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Velocity structure of self-similar spherically collapsed halos

Phillip Zukin* and Edmund Bertschinger

Department of Physics, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
(Received 11 August 2010; published 19 November 2010)

Using a generalized self-similar secondary infall model, which accounts for tidal torques acting on the

halo, we analyze the velocity profiles of halos in order to gain intuition for N-body simulation results. We

analytically calculate the asymptotic behavior of the internal radial and tangential kinetic energy profiles

in different radial regimes. We then numerically compute the velocity anisotropy and pseudo–phase-space

density profiles and compare them to recent N-body simulations. For cosmological initial conditions, we

find both numerically and analytically that the anisotropy profile asymptotes at small radii to a constant set

by model parameters. It rises on intermediate scales as the velocity dispersion becomes more radially

dominated and then drops off at radii larger than the virial radius where the radial velocity dispersion

vanishes in our model. The pseudo–phase-space density is universal on intermediate and large scales.

However, its asymptotic slope on small scales depends on the halo mass and on how mass shells are

torqued after turnaround. The results largely confirm N-body simulations but show some differences that

are likely due to our assumption of a one-dimensional phase space manifold.

DOI: 10.1103/PhysRevD.82.104045 PACS numbers: 98.80.-k, 95.35.+d, 95.75.Pq

I. INTRODUCTION

Recent N-body simulations have revealed a wealth of
information about the velocity structure of halos [1–3].
However, simulations have finite dynamic range.
Moreover, it is difficult to draw understanding from their
analysis, and computational resources limit the smallest
resolvable radius, since probing smaller scales requires
using more particles and smaller time steps. Hence, it
seems natural to use analytic techniques, which do not
suffer from resolution limits, to analyze the velocity dis-
tributions of halos.

Numerous authors have analytically investigated the
density profiles of halos. Work began with Gunn and
Gott where they analyzed the continuous accretion of
mass shells onto an initial overdensity [4–6]. This process
is known as secondary infall. By imposing that the mass
accretion is self-similar, Fillmore and Goldreich [7] and
Bertschinger [8], assuming purely radial orbits, were able
to analytically calculate the asymptotic slope of the density
profile. Since then there have been numerous extensions,
some which do not assume self-similarity, that take into
account nonradial motions [9–17]. Those works that do not
impose self-similarity can only infer information about the
velocity dispersion using the virial theorem. Hence, they
cannot predict a halo’s velocity anisotropy. Those works
that do impose self-similarity focus only on the asymptotic
slopes of density profiles.

In this paper, we analytically and numerically analyze
the velocity structure of halos using an extended self-
similar secondary infall model [18]. We then compare
the predictions of our halo model to simulation results,

focusing on the velocity anisotropy [19] and pseudo–-
phase-space density profiles [1,2,20].
Density profiles do not uniquely determine a self grav-

itating system. In order to more fully characterize dark
matter halos, one needs to probe their phase space distri-
butions. The velocity anisotropy and pseudo–phase-space
density profiles are thereby useful since they complement
density profiles by revealing additional information about
the phase space structure of the halo.
In Sec. II we summarize our generalized secondary in-

fall model and discuss how to numerically calculate the
radial and tangential velocity dispersions in the halo. In
Sec. III we analytically calculate the asymptotic behavior
of the radial and tangential kinetic energy profiles on small
and intermediate scales. In Sec. IV we compare our nu-
merically calculated anisotropy and pseudo–phase-space
density profiles to recent N-body results and conclude in
Sec. V.

II. SELF-SIMILAR MODEL

Here we first summarize the self-similar halo formation
model developed in [18]. The model is characterized by
four parameters fn; p; B;$g which are described below.
In this model, the Universe is initially composed of a

linear spherically symmetric density perturbation with
mass shells that move approximately with the hubble
flow. Because of the central overdensity, mass shells even-
tually stop their radially outward motion and turn around.
The radius at which a mass shell first turns around, or its
first apocenter, is known as the turnaround radius. Since the
average density is a decreasing function from the central
overdensity, mass shells initially farther away will turn-
around later. The halo grows by continuously accreting
mass shells. Mass shells are labeled by their turnaround
time t� or their turnaround radius r�.*zukin@mit.edu
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Modelparameter n characterizes how quickly the initial
linear density field falls off with the radius (� / r�n). It is
related to the effective primordial power spectral index neff
(d lnP=d lnk) through n ¼ neff þ 3 [21]. Since neff de-
pends on scale, n is set by the halo mass. As in [18], we
restrict our attention to 0< n< 3 so that the initial density
field decreases with the radius while the excess mass
increases with the radius. Note, however, that n > 1:4
corresponds to objects larger than galaxy clusters today.
Model parameter n also sets the growth of the current
turnaround radius: rta / t� where � ¼ 2ð1þ nÞ=3n [18].

