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Abstract

Exploring the forces that drive evolution at the gene network level and investigating
underlying principles behind this process are fundamental questions in the context
of understanding how evolution shapes transcriptional circuits. In this thesis I
present two different explorations along these lines with special emphasis on the
contribution of gene dosage variations to the alteration of phenotypes.

On one hand I describe the design of an experimental system for observing
evolution in vivo in the yeast Saccharomyces cerevisiae, the construction of a
simple two-component genetic system and how I used the setup to explore its
adaptative capabilities. An external inducer allowed me to tune the basal state
of the system and by doing this I was able to tune the relative contribution of
gene duplications and point mutations to the evolution of the system against an
imposed fitness defect. This illustrates how the number of evolutionary solutions
available against an imposed fitness constraint depends on the operating point of
the underlying circuit.

Increasing in complexity I then describe an analysis of the effect of gene dosage
variations in the context of the galactose uptake network in the same organism.
This network is composed of four regulatory elements and it contains several feed-
back loops built into it, which makes its analysis nontrivial. The effect of dosage
variations was explored experimentally by systematically deleting one of two copies
of each regulatory gene in a diploid background. Surprisingly the system turned
out to be invariant to proportional changes in all its regulatory elements, a prop-
erty that we call network-dosage invariance. I developed a modeling framework for
rationalizing these observations and found that the presence of both an activator
and inhibitor interacting with a 1-to-1 stochiometry as well as certain topological
constraints are requirements for such a behavior. This provides insight into what
kind of regulatory circuits are robust to global effects like genomic duplications
events, ploidy changes or global variations in the concentration of transcription
factors.

This work could be extended to the study of more complicated circuits, allowing
the systematic exploration of evolutionary properties of small scale genetic systems.

Thesis Supervisor: Alexander van Oudenaarden
Title: Professor of Physics and Biology
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Foreword

Since the last years of my undergraduate education I’ve been involved in
research in the areas of Biophysics and Systems Biology, contributing the
intuition and quantitative and analytical skills that I acquired during my
education in Physics and Mathematics to the study of biological problems.

In Alexander van Oudenaarden’s lab at MIT I continued to developed
these interests, gaining knowledge of experimental techniques and making
contributions to different projects mainly on the quantitative and modeling
side.

Shortly after joining the lab I started working on applying ideas from con-
trol theory to the analysis of the behavior of the galactose uptake network
in the yeast Saccharomyces cerevisiae. I explored formulations of stochas-
tic chemical kinetics in spatially distributed systems. I contributed models
for describing the kinetics of reprogramming of mammalian somatic cells
into states of induced pluripotency [1]. I analyzed the coupling between
the circadian and cell cycle oscillators in the cyanobacterium Synechococcus
elongatus [2]. And I also contributed models to the description of the tran-
scriptional transition of Th0 cells into other fates.

Since a few years ago, I became interested in the dynamics of the evolution
of genetic networks and I developed tools for exploring this process in vivo in
the yeast Saccharomyces cerevisiae. The main questions I got interested in
exploring have to do with how different properties of the evolution of a given
network are related to its topological properties. In this thesis I discuss some
aspects of this with special emphasis on the contribution of gene duplications
as potential evolutionary mechanisms.
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Chapter 1

Introduction

Exploring the forces that drive evolution at the gene network level and in-
vestigating underlying principles behind this process are fundamental ques-
tions in the context of understanding how evolution shapes transcriptional
circuits [3, 4]. Do larger networks evolve functionalities faster than smaller
networks? Or are they more robust to evolutionary forces? Does the topology
of the network make some components more sensitive to mutational changes
than others? Are circuits in which the components interact in a cascade-like
fashion more likely to evolve than circuits in which each component interacts
with all the others? Are there circuits in which gene duplications would be
favored over point mutations as feasible solutions for overcoming some fitness
defect?

These and related questions have been traditionally attacked from the
point of view of comparative proteomics [5] and genomics [6,7] and over the
last decades, with the deployment of high-throughput techniques [8], progress
in this front has accelerated. However, these techniques rely on the obser-
vation of signatures that evolution, as occurred in the past, imprinted in
present-day samples. Approaches in which evolution is observed in a labora-
tory as it happens [9–12] allow one to complement the methods mentioned
above and shed more light on the dynamics of evolutionary processes and
the underlying driving forces behind them.

