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Abstract

Nanostructured materials have recently drawn a great deal of attention in the field of
energy research such as for solar photovoltaic, thermophotovoltaic and thermoelectric
applications. The energy transport properties of nanostructures can differ greatly from
their bulk counterparts because the characteristic dimensions of nanostructures are often
comparable with the wavelength or the mean free path of energy carriers such as photons,
phonons and electrons. Due to the small dimensions, probing energy transfer at the
nanoscale is extremely challenging.

By developing new experimental techniques based on the bi-material microcantilevers
used in Atomic Force Microscopes (AFM), this thesis has studied several extraordinary
energy transfer phenomena at the nanoscale including near-field radiation beyond
Planck's law, high thermal conductivity polymers and the optical absorption of
micro/nanostructures. First, surface phonon polaritons, which is one type of
electromagnetic surface waves, are demonstrated to enhance the thermal radiation
between two surfaces at small gaps by measuring radiation heat transfer between a
microsphere and a flat surface down to a 30 nm separation. The corresponding heat
transfer coefficients at nanoscale gaps are three orders of magnitude larger than that of
the Planck's blackbody radiation limit. This work will have practical impacts in areas
such as thermophotovoltaic energy conversion, radiative cooling, and magnetic data
recording. Next, a new technique is developed to fabricate ultra-drawn polyethylene
nanofibers. We demonstrated that these ultradrawn nanofibers can have a thermal
conductivity as high as ~ 100 W/m.K, which is about a 3 orders of magnitude
enhancement compared to that of bulk polymers. Such high thermal conductivity
polymers can potentially provide a cheaper alternative to conventional metal-based heat
transfer materials. Finally, an experimental setup is presented to directly measure the
spectral absorption of individual micro/nanostructures in applications to solar
photovoltaics. Further refinement on experimental technique and characterization using
the platform will guide the optimization of dimension, shape, and materials selections of
nanostructures in order to maximize the efficiencies of solar cells.

Thesis Supervisor: Gang Chen
Title: Carl Richard Soderberg Professor of Power Engineering



Dedication

To my mother and my wife.



Acknowledgements

The opportunity to study at MIT for the past five years turned out to be one of most

fortunate things in my life. I owe a great deal to the people who helped me throughout

my PhD experience at MIT.

I have to show my foremost and deepest thanks to my thesis advisor and mentor,

Prof. Gang Chen. In 2003, Prof. Chen first picked me from China. Unfortunately, I was

not able to come to US at that time. When everyone including myself thought that I had

missed a chance to admit MIT, Prof. Chen offered me a second opportunity to have me as

his student in 2005. I am eternally grateful for his faith and confidence he showed me

from the beginning. During my PhD study, he was intensively involved in each step of

my research and gave me his guidance. His attitude and strictness on research helped me

grow and become a mature researcher. His passion and optimism on research always

encouraged me to solve hard problems. I am also grateful for his dedication to my career

development. He has been very supportive for my faculty job searching in each aspect,

and helped me find a postdoc position.

I was incredibly fortunate to have Prof. Mildred Dresselhaus, Prof. Borivoje Mikic,

Prof. John H. Lienhard V, and Prof. Marin Soljacic in my thesis committee. Prof.

Dresselhaus is remarkable. Her vision and philosophy on research have always inspired

me to do high-quality work. My thesis was significantly improved by her meticulous and

insightful comments. I really appreciate her time, energy and guidance on my thesis. Prof.

Mikic is a heat transfer expert and was my heat transfer teacher at MIT. His insight and

perspective were extremely helpful in my thesis research. I am also grateful for his

constant encouragement on my thesis work. Prof. Lienhard is a heat transfer expert as

well. The inspirational discussion with him greatly improved my thesis research. His

view on energy research made me more confident on working on this field. Prof. Soljacic

is truly a genius and a role model for junior professors. His expertise and insights on

photonics were particularly instrumental for my thesis research on thermal radiation and

optical absorption. I am also deeply grateful for all their recommendations in my faculty

position applications.



5



I would also like to thank my several former labmates: Dr. Ronggui Yang, Dr.

Arvind Narayanaswamy, Dr. Chris Dames and Dr. Asegun Henry. They are all professors

now and were role models for me. Ronggui mentored my research in the early stages of

my PhD study and later, shared much of his academic experience with me. Arvind is the

one who brought me to the field of bi-material microcantilevers. I am grateful for his

guidance and collaboration on my research. As one of my officemates, Chris shared a lot

of his PhD experience with me and helped me smoothly transition into MIT. Ase's

simulation results inspired me to work on the high thermal conductivity polymers.

Collaborating with him was wonderful and fruitful. He also generously shared his

experience on faculty job searching with me. I owe special thanks to his help and

suggestion.

During my PhD study, I worked on several projects. My first project was funded by

Seagate Technology. It was a great opportunity to work with many hard drive experts

from Seagate: Dr. Cynthia Hipwell, Dr. Manuel AnayaDufresne, Dr. Michael Johnson,

and Dr. Robert Crone. In the Nanonengineeing group of MIT, I worked with many

talented colleagues and benefitted greatly from the interaction with them: Mr. Jonathan

Tong, Prof. Ruiting Zheng, Dr. Anastassios Mavrokefalos, Dr. Shuo Chen, Mr. Poetro

Sambegoro, and Mr. Vazrik Chiloyan.

The Nanoengineering group of MIT was like a big family. The friendly atmosphere

in our group made my student life at MIT much easier and more enjoyable. My labmates

were also a great resource, and I benefitted a lot from the communication and

collaboration with them. I am particularly thankful to my current and previous

officemates: Dr. Tony Feng, Mr. Austin Minnich, Dr. Tom Harris, Dr. Hohyun Lee, and

Ms. Yanjia Zuo.

Finally, I must thank my beloved wife, Xiang. When she married me four years ago,

I was such an ordinary person. She flew across the ocean and supported me to pursue my

dream. When I felt frustrated, even desperate, on the failures of my experiments, she

never minded my complaints and always encouraged me. Without her love, support,

patience, encouragement, and faith in my abilities, this thesis would not be possible. I

hope this thesis can be a gift to her and our unborn baby. I also thank my parents, parents

in law, and sisters for their love and support.



8



Table of Contents

Chapter 1: Introduction............................................................................................. 17

1.1 N anoscale energy transfer .................................................................................... 17

1.2 Outline of the thesis............................................................................................. 22

1.3 References ............................................................................................................... 23

Chapter 2: Bi-material microcantilevers as thermal sensors .................................. 26

2.1 Introduction ........................................................................................................ 26

2.2 Beam theory.............................................................................................................27

2.3 Therm al conductance........................................................................................... 31

2.4 References ............................................................................................................... 39

Chapter 3: Nanoscale thermal radiation: Breaking down Planck's law................41

3.1 Introduction ........................................................................................................ 41

3.2 Theoretical Fram ework....................................................................................... 44

3.2.1 Dyadic Green's function and fluctuation-dissipation theorem.....................45

3.2.2 Local density of states and radiative heat flux ............................................. 48

3.3 Experim ental investigation.................................................................................. 57

3.4 References ............................................................................................................... 68

Chapter 4 : Optical absorption of micro/nano structures for solar energy conversion

........................................................................................................................................... 7 1

4. 1 Introduction ........................................................................................................ 71

4. 2 M ie theory...............................................................................................................73

4.2.1 M athem atical form ulation ........................................................................... 73

4.2.2 N um erical results......................................................................................... 79

4.3 Experim ental investigation.................................................................................. 83

4.4 References ............................................................................................................... 91

9



Chapter 5: High thermal conductivity polymer nanofibers .................................... 93

5. 1 Introduction ........................................................................................................ 93

5.2 Fabrication of ultradrawn polyethylene nanofibers............................................. 96

5.3 Experim ental investigation....................................................................................100

5.3.1 Therm al conductivity m easurem ent system .................. ................................ 102

5.3.2 Proportionality constants ai and a2 ................................................................ 109

5.3.3 Radiation heat transfer between the cantilever and the needle.......................112

5.3.4 Laser power absorbed by the cantilever ......................................................... 113

5.3.5 Therm al conductivity of ultradrawn nanofibers ............................................. 114

5.3.6 Uncertainty analysis ....................................................................................... 118

5.4 References ............................................................................................................. 122

Chapter 6 : Sum m ary and future directions...............................................................125

6.1 Sum m ary................................................................................................................125

6.2 Future directions .................................................................................................... 127

6.3 References ............................................................................................................. 128



List of Figures

Figure 1- 1: Examples of nanostructures for energy research ...................................... 19

Figure 1- 2: Energy transfer in nanostructures ............................................................. 20

Figure 1- 3: AFM bi-material cantilevers with two layers of gold and silicon nitride......22

Figure 2- 1: Microscope image of an AFM bi-material cantilever................................28

Figure 2- 2: (a) Case 1: heat penetrated only at the tip, (b) Case 2: Heat distributed at the

tip ....................................................................................................................................... 2 9

Figure 2- 3: (a) Schematic drawing of the cantilever, laser beam and PSD. (b) Heating is

at the end of the cantilever in vacuum. (c) The cantilever is put in a uniform temperature

bath w ith the heating at the end .................................................................................... 32

Figure 2- 4: Schematic drawing of bending detection system.......................................33

Figure 2- 5: Variation of PSD sum signal with the reflected laser power....................35

Figure 2- 6: The deflection of the cantilever in vacuum due to the change of heating

p o w er ................................................................................................................................. 3 5

Figure 2- 7: The bending of the cantilever measured in the experiment......................36

Figure 2- 8: The deflection of the cantilever due to the change of ambient temperature..37

Figure 3- 1: Thermal radiation between two bodies with different gaps. (a) Far-field

radiation with propagating waves. (b) Evanescent waves at far-field. (a) Near-field

radiation with the contribution from evanescent waves...............................................43

Figure 3- 2: Photon local density of states (LDOS) above an interface between vacuum

and different materials at (a) 10 ptm and (b) 50 nm......................................................49

Figure 3- 3: Real and imaginary parts of the dielectric function of SiC solid...............51



Figure 3- 4: (a) Spectral radiative heat transfer coefficients for two parallel plates

separated by a distance d = 50 nm at T = 300 K; (b) Radiative heat transfer coefficients

versus the distance between two parallel plates at an average temperature T = 300 K. The

plot is on a log-log scale. The black solid line is the limit of thermal radiation predicted

by the blackbody radiation law, where the heat flux is calculated from the Stefan-

Boltzmann law as o( - T2) . The black dashed line is the asymptotic relation at small

g ap s (B /d2). ........................................................................................................................ 5 3

Figure 3- 5: Lm()/ 1+ C 2 versus wavelength for different materials ............................... 55

Figure 3- 6: (a) Radiative heat transfer coefficients versus the distance between two

parallel gold plates at an average temperature T = 300 K. (b) Refractive index n versus

the w avelen gth ................................................................................................................... 56

Figure 3- 7: Resonant and non-resonant heat transfer coefficients between two parallel

plates for SiO 2  - Si0 2 ..................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3- 8: (a) Schematic diagram of experimental setup. The thermal sensor is a silicon

nitride AFM cantilever coated with a 70 nm gold film. Application of voltage to the

piezoelectric translation stage results in the movement of the substrate towards the sphere.

In near-field, surface phonon polaritons can tunnel through the gap and they thus

significantly contribute to the radiative heat transfer. The "cooling" effect on the

cantilever due to the enhanced near-field radiation leads to the bending of the cantilever.

(b) A scanning electron microscope image of a silica (glass) sphere mounted on an AFM

can tilev er. .......................................................................................................................... 6 0

Figure 3- 9: The raw data measured under the laser light with two different power leads.

The typical near-field radiation signal (blue curve) is measured under high laser power,

where each plateau corresponds to a gap size. The force signal (green curve) is measured

under weak laser power. The "contact" between the sphere and the substrate is

manifested by the sharp change of the bending signal (PSD deflection signal)............63

Figure 3- 10: Experimental data from the heat transfer-distance measurement and

comparison with the theoretical prediction from the proximity force theorem (black

curves). Each conductance data point presented here is the averaged value of - 100

measurements with the standard deviation ~ 0.4 nW/K. The experimental error on

distance measurements is the resolution of the piezo system (- 5 nm)........................63



Figure 3- 11: Equivalent sphere-plate near-field heat transfer coefficients normalized to

the area 27cRd versus the gap distance for a 100 pm (blue circles) and a 50 pm (violet

triangles) diameter sphere. The flat line is the limit predicted by Planck's blackbody

radiation law. The dashed line is the near-field heat transfer coefficients obtained after

subtracting the far-field part taken from Fig. 3-4 (b). .................................................. 67

Figure 4- 1: Spherical coordinate system centered on a sphere with a radius a............77

Figure 4- 2: (a) Spectral absorption efficiency factors as a function of the particle size; (b)

Spectral scattering efficiency factors as a function of the particle size.........................80

Figure 4- 3: (a) Spectral absorption efficiency factors as a function of the radius of the

wire; (b) Spectral absorbed power as a function of the radius of the wire. The red dashed

line is m arked at the radius 500 nm ............................................................................... 83

Figure 4- 4: Schematic diagram of experimental setup to measure the optical absorption

of m icro/nanostructures ................................................................................................. 84

Figure 4- 5: Spectral response of the light source at the end of the optical fiber..........85

Figure 4- 6: Spectral absorptance of metallic films. (a) Gold; (b) Aluminum. The

absorptance is calculated using Fresnel formulas for a semi-infinite body at normal

in cid en ce ............................................................................................................................ 8 6

Figure 4- 7: (a) Microscope image of the bi-material microcantilever with a silicon thin

film attached on it; (b) Spectral absorptances of a 2 pm thick silicon thin film. The

absorptance is calculated from Fresnel formulas, assuming the silicon thin film is

sandwiched between two semi-infinite air layers........................................................ 88

Figure 4- 8: A typical deflection signal of the cantilever. Inset: the oscillation of the

deflection signal at a certain wavelength...................................................................... 90

Figure 5-1: Thermal conductivity prediction for a single polyethylene chain from

m olecular dynam ics sim ulation.................................................................................... 94

Figure 5- 2: (a) Bulk polyethylene containing chain ends, entanglements, voids and

defects. (b) Stretched PE microfiber. (c) "Ideal" polyethylene nanofiber with perfectly

aligned m olecular chains. .............................................................................................. 95



Figure 5- 3: Schematic diagram of experimental setup to fabricate ultradrawn nanofibers

........................................................................................................................................... 9 7

Figure 5- 4: Two-step drawing process for fabricating the nanofibers ........................ 99

Figure 5- 5: (a) TEM image of an ultradrawn polyethylene nanofiber. (b) TEM diffraction

image of the ultradrawn polyethylene nanofiber. The arrow represents the drawing

d irectio n ........................................................................................................................... 10 0

Figure 5-6: Schematic diagram of the experimental setup used to measure the thermal

properties of a single ultradrawn nanofiber. The nanofiber drawn from the AFM

cantilever is loosely suspended between a micro thermocouple and the AFM cantilever.

......................................................................................................................................... 10 2

Figure 5-7: Three-junction thermal circuit model for analyzing heat transfer in the

exp erim ent ....................................................................................................................... 104

Figure 5-8: Experimental data measured by varying the absorbed power on the end of the

A F M cantilever................................................................................................................105

Figure 5-9: Experimental data measured by varying the temperature of the thermocouple

......................................................................................................................................... 1 0 7

Figure 5- 10: (a) Reduced deflection signals from Fig. (5-7) versus the absorbed power.

The data is normalized to the deflection signal at Pi. (b) Reduced deflection signals of the

AFM cantilever from Fig. (5-8) versus the temperature of the thermocouple. The data is

normalized to the deflection signal at T1. The data in (a) and (b) are from two repeated

trials on one individual sample and marked as blue circles and green squares,

respectively. The dashed black lines are the linear fits. The error bar is ~ 0.6 mV in (a).