Self-similarity imposes that at time t, the angular mo-
mentum per unit mass L of a particle in a shell at r, and the
density � and mass M of the halo have the following
functional forms [18]:

Lðr; tÞ ¼ B
r2taðtÞ
t

fð�; t=t�Þ; (1)

�ðr; tÞ ¼ �BðtÞDð�Þ; (2)

Mðr; tÞ ¼ 4�

3
�BðtÞr3taðtÞMð�Þ; (3)

where � � r=rtaðtÞ is the radius scaled to the current
turnaround radius, �B ¼ 1=6�Gt2 is the background den-
sity for an Einstein de Sitter (flat�m ¼ 1) universe, and B
is a constant. Inspired by tidal-torque theory and numerical
simulations, we take f to be

fð�; t=t�Þ ¼
�
�ð4�pÞ=2 if t < t�
ðt=t�Þ$þ1�2� if t > t�

: (4)

Model parameter p, defined above, sets how quickly
angular momentum builds up before turnaround while B
sets the amplitude of angular momentum at turnaround. In
[18], using cosmological linear perturbation theory, we
constrained p and B so that the angular momentum of
particles before turnaround evolves as tidal-torque theory
predicts [22–25]. Conveniently both p and B are set by the
halo mass. However, after comparing to density profiles
from N-body simulations, we found that our expression for
B derived from linear theory overestimates the actual
value. Hence, for the rest of this paper, the notation B1:5

(B2:3) signifies using a value of B divided by 1.5 (2.3).
Model parameter$, defined above, sets how quickly the

angular momentum of particles grows after turnaround.
This parameter is difficult to constrain analytically since
the halo is nonlinear after turnaround. However, in [18] we
showed that a nonzero $ can be sourced by substructure.
Moreover, $ influences the density profile at small scales
since it controls how the pericenters of shells evolve over
time.

The trajectory of a shell after turnaround contains all of
the velocity information in the halo. The trajectory’s evo-
lution equation, which follows from Newton’s law, is given
by

d2�

d�2
þ ð2�� 1Þ d�

d�
þ �ð�� 1Þ�

¼ � 2

9

Mð�Þ
�2

þ B2

�3
e2ð$þ1�2�Þ�; (5)

where � � lnðt=ttaÞ and tta is the current turnaround time.
The initial conditions for Eq. (5) are �ð� ¼ 0Þ ¼ 1 and
d�=d�ð� ¼ 0Þ ¼ ��. Calculating Mð1Þ requires evolv-
ing both the shell’s trajectory andMð�Þ before turnaround
[18]. Because of self-similarity, the trajectory �ð�Þ can
either be interpreted as labeling the location of a particular
mass shell at different times, or labeling the location of all
mass shells at a particular time. We take advantage of the
second interpretation in order to numerically calculate the
velocity profiles.
Inside the shell that is currently at its second apocenter,

multiple shells exist at all radii. This can be seen from
Fig. 5 of [8], which plots the location of all shells at a
particular time. Therefore the expectation value of a quan-
tity h, for example, the radial velocity, at radius r and time t
is the value of h for each shell at r weighted by each shell’s
mass. We find

hhðr; tÞi ¼
RMta

0
dM�
Mta

hðt; t�Þ�Dð�� �ð�ÞÞRMta

0
dM�
Mta

�Dð�� �ð�ÞÞ ; (6)

where Mta is the current turnaround mass, hðt; t�Þ repre-
sents the value of h for the shell with turnaround time t�,
dM� is the mass of the shell with turnaround time t�, and
�D is the dirac delta function which picks out all shells at r.
In order to numerically calculate h, we must relate

hðt; t�Þ to �ð�Þ, the computed trajectory of the shell which
turns around at tta. Using self-similarity, we find

vtðt; t�Þ ¼ B
rta
t
eð1þ$�2�Þ��

1

�ð��Þ ; (7)

vrðt; t�Þ ¼ rta
t
e����

d

d�
½e���ð�Þ�j�¼�� ; (8)

where �� � t=t� and vt (vr) is the tangential (radial)
velocity. Using Eqs. (6)–(8), and taking advantage of the
delta function, the tangential (�2

t ) and radial (�2
r) velocity

dispersions become

�2
t ðr; tÞ � hv2

t ðr; tÞi ¼ r2ta
t2

P
i e

ð4�7�þ2$Þ�i��2
i jd�=d�j�1

iP
i e

ð2�3�Þ�i jd�=d�j�1
i

;

(9)
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�2
rðr; tÞ � hv2

rðr; tÞi � hvrðr; tÞi2

¼ r2ta
t2

P
i e

ð2�5�Þ�i½dðe���Þ=d��2i jd�=d�j�1
iP

i e
ð2�3�Þ�i jd�=d�j�1

i

� r2ta
t2

�
�P

i e
ð2�4�Þ�i½dðe���Þ=d��ijd�=d�j�1

iP
i e

ð2�3�Þ�i jd�=d�j�1
i

�
2
;

(10)

where �i is the i-th root that satisfies � ¼ �ð�Þ. In the
above, we have imposed hvtðr; tÞi ¼ 0 since our model
assumes that the orbital planes of particles in a given shell
are oriented in random directions. Note that inside the shell
that is currently at its second apocenter, interference be-
tween multiple shells forces hvrðr; tÞi to quickly go to zero.

III. ASYMPTOTIC BEHAVIOR

Here, using techniques developed in [7], we analytically
calculate the logarithmic slope of the tangential and radial
kinetic energy in two different radial regimes. We accom-
plish this by taking advantage of adiabatic invariance and
self consistently calculating the total radial and tangential
kinetic energy profiles of the halo.

