
MIT Open Access Articles

Improving Wireless Network Performance Using Sensor Hints

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ravindranath, Lenin, et al. "Improving Wireless Network Performance Using Sensor
Hints" Symposium on Networked Systems Design and Implementation (8th : 2011 : Boston,
Mass.)

As Published: http://usenix.org/events/nsdi11/tech/

Publisher: USENIX Association

Persistent URL: http://hdl.handle.net/1721.1/62542

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/62542
http://creativecommons.org/licenses/by-nc-sa/3.0/

Improving Wireless Network Performance Using Sensor Hints

Lenin Ravindranath, Calvin Newport, Hari Balakrishnan and Samuel Madden
MIT Computer Science and Artificial Intelligence Laboratory

{lenin, cnewport, hari, madden}@csail.mit.edu

Abstract

With the proliferation of mobile wireless devices such as
smartphones and tablets that are used in a wide range of
locations and movement conditions, it has become im-
portant for wireless protocols to adapt to different set-
tings over short periods of time. Network protocols that
perform well in static settings where channel conditions
are relatively stable tend to perform poorly in mobile
settings where channel conditions change rapidly, and
vice versa. To adapt to the conditions under which com-
munication is occurring, we propose the use of exter-
nal sensor hints to augment network protocols. Com-
modity smartphones and tablet devices come equipped
with a variety of sensors, including GPS, accelerometers,
magnetic compasses, and gyroscopes, which can provide
hints about the device’s mobility state and its operating
environment. We present a wireless protocol architecture
that integrates sensor hints in adaptation algorithms. We
validate the idea and architecture by implementing and
evaluating sensor-augmented wireless protocols for bit
rate adaptation, access point association, neighbor main-
tenance in mobile mesh networks, and path selection in
vehicular networks.

1 INTRODUCTION

With over 172 million devices sold in 2009, smartphones
are a rapidly growing market [27]. Some analysts predict
that smartphones and pads/tablets will surpass world-
wide PC sales by the end of 2011 [20]. These devices
may well become the dominant mode of Internet access
in the near future [19].

With the proliferation of these “truly mobile” devices,
it is increasingly common for wireless network proto-
cols to have to deal with both static and mobile us-
age within a short time period. Consider, for example,
a smartphone user at the supermarket who alternates
between standing still in front of product displays and
moving between aisles, all the while streaming audio
through the in-store wireless network. Mobility intro-
duces difficult problems that wireless network protocols
must overcome to achieve good performance. During
motion, the vagaries of wireless communication become
more pronounced: channel quality varies rapidly, losses

become more bursty, and assessments of channel behav-
ior are quickly outdated. Because of this, nodes should
not maintain long histories, as the rapidly changing chan-
nel conditions and network topology would quickly ren-
der them invalid. Routing tables may also need to adapt
quickly to neighbor changes, and the optimal next-hop
may depend on the direction and speed of movement.

However, strategies that compensate for these
mobility-related difficulties are unlikely to be optimal
in stationary scenarios [4, 25]. When nodes are static,
they can average estimates of channel quality, observe
their neighbors, and compute routes over long time
scales (many seconds), carefully obtaining and updating
observations from many packets. In so doing, they can
correctly avoid reacting to the inevitable short-term vari-
ations that even static wireless networks encounter (e.g.,
due to short-term fading). Previous work has generally
not distinguished between these modes, attempting
instead to adapt seamlessly across extremely different
network conditions.

The key insight in our work is that nodes can use exter-
nal (to the network stack) sensor hints to improve the per-
formance of wireless network protocols. Our approach is
practical and readily implementable because almost ev-
ery smartphone and tablet today comes equipped with
a wide array of sensors like GPS, accelerometers, com-
passes, and so on. These sensors are used by applications,
but are largely ignored by the network stack and proto-
cols. We show how data from these sensors can provide
hints to protocols about the mobility mode of the device.
By “mobility mode,” we mean attributes such as whether
the device has started moving or is static, its speed of mo-
tion, its position, and the heading (direction) of motion—
all factors that affect wireless network protocol perfor-
mance. Protocols can explicitly adapt their behavior and
parameters to the current mobility mode.

Sensor hints may be used in different ways in dif-
ferent protocols. When a node generates a hint locally
or receives a hint from a neighbor, it may adapt in re-
sponse to it. The adaptation might be continuous in
nature (e.g., updating protocol parameters) or discrete
(e.g., switching from a static-optimized to a mobility-
optimized protocol). In Section 2, we introduce a novel
sensor-augmented wireless architecture that allows de-

1

vices to extract hints and provide them to protocols. To
the best of our knowledge, ours is the first general ap-
proach to using sensor hints to augment a variety of net-
work protocols.

In addition to the sensor-augmented network architec-
ture, we make four contributions:

1. Hint-aware bit rate adaptation: In Section 3, we
describe and evaluate our implementation of a novel
frame-based bit rate adaptation protocol, RapidSample,
and show through trace-based simulation and testbed
experiments that it obtains up to 70% better through-
put than existing frame-based and SNR-based rate adap-
tation protocols, and comparable throughput to Soft-
Rate [25], when a node is in motion. We use Rapid-
Sample to develop a hint-aware bit rate adaptation pro-
tocol that switches strategies based on mobility hints
and show through exhaustive trace-based evaluation and
testbed experiments that it obtains between 17% and
52% better throughput than SampleRate, 17% and 39%
better throughput than RRAA, and 11% and 47% better
throughput than SNR-based schemes, in mixed mobility
scenarios in various environments.

2. WiFi access point (AP) association: In Section 4,
we describe a hint-aware AP association protocol with
two modes: maximizing bulk transfer throughput and
minimizing handoffs. We show through trace-based eval-
uation that the hint-aware protocol improves throughput
by 30% and reduces the number of handoffs by 40%
compared to today’s standard scheme.

3. Mobile topology maintenance: In Section 5, we
show experimentally that maintaining acceptable error
rates for topology maintenance while mobile requires
over 20 times more traffic than in the stationary case. We
implement a hint-aware protocol that switches to this ex-
pensive probing only when in motion.

4. Path selection in vehicular mesh networks: In
Section 6, we present a collection of hint-aware path se-
lection metrics for vehicular networks and show, using
trace-based simulation, that they increase the stability of
short routes by nearly a factor of 5 compared to the hint-
free approach.

2 DESIGN

Current wireless protocols adapt their behavior based on
in-network information such as loss rate, bit errors, or
SNR. In contrast, we present a hint-aware protocol archi-
tecture that augments this in-network information with
hints from external sensors, which can be used at all lay-
ers of the network stack to improve performance. In addi-
tion to using local sensor hints, a protocol can also adapt
based on sensor hints communicated from other nodes.

In this section, we first present a general-purpose hint-
aware protocol architecture. We then describe simple and

Sensor Hint
Manager

Accelerometer GPS

Gyro

Compass

Sensor Library

Hint Aware Protocols

STOP

Hint messages

UDP Wi-Fi MAC

Send/receive hint messages

UDP Packets 802.11 frames

Query

Hints

Sensor Hint Service

REGISTER

SEND

Hint Transport Layer

Application Transport Network MAC PHY

Wireless Protocol Stack

Figure 1: Hint-aware protocol architecture.

Hint Type Hint Value
Movement True/False
Walking True/False
Heading Degrees Relative to True North
Speed Miles per Hour
Environment Indoor/Outdoor

Figure 2: Hint types exposed by the Sensor Library.

accurate techniques for extracting mobility hints from
sensors such as GPS, accelerometers and compasses.