......................................................................................................................................... 10 9

Figure 5- 11: (a) Case 1: configuration and temperature distribution, (b) Case 2:

configuration and temperature distribution.....................................................................111

Figure 5- 12: Experimental data of the radiation heat transfer between the heated needle

and the A FM cantilever...................................................................................................113

Figure 5- 13: (a) Measured reflected power versus the sum signal of photodiode, (b)

Deflection signal versus the sum signal of photodiode...................................................114

Figure 5-14: SEM images of measured nanofiber samples....................116



Figure 5- 15: Thermal conductivities of three samples versus their corresponding draw

ratios. The data of "Microfiber/thin film" are from Ref. 15............................................116



16



Chapter 1: Introduction

1.1 Nanoscale energy transfer

Nanostructured materials have recently drawn a great deal of attention in the field of

energy research such as for solar photovoltaic, thermophotovoltaic and thermoelectric

applications [1, 2]. The energy transport properties of nanostructures can differ greatly

from their bulk counterparts because the characteristic dimensions of nanostructures are

often comparable with the wavelength or the mean free path of energy carriers such as

photons, phonons and electrons [3]. At the nanoscale, the properties of materials can be

engineered to increase the energy density or energy conversion efficiencies.

Let us consider a few examples in the literature in which people have explored

nanoscale effects for energy research. For solar energy conversion, nanostructures such

as nanowires [4] and nanoparticles [5], as shown in Figs. 1-1 (a) and (b), have been

proposed to strongly scatter photons because their dimensions are comparable with

photon wavelength, and therefore more light can be absorbed. On the other hand,

nanostructured semiconductors can work as the active layer of solar cells. Due to the

small dimension of the nanostructures, they can also increase the charge collection

efficiency for solar cells [4]. Thermophotovoltaic and thermoelectric systems are both

capable of directly converting heat into electricity to harness heat sources such as



geothermal heat, solar heat and waste heat dissipated in energy conversion processes. In

the case of thermophotovoltaics [6], photons are emitted from various heat sources, and

photovoltaic cells are then used to convert infrared photons into electricity. In Fig. 1-1 (c),

a microscopic spacer is designed by the company MPTV (Micron-gap Thermo

Photovoltaics) to support photovoltaic cells in order to achieve a nanoscale gap between

the heat source and photovoltaic cells [7]. In this design, the photon flux across the

nanoscale gap can be increased by several orders of magnitude over the prediction from

Planck's blackbody radiation law. In Chapter 3 of this thesis, this topic will be discussed

in more detail. Thermoelectric materials are similar with thermocouples which utilize the

temperature difference to generate electricity [8-11]. Their conversion efficiencies are

determined by the Figure of Merit ZT

ZT = (1-1)
k

where S is the Seebeck coefficient that is a measure of the magnitude of an induced

thermal electric voltage in response to a temperature difference, - is the electrical

conductivity, k is the thermal conductivity, and T is the average temperature. A

thermoelectric material with a good efficiency, for example, 20 % will have a large

Seebeck coefficient to maximize the induced voltage, a large electrical conductivity to

minimize the joule heating, and a small thermal conductivity to minimize the heat loss

from the hot side to the cold side. As theory predicts in Fig. 1-1 (d), when the structure

becomes smaller, the Figure of Merit is higher [11]. This is because, as the size of the

structure becomes smaller, its boundaries can strongly scatter phonons for heat

conduction and therefore reduce the thermal conductivity [8, 9]. From these examples



discussed above, apparently, being able to exploit such nanoscale effects holds great

potential in the field of energy research.

(a) (b) SiNrantireflective coating

particles

CdS
CdTe oj'

Cu/Au nanop Ilar *0
contact AAM 25p t ld

500 g00 1,
PDMS \ contact A 800 100 \Agmback-reflector

(Fan, Nature Mat., 2009) (Kelzenberg, Nature Mat., 2010)

(d)

10

ZT

5

0

(MPTV)

10 20
Wire Size (nm)

(Sun, Appl. Phys. Lett., 1999)

Figure 1- 1: Examples of nanostructures for energy research

One big challenge at the nanoscale is that the amount of energy transfer is very

small. For a nanoparticle with a diameter of 100 nm shown in Fig. 1-2 (a), its absorption

under solar radiation (1000 W/m 2) is ~ 10 pW by simply using its cross sectional area

multiplied with the incident power. For a nanowire with a length of 10 ptm and a diameter

of 100 nm, its absorption under solar radiation is ~1 nW. If we consider the heat



conduction through the same nanowire and assume its thermal conductivity to be 100

W/m.K (Fig. 1-2 (b)), its thermal conductance is ~1 nW/K. For two disks with a

diameter of 10 1.lm in Fig. 1-2 (c), the thermal conductance of radiative heat transfer

between them is ~ 10 nW/K when the gap size is 100 nm. Thus, due to the small

dimension and the small magnitude of energy transfer, probing nanoscale energy transfer

is extremely challenging.

(a) Optical absorption

~ 1,000 W/m2

(b) Heat conduction

T1

T2
k= 100 W/m. K

(c) Thermal radiation

Figure 1- 2: Energy transfer in nanostructures

Many existing techniques to measure energy transfer are often too insensitive to

detect such small amounts of energy transfer. Shi and his coworkers [12-15] used

microfabrication to create a device with two platforms suspended on long and slender

silicon nitride beams, and demonstrated that such a device is capable of measuring



thermal conductivities of single nanowires or nanotubes. Each platform has a serpentine

metallic heater which is also used as resistance thermometers to measure the temperature

of the platform. Fujii et al. [16] used electron beam lithography to pattern a thin metallic

line heater as a thermal sensor. A manipulation probe built in scanning electron

microscope is used to suspend a nanotube between the line heater and a heat sink.

Recently, Dames et al. [17] developed a hot-wire probe inside a transmission electron

microscope to measure the thermal resistance of individual nanowires, nanotubes, and

their contacts. One technique presented in this thesis which is able to probe nanoscale

energy transfer is based on atomic force microscope (AFM) measurement. An AFM bi-

material cantilever is used as a sensor. This bi-material cantilever, for example, has two

layers with different thermal expansion coefficients: one is gold, the other is silicon

nitride. When the temperature distribution along the cantilever changes, gold and silicon

nitride layers will generate different amounts of thermal expansion and correspondingly

different strain, causing the cantilever to bend. By using a laser beam to detect the

bending of the cantilever in Fig. 1-3, we can measure the heat transfer to the cantilever.

Such cantilevers had been demonstrated by previous authors to measure the temperature

changes as small as 10- K, the power as small as 100 pW [18-19]. People have also

developed infrared detectors [20, 21] and scanning thermal microscopes [22] based on

these cantilevers. In this thesis, I will use these cantilevers as a platform to explore

extraordinary energy transfer at the nanoscale including near-field radiation at nanoscale

gaps, thermal conduction through a polymer nanofiber, and optical absorption of

nanostructures.
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Figure 1- 3: AFM bi-material cantilevers with two layers of gold and silicon nitride

1.2 Outline of the thesis

The purpose of this thesis is to extensively discuss the physics of three nanoscale energy

transfer phenomena: near-field radiation, high thermally conductive polymers and optical

absorption of nanostructures and develop their corresponding experimental solutions to

measure their magnitudes of energy transfer.

Chapter 2 describes the general beam theory that is used to model thermo-

mechanical responses of bi-material cantilevers. Based on the beam theory and the

thermal analysis of a bi-material cantilever, the effective thermal conductance of the

cantilever and the temperature at the tip of the cantilever are determined by measuring the



bending of the cantilever in response to two different thermal inputs: power absorbed at

the tip and the ambient temperature.

Chapter 3 discusses the near-field radiation in which the gap size between two

bodies is smaller than the photon wavelength. The theoretical framework of near-field

radiation is presented based on fluctuational electrodynamics theory. At nanoscale gaps,

the near-field radiation is experimentally demonstrated to far exceed the prediction from

Planck's blackbody radiation.

Chapter 4 theoretically evaluates the optical properties of a single nanoparticle or

nanowire by Mie theory. A new experimental setup is presented to directly measure the

spectral absorption of micro/nanostructures in applications to solar photovoltaics.

Chapter 5 develops a new technique to fabricate ultradrawn polyethylene nanofibers.

These nanofibers are experimentally demonstrated to have a thermal conductivity as high

as ~ 100 W/m.K, which is ~ 3 orders of magnitude enhancement compared to that of bulk

polymers.

Chapter 6 summarizes the main contributions of this thesis and identifies the future

directions.
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Chapter 2: Bi-material microcantilevers

as thermal sensors

2.1 Introduction

The bi-material microcantilever considered in this thesis consists of two layers which are

made from two materials with different thermal expansion coefficients, such as Si3N4 and

Au, or Si and Al, or Si and a polymer [1-3]. When the temperature of the microcantilever

changes, the different amounts of thermal expansion generated by the two layers cause

the cantilever to bend. Thus, the microcantilevers can be used as temperature and heat

flow sensors [4, 5]. Besides the thermal expansion coefficients of two materials, the

sensitivity of the bi-material microcantilever also depends on its dimensions, mechanical

properties and thermal properties, such as Young's modulus, thermal conductivities and

heat capacities [1, 2]. A typical commercially available bi-material microcantilever is the

Si3N4 atomic force microscope (AFM) cantilever (200 pm long and 0.6 pum thick) coated

with 70 nm gold film.



Bi-material cantilevers were first introduced as a calorimeter to measure the heat

generated in chemical reactions [4]. The same device was demonstrated to be sensitive

enough to measure a power as small as 100 pW or an energy of 150 fJ in photothermal

measurements due to its small size and thermal mass [2, 6]. Bi-material cantilevers were

also used as IR detectors [7, 8] or as scanning thermal imaging probes [9]. In this chapter,

the thermo-mechanical properties of bi-material microcantilevers are characterized.

Section 2.2 introduces the beam theory for modeling bi-material slabs. Based on the

beam theory, an experimental technique is developed in Section 2.3 to determine the

thermal conductance of the microcantilevers.

2.2 Beam theory

Figure 2-1 shows a microscope image of a silicon nitride cantilever beam used in our

study. The cantilever is coated with a 70 nm thick gold film and has a length of 200 pm

and a thickness of 600 nm, and two arms with a width of 30 pm. The triangular shaped

cantilever is modeled as a rectangular beam for the sake of simplicity. Using beam theory,

the deflection of a bi-material strip with different thermal expansion coefficients can be

solved from the following differential equation [2, 6]

d 2 Z = 6(72 -71) 2 (T(x) - To), (2-1)
dx2  t2K

where Z(x) is the vertical deflection at a location x, y is the thermal expansion coefficient,

t is the thickness of the layers, T(x) is the temperature distribution along the cantilever, To



is the reference temperature at zero deflection, K is a constant defined by the thickness

ratio (t/t2 ) and the Young's modulus of the layers as
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where e is Young's modulus. The boundary conditions for the differential equation Eq.

(2-1) are Z(l) = 0, and dZ(1)/dx = 0 since the base of the cantilever is fixed at x=l,

where I is the length of the cantilever. The subscripts 1 and 2 refer to the two layers: "1"

for Au and "2" for Si 3N4. Obviously, the temperature distribution of (T(x) TO) must be

determined to solve the deflection Z(x) from Eq. (2-1). Here, the temperature difference

in the thickness direction is negligible because the thickness of the cantilever is much

smaller than its length.

Figure 2- 1: Microscope image of an AFM bi-material cantilever

To determine the temperature distribution along the cantilever, let us consider one

example where a laser beam, as a heat source, illuminates at the tip of the cantilever. The

laser beam is also used to detect the deflection of the cantilever. During our following



experiments, the area of the laser spot (- 20 pm x 20 pim) on the cantilever is usually

observed. Two cases will be considered: (1) the assumed case that all the heat from the

laser is absorbed at one point and (2) a finite distribution of heat across some

length, '1 = 20pm from the tip, as shown in Fig. 2-2. The heat loss from the cantilever

due to heat convection and radiation is assumed to be negligible compared to the

absorbed heat from the laser.

(a)

P (W) Au
Case 1

(b)

Figure 2- 2: (a) Case
tip

;77 7

r P (W/m)
Case 2

1: heat penetrated only at the tip, (b) Case 2: Heat distributed at the

For case 1 (Fig. 2-2 (a)), the temperature distribution is linear along the length,

(2-2)

where P is the total heat absorbed in the cantilever, 1 is the length of the cantilever, w is

the effective width of the cantilever, and k, is the thermal conductivity for layer i. For

(T(x) - T), = (1 - x) w(kit, + k2t2) ,'



case 2 in Fig. 2-2 (b), the temperature distribution can be described by a piece wise

distribution where T(l) - To = 0 and continuity is assumed at 11,

P 1-,1 x2 :
_ f [ F --1 ;0 x 1l

w(k1t1 + k2t2 ) 2 2l(T(x) -T) 2 - . (2-3)

It can be observed that a distinct parabolic region exists near the tip of the cantilever. But

overall, this distribution is approximately linear because 11 << 1.

Given these temperature distributions, integration of Eq. (2-1) will yield a tip

displacement Z(0), which can be compared between both cases to test how close they are.

For case 1, integration using Eq. (2-2) will yield,

Z1(0) = Cl3, (2-4)

Similarly, for case 2, integration using Eq. (2-3) yields,

3 + 3
Z2 (0) =6C 1 - (2-5)
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where,

t1 +t 2  P

C =( 2 -YO) tK w(k 1t,+k 2t2 )

Upon substitution of known values, the tip displacements become Z, (0)= 8 x 106C

and Z, (0) = 7.998 x 106 C . As observed, the assumed case where all incident heat is

incident at the tip only differs by the more realistic case by 0.025 % uncertainty. Hence,

based on this analysis, the assumption that all the heat is incident at a point is validated

for an approximation.



2.3 Thermal conductance

Although the bi-material cantilevers are often used as temperature or heat flux sensors,

the exact temperature at the tip of the cantilever is usually unknown. Directly measuring

the temperature is difficult due to the small geometry of the cantilever structure. To find

out the temperature of the cantilever, one should obtain the thermal conductance of the

cantilever. However, since the thermal properties of the two layers of the cantilever are

dependent on their thickness, one cannot rely on theoretical calculation. In this section,

one technique is developed to determine the thermal conductance of the cantilever by

measuring the bending of the cantilever in response to the variations of the absorbed

power at the tip and the ambient temperature [10].

As shown in Fig. 2-3 (a), a semiconductor laser beam is focused on the tip of the

cantilever and reflected onto a position sensing detector (PSD). The deflection of the

reflected laser beam spot on the PSD is used as a measure of the deflection of the

cantilever. A part of the laser power is absorbed by the cantilever and thus creates a

temperature rise at the end of the cantilever. The output of the PSD is converted into an X

or Y signal corresponding to the position of the laser spot on the PSD and a sum signal

proportional to the incident laser power on it.
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Figure 2- 3: (a) Schematic drawing of the cantilever, laser beam and PSD. (b) Heating is
at the end of the cantilever in vacuum. (c) The cantilever is put in a uniform temperature
bath with the heating at the end.