We start by parametrizing the halo mass, radial kinetic
energy Kr, tangential kinetic energy Kt and the variation of
the apocenter distance ra;

Mðr; tÞ ¼ �ðtÞr	; (11)

Krðr; tÞ ¼ �rðtÞr	r ; (12)

Ktðr; tÞ ¼ �tðtÞr	t ; (13)

ra
r�

¼
�
t

t�

�
q
: (14)

In the above r� is the turnaround radius of a mass shell that
turns around at t�. As was shown in [18], adiabatic invari-
ance allows us to relate q and 	 to n. At late times, the
orbital period is much smaller than the time scale for the
mass and angular momentum to grow. Integrating
Newton’s equation and assuming �ðtÞ and LðtÞ change little
over an orbit, we find�

dr

dt

�
2 ¼ 2G�ðtÞ

	� 1
ðr	�1

a � r	�1Þ � L2ðtÞðr�2 � r�2
a Þ:

(15)

The above relationship tells us how the pericenters rp
evolve with time. Defining y � ra=rp and evaluating the

above at r ¼ rp, we find

1� y	�1

y�2 � 1
� AðyÞ ¼ ð	� 1ÞL2ðtÞ

2G�ðtÞr	þ1
a ðtÞ : (16)

In [18], by analyzing the radial action, we found that
when y � 1, �ðtÞr	þ1

a ðtÞ ¼ const. Therefore, for $< 0,

Eq. (16) implies that y will decrease over time. However,
for$> 0, �ðtÞr	þ1

a ðtÞ ¼ const and Eq. (16) implies that y
will increase over time and will at one point violate y � 1.
Since we only consider bound orbits, the constraint y � 1
holds. At late times, as the angular momentum continues to
increase for $> 0, y� 1, orbits become approximately
circular, the radial action vanishes, and L2ðtÞ �
�ðtÞr	þ1

a ðtÞ. Hence halos with $< 0 will have orbits that
become more radial over time (y � 1) while halos with
$> 0will have orbits that becomemore circular over time
(y� 1). The above insight leads to the following con-
straint:

q ¼
(

1
	þ1 f2$þ 2

3n ½	ð1þ nÞ � 3�g if $ 	 0
2

3nð	þ1Þ ½	ð1þ nÞ � 3� if $< 0
: (17)

For the specific case, $< 0, taking advantage of y � 1,
the adiabatic invariance arguments above, and Eqs. (1) and
(4), we can rewrite Eq. (16) in the form yðt; t�Þ ¼ y0ðt=t�Þl,
where

l ¼
�
$ if 	> 1
2$=ð	þ 1Þ if 	< 1

; (18)

and y0r� is the pericenter of a mass shell at turnaround. The
special case 	 ¼ 1 will be addressed later.
We next calculate the kinetic energy profiles. After a few

orbits, shells oscillate at a much higher frequency than the
growth rate of the halo. When calculating the internal mass
profile, this allows us to weight each mass shell based on
how much time it spends interior to a certain scale [7].
Likewise, when calculating the total internal kinetic energy
profile, we can weight each mass shell by both a time-
averaged v2

t (or v
2
r) and a factor that accounts for how often

the shell lies interior to a certain scale. For a derivation,
please see the Appendix.
Using Eqs. (15) and (16), the kinetic energy weighting

Piðr=ra; yÞ at time t for a mass shell with apocenter dis-
tance ra, pericenter yra, below r, is

Piðu; yÞ ¼ 0 ðu < yÞ;

Piðu; yÞ ¼ Iiðu; yÞ
Ið1; yÞ ðy < u � 1Þ;

Piðu; yÞ ¼ Iið1; yÞ
Ið1; yÞ ðu > 1Þ;

(19)

where

Itðu; yÞ ¼ 1

2

�
Br2�
t�ra

�
2
�
t

t�

�
2$ Z u

y

dv

v2fðv; yÞ ; (20)

Irðu; yÞ / r2ta
t2

�
ra
rta

�
	�1 Z u

y
fðv; yÞdv; (21)

Iðu; yÞ ¼
Z u

y

dv

fðv; yÞ ; (22)
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and

fðv; yÞ �
� ðð1� v	�1Þ � AðyÞðv�2 � 1ÞÞ1=2 if 	> 1
ððv	�1 � 1Þ þ AðyÞðv�2 � 1ÞÞ1=2 if 	< 1

:

(23)

The index i ¼ fr; tg is used for shorthand to represent
either the radial or tangential direction and the dependence
of ra and rp on t� is implicit. Equation (21) is not an

equality since G�ðtÞ / r3�	
ta =t2. Moreover, the proportion-

ality constant varies for different radial regimes in the halo.
Similar to the treatment in [18], self consistency de-

mands that�
r

rta

�
	i ¼ Kiðr; tÞ

Kiðrta; tÞ /
Z Mta

0

dM�
Mta

t2

r2ta
Pi

�
r

raðt; t�Þ ; yðt; t�Þ
�
;

(24)

where dM� is the mass of a shell that turned around at t�
andMta is the current turnaround mass. The above is not an
equality, even for the tangential kinetic energy, because of
a proportionality constant, similar to Mð1Þ, that is not
included. See the Appendix for details. Its numerically
computed value does not affect the asymptotic slopes 	i.
Noting from Eq. (3) that

dM�
d lnt�

¼ ð3�� 2ÞMta

�
t

t�

�
3��2

; (25)

using Eq. (14) and transforming integration variables to
u � r=ra, we find�

r

rta

�
	i�k / t2

r2ta

Z 1

r=rta

du

u1þk
Piðu; yðt; t�ÞÞ; (26)

where k ¼ ð3�� 2Þ=ð�� qÞ. As u increases, the above
integral sums over shells with smaller t�. Since the peri-
center of a shell evolves with time, the second argument of
Pi depends on u. The dependence varies with torque model
(sign of $); hence we have kept the dependence on u
implicit. Next we analyze the above for certain regimes
of r=rta, and certain torquing models, in order to constrain
the relationship between 	i and k.