The study of adaptation of genetic networks in vivo provides us with
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1. Introduction

further insights into the dynamics and driving forces behind evolutionary
processes and complements more traditional studies based on comparative
genomics and in silico evolution, allowing us to test relevant hypotheses by
observing the process as it happens. Microorganisms make ideal model sys-
tems for studying this process given their fast cell division timescales and
the use of tools from synthetic biology and bioengineering allow one to iso-
late evolutionary pressure to small-scale gene networks. The application of
controlled culturing techniques makes it possible to maintain the imposed
pressure selectively over long periods of time and by combining these tech-
niques it becomes feasible to observe, study and quantify the evolution of
genetic networks in a controlled manner. The lessons that we will learn by
applying this approach and observing evolution taking place before our eyes
will deepen our understanding not only of the evolution of genetic networks
but also of behavior in analogous systems in which features of networks of
interacting agents get selectively enhanced over time.

There are a multitude of ways in which a given organism or genetic circuit
could evolve: point mutations [13–16], gene duplications [11,16–20], changes
in ploidy [21,22], chromosomal crossovers [13,23] and horizontal gene trans-
fer [24], among others. It is of interest to understand under what situations
some of these events will be more likely to produce an evolutionary advantage
to some organism and in this thesis I discuss some aspects of the question
of the contribution of gene duplications to the evolution of genetic networks
using a combination of experimental evolution in the yeast S. cerevisiae,
molecular techniques and mathematical modeling. In Chapter 2 I present the
design of a simple synthetic genetic system and the exploration of the ways
in which it adapted to an imposed fitness constraint, with special emphasis
on the effect of gene duplications as viable evolutionary solutions. And, in-
creasing in complexity, in Chapter 3 I discuss the effects of gene dosage in
the context of a more complex genetic network, the galactose uptake system,
paying particular attention to the question of network-dosage invariance, that
is: under which situations a phenotype produced by a genetic system will be
robust to proportional changes in the dosage of all the genes involved. These
observations provide a starting point for future studies of the evolution of
genetic circuits and the contribution of different mechanisms to the shaping
of transcriptional circuits through evolutionary forces.
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Chapter 2

Gene duplications in the
adaptation of a small synthetic
gene circuit

2.1 Introduction

Point mutations [13–16] and gene duplications [11, 16–20] are two of the
major mechanisms that drive the evolution of genetic networks but how these
processes determine the dynamics of adaptation is poorly understood. Here I
present an exploration of the relative contributions of these two mechanisms
to the adaptation dynamics of a synthetic gene circuit in the budding yeast
Saccharomyces cerevisiae, an asexual model system, using an experimental
evolution approach [9, 10,12,25–30].

In this circuit a synthetic transcriptional activator, regulated by an extra-
cellular inducer, drives the expression of an essential gene involved in uracil
synthesis. In the absence of inducer, cells do not produce enough uracil
which results in a growth deficit with respect to wildtype strains. Neverthe-
less, yeast populations cultured continually in this environment irreversibly
adapt, approaching wildtype growth rates after a few days.

14



2. Gene duplications in the adaptation of a small synthetic gene circuit

We found that a narrow spectrum of point mutations in the transcrip-
tional activator explains this recovery and that many mutants recover by
inverting the logic of the transcriptional activator. In the presence of a low
inducer concentration we observed an increase in the effective adaptation rate
and in addition to a similar mutation spectrum we found gene duplication
events of the transcriptional activator, providing a plausible explanation for
the faster adaptation dynamics.

Our work suggests that the effective rate of generation of fitter pheno-
types is determined by a combination of the point mutation and gene dupli-
cation rates and that their relative contribution is strongly dependent on the
coupling between genes in the network. This provides a starting point for un-
raveling the relative contributions of point mutations and gene duplications
during the evolution of gene networks.