First, let us consider the deflection of the cantilever in vacuum when the absorbed

power by the cantilever is changed. As shown in Fig. 2-3 (b), the temperature profile in

the steady state is

T(x) -To = 1 , (2-6)

where G is the effective thermal conductance of the cantilever and P is the absorbed

power. Based on the temperature distribution, the slope of the cantilever at the tip,

namely the bending angle at the tip because the bending angle is tiny, can be determined

using Eq. (2-1) to be dZ(O)/dx = - 3lPH/G , where the constant H is



H = (2 - 7 )(t + t2 )/t2 K . As the deflection angle of the cantilever is very small, the

slope at the tip is approximately equal to half the deviation angle of the reflected beam as

0 = dZ(O) / dx = 0.5Ad / s, where Ad is the displacement of the reflected laser spot on

the PSD, s is the distance between the cantilever tip and the PSD [11], as shown in Fig. 2-

4. Thus, the deviation Ad or the slope dZ(O)/dx is what is actually measured [12, 13].

The sensitivity of the cantilever to the absorbed power can be theoretically expressed

as S, = (Ad)/8P = - 6slH/G . Since the thermal conductivity of thin films can be

significantly lower than their corresponding bulk value, the sensitivity cannot be

calculated directly [14]. However, it is possible to estimate the time constant for thermal

relaxation to ensure that the time scale for measurements below is long enough to reach a

steady-state deflection. The time constant of the cantilever was predicted to be

approximately 1 millisecond by r =2 ti + P2C2 t2 , where p is density, and C is
3 k t 1+k 2 t2

specific heat [2].

Laser beam
S

Photodiode

Figure 2- 4: Schematic drawing of bending detection system



In order to determine the heat absorbed by the cantilever, the absorptance of the

cantilever to incident radiation needs to be known. A power meter (Newport, Model:

818-UV) is used to measure the radiant power in the incident beam (1.66 mW, 650 nm

wavelength), the reflected beam (1.25 mW) and the strayed beam (0.20 mW). Thus, the

absorbed power by the cantilever is calculated to be 0.21 mW by (1.66 mW-1.25 mW-

0.20 mW). The strayed beam is defined as the beam passing through the unblocked area

of the cantilever and is measured behind the cantilever perpendicular to the laser

incidence direction. We also put the power meter very close to the cantilever at different

locations around the cantilever to measure the scattered light from the cantilever. The

scattered light intensity was measured to be negligibly small because the cantilever is

very thin and flat. During the experiments, it is not the incident light that is measured but

the reflected light. The ratio of absorbed to reflected light is 0.168, which is calculated by

the ratio of 0.21 mW and 1.25 mW. These numbers can vary depending on the shape of

the cantilever and optical arrangement. In Fig. 2-5, the PSD sum signal of the reflected

light is plotted as a function of the reflected laser power. The linear relationship between

them corresponds to a slope of 0.6436 mW/V. The absorption of the cantilever can be

calculated from the PSD sum signal as 0.168 x 0.6436 x (PSD sum signal). Finally, the

PSD deflection signal versus the absorbed power is shown in Fig. 2-6, which gives the

measured sensitivity S, to be -0.0928 V/pW. In our experiment (Fig. 2-7), the heat

absorbed from the laser beam heats up the cantilever and causes an initial bending 31 on

its tip, which is used as the starting point for subsequent changes to the system. For

example, when the absorbed power by the cantilever changes, the heat flux conducted by

the cantilever changes its temperature and leads to the bending 32. What we measured



directly during the experiment, via the photodetector, is the relative change (61- (2) of the

bending on the cantilever tip. The measurement is intrinsically differential since the

initial deflection of the cantilever is already recorded by the photodetector.

0.9
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Figure 2- 5: Variation of PSD sum signal with the reflected laser power
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Figure 2- 6: The deflection of the cantilever in vacuum due to the change of heating
power
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Figure 2- 7: The bending of the cantilever measured in the experiment

The above experiments give the deflection of the laser beam as a function of the

input laser power. Next, consider the deflection of the cantilever when the incident power

is kept a constant, but the ambient temperature is varied. In Fig. 2-3 (c), the cantilever is

in a gaseous environment with a temperature Tb. The support of the cantilever is assumed

to have the same temperature Tb. In this case, the cantilever still has a nonuniform

temperature distribution due to the incident probing laser beam at the tip. We will show,

however, that the existence of such a nonuniform temperature distribution does not

matter. Since the composite layer of the cantilever is very thin compared with its length,

it is treated as a "fin" with a natural convention heat transfer coefficient h. As shown in

Fig. 2-3 (c), the temperature profile in this case is non-linear,

P Sinh[/(l - x)]
T(x)-T - ,(2-7

G /3lCosh(31)

where P is the fin parameter defined as 2h(w +t + t 2 )/lG and w is the effective width

(w ~ 60 pm). The natural convective heat transfer coefficient is predicted to be 500

W/m.K or even larger because of the small geometry of the cantilever [15]. The

corresponding slope at the end of the cantilever is given by



dZ(0) P T - Sech(p6l))1.
=-6H[(T,-0)+ .1 2 (2-8)

dx G /2 J

Thus, the sensitivity of the cantilever to the ambient temperature variation is obtained

byST = a(Ad)/aTb = -12sHIl . The conductance G is found to be G = 0.5ST/S [10].

To measure the sensitivity to the ambient temperature, we place the experimental

set-up inside the bell jar of a vacuum chamber and used a hair dryer to increase the air

temperature inside. Once the hair dryer is turned off, the experimental set-up naturally

cools. A K-type thermocouple is attached to the chip that holds the cantilever to measure

the ambient temperature change. After an initial rapid temperature change, the

temperature recorded by the thermocouple shows a slow exponential decay

( 1.11 x10- K/s). The variation of temperature at the base is slow enough compared to

the time constant of the cantilever that the steady state approximation is valid. Figure 2-8

shows that the PSD deflection signal varies with the ambient temperature. Clearly, the

slope of PSD deflection-temperature curve gives the sensitivity of the cantilever to the

ambient temperature ST, -0.8388V/K.

3
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Figure 2- 8: The deflection of the cantilever due to the change of ambient temperature



Based on Sp and ST, the effective thermal conductance of the cantilever G is

determined to be 4.50 pW/K. Using the dimensions of the cantilever and assuming the

thermal conductivities of the Si 3N4 and Au films to be 2.5 W/mK and 190 W/mK,

respectively, the theoretical value of thermal conductance is estimated to be around 5.88

pW/K. We point out that the thermal conductivities of Si 3N4 [16] and Au [17] films used

here are smaller than their bulk values due to grain-boundary and boundary scattering.

The agreement between measurement and estimation is reasonable as the exact values of

the thermal conductivities for both layers are not known accurately. Once the power

absorbed by the cantilever is known, the temperature difference between the tip and the

ambient can be obtained from Eq. (2-6). For example, when the PSD sum signal of the

reflected light is 1.80V, the absorbed power is given by 0.168 x 0.6436 x 1.80 ~ 194.6

,pW, and the temperature difference is 43.1 K.

In summary, we use simple beam theory and the thermal analysis of a bi-material

cantilever to demonstrate that the effective thermal conductance of the cantilever can be

determined by measuring the sensitivities of the cantilever to variations in the absorbed

power and the ambient temperature. This method does not rely on the knowledge of the

geometric parameters of the cantilever, such as the length or thickness of either layer,

which could vary from cantilever to cantilever. Our experimental results on a Si3N4/Au

bi-material cantilever are in agreement with expectations.
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Chapter 3: Nanoscale thermal radiation:

Breaking down Planck's law

3.1 Introduction

Any object with a temperature larger than zero Kevin emits thermal radiation. Physically,

thermal radiation originates from the thermal oscillations of charges inside the body. For

a material at thermal equilibrium, charges such as electrons in metals or ions in polar

crystals undergo random thermal oscillations and generate fluctuating currents. A body

with a temperature T can be regarded as a medium with random currents which radiate an

electromagnetic field [1-3]. Hence, the thermal radiation emitted from a body is

essentially electromagnetic waves which are generally governed by Maxwell's equations.

When the characteristic length scales of objects are larger than the wavelength of

thermal radiation, the radiative heat transfer between two bodies is modeled by classical

radiative transfer theory based on Planck's blackbody radiation law [4]. In Fig. 3-1 (a),

two semi-infinite bodies with different temperatures are placed in vacuum and separated



by a gap of length d. Let us first consider the "far-field" radiation in which the gap

distance between two bodies is much larger than the wavelength of thermal radiation, as

given by Wien's displacement law [5]. When the incident angle of the electromagnetic

wave originated within one body is smaller than the critical angle, the wave is reflected at

the interface of the body and transmitted out into vacuum. Then the transmitted wave can

propagate and reach the other body, thus transferring energy between them. The radiative

heat transfer between these two bodies can be calculated by the classical ray tracing

method. In this case, blackbody radiation gives the maximum of heat radiation between

them. When the incident angle is larger than the critical angle in Fig. 3-1(b), the

phenomenon of total internal reflection occurs where the transmitted wave becomes

evanescent. In this case, the electromagnetic field of the transmitted wave decays

exponentially across the vacuum gap. Since the gap distance is much larger than the

wavelength, the evanescent wave will totally attenuate across the gap and not contribute

to the heat transfer between the two bodies. In the "near-field" radiation shown in Fig. 3-

1 (c), if two bodies are brought closer such that the gap is smaller than the wavelength,

the evanescent wave can tunnel through the gap and enhance the radiative energy transfer

between the two bodies. Apparently, Planck's law only deals with propagating waves and

fails to predict the contribution from evanescent waves.
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Figure 3- 1: Thermal radiation between two bodies with different gaps. (a) Far-field
radiation with propagating waves. (b) Evanescent waves at far-field. (a) Near-field
radiation with the contribution from evanescent waves.



In this chapter, near-field thermal radiation is experimentally and theoretically

demonstrated to far exceed (~3 orders of magnitude) predictions by Planck's blackbody

radiation law. Our work demonstrates conclusively the breakdown of Planck's law at

nanoscale gaps. Section 3.2 introduces the theoretical framework about near-field

radiation. Section 3.3 describes our experimental techniques to demonstrate the

enhancement of near-field radiation.

3.2 Theoretical Framework

Although Planck's blackbody radiation is often considered as the maximum of heat

radiation between two surfaces, Planck himself recognized that the law bearing his name

is not valid when the characteristic length scales are comparable to or smaller than the

wavelength of thermal radiation [4]. Tien and his coworkers first theoretically

investigated the enhancement of thermal radiation between two closely spaced bodies [6].

The theoretical foundation of near-field radiation was established by solving Maxwell's

equations based on fluctuational electrodynamics theory in which the source of thermal

emission is the thermal fluctuation of random currents [1]. The whole theoretical

framework has been employed by previous authors to study near-field radiation between

the surfaces of metals [7], dielectrics [8-10] and semiconductors [11]. To obtain the

electromagnetic field radiated by the random currents, we need to know: (i) the radiative

response due to a point source (a random current), which is given by the dyadic Green's



function; (ii) the statistical properties of the random currents, which is given by the

fluctuation-dissipation theorem [2].

3.2.1 Dyadic Green's function and fluctuation-dissipation theorem

Let us first recall Maxwell's equations governing the electromagnetic response at a

frequency co [12]:

V x 5(F, c)= ico(F, co), (3-1)

V x H(F, co) = -icoD(F, co) + J(F, co), (3-2)

V -(F, co)= p, (3-3)

V -(, co)= 0 , (3-4)

where E is the electric field, H is the magnetic field, D is the electric displacement, B is

the magnetic flux density, J is the current density, and p is the charge density. In this

following, all the materials are assumed to isotropic and nonmagnetic, and have a linear

response, as shown below. One can define the constitutive relations as

D = 808t, (3-5)

B =popH, (3-6)

where e is called the dielectric function or relative permittivity, p is the relative

permeability which is equal to 1 for nonmagnetic media. In general, e is complex and

frequency dependent, e(o) = e'(co) + ie"(co), and it is related by the complex refractive

index ii(co) = n(co) + iK(co) by ii = V., where n, K are called the optical constants of

materials ( K is also sometimes called the extinction coefficient), and can be



experimentally determined by reflectivity measurement. A very useful database of optical

constants for solids is available in the handbook edited by Palik [13]. The dielectric

function c can be also derived based on classical theories. For example, the dielectric

function of metals can be described by a Drude model [14]

2

) op- (3-7)
c2 + irco

where e is the dielectric function at high frequency, o, is the plasma frequency

and T accounts for the losses or damping. For polar dielectrics, their dielectric function

can be modeled by a Lorentz model [15]
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E(O)=6 1 + CLO- , (3-8)
COTO - 0 -I ir

where oLO and coTO are the longitudinal and transverse optical phonon frequencies.

In the Green's function method to solve Maxwell's equations, the electric field

E(F, o) and the magnetic field H(F, co) outside a medium containing the sources are

given by [16, 17]

5(F, c) = iuoo4, G (F, F', o) -J(F', o)d 3 F', (3-9)

H(F, o) = JG (FF', wc) -J(F', w)d 3 F', (3-10)

=E =H

where G (F, F', co) and G (F, F', o) are the dyadic Green's functions due to the point

source at F' , J(F',co) represents the fluctuating current source, and po is the

=E =H
permeability of vacuum. G (F, F', co) and G (F, F', o) are related by

=H =E
G (7, ', co) = V x G (F, ', o). (3-11)



The radiative heat flux can be determined

vector (5(F, c)) = Re( x H*), where the bracket ( )denotes the statistical ensemble

average. To calculate the Poynting vector, we need to calculate the component of (, ,

where the * denotes the complex conjugate, and i, j refer to the different Cartesian

components. In terms of the dyadic Green's functions from Eqs. (3-9) and (3-10), the

component (5,fl can be written as:

(5, (, co)H (F, co)) = o d 37' " d 3) (F, F', )j (F", o)(J(F', co)J 1 (F", )) (3-12)

Although the time average of fluctuation currents is zero, its autocorrelation is not zero,

and is related to local temperature T and the imaginary part of the dielectric constant

" through the fluctuation-dissipation theorem [1, 18, 19]

(Jk(, c)J*"F = 0  '( ( T) 7r 6 (' -F"), (3-13)

11
where so is the permittivity of vacuum and &(co, T) = h + ) -. The

_2 exp(hco/kBT)-1

correlation of fluctuating currents only relates to the imaginary part of the dielectric

function which corresponds to the dissipation of energy. k, indicates the fact that there is

no coupling between two orthogonal fluctuating currents for an isotropic medium, and

(5(F'- F") is the Dirac delta function due to a point source. Substituting Eq. (3-13) into Eq.

(3-12), we obtain:

(ti (F, w)H (F, co)) d w (F, F', c', c). (3-14)
7pw r8(a)() f FF, (F '

by the Poynting



Based on Eqs. (3-9) and (3-10), we can similarly calculate the density of electromagnetic

energy which is the sum of the electrical energy and the magnetic energy

(U(F, w)) = (F, co) + (F, ) 2). (3-15)

Using statistical physics, the electromagnetic energy density for a system with an

equilibrium temperature T can also be written as the product of the density of states and

the mean energy of a state at the temperature T

(U(F, co)) = p(F, co) ho (3-16)
exp(hco/kBT)-l

where p(F,co)is defined as the "local" density of states (LDOS) [20]. In far-field, the

LDOS is independent of the location and is equal to that in vacuum, whilst it is a function

of the location in near-field. In vacuum, the photon energy density is presented by

2c 2
Planck's law as(U(F, co))= , where is the photon density of

r 2 c 3 exp(h/kBT2 3

states in vacuum which is a constant [21, 22].

3.2.2 Local density of states and radiative heat flux

Once the dyadic Green's function for a given geometry is known, the radiative heat

transfer and the electromagnetic energy density can be numerically calculated. Figure 3-

2 shows the calculated local density of states (LDOS) in vacuum at 10 pm and 50 nm

above an interface between vacuum and three different materials: silicon dioxide (glass),

doped silicon and gold. Here, we only plot the values in the infrared range for the interest

of thermal radiation, and these three materials are assumed to be at 300 K. In the near-

field shown in Fig. 3-2 (b), the LDOS is much larger than the far-field LDOS (Fig. 3-2



(a)) at all wavelengths due to the contribution of evanescent waves. This means that there

are more photon modes in the near-field, and thus radiative heat transfer can be enhanced.

