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Abstract

This thesis derives new results linking nonlinear contraction analysis, a recent sta-
bility theory for nonlinear systems, and constrained optimization theory. Although
dynamic systems and optimization are both areas that have been extensively studied
[21], few results have been achieved in this direction because strong enough tools
for dynamic systems were not available. Contraction analysis provides the necessary
mathematical background. Based on an operator that projects the speed of the sys-
tem on the tangent space of the constraints, we derive generalizations of Lagrange
parameters.

After presenting some initial examples that show the relations between contraction
and optimization, we derive a contraction theorem for nonlinear systems with equality
constraints. The method is applied to examples in differential geometry and biolog-
ical systems. A new physical interpretation of Lagrange parameters is provided. In
the autonomous case, we derive a new algorithm to solve minimization problems.
Next, we state a contraction theorem for nonlinear systems with inequality con-
straints. In the autonomous case, the algorithm solves minimization problems very
fast compared to standard algorithms.

Finally, we state another contraction theorem for nonlinear systems with time-varying
equality constraints. A new generalization of time varying Lagrange parameters is
given. In the autonomous case, we provide a solution for a new class of optimization
problems, minimization with time-varying constraints.
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Chapter 1

Preliminaries

This thesis explores the relation between nonlinear contraction analysis and optimiza-
tion theory. First, we introduce the basic idea and theorem of contraction analysis.
Next, we state the theorems of minimization in the three different cases - uncon-
strained, constrained with equality constraints and constrained with inequality con-
straints. The last part gives different examples in order to show that both theories

are linked in some simple cases.

1.1 Contraction theory

Intuitively, contraction analysis is based on a slightly different view of what stability
is. Stability is generally viewed relative to some nominal motion or equilibrium point.
Contraction analysis is motivated by the elementary remark that talking about sta-
bility does not require to know what the nominal motion is: intuitively, a system
is stable in some region if initial conditions or temporary disturbances are somehow
"forgotten”, i.e., if the final behavior of the system is independent of the initial con-
ditions. All trajectories then converge to the nominal motion. In turn, this shows
that stability can be analyzed differentially rather than through finding some implicit
motion integral as in Lyapunov theory, or through some global state transformation
as in feedback linearization. To avoid any ambiguity, we shall call ”convergence” this

form of stability.
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In this section, we summarize the variational formulation of contraction analysis of
[1]. It is a way to prove the contraction of a whole system by analyzing the properties

of its Jacobian only. Consider a n-dimensional time-varying system of the form:

x(t) = £(x(t), 1) (1.1)

where x € R™ and ¢t € R" and fis n x 1 nonlinear vector function which is assumed to
be real and smooth in the sense that all required derivatives exist and are continuous.

Before stating the main contraction theorem, recall first the following. The sym-
metric part of a matrix A is Ay = %(A + A*T). A complex square matrix A is
Hermatian if AT = A* | where T denotes matrix transposition and * complex conju-
gation. The Hermitian part Ag of any complex square matrix A is the Hermitian
matrix (A + A*T) . All eigenvalues of a Hermitian matrix are real numbers. A
Hermitian matrix A is said to be positive definite if all its eigenvalues are strictly
positive. This condition implies in turn that for any non-zero real or complex vector
x, x*TAx > 0. A Hermitian matrix A is called negative definite if —A is positive
definite.

A Hermitian matrix dependent on time or state will be called uniformly positive
definite if all its eigenvalues remain larger than strictly positive constant for all states
and all t > 0. A similar definition holds for uniform negative definiteness.

The main result of contraction analysis is given by theorem 1

Theorem 1. Denote by % the Jacobian matrix of £ with respect to x. Assume
that there exists a complex square matrizc ©(x,t) such that the Hermitian matric

O(x,t)*TO(x,t) is uniformly positive definite, and the Hermitian part Fg of the

F = (@ + @ﬁ) o1
ox

matric

is uniformly negative definite. Then, all system trajectories converge exponentially
to a single trajectory, with convergence rate | sup, ¢ Amax(Fa)| > 0. The system is
said to be contracting, F is called its generalized Jacobian, and O(x,t)*TO(x,t) its

contraction metric. The contraction rate is the absolute value of the largest eigenvalue
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(closest to zero, although still negative) X = |Amas(Frr)|-

1.2 Optimization theory

Optimization means finding "best available” values of some objective function given
a defined domain, including a variety of different types of objective functions and
different types of domains.

We are interested in the most general case of optimization, nonlinear optimization.
In the following we give the sufficient conditions for the point x* to be a minimum of
a minimization problem. There are three main classes of problems which are stated

below. 2]

1.2.1 Unconstrained optimization

In unconstrained optimization we search for the minimum over the whole range of

variables. The generic form is:

min U(x) (1.2)

The second-order sufficient conditions in the unconstrained case are given by theorem

2.

Theorem 2. Let U € C*(R", R) be a function defined on a region in which the point

*

X* is an interior point. Suppose in addition that
VU(x*) =0 and V2U(x*) is positive definite

Then z* is a solution of problem 1.2.

1.2.2 Constrained optimization with equality constraints

In constrained optimization, the Karush-Kuhn-Tucker conditions (also known as the
Kuhn-Tucker or KKT conditions) are sufficient for a solution in nonlinear program-

ming to be optimal, provided that some regularity conditions are satisfied. The
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generic form is with m constraints is:
min U(x) subject to (s.t) h(x)=0 (1.3)

The second-order sufficient conditions in the constrained case are given by theorem

3.

Theorem 3. Let U(x) € C*(R™, R) and h(x) € C*(R", R™) be smooth functions and
X* s a reqular point (the columns of Vh(x*) are linearly independent). Suppose in

addition that
VL(x*) =0 and y'VL(x*)y > 0

where yVh(x*) = 0, A are the lagrange parameters and L is the lagrangian function
defined as L = U + Ah

Then x* is a solution of problem 1.3.

1.2.3 Constrained optimization with inequality constraints

The generic form of the third kind of problems is:
min U(x) subject to (s.t) h(x) <0 (1.4)

where x < 0 means that all the scalar components of x are less or equal to zero. The

second-order sufficient conditions in the constrained case are given by theorem 4.

Theorem 4. Let U(x) € C*(R™, R) and h(x) € C?*(R™, R™) be smooth functions,
A(x) the set of active constraints at point x and X* a regular point (the columns of

Vh(z*) are linearly independent). Suppose in addition that
VL(x*) =0, y'V’L(x*)y > 0 and A} >0

where yVh(z*) =0, \* are the lagrange parameters and L is the lagrangian function
defined as L = U + Ah. Also if i € A(x*) then \* > 0 and if ¢ ¢ A(x*) then \* =0

Then x* is a solution of problem 1.4.

14



1.3 Some examples linking both theories

In this section we present some cases - unconstrained optimization, duality theory -
in which both theories are linked. The following example in [3] is the starting point

of this thesis.