2.2 Construction and characterization of the

genetic system

In order to explore the effect of different evolutionary mechanisms on a ge-
netic network we decided to use a very simple engineered genetic model so
that we could have most of the system under our control. The idea was to cre-
ate a system of just two genes in which one of them, constitutively expressed,
would enhance production of the other. We wanted to be able to tune the
coupling between the two genes and also to tightly couple the expression level
of the downstream gene to growth so that it would have a significant impact
on fitness, allowing us to obtain fixation timescales compatible with times
accessible in laboratory setups.

A plasmid derived from pRS402 [31, 32] containing the MYO2 promoter
driving the rtTA(S2 ) gene followed by the CYC1 transcriptional termina-
tor [33] was integrated into the genomic ade2 locus of the Saccharomyces
cerevisiae W303 mat a strain by homologous recombination and selection in
media lacking adenine. A transformant consisting of a single integration was
selected by Southern Blot analysis yielding an strain that we named BP82.3.
Constructs consisting of the TET07 promoter driving the URA3 gene from

15



2. Gene duplications in the adaptation of a small synthetic gene circuit
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Figure 2.1: Schematic of the underlying genetic system.

the related yeast Kluyveromyces lactis plus the ADH1 terminator and the
TEF promoter driving the KanMX gene plus the TEF terminator were
cloned into Escherichia coli vectors and then extracted and fused by PCR
including, at both ends, 50 base pairs of homology to the W303 sequences
harboring the URA3 coding region. This construct was incorporated into the
BP82.3 strain and positive transformants were selected under the presence
of Geneticin. This effectively replaced the original URA3 coding region by
the designed sequence. All integrations were verified by PCR.

The MYO2 promoter is constitutively active in Saccharomyces cerevisiae
and therefore our engineered strain produces the rtTA transcriptional acti-
vator (a fusion of a modified version of the TET repressor and the VP16
transcriptional activation moeity [34]) at a constant rate. Doxycycline, when
bound to the rtTA protein, induces a conformational change that promotes
binding to the TET07 promoter where the VP16 moiety enhances tran-
scription of the downstream KlURA3 sequence. As the endogenous URA3
gene had been deleted the Kluyveromyces lactis URA3 mRNA (KlURA3 ) is
the sole source for Ura3 protein, orotidine 5’-phosphate decarboxylase (OD-
Case), an enzyme necessary for catalyzing the synthesis of uracil, a nucleic
acid needed for normal growth (Figure 2.1). Incidentally this protein is one
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2. Gene duplications in the adaptation of a small synthetic gene circuit
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Figure 2.2: URA3 transcript level as measured by qRT-PCR (top panel)
and culture growth rate γ (bottom panel), both measured after 24 hours
in media without uracil and different doxycycline concentrations. The solid
lines represent fits to Hill functions as guides to the eye. The dashed vertical
lines indicate the doxycycline concentrations at which the two different sets
of adaptation experiments described in Section 2.3.2 were performed.

of the most proficient enzymes in nature, enhancing the reaction rate of the
underlying reaction by a factor of about 1017 [35].

We found that the KlURA3 mRNA expression levels could be tuned over
about a 60-fold range (Figure 2.2, top panel). In the absence of doxycycline
a basal transcription is detected which provides enough Ura3 proteins for
the cells to survive in media without uracil. However the growth rate is
significantly lower than that observed at high concentrations of doxycycline
where cultures approach growth rates typical of wildtype yeast (Figure 2.2,
bottom panel).

17



2. Gene duplications in the adaptation of a small synthetic gene circuit

2.3 Experimental adaptation of the genetic

system to selective media

To directly observe the dynamics of adaptation we continuously monitored
the growth rate γ of many independent cultures that were maintained at
a constant population size of N = (1.7 ± 0.1) 107cells (mean ± s.e., n =
51) in environments with low concentrations of doxycycline where the cells
experience a strong selective pressure with respect to organisms that would
reproduce at wildtype growth rates.