In particular, the large peaks in the local density of states (Fig. 3-2 (b)) are observed near

the surface of silicon dioxide at certain wavelengths, which results from the presence of

surface phonon polaritons. And those peaks correspond to the resonance of surface

phonon polaritons.
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Figure 3- 2: Photon local density of states (LDOS) above an interface between vacuum
and different materials at (a) 10 pm and (b) 50 nm
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The surface phonon-polariton, which originates from the resonant coupling between

the electromagnetic field and optical phonons in polar dielectrics such as SiC, Si0 2 , and

BN, is the infrared counterpart of the surface plasmon-polariton which usually exists on

metal surfaces in the visible and ultraviolet range. In both cases, these surface waves

share the following properties: they are modes of the system that can be resonantly

excited; they are characterized by large energy densities at the interface, which decay

rapidly with distance from the surface [23-24]. The dispersion relation (co vs. k relation)

for such surface waves can be obtained from the solution of Maxwell's equations and

their corresponding boundary conditions [25],

kl = - , (3-17)
C 61+, 2

where kH is the wavevector along the surface. Equation (3-17) shows that a singularity

exists ate, = -E2, at which a large density of states exist, and the surface energy density

is extremely high. This is also called as a "resonant effect". In the case that one medium

is vacuum, the resonance condition becomes si = -1. Since surface phonon polaritons

exist in the infrared range, they can be thermally excited, and they significantly

contribute to thermal radiation. Figure 3-3 shows the real and imaginary parts of the

dielectric function of SiC, where the frequency is normalized to the longitudinal optical

phonon frequency. The real part of the dielectric function becomes negative between the

transverse and longitudinal optical phonon frequencies. Pendry [10] discussed the

maximized heat flow for thermal radiation using quantum information theory and derived
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In Fig. 3-2 (b), the large peaks in the LDOS are observed near the surface of silicon

dioxide at certain wavelengths ( A 8.5pum and A ~ 20.3pm for glass) that correspond to

surface phonon-polariton resonances. Silicon dioxide SiO 2 (glass) is a polar dielectric

material that can support surface phonon polaritons, although compared to crystalline

polar materials such as SiC, the resonance is broadened due to stronger damping in

amorphous materials. Silicon and gold surfaces, however, do not exhibit any strong

resonant excitation peaks in the spectral region under consideration. These surface waves

on a SiO2 surface decay rapidly as we move away from the interface. Hence, despite the

high energy density near the interface (Fig. 3-2 (b)), these surface waves do not lead to

far-field emission. When another surface is brought close by, the surface waves can

tunnel from one side to the other, contributing significantly to heat transfer. Figures 3-4

Re(E)
Im(C)



(a) and (b) show, respectively, the spectral and total radiative heat transfer coefficients

defined as the net radiative flux (per unit wavelength interval for spectral heat transfer

coefficients) divided by the temperature difference between two parallel plates made of

different material combinations (SiO 2-SiO 2, SiO 2-Si, and SiO 2-Au). Resonant peaks

similar to those seen in Fig. 3-2 (b) appear for the case of SiO 2 - SiO 2 (Fig. 3-4 (a)), and

thus the radiative heat transfer (Fig. 3-4 (b)) can be significantly enhanced. At nanoscale

gaps, near-field radiation can be several orders of magnitude larger than the blackbody

radiation limit [8].
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Figure 3- 4: (a) Spectral radiative heat transfer coefficients for two parallel plates
separated by a distance d = 50 nm at T = 300 K; (b) Radiative heat transfer coefficients
versus the distance between two parallel plates at an average temperature T = 300 K. The
plot is on a log-log scale. The black solid line is the limit of thermal radiation predicted
by the blackbody radiation law, where the heat flux is calculated from the Stefan-

Boltzmann law as o(T,4 - T2) . The black dashed line is the asymptotic relation at small

gaps (B/d2).

However, in Figs. 3-4 (a) and (b), the radiation enhancement in the cases of SiO2 -

Si and Si0 2 - Au is much smaller than that between Si0 2-SiO 2 . To further explain those

trends, we asymptotically expand the spectral radiative heat transfer coefficients as [2, 8]

hR() _kB hc 2 Im(2 1)Im(e 2 ) e c B

h c2d 2 AkBT + 11e 2 2 (ehc/laT -1)2 (3-18)

where d is the gap size, T is the temperature, 2 is the wavelength, E, and e are the

dielectric constants of two materials, Im(e)/ 1+'6 2 is the imaginary part of the Fresnel

reflection coefficient for waves with large in-plane wavevectors. According to Eq. (3-18)

equation, we find that the near-field spectral radiative heat transfer coefficients are

inversely proportional to the square of the gap distance, as shown in Fig. 3-4 (b). Near-

field radiation is also strongly material-dependent. In Fig. 3-5, the factor Im(E)/|1 + E12 for

different materials is plotted as a function of wavelength. The factor Im(e)/|1+6|2 for

glass has singularities at the wavelengths ( A ~ 8.5pm and 2 20.3pwm ) determined

by Re(s) = -1, which corresponds to the surface phonon-polariton resonances. Hence, the

heat transfer enhancement is stronger for Si0 2 - Si0 2 because the resonances on these two

surfaces coincide with each other. Gold, like many metals, can support surface plasmon-

polariton, which is the resonant excitation due to the coupling of free electrons with an

electromagnetic field. But the plasma frequency of gold is in the near ultraviolet range.



So we cannot observe any resonance of surface plasmon-polariton in the infrared range

for gold. For the near-field radiation between two parallel metallic surfaces, Chaputis et

al. [26] demonstrated that s-polarized evanescent waves dominate the heat transfer rather

than the p-polarized surface-wave dominance in dielectrics. Compared with gold, the

plasma frequency of doped silicon can be adjusted to the infrared region with doping.

Thus it may support surface plasmon polaritons in the spectral region under consideration,

which can thus contribute to near-field radiation. The requirement for the resonance of

surface plasmon-polariton between vacuum and a medium is that Re(e) = -1 and

Im(E) (absorption) is not too large [27]. For doped silicon, Re(s) can be negative in the

infrared region, but its surface plasmon-polariton resonance peak shown in Fig. 3-5 is

highly damped and very broad because Im(e)is large. On the other hand, the resonance

of surface phonon-polariton on the glass side is much narrower and almost

monochromatic. In the wavelength range where the surface phonon-polariton of glass

overlaps with surface plasmon-polariton of silicon, the energy density on the silicon side

is small. This is why we cannot observe higher flux using a silicon substrate in Fig. 3-4

(b). In conclusion, the mismatch of materials' properties in SiO2 - Si or Si0 2 - Au offsets

the resonance effects from the Si0 2 surface and results in a smaller enhancement on

radiative heat transfer than the case in Si0 2- Si0 2 .
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Figure 3- 5: Im(E)/ 1+ 2 versus wavelength for different materials

Besides the resonance effects of surface phonon polaritons, it is well known that

non-resonant evanescent waves can contribute to near-field radiation for any material [6,

10]. For an optical medium with a refractive index n and a negligible extinction

coefficient K, the blackbody power spectral density of a medium is n2 times larger than

that of free space because the photon density of states in the medium is increased by a

factor n', and the speed of light is decreased by a factor of 1/n . Hence, the upper limit of

the near-field radiation between two parallel plates made from the medium is

q = n2 (14 - T4), where - is the Stefan-Boltzmann constant, T is the temperature.

Figure 3-6 (a) and (b) shows the heat transfer between two parallel gold plates and the

refractive index of gold in the infrared range, respectively. Without the contribution from

surface waves, evanescent waves dominate the heat transfer [26]. In the interested

wavelength range, the averaged refractive index of glass (plain silica) is - 2.0, and the

maximum is 3.0. To estimate the contribution from non-resonant evanescent waves, we

calculate the near-field radiation between two plates whose optical constants are both



assumed to be 2+ 0.000 1i. Here, we choose the same refractive index with glass, but a

much smaller extinction coefficient to eliminate the surface wave effects. In Fig. 3-7, the

heat transfer coefficients with resonant surface phonon polaritons can be several orders of

magnitude larger than non-resonant ones at small gaps. The non-resonant heat transfer

coefficients are also saturated to (n 2 x heat transfer between two blackbodies) with

decreasing gap distances, as predicted.
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Figure 3- 6: (a) Radiative heat transfer coefficients versus the distance between two
parallel gold plates at an average temperature T = 300 K. (b) Refractive index n versus
the wavelength.
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Figure 3- 7: Resonant and non-resonant heat transfer coefficients between two parallel
plates for SiO 2 - SiO 2

In summary, the theoretical framework of near-field radiation was well established

based on fluctuational electrodynamics theory. In particular, theory has predicted that

near-field radiation between polar dielectric materials (SiO 2, SiC, BN, etc.), which

support resonant surface phonon polaritons, is dominated by the surface phonon-polariton

contribution and can be enhanced by several orders of magnitude beyond the Planck's

blackbody radiation limit [8]. However, a big challenge is how to experimentally

demonstrate such significant enhancement of energy transfer in the near-field.

3.3 Experimental investigation

In comparison with the extensive theoretical studies [7-11], only a few experiments were

reported to measure thermal radiation between closely spaced bodies. Domoto et al. [28]

investigated the radiative transfer between two parallel metallic surfaces with gaps of 50

pm to 1 mm at cryogenic temperature. Hargreas [29] carried out experiments between



two metallic films of chromium at room temperature and showed the enhanced heat

transfer around 1 pm. But the near-field radiation heat transfer between two chromium

surfaces is still less than 50 % of blackbody radiation. Xu et al. [30] measured radiative

transfer between a deformed indium surface and a small gold surface but could not

confirm any near-field effects. Kittel et al. [31] measured radiative heat transfer between

a scanning probe microscope tip and a flat substrate. The saturation of heat flux was

observed at extremely small distances (- 10 nm). They attributed it to spatial dispersion

effects and the contribution of the infrared magnetic dipole component. However, the

complicated geometry of the tip makes it difficult to interpret the experimental data. Hu

et al. [32] measured radiative heat transfer between two glass plate and observed

radiative heat transfer exceeding predictions of the Planck blackbody radiation law by

35% when the two plates are separated by -1 pm. More precise measurements are

needed to confirm theoretical predictions of near-field enhancement, especially for cases

exceeding Planck's blackbody radiation limit.

Experimentally it is very difficult to configure two parallel plates separated by

nanoscale gaps and hence the several orders of magnitude increase by surface phonon

polaritons in radiation exchange beyond Planck's blackbody radiation law as predicted in

Fig. 3-4 (b) have not yet been demonstrated experimentally. Recently, Narayanaswamy

[33, 34] developed a sensitive technique of measuring near-field radiative transfer

between a microsphere and a substrate using a setup similar to the one in Casmir force

measurements and demonstrated that this technique is capable of measuring radiative

heat transfer between the sphere and the flat plate when the clearance between them

varies from hundreds of nanometers to microns. To follow his technique, I will push to a



much smaller gap (~ 30 nm) and study different materials (dielectric, metal and

semiconductor) in this thesis so that the surface phonon polaritons mediated near-field

radiation can be clearly demonstrated to break down Planck's law [35].

In Fig. 3-8, a glass (silica) microsphere (Corpuscular Inc.) 50 Pm or 100 Pm in

diameter is attached to the tip of a bi-material (Si 3N4/Au) AFM cantilever with UV

adhesive. Glass spheres are chosen because of their availability over a wide range of

diameters with good spherical shapes as well as their ability to support surface phonon

polaritons. The output of the position sensing detector (PSD) is converted into an X or Y

signal corresponding to the deflection of the AFM cantilever and a sum signal

proportional to the incident laser power on it. A part of the laser power is absorbed by the

gold film on the cantilever and thus creates a temperature rise on its tip and the sphere.

The substrate and the supporting base of the cantilever are passively maintained at the

ambient temperature. Based on the beam theory and the thermal analysis of a bi-material

AFM cantilever, we calibrate the cantilever and determine its effective thermal

conductance between the laser spot and the base (7.91 pW/K) and tip temperature (16.5 K

higher than the ambient temperature at the given laser power) by measuring the bending

of the cantilever in response to two different thermal inputs: power absorbed at the tip

and ambient temperature, as described in Chapter 2.



(a)

(b)

Figure 3- 8: (a) Schematic diagram of experimental setup. The thermal sensor is a silicon
nitride AFM cantilever coated with a 70 nm gold film. Application of voltage to the
piezoelectric translation stage results in the movement of the substrate towards the sphere.
In near-field, surface phonon polaritons can tunnel through the gap and they thus
significantly contribute to the radiative heat transfer. The "cooling" effect on the
cantilever due to the enhanced near-field radiation leads to the bending of the cantilever.
(b) A scanning electron microscope image of a silica (glass) sphere mounted on an AFM
cantilever.

The substrate in Fig. 3-8 (a) is rigidly fixed to a piezoelectric motion controller

which is able to reduce the gap between the sphere and the substrate below ~ 10 nm. The

* Si3N4/Au cantilever

100 PrM

Silica sphere



cantilever with the microsphere is oriented perpendicularly to the substrate to reduce the

bending caused by Casimir and electrostatic forces during the experiment. When the

system is pumped down to pressures less than 1 x 10- Pa, the heat conduction across the

air gap between the sphere and the substrate can be neglected. Most of the laser power

absorbed by the cantilever tip is transferred along the cantilever to its supporting base,

but a small amount (< 0.5 %) of absorbed heat is radiated to the surrounding (including

the substrate) from the cantilever and the sphere. The deflection signal of the cantilever is

linearly related to the heat transferred through the cantilever, where the proportionality

constant is determined by the properties and dimensions of the cantilever. In the far-field

where the gap between the sphere and the substrate is large, surface phonon polaritons

are bound to the surfaces and cannot contribute to thermal radiation. Once the gap

between the sphere and the substrate is small enough (Fig. 3-8), the enhanced near-field

radiation causes the cantilever to bend, responding to the change of temperature

distribution in the cantilever due to the different thermal expansion coefficients of the

two materials comprising the cantilever. The measured heat flux through the near-field

radiation at small gaps is on the order of 100 nW, corresponding to a ~ 10- K

temperature change of the sphere. In the experiment, the far-field radiation loss from the

sphere to the rest surrounding (including vacuum chamber, optics assembly, etc.) remains

constant for a small sphere in a large enclosure [5], where the large enclosure (vacuum

chamber) is passively maintained at the ambient temperature. A ~ 0.01 K temperature

change of the sphere corresponds to ~ 1 nW change in the far-field radiation loss from the

sphere, which is much smaller than the measured near-field radiative flux (~ 100 nW).

Hence we conclude that our technique is sensitive to near-field radiation only.



In order to quantitatively measure and correct the force (Casimir and electrostatic

forces) effects on our measurement [36, 37], a very weak laser power is used to minimize

the temperature difference between the sphere and the substrate (< 1 K) and therefore the

near-field radiation between them. Figure 3-9 shows the raw data measured under the

laser light with different power for SiO 2-SiO 2. The blue curve is the typical near-field

radiation signal measured under a high laser power. During the experiment, we use a

piezosystem to change the gap between the sphere and the substrate and hold it constant

for several seconds. When the substrate is held at a constant position, the average of

deflection signals does not change, and the deflection signal looks flat as a "plateau". The

jumps between two such plateaus are due to the change in the position of the substrate.

The sharp change of the bending signal indicates the "contact" made between the sphere

and the substrate, thereby providing a reference to determine the substrate-sphere

separation distance. The green curve is the force signal under a weak laser power. In Fig.

3-9, when the cantilever is carefully oriented in a perpendicular manner to the substrate,

the bending caused by the force is almost zero. At the steady state, the temperature of the

microsphere is approximated as equal to the tip temperature of the cantilever because the

radiation loss from the sphere is much smaller than the heat flow through the cantilever,

considering that the conductance of the cantilever is much larger. Finally, the cantilever

deflection signal measured by the PSD in Fig. 3-9, which is also linearly proportional to

the heat transfer between the sphere and the substrate because the total absorbed laser

power by the cantilever is a constant (corresponding to a constant sum signal of the PSD

during the experiment), is converted into heat transfer-distance curves. The sensitivity of



the cantilever can be calibrated to be - 3 nm/uW. Thus, if the thermal conductance of the

cantilever is - 5 pW/K, the sensitivity of the cantilever to temperatures is ~ 15 nm/K.