Example 1.3.1.: Consider a gradient autonomous system x = —VU(x) that is con-
tracting in an identity metric. As it is autonomous and contracting in a time independent
metric then it has a unique equilibrium point because

4

—(OVU) = F(OVU)

which implies exponential convergence of x to zero and so x converges to a constant, x*.
This point has zero speed, VU (x*) = 0. The condition of contraction at this equilibrium
point is the positive definiteness of V2U(x*). These are the two sufficient conditions

(theorem 2) to prove that x* is a solution to problem 1.2 O

With example 1.3.1, we show that contraction and unconstrained optimization are
linked through gradient systems. Another important domain in optimization is du-
ality. It is very useful to use the dual formulation instead of the primal for a variety
of reasons, sometimes the dual problem has closed form solution and others the al-
gorithm to find the minimum is much faster. If the primal problem is dimensionally
low with lots of constraints, the dual problem is dimensionally big but with few con-
straints. In example 1.3.2, we show that contraction and duality are related using
gradient systems.

The Legendre transformation is defined as follows for y € R™:
U*(y) = supxere(xy — U(x)) (1.5)

The conjugate function U* is a convex function since it is the pointwise supremum of

linear functions.
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Example 1.3.2.: The system x = —VU(x) is contracting for the identity metric and
also smooth (existence of derivatives) if and only if the system y = —VU*(y) is contract-
ing for the identity metric and also smooth.

To prove the if part we use the fact that strict convexity and smoothness are dual prop-
erties, [22].

For the only if part, we apply the first part of the proof to the function U*. We use the
fact that as U* convex, close (the domain of U is closed) and proper (it never takes the

value —oo and the set domy = [z|g(z) < o0] is nonempty), then U** = U a

Contraction theory is also related to differential geometry through example 1.3.3.

[18]

Example 1.3.3.: The condition of contraction of the system 1.1 for a positive definite

metric g = ©'@ that verifies a parallel propagation is that the hermitian part of :

of (x,t ; _
F=0Df(x,t)0 1 =0 (% + Xi:I‘if’(x, t)) o1

has a uniformly negative maximum eigenvalue. D is the covariant derivative and the

3 ; ko _ 199y , 991 _ 9gi
Christoffel term is defined as >-, I'Y;gr = 5(5% + 50 — 34 )-

The idea is to use a parallel propagation of the tensor ©, [18].
©=0)> Ty%

O

The geometric interpretation of the covariant derivative is the projection of the direc-
tional derivative [7] on that submanifold, thus the tangential part of the directional

derivative. It can be written as:
DxY = (dxy)tang =dxY—-< dxY,v > v

where dxY is the directional derivative along the X direction and v is the normal

vector to the submanifold.
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When writing 2 = ©DfO~162, it means that the virtual speed is constrained to
belong to 'some’ manifold. This idea of projection is fundamental to prove contraction
for constrained dynamical systems.

In [1] combination properties of contracting systems are of great importance. In
example 1.3.4 we derive a new result that cannot be achieved with classical minimiza-

tion theory.

Example 1.3.4.: If there are two unconstrained minimizations which have respectively
their minimum at z} and z3, the sum of both cost functions may not have a minimum.
Using only classical minimizations theorems we cannot conclude anything when summing

both systems.

If the gradient systems issued from the two precedent minimization problems are con-
tracting. Then the system, sum of the gradient systems, is still contracting. Then the

sum of the two cost functions has a minimum d

17
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Chapter 2

Contraction theory with equality

constraints

This section has two main parts. In the first part, we state a theorem giving the
condition of contraction for a constrained nonlinear dynamic system. We have to
start on the constraints to have contraction behavior. In the second part, we allow
the system to start outside the constraints. We have to use sliding techniques to

conclude convergence to the constraints.

In the following all the points are regular. This means that Vh(x)VA'(x) has
full rank and hence is invertible. That is the only hypothesis that is needed in the

following analysis.

2.1 Starting on the constraints:

contraction theory

We define the sets S = [x / h(x) = 0] and M(x) = [y / yVh(x) = 0]. S is the space of
the constraints. M is the tangent subspace of h at point x, it is a k-submanifold. (a k

submanifold is defined as Vh(x) having full rank using the implicit function theorem)
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We define the operator [4]
P(x) =1- VK (x)[Vh(x)Vh(x)]'Vh(x)

It is a symmetric projection operator onto M (x) because it verifies P(x)P(x) = P(x)

and P(x)y € M(x).

2.1.1 Theorem

In this section we compute the condition of contraction for dynamic systems that are
under some constraints. In the real world, there are many examples. A robot arm
that has to evolve in a circle is a constrained dynamic system. The concentrations
of chemical systems that have their own dynamics but cannot exceed one is another

example.

Theorem 5. The condition of contraction of the constrained dynamic system
x = f(x,t) s.t. h(x) =0

is that the hermitian part of :

F = (@(x, t) + O(x, ) P(x) (2—i +A(x, t)%)) O(x,1)"! on S(x)

has a maximum eigenvalue uniformly negative. P(X) is a projection operator onto
the tangent space M(x) and A\(x,t) = —f£(x,t)VH/[VhVHK]| 1. The initial condition

must verify the constraint.

2.1.2 Proof

The proof has three parts. We project the system by adding a term related to the
Lagrange parameters. We compute the condition of contraction of this new system.

We then prove contraction behavior.

20



Projection of the dynamic system

The initial problem is

x =f(x,t) s.t. h(x) =0

Physically this can be interpreted as the velocity of the system goes away from the
constraints. For the system to verify the constraints, the velocity has to be tangent

to the constraints at x. We project the system onto M(x) using the projector P(x).
x = P(x)f(x,t) = f(x,t)—f(x, )V (x)[VR(x)VA(x)'| 'Vh(x) = f(x,t)+A(x,t)Vh(x)

We note A(x,t) = —f(x,t)VA (x)[Vh(x)Vh(x)']"*. These are not exactly the La-
grange parameters. But if f = VU(x), lambda is exactly the Lagrange parameters.
This can be seen as a first generalization of the Lagrange parameters. In this case
the dynamical system would be x = VU(x) + A(x)Vh(x) = VL(x) where L is the
usual Lagrangian function. In the following the projected system will be known as

Lagrangian dynamics.

f(x,t

A(x)Vh(x)

Figure 2-1: Projected speed of the dynamic system

This result gives a new insight about Lagrange parameters. The term A(x, t)Vh(x)
can be seen as a reaction force that allows the system to stay on the constraints . A
Lagrange parameter is the scalar value that gives the magnitude of the force along the
orthogonal direction to the constraint in order to have a tangential speed. Lagrange
parameters as reaction forces is something that has already been introduced using the
Lagrange equation [6] [5]. The constraints are verified at anytime because the system

starts on the constraints and the velocity is always tangential to the constraints. If
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initially the constraints were not verified then this property would not be true.

Condition of contraction

We consider a virtual displacement 0x and a positive definite ©(x,t). The function
ox'O(x,1)'O(x,t)0x is the distance associated to the first fundamental form of the
k-submanifold M (x). We define éz = O(x, t)dx.

We compute 4 (6zdz) = 26x5%. We calculate 0z = ©(x,1)0x + O(x, t)6% where
0% = (5L + A(x, 1) 2k + 2i &) 5y

x dx

We have to compute a long calculation %.

