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Abstract
We propose a constructive control design for stabilization of non-periodic trajectories of underactuated robots. An
important example of such a system is an underactuated “dynamic walking” biped robot traversing rough or uneven
terrain. The stabilization problem is inherently challenging due to the nonlinearity, open-loop instability, hybrid (impact)
dynamics, and target motions which are not known in advance. The proposed technique is to compute a transverse lin-
earization about the desired motion: a linear impulsive system which locally represents “transversal” dynamics about
a target trajectory. This system is then exponentially stabilized using a modified receding-horizon control design, pro-
viding exponential orbital stability of the target trajectory of the original nonlinear system. The proposed method is
experimentally verified using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but pointed
stilt-like feet. The technique is, however, very general and can be applied to a wide variety of hybrid nonlinear
systems.

Keywords
Dynamics, legged robots, underactuated robots, transverse linearization, nonlinear hybrid systems, feedback control, rough
terrain.

1. Introduction

It has long been a goal of roboticists to build a realis-
tic humanoid robot. Clearly, one of the most fundamental
abilities such a robot must have is to walk around its envi-
ronment in a stable, efficient, and naturalistic manner. When
one examines the current state of the art, it seems that one
can have either stability and versatility or efficiency and
naturalism, but not all four. This paper reports some recent
efforts to bridge this gap.

We propose a general method of exponentially stabi-
lizing a very general class of motions for underactuated
robots. In particular, we develop a provably-stable feedback
control strategy for efficient “dynamic walking” bipeds
over uneven terrain. The major novelty of this approach is
that, for the first time in dynamic-walking control, we can
provably stabilize arbitrary non-periodic trajectories arriv-
ing in real-time from an online motion planner. In this
paper we propose the algorithm, prove that it is stabilizing
under some reasonable assumptions, and discuss in-depth
connections to other methods of control design, such as
full-state linear quadratic regulator (LQR) and hybrid zero
dynamics (HZD). Furthermore, we verify that the proposed
method is feasible and effective in a simple experiment on
a compass-gait biped robot.

1.1. Bipedal Walking Robots

The world of bipedal walking robots can be divided into
two broad classes. The first, including well-known robots
such as the Honda ASIMO and the HRP-2, are controlled
using the “zero moment point” (ZMP) principle (see e.g.
Vukobratovic and Borovac (2004) and references therein).
The main idea is that the center of pressure always remains
within the polygon of the stance foot, so the foot always
remains firmly planted on the ground. Satisfaction of this
principle ensures that all dynamical degrees of freedom
remain fully actuated at all times, and control design can be
performed systematically using standard tools in robotics.
However, the motions which are achievable are highly
conservative, inefficient, and unnatural looking.
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The second broad class consists of passive-dynamic
walkers and limit-cycle walkers. Inspired by the completely
passive walkers of McGeer (1990), these robots forgo full
actuation and allow gravity and natural dynamics to play
a large part in the generation of motion. They may be
completely passive, or partially actuated. Even with partial
actuation, the motions generated can be life-like and highly
efficient energetically (Collins et al., 2005). However, there
is presently a lack of tools for systematic control design and
stability analysis, especially for non-periodic motions.

Comparatively little work has been done as yet on
walking over uneven terrain, especially for underactuated
dynamic walkers. Passivity-based control and controlled-
symmetry methods (Asano et al., 2004; Spong and Bullo,
2005) have been analyzed in the context of changing ground
slopes (Spong and Bhatia, 2003; Spong et al., 2007), how-
ever these results rely on actuators at every link to reshape
the potential energy and are thus not applicable to the under-
actuated walkers we consider in this paper. In Yang et al.
(2009), stability of aperiodic walking motions was stud-
ied via the virtual-constraints and hybrid zero dynamics
approach which achieves stability via high-gain feedback
(Grizzle et al., 2001; Westervelt et al., 2003, 2007). The
problem of footstep planning has been approached using
computational optimal control (Byl and Tedrake, 2009)
and experimental studies have shown that a minimalistic
open-loop control can achieve stability for the compass-
gait walker (Iida and Tedrake, 2009). Recently, more com-
plete planning and control systems have been developed
for quadruped walkers – see e.g. Rebula et al. (2007), Byl
et al. (2008), and Kolter et al. (2008) – and template-based
control has yielded impressive results with a hexapod robot
(Saranli et al., 2001). In Shkolnik et al. (2010) a bounding
motion over rough terrain was generated for a quadruped,
and stabilized using a transverse-linearization technique
similar to the method in this paper.

To give the present paper context, in Figure 1 we depict
a possible organizational structure for the perception and
control of a dynamic walker on uneven terrain. The main
components are:

1. Terrain Perception: fusion of sensors such as vision,
radar, and laser, perhaps combined with pre-defined
maps, generating a model of the terrain ahead.

2. Motion Planning: uses the terrain map, current robot
state, and a model of the robot’s dynamics to plan a
finite-horizon feasible sequence of footstep locations
and joint trajectories. Slow time-scale: motion plan
might be updated once per footstep.

3. Motion Control: feedback control to stabilize the
planned motion in the face of inaccurate modeling, dis-
turbances, time delays, etc. Fast time-scale: typically of
the order of milliseconds.

4. Robot State Sensing and Estimation: sensors and
state estimation algorithms to provide information
about the physical state of the robot to all other modules.

Motion
Planning

Terrain
Perception

Motion
Control

Robot State Sensing

Fig. 1. Possible organization of perception and control of a
walking robot.

A complete humanoid robot would have all of these com-
ponents, and many others. In this paper, we focus our atten-
tion on the third component: motion control. That is, we
assume that the terrain has been sensed and a motion plan
generated, and the task remaining is to compute a stabiliz-
ing feedback controller which reliably achieves this motion.
It is essential for our algorithm that it be paired with a good
motion planner. One example would be the algorithm pro-
posed in Shkolnik et al. (2010), which successfully planned
bounding motions for a quadruped over very rough terrain.
To the authors’ knowledge, the proposed method is the first
in the literature that can stabilize arbitrary dynamic walking
motions coming in real-time from a motion planner.

1.2. Stability of motions and the transverse
linearization

Although the focus of this paper is control of non-periodic
motions, many of the concepts and techniques used were
first introduced for the study of periodic motions, and find
their simplest expression in this context. In this section we
will briefly introduce these concepts, and later extend them
to the non-periodic case.

When studying stability of an autonomous nonlinear sys-
tem ẋ = f ( x) about an equilibrium point x�, the most basic
method is to linearize, obtaining a linear comparison sys-
tem ż = Az with A = df ( x) /dx|x=x� . Asymptotic stability
of the linear system is necessary and sufficient for (local)
exponential stability of x� for the original nonlinear system.