2.1 Hint-Aware Protocol Architecture
Figure 1 depicts the architecture; the goal is to make it
easy to augment wireless network protocols with sensor
hints. The architecture provides a Sensor Hint Service
that abstracts and hides the details of (1) querying var-
ious sensors, (2) extracting hints from raw sensor data,
and (3) communicating relevant hints over the network.
The service exposes well-defined interfaces to achieve
these goals. Our current implementation of the Sensor
Hint Service runs as a background service on the An-
droid platform and as a Click module for Linux mobile
devices. It should be straightforward to incorporate this
service into other mobile platforms.
The Sensor Hint Service has three components:

1. Sensor Library. The Sensor Library processes raw
sensor data to extract useful hints. We focus on mobility
hints and our implementation currently supports the hint
types shown in Figure 2. Section 2.2 discusses how these
hints are extracted.

2. Hint Transport Layer. Some protocols can bene-
fit from hints from other nodes. For instance, a bit rate
adaptation protocol can adapt its bit rate using not only
its own movement hints, but also movement hints from
nodes the protocol is communicating with. The Hint

2

Transport Layer provides a protocol-independent way to
communicate hints.

When sending a hint to another node, the Sensor Hint
Manager (described below) constructs a hint message
(shown in Figure 3) and delivers it to the Hint Transport
Layer, which in turn sends the hint. The hint message
consists of the source MAC address and 〈hint type, hint
value〉 pairs. When receiving a hint from another node,
the Hint Transport Layer delivers the received hint mes-
sage to the Sensor Hint Manager, which in turn delivers
it to the appropriate protocol.

The Hint Transport Layer provides two communica-
tion mechanisms to send and receive hints. The first
uses UDP. Each node opens a pre-defined UDP port, the
HINTS port, to receive hint messages. Hint messages
may either be unicast or broadcast to this UDP port.

The UDP scheme works only as long as the nodes
are connected through IP. In certain hint-aware wireless
protocols (Section 5 and Section 6) nodes do not have
IP connectivity, instead communicating via a link-layer
protocol such as 802.11’s link layer. Thus, for our sec-
ond scheme, we use a reserved protocol type in the link-
layer MAC header to denote a hint message frame (Fig-
ure 3). The Hint Transport Layer then listens for unicast
or broadcast hints sent in link-layer frames. An alterna-
tive scheme might be to overload or piggy-back hints on
existing 802.11 frames; we leave the exploration of this
possibility to future work.

Because Android phones do not (yet) support sending
raw 802.11 frames from user-level, we implemented only
the UDP mechanism for phones. For Linux devices, we
implemented both schemes. Legacy nodes not running
the Sensor Hint Service will simply ignore the hint mes-
sages, as long as the HINTS port is not in use by some
other application.

3. Sensor Hint Manager. The Sensor Hint Manager
arbitrates communication between the protocol, the Sen-
sor Library and the Hint Transport Layer. It exposes a lo-
cal socket interface (different from the HINTS port) for
protocols to interact with the Sensor Hint Service. Pro-
tocols register for one or more hints using REGISTER
(HintTypes[], ReportRate, CallbackPort, Source).
Once registered, the Sensor Hint Manager uses the Call-
backPort to stream hints to the protocol. The Source
field can be LOCAL, REMOTE, or ALL, corresponding
to local hints, remote hints, or both. The protocol can
specify a ReportRate, in milliseconds, which indicates
how often to report the hint. ReportRate also takes two
special values: “0” means “as fast as possible” and -1
means “only when there is a change in the hint state”.

Protocols use SEND(HintTypes[], SendRate, Com-
Type, Address) to instruct the service to send hints to
other nodes. SendRate takes values similar to Repor-
tRate in the REGISTER command, with the same con-

ventions. ComType specifies the communication types
(currently either UDP or MAC frames). Hints may be
unicast to a specific node or broadcast in either Com-
Type setting.

REGISTER and SEND both return a unique ID to the
protocol. The protocol can use the returned ID to stop
sending hints using the STOP (ID) command.

2.2 Extracting Hints
In this section, we describe how to extract the hints
shown in Figure 2—movement, walking, heading, speed,
and environment—using standard sensors found on most
smartphones and tablets.

Movement hint. Movement is a boolean hint that is
true if, and only if, a device is moving, i.e., if either the
device’s acceleration or its speed is non-zero. We obtain
this information from the acceleration sensor indoors,
and from the combination of GPS and the acceleration
sensors outdoors. Note that it is important to quickly cap-
ture the situation when a device has started moving after
being at rest, and vice versa, so measuring the accelera-
tion is important.

The accelerometer on most smartphones reports force
values for its x, y, and z axes, at a certain sample rate
(usually 20–500 Hz). The values are reported either in
m/s2 or in terms of g (= 9.8 m/s2). Figure 4 plots a raw
accelerometer trace of a smartphone user who walks in
the 6–14 second and 22–32 second periods, and is static
the rest of the time. The accelerometer shows a signifi-
cantly higher variance while moving than when station-
ary. We use this variance to extract a movement hint.

For every new accelerometer sample, we compute the
standard deviation of the magnitude of the acceleration
over a sliding window (w) of samples. The window slides
by one sample for each computation. If the standard de-
viation in a window exceeds a threshold (a), we detect
movement. When the standard deviation is within the
threshold for n successive sliding windows, we report
that the node is stationary.

We experimented with many values for w, a, and n and
determined that w = 5,a = 0.15 m/s2, and n = 10 gave
us few false hints. Figure 5 illustrates our movement hint
extraction for the trace in Figure 4. We have implemented
the above technique on four different platforms (Android
Nexus one, Android Google G1, iPhone 4 and SparkFun
accelerometer that connects to a Linux laptop) and found
that the parameters offer good performance in all cases.

On the Android platform with a maximum accelerom-
eter sample rate of 50 Hz, we were able to detect move-
ment within 100 ms and detect that the node became sta-
tionary within 200 ms. On the Sparkfun platform, with a
sample rate of 500 Hz, we were able to detect movement
within 10 ms and stationarity within 20 ms.

The movement hint is used by the protocols described

3

Source MAC # Hints Hint Type Hint Value

Hint Message format

UDP packet
HINTS port

Type – HINT packet

Hint Type Hint Value

MAC Header

802.11 packet MAC Header Hint Message

IP Header UDP Header Hint Message

Figure 3: Hint message and packet for-
mats.

-5

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

A
cc

el
er

at
io

n
(m

/s
^2

)

Time (s)

x axis
y axis
z axis

Figure 4: Raw accelerometer
trace.

 0 5 10 15 20 25 30 35 40

Time (s)

Acclerometer Magnitude
Standard Deviation

Movement Hint

Figure 5: Movement hint extrac-
tion from accelerometer data.

in Section 3 and Section 5 to improve bit rate adaptation
and topology maintenance, respectively.

Walking hint. Whereas a simple movement hint is
useful in some cases, in other situations it is valuable to
detect whether a user is walking versus other types of
movement, such as when the user is stationary but mov-
ing the device. We accomplish this using the walking de-
tector developed in TransitGenie [22] and apply it to AP
selection (Section 4).

Heading hint. Heading can be determined from dig-
ital compasses (magnetometers) that are available on
many devices. GPS also allows us to infer a heading
when a device is moving outdoors. These sensors pro-
duce a heading in degrees relative to the earth’s magnetic
north pole. To use a compass to determine the heading of
the user holding a device, and not the heading of the de-
vice itself, it is necessary to first determine the device’s
orientation. The standard technique used by inertial navi-
gation systems is to use gyroscope sensors in conjunction
with the accelerometer to infer this orientation [21]. In
our indoor experiments, we assume we know the orien-
tation of the device, and use only the compass readings.
These heading hints are used by the protocols described
in Section 4 and Section 6 to improve access point selec-
tion and vehicular path selection, respectively.

Speed hint. To determine a speed hint outdoors we
can use the speed values reported by GPS. We use this
hint in Section 6 for path selection.

Environment (indoor/outdoor) hint. To determine
whether a user is indoors or outdoors we use the fact
that it is typically impossible to get a GPS fix indoors.
In Section 4 we use this hint to improve AP association.

