width

at half max (FWHM) in these cases are about 12 eV. These values are significantly

higher than those seen with previous studies on the energy distributions of ion beams

from an ILIS. For example, a study with the ionic liquid EMI-Im found deficits of

about 6 eV and FWHM of about 7 eV [16].

In addition to the primary signal in the energy spectrum, some secondary features

are also present as seen in Fig. 4-5. There are two secondary peaks, located at

potentials corresponding to the breakup of the n = 2 ion into n = 1 and of the n =

1 ion into n = 0. As described by Eq. 3.5, the locations of these peaks correspond

to the mass ratios of the initial and final ions, whose values are listed in Table 4.2.

Other than the primary peak and the two secondary peaks, there is also a slight,

more or less constant signal contained between the n = 1 -+ 0 and primary peaks. A

continuous energy distribution can sometimes be due to droplets, but the TOF-MS

showed only ions. Also, the containment of this continuous signal between the two

peaks suggests that it is due to ion fragmentation in the region between the emitter

and extractor. This fragmentation is discussed in more detail in Ch. 6.
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Figure 4-3: Mass spectra for a BMI-I ILIS operating at (a) -1900 V and (b) 1900 V

4.3 Estimated Performance in a FIB Column

With the BMI-I ILIS well characterized for operation in the negative polarity, it is

possible to use Eq. 2.17 to make an estimate of the performance in a FIB column. The

values that are required from the ILIS are the current, the angular intensity Jth

beam energy spread, AW 1 / 2, and the beam energy, W. The aberration coefficients,

C, and Cc, and the magnification, M, are properties of the FIB column, and not

dependent on the ion source used. If the angular distribution of the beam is assumed

to be parabolic with a half-angle of 180 as with other ILIS [14], then the angular

40
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Figure 4-4: RPA energy spectra results for applied voltages of -1.5, -1.6, and -1.7 kV

Initial -+ final degree of solvation #,stop/#Oa
1 - 0 0.32
2-± 1 0.60
2 a0 0.19

#,tp for #k = -1490 V

-477
-894
-283

Table 4.2: Stopping potentials for products of ion fragmentation

intensity for the BMI-I ILIS operating at a total current 10 can be determined by

relating the total current to the angular distribution, then taking the derivative with

respect to the solid angle. First of all, the relationship between the half angle, ao,

and the solid angle, Q, for an axisymmetric layout is

Q = 27r(1 - cos ao) (4.1)

Therefore, the angular intensity can be written as

dI _ dI daO = 1 dI (4.2)
dQ dao dQ 27r sin ao dO

The current that is allowed to pass through an aperture of half angle ao can be
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Figure 4-5: RPA energy spectrum results for applied voltages of -1.5 kV

determined by integrating the distribution function, f(0), through the appropriate

solid angle.

1ao _ f 0 f(0) sin(6) dO (4.3)
Io fOO f(6) sin(0) d6

Thus the angular intensity at angle a0 is found to be

dI 10 f(a) (44)
dQ 2,rf f(o sin(0) do

A plot of the angular intensity versus the aperture angle is shown in Fig. 4-6. It

can be seen that for the small angles typical of a FIB system (less than 10 mrad), the

angular intensity is just below 0.65 pA sr-1 .

Consider the performance of this BMI-I ILIS as compared with a LMIS operating

in an optical column at unity magnification with spherical and chromatic aberrations

of 1000 and 10 mm, respectively. The beam limiting aperture will be a small angle,

so the relation between the current and angle can be simplified to



dI dI 2 dI
I = AG = 27r(1 - cos ao) ~ OraldQ dQ dQ (4.5)

For the sake of comparison, assume the half angle of the aperture is sized to allow

100 pA of current through, corresponding to ao = 7 mrad. Under these conditions

and operating at a beam potential of 1500 V, the spot size would be approximately

300 nm, giving a current density of 0.15 A cm 2 . A typical Ga LMIS, for example,

has brightness of 20 pAsr-1 , an energy spread of about 5 eV, an operation energy

on the order of 104 eV, and source size of around 50 nm [17]. This example LMIS

would produce a spot of about 50 nm, with current density of 5 A cm 2 under the

same conditions.
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Figure 4-6: Estimated angular intensity for a BMI-I ILIS
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Chapter 5

Full Beam Measurements

The experimental techniques described in Chapter 3 are designed to analyze only a

portion of the ion beam from an ILIS. In order for this information to be used to

characterize the ILIS itself, the ion beam needs to be assumed to be uniform, or

the instrument needs to be scanned through the entire beam. It is desirable to have

information on the entire beam, especially when looking at certain phenomena, such as

the ion fragmentation briefly mentioned in Ch. 4. An alternative to these previously

described techniques is to take measurements on the entire ion beam simultaneously,

rather than just a portion. This chapter explores the design and testing of such an

instrument, as well as the issues with taking such measurements.