OAx,t) of d*h , n—1 d*h .
< (8_)( + A(x, t)d 5 | VA [VA(X)VA(x)]™ - x(—l;i[Vh( x)Vh(x)']
We can substitute in the precedent equation and reorganize:
- df d%h ol th._ 2l 1
0x = P(x) (dx + A(x, )d ) 0x — Vh(x)'[VA(x)Vh(x)'] 5XE;X = 0x' + 0%

(2.1)
It is essential to note that the first term, 6%/, belongs to M(x) and the second term,
ox*, belongs to M(x)*. In order to have contraction behavior the first term of §x

must be uniformly bounded.

0% = P(x) (g% + A(x, t)%) ox

Finally

d%((h(sz) pys < (x,1) + ©(x, £) P(x) (g—i + A1) d2h>> O(x, )17

Shrinking behavior

From the precedent section we have that:

d
%(5z5z) = 20zF 0z

22



The contraction condition is that V¢ > 0 20zFéz < —A(dzdz) for A > 0. We then

conclude that |6z| — 0. As the metric is positive definite we have that |0x| — 0

2.1.3 Theorem’s application

This theorem relates different areas of mathematics and also has some practical ap-

plications.

Differential geometry and projected contraction theory

When calculating the virtual speed of the system, we compute equation 2.1. The
contraction behavior is given by the uniform negativity of the tangential component
of the speed. In example 1.3.3, the condition of contraction is given by the covariant
derivative. The definition of the covariant derivative is the tangential part of the
directional derivative. In the following we achieve the same expression for the geodesic

using two different theories.

Consider an autonomous system (so we can substitute the partial derivatives by
absolute derivatives), one way of defining geodesics is %l =0 [7]. Using equation 2.1,

we obtain equation 2.2
% =%t = —Vh (VAVE) '%V?hx (2.2)

Another equivalent way of defining geodesics is X = wVh, [4]. Differentiating h(x) = 0
two times we find that xV2?hx + Vhx = 0. Using the second definition of geodesic

we calculate

% = —Vh (VRVE ) %xV?hx (2.3)
Equations 2.2 and 2.3 are the same but obtained in a different way.

23



Control theory and projected contraction theory

The major goal of control theory is to find the control input that will make the system

behave the way we want. In mathematical terms, find @ such that
x = f(x,t) + u(x, t)

has a specific behavior. In the case of projected contraction theory identifying

u(x,t) = AVh, we find a control that makes the system evolve on the constraint.

Optimization and projected contraction theory

In this section we show that a gradient autonomous constrained contracting system
(equation 2.4) for an identity metric has a unique equilibrium point and this equilib-

rium point is also the solution of a problem of minimization.

As done in example 1.3.1 an autonomous contracting dynamic system has x uni-
formly going to zero, then x goes to a constant x*. Then the gradient autonomous

dynamic system has a unique equilibrium point.
x =—-VU(x) s.t. h(x) =0 (2.4)

The projected system, which we will call Lagrangian dynamic, is x = —VL(x). It
verifies VL(x*) = 0. The dynamic system also satisfies the constraint h(x*) = 0
because we start on the constraint and the speed of the system is always tangential

to the constraints. These two conditions ensure us that at anytime h(x) = 0.

As the system is autonomous the condition of contraction is given by
%X = —P(x)V?L(x)x

As the speed of the system belongs to M(x), we have : x = P(x)x. Thus: X =

24



—P(x)V2L(x)P(x)x. The condition of contraction then gives

I o/ * dQU * d2h * * / *
x*P(x)(E-i—)\(x)@)P(x X' =y VL(x)y >n>0

with y = xP(x*) € M(x*) by definition of P(x*).

These are the three conditions for the existence of a minimum to problem 1.3 .
Therefore, there is a new relationship between minimization and dynamical systems

using contraction theory. This is something that has been already investigated [8].

Similarity with precedent results

This result has been already extensively searched. In [1], the calculation of the deriva-

tive of the distance is given by

T 2
(6xTMéox) = 5XT2—)Z( %g—i ox — (SXT% n 6x

DO
@..|g

t

A similar result has been obtained in the proof of the theorem when writing equation
2.1. In both cases, the first term involves the Jacobian of the function. The second
term involves the second derivative of the constraints and is along the direction per-
pendicular to the constraints. The final condition of contraction is on the projection
of the Jacobian. The great novelty about this theorem is the introduction of the

Lagrange parameters in the condition of contraction.

In [9] a similar intuition is developed. If an explicit z coordinates exists then we

can write the dynamical system for convex constraints as
7z = Of — [V,hV,h'|"'V,h'V hOf

We recognize the generalized Lagrange parameters if A = —[V,hV, h]!V_ h'f if
O =1

25



Application to biological systems

In [10], simulations of biological evolution, in which computers are used to evolve
systems toward a goal, often require many generations to achieve even simple goals.
In the article, the impact of temporally varying goals on the speed of evolution is
studied. It is much faster when using time varying goals.

The highest speedup is found under modularly varying goals, in which goals change
over time such that each new goal shares some of the subproblems with the previous
goal.

This problem has strong similarities with what is developed in this thesis. We
can write a non autonomous energy like function, and create a gradient system. This
dynamical system searches the minimum of this function. The minimum is changing
over time (time varying goal also called trajectory). Contraction theory also allows

modularity.

2.1.4 An algorithm for solving minimization problems

This idea of projection creates a new dynamical system. It is a new way of solving
minimization problems. This method is general, the only condition required is as
stated at the beginning of chapter 2 is that Vh(x)Vh(x)’" must be invertible for
x € S(x).

We give some examples. The first example is done in great detail to show how

the method works.

Minimization of the length of a square in a circle

Consider :

minz+yst 22 +y =1
the optimal values are (from classical theory of optimization): z* = y* = -7 = and
A= % In terms of contraction the problemisz = —Vf = st z?+y? = 1.
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1 -3 —&
The projection matrix is P(z) = ¥ . The projected system is then :
—zy 11—y
. —1+ 2+ zy
L=
—1+y?+uzy
where A = —g hgz: = —%3. The eigenvalue of F'is z + y. The system is contracting

in z+y <0. As the system approaches the solution then A — A\*

15 T

1 -
05
0 -
-05F
-1k
_15 1 1 L 1 L | 1 1 1
0.5 1 1.5 2 2.5 3 35 4 45 5
time (sec) x 107

1 l 1 1 | 1
0 0.5 1 1.5 2 25 3 35 4 45 5
time (sec) %107

Figure 2-2: Minimization of the length of a square in a circle over time

As it can be simulated, figure 2 — 3 shows that the dynamic system always stays
on the constraint. The system still goes to the minimum even if it is not starting
in the contraction zone as it can be seen on figure 2 — 4 The contraction zone given
by the precedent theorem is z + y < 0. Looking at figure 2 — 4, we see that the
contraction zone can be extended to x +y < 1.