When moving from stability of a point to stability of a
motion, the situation is slightly more complicated. Suppos-
ing an autonomous differential equation ẋ = f ( x) has a
non-trivial periodic solution x( t) = x�( t) with period T , one
could linearize the system about this trajectory and obtain
a time-varying linear comparison system ż( t) = A( t) z( t),
which would have periodic coefficients A( t) = A( t + T).
However, this system will never be asymptotically sta-
ble, since periodic solutions of an autonomous differential
equation can never be asymptotically stable. The reasons
for this are clear when one considers two solutions start-
ing from different points on the periodic orbit: x1( 0) =
x�( t1) , x2( 0) = x�( t2) , t1 �= t2. After each period, they
will each return to their starting points: x1( kT) = x�( t1) �=
x2( kT) = x�( t2) for all k, whereas asymptotic stability
of the motion would imply that ‖x1( t) −x2( t) ‖ → 0 as



Manchester et al. 267

t → ∞. Note that for a controlled system ẋ = f ( x, u) one
could apply, for example, a time-varying linear controller
to stabilize to a periodic trajectory, however the closed-loop
system is then time-varying and not autonomous. A dis-
cussion on this approach in the context of underactuated
walking is given in Section 7.2.

A better concept by which to study stability of periodic
systems is orbital stability. The basic idea is that the motion
of the system should get closer to the set of states defining
the target periodic solution, not a particular solution of the
system. Let dist( y,X ) be the distance from a point y to its
closest neighbor in a set X , that is: dist( y,X ) = infx∈X ‖y−
x‖. Then we can make the following definitions:

Definition 1. Let X be the set of states through which the
periodic motion being studied passes, i.e. X = {x : x =
x�( t) , t ∈ [0, T]}. The periodic solution x�( t) is said to
be asymptotically orbitally stable if there is a real number
b > 0 such that for any initial condition x0 with
dist( x0,X )< b, the solution of the differential equation
ẋ( t) = f ( x( t) ) starting from x( 0) = x0 has the property

dist( x( t) ,X ) → 0 as t → ∞.

Furthermore, a periodic solution is said to be exponentially
orbitally stable if there exists c > 0 and a( x0)> 0 such that

dist( x( t) ,X )< a( x0) exp( −ct) , t ≥ 0.

The most well-known technique for proving orbital sta-
bility is the Poincaré first-return map, in which one con-
structs a “Poincaré section”: a hypersurface in state space
(i.e. a surface of dimension one less than the state space)
transversal to the orbit under study (e.g. S( 0) in Figure 2).
By studying the behavior of the system only at times at
which it passes through this surface, one obtains a discrete
time system of dimension one less than the original system,
referred to as the Poincaré map:

x⊥( k + 1) = P[x⊥( k) ].

The Poincaré map has a fixed point at the periodic orbit:
P[x�⊥] = x�⊥. Stability or instability of this fixed point cor-
responds to orbital stability and orbital instability, respec-
tively, of the periodic orbit. Exponential orbital stability
corresponds to all the eigenvalues of the linearization of
P being inside the unit circle. This test has frequently been
used to verify the stability of both passive and actuated
walking robots (see e.g. Hurmuzlu and Moskowitz, 1986;
Goswami et al., 1997; Grizzle et al., 2001; Westervelt et al.,
2003; Wisse et al., 2005; Westervelt et al., 2007; Hobbelen
and Wisse, 2007, and many others).

In the context of robot locomotion, one disadvantage of
the Poincaré map is that it does not give a continuous rep-
resentation of the dynamics of the system transverse to the
target orbit, but focuses only at one point on the orbit. This
means it has limited use for constructive control design.

When considering locomotion over uneven terrain,
another significant shortcoming is that the method of

S(0) TS(0)

S(t)
TS(t)

Fig. 2. A visualization of Poincaré surfaces and transverse lin-
earization of a periodic orbit (red) and a trajectory converging to
it (black).

Poincaré sections is only defined for periodic orbits. It can
be used to study biped walking on flat ground or constant
slopes, but on uneven ground where we have no reasonable
expectation of periodic orbits it is not applicable.

Another tool for analysis of orbital stability is the trans-
verse linearization (Urabe, 1967; Hale, 1980; Hauser and
Chung, 1994). This tool has a number of advantages
over Poincaré map analysis, particularly for control design
(Shiriaev et al., 2008a; Freidovich et al., 2008b), but has so
far seen relatively little use in robotics. In Song and Zefran
(2006) and Shiriaev et al. (2008b) the transverse lineariza-
tion was used to stabilize periodic walking motions, and in
Manchester (2010); Manchester et al. (2010) it was used to
estimate regions of attraction to periodic walking cycles.

Motivated by the structure of a mechanical system with n
degrees of freedom, let us consider a system with a state
space of dimension 2n. The idea is to introduce a new
coordinate system which moves along the target periodic
motion. At each point on the target motion, one of the coor-
dinates, ρ, is exactly aligned with the flow of the system,
and the other 2n − 1 coordinates, denoted x⊥, are orthog-
onal to the flow of the system. This can be visualized via
the related concept of a moving Poincaré section or trans-
verse dynamics. This is a continuous family of ( 2n − 1)-
dimensional surfaces transverse to the desired trajectory,
with one member of the family present at every point along
the cycle (S( t) for all t in Figure 2).

In a neighborhood of these new coordinates, the dynam-
ics of the original system can then be written in the
form:

ρ̇ = 1 + g1( ρ, x⊥) , (1)

ẋ⊥ = A( ρ) x⊥ + g2( ρ, x⊥) . (2)

for ρ ∈ [0, T] representing the phase around the orbit,
and g1( ·) and g2( ·) containing higher order terms (Urabe,
1967; Hale, 1980; Hauser and Chung, 1994). The trans-
verse linearization of a periodic orbit is the linear part of
the transversal dynamics:

ż( t) = A( t) z( t) , t ∈ [0, T].
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Fig. 3. A visualization of Poincaré surfaces and transverse lin-
earization of a non-periodic trajectory with impulses.

Exponential stability of this linear comparison system is
equivalent to exponential orbital stability of the target peri-
odic motion of the nonlinear system (Urabe, 1967; Hale,
1980; Hauser and Chung, 1994). This analysis can be
extended to a class of hybrid nonlinear systems by lin-
earizing the jumps and considering a jump linear system
(Freidovich et al., 2008b). Note that the dynamics of ρ do
not influence local orbital stability, and thus do not need to
be explicitly computed.

When considering a controlled system, in contrast to the
Poincaré map a transverse linearization provides a continu-
ous representation of the relationship between controls and
transverse coordinates of the form

ż( t) = A( t) z( t) +B( t) u( t) , t ∈ [0, T].

Stabilization of this system is equivalent to exponential
orbital stabilization of the target motion of the nonlinear
system, and can be approached using standard techniques
in linear control theory.

Furthermore, the concept of a transverse linearization
can be extended to non-periodic motions with impulses,
such as walking over uneven terrain, as visualized in
Figure 3. In this case, the transverse linearization will be
of the form

ż( t) = A( t) z( t) +B( t) u( t) for t �= tj,

z( t+j ) = Fjz( t−j ) ,

where tj, j = 1, 2, 3, . . . are the times at which impacts occur
in the target trajectory q�( t). Here, Fj is the linearization of
the effect of the impact on the transverse state x⊥.