3 HINT-AWARE BIT RATE ADAPTATION

Sensor hints aid in bit rate adaptation because node mo-
bility affects wireless channel conditions, causing large
and bursty changes over short intervals of time. When a
node moves, bit errors and packet losses exhibit a higher
degree of statistical correlation with past behavior as
compared to the static case. We demonstrate this effect
in Figures 6 (left) and 6 (middle).

Figure 6 (left) plots the conditional probability of los-
ing packet number i + k at a given bit rate, given that

packet number i was lost, for different values of k (the
“lag”). In this indoor experiment, we sent back-to-back
1000-byte packets at 54 Mbits/s from a stationary lap-
top to a stationary smartphone in the static case, and to
a smartphone carried by a walking user in the mobile
case. A link-layer ACK received from the smartphone
indicated a packet success, otherwise the packet was
considered lost. The graph shows a significantly higher
loss probability for small values of k in the mobile case,
demonstrating a larger degree of short-range dependence
compared to the static case. In this scenario, for the mo-
bile case, the next packet following a lost packet is signif-
icantly more likely to be lost than in the static case, and
also compared to larger values of k. For both the static
case and the mobile case, the unconditional loss proba-
bility was around 23%.

For the same traces, Figure 6 (middle) shows the mu-
tual information between packet success/failure events
separated by x ms. Specifically, we compute the mutual
information between every pair of two success/failure
events separated by a time interval of x ms for a range
of different values of x. This measure shows the extent
to which the fate of a later packet depends on the earlier
one. In the static case, there is no mutual information be-
tween packets. But when a node moves, packets exhibit
a higher degree of dependence with the past few pack-
ets. This dependence drops off at around 10 ms in these
experiments. In Figure 6 (right), we plot the mutual in-
formation curve for different walking speeds and found
the dependence to drop off at around 10–20ms.

These results show that the best strategy for bit rate
adaptation is likely to be different when nodes move than
when they are static. In more detail, in the static case,
where the channel remains relatively stable, it makes
sense to maintain a longer history of performance at dif-
ferent bit rates to smooth over periods of short-term fad-
ing or contention. Such a long-history approach falters
when the device is mobile, because in the mobile case
it makes more sense to keep only a short history, re-
act quickly to errors, and perhaps sample other rates ag-
gressively to track the faster changes typical of a mobile
channel.

This observation motivates a hint-aware bit rate adap-

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
on

di
tio

na
l L

os
s

P
ro

ba
bi

lit
y

P
(i|

i-k
)

Lag k (packets)

Moving
Static

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100

M
ut

ua
l I

nf
or

m
at

io
n

Time between packets (ms)

Moving
Static

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100

M
ut

ua
l I

nf
or

m
at

io
n

Time between packets (ms)

Slow
Normal

Fast

Figure 6: Left: Given a packet loss, the conditional probability of losing the kth packet following the loss, as a function
of the lag, k. The unconditional loss probability for both the static and mobile cases was around 23%. Middle: Mutual
information between packets separated by x ms specified by the x-axis value. In the static case, there is essentially
no mutual information between packets, while in the mobile case, packets separated by less than 10 ms show a high
degree of dependence. Right: Mutual information between packets separated by x ms for various walking speeds.

RapidSample(lastbr,gotack) :
if (!gotack) then

f ailedTime[lastbr]← CurrTime()
if (sample) then

br← oldbr
else

br← max{0, lastbr−1}
sample← 0

else
sample← 0
if (CurrTime() - pickedTime[lastbr] > δsuccess) then

br← max{i | ∀ j ≤ i :
CurrTime()− f ailedTime[j] > δ f ail}

sample← 1
oldbr← br

else br← lastbr
if br 6= lastbr

pickedTime[br]← CurrTime()
return br

Figure 7: The RapidSample bit rate adaptation algorithm.
It is called for each packet with lastbr describing the bit
rate index and gotack describing whether an ack was
received for the previous packet. Time is reported in
elapsed milliseconds.

tation scheme, which adapts differently depending on
whether or not the nodes are moving. By using external
sensor hints rather than making decisions based solely
on network information, our goal is to combine schemes
tuned separately for the static and mobile cases. The ap-
proach requires no training to achieve good performance.

With these remarks in mind, we introduce RapidSam-
ple, a frame-based rate adaptation protocol designed for
a channel undergoing rapid changes due to movement.

3.1 The RapidSample Protocol

The RapidSample protocol is shown in Figure 7. It starts
with the fastest bit rate. If a packet fails to get a link layer
ACK, the protocol switches to the next lowest rate and
records the time of the failure. After success at a partic-
ular bit rate for more than δsuccess milliseconds (5 in our
implementation), the sender attempts to sample a higher
bit rate. It chooses the fastest bit rate: (a) that has not
failed in the last δ f ail milliseconds (10 in our implemen-
tation), and (b) for which there is no slower bit rate that
has failed within this interval. If the faster rate fails, it re-
verts to the original rate; if it succeeds, it adopts this new
faster rate.

There are four ideas motivating RapidSample. First,
we observed that when a packet fails while a node is
moving, the probability of the next few packets failing at
this bit rate is high (Figure 6, left). Therefore, the pro-
tocol immediately reduces the bit rate. Second, as we
showed in our discussion of Figure 6 (middle), the mu-
tual information between the the fate of packets x mil-
liseconds apart becomes small when x is around 10–15
ms for all the indoor movement speeds we tested. We
use a value of 10 ms for δ f ail as the minimum time to
wait before sampling a previously failed rate, and before
sampling any rate higher than the failed rate.

Third, RapidSample attempts higher rates after only
a small number of successes at the current rate. We set
δsuccess to be less than δ f ail . In general, it is difficult to
tell if the channel conditions are improving or degrad-
ing, but under movement, we posit that if conditions are
not degrading, they are probably improving because it is
unlikely that they are invariant. Thus, even a few suc-
cesses at one rate provide enough confidence to sample
higher rates that have not recently failed. Fourth, if we
are wrong about the channel improving, and a higher rate
fails, we immediately revert to the original rate.

5

3.2 Hint-Aware Bit Rate Adaptation Protocol
The Hint-Aware Rate Adaptation Protocol implemented
at the sender uses RapidSample when a node is mov-
ing and uses SampleRate [3] when a node is static. It
relies on movement hints from the receiver to switch be-
tween the two. We use SampleRate for the static case as it
performed better than other frame-based and SNR-based
protocols in various environments (see Section 3.3).

3.3 Evaluation
We use both trace-driven simulation and testbed experi-
ments to evaluate our hint-aware rate adaptation scheme.

3.3.1 Trace-driven Simulation
To replicate the same mobility pattern between different
experiments, we used trace-driven simulation—feeding
real-world experimental data to a wireless simulator, al-
lowing for both reproducibility and realism. We used the
same experimental architecture as [25], which modified
the ns-3 network simulator (v3.2) to read in experimental
traces describing, for each 5 ms time slot, the fate of each
packet sent at each bit rate during that time slot. This
setup bypasses the physical layer’s propagation model,
instead referencing the trace file to determine if a packet
should be received successfully.

To collect the traces, we configured a Linux laptop as a
sender. It ran the Click router using the MadWiFi 802.11
driver, which in turn used an Atheros 802.11 chipset. The
laptop sent a constant stream of 1000 byte packets, cy-
cling through the 802.11a OFDM bit rates of 6, 9, 12,
18, 24, 36, 48, and 54, in round-robin order. Each cy-
cle through all 8 bit rates took approximately 5 ms. In-
doors, we used 802.11a to minimize interference with
local infrastructure networks. We configured a second
laptop with the same hardware to act as a receiver, log-
ging every received packet. This laptop was additionally
equipped with a SparkFun serial accelerometer for move-
ment hints.

We collected several traces from four different envi-
ronments for static and mobile scenarios: 1) an office
setting with no line-of-sight between the sender and re-
ceiver, 2) a long hallway with line-of-sight between the
nodes, 3) an outdoor setting with a lightly crowded out-
door pavement area, and 4) a vehicular setting where the
sender is stationary on the roadside and the receiver is in
a moving car near MIT (an urban area).