Another important aspect is the time of computation. Using matlab normal rou-
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Figure 2-3: Minimization of the length of a square in a circle in 2D

tine 'fmincon’ and starting at the same initial point we achieve the solution 1000 times
faster than matlab. Matlab uses the sequential quadratic programming method. This
method approximates at each step the actual lagrangian function by a second order
approximation and solves the second order problem. Each time the system solves this

problem it needs to invert two matrices [2]. In our case we only need to invert one.

Tartaglia’s problem

Tartaglia’s problem is a famous problem in optimization stated as : ”To divide the
number 8 into two parts such that the result of multiplying their product by their

difference is maximal”. The formulation is :

min zy(x —y) stz +y=28
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Figure 2-4: Phase plane of the length minimization of a square in a circle

The Lagrangian system is, with A = 3% — 22

) 2ry — x2
=
y* — 2zy

This algorithm starting on the constraint converges 1000 times faster than matlab

(which again uses an SQP method).

Kepler’s planimetric problem

The problem is how to inscribe in a given circle a rectangle of maximal area. The

minimization formulation is :

min —zy st 22 +y* =1
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In this case the Lagrangian system is

. y+2\z
Tr =
T+ 2y
where A = —zy. The condition of contraction gives two eigenvalues —1 —2zy, 1 — 2.

This algorithm converges to the expected solution, staying on the constraint. The

convergence time is again 1000 times faster than matlab.

Minimum distance from a point to a sphere

Consider the minimization problem

1
min §(x2+y2+ (z=2)%) st hl@z)=2+¢y*+22—1=0

The evident solution of this problem is the projection of the point (0,0,2) onto the
sphere: (0,0,1). We compute the usual projected system :

T+ Ax
z=VU+ AVh = Y+ Ay
z2—24+ Az

with A = 22z — 1.

On figure 2 — 5, the system evolves on the constraint. it converges towards the

expected solution, which is the projection of the point (0,0, 2) onto the sphere.

Using mathematica we can plot the vector field. On figure 2 — 6, there are two
equilibrium points. The north pole is stable and the south pole is unstable. The
condition of contraction is z > 0. But as it can be seen on the figure, we can extend
it to 2 > —1. As usual the computation time, starting at the same initial point is

1000 times faster than matlab.

30



15 . W trajectory : :
,,,,,,,,,, — rrinimum point :
| A . —
o8 —
9 S~
,,,,,,,,,, 2 AR
08 A emN\\G_
AP '-ﬁ'-‘g!“'g“\\"‘-
- /”‘ AT ARSI
RS RSN
AT TASRSORN
INOE ST X0
BV Vv el ‘f;,go\w W
05 WANRRIAALL | LS "!
NN IS AN
R
I\ aSISwE =2l d
0 N k""-'-'«vi-"f///
: i
o5 il S 1
- I I | I I
1 05 0 05 1

Figure 2-5: Minimum distance from a point to a sphere

Minimum distance from a point to an ellipse

This example is chosen to show that the lack of symmetry does not prevent the
algorithm to converge to the right value. We want to calculate the distance from a
point to the ellipse.

I2 y2 22

1
min 5((:1:—:61)2+(y—y1)2+(z—z1)2) ik h(x)=?+b7+25—120

We consider a = 15;b = 5; ¢ = 3; and the absolute minimum is 1,4, 2. On figure 2 -7
we achieve a solution which corresponds to the projection of the absolute minimum
on the ellipsoid. (The red dotted line just indicates where is the projection point).

As usual the convergence time is very fast compared to matlab.
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Figure 2-6: Phase plane of the minimum distance from a point to a sphere

Maximum volume inside an ellipse

The problem is to maximize the volume of a parallelipede subject to lying on an
ellipse

min —xyz s.t. h(a:)=$—+—+z——1=

We consider a = 15;b = 5;¢ = 3;. On figure 2 — 8, we achieve the solution. As usual

the convergence time is very fast compared to matlab.

Minimal sum of lengths for a given volume

The problem is to maximize the volume of a parallelipede subject to lying on ellipse

minz+y+z st hiz)=zyz—1=0
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Figure 2-7: Minimum distance from a point to an ellipse

The constraints are completely nonlinear. The Lagrangian system is:

1+ Ayz
=1 1+ Azz
1+ Azy
where A = — R On figure 2 —9 we achieve the solution, [1 1 1]. As usual

yz)?+(x2)+(xy)?”

the convergence time is very fast compared to matlab.

Contraction of the initial and projected system

In this example, the initial system is not contracting and the projected system is
contracting. From [11], consider the dynamic system
z? + y?

i =10,0,—€*] s.t. h(z,y,2) = 2= 0
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=K Minimum point

Figure 2-8: Maximum volume inside an ellipse

The constraint is a cone. We impose (z,¥) € [—Zmin, Tmaz] X [—Ymin, Ymaz)- Lagrange

VfVh e

parameters are A = —ios = 7 vl The projection matrix is defined as

1+y? —ay 5

1
P = _ 2
(x) 1+22+ 92 (0 N o Yy
T Yy z? + 92
We calculate

oL jEE=Fe 2 0
- | O e 0

0 0 e*

Finally, the eigenvalues of F' = P(a;)‘;%’ are

e 1 1+ 2% + 2 + 9% + 2222 + o
1+I‘2+y2’ 1+$2+y2
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Figure 2-9: Minimal sum of lengths for a given volume

2 4
In this case Aoy = i Tonin sin 2 i

2 4
yo . +Y + . .
S . L 0. This constrained dynamical

system is contracting. The solution is attained in (0,0,0). On figure 2-19 we observe
four different trajectories with four different initial conditions. As it is an autonomous

system, they all converge towards a unique equilibrium point.

Example of minimization with two constraints

Consider the minimization problem but with two constraints

1
min 5((1'—331)2+(y—y1)2+(z—zl)2) s.t. hy(z) = 24y 422 -1 =0 hy(z) = z+y+2 =0

The absolute minimum is again 1, 4, 2. The starting point must be a point where both
constraints are verified : [0, %, —%] The dynamical system follows both constraints.
Each Lagrange parameter acts as a force making the dynamical system to stay on

the corresponding constraint. The final point is the double projection of the absolute
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Figure 2-10: Contraction behavior Figure 2-11: No contraction behavior

minimum, figure (3 — 10). This method in this case is only 100 times faster than the

matlab method.

Example of minimization with scaling

Consider the minimization problem

i=N
min Y z; st h(z)=> z;-1=0

i=1

For N=300, our method is 100 times faster than matlab. For N=3000, our method is

1000 times faster. This method is very robust to scaling.

Example of minimization on a Torus

Consider the minimization problem

min ¢ s.t. h(z,y,2) = (R—\z2+y2)? +22—r* =0

The minimum on the torus is on one of the sides. On figure 2-13, the system evolves
on the constraint even if the shape of the surface is very complicated. R corresponds

to the outer radius and r corresponds to the inner radius.
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Figure 2-12: Example of minimization with two constraints

2.2 Starting outside the constraints:

2.2.1

sliding behavior

The problem and intuition of the solution

The most important limitation of this problem is that we have to start on the con-

straints in order to achieve contraction behavior. The solution is to add the following

dynamic.