E 60

50
0,

e 40
0

*30

0
0 20

us
o. in

500 1000 1500
Time (arb. units)

Figure 3- 9: The raw data measured under the laser light with two different power leads.
The typical near-field radiation signal (blue curve) is measured under high laser power,
where each plateau corresponds to a gap size. The force signal (green curve) is measured
under weak laser power. The "contact" between the sphere and the substrate is
manifested by the sharp change of the bending signal (PSD deflection signal).
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Figure 3- 10: Experimental data from the heat transfer-distance measurement and
comparison with the theoretical prediction from the proximity force theorem (black
curves). Each conductance data point presented here is the averaged value of ~ 100
measurements with the standard deviation ~ 0.4 nW/K. The experimental error on
distance measurements is the resolution of the piezo system (- 5 nm).



We tested the near-field signals between a glass sphere and each of the substrates

considered (glass, doped silicon and gold). The glass plate is a glass microscope slide.

The silicon used in our work is n-type, arsenic doped with a carrier concentration of - 2.6

x1019 cm~3 measured using the Hall effect technique. The optical constants of the doped

silicon are calculated from the models [11]. Higher carrier concentrations usually lead to

larger near-field radiation [11]. The metal plate is fabricated by coating a 1 Pm thick

gold film on a glass slide. The skin depth of gold in the infrared range is estimated to be ~

15 nm so that a 1 pm thick gold film is sufficient to neglect the effect from the glass slide

underneath it. All the substrates are rinsed with isopropanol and are blown dry with

nitrogen before testing. In Fig. 3-10, the measured near-field radiative heat conductance,

defined as the heat transfer divided by the temperature difference, is plotted as a function

of the gap between the sphere and the substrates. Using an AFM we measured the

average surface roughness amplitude of three surfaces as 3.3 nm for glass, 3.9 nm for

silicon and 3.4 nm for gold. The gap size ranges from ~ 30 nm to 10 um, considering the

surface roughness and the resolution of piezoelectric motion system. The effect of surface

phonon polaritons is clearly shown in Fig. 3-10, where we see that near-field radiation is

strongly enhanced when the sphere and the substrate are both made of polar dielectric

materials.

There is no rigorous theoretical calculation for the near-field radiation between a

microsphere and a plate because of computational difficulties [38]. A similar situation

occurs in the Casimir force measurement [36, 37]. So, for the sphere-plate geometry, the

near-field radiation is estimated by the so-called proximity force theorem which

approximates curved surfaces by differential flat areas and using the known solutions for



near-field radiation between parallel surfaces to obtain the sphere-plate near-field

radiative conductance [39],

sphere-plate (d) ~ 2wR fh p"'-p (s is , (3-19)
s=d

where G is the near-field conductance, h is the heat transfer coefficient and R is the radius

of the sphere. We see from Fig. 3-4 (b) that the heat transfer coefficient between two

glass surfaces follows an asymptotic relation given by h ~ B/d2, where B is a constant and

d is gap distance. At small gaps, equation (3-19) can be further simplified

as G s,"rep'ae (d)= 2Rd(B / d 2 ) . The above relation for the near-field conductance

between a sphere and a flat surface can also be interpreted as the near-field conductance

between two flat surfaces of area 2wRd or a disk of radius 2Rd . In Fig. 3-10, the

calculated conductance-distance (black curves) from Eq. (3-19) is compared with our

experimental data. In general, the proximity theory gives a correct order of magnitude in

the experimental range and is in reasonable agreement with experimental results. The

discrepancies between experiment and proximity theory in Fig. 3-10 for SiO 2-SiO 2 shows

that the proximity approximation may be not entirely valid for the near-field radiation

between a sphere and a plate because of significant mathematical simplifications. In

addition, we used the microscope glass slide for the substrate. Compared to the silica

sphere, the glass of the microscope slide is not very pure. But the optical constants used

in our calculation are for the pure glass. It may also result in the discrepancies in Fig. 3-

10. Due to the large ratio of relevant length scales of the problem (nanometer size gap,

tens of microns of sphere radius, and zero radius of curvature of the flat plate), however,

no exact numerical solution has been obtained for the sphere-plate problem so far and



detailed mechanisms for the discrepancy between experiments and the proximity theory

calculation should be investigated in future studies. The reason for the better agreement

between experiment and theory for Si and Au surfaces may be that the near-field

radiation for SiO 2-Si or SiO 2-Au increases less rapidly with decreasing gap distances than

for that between SiO2-SiO 2 (Fig. 3-4). Hence, to some extent, the above issues discussed

for SiO 2 -SiO 2 are mitigated for SiO 2-Si and SiO 2-Au.

In the present sphere-plate experimental system, only a small fraction of the sphere

area contributes to the near field radiation transfer between the sphere and the plate. A

direct comparison of the conductance of the near-field radiation to that of a blackbody,

treating the whole sphere as a blackbody, is hence not appropriate. It was mentioned

earlier that the near-field radiation between a sphere and a flat surface can be interpreted

as near-field radiation between two parallel planar surfaces of area 2rRd. When

normalized to this equivalent area, the near-field radiative heat transfer coefficient in

SiO 2 - SiO 2 is ~ 2230 W/m-K at a ~30 nm gap, compared to ~ 3.8 W/m-K for blackbody

radiation (Fig. 3-11). This is the first time, to our knowledge, that the near-field radiation

mediated by resonant surface phonon polaritons is observed to exceed the blackbody

radiation limit by three orders of magnitude at nanoscale gaps. In the same figure, we

also plotted the near-field portion of the radiation heat transfer coefficient between two

parallel plates (dashed curves), after subtracting the far field contribution. The magnitude

of the sphere-plate heat transfer coefficient compares well with that between two parallel

plates. However, the discrepancies between the two are also clear and consistent with our

discussions earlier.
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Figure 3- 11: Equivalent sphere-plate near-field heat transfer coefficients normalized to
the area 27cRd versus the gap distance for a 100 um (blue circles) and a 50 pUm (violet
triangles) diameter sphere. The flat line is the limit predicted by Planck's blackbody
radiation law. The dashed line is the near-field heat transfer coefficients obtained after
subtracting the far-field part taken from Fig. 3-4 (b).

In summary, our experimental demonstration of the extremely high radiative heat

transfer between polar dielectric surfaces at nanometer gaps, exceeding by three orders of

magnitude the predictions of Planck's blackbody radiation law, may bring new

opportunities to fundamental and applied research on radiative cooling and

thermophotovoltaic technologies. Many devices rely on working at small gaps. For

instance, the clearance between the slider and the disk in a present hard disk drive is only

around 10 nm. In such a small gap, near-field radiation becomes important for the heat

transfer between the slider and the disk. Thus, near-field radiation is also important for

the thermal management of magnetic heads in data storage, heat-assisted data storage,

and other microelectromechanical devices.
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Chapter 4 : Optical absorption of

micro/nano structures for solar energy

conversion

4. 1 Introduction

Solar energy is essentially unlimited and consequently, and it is one of the most

promising sources to meet the world's growing energy demand [1]. Solar photovoltaic

systems can directly convert photons to electrical power, but the main limitations with

present solar cells are their high materials cost and low conversion efficiencies.

Nanostructures, such as nanowires [2-4], nanocones [5] and nanoparticles [6-9], have

attracted significant attention in solar energy conversion due to their abilities to enhance

light trapping and to improve the charge collection efficiency of solar cells, and due to

the potential for low cost solar cells by using self-assembled nanostructures. Several

groups have demonstrated the broadband reflection suppression due to the strong



scattering of light by nanostructures [2-9]. On the other hand, nanostructured

semiconductors can also be fabricated as the active layers of solar cell [2, 3]. Due to their

small sizes, the charge collection efficiencies can be significantly increased as well.

Clearly, the optical properties of such nanostructured solar cells over the solar spectrum

are crucial for their performance. Optimized designs of nanostructures can significantly

increase the light trapping of the solar cells, and thus reduce their cost by using less

material.

Characterizing of the optical properties of nanostructures such as nanowire and

nanocone arrays has often been based on the traditional measurement techniques for bulk

materials, for example, using an integrating sphere [5, 9]. However, measuring the optical

properties of individual nanostructures and probing the optical coupling between them

still remains a great challenge, as discussed in Chapter 1. For individual semiconductor

nanostructures such as a single silicon or germanium nanowire, its optical absorption can

be evaluated by indirectly measuring their photocurrents generated under illumination.

For instance, Cao et al. characterized the light absorption properties of single germanium

nanowires by measuring their photocurrents [10]. The photocurrent measurement of the

nanowires has several drawbacks: (i) it is an indirect and qualitative measurement

because not all the light absorbed will generate the current; (ii) it can only measure

semiconductors, thus excluding metals and dielectrics.

In this chapter, we will discuss theoretical and experimental methods of

determining the optical properties of nanostructures. Section 4.2 introduces Mie theory

which can be used to calculate the radiation properties of one single nanoparticle or



nanowire. Section 4.3 presents an experimental setup which is able to directly measure

the absorption properties of micro/nano structures.

4. 2 Mie theory

The characteristic dimensions of nanostrutures are often comparable with the photon

wavelength. In theory, the optical properties of an individual nanostructure such as a

single nanoparticle or nanowire can be calculated by Mie theory which is essentially a set

of analytical solutions to Maxwell's equations [15, 16]. This theory is named after

German physicist Gustav Mie who published his classical paper in 1908 to study the

absorption and scattering properties of aqueous suspensions of gold colloidal particles in

the visible range [17]. When electromagnetic waves interact with small particles, the

radiative intensity may be changed by the absorption and/or scattering from particles [16].

A typical example is that the scattering of sunlight by the atmosphere (which includes

various kinds of air molecules) results in a blue sky. Based on Mie theory, we can

calculate the optical absorption of individual nanostructures and determine how large the

sensitivity is required for the measurement.

4.2.1 Mathematical formulation

The amount of the incident radiation scattered and absorbed by a particle is usually

expressed in terms of the scattering cross section, C,,, and the absorption cross section,

Cabs [15]. They are defined as



Csca Ws a (4-1)
Ii

Cab Wabs (4-2)
Ii

where Wsca and Wab are the scattering and absorption energy flux, respectively, and I, is

the incident irradiance. The total amount of absorption and scattering is called extinction

which describes the deviation of a photon from its initial trajectory, either by scattering or

by absorption. The corresponding extinction cross section Cext is written as

Cext = Cabs + Csca * (4-3)

Often, efficiency factors Q, which are the cross sections normalized with the projected

surface area, are used instead of cross sections [16]. For example, the scattering and

absorption efficiency factors of a sphere are defined, respectively,

C
Q =ca = (4-4)

cabs - Cabs 
(4-5)

ira

where a is the radius of the sphere.

In Mie theory, two simple geometries are often considered: small spheres or thin

cylinders with an infinite length. To introduce the mathematical formulation of Mie

theory, we will present the typical analytical solution from Mie theory to evaluate the

scattering and absorption of a small sphere. The mathematical treatment for a thin

cylinder with an infinite length is similar. The difference is that a cylindrical coordinate

system is used for the small cylinder instead of a spherical coordinate system. The

mathematics of Mie theory is rather tedious because the physics of the interaction of an



electromagnetic wave with a sphere is extremely complicated. In this thesis, we will

simply quote the analytical expression of the scattered electromagnetic fields E(F,t),

H(F,t). More details about the mathematics of Mie theory can be found in the classical

book written by Bohren and Huffman [15].

Let us consider a spherical particle with a radius a (labeled "1") placed in some

non-absorbing host medium (labeled "2"). In Fig. 4-1, the spherical particle is illuminated

by an incident plane wave,

Eic(F) = E expik2 -F) , (4-6)

where k is wave vector. In the spherical coordinate system (r, 0, P) , the scattered

electromagnetic fields E(Ft), (F,t) resulting from Mie theory are represented by the

following expression as

5,[a(r,9, y) = $ E, - bhM2 (r, 0, y) + ia jN (r, 0, (),
n=1

Hc(r,0,p)= k2 E h-b2K (r,0,p) + iaM 1(r,0,p)].
im0p 2 n=1

(4-7)

(4-8)

where Hc, (r,0, qp)
V x E,,(r, 6, p) . The coefficients E (n > 1)

1(0/12

are given by

En = i"EO 2n+1
n(n+1)

(4-9)

The two sequences an and bn are usually called the Mie sequences. When the particle and

the host medium have the same magnetic permeability, an and bn can be expressed as

(4-10)M y, (my)y'( ) - Vy,(X~y' (MX) ,

mf y(mX ) ' W X )" -O(Z)V' (MX )



bn= (mx)yn(x)-Myn(x)V'(my) (4-11)
Vln(mX)'(X) -M~ mg(X)V' (MX)

The functions y, and are known as Riccati-Bessel functions defined by

Vn(p)= Pn(p), 1(4-12)

,(p)= phn(p), (4-13)

where j, and hn are the spherical Bessel and Hankel functions. The quantity ; is the

size parameter defined by ; = k2a , where k is the magnitude of wave vector. The

quantity m is the relative refractive index defined by m = k, /k 2 . The functions
emh , olnh , eTh --h2

1'eh2 , I elh , and o,. are called vector spherical harmonics with the following

expressions as

hl P (cos0) .dP(cs0)
Mn (r, 0, ( ) = -hn (k2r) sn sin - hn (k2r) d os(pco,, (4-14)

hl P(COS0) dP c(cos)
M (r,0,p) = hn(k 2r) cs 0 cos pa, -h,(k2r) d sin toi,, (4-15)

sin 0 dO

n (r, 0,p) = n(n +1) h (k2 r) P/(cos0)cos pr
k2r

1 d[rhn(k2r)]dPn1(cos0) A

k2r dr dO , (4-16)

1 d[rhn(k 2r)] P,,(cosO) .
k2r dr sin 0 sin*e

h2 (r,0,(o) = n(n+1) h,(k 2 r)P(cos0)sineo,.
k2r

1 d[rh,(k 2r)]dP(cos0) .A

k2r dr dO sinq(e, (4-17)

1 d[rh,(k2r)]P(cos0) A
k2r dr sinO 0



where P' are the associated Legendre functions, and (d,,B, ,,) are the local right-hand

orthogonal basis related to the spherical coordinates (r, 0, p).

Scattered Light

Incident Light

Figure 4- 1: Spherical coordinate system centered on a sphere with a radius a

From Eq. (4-7) and (4-8), the scattering energy flux can be calculated by the

Poynting vector. The scattering cross section and the scattering efficiency factor of the

particle can be written as

Cca = 2  ](2n +1)(1a,2 + b,|2),
2 n=1

Ose, = (2n + 1)(la|2+b2

(4-18)

(4-19)

Similarly, the extinction cross section and the extinction efficiency factor of the particle

are

Cex, =~-Z (2n +1) Re(a, +b,),
2 n=1

(4-20)



Qe, = (2n + 1) Re(an + bn) .(4-21)
Qx

Once all Mie sequences an and bn are determined, the cross sections or efficiency factors

of absorption and scattering can be calculated.