A. r=rta � y0, $< 0

For $< 0, particles lose angular momentum over time.
When probing scales r=rta � y0, mass shells with t� � tta
only contribute. As a result, yðt; t�Þ � 1. Using Eq. (18),
we then find

yðt; t�Þ ¼ y0

�
t

t�

�
l ¼ y0

�
r

urta

�
�
; (27)

where � � l=ðq� �Þ and u � r=ra. For bound mass
shells, q� �< 0. Therefore, since � > 0, the first argu-
ment of Pi in Eq. (26) increases while the second decreases
as we sum over shells that have turned around at earlier and
earlier times (u ! 1). For r=rta � y0, mass shells which
most recently turned around do not contribute to the kinetic

energy inside r=rta since we are probing scales below their
pericenters. Mass shells only begin to contribute when the
two arguments of Pi are roughly equal to each other. This
occurs around

u ¼ y1 � ðy0ðr=rtaÞ�Þ1=ð1þ�Þ: (28)

Hence, we can replace the lower limit of integration in
Eq. (26) with y1. We next want to calculate the behavior of
Eq. (26) close to y1 in order to determine whether the
integrand is dominated by mass shells around y1 or mass
shells that have turned around at much earlier times. The
first step is to calculate the behavior of Piðu; yÞ for u 
 y.
We find

Ptðu; yÞ / r2ta
t2

�
r

urta

�
lt
u1=2ð1� y=uÞ1=2

�
�
y�3=2 if 	> 1
y�1�	=2 if 	< 1

; (29)

Prðu; yÞ / r2ta
t2

�
r

urta

�
lr
u3=2ð1� y=uÞ3=2

�
�
y�1=2 if 	> 1
y�1þ	=2 if 	< 1

; (30)

where lt ¼ 2ð1þ$� q� �Þ=ðq� �Þ and lr ¼ 	� 1.
Given the above, we evaluate the indefinite integral in
Eq. (26), noting that y is a function of u [Eq. (27)]. For u�
y1, we find

t2

r2ta

Z du

u1þk
Pt

�
u; y0

�
r

urta

�
�
�

/ ðu=y1 � 1Þ3=2
�
r

rta

�
lt �

(
y�1�k�lt
1 if 	> 1

y�1=2�k�lt�	=2
1 if 	< 1

;

(31)

t2

r2ta

Z du

u1þk
Pr

�
u; y0

�
r

urta

�
�
�

/ ðu=y1 � 1Þ5=2
�
r

rta

�
lr �

(
y1�k�lr
1 if 	> 1

y1=2�k�lrþ	=2
1 if 	< 1

:

(32)

Following the logic in [18], if we keep u=y1 fixed and
the integrand blows up as y1 ! 0, then the left-hand side of
Eq. (26) must diverge in the same way as the right-hand
side shown in Eqs. (31) and (32). Therefore, using Eq. (28)

	t � k� lt ¼
���ð1þ kþ ltÞ=ð1þ�Þ if 	> 1

��ð1=2þ kþ lt þ	=2Þð1þ�Þ if 	< 1
;

(33)

	r � k� lr ¼
�
�ð1� k� lrÞ=ð1þ�Þ if 	> 1

�ð1=2� k� lr þ	=2Þð1þ�Þ if 	< 1
:

(34)
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Otherwise, if the integrand converges, then the right-hand
side is proportional to ðr=rtaÞli . Therefore, the left hand
side must also have the same scaling, which implies 	i ¼
kþ li. Solving the above system of equations for 	i sim-
plifies dramatically since we have already solved for
f	; k; qg in [18]. Rewritten below for convenience, we
found

For n � 2:

	 ¼ 1þ n� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ nÞ2 þ 9n$ðn$� 2Þp
3n$

;

k ¼ 1þ nþ 3n$� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ nÞ2 þ 9n$ðn$� 2Þp
n$ð4þ nÞ ;

q ¼ 1þ n� 3n$� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ nÞ2 þ 9n$ðn$� 2Þp
3n

;

For n 	 2:

	 ¼ k ¼ 3

1þ n
; q ¼ 0: (35)

Using Eq. (35) to solve for 	i and making sure the
solution is consistent, (i.e., using Eqs. (33) and (34) only
if the integrand diverges as y1 ! 0), we find

For n � 2:

	t ¼ 	r ¼ 12� 9n$� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ nÞ2 þ 9n$ðn$� 2Þp

1þ nþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ nÞ2 þ 9n$ðn$� 2Þp
For n 	 2:

	t ¼ ð4þ nÞð3n$þ 2n� 10Þ
2ð1þ nÞð3n$� n� 4Þ ; 	r ¼ 5� n

1þ n
:

(36)

The above solutions are continuous at n ¼ 2. Taking the
no-torque limit ($ ! 0), we find	t ¼ 	r ¼ ð5� nÞ=ð1þ
nÞ for all n. Assuming virial equilibrium, one would pre-
dict 	i ¼ 2	� 1 ¼ ð5� nÞ=ð1þ nÞ. Hence, in the no-
torque limit, both the radial and tangential kinetic energy
are virialized. However, when $< 0, only the radial ki-
netic energy for n 	 2 is virialized. All other profiles are
out of virial equilibrium because they are dominated by
shells which recently turned around and hence have not
had time to virialize. Since all collapsed objects today have
n < 2, this model predicts unvirialized halos when parti-
cles lose angular momentum after turnaround.