= Z Cihi (X)th(x)

¢; is a constant that gives the speed of approach to the constraint i. Vh;(x) gives

the direction that is normal to the surface locally and —h;(x) gives a sense to this

direction, (figure 2-14). A priori, this property is local because far away from the

surface the term in VA, is not necessarily normal to the surface. Consider the modified
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Figure 2-13: Minimization on a torus

Vh;(x)

Vh, (:v) &y (2)Vhy ()
th,j(a:)th(x)

h(x)<0 h(x)>0

Figure 2-14: Sliding dynamic

dynamic system:
x = f(x,t)P ch,h (x)Vh;i(x) = f(x,t) + AVh(x ZCJ x)Vh;(x)
Integrating the precedent expression for an autonomous gradient system, we obtain
% = —V(U(x) + Ah(x) + = Zc,h2 ~VL,

This term corresponds to the term that is added in optimization to construct the
augmented lagrangian, L.. This dynamic term can be understood as adding a cost

when the constraints are not verified.
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2.2.2 Sliding surface behavior

In this section we prove that converging to the surface when starting away from is
a global property. We use sliding control techniques. We define s = %(Zi cih?(x))

where ¢; > 0. s is by definition non negative. Its derivative is

% = Zcihi(x)Vhi(x)i( = Zcihi(x)Vhi(x)(f(x, t)P(x) — chhj(x)th(x))
Because f(x,t)P(x) € M(x) then Vh;(x)f(x,t)P(x) = 0. The derivative is then

equal to :

% = — > ahi(x)Vhi(x)(3_ cjh; (x) VR (%))

=_ (Z cIh?(x) VR (x) + 2 Zcjcihj(X)th(x)hi(x)Vhi(x)) =—(>"cihiVh)* <0

i<j

The second derivative can be calculated. If 5 is bounded, we apply barbalat’s lemma
[12]. 3= ¢;h;Vh; converges to zero as time goes to infinity. Using the initial hypothesis,
Vh; are linearly independent, then c;h; goes to zero. The constraints are then verified.
The technique used here is a very common technique in nonlinear control theory. h?
can be seen as the distance to the surface, which is the same as the sliding variable s

used in nonlinear control.

With one constraint we get exponential convergence towards the surface.

d h? . 2 2
Gy = MEXVAX)% = —ch?(x)(VA(x))

There are two dynamics in this augmented system. These two dynamics can be con-
trolled using the ¢ parameter. The first dynamic is the so called, Lagrangian dynamic.
This dynamic leads to the minimum once on the surface. The second dynamic is the
so called sliding dynamic. It makes the system converge to the constraints. If the
value of ¢ is very big, we give more importance to the éliding term. The system will
converge quicker to the surface. If ¢ is small, it will take longer to converge towards

the surface.
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2.2.3 Examples
Minimization of the length of a square in a circle

Consider the optimization problem:
minz+ystz>+y’=1

The projected system is then :

—1+iz—fﬁ—c(:r2+y2—l)3:

2
—1+ 508 —c(e® +y* — )y

If ¢ is small, (¢=0.5, figure 2—15) initially the system follows the Lagrangian dynamic,
(it follows a circle that is situated at the starting position). As the system goes away

from the surface, the sliding dynamic becomes more important. This algorithm is

I I T T T
I circle : :
= Trajectory with c=1
Trajectory with c=10
Trajectory with c=.1
2 Minimum point

| 1 1 L 1 1
-0.5 0 05 1 1.5 2

Figure 2-15: Minimization of the length of a square in a circle

1300 times faster than matlab. If ¢ is big, (c=10, figure 2 — 15) the system converges

very quickly to the surface. Once on the surface the Lagrangian dynamic makes the
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system to evolve on the constraint towards the minimum. This algorithm is 134 times
faster than matlab method. This method is slower because we need a smaller stepsize
to make the system converge. The best trade off is to choose a middle value (c=1).
We approach the surface following the shape of the constraint. The number % can be

seen as the radius at which the lagrangian dynamics start working.

Minimum distance from a point to a sphere

Consider the minimization problem
1
min 5(1‘2 +12+(2—2)%) st h(z)=2+9y*+2°—-1=0
The solution is (0,0, 1). The projected system adding the sliding term is:

z+ Az +c(z?+y?+22— 1)z
t=VU+AVh= y+Ayte(r?+y*+22— 1)y
z—24+ Az +c(x®+y? + 22— 1)z

with A = zQiZ;izT As usual the computation time, starting at the same initial point

is 1000 times faster than matlab.

Maximum volume on an ellipse

The problem is to maximize the volume of a parallelipede subject to lying on an

ellipse

2 2 2
min — zyz s.t. h(a:):?—i-Z—Q-i—z—z—l:O
¢

In this case we consider a = 15;b = 5; ¢ = 3;. On figure 2— 17 we achieve the solution.

As usual the convergence time is very fast compared to matlab.
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Figure 2-16: Minimum distance from a point to a sphere

Minimal sum of lengths for a given volume

The problem in this case is to maximize the volume of a parallelipede subject to lying
on an ellipse

minz+y+z st h(z)=zyz—1=0
The augmented Lagrangian system is:
1+ Myz + c(zyz — 1)yz

=] 14 Azz+c(zyz — 1)z2

1+ Azy + c(zyz — 1)y

where A = — (yz)%’fr“(f:)ﬁ-’fry)z. On figure 2 — 18 we achieve the solution, [1 1 1]. As

usual the convergence time is very fast compared to matlab.
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Figure 2-17: Maximum volume on an ellipse

Contraction of the initial and projected system

We consider
2 2

e+ 1y

—2=0
2 z

z=10,0,—€?] s.t. h(z,y,2) =

Figure 2-19 shows for ¢ = 1 the sliding of the system and then reaches the minimum.

Example of minimization with two constraints

Consider the minimization problem but with two constraints
L Ne g N2 N2 g S o _ _
min 2((:r z1)*+(y—v1)+(2—21)°) s.t. hi(z) = 2°+y*+2°—1 =0 ho(z) = 2+y+2=0

The final point is the double projection of the absolute minimum. The values ¢y, ¢y are

the gains to the two surfaces. To stay on the sphere, we increase the gain (¢; = 10).
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Figure 2-18: Minimal sum of lengths for a given volume

This method in this case is only 100 times faster than the matlab method.
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Figure 2-19: Contraction of the initial and projected system
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Figure 2-20: Example of minimization with two constraints
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Chapter 3

Contraction theory with inequality

constraints

There are two parts in this chapter. In the first one we state the theorem that gives
a condition of contraction for dynamic systems constrained to inequality constraints.
The second part uses a sliding condition to make the system converge to the con-

straints.

3.1 Starting on the constraints:

contraction theory

We define the set of interior points and the boundary, I = [x / h(x) < 0]. We define

the half saturation function as

0,z<0
hsat(x) = T, T € [0, 1) (31>

l,z>1

and also Py,,,(x) = 1— V' (x)[Vh(x)Vh(x)'] !Vh(x)hse(2) where ® = [D1, ..., Dy,
are strictly positive time varying functions. These functions are boundary layers used

in [12]. P,,, is not a projector because when z € [0, 1], P,,,Ph.., # FPhoo,- For z <0
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then Py, ,, = I. For x > 1, then P, ,, = P, where P is the projector defined in chapter

two.