Two limiting cases of Mie theory are often discussed in the literature. When the

particle size is large (X >> 1 and ImX >> 1), the geometrical optics (ray tracing method)

can be employed to calculate the optical properties of the particle [16]. If the particle size

is much smaller than the photon wavelength (X <<1 and |mx << 1), Mie theory reduces

to the well known Rayleigh theory. Rayleigh theory is named after Lord Rayleigh who

first discussed the absorption and the scattering by single particles during the later part of

the nineteenth century [18]. In this case, the interaction of a small particle with

electromagnetic waves can be solved using a simple quasi-static approximation. The

phase of the oscillating electromagnetic field is practically treated as constant over the

particle volume because its size is much smaller than the wavelength of the

electromagnetic wave [19]. Thus, one can calculate the spatial field distribution by

assuming that the particle is in an electrostatic field. Based on Rayleigh theory, the cross

sections for absorption and scattering can be calculated to be

Cabs = 47rk2a 3 im 1 2 , (4-22)
s81 + 2e2)

2

Ck4 6 1 k 1a 2 (4-23)
3 s,3+ 2. 2



From Eqs. (4-22) and (4-23), for small particles with a << A, absorption in which its

cross section scales with a3 dominates over scattering in which its cross section scales

with a6 .

4.2.2 Numerical results

Based on Mie theory, we can calculate the optical properties of a single nanoparticle or

nanowire. In the following, we conducted the numerical calculation using the computer

codes in the Appendixes of the book written by Bohren and Huffman [15]. In Fig. 4-2,

we calculated the spectral absorption and scattering efficiency factors of a silver

nanoparticle as a function of its radius. For a small particle (a < 0.02pm), the absorption

is dominant over the scattering (Fig. 4-2 (a)), whilst for larger particles, the scattering is

much larger than the absorption (Fig. 4-2 (b)). This is consistent with the prediction by

Rayleigh theory. In particular, large peaks in the absorption and scattering efficiency

factors are observed in Fig. 4-2 at the wavelength of light around 300 nm which

corresponds to the surface plasmon resonance of sliver particles. In Fig. 4-2 (b), the

resonance peaks show a "red" shift due to retardation effects as the size of the

nanoparticle increases [20].
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Figure 4- 2: (a) Spectral absorption efficiency factors as a function of the particle size; (b)
Spectral scattering efficiency factors as a function of the particle size.
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In Fig. 4-3, we calculate the absorption of a silicon micro/nanowire with a length of

50 jim as a function of its radius at normal incidence. Since the length of the

micro/nanowire is much larger than its radius in Fig. 4-3, we simply assume that the

micro/nanowire is infinitely long. Figure 4-3 (a) shows the calculated absorption

efficiency factor of the micro/nanowire. At certain wavelengths of light (for example, 700

nm in wavelength), oscillations in the absorption efficiency factors are observed when the

radius of the wire changes. This is because under certain radii, more light corresponding

to higher order modes can be coupled. When we fix the radius of the wire, the oscillations

of the absorption efficiency factors also occurs in the wavelength range from 600 nm to

800 nm. This results from the interference effects. If the incident power density is

assumed to be 100 W/m 2, the absorbed power by the micro/nanowire is plotted in Fig. 4-

3 (b). The incidence power of 100 W/m 2 is chosen to correspond to the power density in

our experiment, as shown in the next section. We can see from Fig. 4-3 (b), in order to

measure the absorption of a single nanowire, our technique is required to measure a

power as small as 1 nW (red dashed line). As discussed in previous chapters, an AFM bi-

material cantilever is able to measure the power as small as 100 pW. This motivated us to

build one setup based on AFM bi-material cantilevers to measure the absorption of

nanowires.
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Figure 4- 3: (a) Spectral absorption efficiency factors as a function of the radius of the
wire; (b) Spectral absorbed power as a function of the radius of the wire. The red dashed
line is marked at the radius 500 nm.

4.3 Experimental investigation

The experimental setup for the optical absorption measurement is illustrated in Fig. 4-4

[21]. A monochromatic light source is focused by an optical lens group and coupled to an

optical multimode fiber (200 um core diameter). The light from the end of the optical

fiber illuminates a sample at normal incidence, which is attached to a bi-material AFM

cantilever. A motorized moving stage with a resolution 100 nm is used to control the gap

between the optical fiber and the sample around 50 pm. At such a small gap, the

divergence of the light from the optical fiber end to the sample is negligible; thus the

incident field is assumed to be collimated. The multiple reflections between the sample

and the optical fiber are also neglected due to the very small reflectivity (- 0.04) of the

silica optical fiber [22]. The light source is mechanically chopped at ~ 650 Hz so that the

cantilever can have a sufficiently fast response to follow the optical modulation generated

by the chopper. On the other hand, the modulation frequency of ~ 650 Hz is chosen

because below 500 Hz, the noise is dominated by the 1/f-type behavior arising from the

electronics and the optics [23]. The light absorbed by the cantilever or the sample

attached on it increases the temperature of the cantilever and thus causes it to bend. On

the bottom left is the optical assembly used to measure the deflection of the cantilever

using a laser focused onto the tip of the cantilever and reflected onto a position sensing

detector. To eliminate the influence from background light and to improve the sensitivity



of our measurement, a lock-in amplifier with the chopper signal as a reference is used.

Since the cantilever directly measures the heat generated by the absorption of the sample,

the present experimental setup is able to directly and quantitatively characterize the

optical properties of the sample compared to the previous indirect photocurrent

measurements.

Figure 4- 4: Schematic diagram of experimental setup to measure the optical absorption
of micro/nanostructures

To measure the absorptance of a sample, the power spectrum from the light source

needs to be measured and calibrated. The power calibration uses a very similar setup,

where the AFM cantilever and optics assembly is replaced by a power meter. Figure 4-5

shows the measured spectral response of the source by collecting the light from the end



of the optical fiber. The lowest power measured in the spectrum shown in Fig. 4-5 is - 4

pW which corresponds to a power density - 100W/m 2. In the following experiments, we

first measure the absorptance of the gold layer on a silicon nitride AFM cantilever. The

entire cantilever (200 pm in length) is illuminated by the optical fiber (200 pUm in

diameter). The thickness of the gold layer on the cantilever is ~ 70 nm, which is optically

thick for the wavelength range considered. Thus, it is the bulk properties of gold that are

measured in the present experiment. The measured absorptance of the gold layer is

plotted in Fig. 4-6 (a) and compared with the calculation using Fresnel formulas at

normal incidence based on the optical constants of bulk gold in the literature [22].The

absorptance of aluminum was also measured, as shown in Fig. 4-6 (b). Overall, our

experimental results for these two metals agree well with the calculation based on their

bulk properties. The discrepancies between experiment and calculation in Fig. 4-6 may be

due to the fabrication process of the samples, for example, sputtering deposition.
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Figure 4- 5: Spectral response of the light source at the end of the optical fiber
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Figure 4- 6: Spectral absorptance of metallic films. (a) Gold; (b) Aluminum. The
absorptance is calculated using Fresnel formulas for a semi-infinite body at normal
incidence.
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The present experimental setup is also able to measure absorption (or absorptance)

of a sample attached to the bi-material microcantilever. In Fig. 4-7 (a), a silicon thin film

with a thickness of ~ 2 um is attached to the cantilever with UV adhesive. The same

procedure is used to measure the asborptance of the silicon thin film except that the light

from the optical fiber illuminates the sample instead of the entire cantilever. The

measured absorptance of the silicon thin film is shown in Fig. 4-7 (b) and compared with

the calculation using Fresnel formulas where the silicon thin film is sandwiched between

two semi-infinite air layers. The experimental data in Fig. 4-7 (b) are in a reasonable

agreement with the calculation. From the calculation in Fig. 4-7 (b), we observe the

oscillations of absorptance at larger wavelengths because of interference effects. But the

resolution of our current monochromator is insufficient to catch those sharp dips and

peaks in the oscillations. Indeed, what we measured in the experiment is more like the

average of the oscillations.

(a)
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Figure 4- 7: (a) Microscope image of the bi-material microcantilever with a silicon thin
film attached on it; (b) Spectral absorptances of a 2 pm thick silicon thin film. The
absorptance is calculated from Fresnel formulas, assuming the silicon thin film is
sandwiched between two semi-infinite air layers.

Figure 4-8 shows the typical deflection signals of the cantilever as the wavelength

of the incident light changes. Each step in Fig. 4-8 corresponds to one wavelength with a

10 nm interval. During the measurement, we also hold each wavelength for a few seconds,

thus the deflection signal does not change and is seen as a "plateau". The deflection

signal under one single wavelength is not a constant but exhibits some oscillations, as

shown in the inset of Fig. 4-8. These oscillations represent the measurement noise which

limits the sensitivity of our measurement. The fundamental noise limitation is determined

by the thermal vibration noise of the cantilever [21]. For frequencies well below the



natural resonant frequency of the cantilever, the root-mean-square thermal noise

amplitude can be calculated by

h2 _ 4kbTB (4-24)
kw0Q

where kb is Boltzmann constant, T is temperature, B is the measurement bandwidth, k is

the spring constant of the cantilever, w0 is its resonant frequency, and Q is its quality

factor. k, w. , Q can be measured using a standard AFM. B is determined by the

parameters of the lock-in amplifier.

The sensitivity of our measurement can also be estimated from the experimental

data of power calibration and cantilever deflection measurement. From the power

calibration in Fig. 4-5, the power of the light impinging on the cantilever can be

calculated by the ratio of the cross sectional area of the optical fiber to the area of the

sample. In the case of the gold sample, once the absorptance of gold is measured in Fig.

4-6 (a), the power absorbed by the gold layer at the certain wavelength Q, is known. As

discussed in Chapter 2, the deflection of the cantilever is linear together with its absorbed

power. Hence, based on the deflection signal V, (Fig. 4-8) and the noise level AV (the

inset of Fig. 4-8) at that wavelength, we can estimate the sensitivity of our measurement

by calculating S = AV . In Fig. 4-8, the sensitivity is calculated to be ~1 nW, which
VA

limits the minimum measurable power. Although we estimate the sensitivity using the

data at one wavelength, the sensitivity and the noise level are independent of the

wavelength, as shown in Eq. (4-24). As discussed in Section 4.2.2, a sensitivity of 1 nW

is required to measure the absorption of a submicron diameter silicon wire with a length



of 50 pm. The demonstrated sensitivity of 1 nW in Fig.4-8 is therefore able to measure

the optical absorption of a submicron wire with a length of 50 pm or an even thinner wire

with a longer length than 50 pm. The sensitivity in our present measurement is poorer

than the literature values [21], which is ~ 100 pW, because we used a smaller time

constant for the lock-in amplifier and therefore a larger measurement bandwidth. By

increasing the time constant used for the lock-in amplifier, the sensitivity of our

measurement can be improved, and thus the optical absorption of a thinner (much smaller

than 1 pm) or shorter (smaller than 50 pm) nanowire can be measured. Our present

technique shows great potential to characterize the optical properties of individual

nanowires.
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Figure 4- 8: A typical deflection signal of the cantilever. Inset: the
deflection signal at a certain wavelength.
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In summary, we described an experimental setup which is able to directly measure

the spectral absorption of individual micro/nanostructures in application to solar

photovoltaics. We have demonstrated the optical absorption measurements for thin metal

films and a thin silicon film. The present technique in this thesis is shown to be sensitive

enough to characterize the optical properties of individual nanowires. The optical

properties of such nanostructured solar cells over the solar spectrum are crucial for their

performance. The characterization of the optical properties of individual

micro/nanostructures will guide the optimization of dimension, shape, and material

selections in order to maximize the efficiencies of solar cells.
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Chapter 5: High thermal conductivity

polymer nanofibers

5. 1 Introduction

Bulk polymers are generally regarded as thermal insulators and have thermal

conductivities on the order of 0.1 W/m.K [1]. Typical methods for improving polymer

thermal conductivity have often focused on composite materials, where additives, such as

metallic nanoparticles or carbon nanotubes, are embedded in polymer matrices [2, 3]. In

particular, the use of carbon nanotubes as an additive has been motivated by reports that

individual tubes have high thermal conductivities [4]. The thermal conductivity

enhancement in polymer carbon nanotube composites, however, is usually limited to

within one order of magnitude due to the high thermal interface resistance between the

additives and the polymer matrix [5, 6].

The alignment of polymer chains, on the other hand, can yield large enhancement

on the mechanical strength and thermal conductivity of polymers [7, 8]. In the limit of an

individual chain of polyethylene which is the simplest and the most widely used polymer



illustrated in Fig. 5-1, Henry and Chen [9] used molecular dynamics simulation to study

the heat conduction along the molecular chain. They found that the thermal conductivity

of one individual polymer chain can be very high (~ 350 W/m.K) (black curve in Fig. 5-1)

or even divergent in some cases (red curve in Fig. 5-1), consistent with the nonergodic

characteristics of one-dimensional conductors originally studied by Fermi, Pasta and

Ulam [10]. Several experimental studies have shown that self assembled monolayers of

aligned polyethylene chains also exhibit a very high thermal conductance [11, 12].

Although the polyethylene chains were theoretically and experimentally demonstrated to

have a very high thermal conductivity, practical applications may require these polymers

to be fabricated as fibers or films.
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(Henry and Chen, Phys. Rev. Lett., 2008)

Figure 5-1: Thermal conductivity prediction for a single polyethylene chain from
molecular dynamics simulation



(a)

(b) (c)

Figure 5- 2: (a) Bulk polyethylene containing chain ends, entanglements, voids and
defects. (b) Stretched PE microfiber. (c) "Ideal" polyethylene nanofiber with perfectly
aligned molecular chains.

In bulk polyethylene, however, the defects (polymer chain ends, entanglement,

voids and impurities, etc.) (Fig. 5-2 (a)) all act as stress concentration points and phonon

scattering sites for heat transfer [13]. As a result, bulk polyethylene has low strength and

low thermal conductivity. For many years, it has been well known that the mechanical

and thermal properties of polyethylene can be improved by processing or stretching bulk



samples into thin films or fibers to reduce the number of defects and increase the chain

alignment [14, 15]. Commercial oriented polyethylene fibers, with diameters ranging

from 10 pm to 25 pm (Fig. 5-2 (b)), have been measured to have an enhanced Young's

modulus of ~ 200 GPa and a thermal conductivity of 30-40 W/m.K at around room

temperature [16, 17]. In this thesis, the polyethylene fiber size is further scaled down to

submicron diameters. A new method is developed to fabricate ultradrawn nanoscale

fibers (Fig. 5-2 (c)). The thermal conductivity of these nanofibers reached as high as 104

W/m.K, which is higher than that for many metals. Section 5.2 introduces the detailed

fabrication process of ultradrawn polyethylene nanofibers. Section 5.3 describes the

experimental techniques to measure the thermal conductivity of the nanofibers and

discusses the experimental results.

5.2 Fabrication of ultradrawn polyethylene nanofibers

The technique presented in this thesis to fabricate high-quality ultra-drawn polyethylene

nanofibers uses a two-stage-heating method. A decalin solution, containing 0.8 wt. %

ultrahigh molecular weight polyethylene (molecular weight 3-6 million, Alfa Aesar), is

prepared by heating the polymer-solvent mixture at 145 0C [8]. To prevent the

degradation of polyethylene, the dissolution was carried out under nitrogen. The solution

is then quenched in water to form a gel. The nanofiber pulling system is illustrated in Fig.

5-3. The fabrication of the ultradrawn polyethylene nanofibers in the present work

includes two steps. First, a small sample of wet gel is heated by heater 1. After reaching

120 4C, the heater is turned off to reduce the evaporation of the solvent from the gel and a



100-200 pm long suspended fiber is rapidly drawn using a sharp tungsten tip or an AFM

cantilever [18, 19], which is fixed on a motorized stage. Second, heater 2, located

underneath the fiber and heater 1, is used to heat the fiber and surrounding air to ~ 90 C.

After several seconds, when the two ends of the fiber dry out and solidify, further

drawing is conducted by moving the tungsten tip or the AFM cantilever at a speed of ~1

pm/s to achieve the higher draw (stretching) ratios.

* Microscope

Gel Tungsten tip
Nanofiber

Figure 5- 3: Schematic diagram of experimental setup to fabricate ultradrawn nanofibers

The properties of polyethylene nanofibers are highly dependent on their draw ratio.