5.1 Full Beam Time of Flight

The time of flight mass spectrometry setup described in Sec. 3.2 has a flight length of

757 mm. This long distance allows for a higher resolution TOF, but requires the use

of an einzel lens to collimate the beam, in order to have a good signal at the collector

plate. An issue with the use of an electrostatic lens is that it has a significant amount

of chromatic aberration [17]. The effect is that only a certain range of energies are

focused properly onto the collector plate. In the ideal situation, where there are only

a few ionic species in a very narrow energy range, this does not cause any problems.

However, for broad energy distributions, this may be an issue.



127

Figure 5-1: Cross section view of the vacuum chamber (dimensions in inches)

In order to address this issue, a full beam time of flight collector was designed.

The design was limited by two main considerations. The first was that the instrument

must fit into the current vacuum system, which is shown in cross-section view in Fig.

5-1. The second was that the half angle of collection should be about 200 to maximize

the portion of the beam collected, which is based previous studies of ILISs [14]. Based

on these two parameters, the design shown in Fig. 5-2 was created. More detailed

drawings are contained in Appendix A.

This design has two grids of 70% transparency (8.66 holes per cm, wire thickness

of 0.19 mm) followed by a collector plate. The first grid is grounded to serve as

a shield, while the second grid is biased to -30 V to suppress secondary electrons.

Following the two grids is a collector plate, which is connected to an amplifier. After

the collector is a grounded back plate, which provides structural support as well as

additional shielding. The distance between all plates is set to 6.35 mm using alumina

spacers. With this setup, and a flight distance of 198.1 mm between the gate and

collector as shown in Fig. 5-3, a half-angle of about 18 0 is collected. The collector

assembly can be moved to decrease the flight distance (to have a larger collection

...................... --- .. -........... ... ......... ..
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Figure 5-2: Full beam TOF collector assembly

angle) or to increase the distance (to have less beam spreading).

The collection half-angle of 180 will cause the TOF signal to have some spread

due to the difference in time it takes ions at different angles to reach the collector.

For a flight distance L and accelerating voltage V, an ion of mass m and charge q

will have a flight time given by

too = L . (5.1)
V2 q V*

if it has a trajectory that is parallel the axis of symmetry as shown in Fig. 5-3.

However, if the ion's trajectory is inclined to an angle 0 with respect to the axis, the

flight time will be increased to

L 1 m 1
to = . (5.2)

cosO 2 q V

Therefore, the TOF signal will have a spread given by the difference between Eqs.

5.2 and 5.1. For example, an EMI-BF 4 ILIS operating in the positive mode at 1500

V will have an expected spread of about 0.2 ps.

Initial tests of the full beam TOF were performed by connecting the collector

.. . ......... ........ gmw l
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Figure 5-3: Schematic of the full beam TOF assembly

plate to ground through a shunt resistor, and amplifying the voltage drop across the

resistor using a non-inverting amplifier with output to an oscilloscope, as shown in

Fig. 5-4.

An example of the output from the amplifier, as recorded by an oscilloscope is

shown in Fig. 5-5 for an EMI-BF 4 ILIS operating in the negative mode at -1500V,

with a flight distance of approximately 266.7 mm. Under these conditions, the flight

times of BF4 and (EMI-BF 4)BF4 are calculated to be 4.6 ps and 8.4 ps, respectively.

As can be seen in the figure, there aren't any discrete steps as are expected for a

TOF signal. However, at the expected locations of the steps are "shoulders" on the

curve, followed by a region that appears to be an exponential decay. The fact that

there are features that correspond to the expected step locations, and that there is an

apparent exponential region suggests that the issues are due to increased capacitance

in the circuit, when changing from the configuration described in Sec. 3.2.