B. r=rta � y0, $> 0

For$> 0, the angular momentum of particles increases
with time. As mentioned above, when probing scales
r=rta � y0, mass shells with t� � tta only contribute. As
a result, yðt; t�Þ � 1. In other words, the orbits are roughly
circular. We can therefore replace the lower limit of inte-
gration in Eq. (26) with 1 since mass shells will only start
contributing to the sum when u� y� 1. Hence, the right

hand side of Eq. (26) is proportional to ðr=rtaÞli , which
implies 	i ¼ kþ li. Using the results from [18], repro-
duced below for convenience,

	 ¼ k ¼ 3

1þ n� 3n$
; q ¼ 2$; for 0 � n � 3;

(37)

we find

	t ¼ 	r ¼ 5� nþ 3n$

1þ n� 3n$
; for 0 � n � 3: (38)

The no-torque case,$ ¼ 0, is consistent with the analy-
sis in the prior subsection. The singularity $ ¼
ð1þ nÞ=3n, as discussed in [18], corresponds to orbits
that are not bound. Hence we only consider $< ð1þ
nÞ=3n. Equation (38) shows that the halo, for $ 	 0, is
in virial equilibrium (	i ¼ 2	� 1). This is expected since
the velocity profiles are dominated by mass shells that have
turned around at t � tta.

C. y0 � r=rta � 1

In this regime, we are probing scales larger than the
pericenters of the most recently turned around mass shells.
As a result, Piðu; yÞ is dominated by the contribution from
the integrand when u � y. Therefore,

Ptðu; yÞ / r2ta
t2

�
r

urta

�
lt �

�
y�1 if 	> 1
y�ð	þ1Þ=2 if 	< 1

; (39)

Prðu; yÞ / r2ta
t2

�
r

urta

�
lr �

�
u if 	> 1
uð	þ1Þ=2 if 	< 1

: (40)

Plugging in the above into Eq. (26), using the results of
[18] shown below for convenience,

	 ¼ 1; k ¼ 6

4þ n
; q ¼ n� 2

3n
; for n � 2;

	 ¼ k ¼ 3

1þ n
; q ¼ 0; for n 	 2; (41)

and utilizing the same divergence and convergence argu-
ments above, we find

For n � 2:

	t ¼ 0; 	r ¼ 1;

For n 	 2:

	t ¼
� 0 if $< 5�n

3n

5�n�3n$
1þn if 5�n

3n � $< 1þn
3n

;

	r ¼ 5� n

1þ n
: (42)

The above solutions are continuous at n ¼ 2. The upper
limit ð1þ nÞ=3n on$ enforces that orbits are bound ($<
�=2). For n � 2, $> ð5� nÞ=3n results in unbound or-
bits and hence is not considered. The radial kinetic energy
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follows the same profile expected from virial equilibrium
(	r ¼ 2	� 1), even though recently turned around mass
shells dominate the kinetic energy for n < 2. We believe
this is a result of angular momentum not playing a dynami-
cal role at these scales. Using this logic, and as Eq. (42)
reveals, this is consistent with the the tangential kinetic
energy not being virialized (	t � 2	� 1). Taking the
limit of Eq. (36) as $ ! �1, we recover the same ex-
pressions as Eq. (42) for 	r. This is expected since in this
limit, particles lose their angular momentum instantly,
resulting in purely radial orbits. We do not expect to
recover the same expressions for 	t since the tangential
kinetic energy vanishes in this limit.

Equations (35), (37), and (41) determine how quickly
the mass inside a fixed radius grows as a function of time
[�ðtÞ defined in Eq. (11)]. When q ¼ 0, apocenters of mass
shells settle down to a constant fraction of their turnaround
radii, leading to a constant mass inside a fixed radius. For
cosmologically relevant structures (n < 1:4) this occurs on
small scales for $ ¼ 0. When q < 0, inward migration
leads to an increasing mass inside a fixed radius. When q >
0, outward migration leads to a decreasing mass inside a
fixed radius.

This section assumed 	 � 1 and yet, for certain parts of
parameter space, Eqs. (35), (37), and (41) give 	 ¼ 1.
However, since the solutions are continuous as 	 ! 1
from the left and right, then the results hold for 	 ¼ 1 as
well.

IV. COMPARISON WITH N-BODY SIMULATIONS

In this section, using the analytic results derived above
to gain intuition, we first analyze how $ influences the
anisotropy and pseudo–phase-space density profiles and
then compare our numerically computed profiles to recent
N-body simulations of galactic size halos [1].

As described in [18], the mass of a halo is not well
defined when our model is applied to cosmological struc-
ture formation since it is unclear how the spherical top hat
mass which characterizes the halo when it is linear relates
to the virial mass which characterizes the halo when it is
nonlinear. For halos today with galactic size virial masses,
we assume the model parameter n which characterizes the
initial density field is set by a spherical top hat mass of
1012M�. Specifying the top hat mass also sets model
parameters B and p. For explicit expressions used to
calculate model parameters n, p, and B, please see [18].

When analyzing the influence of $, we use model
parameters n ¼ 0:77, p ¼ 2n, and B1:5 ¼ 0:39. When
comparing to N-body simulations, we use model parame-
ters n ¼ 0:77, p ¼ 2n, $ ¼ 0:12, and B1:5ðB2:3Þ ¼
0:39ð0:26Þ. This value of $ ensures � / r�1 on small
scales and, as shown in [18], this range in B gives good
agreement with the Einasto and NFW profiles [26].