We evaluated the following frame-based bit rate
adaptation protocols: RapidSample, SampleRate [3],
RRAA [26], and our hint-aware method that switches be-
tween RapidSample and SampleRate, depending on the
sensor hint. We also evaluated two SNR-based rate adap-
tation protocols: RBAR [7] and CHARM [8]. For both
these schemes, we trained the protocol for the operating
environment. We also assumed that the sender has up-
to-date knowledge about the receiver SNR. Finally, we

compared our protocol to SoftRate [25], a bit rate adap-
tation scheme that uses SoftPHY hints from a modified
physical layer and which can adapt the bit rate on a per-
packet basis without requiring training. For this compar-
ison we used the traces from [25].

Figure 8 shows the performance of the hint-aware pro-
tocol compared to the other rate adaptation protocols for
three of the four environments (we discuss the vehicu-
lar setting later in this section). For each environment,
we collected 10–20 traces. Each trace is 20 seconds long
with 50% static and mobile periods. The receiver was
static for 10 seconds and mobile for 10 seconds in each
trace. The workload we used was TCP. The graph shows
the average TCP throughput of all the schemes as a frac-
tion of the throughput obtained by the hint-aware proto-
col. The error bars show the 95% confidence interval. In
every environment, the hint-aware protocol obtained sig-
nificant performance gains. It improved over SampleRate
by 23% to 52% on average, over RRAA by 17% to 39%,
and over RBAR by 11% to 47%. We do not show the
numbers for CHARM as the performance of RBAR and
CHARM was similar in all cases with RBAR performing
slightly better.

We also evaluated the different protocols separately
for mobile and static scenarios. For each scenario, we
collected ten 20-second traces in each of the test envi-
ronments. Figure 9 shows the average TCP bulk trans-
fer throughput of all the schemes as a fraction of the
throughput obtained by RapidSample, in the mobile case.
RapidSample performed significantly better than other
schemes in every environment. It obtained up to 75%
better throughput on average than SampleRate and up to
25% better than other protocols. It achieved about 28%
more throughput than SampleRate, 36% more through-
put than RRAA and nearly 2× more throughput than the
SNR-based protocols. These performance gains come
from RapidSample’s ability to cope up with the rapid
fluctuations in the channel conditions when a node is mo-
bile.

On the other hand, RapidSample is the worst-
performing protocol in the static case, as shown in Fig-
ure 10. It achieved 12% to 28% lower average throughput
compared to SampleRate and up to 18% lower through-
put compared to RRAA. The poor performance is be-
cause RapidSample aggressively reduces the rate even
on a single loss and frequently tries to sample higher
rates even when the channel conditions are not changing.
Figure 10 also shows that SampleRate usually achieved
higher throughput than other protocols when the nodes
are static. Hence, we decided to use SampleRate for the
static case in our hint-aware rate adaptation protocol.

We also measured the performance of RapidSample in
a vehicular setting, where the sender was stationary on
the roadside and the receiver was placed in a moving car.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

OutdoorHallwayOffice

M
ea

n
F

ra
ct

io
n

of

H
in

t-
A

w
ar

e
P

ro
to

co
l T

hr
ou

gh
pu

t
Hint-Aware

RapidSample
SampleRate

RRAA
RBAR

Figure 8: Hint-aware protocol per-
forms better in mixed-mobility set-
ting.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Office Hallway Outdoor

M
ea

n
F

ra
ct

io
n

of

R
ap

id
S

am
pl

e
T

hr
ou

gh
pu

t

RapidSample
SampleRate

RRAA
RBAR

CHARM

Figure 9: In mobile scenarios,
RapidSample performs significantly
better than other protocols.

 0

 0.5

 1

 1.5

 2

OutdoorHallwayOffice

M
ea

n
F

ra
ct

io
n

of

R
ap

id
S

am
pl

e
T

hr
ou

gh
pu

t

RapidSample
SampleRate

RRAA
RBAR

CHARM

Figure 10: In the static case, Rapid-
Sample performs poorly compared
to the other schemes.

We collected 10 traces, each 10 seconds long. Figure 11
shows the results, where the traffic workload is UDP (at
a rate of 36 Mbps), as TCP repeatedly times out when
faced with high packet loss rate [6]. Similar to other mo-
bile environments, RapidSample outperformed the other
schemes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Vehicular

M
ea

n
F

ra
ct

io
n

of

R
ap

id
S

am
pl

e
T

hr
ou

gh
pu

t

RapidSample
SampleRate

RRAA
RBAR

CHARM

Figure 11: In vehicular environments, RapidSample
achieves significantly higher throughput compared to
other schemes.

Finally, in Figure 12, we compare RapidSample to
SoftRate, SampleRate, and RRAA, using the walking
traces and ns-3 protocol implementations from [25].
RapidSample performs nearly as well as SoftRate on
these traces, without the aid of SoftPHY hints, further
confirming the effectiveness of RapidSample in mobile
settings. As a result, our hint-aware protocol performs
nearly as well as SoftRate, but is readily deployable on
many of today’s commodity devices.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

M
ea

n
F

ra
ct

io
n

of

R
ap

id
S

am
pl

e
T

hr
ou

gh
pu

t

RapidSample
SoftRate

SampleRate
RRAA

Figure 12: RapidSample performs almost as well as Sof-
tRate on traces collected while walking.

3.3.2 Testbed Experiments
Trace-driven evaluation allows us to compare the perfor-
mance of various protocols, but there might be a con-
cern that the method used does not correctly account for
the channel variations observed in practice. To show that
the scheme can work in real-time, we deployed a testbed
of Android Nexus One smartphone receivers commu-
nicating with a MadWiFi-based Linux laptop sender.
We implemented the frame-based rate adaptation proto-
cols (SampleRate, RRAA, RapidSample, and our hint-
aware protocol) on the laptop as user-level Click mod-
ules; we did not implement the SNR-based protocols
as they required SNR feedback from the receiver. The
hint-aware protocol used the Sensor Hint Service on the
laptop to monitor for movement hints from the smart-
phone. It switched between SampleRate and RapidSam-
ple schemes based on movement hints. The implemen-
tation on the smartphone instructed the Sensor Hint Ser-
vice to send movement hints to the laptop using UDP.
The movement hints were sent every second and on hint
changes (“static to moving” or “moving to static”).

We configured the laptop to send 802.11 data pack-
ets to a smartphone’s wireless MAC address. Upon re-
ceiving the packet, the phone responds with a link-layer
ACK. We put the phone in tethering mode, to disable the
802.11 power-saving mode that was on by default. We
measure the performance of bit rate adaptation based on
the received ACKs.

We evaluated the protocols in two environments: an
office setting and a long hallway setting, the same as in
the trace-based evaluation. In each environment, we used
10 distinct mixed-mobility patterns and measured the
throughput of each scheme. In each mobility pattern, a
user walked in a predefined trajectory at a constant speed
and stayed static at predefined locations for predefined
amounts of time. Each such trial took 45–90 seconds to
complete and had an equal amount of static and walking
periods. The phone was held by the user in the same way
across experiments. Since it was hard to exactly replicate
the same mobility pattern, we repeated each trial 3 times

7

and report the average and the standard deviation. A trial
consists of running SampleRate, RRAA, RapidSample
and the hint-aware protocol back-to-back for the same
mobility pattern. Three back-to-back trials correspond to
one experimental run.

Because the smartphone only had a 802.11b/g card, we
did all these experiments in the relatively busy 802.11b/g
channels. To minimize interference from the existing ac-
cess points, we ran the experiments late at night. In every
experiment, we sent a stream of 1000-byte packets back-
to-back. The bit rate of each outgoing packet was con-
trolled by the rate adaptation scheme. We measured the
throughput based on the received link-layer ACKs. The
maximum throughput we were able to obtain from the
user-level Click implementation was around 27 Mbps.