3.1.1 Theorem

In this section we compute the condition of contraction for dynamic systems that are

under inequality constraints.

Theorem 6. The condition of contraction of the system
x =f(x,t) s.t. h(x) <0

18 that the hermatian part of :

F = <®(X, t) + O(x,1) <thg£ + P)\(x)hsatgg;(Tx)>) O(x,t) ! on I(x)

has a mazimum eigenvalue uniformly negative. \(x) = —f(x,t)Vh'[VhVh']~!. The

wnatial condition must verify the constraint.

3.1.2 Proof

This proof has two parts.

Projection of the dynamic system

The initial problem is

x = f(x,t) s.t. h(x) <0

Physically, three cases can be distinguished for each constraint h;.

First of all, if the current point verifies h;(x(t)) < 0, then the system can evolve freely
in any direction. The system remains the same x = f(x, t)

If the current point verifies the constraint, h;(x(t)) = 0, and has with respect to the
active constraint an inward speed, XVh;" = f(x,t)Vh; < 0, the system will verify the

constraint. The system is x = f(x, ).
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If the current point verifies the constraint, h;(x(t)) = 0, and has with respect to the
active constraint an outward speed, xVh, = f(x,¢)Vh; > 0,the system will escape
from the constraint. In this case we use the projection operator to avoid that. The
system is x = f(x,t) + Ai(x,t) Vhi(x).

There is a switching between systems. This is a problematic approach. To address
this problem we use P,_,. Using this function there is no more switching, the system

1s continuous.

% = £(x, 1) + A(x, t)hsat(%)Vh(x) — 0+ Aihsat(%)vm
i=0 i

The idea when introducing this boundary layer is to relax the constraint h; = 0
to —®; < h; < ®,. We associate being on the constraint with an inward speed to
—®; < h; < 0 and being on the constraint with an outward speed of the dynamic

system to 0 < h; < &;.

Condition of contraction

As done in the precedent theorem, we define dz = ©(x,t)dx. All calculations are

similar except 0x. We compute it,

, of d’h OX(x,t) dh dh dhgg:
ox = <é§ + )\(X, t)yhsat + % d_xhsat + )\(x, t)d_x dx 0x
We compute A(x, t) % dhat = 57 27}, Vh] < 0 because when x € [0, @] then A; < 0
Using equation 2.1, we compute %
. of d*h
ox = (é‘)—cphsat (X) + P(X)hsat)\(x, t)ﬁ) ox

Finally

d : of d?h 1
ﬁ(ézéz) = 20z (@(x, t) + O(x,t) (th (X)Z)_x + P(x)hsat)\(x,t)@)) O(x,t) 0z

Shrinking behavior can be showed using what is done in chapter 2.
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3.1.3 Theorem’s application

This theorem has a main application to minimization theory. But has also an appli-

cation to adaptive control.

Contraction analysis and adaptive control

It is possible to use the theorem of contraction for inequalities in order to conclude
convergence of the adaptive control. The equations of adaptive control are given in
[12): § = —ks+Yadand & = —Y's The virtual system in [y1, yo): 91 = —ky1+Y Y2 9o =
—Y'y; The virtual displacement of this system:

5@1 _k Y (Syl
7 =Y 0 0Ya
. PR Bt A .
The symmetric part of the jacobian is We can conclude contraction for an
0 O

identity metric for y; but not for y». Intuitively adding constraints gives some more
knowledge about this second parameter. We consider now the constraints h(ys) = 0.

We project the second equation

Yo = —Y'y1 + AVh(y2)

where A = —Y'y; VI/[VAVA/|~1 We calculate the associated virtual system:

d*h(ys)
8yg = =Y 8y — A P(y2)d
Y2 (1 dy? (y2)dy2
The symmetric part of the jacobian is
—k 0
2
0 A Pl
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The projection matrix is positive definite. If the constraint is convex, then % > 0.

Then we can conclude contraction of y; and y» if and only if the Lagrange parame-
ters are strictly positive. Similar results with convex constraints have already been

achieved by [17]. This result is more general because it allows many constraints.

Optimization and projected contraction theory

As done in [1] and in the precedent chapter, an autonomous system has a unique

equilibrium point.

x = -VU(x) s.t. h(x) <0

This system has a unique equilibrium point. Three cases can be distinguished for
each constraint h;
First if h;(x*) < —®;, then it verifies VU(x*) = 0. The condition of contraction is
V2U(x*) > 0.
If -, <h; <0, then VU (x*) = 0. The condition of contraction is V2U(x*) > 0.We
also have \; < 0.
If0 < h; < ®;, then VL(x*) = 0. The condition of contraction is x’ PV?L(x*)Px > 0.
We also have A\; < 0.
The dynamic system also satisfies the constraint h;(x*) < 0 because we start on the
constraint and the speed of the system is always towards the interior of the constraints
or tangential to them. These two conditions ensure us that at anytime h;(x) < 0.

In each case, these are the conditions for the existence of a minimum for the
problem 1.4 needed by the Karush-Kuhn-Tucker theorem in order to have a minimum
solution. Therefore, there is a new relationship between minimization and dynamical

systems using contraction theory.

Similarity with precedent results

In [9] the dynamic system has to evolve in a hypercube. This corresponds to linear

inequalities. The definition of the dynamical projected system is very similar to the
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one that we have done. The projected dynamical system is defined as
x = Ig(x, f(x,t))

where Il is the point projection operator on ). Intuitively when inside the con-
straints, this operator does not do anything. When on the constraint with an outward

speed, we apply the projection operator.

3.1.4 An algorithm for solving minimization problems

This projection operator gives us a new dynamic system that can be implemented.

Minimization of the length of a square inside a circle

Consider :

min T4y st 22 +yi=1

As it can be simulated, if we make the boundary layer too small then the system

converges very quickly to constraint.

Kepler’s planimetric problem

The problem is how to inscribe in a given circle a rectangle of maximal area. The

minimization formulation is :
. 2 2
mm zy stz +y =1

As it can be simulated, if we make the boundary layer too small then the system

converges very quickly to constraint.