For the N-body comparisons, we average �, �2
t , and �2

r

in 50 spherical shells equally spaced in log10r over the

range 1:5� 10�4 < r=rv < 3, where rv satisfies
Mðrv; tÞ ¼ 800�r3v�BðtÞ=3. This is the same procedure
followed with the recent Aquarius simulation [1]. We
also calculate r�2, the radius where r2� reaches a maxi-
mum. This radius, as well as the virial radius rv, are
commonly referred to in simulation papers. As discussed
in [18], the density profile is isothermal for our halo over a
range of r. Moreover, the maximum peaks associated with
the caustics are unphysical. So, we choose a value of r�2 in
the isothermal regime that gives good agreement with
empirical density profiles. Changing r�2 does not change
our interpretation of the results. We find r�2=rta ¼
0:07ð0:05Þ for B1:5 (B2:3). For reference, we find the di-
mensionless radius of the first pericenter passage (y0) to be
0.042 (0.026) for B1:5 (B2:3).
As mentioned previously, N-body simulations have fi-

nite dynamic range. The innermost radius where the simu-
lation results can be trusted is set by the total number of
particles [27]. The recent Aquarius simulations character-
ize their innermost radius based on the convergence of the
circular velocity, at a particular radius, for the same halo

simulated at different resolutions [1]. The notation rð1Þconv

ðrð7ÞconvÞ corresponds to the smallest radius such that the
circular velocity has converged to 10% (2.5%) or better
at larger radii. When these radii are showed in the figures,
we use the values quoted in Table 2 of [1] for halo Aq-A-2

[rð1Þconv=r�2 ¼ 0:022 and rð7Þconv=r�2 ¼ 0:052] since all six
halos were simulated at this resolution.

A. Anisotropy profile

Here we analyze the velocity anisotropy �v �
1� �2

t =2�
2
r for galactic size halos, where the tangential

and radial velocity dispersions are defined in Eqs. (9) and
(10), respectively. Based on the analysis in Sec. III, we
expect �v to asymptote to a constant for r=rta � y0 since
�2

t / �2
r and �v to increase for y0 � r=rta � rv=rta since

�2
t =�

2
r / r�1. Moreover, for radii larger than the first shell

crossing (r� rv), �
2
r ¼ 0 since only one shell contributes

to the dispersion. Hence, in this radial range, �v ¼ �1.
In the top panel of Fig. 1 we plot the velocity anisotropy

for galactic size halos with varying$. In the bottom panel,
we plot the smoothed velocity anisotropy for model pa-
rameters that give good agreement with density profiles
from simulated galactic size halos. The downward spikes
in both panels are caustics which exist because of unphys-
ical radially cold initial conditions. In both panels, as
analytically predicted, the velocity anisotropy asymptotes
at small radii, increases at intermediate radii, and then
drops off near the virial radius.
The top panel shows that $ affects the radius of first

pericenter passage (y0), the amplitude of �v close to the
virial radius, as well as the asymptotic value of �v at small
radii. This behavior is intuitive since smaller values of $
give rise to halos populated with less circularized orbits at a
given radius. Note, however, that the envelope of the
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anisotropy profile begins to increase and become more
radially dominated for r=rta < y0, contradicting our ana-
lytic analysis. More specifically, for $ ¼ �0:1, �v � 0:2
for r=rta < 0:001, and starts to increase at r=rta � 0:001
when it should start increasing at r=rta � y0, according to
Sec. III. This is a result of assumptions used to calculate 	r

breaking down. This is more apparent for $> 0 since the
orbital period is longer. However, as r ! 0, the assump-
tions become more valid.

In the bottom panel, we show how model parameter B
affects the velocity anisotropy. As discussed in [18],
smaller B leads to orbits that take longer to circularize
and density profiles with a larger isothermal region

(smaller y0). The bottom panel should be compared to
Figs 9 and 10 of [1]. Though our model cannot address
structure outside rv, the graphs are qualitatively very simi-
lar. The width of the peak predicted in our model agrees
with results from N-body simulations. This should be
expected since the parameter B was chosen so that the
width of the isothermal region in the density profiles agree.
However, our model over predicts the velocity anisotropy
close to rv and under predicts the velocity anisotropy at
small radii. In other words, at large scales the halo is
populated with too many radial orbits while on small scales
the halo is populated with too many circular orbits.
This trend is most clearly seen in Fig. 2. There we plot

the local velocity anisotropy versus the logarithmic slope
of the density profile for a galactic size halo with B2:3 ¼
0:26 as well as a universal relationship relating these two
quantities that was derived by Hansen and Moore [28]. The
open circles correspond to 1:5� 10�4rv < r < r�2 while
the filled circles correspond to r�2 < r < rv. This figure
should be compared to Fig. 11 of [1]. In the Aquarius
simulation paper, the Hansen and Moore prediction agrees
well with N-body results for r < r�2. However, in our
Fig. 2, while there is a clear trend between the local
velocity anisotropy and the logarithmic slope of the density
profile, that trend does not match the derived relationship.
Note though that our model, just as the Aquarius simula-
tion claimed, does show deviations from the Hansen and
Moore trend for r�2 < r < rv. In our model, this deviation
is caused by a vanishing radial velocity dispersion. For
simulated halos, other effects like nonsphericity or non–-
self-similarity may also play a role.FIG. 1 (color online). The top panel shows the velocity anisot-

ropy profile for a self-similar halo with model parameters n ¼
0:77, p ¼ 2n, B1:5 ¼ 0:39, and varying $. Smaller $ leads to
halos with more radial orbits at a particular radius. The bottom
panel shows the smoothed velocity anisotropy profile for a self-
similar halo with model parameters n ¼ 0:77, p ¼ 2n, $ ¼
0:12, and B1:5ðB2:3Þ ¼ 0:39ð0:26Þ. Smaller B leads to a larger
peak width and more radial orbits. The profile is qualitatively
similar to results from N-body simulations. The dimensionless
radius of the first pericenter passage (y0) and the virial radius
(rv) are labeled for clarity. The convergence radii for the
Aquarius halo Aq-A-2 [1] are labeled for reference.