2.3.1 Experimental setup

We performed the experiments using turbidostats [36, 37] (Figure 2.3). In
these setups, cells are maintained at a constant optical density in liquid
culture by regulating the dilution rate in response to an average instantaneous
proxy for culture growth rate. To achieve this we first established a system
for continuous measurement of the culture’s relative absorption coefficient
by using an ultraviolet LED - photodetector pair. In this way the electronic
output of the photodetector (v(t)) is correlated to the optical density of the
culture. When v(t) exceeds a pre-set threshold a pump is activated which
dilutes the culture back below the threshold. A pump constantly acting on
an exhaust line set at a certain level ensures that the volume of the culture
stays fixed throughout the experiment.

By recording the activity of the computer controlled pump over time, a(t),
we can accurately calculate the population’s instantaneous growth rate, γ(t).
We did this by measuring the fraction of time the pump was actively provi-
ding fresh media during each hour-long interval and converting this into an
average instantaneous pump flow rate, 〈p(t)〉, by multiplying by the pump’s
maximal possible flow rate. This raw pump activity is then converted into a
growth rate by normalizing with the volume of the turbidostat culture using
the formula, γ(t) = 〈p(t)〉/V where V represents the culture volume as mea-
sured at the end of the experiment. For this work we constructed a system
consisting of a computer controlling 8 chambers in parallel using simple elec-
tronics and a custom-built LabView program to control the different devices.
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2. Gene duplications in the adaptation of a small synthetic gene circuit
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Figure 2.3: Turbidostat setup schematic. v(t) represents the signal on the
photodector, which is related to the optical density of the culture in the
chamber. The activity of the controlling pump is denoted by a(t). In the
schematic we present a caricature of a situation in which the growth rate of
the culture is increasing with respect to time.

We chose this experimental system so that, on one hand, we could keep
the density of the culture fixed throughout the experiment, ensuring that the
selective pressure was applied on the output of the genetic system of interest
and that it was not drifting towards other systems like, for instance, response
to culture overcrowding as might occur in chemostats. In other words, having
a system in which cells can grow at a constant density irrespectively of their
growth rate allows one to ignore potentially confounding density-dependent
effects. On the other hand the use of turbidostats allows one to obtain mea-
surements of growth rate dynamics with high temporal resolution, allowing
for better quantification of observations.

We grew liquid cultures in synthetic dropout media with appropriate
amino-acid supplements (adenine and methionine were not included in any
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2. Gene duplications in the adaptation of a small synthetic gene circuit

experiment as the constructed strains were able to synthesize these, and in
some experiments, as indicated, uracil was also left out), 2 % w/v glucose as the
carbon source and different doxycycline concentrations. Before transferring
them to the turbidostat chambers, each culture was grown overnight in a
shaker at 30 ◦C in a 10 ml volume starting with a low cell density1 so that
just before the transfer into the turbidostat they had not reached stationary
phase (OD600 < 2). Next, cultures were washed with their prospective in-
turbidostat media and transferred to turbidostat chambers. The turbidostat
maintains the culture at a constant volume and, after a transient stabilization
period, constant optical density levels (0.05 < OD600 < 0.4) where cells do
not experience the effect of nutrients depletion. By determining the volume of
the chamber and the optical density at the end of the experiment as well as a
an experimentally measured conversion factor between these two quantities2

we estimated the size of the population N that was cultured in each chamber.

2.3.2 Cultures adapt to the selective environment

Figure 2.4a displays the growth dynamics of 26 independent populations
that were cultured in the absence of uracil and doxycycline over a period
of 6̃ days. At t = 0 the turbidostats were seeded with an exponentially
dividing population that had been grown in media with uracil (γ∞ = (0.49±
0.02) h−1). During the first day in media without doxycycline we observed
a transient decrease in the growth rate likely determined by the degradation
dynamics of uracil reserves. After this transient all populations reached a low
steady growth rate of about 0.2 h−1 and between 1.5 and 3 days of continuous
culturing all populations displayed a growth rate recovery to a level that often
approached the rate observed in media with a high doxycycline concentration
(Figure 2.4a, dashed line). At the end of each run cultures were frozen for
later analysis.

1Culture densities were quantified by measuring optical density of samples at 600 nm
against references consisting of growth media with no cells using a Hitachi U-1800 spec-
trophotometer. The OD600 figures reported in this document represent absorbance values
at this wavelength.