In the remainder of this paper we will develop this idea,
and use it to design a stabilizing control law. Note that
unlike the case of an equilibrium or periodic orbit, sta-
bility of a non-stationary linearization about a trajectory
of a nonlinear system does not necessarily imply stability
of the trajectory (Leonov and Kuznetsov, 2007). However,
under some assumptions which are reasonable for walking
robot control we can prove stability using Lyapunov’s direct
method.

2. System model and motion plan

Although the technique we will propose can be applied to a
wide range of nonlinear hybrid systems, in this paper we
will concentrate on hybrid mechanical (Euler–Lagrange)
systems. Let q be a vector of generalized coordinates, and u
be a vector of forces and torques which can be assigned,
then the dynamics of the system can be written in the fol-
lowing form (Hurmuzlu and Marghitu, 1994; Spong et al.,
2006; Westervelt et al., 2007):

M( q) q̈ + C( q, q̇) q̇ + G( q) = B( q) u for q �∈ Q
q+ = �q,i q−

q̇+ = �q̇,i( q−) q̇−

}
whenever q− ∈ Qk , k = 1, 2, 3, . . .

(3)
where M( q) is the inertia matrix, C( q, q̇) is the matrix of
Coriolis and centrifugal terms, G( q) is the gradient of the
potential energy field, and B( q) describes the effects of
actuators on the generalized coordinates. The sets Qj repre-
sent a family of switching surfaces, e.g. for a walking robot,
states at which the foot of the swing-leg hits the ground, and
a new step begins. Throughout the paper, for discontinuous
signals the superscripts − and + refer to the value of a sig-
nal immediately before and after a jump, respectively. We
will also use the notation q( t−j ) and q( t+j ) for the value of
q( ·) immediately before or after tj.

We assume that a motion-planning algorithm has been
implemented which provides a trajectory of desired states:

q( t) = q�( t) ∈ R
n, t ∈ [0, ∞) .

The entire trajectory may be specified in advance, or it may
be constructed over time in a receding horizon framework.
The trajectory q�( t) is piecewise smooth, with occasional
time instants tj, j = 1, 2, . . . at which an impact occurs, i.e.
q( t−j ) ∈ Qk for some k. The following two assumptions will
be satisfied for any reasonable motion plan for a walking
robot.

Assumption 1. There exists τ1 > τ2 > 0 such that τ1 ≥
tj+1 − tj ≥ τ2 for all j.

That is, the footsteps do not get infinitely long or
infinitely short.

Assumption 2. For all tj, the vector [q̇�( t)T q̈�( t)T ]T is lin-
early independent of the 2n−1 vectors spanning the tangent
plane of the switching surface at q�( t).

That is, all impacts are “real” impacts, not grazing touches
of the switching surface. This is a necessary assumption
since with a grazing touch arbitrarily small deviations from
the trajectory can result in no impact occurring, invalidating
the analysis based on an impulsive linear system.

3. Receding-horizon control design

The main contribution of this paper is a proposal for a con-
trol design method that is guaranteed to stabilize the system
to its motion plan.
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The basic strategy is to repeatedly compute the trans-
verse linearization about the target trajectory looking a few
steps ahead, then compute a receding-horizon optimal con-
trol – also known as model predictive control – which is
then transformed and applied to the nonlinear system. Note
that exponential stabilization of time-varying systems, even
linear systems, is a non-trivial problem. For time-invariant
or periodic linear systems one can compute constant or
periodic gain matrices, respectively, which exponentially
stabilize the system. This is not true in general for time-
varying systems, however the receding-horizon method is a
computationally feasible solution to this problem (see e.g.
Kwon et al. (1983); Mayne et al. (2000) and many others).
Arguing stability of a trajectory of a nonlinear system via
time-varying linearization is also far from straightforward
(Leonov and Kuznetsov, 2007); however, the method by
which we construct the controller allows us to construct a
Lyapunov function by which this can be proven.

That is, find the feedback controller that minimizes the
following cost function:

J ( x, u) =
∫ ti+h

ti

[z( t)T Q( t) z( t) +v( t)T R( t) v( t) ]dt

+
i+h∑
j=i

z( tj)
T Qjz( tj)

subject to the constraint z( ti+h) = 0, where z( t) is the state
of the transverse linearization, and v( t) is a virtual control
signal.

Assumption 3. There exists αi > 0, i = 0, . . . , 5, such that
α0I ≤ Q( t) ≤ α1I ,α2I ≤ R( t) ≤ α3I , and α4I ≤ Qj ≤ α5I
for all t and j.

We propose the following receding-horizon strategy,
computed for time intervals beginning at each footstep and
looking h footsteps ahead:

1. Set i = 0.
2. Receive from the motion-planner the desired trajectory

q�( t) for the time interval [ti, ti+h). Compute the trans-
verse linearization of the system (3) about the target
trajectory:

ż( t) = A( t) z( t) +B( t) v( t) for t ∈ [ti, ti+h) , t �= tj, . (4)

z( t+j ) = Fjz( t−j ) for j = i, i + 1, . . . , i + h − 1. (5)

3. Solve the following jump-Riccati equation backwards
in time from ti+h to ti with a final condition Z( ti+h) =
0(n−1)2 :

d

dt
Z( t) = Z( t) A( t)T +A( t) Z( t) −B( t) R( t)−1 B( t)T

+Z( t) Q( t) Z( t) for t �= tj,

Z( t−j ) = {FT
j Z( t+j )−1 Fj + Qj}−1 for j = i, i

+1, . . . , i + h − 1. (6)

4. Until the next footstep impact is detected, apply the
following state-feedback controller:

u = N( q, q̇)−1 [K( s) x⊥ − W ( q, q̇) ],

K( s) = −R−1( s) Bj( s)T Z( s)−1 ,

s = arg min
t∈[ti,ti+1)

‖x − x�( t) ‖ (7)

where N( ·) and W ( ·) are partial feedback-linearizing
terms, given in Section 4.1.

5. For the next footstep, set i = i + 1 and return to stage 2.

We note that the jump-Riccati equation (6) is different to
that usually associated with the LQR design. In fact, Z( t)
is the inverse of the cost-to-go matrix. Therefore, setting
Z( ti+h) = 0(n−1)2 is equivalent to infinite cost on the final
condition, i.e. a strictly-constrained final state. However,
the time at which this state constraint is applied continues
to recede into the future, and therefore it is never actually
enforced in closed loop. This simple trick is useful in guar-
anteeing stability of the closed loop system, and can be
relaxed somewhat if needed (Mayne et al., 2000).

In order to prove stability, we make some technical
assumptions:

Assumption 4. The hybrid transverse linearization system
is uniformly completely controllable, as defined in Kalman
(1960).

This assumption essentially states that there is sufficient
dynamical coupling between the unactuated and actuated
links of the system. It is always satisfied with reasonable
walking robot designs, and planned trajectories which are
“close” to periodic, such as walking over uneven terrain.