Minimum distance from a point inside a sphere
Consider the minimization problem
1
rrzz'71§(av2 +y—22%+(z—4)?) st hz)=z41?+22-1=0
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= contraction with phi = .1
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Figure 3-1: Minimization of the length of a square inside a circle with two different
boundary layers

T I T
\ = contraction with phi = .1

= contraction with phi = .5
®  minimum point

Figure 3-2: Solution to Kepler planimetric problem with two different boundary layers

The minimum is not on the boundary. The system stills achieve the solution because

inside the constraint we have a gradient dynamic.
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T contraction with phi = .1
#  minimum point

054" i

Figure 3-3: Minimum distance from a point inside a sphere

Maximum volume on an ellipse

The problem is to maximize the volume of a parallelipede subject to lying on an

ellipse
2 2 2

min —zyz 8.t h(:c)=—2+y +i—1=0
a

b2 2

Example of minimization with two constraints

Consider the minimization problem but with two constraints

1
min 5(($—$1)2+(y—y1)2+(z—z1)2) s.t. hi(z) = 2 +y*+2>—1 = 0 hy(z) = z+y+2 =0

As it can be simulated, if we make the boundary layer too small then the system

converges very quickly to constraint.
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s contraction with phi = .01

""" : wm contraction with phi = .5

Figure 3-4: Maximum volume on an ellipse with two different boundary layers

3.2 Starting outside the constraints:

one-side sliding behavior

3.2.1 One-side sliding condition

We need to introduce a modified concept of sliding. In all precedent applications, the
convergence from both sides to the sliding surface was very important. With inequal-
ities, h; < 0 is a feasible region, we only need to slide along the side corresponding to
h; > 0. We introduced the idea of boundary layer earlier. If the system starts outside
the boundary layer for the constraint i , h; > ®;, we want to add a dynamic that will
make the system go inside the boundary layer. h; < ®; As h; > ®; we multiply by h;

the precedent inequality. The one side sliding condition is

i=m i=m

G (Z h?) < 3 (@ - mlhle) (3.2)
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Figure 3-5: Minimization with two constraints with two different boundary layers

where m is the number of constraints. This condition is very similar to the one

developed in [12].

3.2.2 One side sliding surface behavior

In order to have this one slide sliding behavior we need to add a dynamic. The term

is the following
h;
- ) h sa.
Z GV t ( (I))
The modified dynamic system is:

% = fixt) B, (x ZCS,V}L hsat = f(x,8) + ()\Vh = chthhj(x)) Psat
i
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This system verifies the condition of one side sliding. Its derivative:

5 (Z h2> — ; hi(x)Vh;(x)x = ;cihi(x)Vhi(x) (f(x t) Py, (x Z ¢;Vhi(x m)

Because for h > ®, we have hgy, = 1 then f(x,t) P, (x) = f(x,t)P(x) € M(x) then
Vhi(x)f(x,t)P(x) = 0.
21 _ AW}
2dt (Zh ) = —cVhVh'h

where ¢ = [c1, ..., ] = [m1 — @1, oy iy — Pr) = — ®. As VA’V is of full rank then
’'Vh'Vhz > 0. We add a very mild hypothesis, z'VA'Vhz > = we achieve one side

sliding contraction behavior

3.2.3 Examples

We apply the sliding technique to the precedent examples.

Minimization of the length of a square inside a circle

Consider :

min z+y s.t. 2 +y* =1

Convergence to the minimum is achieved even starting outside the constraints.

Kepler’s planimetric problem

The problem is how to inscribe in a given circle a rectangle of maximal area. The

minimization formulation is :
. 2 2 _
mimmzy stz-+y =1

Convergence to the minimum is achieved even starting outside the constraints.
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Figure 3-6: Minimization of the length of a square inside a circle with two different

boundary layers
T I T
= contraction with phi = .1
m contraction with phi = .5
®  minimum point

Figure 3-7: Solution to Kepler planimetric problem with two different boundary layers
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Minimum distance from a point inside a sphere
Consider the minimization problem

1
min 5(2?2 +(y—22+(z—4) st h(z)=2?+9y°+2°—1=0

Convergence to the minimum is achieved even starting outside the constraints.

- W contraction with phi = .1
| = contraction with phi=.5 | " -......
- &  minimum point :

o8- 7 AR R 3

06"

0.4

02" f i L e L

04 : q - " e

02"
0.4
06"

08"

B I O

Figure 3-8: Minimum distance from a point inside a sphere

Maximum volume on an ellipse

The problem in this case is to maximize the volume of a parallelipede subject to lying

on an ellipse

2 2 2
min —xyz s.t. h($)=$—+y—+i—1:0
a? b 2
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Figure 3-9: Maximum volume on an ellipse with two different boundary layers
Example of minimization with two constraints

Consider the minimization problem but with two constraints

1

min 5((x—$1)2+(y—y1)2+(z—zl)2) s.t. hi(z) = 2 +y*+2*~1 =0 hy(z) = z+y+2=0

Convergence to the minimum is achieved even starting outside the constraints.
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Figure 3-10: Minimization with two constraints with two different boundary layers
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Chapter 4

Contraction theory with

time-varying equality constraints

This section has two main parts. In the first part we state a theorem giving the
condition of contraction for a time varying constrained nonlinear dynamic system.
We have to start on the constraints to have contraction behavior. In the second
part, we allow the system to start outside the constraints. We have to use sliding

techniques to conclude convergence to the constraints.

4.1 Starting on the constraints:
contraction theory

We define the set S(x,t) =[x / h(x,t) = 0].

4.1.1 Theorem

In this section we compute the condition of contraction for dynamic systems that are

under time-varying constraints.

Theorem 7. The condition of contraction of the system

x =f(x,t) s.t. h(x,t) =0
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is that the hermitian part of :

48 8;};52){))) O(x,t)™' on S(x,t)

e + A(x, 1)

F = (@(x, t) + ©(x,t)P(x) (

has a mazimum eigenvalue uniformly negative. P(x) is a projection operator onto
the tangent space S(x,t) and A(x,t) = —(f(x,t)Vh + 9)[VhVHR]™'.  The initial

condition must verify the constraint.

4.1.2 Proof
Projection of the dynamic system

The initial problem is
x = f(x,t) s.t. h(x,t) =0

Physically to remain on the constraints, we need to project the speed and we need to

take into account the speed of the surface, figure 4-1. To calculate this last term, we

\:Vh t+dt

&
f+ M Vh

Figure 4-1: Projection with time-varying constraints

use the fact that the constraints are always verified, 0 = % = Vhi' + % As we have

the choice on i/, we add a term to ensure that this equation is verified. This term is :

—%?{vww}—lvn = \Vh
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We can see this new parameter as a force that will make the system stay on the
constraint. It is a new generalization of Lagrange parameters. Hence the total system
is:

oh

i = £(x,8) + M\ Vh = = [VAVA|'Vh = £(x,8) + M VA + X Vh = f(z,8) + AVh

where A = A\; + \y. The constraints are verified at anytime because the system starts

on the constraint and the velocity is such that it remains on the constraints.

Condition of contraction

We compute 0x = (%ﬁ + A(x )gi’é + 6’\5(’() on 1 a’\gx ax) 0x. M can be computed.

5 [VAX)VA(x)]

M(x)  (Of . &h , a1 (Of . 8*h\ 8h
alx (a + N5 2) —VH [VA(x)Vh(x)' 1—<a—£+x ax2> o

We have to compute also a’\g(x)

O?h

VR V(x|

OA2(x) (8h *h

! n-1 __
. 5~ W) VR [VA(x)VA(x)] = Xy

We can substitute in the precedent equation and reorganize:

= Pl G+ 20x >ax2) 5% — Vh(x) [VR()VA(x)] " (5"%2_2" ! %%5")

It is essential to note that the first term belongs to M (x) and the second term belongs
to M(x)*. To have contraction behavior the first term of éx must be uniformly

bounded.
) of 0%h
5X = P(X) (& —+ /\(X)@) 5X

Finally

%(6z5z) = 20z (@(x, t) +O(x,t)P(x) <g£ A(x)%}(—%)) O(x,t) 'z
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4.1.3 Theorem’s applications

One of the most important application is optimization under varying constraints.