2The conversion factor was measured by comparing the optical densities of samples with
estimated OD600 values ranging from 10−5 to 10−2 with the number of colonies observed
to grow in plates in which 50µl of the corresponding samples had been inoculated. These
experiments yielded a conversion factor of (1.0± 0.3) 107 cells

ml ·OD600
(best fit ± 95 % c.i.).
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Figure 2.4: Adaptation dynamics as measured in turbidostat setups. a, b,
Growth rate traces for 25 (a) and 26 (b) independent cultures grown in
media with no uracil and either 0 or 0.005µg/ml doxycycline. The dashed
line indicates the growth rate of a population cultured for 24 hours in the
presence of 5µg/ml doxycycline.

In a second set of experiments we applied the same strategy to 25 po-
pulations that were grown in media without uracil but in the presence of a
low concentration of 0.005µg/ml doxycycline (Figure 2.4b). This concentra-
tion is too low to induce the TET07 promoter: the mRNA concentrations of
KlURA3 and the population growth rates after 24 hours are indistinguishable
in the absence and presence of 0.005µg/ml doxycycline (Figure 2.2). How-
ever, the system is poised closer to its induction threshold where it might be
more sensitive to perturbations of the underlying regulatory circuit.

In order to test whether changes that occurred during the adaptation
phase were stable, adapted cultures were transferred from the frozen stock
into non-selective plates were they were allowed to grow for 2 days. They
were later incubated in liquid non-selective media overnight and then trans-
ferred to media lacking uracil. After letting them grow for about 16 hours,
growth rates in non-selective media were measured by keeping track of the
optical density of each culture over the course of roughly 8 hours. In parallel,
the same experiment was performed on the ancestor strain using media both
lacking and containing uracil. This experiment mimics the behavior at the
start of the adaptation experiment and in all cases the measured growth rate
of the adapted cultures was significantly different than that of the ances-
tor and similar to wildtype values (Figure 2.5), indicating that some stable
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Figure 2.5: Growth rate measurements roughly 16 hours into growth in se-
lective media (no uracil, no doxycycline) for each of ten adapted cultures
characterized on each experiment as well for the ancestor strain (A) and
the ancestor strain in non-selective media (A+, 5µg/ml doxycycline). Error
bars indicate the 95 % c.i. obtained by fitting an exponential growth model
to measurements of optical density of the culture over a period of about 8 h.

changes had taken place in all adapted cultures.

2.4 Model for quantification of growth traces

During the adaptation experiment in turbidostat setups we have a fixed-size
population of N asexual cells that, to first approximation, consists of two
subgroups: the wildtype, which grows at rate γ0, and mutant invaders that
grow at rate γ∞.

If we denote by n the number of mutants in the population, the state of
the system is fully specified by this number and we can think of describing
the dynamics of the system as transitions between different states that occur
in an stochastic fashion. There are three possible types of events that could
occur in a population with n mutants that will lead to a change of state:

1. a cell corresponding to the ancestor population divides and a mutant
cell leaves the culture, leading to an unit decrease in n;

2. a mutant cell divides and one of the ancestors leaves the population,
leading to an unit increase in n;
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2. Gene duplications in the adaptation of a small synthetic gene circuit

3. one of the ancestral cells mutates into the fitter phenotype, leading to
an unit increase in n.

Note that in order to keep a fixed population we have to require one cell to
leave the population if a cell has divided. In the turbidostat setup this is
achieved by the exhaust line and to model this effect we approximate the
process by thinking that as soon as one cell divides one cell is chosen at
random from the overall population and leaves the culture.