Assumption 5. There exist constants ε > 0 and δ > 0 such
that, for a given state q, q̇, ‖q − q�( s) ‖ < δ implies ‖ẋ⊥ −
A( s) x⊥ + B( s) u( t) ‖ < ε for q �∈ Qj for any j, where s =
arg mint ‖q−q�( t) ‖. Also, there exist ε̄ > 0 and δ̄ > 0 such
that ‖q−q�( tj) ‖ < δ̄ implies that ‖x⊥( t+j ) −Fjx⊥( tj) ‖ < ε̄

when q ∈ Qj for some j.

This is a uniform smoothness assumption on the dynam-
ics around the trajectory. It essentially states that there
are uniform (in time) bounds guaranteeing how well the
transverse linearization locally approximates the system’s
dynamics. It is a technical condition which will always be
satisfied for reasonable walking motions.

We are now ready to state the main theoretical result of
the paper:

Theorem 1. If Assumptions 1, 2, 3, 4, and 5 are satisfied,
then the controller (6), (7) locally exponentially orbitally
stabilizes the planned motion of the hybrid nonlinear
system (3).

The proof is given in Appendix B.
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4. A method for analytical construction of the
transverse linearization

In this paper, we use a construction of the transverse lin-
earization specifically designed for underactuated mechan-
ical systems (Perram et al., 2003; Shiriaev et al., 2005,
2008a) which has several components in common with
the technique of virtual holonomic constraints and hybrid
zero dynamics (Grizzle et al., 2001; Westervelt et al., 2003,
2007). The transversal coordinates can be analytically con-
structed and have a very natural interpretation in terms of
synchronization functions of the various joints, and a scalar
kinetic-energy-like coordinate. Recently, an alternative con-
struction of the transverse linearization for more general
hybrid nonlinear systems has been introduced (Manchester,
2010), which allows the control method from the previous
section to be applied to a very wide class of systems.

To begin our construction we represent the target trajec-
tory in terms of virtual holonomic constraints. For each
interval [tj, tj+1), j = 0, 1, 2, . . ., choose one generalized
coordinate or some scalar function of the generalized coor-
dinates θ := 
j( q) which evolves monotonically along a
desired trajectory.

Remark 1. In the case of the compass-gait walker, which
we will consider in Sections 5 and 6, we will take θ to be
the “ankle angle”. It is a reasonable assumption that for
any useful walking motion, this angle evolves monotoni-
cally over any given step. This representation is common
in walking robot control (Westervelt et al., 2007).

Since it evolves monotonically θ can then be considered
as a reparameterization of time, and hence the nominal tra-
jectories of all other coordinates over each interval [tj, tj+1)
can be given as well-defined functions of θ :

q�1( t) = φ
j
1( θ ( t) ) ,

...

q�n( t) = φj
n( θ ( t) ) ∀ t ∈ [tj, tj+1) .

Having thus defined the functions φ
j
1, . . . ,φj

n, one can
define variables representing deviations from the nominal
trajectory:

y1( t) := q1( t) −φj
1( θ ( t) ) ,

...

yn( t) := qn( t) −φj
n( θ ( t) ) ∀ t ∈ [tj, tj+1) , (8)

where ym( t) = 0 for all m implies the system is on the nom-
inal trajectory, i.e. the motion of the joints is synchronized.

Consider now the quantities θ , y1, . . . , yn. Since the sys-
tem is n-dimensional, these n + 1 quantities are excessive
coordinates for the system, and hence one can be dropped.
The coordinate which is dropped must be locally indepen-
dent of θ . Without loss of generality, let us assume we drop
yn, and our new coordinates are y = [y1, . . . , yn−1]T and θ .

Remark 2. When the conditions ym = 0 for all m are
enforced via feedback action, the functions φj

1, . . . ,φj
n are

often referred to as virtual holonomic constraints (Grizzle
et al., 2001; Westervelt et al., 2003, 2007). Our control
strategy does not require that these constraints be strictly
enforced to guarantee stability, they are simply used as a set
of coordinates. However, we retain the terminology “virtual
constraints”.

4.1. Construction of the continuous part of the
transverse linearization

The representation of trajectories introduced above allows
us to construct, at any θ , a set of transversal coordi-
nates. The first 2n − 2 coordinates are given by the virtual
constraints defined in Equation (8) and their derivatives:

yi = q − φi( θ ) , (9)

ẏi = q̇i − dφj
i ( θ )

dθ
θ̇ , i = 1, . . . , n − 1. (10)

Now, the dynamics of y can be written in the form

ÿ = W ( y, θ , ẏ, θ̇ ) +N( y, θ ) u,

where the functions W ( ·) and N( ·) are simply the nonlinear
dynamics in the variables y, ẏ, and follow from substitu-
tion of (9) and (10) into the equations of motion (3) (see,
for example, Shiriaev et al. (2008a) for details). For sys-
tems of underactuation degree one, the dynamics of y can
be feedback linearized via a controller of the form:

u = N( y, θ )−1 [v − W ( y, θ , ẏ, θ̇ ) ], (11)

where v is a virtual control signal, resulting in the dynam-
ics ÿ = v. Note that this is just a partial feedback lin-
earization: since there are n − 1 actuators, we can feedback
linearize 2n − 2 states out of a total of 2n. The partial
feedback linearization is not strictly necessary, but it makes
the system behave closer to a linear system and can thus
improve the performance of a controller based on a linear
approximation.

For a full set of transverse coordinates, one more inde-
pendent coordinate is required. The final coordinate should
be a function of the state space which is independent of y
and ẏ, zero on the target orbit, and it should be possible
to compute both its value and its dynamics analytically. It
turns out that for mechanical systems, such a function exists
in a general form.

For the continuous phase of an underactuated mechanical
system, if the relations y = ẏ = 0 are maintained then the
dynamics of the coordinate θ take the following form:

α( θ ) θ̈ + β( θ ) θ̇2 + γ ( θ ) = 0, (12)

where α( ·) ,β( ·) , γ ( ·) can be computed from the equa-
tions of motion of the system – see Appendix C, Equation
(20). This special form is due to the fact that the matrix
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of Coriolis and centrifugal terms C( θ , θ̇ ) is linear in θ̇ for
mechanical systems.