Figure 13 (left) shows the measured throughput of dif-
ferent protocols in the two environments. For each en-
vironment, we plot the average throughput and standard
deviation (as error-bars) for 10 different runs. The charts
show the results sorted by the throughput of the hint-
aware scheme.

In both environments, the hint-aware protocol consis-
tently outperforms the other schemes. In the office set-
ting, it improved over SampleRate by between 10% and
76%, over RRAA by between 8% and 100%, and over
RapidSample by between 11% to 41%. On average, it
obtained 20% more throughput than SampleRate, 22%
more throughput than RRAA, and 19% more through-
put than RapidSample. In the hallway setting, the hint-
aware protocol obtained 9%–49% more throughput than
SampleRate, 8%–80% more throughput than RRAA, and
5%–85% more throughput than RapidSample. On aver-
age, it improved over SampleRate, RRAA, and Rapid-
Sample by 17%, 37%, and 22% respectively.

Compared to trace-driven results, SampleRate per-
formed better than RRAA in these testbed experiments,
especially in situations where the throughput of all the
schemes was low. RRAA performed better when the
throughput was higher. Otherwise, the testbed results
were fairly consistent with the trace-driven simulations.

During each trial, for every packet sent, in addition to
logging if an ACK was successfully received, we logged
the movement hint as well. We processed these traces
and used the movement hint to split them into static and
mobile phases and measured the throughput separately
for each scenario. Figure 13 (middle) shows the average
throughput obtained during the mobile phases of the cor-
responding experimental runs shown in Figure 13 (left).
In mobile scenarios, RapidSample performs significantly
better than SampleRate and RRAA in both the environ-
ments. On average, it improved over SampleRate by 61%
and 40% in the two environments and over RRAA by
16% and 39%. The relative performance of SampleRate
was worse in the office setting compared to the hallway

setting. This result is consistent with what we found in
the trace-driven evaluation. Similarly, Figure 13 (right)
plots the mean throughput for the static phases. As found
in the trace-based simulation, SampleRate is the best pro-
tocol in the static case and RapidSample performed much
worse than SampleRate and RRAA.

3.4 Discussion
In our scheme we use only a binary movement hint that
indicates whether the device is stationary or mobile. An
important conclusion from our results is that even such
a simple hint can produce significant performance im-
provements. An obvious future direction is to general-
ize our scheme to use additional hints such as speed and
heading. Using Figure 6 (right), it is possible to fine-tune
parameters in RapidSample for different speeds. While
it is easy to get a movement hint, measuring speed ac-
curately indoors using the sensors available on a smart-
phone is a challenging unresolved problem.

The use of hints for bit rate adaptation may improve
PHY-assisted techniques such as SoftRate [25], which
perform significantly better than existing protocols in the
mobile case using an instantaneous estimate of the bit
error rate. Augmented with a movement hint, however,
they may be able to adapt their behavior in the static case
to average these estimates and avoid reacting to short-
term fading.

One benefit of using the accelerometer for a move-
ment hint is that it detects even small movements of the
device—e.g., a user moving a smartphone from his head
to pocket—which can change the channel conditions. Of
course, it is also possible that the channel conditions can
change due to changes in the surrounding environment,
even if the device is stationary. If such changes are short-
lived, then SampleRate, the protocol we use during sta-
tionary periods, performs well.

Our trace-driven evaluation shows that the hint-aware
protocol performs better than trained SNR-based adap-
tation in all the tested environments. One question that
might arise is whether a protocol could simply use in-
formation about changes in the observed RSSI values to
infer movement and use a protocol like RapidSample in
that case, without relying on external sensor hints. We
explored this approach and found several problems with
it. First, RSSI values showed large variations even when
a node was static. Second, the magnitude of these varia-
tions depended strongly on the environment and the de-
vice. It also varied significantly across time and across
different RSSI ranges (low RSSI ranges showed more
fluctuations than high RSSI ranges). Third, the reported
RSSI was extremely sensitive to movement in the en-
vironment and triggered many false hints. Hence, us-
ing RSSI was more error-prone than using explicit hints.
Furthermore explicit hints avoid the need for training. It

8

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Office Hallway

SampleRate
RRAA

RapidSample
Hint-Aware

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Office Hallway

SampleRate
RRAA

RapidSample

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Office Hallway

SampleRate
RRAA

RapidSample

Figure 13: Throughput of the different bit rate adaptation protocols. The left-most chart shows all the protocols with
one data point per run; the error-bars are the standard deviations. There are ten runs inside offices and ten in the
hallways, with each run lasting 45–90 seconds. The middle chart shows the results considering only times when the
device was moving, while the right-most chart shows the results from the same runs considering only times when the
device was static. In these experiments, the hint-aware protocol was better than the next-best protocol SampleRate
by between 20% (office) and 17% (hallway), with a mean overall improvement of 19%. When mobile, RapidSample
outperformed SampleRate by 61% (office) and 40% (hallway), with a mean overall improvement of 50%.

is, of course, conceivable that one could combine RSSI
and sensor hints to further improve bit rate adaptation;
achieving this goal without environment-specific train-
ing remains an open question.

4 HINT AWARE AP ASSOCIATION

Most wireless clients associate with the AP with the
strongest RSSI (SNR) value. When the RSSI falls below
some fixed threshold, the client triggers a handoff, where
it scans all the channels and associates with the AP with
the strongest RSSI. We refer to this approach as the stan-
dard scheme.1 As others have observed [14, 18], the stan-
dard scheme is sub-optimal in many settings, particularly
when the client is mobile. In this section, we develop a
hint-aware association protocol that performs better than
the standard scheme.

In our scheme, a node detects whether it is indoors or
outdoors using a GPS lock hint. If it is indoors, its associ-
ation strategy uses the “walking” hint (Section 2.2) to de-
tect motion. The protocol may be configured at run-time
to either maximize throughput (Section 4.1), or minimize
the number of handoffs (Section 4.2); the former is use-
ful for bulk transfers, while the latter is useful for inter-
active real-time applications such as telephony for which
the hundreds of milliseconds spent during a handoff will
disrupt communication, increasing both jitter and packet
loss [9] (handoffs took approximately 600 ms on the
Android smartphones used in our experiments). When a
node is outdoors, it implements a similar strategy, using
the position and speed as hints. We do not evaluate the
outdoor case in this paper.

We implemented our association protocol as an eas-
ily deployable background Android application. Below,
we describe the two modes of the protocol and evaluate
their performance. Our experimental results with indoor
mobility show a median throughput increase of 30% and

1Some association schemes do include periodic scans, but they are
done only every few minutes, and never while transferring data.

a median reduction of 40% in the number of handoffs
compared to the standard scheme.

4.1 Using Hints to Maximize Throughput
We present a hint-aware AP association strategy for max-
imizing throughput. The strategy builds on three obser-
vations. First, when a client is moving, the probability
that a new AP with a stronger signal enters its range is
higher than when the client is static. Hence, when mo-
bile, a client should scan periodically to discover better
APs: the throughput gain of associating with a better AP
is likely to be higher than the throughput lost to the scan.
The periodicity depends on the speed of the client and
the expected range of the typical AP in the deployment.

Second, when a client is stationary, it is less likely
that new, better, APs will be discovered. In this case, the
penalty of a scan is not worth incurring.

Third, when a client stops moving, it may remain
static for some period of time. If so, it is worth perform-
ing a scan on this transition because the AP with the
strongest RSSI is likely (though not guaranteed) to re-
main optimal until the client moves again. When static, a
client should re-scan and re-associate only when it starts
moving again, or when the current AP’s RSSI becomes
weaker than some threshold. In our experiments with the
standard scheme, when a client moves from one location
to another nearby location, in many cases it remains as-
sociated with the original AP (because the signal strength
remains above the handoff threshold), reducing through-
put. By rescanning immediately following a transition
from mobile to static, we avoid this problem.