In order to properly operate the full beam TOF, several different amplification
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Figure 5-4: Non-inverting amplifier with a shunt resistor

circuits were considered, finally settling on a transimpedance amplifier as shown in

Fig. 5-6. The op-amp chosen for the circuit was a Texas Instruments OPA637, paired

with a 1OOkQ feedback resistor and a 2pF feedback capacitor. These components

give the circuit a gain of 10' V/A, or in more relevant figures, 1 mV / 10 nA. The

bandwidth of the circuit will be given by the RC time constant, which in this case is

r = 0.2ps corresponding to about 0.8 MHz.

A EMI-BF 4 ILIS was used to test the setup, with representative signals shown

in Fig. 5-7. The steps corresponding to BF4 and (EMI-BF 4)BF4 are present in the

negative mode, and those corresponding to EMI+ and (EMI-BF 4)EMI+ are present

in the positive mode. The steps have a spread on the order of 0.2 ps, which could

be due either to beam spreading or to the limited bandwidth of the amplifier. Also

present in these plots, particularly in the negative mode, is a gradually sloped region

after the initial steps, which may indicate the presence of droplets.
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Figure 5-5: Full beam TOF output with the original amplifier

5.2 Full Beam Retarding Potential Analyzer

Although originally designed to be a TOF collector plate, the instrument described

in Sec. 5.1 can also function as a coarse full beam retarding potential analyzer.

An ion with energy imv 2 = qg$_ should ideally be stopped by a potential barrier

#ka. However, an ion with a trajectory at an angle 9 relative to the axis will actually

be turned around, but not brought to a stop, by a potential barrier of

$... A = paco. 2 . (5.3)

This means that a full beam planar RPA will actually cause some artificial spread-

ing in the measured energy spectrum.

An example output current signal of the full beam RPA from an EMI-BF 4 ILIS

is shown in Fig. 5-9. The general shape of the curve is what is expected. There is

a large drop in current near the extraction potential and a smaller drop due to the

the fragmentation of solvated ions. The nearly linear region between the two steps is

attributed to fragmentation in the acceleration region, discussed in Ch. 6. However,

unlike earlier studies, the width of the main step is seen to be very wide, greater than

... ............ .. ....... . .. ....... ........ ...... ........... .. .. _ _ . .....
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Figure 5-6: Transimpedance amplifier

100V. This spreading is due to the effect of a divergent beam being measured by a

planar RPA. In addition to the spreading, there is also a significant amount of current

collected when the retarding potential is greater than the extraction potential. This

can be attributed to the coarseness of the grids. A coarse grid will have some potential

sagging, meaning that the potential in the openings will not be uniform which would

allow for ions of lower energies to pass through.

In order to confirm that features in the plot shown can be attributed to the effects

of a planar RPA, a simple analysis can be performed. Consider an axisymmetric

ion beam with angular current distribution fo and an energy distribution fE that is

the same along any path (i.e., assume the energy distribution is independent of the

angle). The current passing through an aperture that has an acceptance angle of OZO

will be given by

Ic= j f(0) sin 0 do (5.4)

within a normalization constant. When using an RPA, ideally the current collected
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Figure 5-7: Full beam TOF signals for an EMI-BF 4 ILIS operating at (a)-2000V and

(b) 2250V

will be simply given by integrating the energy distribution,

IC = J f(4) d4 (5.5)
#RPA

However, in light of the effects of beam divergence contained in Eq. 5.3, the previous

two equations do not hold. Instead, a combination of the two must be used, so that

the collected current is actually

Ic(4RPA) = J f (4) f (0) sin 6 dqdO. (5.6)
cos2 g

The effects of this beam spreading can be seen best by plotting Eq. 5.6. Consider

an EMI-BF 4 ILIS operating at #,, = -1650V. Based on the results discussed in this

paper, the energy distribution is expected to have a narrow peak just below 1650eV,

a broader, smaller peak at '0#q, = 503eV, and a slight offset from zero in between

the peaks. This energy distribution, shown in Fig. 5-10, is idealized as being the

superposition of two gaussian functions and a step function. The main energy peak is

defined to have a FWHM of 10eV, and an area under its curve of 0.47. The secondary

peak has a FWHM of 100 eV, and an area of 0.28. The step function has an area of

0.25, and spans from 503eV to 1650eV.

The angular distribution function can be assumed to be quadratic, with a half
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Figure 5-8: Schematic of the full beam RPA assembly

angle of approximately 200, as discussed in Sec. 2.2.1. Under these assumptions, the

RPA output (with current normalized to have a maximum of unity), is shown in Fig.