To simplify the description we will consider that all these processes are
independent of each other and independent of the timing of any previous
events, allowing a description in terms of a Markov process [38, 39]. Each
of the processes described above occurs with the following state-dependent
rates ρi:

ρ1 = [γ0(N − n)]×
[

n

N + 1

]
' γ0

n(N − n)

N
, (2.1)

ρ2 = [γ∞n]×
[
N − n
N + 1

]
' γ∞

n(N − n)

N
, (2.2)

ρ3 = µ(N − n). (2.3)

In (2.1, 2.2) the terms in square brackets represent the rate at which division
events occur (first term) and the probability that the corresponding type of
cell will be chosen to leave the population (second term). Given that N � 1,
we considered the approximation N + 1 ' N in writing the final expressions
in (2.1) and (2.2). In (2.3) µ represents the rate at which ancestor cells
mutate into the fitter phenotype.

So, we can summarize the model using the following schematic description
of the underlying Markov Chain:

n− 1 n
γ0

(N−n)n
N

oo

µ(N−n)+γ∞ n(N−n)
N //

n+ 1 (2.4)

In the deterministic limit, i.e. once the number of individuals in each
population is large enough so that fluctuations become negligible and we can
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Figure 2.6: Fit of the one the traces in Figure 2.4a to the “one mutant
take-over” model described by equation (2.7).

think of n as a continuous variable the evolution of the number of mutants
in the population satisfies the equation

dn

dt
= (γ∞ − γ0)n(N − n) (2.5)

from which we can derive an explicit expression for the dynamics of the
fraction x = n/N of mutant cells in the population

x(t) =
1

1 + e−(γ∞−γ0)(t−tc)
(2.6)

where tc is an integration constant.

Expression (2.6) permits one to calculate the instantaneous population
growth rate γ(t) as

γ(t) = γ∞x+ γ0(1− x) = γ0 +
γ∞ − γ0

1 + e−(γ∞−γ0)(t−tc)
(2.7)

and this expression can be fitted to the growth rate traces obtained from the
turbidostat setups. This allows one to extract the parameters γ0, γ∞ and tc
from each trace. In Figure 2.6 we present a typical fit of this expression to
the growth rate estimates between days 1 and 5 of a sample trace, indicating
how each parameter describes a different feature of the experimental curve.

In Figures 2.7, 2.8 we present the fits to all individual traces to illustrate
the level of agreement between this model and the data.
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Figure 2.7: Fits of each individual growth trace obtained in the experiments
performed in the absence of doxycycline to the model described by equation
(2.7). For each trace, we include the inferred value of n0 or t? depending
on whether we estimate that mutants were generated before the start of the
turbidostat experiment or after. The bars in panel 26 indicate scale and
represent 0.1 h−1 in the growth rate axis and 12 h in the time direction.

Knowing these parameters one can estimate the number of mutant cells
at the beginning of the turbidostat experiments using the expression

n0 ' Nx(t = 0) =
N

1 + e(γ∞−γ0)tc
. (2.8)

The condition n0 ≥ 1 implies that some mutants were present at the
start of the run and therefore had been generated in the conditions of no
selection (media with uracil) at which the cells had been grown overnight,
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Figure 2.8: As in Figure 2.7 but for the experiments performed at a concen-
tration of 0.005µg/m doxycycline. The bars in panel 21 indicate scale and
represent 0.1 h−1 in the growth rate axis and 12 h in the time direction.

before cultures had been washed and transferred to media without uracil. In
those growth conditions both the wildtype and the mutant strains grow at
the same rate γ0 and the size of the population increases exponentially with
time at this rate. This is the same process described by Luria and Delbrück
in their seminal work [40].

In this case, one expects that the distribution of mutant cells across the
cultures that were used to seed the turbidostats will follow a Luria-Delbrück
distribution. Following Lea and Coulson [41–43], one can express the proba-
bility Dr of having r mutants in a population that was exponentially propa-
gated to a size N0 � 1 by the equations

D0 = e−m,

Dr = e−m
r∑
j=1

Cj,r
mj

j!

(2.9)
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where m = µN0

γ0
and the coefficients Cj,r are defined by the relations

C0,r = Cr,0 = 0,

C1,r =
1

r(r + 1)
,

Cj,r =
1

j + r
[jCj−1,r−1 + (r − 1)Cj,r−1] .