Our protocol is simple. When the association daemon
running on the client detects that the client is walking, it
scans periodically, every Tsc seconds, for the AP with the
highest RSSI. If the client goes from the moving to static
state, it performs a scan immediately and associates with
the strongest AP. When it is static, it performs no scans,
unless the RSSI drops below a threshold or if the client
starts moving.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2

C
D

F

Ratio of the hint-based scheme
 throughput to the standard scheme

Figure 14: CDF of the ratio of throughput obtained by
the hint-aware scheme to the throughput obtained by the
standard scheme, calculated for 30 traces.

The ideal value of Tsc is the time it is likely to take
for the current AP to no longer be the best one while
the user is moving—a factor which depends on how APs
are deployed and how fast the user is moving. To get a
sense for what it might be in practice, we wrote a data
collection application on the Android platform that scans
every second, recording the signal strength of every AP it
hears. It also records the walking and heading hints with
each scan. We convert each RSSI value to a throughput
value using a rate map as in [11].

We collected several such traces with different move-
ment patterns and pedestrian speeds indoor in two dif-
ferent buildings on the MIT campus. We found that at
pedestrian speeds, a value of Tsc = 8 seconds maximized
throughput. In other words, 8 seconds is approximately
the time required to walk between two adjacent APs.

Performance evaluation. To quantify the throughput
gains of our hint-aware protocol, we collected 30 walk-
ing traces in MIT hallways. These traces are different
from the ones we analyzed to determine the value of Tsc,
but the setting was the same. We had the client transition
from moving to stationary states randomly, with roughly
equal time spent in each state.

We performed a trace-based evaluation of our hint-
aware association protocol compared to the standard
scheme, on these traces. Figure 14 shows the CDF of
the ratio of throughput obtained by our scheme to the
throughput obtained by the standard scheme. The median
throughput improvement is about 30%.

4.2 Using Hints to Minimize Handoffs
We now present a hint-aware AP association strategy
for minimizing the number of handoffs, which is use-
ful for applications such as VoIP. Our protocol requires
lightweight training that can be deployed as a back-
ground application on standard phones. The protocol
uses the observation that to minimize handoffs, the AP
with the strongest RSSI is not necessarily the AP that will
yield the longest-lasting connection. If a client is moving
towards an AP, for example, it is likely to stay connected
longer than if it is moving away, even if the RSSI at the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
D

F

Ratio of number of handoffs in the
 hint-based scheme to the standard scheme

Figure 15: CDF of the ratio of number of handoffs us-
ing the heading-aware handoff scheme to the standard
scheme calculated over the 30 testing tracks.

time of the scan is not the highest among the set of ob-
served APs. Our protocol uses heading hints to aid such
decisions.

To train our protocol for a specific environment, we
use the Android data collection application described
earlier. Every second, this application logs the device’s
heading along with a list of APs and their signal
strengths. We use this data to compute a model that maps
from a <heading, current AP> pair to a preferred AP,
where the preferred AP is the AP to associate with when
handing off from the current AP at the given heading to
maximize connection time.

Once trained, the protocol works as follows. If it de-
tects the client is stationary it uses the standard scheme.
If the protocol detects the client is walking, it extracts a
heading hint. It then queries the model using this heading
hint and its currently associated AP. The model looks up
similar <heading, AP> pairs, and returns the AP that the
client should associate with once the current AP’s signal
strength drops below the handoff threshold. The model
attempts to select the AP that will maximize connection
time. If the AP returned by the model is not seen during
the scan for handoff, the protocol defaults to the standard
method of choosing the AP with the highest RSSI.

To evaluate our protocol, we collected 60 tracks using
several Android phones, walking through various MIT
hallways. For each track, the user chose an arbitrary path
in the building complex, and walked between 3–5 min-
utes. We split the data into training and testing sets—
training using the former and testing using the latter. Fig-
ure 15 shows that the number of handoffs in our scheme
is 40% lower than in the standard scheme. It also shows
that for over 90% of the traces, our protocol yielded an
improvement of at least 10%.

5 TOPOLOGY MAINTENANCE

In this section, we study the use of hints to improve the
accuracy and efficiency of topology maintenance in wire-
less mesh (and sensor) networks. Here, each node often
maintains a list of neighbor nodes along with the quality
of connectivity to each neighbor. The standard method

10

for maintaining neighbors and link quality information in
this setting is for a node to send periodic probe packets.
Each recipient maintains the packet loss rate of packets
from its neighbor, and may exchange this information in
the routing protocol’s messages. A key parameter is the
probing rate: how often should these periodic messages
be sent? In practice, a node may send these messages at
more than one bit rate to produce link quality information
at different bit rates.

In determining the frequency of these probes, two op-
posite considerations must be reconciled. On the one
hand, sending frequent probes allows the nodes to main-
tain an accurate estimate of link qualities and identify
changing topologies. Maintaining accurate values for this
metric is important to avoid packet losses, which can in-
crease the number of retries and also incorrectly slow
down the bit rate. On the other hand, frequent probe
packets themselves use large chunks of the bandwidth
and increase network contention. This tradeoff becomes
even more acute in mobile settings, where link quality
changes rapidly. For instance, Figure 16 (left) captures
the channel behavior that we observed in a mixed station-
ary/mobile setting. This plot shows the packet delivery
ratio when the user is moving (derived from our move-
ment hint) over time for one specific trace. To calculate
the delivery ratio, we bucketed time into intervals of 1
second, during which time the sender transmits approxi-
mately 200 packets at each bit rate. The key observation
is that motion causes the packet delivery ratio to fluctu-
ate, with many of the jumps in the delivery ratio exceed-
ing 20%.

Our idea is simple: because channel conditions vary
much more in the presence of movement, probe fre-
quently when a node receives movement hints from its
neighbor or itself moves, and probe less often when the
nodes are static.

5.1 Measurement
To evaluate the potential gains, we gathered data in an
indoor environment where the sender was static and the
receiver was either at a fixed location (stationary) or
was moved at walking speeds (mobile). The sender sends
probes at a rate of 200 probes per second. We calcu-
late the actual delivery probability over a sliding win-
dow of 10 packets from these rapidly sent probes, sub-
sampling the outcome of these probes to determine the
delivery probability at various lower probing rates. We
collected 20 stationary and 20 mobile traces, each 180
seconds long. We aggregate the results of the static cases
into one set, and the mobile cases into another set. For
each set, we calculate the error in the delivery proba-
bility estimate, which depends on the probing rate, as
|Observed probability−Actual probability|.

Figure 16 (middle) shows the average error in deliv-

ery probability calculated from all the error samples for
the static case as a function of the probing rate; the error
bars show the standard deviations. Even a low probing
rate of 1 packet every 10 seconds has an error of only
11%, suggesting that the default probing rate of many
wireless networks of 1 probe/s may be too high. In con-
trast, Figure 16 (right) shows that the error in delivery
probability is much higher in the mobile case, exceed-
ing 35% even at a probing rate of 1 packet every 2 sec-
onds. To achieve an error of about 10%, the mobile case
requires a probing rate of 5 probes per second, which
is more than 25× higher than for the static case at the
same error rate. For a desired error of 5%, the mobile
case needs 10 probes/s, while the corresponding rate for
the static case is 0.5 probes per second, a 20× difference.

To understand the reason for this difference, consider a
representative 25-second mobile trace in Figure 17 (left).
The estimated probability does not track the actual prob-
ability except at a high probe rate. This differs from what
is observed in the static case.

5.2 Hint-Aware Topology Maintenance Protocol

We implemented a hint-driven topology maintenance
protocol using rates of 1 and 10 probes per second for
the stationary and mobile cases, respectively. The proto-
col continues to send at the fast probe rate for one second
after the node stops moving in order to estimate the cor-
rect metric, before slowing the probe rate down.