An important fact is that a partial closed-form solution of
the system (12) can be computed (Perram et al., 2003):

θ̇2 = ψ( θ , θ0) θ̇2
0 + �( θ , θ0) , (13)

where ( θ0, θ̇0) is any point on the desired trajectory of the
reduced system (12) and the formulas for ψ( ·) and �( ·)
are given in Appendix C, Equations (21) and (22). By
introducing a new variable

I = θ̇2 − ψ( θ , θ0) θ̇2
0 − �( θ , θ0) ,

we have a clear candidate for the final transverse coordinate:
it is clearly independent of y and ẏ and is zero when the sys-
tem is on the target motion. Furthermore, since I has been
constructed analytically, the dynamics of I can be explicitly
computed (see Appendix C, Equations (23–26)), so we have
a complete set of transverse coordinates:

x⊥ :=
⎡
⎣I

y
ẏ

⎤
⎦ ,

and explicit formulas for the transverse linearization along
the continuous interval [tj, tj+1) can be computed:

ż( t) = A( t) z( t) +B( t) v( t) for t ∈ [tj, tj+1) , (14)

where A( t) and B( t) are

A( t) =
⎡
⎣a11( t) a12( t) a13( t)

0(n−1) 0(n−1)2 I(n−1)

0(n−1) 0(n−1)2 0(n−1)2

⎤
⎦ , B( t) =

⎡
⎣ b1( t)

0(n−1)2

I(n−1)

⎤
⎦ ,(15)

and with z representing the state of the linear compari-
son system. The coefficients of this matrix are given in
Appendix C, Equation (27).

Note that in this development we have used the fact
that the system has a single unactuated degree of freedom
to simplify the development by the introduction of a par-
tial feedback linearizing controller. This is not necessary,
however, and higher degrees of underactuation can be han-
dled with a small modification (see Freidovich and Shiriaev
(2009)).

4.2. Transverse linearization of impacts

Certain care is required in linearizing the impact map. Anal-
ysis via the jump-linear system assumes that the jumps
occur at a certain time, i.e. ti for some i. However, small per-
turbations of the nonlinear system from the target trajectory
will not necessarily all hit the switching surface at the same
time. Geometrically, one can say that the transversal sur-
faces are always orthogonal (in the full state space ( q, q̇)) to
the current motion of the system, but the switching surfaces
will usually not be.

To solve this problem, we need two projection matrices
which go from the transversal surface to the switching sur-
face before an impact, and from the switching surface to
the transversal surface after an impact. Suppose d�j is the
linearization of the impact map at time tj about the nominal
trajectory, then

z( t+) = Fjz( t) for t = tj, j = 1, 2, . . . , (16)

where Fj = P+
j d�jP

−
j .

The matrix P+
j projects from the transversal surface TS( t)

onto the switching surface at the end of the continuous
phase, and the matrix P−

j projects the state back on to
the transversal surface after switching. The construction of
these projections is given in Appendix C, Equation (28).

This approach was first presented in Shiriaev et al.
(2008b). Alternative solutions include searching for a
global orthogonalizing transform (Song and Zefran, 2006)
and warping the transversal surfaces so as to line up
with switching surfaces (Manchester, 2010), however these
cannot be applied with the analytical construction of the
transverse dynamics which we use in this paper.

5. Experimental setup

We have constructed a two-degree-of-freedom planar biped
robot with point feet, a photograph and schematic of which
are shown in Figure 4. The robot is mounted on a boom arm
with a counterweight, and thus walks in a circular path. The
dynamical effect of the boom is approximated by having
different values of hip mass for inertial (mH ) and gravita-
tional (mHg) terms in the model. The robot is fitted with
retractable feet to avoid toe-scuffing, however we do not
consider the feet as additional degrees of freedom since
their masses are negligible.

The robot is modeled in the form of a hybrid mechan-
ical system (3), the parameters of which were estimated
via nonlinear least-squares fit on simulation error. The full
equations for the model are given in Appendix D. Good fit-
ting required the addition of a friction model for the hip
joint consisting of Coulomb and viscous parts:

τF = FC sign( q̇1) +FV q̇1.

The parameters of the model are given in Table 1.
The robot is fitted with optical encoders measuring the

angle between the legs and the absolute angle of the inner
leg. From these measurements q1 and q2 can be calculated.
The control law relies on velocities as well, and these are
estimated with an observer. The observer structure cho-
sen is one which has previously been used successfully in
walking robot control, consisting of a copy of the nonlinear
dynamics and a linear correction term (Grizzle et al., 2007).
Let q̂ and ˆ̇q be the estimates of the configuration states and
velocities. Then the observer is given by:
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Fig. 4. Schematic and photograph of compass-gait biped used in the experiments.

Table 1. Parameters of the compass-gait biped.

Parameters Values

Masses [kg] m = 1.3, mH = 2.2,
mHg = −1.2

Inertia [kg m2] Ic = 0.0168
Lengths [m] l = 0.32, lc = 0.0596
Gravitational constant [m/s2] g = 9.81
Ratio current/input [A] kI = 1.1
Motor torque constant [Nm/A] kτ = 0.0671
Coulomb friction [Nm] FC = 0.02
Viscous friction [Nm s] FV = 0.01

d

dt

[
q̂
ˆ̇q
]

=
[ ˆ̇q

M( q̂)−1 ( −C( q̂, ˆ̇q) ˆ̇q − G( q̂) +B( q̂) u)

]

+L( y − q̂) ,

q̂+ = �qq̂, ˆ̇q+ = �q̇( q̂) ˆ̇q,

where y is the measurement of q. A simple choice for
the observer gain is L = [1/ε 2/ε2], which places the
eigenvalues of the linearized error system at −1/ε. In
our experiments we found that ε = 0.02 gave a reason-
able compromise between speed of convergence and noise
rejection.

5.1. Polynomial representation of desired motion

In this paper, we represent planned trajectories in the form
of virtual holonomic constraints: one coordinate (or func-
tion of coordinates) which evolves monotonically is chosen
as a “phase” variable, and the desired motions of all other
coordinates are represented as functions of this variable.

For the compass biped we take θ = q2, the “ankle”
angle of the stance leg relative to horizontal. Then to spec-
ify the path through configuration space for each step j, we
need to specify only the inter-leg angle q1 as a function of
the ankle angle: q�1 = φj( θ ). We chose to construct the
φj functions as Bézier polynomials, which can represent a
wide range of useful motions with quite a low number of
parameters. For details, see Westervelt et al. (2007, Ch. 6),
in which Bézier polynomials were used to design periodic
trajectories.

A trajectory q∗
1( θ ) can be represented as

φj( σ ) :=
M∑

k=0

ak
M!

k!( M − k) !
σ k

j ( 1 − σj)
M−k ,

where σj ∈ [0, 1] is a mapping of the evolution of θ for the
j-th footstep into the interval [0, 1]:

σj = θ − θ ( t+j )

θ ( t−j+1) −θ ( t+j )
.

This method is straightforward to adapt to non-periodic
trajectories. For the experiments in this paper, we hand-
chose parameters of fourth-order Bézier polynomials which
achieved a walking motion over our terrain. Real-time plan-
ning in this framework may offer significant efficiency
benefits, and will be part of our future work.

6. Experimental results

To test the controller experimentally, a relatively simple
task was chosen: the robot should walk flat for two steps,
then down two “stairs”, and then continue along the flat.



Manchester et al. 273

The steps had a height of 2 cm. A video of a successful
experiment can be seen in Extension 1.

The control design was implemented as in Section 3, with
constant weighting matrices Q( t) = Qj = I3 and R( t) = 1
for all t and j. The look-ahead horizon was chosen as three
footsteps ahead.