5-11. In addition to the idealized RPA output are the estimated effects of the beam

divergence from Eq. 5.6, as well an actual experimental result. The beam spreading

seems to have the most dramatic effect at energies near the beam energy, where a

sharp drop off in current is expected. The broader step due to the ion fragmentation

at 503eV and the linear slope region are hardly changed at all. The calculated effect of

the beam spreading is seen to agree well with what was observed in the experiment,

indicating that the ILIS used likely had parameters similar to those used for the

simulation.

It is of note that the non-ideal calculation and experimental curves both show

the presence of current at energies greater than 1650eV. This is attributed to the

coarseness of the grid, which allows ions of lower energy to pass through. This effect

was taken into account by assuming that the grid potential sagged up to 10% and the

amount of current of lower energies passing through decreases linearly, i.e., when the

RPA voltage is #RPA, all the ions with energies lower than O.9 4RPA are stopped, while
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Figure 5-9: Output of the full beam RPA with an EMI-BF 4 ILIS operating at -1650V

all those with energies greater than #RPA are allowed to pass, with linear behavior in

between.
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Chapter 6

Ion Fragmentation

As briefly mentioned in prior sections, there are signs that the solvated ions extracted

from an ILIS can fragment into a neutral particle and an ion with a lower degree of

solvation. The occurrence of this breakup in the field free post-acceleration region

has been seen in previous studies of ILIS [16]. However, there are also signs that

there is a significant amount of ion fragmentation occuring in the acceleration region

between the emitter and extractor electrodes. This chapter contains a discussion of

these signs, as well as the implications of this fragmentation for ILIS applications.

6.1 Signs of Fragmented Ions

As briefly mentioned in Ch. 5, the signs of ion fragmentation occur in the data

obtained from the RPA instrument. For example, consider the RPA current signal

obtained from a BMI-I ILIS operating at -1.5kV shown in Fig. 6-1.

The labeled peaks in the figure indicate the presence of ion populations char-

acterized by discrete energies with a finite spread. The larger peak is the primary

population of ion species, being composed of those non-solvated and solvated ions (n

= 0,1,2) that are accelerated through the full applied potential. The smaller peaks

are the result of ion breakup after the acceleration region, as described by Eq. 3.5.

However, consider a solvated ion with n = a that fragments into a neutral and an

ion with n = b(0 < b < a) in the acceleration region, where the local potential, <f, is
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current signal for a BMI-I ILIS operating at

0 < |#f I < 1#a . The stopping potential for the fragmented ion will be

#S = M'(# - f) +O #
ma

(6.1)

The minimum value of the stopping potential given by Eq. 6.1 occurs when fragmen-

tation takes place in a region where #f = 0, i.e., after the acceleration region. The

maximum value occurs when fragmentation takes place when #f is very near to #a,
i.e., immediately after emission. Therefore the stopping potentials will be contained

within

a < #s < Oa
ma

(6.2)

which is precisely what is seen in the RPA output in Fig. 4-5, for the case of a = 1

and b = 0 for a BMI-I ILIS. It is this well defined containment of the secondary

signal within the ranges established by Eq. 6.2 that suggests that there is significant

amounts of ion fragmentation occuring within the acceleration region.

......................... -.- -- - ::::::.::::. - : _ _ .: : : : = : : : : : : : : . - - ::::::::::: M- . .... .. . ... . ... - ..........



6.2 Causes

Although the data collected for this thesis is not substantial enough to develop a

theory as to the mechanics of this ion fragmentation, there are several possibilities

that can guide future experiments. It is obvious from the gathered data that the

emitted solvated ions are at least metastable, as some of them can survive long enough

to fragment after the acceleration region, while some will fragment within it. Initial

guesses for why this fragmentation is occurring can be divided into two categories,

either collisions or from internal energy.

6.2.1 Collisions

Two types of collision are possible causes for fragmentation of the solvated ions, either

collisions with background neutrals, or with the faster moving non-solvated ions. It

is highly unlikely that collisions with background neutrals have a significant effect,

as the operation pressure is so low. This leaves the option of ion-ion collisions. As

an initial check for this, the mean free path of the ions can be calculated to see if

collisions are very likely. The interaction of the non solvated ions with the singly

solvated ions in the acceleration can be characterized by the coulomb cross section

[1],

ot = rbo 2 (6.3)0sin 2(Xmin/2)

where x is the scattering angle and bo is

2
bo = q . (6.4)

47rEOpg2

In the definition of bo, y is the reduced mass and g is the relative velocity between

the two ion species.

mrn, 
(6.5)

mO + mi

The mean free path is calculated from



Amfp = 1 (6.6)
no-

For an ILIS, the number density of particles can be approximated from the total

current, the beam divergence, and an estimated source size. The current density can

be approximated as the total current divided by the area of the spherical cap defined

by the beam half-angle. Then the number density of particles can be obtained from

quv = J, or

I 1
n =(6.7)qv21rR 2(1 -cos (0)

The velocities in Eqs. 6.7 and 6.4 can be obtained from the potential distribution.