Figure 17 (right) compares the performance of our
protocol to the standard 1 probe/s protocol. We also
plot the movement hint, with a raised value indicating
movement. Notice that our adaptive protocol maintains
an accurate assessment of the actual delivery probabil-
ity throughout the experiment, while the non-adaptive 1
probe/s strategy lags by multiple seconds. Note that in
some cases, the 1 probe/s approach mis-estimates the de-
livery probability by more than 30%, whereas, the adap-
tive estimator is always within 5%.

A simple analysis shows how link mis-estimation de-
grades throughput. Suppose a node uses ETX [5] to pick
the next-hop. Suppose further that there are two choices,
one with link delivery probability p1 and the other with
probability p2; without loss of generality, let p1 > p2.
ETX would choose link 1, with metric 1/p1.

Let the error in the average link delivery probability
estimate be δ (Figure 16 (right) shows that δ > 0.25
in some cases). The node would pick the wrong link if
p2 + δ > p1− δ. In this case, the extra number of trans-
missions relative to the optimal value is 1

p2
− 1

p1
. The

overhead relative to the optimal is p1
p2
− 1, which can

be large for practical parameters; e.g., if p1 = 0.8 and
p2 = 0.6, the throughput reduction is 33%.

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

D
el

iv
er

y
P

ro
ba

bi
lit

y

H
in

t

Time

 0

 0.05

 0.1

 0.15

 0.2

 0 0.5 1 1.5 2 2.5

A
ve

ra
ge

 E
rr

or
 In

 D
el

iv
er

y
P

ro
ba

bi
lit

y

Number of probes/s

Static

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

A
ve

ra
ge

 E
rr

or
 In

 D
el

iv
er

y
P

ro
ba

bi
lit

y

Number of probes/s

Moving

Figure 16: Left: Packet delivery rate for 6 Mbps packets over time; the raised dashed hint line indicates the device is
moving. Middle & Right: Average error in delivery probability versus probing rate for static and mobile cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

D
el

iv
er

y
P

ro
ba

bi
lit

y

Time

Actual
1 Probe/s

5 Probes/s
10 Probes/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60
D

el
iv

er
y

P
ro

ba
bi

lit
y

H
in

t

Time

Actual
Adaptive

1 Probe/s
Hint

Figure 17: Delivery probability over time for the mobile trace (left) and for a combined static and mobile trace with
the dots showing the movement hint (right).

6 VEHICULAR NETWORK PATH SELECTION

We now investigate whether hints can improve path se-
lection in vehicular mesh networks. Networking strate-
gies in this setting are complicated by dynamic neighbor
tables, which can generate a high rate of broken paths.
In general, broken paths increase overhead and latency.
For this reason, selecting paths with the longest expected
connection time may be a good idea.

6.1 Connection Time Estimate Metrics
We present three connection time estimate (CTE) metrics
that use heading and speed hints to estimate whether a
path in a vehicular network is likely to be long-lived. Let
the ordered sequence (u1, ...,u j) denote a j−1 hop path,
dh(ui,ui+1) denote the difference in heading of nodes ui
and ui+1 (from 0 to 180 degrees), and s(ui) denote the
speed of ui (in m/s). Our three CTE metrics, called cte1,
cte2, and cte3, are defined for a path R = (u1, ...,u j):

cte1(R) = ∏
ui,ui+1∈R

1
dh(ui,ui+1)

cte2(R) = min
ui,ui+1∈R

(
1

dh(ui,ui+1)

)
cte3(R) = cte1(R) · 1

1+∑ui∈R s(ui)

The metrics use the assumption that a small differ-
ence in heading indicates nodes are moving in the same
direction on the same road, and are therefore likely to

stay connected longer. The cte3 metric includes the addi-
tional assumption that speed is inversely correlated with
connection duration. Because cte1 multiplies the inverse
of heading differences at each hop, it is biased toward
single-hop paths. The cte2 metric, by contrast, evaluates
a path only by its worst hop, scoring multi-hop paths
higher than cte1. The cte3 metric multiples the inverse
of the sum of node speeds with the cte1 value. It follows,
for example, that doubling the speed of each node on a
path approximately halves its cte3 score.

To calculate these metrics, each node appends its head-
ing and speed to its mesh neighbor probes. For all three,
larger values predict longer-lived paths. These metrics
are simple, and require no knowledge of road geometry.

6.2 Evaluation
We evaluated these metrics over a collection of vehicu-
lar mobility traces generated from raw position samples
gathered from vehicles in the CarTel project over the du-
ration of a year in the Boston metro area, map-matched to
an underlying road network [23]. We combine a collec-
tion of traces into a network, and then simulate, for each
second, the position of every vehicle in the network, ad-
justing the traces so they all appear to begin at the same
time. We consider two vehicles to have a link at a given
time if and only if they are within 100 meters at that time
in their traces (we use geographic proximity as a crude
surrogate for connectivity).

We measured the relationship between CTE values
and path duration over both one and two hop paths.

12

Specifically, we studied 15 networks consisting of 100
vehicles each. Each simulation lasted for 120 seconds.
For each of the over 190,000 routes observed in these
simulations, we calculated all three CTE metrics when
the path is first formed, and the total duration of the path
(in seconds) before it breaks. For each metric, we bucket
the CTE scores (into buckets of size 1/20 for cte1, 1/10
for cte2, and 1/200 for cte3), and calculate the median
link duration of the paths in each bucket. In Figure 18
we plot these durations for the first three buckets (in de-
scending order of associated CTE score) for each CTE
metric. The dashed line indicates the median duration
over all paths.

The figure shows that all three CTE metrics provide an
effective filter for long-lived paths. If a path’s cte1 value
falls into the first bucket, or if its cte2 or cte3 values fall
into the first two buckets, then the path is likely to be
long-lived. The median duration of paths in these buckets
is 2–5× longer than the median over all paths.

Identifying long-lived paths might not be a good strat-
egy if the selection mechanism is somehow biased to-
ward routes with low throughput. To evaluate this pos-
sibility, we use distance as a rough approximation of
achievable throughput (we only have position data from
the networks used in this evaluation). We plot in Fig-
ure 19 the CDF of time versus distance for the single-hop
paths in the first bucket of cte1, and the first two buckets
of cte2, and cte3. For comparison we also plot the func-
tion for all single-hop paths. This figure confirms that
our CTE metrics show no bias favoring links of larger
distances (lower throughput).

7 LIMITATIONS

Energy. Sampling sensors consumes energy and reduces
the battery lifetime of a mobile device. Figure 20 shows
the battery lifetime of an Android G1 device when vari-
ous hints are sampled at the highest supported rates. No-
tice that the accelerometer and compass consume much
less energy than GPS. To alleviate energy concerns, pro-
tocols should extract hints only when transferring data.
Moreover, sensors like the accelerometer on a mobile
device are usually always on by default (for instance,
to continuously detect changes in screen orientation), so
extracting hints from them should consume no extra en-
ergy. Triggered sensing [10] can further reduce the en-
ergy consumed by some sensors. Here, a low-power sen-
sor turns on or off a high-power sensor based on certain
events; for example, GPS can be turned on only when
the accelerometer detects movement. We can also dy-
namically reduce the sampling rate of sensors to reduce
the energy cost [22, 23, 24], and replace expensive GPS
with lower-energy position sensors like GSM radios, as
in CTrack [24]. In addition, sensor hints can be turned

off when the battery is low and protocols can revert to a
hint-unaware scheme.

Calibration across devices. The disparity between
sensors across different devices and platforms might
pose a challenge for hint-aware protocols to work with-
out sensor calibration and tuning. We have implemented
the Sensor Library for Android Nexus One, Android
G1, and iPhones. The movement hint worked seamlessly
across these platforms, but the walking hint detector [22]
required a little tuning for each type of device.