For each step, the solution of the jump-Riccati equa-
tion took approximately half a second to compute using
the ode45 solver in MATLAB running on a Pentium III
desktop computer. This is roughly the time it takes for the
robot to complete a step, and it is reasonable to expect
that optimized compiled code could perform this task much
more quickly. Hence, one can say that the control law could
be feasibly computed in real-time, as a part of a dynamic
motion-planning and control system.

Figure 5 depicts the results of one experiment. Figure
5(A) is a cartoon of the biped’s motion generated from real
data, showing the state every 0.3 s, with the current stance
leg always indicated in red.

In Figure 5(B) the evolution of the “ankle angle” q2 is
plotted against time for one experiment. During the con-
tinuous phases, q2 serves as our reparameterization of time
θ . We note here that, particularly on the second and fourth
steps, there is some jitter in the curve. In Figure 5(C) the
inter-leg angle q1 is plotted against time in blue, along with
the “nominal” value of q1 plotted in red. Note that since the
nominal value of q1 is not a function of time but a function
of q2, defined by the virtual constraint, the jitters in the q2

measurement lead to jitters in the nominal value of q1. Nev-
ertheless, tracking is quite good, and sufficient for the robot
to maintain a stable walking trajectory. Figures 5(D) and (E)
depict the joint velocities q̇1 and q̇2, obtained from the same
observer used in the control system, along with their nom-
inal values as functions of the current value of q2. Again,
the jitter in q2 leads to large noise in the velocity estimates.
Despite this, good tracking is maintained through all the
planned steps. Repeated experiments were performed with
similar results each time, indicating good robustness of the
control strategy.

7. Discussion

7.1. Further experimental verification

The experiments reported in this paper are a proof of
concept, however the terrain is arguably not particularly
demanding, with the height variations only around six per-
cent of the leg-length. The reason for this was mainly practi-
cal: the robot used has a very small toe extension and larger
height variations are physically impossible for the toe clear.
Since these experiments were completed the same receding-
horizon transverse LQR technique has been applied for sta-
bilization of a quadruped robot bounding over rough terrain
(Shkolnik et al., 2010). The trajectories included bound-
ing up stairs and over logs, and the height variations were
of the same order as the quadruped’s leg-length. Owing to

the complexity of the quadruped model, a different con-
struction of the transverse linearization was used which is
valid for any hybrid nonlinear system, not just those with a
Lagrangian structure (Manchester, 2010).

Other researchers have successfully performed experi-
ments stabilizing periodic trajectories of the pendubot and
Furuta pendulum using the transverse linearization (Shiri-
aev et al., 2007; Freidovich et al., 2008a). In these works,
the same analytical construction of the transverse lineariza-
tion was used and a periodic LQR problem was solved to
compute a feedback controller.

7.2. Comparison to control via full-state LQR

When it comes to implementation on a real system, an
advantage of the method of transverse linearization, how-
ever it is constructed, is that it naturally leads to a static
state-feedback control law of the form u( t) = k( x( t) )
where x( t) = [q( t)T q̇( t)T ]T. That is, for each point in the
state space, there is a unique control action to be taken. A
time-varying linear system is used as an intermediate step
in the construction, but by composing this with a projection
operator, the complete control law is time-invariant.

In contrast, if one were to design a controller for the
full-order dynamics using, for example, time-varying LQR,
one would need to stabilize the system to a particular
time-solution of the nominal trajectory, resulting in a time-
varying control law of the form u( t) = k( x( t) , x�( t) , t),
where x�( t) is the target solution. This imposes problems of
synchronization: suppose the natural underactuated dynam-
ics of the real robot are somewhat slower or faster than
the model assumed for motion planning. This will always
be the case to a greater or lesser extent since accurately
modeling friction effects and energy losses due to impacts
remains a difficult problem. If the motion of the real robot is
slower than the model, then its trajectory will lag behind the
planned trajectory. In the authors’ experience, for underac-
tuated systems large deviations in control and the actuated
links may be commanded in an attempt to “catch up”, which
can force the system to leave the region in which the linear
controller is stabilizing, and result in system failure. The
transverse-linearization-based controller generally leads to
much larger regions of attraction, although much depends
on particular properties of the system and the choice of
weighting matrices and prediction horizon, so it is diffi-
cult to make general statements to this effect. However,
in the authors’ experience, solving the Riccati equations
or controllability grammians for the full-order linearized
dynamics of a compass-gait walker, including the impacts,
is poorly conditioned numerically, which can indicate very
weak controllability of the real system.

One could attempt to solve the synchronization problem
by using a projection operator: finding the closest point on
the planned trajectory to the current state, and applying the
full-order controller computed for that point, thus creating
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Fig. 5. Results from a successful experiment walking on uneven terrain. See Section 6 for discussion.

a state-feedback control law. However, for a full-order LQR
controller such a projection operator is not guaranteed to
preserve stability of the closed-loop system. In contrast, the
combination of a transverse-linearization controller and a
projection operator maintains its stabilizing property.

7.3. Comparison to control via
hybrid-zero-dynamics

The construction of the transverse linearization given in this
paper and in Shiriaev et al. (2008a,b) has several technical
elements in common with the hybrid-zero-dynamics (HZD)
framework for biped control (Grizzle et al., 2001; Wester-
velt et al., 2003, 2007), and it is worth discussing the simi-
larities and differences between these approaches. The basic
difference can be expressed like so: in the HZD framework,
a high-gain controller is constructed to drive the 2n−2 coor-
dinates y and ẏ to zero in finite time. The satisfaction of the
constraint y = ẏ = 0 results in a two-dimensional reduced
system – satisfying the differential equation (12) – the sta-
bility of which can be checked via Poincaré map analysis.
Note that it was subsequently proven that orbital stability is

still implied if y and ẏ are driven sufficiently close to zero
(Morris and Grizzle, 2009). In contrast, in our approach,
2n−1 transverse coordinates – including y and ẏ but also the
extra coordinate I – are driven towards zero exponentially
via a receding horizon control design.

Figure 6 depicts the phase portrait of the reduced dynam-
ics (12) for a particular periodic trajectory of the compass-
gait walker. That is, it depicts the dynamics of θ and θ̇ on
the manifold defined by the constraint y = ẏ = 0. We notice
that in the center of the phase portrait is a hyperbolic fixed
point. Initial conditions with sufficient velocity will pass
above this fixed point and complete the walking step, but
those with lower velocity fall backwards again, which we
consider a failure. Planned motions of walking robots which
have been optimized for minimum energy expenditure tend
to come quite close to this fixed point, such as the trajectory
indicated by the black line.