(2.10)

In our situation, the populations used for seeding the turbidostat ex-
periments were only a fraction α = N/N0 of the cells that were propagated
overnight, with α ' 0.1. In this situation the probability Pr of finding r
mutant cells at t = 0 in the turbidostat is

Pr =
∞∑
kr

HN0,N
k,r Dk (2.11)

where HN0,N
k,r (the hypergeometric distribution) represents the probability of

getting r mutants when sampling N cells from a population of N0 cells that
contains k mutants:

HN0,N
k,r =

(
k
r

)(
N0−k
N−r

)(
N0

N

) . (2.12)

In the limit in which the number of mutants is small we can approximate
(2.11) by

Pr '
∞∑
kr

(
r

k

)
(1− α)k−rαrDk. (2.13)

In Figure 2.9 we present the measured distributions of n0 as well as
fits to the model described in these paragraphs, from where we can get
a first estimate of mutation rates, albeit with a large uncertainty. Ta-
king N0 ' 2 108 cells the estimates we obtained from this analysis were
µ = (0.41 ± 0.15) 10−8 h−1 (best estimate ± 95 % c.i.) for the experiments
performed without doxycycline and µ = (0.60 ± 0.15) 10−8 h−1 for the cul-
tures adapted in 0.005µg/ml doxycycline.

In the case in which n0 < 1 we can estimate that there were no mutants
at the beginning of the experiment and therefore that they had to appear
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Figure 2.9: a, Measured distribution (n = 26) of the estimated initial num-
ber of mutants in the experiment performed with no doxycycline. The solid
line represents a fit to the Luria-Delbrück distribution considering a subsam-
pling factor of α = 0.1. b, as in a but for the experiment performed at a
concentration of 0.005µg/ml doxycycline (n = 25)

sometime during the selection process. In this case we can interpret the time
t? at which the fraction of mutants is of order 1/N as the time of appearance of
the first mutant in the population. Some simple algebra leads to the following
expression for large N

1

N
= x(t = t?) =

1

1 + e(γ∞−γ0)(t?−tc)
⇒ t? ' tc −

ln(N)

γ∞ − γ0
. (2.14)

Neglecting the potential effect of the appearance of successive mutations
before the number of mutants reaches a significant level so that the determi-
nistic approximation is valid, the distribution of the times of appearance of
fitter mutants is exponential with rate µN , as the mutations have a random
chance of appearing at any time, i.e. their appearance is a Poisson process.
By observing the measured distribution of t?, or Nt?, one can validate this
hypothesis and obtain a measurement of the effective mutation rate µ.

This simple model neglects stochastic fluctuations and cloning interfe-
rence effects [44] but it nevertheless provides a first order description of the
dynamics based on effective coarse-grained parameters that is useful for re-
lative quantification of features of the experiments performed at different
doxycycline concentrations (see for example [45] for a similar approach).
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Figure 2.10: a, For each set of experiments, cumulative distributions (CDF)
of growth rates 1 day into the experiment and at either 6 days or the end
of the experiment. b, Cumulative distribution (CDF) of population sizes for
each set of experiments. On top of the plots, bars indicate the experimental
mean and standard deviation.

2.5 Quantification of growth traces

We observed no significant differences in the distribution of population sizes,
initial or final growth rates across the two doxycycline concentrations ex-
plored (Figure 2.10). In contrast, a clear difference was observed between
the t?-distributions of the two data sets (Figure 2.11). Both t?-distributions
were well approximated by exponentials with different apparent mutation
rates: (0.50 ± 0.03) 10−8h−1 (best fit ± 95 % c.i.) in the absence of doxycy-
cline and (0.91 ± 0.06) 10−8h−1 in the presence of 0.005µg/ml doxycycline.
These numbers are consistent with the estimates based on fits of the esti-
mated number of mutants at the start of the run to rescaled Luria-Delbrück
distributions as described in the previous section. The order of magnitude of
these numbers is consistent with recent estimates of per-base-pair mutation
rates [46]. So, this analysis suggest that there is indeed a faster rate of gene-
ration of fitter phenotypes in the experiment performed at the low, nonzero
doxycycline concentration explored.
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Figure 2.11: Experimental cumulative distributions (CDF) of the population-
rescaled times of appearance of the first fitter mutant (Nt?) as estimated
from each growth rate trace. The solid lines are best fits to exponential
distributions.