-3 -2.5 -2 -1.5 -1 -0.5

dlnρ ⁄ dlnr

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Hansen & Moore (2006)

β v

FIG. 2. The local logarithmic slope of the density profile
d ln�=d lnr plotted against the velocity anisotropy �v. The
relationship relating these two quantities that was proposed by
Hansen and Moore [28] is also showed. Open circles correspond
to 1:5� 10�4rv < r < r�2 while closed circles correspond to
r�2 < r < r200. Unlike N-body simulations, our self-similar
model does not fit the trend proposed by Hansen and Moore
for r < r�2. This reveals a shortcoming of the model.
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The self-similar model’s inability to match the ampli-
tude of the velocity anisotropy seen in N-body simulations
reveals a weakness in the model. Clearly, it is unphysical
for all particles in a particular shell to have the same
amplitude of angular momentum and the same radial ve-
locity. In reality, a given shell should have a radial velocity
dispersion and should have a distribution of angular mo-
mentum that evolves with time. This possibility will be
discussed again in Sec. V.

B. Pseudo-Phase-Space density profile

Here we analyze the pseudo–phase-space density pro-
files �=�3 and �=�3

r for galactic size halos, where �2 �
�2

r þ �2
t . Taylor and Navarro claimed that the pseudo–-

phase-space density roughly follows the power law r�1:875

for all halos [20]. Surprisingly, this power law matches
predictions made by Bertschinger for purely radial self-
similar collapse onto a spherical top hat perturbation [8].

Taylor and Navarro’s claim has been verified numerically
[1,29–33], however recently the highest resolution simula-
tions have seen evidence for departures from this power
law near their innermost resolved radii [2].
Based on the analysis in Sec. III, we expect the power

law exponent to depend on fn;$g for r=rta � y0. With
model parameters fn;$g which give � / r�1 for galactic
size halos, the extended secondary infall model predicts

�=�3 / �=�3
r / r�5=2. This is expected for a virialized

halo ($> 0) with � / r�1. For y0 � r=rta � r=rv, the
model predicts �=�3 / r�2 if the radial velocity dispersion

dominates and �=�3 / r�1=2 if the tangential velocity
dispersion dominates.
In the left panels of Fig. 3, we plot �=�3 and �=�3

r for
galactic size halos with varying $. In the right panels, we
plot the smoothed pseudo–phase-space densities, with the
radius scaled by r�2, for model parameters that give good
agreement with density profiles from simulated galactic

FIG. 3 (color online). The left panels show �=�3 and �=�3
r , with r scaled to rta, for a self-similar halo with model parameters

n ¼ 0:77, p ¼ 2n, B1:5 ¼ 0:39, and varying $. The numerically calculated slopes match analytic predictions. The first pericenter
passage (y0) for $ ¼ 0 and the virial radius (rv) are labeled for clarity. The right panels shows the smoothed pseudo–phase-space
density profiles, with the radius scaled to r�2, for model parameters that give good agreement to density profiles from galactic size
simulated halos. We also plot the radial top hat prediction. The self-similar model predicts that simulations should see deviations from
the radial top hat power law at r=r�2 � 3� 10�2 for �=�3 and deviations at r=r�2 � 10�1 for �=�3

r . The convergence radii for the
Aquarius halo Aq-A-2 [1] are labeled for reference.

PHILLIP ZUKIN AND EDMUND BERTSCHINGER PHYSICAL REVIEW D 82, 104045 (2010)

104045-8



size halos. In addition, we overlay the radial top hat
solution. Scaling the radius to r�2 causes the first peri-
center (y0) of both models to roughly overlap, leading to
less difference in the amplitude of the pseudo–phase-space
density at small radii.

The left panels show that the asymptotic slopes vary
with $. The numerically computed slopes match analytic
predictions. The panels for �=�3

r blow up at radii close to
the virial radius since �r vanishes. The right panels should
be compared to Fig. 13 of [1]. The extended secondary
infall model predicts that simulations of galactic size halos
should see significant deviations from Taylor and
Navarro’s claim at r=r�2 � 3� 10�2 when analyzing
�=�3 and r=r�2 � 10�1 when analyzing �=�3

r . Looking
at the residuals in Fig. 13 of [1], this prediction seems
plausible. If higher resolution simulations do not show
deviations from Taylor and Navarro’s claim, then this
secondary infall model would be proven incorrect since
the model cannot consistently reproduce both the density
and velocity profiles of simulated halos.

As shown in Sec. III, for cosmological initial conditions
(n < 2), �, �2

t , and �2
r have power laws that are indepen-

dent of initial conditions and torqueing parameters in the
regime y0 � r=rta � rv=rta. This implies that the
pseudo–phase-space density is universal on these scales.
This universality on intermediate scales may have played a
role in Taylor and Navarro’s initial claim.

Figure 4 shows the difference of the pseudo–phase-
space density power law exponent from the radial top hat
solution, on small scales, as a function of model parameters
n and $. The range in n corresponds to 109 <M=M� <

1015. The range in $ ensures that all orbits are bound.
According to the extended secondary infall model, positive
$ is necessary for n > 0:5 in order to have � / r�1 on
small scales [18]. If all halos have � / r�1 on small scales,

then halos withM> 109M� will have �=�3 / r�5=2 while
halos with M< 109M� will have pseudo–phase-space
density exponents that vary with halo mass. If on the other
hand, $ is constant for all halos, then as Fig. 4 shows, the
power law will vary with mass.