Since all points on this phase portrait satisfy the virtual
constraints, a controller based on the HZD framework will
not attempt to stabilize these trajectories to the target orbit.
For most reasonable walking robots it can be shown that the
dynamics of this reduced system are locally stable, although
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Fig. 6. Phase portrait of the reduced dynamics of the compass-
gait model. The black line is the target trajectory, the thin vertical
red lines indicate the switching surfaces. The dashed blue lines
are trajectories using an HZD controller, the dashed red lines are
trajectories using a transverse linearization controller.

it is clear that the region of attraction can be very small.
In particular, the above-mentioned difficulty in accurately
modeling impacts plays an essential role here. If the energy
lost during an impact is greater than expected, resulting in θ̇
falling below its value on the target trajectory, the robot will
fall backwards, as indicated by the lower dashed blue line in
Figure 6. However, a robot controlled using a transverse lin-
earization starting from the same point will be stabilized to
the target cycle (the dashed red line). Equally, if the initial
velocity after an impact is much greater than expected – per-
haps due to underestimation of the ground slope – then the
HZD-based walker will complete the walking cycle, as indi-
cated by the upper dashed blue line, but meet the right-hand
switching surface with much higher velocity than planned,
which may cause the foot to bounce or slip on impact. In
contrast, the transverse linearization controlled robot start-
ing from the same velocity will stabilize the system back to
the target trajectory during the swing phase, again indicated
by the dashed red line.

It is interesting to note that when starting from a lower-
than-planned velocity, the robot initially slows down even
further before speeding up (the red dashed line dips below
the blue dashed line, before crossing it). This is because
in order to increase the speed of rotation of the stance leg,
which is unactuated, it must push the swing-leg further for-
ward than planned (see Figure 7) to shift the center of mass
of the robot forward, thus increasing the forward accelera-
tion. But doing so has a short-term effect of slowing down
motion of the stance leg due to coupling between angular
momenta. The opposite occurs with the trajectory which
starts from a higher-than-planned stance-leg velocity: the
swing leg is initially swung right back to shift the center
of mass further back, thus slowing rotation of the stance
leg. Note that although this strategy of shifting the swing

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

θ (stance leg angle) (rad)

q 1 (
sw

in
g 

le
g 

an
gl

e)
 (

ra
d)

 

 

Planned motion
Motion from reduced dθ/dt
Motion from increased dθ/dt

Fig. 7. Swing leg trajectory as a function of stance leg for
the compass-gait walker controlled by transverse linearization.
Depicted is the planned motion, i.e. the virtual constraint (black),
and the motions to stabilize a reduced initial dθ/dt (red solid)
and an increased initial dθ/dt (red dashed). In all cases a HZD-
controlled walker would follow the black trajectory.

leg forward or backward to affect momentum has an intu-
itive basis, it is a natural outcome of the general stabilizing
controller and is not due to programming of a heuristic
strategy.

The main advantage of the HZD framework over the
proposed method is that it is much simpler to implement,
which can be a great benefit in practice, and typically works
very well for planar bipeds. Indeed, once a set of vir-
tual constraints is chosen a Proportional-Derivative (PD)
controller is often sufficient for each actuator. However,
this advantage is diminished somewhat if the robot has
higher degrees of underactuation (e.g. a three-dimensional
compass-gait) for which the hybrid zero dynamics may not
be stable (Chevallereau et al., 2009), and also for systems
with compliance, for which the hybrid zero dynamics man-
ifold may not be invariant through impacts (Morris and
Grizzle, 2009). In these cases the problem of finding vir-
tual constraints that result in a stable walking motion is
non-trivial. Furthermore, if the planned trajectory is non-
periodic, then proof of stability via Poincaré map analysis
is not possible.

The main benefits of the proposed method are that it
is guaranteed to stabilize any walking trajectory which is
stabilizable, under very weak conditions. The extra com-
plexity required for this guarantee is a receding horizon
control loop that computes online the transverse lineariza-
tion – which is given in analytic form – and solutions of a
Riccati differential equation. However, in the authors expe-
rience this is well within the computational capabilities of
most modern robots.

8. Conclusions

In this paper, we have proposed a constructive control tech-
nique to stabilize non-periodic motions of underactuated
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robots, with a focus on the application of walking over
uneven terrain. The controller is computed by construct-
ing a lower-dimensional system of coordinates transverse
to the target cycle and then computing a receding-horizon
feedback controller to exponentially stabilize the linearized
dynamics of the transverse states. The proposed approach
is supported by theoretical results proving orbital exponen-
tial stability of the target trajectory of the original nonlinear
system.

The method used in this paper to construct the transverse
linearization has several elements in common with the HZD
framework. For walking robots with underactuation degree
one this is a very natural construction, since the states are
synchronization errors of the joints and a scalar kinetic-
energy-like state. Other constructions may be more natural
for other classes of system (see, for example, Urabe, 1967;
Hale, 1980; Shkolnik et al., 2010; Manchester, 2010)).

To the best of the authors’ knowledge, this is the first
systematic control method which can provably stabilize
general non-periodic motions of an underactuated walker.
The proposed technique was experimentally verified using
a compass-gait biped walker. It was seen that, despite mea-
surement errors and inevitable uncertainties in modeling,
the controller reliably stabilized the target motions.

In this paper we solve the receding-horizon control prob-
lem via a jump-Riccati equation. If there are hard con-
straints on states or actuation, a simple extension is to dis-
cretize the transverse linearization and solve a quadratic
program at each time step if computational resources allow
(see Mayne et al., 2000, and references therein).

In closing, we note that closely related methods can be
used to compute rigorously verified regions of stability
for walking robot motions (Manchester, 2010; Manchester
et al., 2010) which can then be used to construct high per-
formance nonlinear control systems (Tedrake et al., 2010).
A focus of future work will be experimental evaluation of
the control approach in these papers combined with rig-
orous verification for dynamic walking over very rough
terrain.
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Appendix A: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video An experimental compass-gait biped
walking down steps.

Appendix B: Proof of local stability

Here we provide a sketch of the proof of Theorem 1, since
after some preparation the details follow from standard
results in linear systems theory and orbital stabilization.
We consider the Lyapunov function candidate for the linear
comparison system

V( z( t) , t,Ki) = z( t)T P( t) z( t) ,
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where P( t) = Z( t)−1 and Z( t) is the solution of a finite-
time jump-Riccati equation (6) computed at footstep i. That
is, V( z( t) , t,Ki) would be the total “cost-to-go” from a
state z( t) assuming that the finite-horizon feedback strat-
egy computed at footstep i were continued until the end of
its horizon, rather than just for one footstep.

We state the following three facts about this Lyapunov
function candidate:

1. It follows from Assumptions 1, 4, and 3, and standard
arguments from optimal control (Kalman, 1960), that
there exist β1 > β0 > 0 such that

β0I ≤ P( t) ≤ β1I . (17)

2. Throughout the continuous phase from ti to ti+1,

d

dt
V( z( t) , t,Ki) = −z( t)T Q( t) z( t) −u( t)T R( t) u( t) .