Minimization of the sum of the sides under a growing circle

The problem is :
min x +1y s.t. 22 +y? = t?

The solution using KKT theorem is given by z* = y* = —%. Using the precedent

theorem we can create the ’extended’ lagrangian system.

1 — (x:;y)

z
t
1— 2y

'Z'_

The condition of contraction is given by V*f + (A; + X2)V2h = =] > 0. Then
the final condition is z + y + ¢ < 0. On figure 4 — 2, we achieve the solution after

some transient time

Minimization of the sum of the sides under a changing ellipse

The problem is :
min T +y s.t. to® +y? =1

The solution using KKT theorem is given by z* = — \/1{'_7, yr=——L

1— (tz+y)

t2x2+y2 t./L‘ - 2!13t

T
227242y

_ (tzty) x?
1 t2x24y2 Y 2t22242y2 Y

The condition of contraction is given by V2f + (A; + A\y) V2h = —%I > 0. Then
the final condition is 2 + tz +y < 0. On figure 4 — 3 we achieve the solution after

some transient time
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Figure 4-2: Minimization of the sum of the sides under a growing circle

Using time varying constraints to solve problems with static constraints

In order to make a smoother approach to a certain constraint hg, we can create a
time varying constraint such that when ¢ — oo then h(z,t) — hg(z). Consider the
minimum system:

min T +y st :c2+y2:e%

The dynamical system associated to that is :

1_(55'1:11)2.‘._1%
b= ?
et

On figure 4 — 4, we observe that we achieve the solution after some transient time
This is the solution achieved by the minimization of the sum of the lengths subject

to a circle.
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Figure 4-3: Minimization of the sum of the sides under a changing ellipse

4.2 Starting outside the constraints:

sliding behavior

4.2.1 Sliding surface behavior

As done in the precedent chapter, we add a sliding term. The new system is :

oh

r = f(z,t h—
& = f(z,t) + AV P

[VhVh'|"'Vh — Z cihi(z)Vh;(z)

We have global convergence towards the surface.We define s = 3(32; ¢;h?(z)) where

¢; > 0. s is by definition strictly positive. Its derivative:

ds . (6h. oh
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Figure 4-4: Using time varying constraints to solve problems with static constraints

=C'n (gg (P( z)'f(z,t) — Vh'[VhVh']~ 1 chh (z)Vh; (m)) h)
Because f(z,t)P(z) € M(z) then Vh;(z)f(z,t)P(z) = 0. As VhVh'[VhVh'] 12} =
9h The derivative is then equal to :

ds

= —(3 " chiVhi)? <0

The second derivative is smooth, then it is bounded. Applying barbalat’s lemma,
we conclude that 3 c;h;Vh; converges to zero as time goes to infinity. As Vh; are

linearly independent then c;h; goes to zero. The constraints are then verified.
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4.2.2 Examples

To show how this sliding term works, we use the precedent examples but starting on

a point outside the surface.

Minimization of the sum of the sides under a growing circle

The problem is :

min z +y s.t. 2 +y% =2

The new system is

1— i‘;’ig%x —ig 4 Hd
= %g—ly =& $chy
On figure 4 —5 we achieve the solution after some transient time even starting outside

of the dynamic constraint.

100 T T T T
. : y T Y
: : : Rre=_s_~] y
80 : g : s m theoretical result |
: : mm—— Constraint
40 ¥

0 i i 1 i
0 0.005 0.01 0.015 0.02 0.025 0.03
Figure 4-5: Minimization of the sum of the sides under a growing circle
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Minimization of the sum of the sides under a changing ellipse

The problem is :

min z+7y s.t. tz* +y* =1

The new system is

_ (tz+y) _ z?
l-25 vy 1T — 52 o xt + chxt

2
1= tgtmxﬁt-yg,?zy h 2t2:cg+‘2y2 y + chy

On figure 4 —6 we achieve the solution after some transient time even starting outside

of the dynamic constraint.

25 T T T T
. I
ol — xtheoretical |
==} y
— ytheoretical

0 0.01 0.02 0.3 0.04 0.05

Figure 4-6: Minimization of the sum of the sides under a changing ellipse
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Chapter 5

Conclusion and directions for

future research

5.1 Conclusion

This thesis has four main new contributions.

The first and more important is the condition of contraction (a condition of conver-
gence) for three different dynamic systems, constrained with equalities, constrained
with inequalities and constrained with time varying inequalities.

The second contribution is, in the particular case of a gradient autonomous con-
tracting in a metric identity system, a fast algorithm to find the minimum. The
contraction conditions are only partially understood. In this very particular case, we
achieve such a quick algorithm to find the minimum. May be a more general metric
will allow to solve more complicated problems.

The third contribution is the understanding that adding a term % in the cost func-
tion corresponds to dynamic term that makes the dynamic system converge towards
the surface

The fourth and last contribution is on Lagrange parameters. This thesis gives
a new physical approach of Lagrange parameters. They can be understood as a
scalar value that ensure the system to have a tangential speed to the constraints.

Also it gives three generalizations of Lagrange parameters, with a time varying
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cost function A = —VU(x,t)VH[VAVA|™!, with a time varying general vector
A = —f(x,t)VH[VAVE]| and with a a time varying general vector with time vary-
ing constraints A\ = — (f (x,t)Vh + %) [VRVR'|1. This last case is the most general

because it contains the other two.

5.2 Directions for future research

There are many direction for the future research.

We compare the speed of the minimization algorithm to the matlab method fmin-
con. In [13], a new algorithm that adapts its code to the particular minimization
problem, has been developed. Comparing both methods would give some more con-
clusive results about the speed of this new algorithm

Theorem 6 is very complicated and does not make clear links with optimization
theory. Many ideas can be explored to simplify it, creating a second order system ()
or creating hierarchical system or feedback systems.

We have always used an identity metric. It is interesting to explore what happens
with constant metrics and time varying metrics. In the gradient autonomous case,
it can may be include some information of the constraints making the minimization
faster.

In chapter 1, there is an example with duality theory. There are many other links
to be explored.

When having many different goals, Pareto optimality does not have a general
theorem to find the best solution. May be some conclusive theorem can be found
exploring Pareto optimality using contraction theory.

Contraction theory has very interesting combination properties. In chapter one
an example using parallel combination has been presented. It is interesting to try to
use feedback and hierarchical combination.

The Hamilton-Jacobi-Bellman (HJB) equation is a partial differential equation
which is central to optimal control theory. It is the solution of a minimization prob-

lem subject to a dynamic system. As chapter 4 has time varying constraints, it is
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reasonable to explore this problem.
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