For this analysis, a simple model was created in COMSOL Multiphysics to obtain the

potential distribution along the axis of a tip with a radius of curvature of about 50

pm. Then the mean free path is obtained using Eq. 6.6. The results of this analysis

are shown in Fig. 6-2
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Figure 6-2: Mean free path of non-solvated ions in an EMI-BF 4 ILIS at 1500V

As can be seen in the figure, the mean free path quickly grows to orders of mag-

nitude greater than the size of the device itself. This means that any collisions that

do occur, must happen immediately after the emission. Thus, collisions in the ac-

celeration region cannot explain the continuous distribution of fragmentation that is

observed.
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6.2.2 Internal Energy

Another possible cause of the ion fragmentation due to molecular vibrations caused

by internal energy. Possible sources of this energy are thermal energy or from the

extraction process. The thermal energy would be given by the normal kBT, which

gives energies much less than 1 eV for normal ILIS operating conditions. These low

energies don't seem likely to be the cause of fragmentation, but it is something that

can be investigated. Another possibility is that the extraction process deposits some

energy into the molecule. When ions are extracted from an ILIS, there have been seen

to be energy deficits greater than 5 eV [16, 14]. It has been assumed previously that

this lost energy went into heating of the source itself, but it may be possible that a

portion of this energy is transferred to the extracted ions, which may provide enough

energy for ion fragmentation. It should be noted that these are very first guesses as

to what is causing the ion fragmentation, and should merely serve to provide some

guidance for future studies.

6.3 Effects of Ion Fragmentation

6.3.1 Performance of an ILIS Based Thruster

The previously documented fragmentation of ions in the post-acceleration region has

negligible impact on the performance of an ILIS thruster. This is because the pre-

breakup ion has already undergone its full acceleration, and already left the thruster.

If the fragmentation occurs in the acceleration regions, however, the resulting ion

will continue to accelerate but the neutral will travel at a constant speed, resulting

in lower performance as compared to fragmentation after it had obtained its highest

possible velocity. An important distinction to note here is that while all plasma-based

electric propulsion devices have inefficiencies due to neutrals escaping. However, in

other thruster the neutrals leave with only their thermal velocity, having a negligible

contribution to thrust, while in the ILIS thruster, the neutrals are energetic, still

contributing to the total thrust.



In order to characterize the effect of ion fragmentation on the efficiency of an ILIS

thruster, a modification can be made to the polydispersive efficiency as defined in

Eq. 2.9. In addition to the discrete ion populations of different degrees of solvation

n, there will also be a population of ions and neutrals that have a certain distribu-

tion of energies. Based on the RPA data shown in Fig. 4-5, there appears to be a

linear energy distribution of the ion fragmentation products. To simplify the anal-

ysis, characterize the fragmented ion population by the energy it would have if all

fragmentation occurred halfway through the acceleration region, at a potential #"/2.

Eq. 6.1 can be used to determine the energy and corresponding particle velocity,

Imov2 +q no+1) * (6.8)
2 \mi 1 2

Cf = co - +) (6.9)

where co is the velocity of the full accelerated non-solvated ion, given by

co = 2 #a. (6.10)
Vm

In addition to the population of fragmented ions, there will be a conjugate population

of energetic neutrals which maintain the same speed they had at fragmentation,

cn = co . (6.11)

The new populations of fragmentation products can be integrated into the definition

of polydispersive efficiency, yielding the expression

-f 2

f[ 2(fo + 2fi+( (1)+ + M f1
17p (6.12)

Clo+ f1 + (C + M-) 1

The impact of the fragmentation on the efficiency of an ILIS thruster can be seen

by plotting Eq. 6.12 for several different parameters. For example, consider an EMI-

BF 4 ILIS operating in the positive mode. The majority of the beam emitted by such



a source will be composed of non-solvated and singly-solvated ions, allowing for the

application of Eq. 6.12. The ion masses are 111.2 amu and 309.2 amu for EMI+ and

(EMI-BF 4)EMI+, respectively, giving a value of 2.78 for the specific charge ratio, (.