Therefore, it follows from the bounds on Q( t) in
Assumption 3 that

d

dt
V( z( t) , t,Ki) ≤ −α0‖z( t) ‖2 (18)

for all t.
3. Let Ki refer to the strategy of using the finite-time con-

troller calculated at the beginning of step i. Under this
strategy, x( ti+h) = 0 and remains zero for all t > ti+h.
After step i, the state is z( ti+1). A feasible strategy from
here would be to continue with control strategy Ki.
However, a new optimization is performed at step i + 1
over a new horizon i + 1 + h. Since continuing with Ki

is a feasible strategy, it follows from Assumptions 4 and
3 that there exists a constant 0 < β3 < 1 such that the
new optimal strategy Ki+1 must have a cost-to-go which
satisfies

V( z( ti+1) , ti+1,Ki+1) ≤ β3V( z( ti+1) , ti+1,Ki) ; (19)

i.e. the Lyapunov function decreases by at least a factor
of β3 at every impulse.

To prove that this implies orbital stability of the target tra-
jectory of the original nonlinear system, we consider the
Lyapunov function V( x⊥,Ki), and observe that Assump-
tion 5 together with (18) and (19) imply that for sufficiently
small x⊥ there will exist constants α6 > 0 and 0 < β4 < 1
such that

d

dt
V( x⊥( t) , t,Kj) ≤ −α6‖x⊥( t) ‖2, t �= tj, j = 1, 2, 3, . . .

V( x⊥( tj+1) , tj+1,Kj+1) ≤ β4V( x⊥( tj+1) , tj+1,Kj) ,

t = tj, j = 1, 2, 3, . . .

Now, from this and (17) it follows that x⊥ exponentially
converges to zero for the original nonlinear system, i.e. the
target trajectory is exponentially orbitally stable, via a gen-
eralization of Lyapunov’s second method to systems with
impulse effects (Bainov and Simeonov, 1989, Ch. 13).

Appendix C: Miscellaneous formulas

Functions for the reduced dynamics of a virtually con-
strained system (12):

α( θ ) = B⊥( q) M (�( θ ) ) �′( θ ) ,

β( θ ) = B⊥( q) [C
(
�( θ ) ,�′( θ )

)
�′( θ )

+M (�( θ ) )�′′( θ ) ],

γ ( θ ) = B⊥( q) G (� (θ)) ,

�( θ ) = [
φ1( θ ) . . . φn( θ )

]T
,

�′( θ ) = d
dθ �( θ ) , �′′( θ ) = d2

dθ2�( θ ) ,

(20)

and B⊥( q) is a full rank matrix such that B⊥( q) B( q) = 0.
Functions for the solution of the dynamics θ̇2 in Equation

(13):

ψ( θ , θ0) = exp

{
−2

∫ θ

θ0

β( τ )

α( τ )
dτ

}
, (21)

and

�( θ , θ0) = 2
∫ θ

θ0

ψ( θ , s)
γ ( s)

α( s)
ds. (22)

Dynamics of I away from the target orbit defined by
y = ẏ = 0:

d

dt
I = 2θ̇

α( θ )
( w − β( θ ) I) , (23)

where

w := α( θ ) θ̈ + β( θ ) θ̇2 + γ ( θ ) .

Note that when y = ẏ = 0, the dynamics of θ , θ̇ are given
by (12) and w = 0.

The dynamics of θ , θ̇ for the partial feedback-linearized
system can be locally approximated as:

α( θ ) θ̈ + β( θ ) θ̇2 + γ ( θ ) = gy( ·) y

+gẏ( ·) ẏ + gv( ·) v, (24)

ÿ = v, (25)

where

gy = gy( θ , θ̇ , θ̈ , y, ẏ) , gẏ = gẏ( θ , θ̇ , θ̈ , y, ẏ) ,

gv = gv( θ , θ̇ , y, ẏ)

are smooth functions which are straightforward to com-
pute with computer algebra packages from the difference
between (12) and the dynamics for θ , θ̇ with (11) substi-
tuted for u (Shiriaev et al., 2005, 2008a). The dynamics of
I are then approximated by substituting (24) into (23):

d

dt
I = 2θ̇

α( θ )
( gy( ·) y + gẏ( ·) ẏ + gv( ·) v − β( θ ) I) . (26)
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The matrix coefficients for the continuous phase of the
transverse linearization:

b1( t) = θ̇�( t)
2gv( θ�( t) , θ̇�( t) , 0, 0)

α (θ�( t) )
,

a12( t) = θ̇�( t)
2gy( θ�( t) , θ̇�( t) , θ̈�( t) , 0, 0)

α (θ�( t) )
,

a11( t) = −θ̇�( t)
2β( θ�( t) )

α (θ�( t) )
,

a13( t) = θ̇�( t)
2gẏ( θ�( t) , θ̇�( t) , θ̈�( t) , 0, 0)

α (θ�( t) )
.

(27)

Projection operators for the impact map:

P−
j : =

(
I4 − n( t−j ) mT

−
nT( t−j ) m−

)[
Lc( t−j )
nT( t−j )

]−1 [
I3

01×3

]
,

P+
j := Lc( t+j )

(
I4 − n( t+j ) nT( t+j )

nT( t+j ) n( t+j )

)
(28)

where n( t) = [q̇�( t)T q̈�( t)T ]T, m− is a vector normal to the
linearization of the switching surface, and Lc is the Jacobian
matrix defining the mapping

[
�I , �y, �ẏ

]T

= Lc( t)
[
�q( t) , �q̇( t)

]T

,

where � represents a small deviation.

Appendix D: Compass biped model

The model of the experimental setup is given by (3), where

M( q) =
[

p1 −p1 + cos( q1) p2

−p1 + cos( q1) p2 p3 + 2p1 − 2 cos( q1) p2

]
,

C( q, q̇) =
[

0 −q̇2 sin( q1) p2

− sin( q1) ( q̇1 − q̇2) p2 sin( q1) q̇1p2

]
,

B =
[

kI kτ
0

]
,

G( q) = [sin( −q2 + q1) p4, − sin( −q2 + q1) p4

− sin( q2) p5 − sin( q2) p4]T.

The coefficients are defined by the physical parameters of
the robot:

p1 = l2
c m+( l − Ic) , p2 = mllc , p3 = mH l2 + 2ml( l − lc)

p4 = mglc , p5 = g( mHgl + 2m( l − lc) ) .

The impact model in (3) is derived under the assumption of
having an instantaneous and inelastic collision of the swing
leg with the ground and no occurrence of slip or rebound
(Hurmuzlu and Marghitu, 1994):

�q =
[ −1 0

−1 1

]
, �q̇( q−) = �q

[
H+( q−)

]−1
H−( q−) ,

where

H+
1,1( q−) = p1 + p3, H+

1,2( q−) = H+
2,1( q−)

= p2 cos( q−
1 ) −p1 − p3,

H+
2,2( q−) = −2p2 cos( q−

1 ) +p3 + 2p1,

H−
1,1( q−) = p1 − p2, H−

1,2( q−) = p3 cos( q1) −p1 + p2,

H−
2,1( q−) = −p1 + p2, H−

2,2( q−) = p3 cos( q1) .