V. DISCUSSION

N-body simulations have revealed a wealth of informa-
tion about the velocity profiles of dark matter halos. In an
attempt to gain intuition for their results, we have used a
generalized self-similar secondary infall model which
takes into accounts tidal torques. The model assumes that
halos self-similarly accrete radially cold mass shells.
Moreover, each shell is composed of particles with the
same amplitude of angular momentum. While the model
is simplistic, it does not suffer from resolution limits and is
much less computationally expensive than a full N-body
simulation. Moreover, it is analytically tractable. Using
this model we were able to analytically calculate the radial
and tangential kinetic energy profiles for r=rta � y0 and
y0 � r=rta � r=rv, where y0 is the dimensionless radius
of first pericenter passage, rv is the virial radius, and rta is
the current turnaround radius.
It is clear from our analysis that angular momentum

plays a fundamental role in determining the velocity struc-
ture of the halo. The amplitude of angular momentum at
turnaround sets the transition scale (y0) between different
power law behaviors in the tangential and radial kinetic
energy profiles. Also, for collapsed objects today (n < 2),
$, the parameter that quantifies how particles are torqued
after turnaround, influences the slopes of both the radial
and kinetic velocity dispersions at small radii. Moreover,
both the amplitude of angular momentum at turnaround
and $ affect the asymptotic value of the velocity anisot-
ropy profile at small radii.
For $< 0, the self-similar halo is not virialized on

small scales since the radial and tangential kinetic energy
is dominated by mass shells which have not had time to
virialize. On the other hand, for $ 	 0, the halo is virial-
ized since the dominant mass shell has had time to viri-
alize. As shown in [18], � / r�1 requires $> 0 for
M=M� > 109. Hence, positive $ is favored in order to
reproduce N-body simulation density profiles. Quantifying
$ requires analyzing N-body simulations and is beyond
the scope of this work. However constraining $ with
simulations will provide a test for this extended secondary
infall model.
Our model predicts that the pseudo–phase-space density

profile is universal on intermediate and large scales. This
could potentially play a role behind the claimed universal-
ity of the pseudo–phase-space density [20]. Since we do

FIG. 4 (color online). A contour plot of d lnð�=�3Þ=d lnrþ
1:875 as a function of model parameters n and $, which shows
the deviation in the pseudo–phase-space density power law
exponent, at small scales, from the radial top hat solution.
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not understand how $ depends on halo mass, it is impos-
sible to rule out universality on small scales, since $ can
potentially conspire to erase initial conditions. However, if
galactic size halos have � / r�1, then regardless of uni-

versality, the model predicts �=�3 / r�5=2. While hints of
deviations from the radial top hat solution have been seen
in recent simulations [2], higher resolution simulations are
needed to better test the model.

While our self-similar model has its clear advantages, it
is also unphysical. First, all particles in a given mass shell
have the same radial velocity. This leads to caustics. The
same tidal-torque mechanisms which cause a tangential
velocity dispersion [22] should give rise to a radial velocity
dispersion. Second, while qualitatively similar, the com-
parison of the model’s predicted velocity anisotropy to N-
body simulation results reveals that our treatment of angu-
lar momentum is too simplistic. The model predicts too
many radial orbits at large radii and too many circular
orbits at small radii. In reality, each shell is composed of
a distribution of angular momentum that evolves with time.
In order to properly take these two effects into account, one
would need a statistical phase space description of the halo
that includes sources of torque. Ma and Bertschinger pro-
vided such an analysis in the quasilinear regime [34].
Therefore, a natural extension of this secondary infall
model, which could potentially reproduce both position
and velocity space information of N-body simulations,
would be to generalize Ma and Bertschinger’s analysis to
the nonlinear regime and impose self-similarity.
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APPENDIX: DERIVING THE CONSISTENCY
RELATIONSHIP

In this Appendix, we derive Eq. (24). Self-similarity
imposes that the total radial (or tangential) kinetic energy

at time t contained within radius r is given by

Kiðr; tÞ ¼ MtaðtÞ r
2
ta

t2
Kið�Þ; (A1)

where i ¼ fr; tg is used for shorthand to denote the radial or
tangential direction. The kinetic energy also obeys the
following relationship:

Kiðr; tÞ ¼ 1

2

Z Mta

0
dM�v2

i ðt; t�ÞH½r� Rðt; t�Þ�; (A2)

where dM�, viðt; t�Þ, Rðt; t�Þ is the mass, velocity, and
radius of a shell at time t which turned around at t� and
H is the heaviside function. Since, after a short time, shells
begin to oscillate on a timescale much shorter than the
growth of the halo, we can replace v2

i with a time-averaged
version hv2

i i and the heaviside function with a weighting
that takes into account how often the shell is below r. More
specifically, considering a shell with turnaround time t�
such that rpðt; t�Þ< r < raðt; t�Þ, we have:

hv2
i ðt; t�Þi !

�Z r

rp

v2
i dt

���Z r

rp

dt

�
; (A3)

H½r� Rðt; t�Þ� !
�Z r

rp

dt

���Z ra

rp

dt

�
; (A4)

where we have left the dependence on t� implicit.
Equation (A3) only averages over scales below r since
that is where the shell contributes to the kinetic energy.
Equation (A4) is identical to what is done in Fillmore and
Goldreich, in order to analytically calculate the mass pro-
file at small scales [7].
Using Eqs. (A3) and (A4), generalizing to the case

where r < rp and r > ra, plugging into Eq. (A2), dividing

by Kiðrta; tÞ and assuming a power law for the kinetic
energy profiles in the form of Eqs. (12) and (13), we
reproduce the consistency equation. The equation has a
proportionality constant not only because of Eq. (21) but
also because we do not include Kið1Þ. This overall con-
stant does not affect the asymptotic slopes.
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