A higher draw ratio means a better polymer chain alignment, and therefore a higher

thermal conductivity or Young's modulus. To estimate the draw ratio in Step 1, we

approximate the polyethylene gel, before deformation, as a thick cylinder with diameter

Di and length Li (Fig. 5-4 (a)), and assume that the deformation caused by drawing in

Step 1 only occurs in the thick cylinder. In reality, the two ends are conically shaped, but

for approximation purposes, we neglect the change in volume within the conical ends.



The end of the AFM cantilever used in the drawing process is ~ 4 pm wide. We assume

the diameter of the initial cylinder is D1 =~ 6 pm, accounting for the heated polymer gel

flowing over the cantilever end due to the capillary force when the AFM cantilever dips

into it. After the drawing in Step 1, the length of the polyethylene fiber was measured to

be L2 = 100-200 pm and the diameter, D2=1.5-2.5 pm (Fig. 5-4 (b)). Based on volume

rcD2L zcD2L
conservation within the cylindrical section, we can calculate Li by 1 1 - 2 2

4 4

Hence, the draw (stretching) ratio in Step 1 can be estimated to be L2- D2 ~ 6 ~16. In
L, D 2

Step 2, the final length of the nanofiber L3 has been successfully drawn in the range of

1,000-10,000 pm (Fig. 5-4 (c)), thus giving a draw ratio of ~ -10-~50 . The overall
L2

L = L 3 L 2draw ratio in the two steps is thus -= - -- 60~800 for ultradrawn nanofibers.
L L2 L

Such a large range in draw ratio is indicative of our ability to control the geometrical

parameters of our nanofiber samples; though certainly, higher draw ratios are more

difficult to achieve.

(a)



(b)

(c)

KL 3

Figure 5- 4: Two-step drawing process for fabricating the nanofibers

Most of the fabricated nanofibers have uniform diameters between 50-500 nm and

lengths up to tens of millimeters. Figures 5-5 (a) and (b) show a transmission electron

microscope (TEM) micrograph and diffraction pattern for one sample of our ultra-drawn

polyethylene nanofibers fabricated by a tungsten tip, respectively. The periodic

diffraction spots could be distinctly indexed to an orthorhombic phase with lattice

constants a = 7.422A, b = 4.949 A and c = 2.544 A for polyethylene [20]. The arrow in

Fig. 5-5 (b) indicates the drawing direction. This pattern shows the strong single crystal

nature of the fabricated polyethylene nanofibers, with the c- (molecular) axis lined up in



the drawing direction and the a-axis normal to the fiber axis. This confirms that the

stretching effect (ultra-drawn) in the nanofibers (Fig. 5-5 (b)) does indeed contribute to

the nanoscale restructuring of the polymer chains, with the improvement in fiber quality

leading to more "ideal" single crystalline fibers (Fig. 5-2 (c)).

(a) (b)

002

- -.011

020

500 nm

Figure 5- 5: (a) TEM image of an ultradrawn polyethylene nanofiber. (b) TEM diffraction
image of the ultradrawn polyethylene nanofiber. The arrow represents the drawing
direction.

5.3 Experimental investigation

To measure the thermal conductivity of an individual nanofiber, we have developed a

general approach for thermal measurements of compliant nanofibers or nanowires using a

sensitive bi-material AFM cantilever, which can resolve power measurements as low as

0.1 nW and energy measurements down to 0.15 pJ [21, 22], as discussed in Chapter 2.
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Our experimental setup is illustrated in Fig. 5-6. A nanofiber is directly drawn by a bi-

material (Si3N4/Au) AFM cantilever, which minimizes the thermal contact resistance

between the fiber and the cantilever. The nanofiber is then mechanically cut ~ 300 pm

away from the tip to reduce radiation loss from the fiber to the environment. Next, the

setup is placed under high vacuum (~ 50 pTorr). A laser (wavelength A = 650 nm) is

focused onto the tip of the cantilever and reflected onto a position sensing detector (bi-

cell photodiode), which measures the deflection of the cantilever. The free end of the

fiber is attached with conductive silver epoxy to a micro thermocouple (junction diameter

of ~ 50 pm), which is mounted onto the tip of a steel needle. Its temperature can be

adjusted by heating the needle with a small electrical resistance heater. By varying both

the laser power and the temperature of the micro thermocouple, we can determine the

conductance of polyethylene nanofiber by measuring the deflection of the cantilever.

More technical details will be described in the following sections. To eliminate the effect

of thermal expansion, a motorized control stage was used to reduce the distance between

the cantilever and the thermocouple until the nanofiber was no longer under tension (Fig.

5-6), which was indicated by the point where the deflection signal stopped changing with

further stage movement. We were not successful measuring polymer fibers with

diameters in the micron range because the higher stiffness of these fibers affected the

deflection of the cantilever via the thermal expansion of the fiber.
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Figure 5-6: Schematic diagram of the experimental setup used to measure the thermal
properties of a single ultradrawn nanofiber. The nanofiber drawn from the AFM
cantilever is loosely suspended between a micro thermocouple and the AFM cantilever.

5.3.1 Thermal conductivity measurement system

The thermal conductivity measurement system can be represented by a three-

junction thermal circuit with two thermal resistances corresponding to the polyethylene

nanofiber and the AFM bi-material cantilever, as shown in Fig. 5-7. The two quantities

that are varied during the measurement are the laser power absorbed by the cantilever QB
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and the temperature of the thermocouple TA. The specific thermal resistance of the

nanofiber is ~10 9 K/W, while typical thermal contact resistance between two solids is

usually 107-108 K/W range [23]. In addition, we have also used silver epoxy to join the

nanofiber and the thermocouple, thus increasing the contact area. Hence, the thermal

contact resistance at the two ends of the nanofiber is neglected in the following analysis.

Note that if there is thermal contact resistance, the fiber thermal conductivity will be

higher than reported values. The nanofiber is assumed to be uniformly cylindrical along

its length. Although irregularities at the ends are possible, they are neglected in this

analysis. The SEM images of the nanofiber justify this assumption. All the measurements

are done under high vacuum and therefore heat convection from air is negligible. Based

on the low emissivity (- 0.1) of the microfiber [24, 25], the emissivity of the nanofiber is

estimated to be smaller than 0.1 according to Rayleigh scattering theory where emissivity

is proportional to the volume [26]. Due to such a low emissivity (< 0.1) of the nanofiber

and the small temperature difference between the nanofiber and the surroundings, the

radiation loss from the fiber is estimated to be < 1 nW, which is negligibly small

compared to the heat conduction (- 100 nW) through the nanofiber. As an approximation,

the heat input from the laser can be modeled as an input at point B. But, in reality, the

distance between the cantilever tip and the laser spot on the cantilever was estimated to

be - 20 pm. Since the cantilever is very thermally conductive, as discussed in Chapter 2,

the thermal resistance between the cantilever tip and the laser spot is neglected in the heat

transfer model. This assumption will be justified in subsequent sections.
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Figure 5-7: Three-junction thermal circuit model for analyzing heat transfer in the
experiment

The two-step measurement process developed in this thesis can be understood as

follows. In the first step, we calibrate the bending of the cantilever by varying the laser

power. In the second step, we measure the heat transfer via the nanofiber by varying the

thermocouple temperature. These two steps are further explained below.

Step 1: Calibration via Varying of Laser Power

At steady state, the heat balance of the three junctions at point B in Fig. 5-7 is,

QB = QA + QC , (5-1)

where QB is the laser energy absorbed by the cantilever. QA is heat conduction through

the nanofiber and Qc the heat conduction through the cantilever. Since the thermal

conductance of the AFM cantilever Gc (- 10 pW/K) is around three orders of magnitude

larger than the thermal conductance of the nanofiber GF (10 nW/K), the heat conduction

through the nanofiber AQA (~ 100 nW) can be ignored compared to the change of the

absorbed power AQB (~ 10 pW) at point B. Equation (5-1) can then be written in

differential form as follows,

AQB CAQ , (5-2)
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In Fig. 5-8, we can obtain the bending AB p_- when the absorbed power on the

cantilever tip changes from P1 to P2. Since the bending signal measured by the

photodiode is effectively a representation of the cantilever temperature, which is

proportional to the heat transfer through the cantilever, Qc, it can also be shown that,

AQc(pP = a' AB(p_), (5-3)

where ai is a proportionality constant, determined by the properties and dimensions of

the cantilever [27]. From Eqs. (5-2) and (5-3), we have,

a, = AB(pp) (5-4)
2Bp )
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Figure 5-8: Experimental data measured by varying the absorbed power on the end of the
AFM cantilever

Step 2: Variation of Thermocouple Temperature

The second step measures the heat transfer changes through the nanofiber when

the temperature of the thermocouple is changed. The laser input to the cantilever is held
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constant. In Fig. 5-9, when the temperature of the thermocouple TA changes from TAI to

TA2, the heat fluxes through the nanofiber can be expressed as,

QA =GF (TB TA), (5-5)

QA 2 =GF B -TA 2 ), (5-6)

where GF is the thermal conductance of the nanofiber. Since Gc is much larger than GF,

the temperature of cantilever tip TB is assumed as a constant during the temperature

change of the thermocouple. The heat conducted through the nanofiber in the experiment

is estimated to be -100 nW which corresponds to a ~ 10- K temperature change on TB.

This justifies our assumption. Thus, subtracting Eq. (5-6) from Eq. (5-5), we have,

AQA (TT) = -GFATAI-A2, (5-7)

where A TA_, can be obtained by the thermocouple measurement. In Fig. 5-9, we can

also obtain the bending AB(TT) of the cantilever caused by the temperature change

from TAi to TA2. Similarly, we can relate the heat flux through the cantilever and the

bending of the cantilever by,

AQc(T-T> = a 2 -AB(TIT, (5-8)

where AQc(T,-T) is the change of the heat flux through the cantilever due to the

temperature change from TAi to TA2, and a2 is a proportionality constant when changing

the temperature of the thermocouple. Because this measurement is intrinsically

differential, we can measure minute changes in the heat conducted through the nanofiber.

Thus, despite the high thermal resistance of the nanofiber, which causes a very small

change in bending, this relative change is still clearly discernable due to the high

sensitivity of the cantilever (Fig. 5-9).
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Figure 5-9: Experimental data measured by varying the temperature of the thermocouple

In Step 2, the absorbed laser power QB does not change ( AQB = 0 ). This leads to

the following,

AQA = -AQc, (5-9)

Thus, based on Eqs. (5-8) and (5-9), we have,

AQ7 72 = -AQcTrr = -a2 * AB(TT,-> (5-10)

From Eqs. (5-7) and (5-10), the proportionality constant a2 can be expressed as,

a 2 = GF ,Al--A , (5-11)
AB(T,-)

In these two cases, the proportionality constants aI and a2 are equal, which will be

proved in the next section. In terms of Eqs. (5-4) and (5-11), the thermal conductance of

the nanofiber can be expressed by,

GF B(PP )/ AB _ ) (5-12)
ATAI-A 2 /AB(Tr)
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In Fig. 5-10 (a) and (b), the cantilever deflection is plotted as a function of both the

power absorbed by the cantilever and the thermocouple temperature, respectively, for two

repeated measurements on the same sample. AQB(P F) /ABpp 2 and ATA( 1-2) /AB(TTA

can be obtained from the slopes of Figs. 5-10 (a) and (b), respectively. The thermal

conductivity of the fiber can then be found by assuming one-dimensional heat transfer

along the fiber,

KF 4GL (5-13)
;rd2

where L and d are the length and the diameter of the nanofiber, respectively. It should be

emphasized that though it may appear that the fiber conductance is independent of the

cantilever conductance in Eq. (5-12), the effect of the cantilever conductance is actually

embedded within the measured bending signals.

(a)
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-600

-800
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Laser power (mW)

108



28 30 32 34 36

Temperature (0C)

38 40 42

Figure 5- 10: (a) Reduced deflection signals from Fig. (5-7) versus the absorbed power.
The data is normalized to the deflection signal at P1. (b) Reduced deflection signals of the

AFM cantilever from Fig. (5-8) versus the temperature of the thermocouple. The data is
normalized to the deflection signal at T1. The data in (a) and (b) are from two repeated
trials on one individual sample and marked as blue circles and green squares,
respectively. The dashed black lines are the linear fits. The error bar is ~ 0.6 mV in (a).

From the above discussion, we see that the differential heat transfer through the

nanofiber is directly measured from the change of the bending in the cantilever, since the

initial bending of the cantilever is well recorded by the photodetector (Fig. (5-8) and Fig.

(5-9)). Although the nanofiber thermal conductance is much smaller than that of the

cantilever, our technique allows direct measurement of very small heat transfer (- 10 nw)

through the nanofiber.

5.3.2 Proportionality constants a, and a2

Based on the beam theory presented in Chapter 2, we will prove that

proportionality constants ai and a2 are equal. In calibrating the cantilever bending, the
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laser spot inputs heat at a point to the cantilever at some distance x1 (~20 pm) from the tip.

The calibrated bending constant is aj. In the second step of the experiment, heat is

transferred at the tip-nanofiber junction (~x=O) and the corresponding bending constant is

a2. In both cases, the bending of the cantilever is measured at x = x1, where the laser spot

is located. We will show that a, is equal to a2.

For case 1, when the laser power is delivered to the cantilever, as shown in Fig. 5-

11 (a), the temperature profile at steady state is [22, 28],

T(x)-T. =(I- 1- , for x, 1 x Xl, (5-14)

where / is the effective length of the cantilever (1 = 200 pm), G is the effective thermal

conductance of the cantilever and Pi is the absorbed power. The temperature is constant

forO x x, because of the adiabatic boundary condition atx = 0. By solving Eq.(2-1)

using Eq. (5-14), we have,

Z(x) =-(Y 2 -71) t2 2 ( P-x)3 , for x, x l
t|KG

Thus, the deflection measured at x = xi (the location of the laser spot) is,

Z~~x1)=-(72 t -71 tt2 (I _ X1 P, =aPp-5
t2 KG

For case 2, when the heat is conducted through the nanofiber, as shown in Fig. 5-11 (b),

the temperature profile at steady state is,

T(x) -To =I - Xf2, for 0 5 x: l , (5-16)

By solving Eq. (2-1) using Eq.(5-16), we have,
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Z(x) = -(Y 2 -71 ) t2 +t2 ( -x) 3 P2, for 0 ! x l
t2 KG

Thus, the deflection measured at x = x, is,

Z(x)= -(7 2 -71) 2 2 ( - x) 3 P2 = a 2 P2 , (5-17)
t2 KG

As can be observed, the two proportionality factors, ai and a2, are equal from Eqs.

(5-15) and (5-17),

al = a2 =-(72 -71) t +t2 x1
3 P2

t2K

(a)
x =0 x =I

Power, P1  ^n TO
Vacuum

'x =Xeam
Laser beam

T -To

x =x1 x=I

x = 0 x =

Power, 2 TO

Vacuum

Figure 5- 11: (a) Case 1: configuration and temperature distribution,
configuration and temperature distribution.