Privacy. Sharing mobility hints with other nodes
might expose private information. For instance, by con-
tinuously monitoring movement and heading hints, it
might be possible to track a user’s behavior more accu-
rately than by just monitoring wireless packets from a
device (e.g., I might be able to determine more reliably
that you left your office because of the movement hints
broadcast by your device); one might alleviate this prob-
lem by having all communication go via a (trusted) AP,
and encrypting the hints sent to the AP.

8 RELATED WORK

To the best of our knowledge, ours is the first practi-
cal work to explore the benefits of systematically inte-
grating sensor hints into a wireless network architecture.
Related work that uses information outside the wireless
networking stack has mostly focused on wireless power
saving. For instance, Wake on Wireless [17] uses an ad-
ditional low power radio that can be used for signaling to
wake up the wireless radio. Cell2Notify [1] uses the cel-
lular radio on a smartphone to wakeup the WiFi interface
for VoIP calls thus reducing the energy consumption of
WiFi. BlueFi [2] uses GSM towers and nearby Bluetooth
devices to predict if WiFi connectivity is available, hence
achieving power savings.

In addition to power savings, hints from external sen-
sors for wireless protocols have been used, usually in
vehicular network designs. Mobisteer [12] uses direc-
tional antennas in vehicles and location hints from GPS
to find the best antenna orientation and the AP to asso-
ciate with. Breadcrumbs [13] predicts the best AP to as-
sociate with using a mobility model built using GPS co-
ordinates. CARS [16] is an inter-vehicle bit rate adap-
tation protocol that uses knowledge of the speed and
distance between communicating cars to pick a bit rate.
Their method collects a large amount of training data for
an environment to determine the best bit rate to use at dif-
ferent speeds and distances; in contrast our hint-aware bit
rate adaptation method does not require any such training
and performs well across a variety of conditions.

9 CONCLUSION

This paper introduced a network architecture that uses
sensor hints to augment and improve wireless protocols.

13

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

cte1 cte2 cte3M
ed

ia
n

R
ou

te
 D

ur
at

io
n

(S
ec

on
ds

)

Three Largest Buckets (by CTE value)

Figure 18: The median route dura-
tion for the highest three CTE value
buckets. The dashed line is the me-
dian over all routes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Distance (Meters)

All Links
cte1
cte2
cte3

Figure 19: CDF of time spent at each
distance for all one-hop links, and the
one-hop links from the first cte1 bucket,
and the first two cte2 and cte3 buckets.

Hint Type Sensor Approximate
Lifetime (hr)

Movement Accel 19

Walking Accel 19

Heading Compass 18

Heading GPS 6

Speed GPS 6

Environment GPS 6

No hint extraction 22

Figure 20: Battery lifetime of
Android G1 for continuous
hint monitoring (with screen at
minimum brightness).

The key idea is to use these hints to infer the context in
which communication is occurring, and to use that con-
text to adapt the behavior of protocols. We applied this
idea to develop hint-aware protocols for bit rate adapta-
tion, access point association, topology maintenance, and
path selection in vehicular networks. Sensor hints can
also augment other protocols, as described in our earlier
position paper [15]. These include: adapting the length of
the cyclic prefix to outdoor speeds, scheduling client traf-
fic at an AP taking movement into account, preemptively
disassociating clients that have likely moved beyond the
range of an AP, and network monitoring.

ACKNOWLEDGMENTS

We thank Aditya Akella for several useful comments.
This work was supported by the National Science Foun-
dation under grants CNS-0931550 and CNS-0721702.

REFERENCES
[1] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and

R. Gupta. Wireless Wakeups Revisited: Energy Management for
VoIP Over Wi-Fi Smartphones. In MobiSys, 2007.

[2] G. Ananthanarayanan and I. Stoica. Blue-Fi: Enhancing Wi-Fi
Performance Using Bluetooth Signals. In MobiSys, 2009.

[3] J. Bicket. Bit-rate Selection in Wireless Networks. Master’s
thesis, Massachusetts Institute of Technology, February 2005.

[4] J. Camp and E. Knightly. Modulation Rate Adaptation in Urban
and Vehicular Environments: Cross-layer Implementation and
Experimental Evaluation. In MobiCom, 2008.

[5] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
High-throughput Path Metric for Multi-hop Wireless Routing. In
MobiCom, 2003.

[6] J. Eriksson, H. Balakrishnan, and S. Madden. Cabernet:
Vehicular Content Delivery Using WiFi. In MobiCom, 2008.

[7] G. Holland, N. Vaidya, and P. Bahl. A Rate-adaptive MAC
Protocol for Multi-Hop Wireless Networks. In MobiCom, 2001.

[8] G. Judd, X. Wang, and P. Steenkiste. Efficient Channel-aware
Rate Adaptation in Dynamic Environments. In MobiSys, 2008.

[9] A. Mishra, M. Shin, and W. Arbaugh. An Empirical Analysis of
the IEEE 802.11 MAC Layer Handoff Process. SIGCOMM
CCR, April 2003.

[10] P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: Rich
Monitoring of Road and Traffic Conditions using Mobile
Smartphones. In SenSys, 2008.

[11] R. Murty, J. Padhye, R. Chandra, A. Wolman, and B. Zill.
Designing High Performance Enterprise Wi-Fi Networks. In
NSDI, 2008.

[12] V. Navda, A. Subramanian, K. Dhanasekaran, A. Timm-Giel,
and S. Das. MobiSteer: Using Directional Antenna Beam
Steering to Improve Performance of Vehicular Internet Access.
In MobiSys, 2007.

[13] A. J. Nicholson and B. D. Noble. BreadCrumbs: Forecasting
Mobile Connectivity. In MobiCom, 2008.

[14] I. Ramani and S. Savage. SyncScan: Practical Fast Handoff for
802.11 Infrastructure Networks. In Infocom, 2005.

[15] L. Ravindranath, C. Newport, H. Balakrishnan, and S. Madden.
”Extra-Sensory Perception” for Wireless Networks. In HotNets,
2010.

[16] P. Shankar, T. Nadeem, J. Rosca, and L. Iftode. CARS: Context
Aware Rate Selection for Vehicular Networks. In ICNP, 2008.

[17] E. Shih, P. Bahl, and M. Sinclair. Wake on Wireless: An Event
Driven Energy Saving Strategy for Battery Operated Devices. In
MobiCom, 2002.

[18] M. Shin, A. Mishra, and W. Arbaugh. Improving the Latency of
802.11 Hand-offs using Neighbor Graphs. In MobiSys, 2004.

[19] Smartphone Owners Lead Rise in Mobile Internet Usage.
https://www.strategyanalytics.com/default.aspx?mod=
ReportAbstractViewer&a0=5100.

[20] More Smartphones Than Desktop PCs by 2011.
http://www.pcworld.com/article/171380/
more smartphones than desktop%25%20 pcs by 2011.html.

[21] S. H. Stovall. Basic Inertial Navigation. Naval Air Warfare
Center Weapons Division, 1997.

[22] A. Thiagarajan, J. P. Biagioni, T. Gerlich, and J. Eriksson.
Cooperative Transit Tracking Using GPS-enabled Smart-phones.
In SenSys, 2010.

[23] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Toledo,
J. Eriksson, S. Madden, and H. Balakrishnan. VTrack: Accurate,
Energy-Aware Traffic Delay Estimation Using Mobile Phones.
In SenSys, 2009.

[24] A. Thiagaran, L. Ravindranath, S. Madden, H. Balakrishnan,
and L. Girod. Accurate Low Energy Map Matching For Mobile
Devices. In NSDI, 2011.

[25] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-layer
Wireless Bit Rate Adaptation. In Sigcomm, 2009.

[26] S. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust Rate
Adaptation for 802.11 Wireless Networks. In MobiCom, 2006.

[27] Smartphone Sales Up 24 Percent.
http://techcrunch.com/2010/02/23/smartphone-iphone-sales-
2009-gartner/.

14