The mass of the neutral particle, EMI-BF 4, is 198 amu. The modified polydispersive

efficiency for these conditions is plotted in Fig. 6-3.
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Figure 6-3: Effect of ion fragmentation on the polydispersive efficiency for an EMI-
BF 4 ILIS operating in the positive mode

The amount of fragmentation is represented in the figure is characterized by the

quantity ff/(ff + fi). For a fixed portion of non-solvated ions, given by fo, this

quantity represents the remaining portion of the beam composed of fragmentation

products. In other words, it is the portion of the emitted n = 1 solvated ions that

fragment in the acceleration region. The general trend is for increasing amounts of

fragmentation to decrease the efficiency. The worst case scenario is a drop from qp r

1 to 7, r 0.66, in the case in which only singly solvated ions are emitted, all of which

fragment while accelerating. A more reasonable case, however, is in which one quarter

of the beam is composed of non-solvated ions (fo = 0.25), and the fragmentation

products compose 25% of the beam (ff = 0.25, fi = 0.5), as seen in the RPA output

in Fig. 5-9. In this case, the polydispersive efficiency is approximately qp ~ 0.88,



whereas for fo = 0.25 and fi = 0.75 it would have been r/, ~ 0.94. This shows that

ion fragmentation in the region between the emitter and extractor in an ILIS thruster

has a significant effect on efficiency, being in the range of about 6% in this example.

6.3.2 FIB

When being used in a FIB system, the secondary population of ions produced by the

ion fragmentation would likely be scattered by the focusing optics and intercepted

by the apertures. The neutral population, however, might be a significant issue.

The neutrals will continue on straight line trajectories, possibly impacting the target

sample, which may be a problem. Of particular concern would be operating the BMI-

I ILIS in the negative mode with the intention for the production of a pure I- beam.

Mass filtering could be used to remove the solvated ions, but the neutrals would

continue on their trajectories. The simplest solution to this issue is the addition of a

curved magnetic sector, which would bend the trajectories of the iodine ions, but not

the neutrals. This solution is adequate for a newly designed FIB system, but may

not be an easy solution when integrating the BMI-I ILlS into an existing instrument.



Chapter 7

Conclusions and Future Work

7.1 BMI-I ILIS

This initial work on the BMI-I ILIS is promising. An ion beam composed of nearly

50% pure iodine has been produced, and shown to have energy characteristics that are

not greatly different than other ILIS. An initial estimate predicts that performance

of this source in a FIB column will be significantly less than that of the traditionally

used LMIS, but possibly still within a useful range. Specifically, beam currents of

>100 nA were obtained, with energy deficits of approximately 9-15 eV and FWHM

of 12 eV. More characterization and refinement of the source needs to be performed

before it may be useful in an actual FIB system. The angular intensity approximation

needs to be confirmed, by direct measurement of the angular current distribution or

some other method. Spot size measurements, perhaps those described by Zorzos and

Lozano [24], need to be performed to verify these initial estimates. In addition to

more characterization, the applications for such an ion source need more investigation.

Specifically, etching rates need to be established, particularly for GaAs and other

materials of interest.



7.2 Ion Fragmentation

The presence of ion fragmentation in the acceleration region of an ILIS is seen to have

significant impacts on applications in propulsion and FIB. The efficiency of an ILIS

thruster is reduced significantly by such fragmentation, while the use of such a source

in a FIB column would require special consideration. Further scientific studies need to

be performed in order to ascertain the physics behind the fragmentation. Specifically,

it is currently unclear as to why this fragmentation occurs. Several guesses as to the

mechanisms behind the fragmentation were discussed in Sec. 6.2, but none were

completely ruled out. Specific experiments are planned to determine the rate of ion

fragmentation in the field-free region. By mounting an RPA on a linear stage, and

varying the distance between the ILIS and the instrument, changes in the amount

of fragmentation due to a longer flight time will be measurable. Also planned are

experiments dealing with the temperature effect on fragmentation rates and ratios.



Appendix A

Drawings of the Full Beam Time of

Flight Assembly

Figure A-1: Full beam TOF front plate



Figure A-2: Full beam TOF secondary electron grid

Figure A-3: Full beam TOF collector



Figure A-4: Full beam TOF back plate
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