(b) Case 2:
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5.3.3 Radiation heat transfer between the cantilever and the needle

Since the whole needle is heated up in order to change the temperature of the

thermocouple, the radiative heat transfer between the heated needle and the cantilever

also contributes to the bending signals measured in Fig. 5-9. Upon completion of the

measurements, both varying the absorbed power of the cantilever and the temperature of

the thermocouple, the motorized control stage is used (100 nm step resolution) to move

the needle with the thermocouple backwards until breaking the nanofiber. The fiber

usually breaks at the fiber-thermocouple attachment due to its high strength; thus the

geometry of the thermocouple or the needle will not change. Then, the needle is moved

forward to the original location where both measurements were previously conducted and

the bending of the cantilever is measured again by varying the temperature of the

thermocouple. The observed bending signal without the nanofiber in place is caused only

by the radiation transfer between the cantilever and the heated needle (Fig. 5-12). The

maximum influence of thermal radiation is ~ 25 %. The deflection signals in Fig. 5-12

and Fig. 5-9 are not in the same range due to the thermal drift of the cantilever. In Fig. 5-

10 (b), we have normalized the deflection signals in Fig. 5-12 to ambient temperature (T1)

and subtracted them from the deflection signals in Fig. 5-9. When varying the absorbed

power by the cantilever in Fig. 5-8, no correction of radiation is needed because the

conductance of the cantilever is much larger.
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Figure 5- 12: Experimental data of the radiation heat transfer between the heated needle
and the AFM cantilever

5.3.4 Laser power absorbed by the cantilever

Following the procedure described in Chapter 2, we measured the radiant power

in the incident beam (1.809 mW, 650 nm wavelength), the reflected beam (1.222 mW)

and the strayed beam (0.427 mW). Thus, the absorbed power by the cantilever is

calculated to be 0.160 mW. The ratio of absorbed to reflected light is 0.131. The accuracy

of each power measurement is ~ 0.002 mW which is obtained by multiple measurements.

From uncertainty propagation, that would yield an overall error on the absorbed power of

-0.004 mW. The uncertainty of the absorbed power by the cantilever is thus ~ 2.5 %. In

Fig. 5-13 (a), the photodiode sum signal of the reflected light is plotted as a function of

the reflected laser power. The linear relationship between them corresponds to a slope of

0.6434 mW/V, which is consistent with the measurement in Chapter 2. The absorption of

the cantilever can be calculated from the photodiode sum signal as 0.131 x 0.6434 x

(photodiode sum signal). In Fig. 5-13 (b), we also plot the deflection signal as a function

of the sum signal.
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Figure 5- 13: (a) Measured reflected power versus the sum signal of photodiode, (b)
Deflection signal versus the sum signal of photodiode.

5.3.5 Thermal conductivity of ultradrawn nanofibers

The length L of each polyethylene nanofiber was measured using optical microscopy and

the diameter d was measured using scanning electron microscopy (SEM) at room

temperature. Figures 5-14 (a), (b) & (c) show the measured diameters of samples 1, 2 and

3 by SEM, respectively. The uniformity of the samples is evaluated by measuring the
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diameter at ~ 10 different locations (with varying intervals 2 - 20 pm) along one sample.

The standard deviation of the diameter measurements is ~ 12 nm except at the end which

is connected with the cantilever. Once the geometry was known, the thermal conductivity

of each nanofiber was calculated from the conductance. For each individual sample, two

to three measurements were conducted. The results obtained were 103.9 ± 28.1 W/m.K

for sample 1 with conductance G = 4.84 ± 0.94 nW/K, diameter d = 131 ± 12 nm and

length L = 290 ± 10 pm; 80.4 ± 24.7 W/m.K for sample 2 with G = 5.21 ± 1.35 nW/K, d

- 158 ±12 nm and L = 300± 10 pm; 53.3± 11.3 W/m.K for sample 3 with G = 5.59±

0.95 nW/K, d = 197 ± 12 nm and L = 290 ± 10 im. The overall draw ratios for three

samples are estimated to be: - 410 for sample 1, - 270 for sample 2 and - 160 for sample

3. The measured thermal conductivities for three samples are plotted as a function of

draw ratio in Fig. 5-15. We can clearly see that the thermal conductivities of the samples

increase with increasing draw ratios. Previous results on micron sized fibers showed that

thermal conductivity saturates when the draw ratio is above 100 [11]. The results for our

nanofibers, however, are not only significantly higher than previous thermal conductivity

values, but also do not exhibit saturation, which indicates that there is still room for

significant enhancement.
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Figure 5-14: SEM images of measured nanofiber samples.
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Figure 5- 15: Thermal conductivities of three samples versus their corresponding draw
ratios. The data of "Microfiber/thin film" are from Ref. 15.

The highest thermal conductivity of the nanofibers in our work (- 104 W/m.K) is

about 3 times higher than previously reported values for micron sized fibers and

approximately 300 times that of bulk polyethylene ~ 0.35 W/m.K. This is significant

since the thermal conductivity of condensed matter only spans four orders of magnitude

(~ 0.1-1,000). A value of 104 W/m.K is higher than ~ 50% of pure metals such as

platinum, iron and nickel [29]. Other metals, in contrast, will have a lower thermal

conductivity than pure metals due to alloy and impurity scattering. In comparison, the
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previous microfiber samples have thermal conductivities of 30-40 W/m.K [16, 17], which

is only in the range of ceramics. To understand the high thermal conductivity of

ultradrawn polyethylene nanofibers, we will briefly describe the effect of drawing on the

polyethylene structure based on past efforts on drawing micron-sized fibers and thin films

[30, 31]. The morphological studies of stretched polyethylene samples confirmed that

during the initial drawing process (draw ratio is small), small crystalline blocks are

broken off from the crystalline lamellae and incorporated into microfibrils along the draw

direction. In these microfibrils, the crystalline blocks are stacked and connected by taut

tie molecules (intra-microfibrillar tie molecules) which originate from the partial

unfolding of the polyethylene chains. Besides intra-microfibrillar tie molecules, the

microfibrils are connected laterally by bridging molecules, which are called inter-

microfibrillar tie molecules. Further drawing leads to shear deformation of the

microfibrils, resulting in a decrease of the microfibrillar volume fraction and an increase

in the number of fully extended interfibrillar tie molecules. Finally, these increasing

interfibrillar tie molecules lead to extended chains. The growing chain-extended volume

fraction will form a larger average crystal size in the drawing direction. This crystalline

region along the drawing direction is the origin for enhanced thermal and mechanical

properties. Thus, increasing the length and the volume fraction of the chain-extended

crystalline region will enhance the thermal and mechanical properties of ultradrawn

polyethylene samples [15].

In nanofibers, the defect density will decrease since inherently larger defects, such

as voids, impurities or large entanglement regions, are less likely to be present. Because

these types of defects are generally the cause of fracture in the fiber, the successful
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drawing of a nanofiber is indicative that a higher quality sample was fabricated, as is also

clear from TEM diffraction patterns presented in Fig. 5-5 (b). Smaller defects, such as

small entanglement regions and chain ends, may still exist as a part of the amorphous

region, but can be partially transformed to become crystalline during the drawing process.

As a result, higher draw ratios are more achievable, and a greater volume fraction of the

chain extended crystalline region is more attainable at lower draw ratios for the

nanofibers. To convey the importance of scale, the diameter of commercial microfibers is

typically 10-25 pm. The diameter of nanofibers reported in the current work is 50-500 nm.

With identical lengths, the volume of the nanofiber is four orders of magnitude smaller

than that of a microfiber; thus, a substantially lower number of defects will exist in the

nanofiber than in the microfiber. The improved quality of the nanofibers, when compared

to the microfibers, is also supported by plotting thermal conductivity vs. draw ratio (Fig.

5-15). The thermal conductivities of the nanofibers are not only much higher than

micron-sized polyethylene materials, but also saturate much slower as a function of draw

ratios.

5.3.6 Uncertainty analysis

The total uncertainty incurred during measurement is a composition of multiple

uncertainties propagating throughout the experiment. The general formulation for KF is,

(AQB \
4GFL 4L AB)
S 2 2ATA

Fal 2

From uncertainty propagation rules, the total uncertainty in KF is,
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2 (d 2 Ke( 2 Ke \T 2
ABI A

(e(KF2  e(L) 2  e(d))2  AB1  AB 2  , (5-18)
KFL) d) AQB ATA

ABI AB2 )J

where the uncertainties of the nanofiber length and diameter are 3% and - 8 %,

respectively. Therefore, to completely determine the total uncertainty, the uncertainty of

each bending measurement must be derived.

In the first measurement where the incident laser power is varied, only the

deflection signal and sum signal of the photodector were directly measured. Hence, a

conversion is needed to change the sum signal term into absorbed power. This can be

accomplished as follows,

AQB _ absorbed , eflected (ASum), (5-19)
lreflected

where this expression is intentionally written as the product of three terms to utilize

previous measurements. The ratio of absorbed to reflected power can be calculated by the

power meter data, as previously discussed, and the ratio of the reflected power to the sum

signal can be obtained by previous data shown in Fig. 5-13 (a). Thus, the ratio of the

absorbed power to the deflection signal is,

AQ B - absorbed elected , (5-20)

AB2 Preflected , ASum ) AB2)

where the ratio of the sum signal to the bending signal reflects what was actually

measured. The estimated error for the absorbed power and the reflected power is thus

0.004 mW and 0.002 mW with averages of 0.160 mW and 1.222 mW, respectively,

119



Preflected e(Pabsobed 2 e(preflected 2 2-0.004 2 +2
absorbed) ++ ( - .0 2 .0 2

absorbedj Pabsorbed Preflected 0.160 )01.222)

Preflected

In the measurement relating the reflected power to the sum signal (Fig. 5-13 (a)),

the standard deviation and range of the reflected power are 0.004 mW and 0.18 mW.

Likewise, for the sum signal, they are 0.4 mV and 0.28 V. Note that the reflected power

in this instance is different than what was previously used since this quantity is

contingent on the sum signal.

e reflected e 2

e ASum + ( eefleced (Asum) 2  2.0.004 2 ( 2.0.0004 2

reflected L reflected -ASum 0.18 0.28
ASum

Similarly, in the measurement relating the deflection signal of the cantilever to the

sum signal (Fig. 5-13 (b)), the standard deviation and range of the deflection signal is

2.21 mV and 823.3 mV. For the sum signal, they are 0.4 mV and 0.125 V. Again, the

sum signal considered in this case is different from what was previously used.

ASum

e AB2 ) e(ASum) 2 e(B2) 2-0. 004 2  22.21 26.98E-5
ASum ASum AB 0.125 823.3
AB2

The total uncertainty of Eq. (5-19) is thus,

2 P2 2 x2

_ B_ r ' absorbed e f lece ASum

AB2 Preflected ASum AB2

QB = absorbed + reflected ASum

AB2 'eflected ASum AB2
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= 0.0025 + 0.0019 + 6.98E -5 = 0.00447,

In the second measurement where the temperature of the heated needle is varied,

the temperature is directly measured by an attached thermocouple with a resolution of 0.1

K, as shown in Fig. 5-10(b) in the manuscript. The standard deviation of the deflection

signal is ~ 0.6 mV. Because the deflection signal in Fig. 5-10(b) is found by subtracting

the radiation signal, caused by the heated needle, from the total signal, an additional error

is incurred. Thus the final standard deviation of the deflection signal in Fig. 5-9 is

~[ -0.6mV. The range of the temperature and deflection considered, is 40 K and 7 mV,

respectively, from Fig. 5-10 (b). Note that it was assumed the error was normally

distributed, hence two times of standard deviations were taken for a 95% confidence

interval. This will be assumed for all subsequent parameters. This results in the following

uncertainty,

ATA),2

eAB) e(AT) [e(AB2fl _(2-0.1 D 22-0.6 =0.059' (5-22)
ATA ATA AB2 40 7

A2

Upon substitution of the uncertainties in Eqs. (5-21) and (5-22) into Eq. (5-18),

e(KF) = V(0.03)2 +2.(0.08)2 +0.059+0.00447 = 0.278 = 27.8%

The values of thermal conductivities of three samples in the main text were averaged

based on two or three repeated measurements on one individual sample, and the largest
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error among the repeated measurements on each sample was chosen as the error of the

sample.

In summary, our measurements of the thermal conductivity for ultra-drawn

polyethylene nanofibers (104 W/m.K) have set a new record for the highest thermal

conductivity ever reported for a polymer [32]. Our experimental results clearly show the

potential of using polymers as a cheaper alternative to conventional metallic heat transfer

materials used throughout many industries. This is especially true for applications where

directional heat conduction is important, such as in heat exchanger fins, cell-phone casing,

plastic packaging for computer chips, etc. Furthermore, high thermal conductivity

polymers may also have other technological advantages that can be exploited, since they

can be lightweight, electrically insulating, and chemically stable. Clearly, more work lies

ahead for taking the laboratory results to real world applications.
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Chapter 6: Summary and future

directions

6.1 Summary

By developing new experimental techniques based on bi-material cantilevers used in the

Atomic Force Microscopes (AFM), this thesis has studied several extraordinary energy

transfer phenomena at the nanoscale including near-field radiation beyond Planck's law

(Chapter 3), the optical absorption of micro/nanostructures (Chapter 4) and high thermal

conductivity polymers (Chapter 5).

Blackbody radiation, as predicted by Planck's law, is usually treated as the

maximum thermal radiation emitted by an object. Theoretical calculations show that

surface phonon polaritons can lead to a breakdown of the Planck's blackbody radiation

law in the near field. Surface phonon polaritons are demonstrated in this thesis to enhance

energy transfer between two surfaces at small gaps by measuring radiation heat transfer

between a microsphere and a flat surface down to 30 nm separation. The corresponding
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heat transfer coefficients at nanoscale gaps are three orders of magnitude larger than that

of the blackbody radiation limit. This work will have practical impacts in areas such as

thermophotovoltaic energy conversion, radiative cooling, and magnetic data recording.

Bulk polymers are generally poor thermal conductors and have a typical thermal

conductivity of ~ 0.1 W/m.K. A new technique is developed to fabricate ultra-drawn

polyethylene nanofibers. Using the AFM cantilever as a new measurement platform, we

demonstrate that these ultradrawn nanofibers can have a thermal conductivity of along

the fiber direction as high as ~ 100 W/m.K, which is about a 3 orders of magnitude

enhancement compared to bulk polymers. Such high thermal conductivity polymers can

potentially provide a cheaper alternative to conventional metal-based heat transfer

materials that are used extensively throughout a variety of industries and applications.

The optical properties of nanostructured solar cells over the solar spectrum are

crucial for their performance. Previous research measured the optical absorption of

individual nanostructures by indirectly measuring their photocurrent. An experimental

setup is presented to directly measure the spectral absorption of individual

micro/nanostructures in applications to solar photovoltaics. Further refinement on

experimental technique and characterization using the platform will guide the

optimization of dimension, shape, and materials selections of nanostructures in order to

maximize the efficiencies of solar cells.
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6.2 Future directions

Theory has predicted that at extremely small gaps (< 5 nm), near-field radiation saturates

with a decrease in gap size due to the non-local effects of dielectric functions [1].

Technically, atomically smooth surfaces with a surface roughness less than 1 nm are

achievable. By minimizing the vibrations inside a vacuum chamber, it is possible to use

the present experimental setup to demonstrate the non-local effects and the saturation of

near-field radiation at a gap of less than 5 nm. To extend the present measurement to

other configurations, the measurement of the near-field radiation between two spheres is

also feasible, though the alignment between two spheres is difficult. Instead of using

proximity theory in the sphere-plate problem, the experimental results for the two-sphere

problem can be compared with the numerical calculations conducted by Narayanaswamy

[2].

Though we demonstrate that the ultradrawn polyethylene nanofibers can have a

very high thermal conductivity, the physics of the heat conduction in the nanofibers has

not been fully understood. For nanofibers with small diameters (for example, 10 nm in

diameter), the boundary scattering of phonons may dominate the heat conduction along

the nanofiber. It will be very interesting to measure the thermal conductivity of

nanofibers under low temperatures (1-100 K) and their temperature and size dependences.

To optimize the present experimental setup for measuring the thermal conductivity of

nanofibers, the temperature of the micro thermocouple can be modulated by using a

periodic heating. Then, a lock-in amplifier is used to measure the bending of the

cantilever and thus increase the sensitivity of the technique.
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Some preliminary results about the optical absorption of micro/nanostructures are

presented in this thesis. The present experimental setup has the potential to directly

measure the optical absorption of a single nanowire. The next step is to measure the

optical absorption of single nanowires with different sizes, incidence angles of light, etc.,

and compare the measurement with the predictions from Mie theory.
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