2.6 Molecular characterization of cultures

To reveal the molecular changes in our synthetic gene circuit we characterized
the phenotypes of 10 independent mutants in each of the two conditions ex-
plored by measuring different traits associated with the underlying network
in order to establish if any genetic changes had occurred and to investigate
whether the observed increase in the apparent rate of appearance of fitter
mutants could be explained by an increase in the number of available benefi-
cial phenotypes. In Figure 2.12 we present a summary of the traits explored
and we discuss them in detail in the following subsections.

2.6.1 Quantification of transcript levels and genomic
copy numbers

To quantify the level of the relevant transcripts and genomic copy num-
bers in the adapted cultures each population was first grown overnight in
non-selective minimal media and then their RNA was extracted using the
RiboPureTMYeast kit (Applied Biosystems/Ambion). The total RNA con-
centration of each sample was determined spectroscopically (NanoDrop R©ND
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Figure 2.12: Measured traits for 10 adapted cultures in each of the two set of
experiments described. Each column represents one evolved population and
each row one trait. Reported traits: growth rate in the selective environment
after adaptation, mRNA levels relative to the ancestor as measured by q-
RTPCR, relative DNA levels as measured by qPCR, mutations found in the
rtTA gene (the code in each box indicates the new observed aminoacid and
the position is indicated by color as referenced on the right; question marks
indicate experiments in which the base pair could not be identified with
certainty) and distribution of transfer function classes (labeled according
to the scheme discussed in subsection 2.6.3; multiple outcomes in one box
indicate that independent transformations produced different results). Black
arrows indicate cultures in which a significant increase in the content of
genomic rtTA was detected by qPCR.

1000, NanoDrop) and then samples were diluted to equal concentrations.
The relative levels of the different transcripts were measured by quantitative
reverse-transcription PCR (q-RTPCR) using the QuantiFast SYBR Green
RT-PCR kit (Qiagen) and a MJ Research PCR Machine.

In order to quantify DNA levels a similar procedure was carried on, only
that instead of RNA, genomic DNA was extracted following a lyticase based
custom protocol and quantitative PCR (qPCR) with reagents from the Quan-
tiFast SYBR Green PCR kit (Qiagen) was used to quantify the relative levels
associated with each target.

In all cases calibration curves as a function of mass content were measured
and ACT1 levels were used as a reference. The primers used for each gene
targeted a 200 base-pairs stretch of the corresponding coding region and in all
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cases the calibration curves indicated a figure consistent with 100% efficiency
within experimental uncertainty.

Quantification of transcript levels revealed an increase of KlURA3 mRNA
in most adapted cultures (Figure 2.12, second row), consistent with the idea
that they had achieved a fitter metabolic state by recovering wildtype levels of
Ura3 protein expression. We observed no correlated increase of the KlURA3
gene dose (Figure 2.12, third row) indicating that the increase in the level of
KlURA3 transcripts was not due to an increase in the genomic copy number
of the corresponding gene.

We did not observe any change in rtTA mRNA and rtTA gene dose in
mutants that were evolved in the absence of doxycycline across 26 indepen-
dent cultures (Figure 2.12, fourth and fifth rows). However in the presence
of doxycycline we found 4 cultures out of 25 that displayed an increase in
rtTA gene dosage and a correlated increase in the corresponding RNA con-
centrations (black arrows in Figure 2.12 highlight this effect in two cultures).

These observations indicate that most of the mutants evolved into a fitter
phenotypic state by increasing the production of KlURA3 but that except
for 16% of the cases in the experiment performed at 0.005µg/ml doxycycline
this increase was not correlated to changes in genomic copy numbers.

2.6.2 Sequencing

Genomic DNA from each culture was used as a template for PCR reactions
targeted at amplifying the synthetic constructs containing either the rtTA
or KlURA3 genes including promoter, coding and terminator regions. For
each construct several sequencing primers were chosen so as to produce a
complete tiling of the DNA stretch and, for each primer, sequencing was
performed at the MIT Biopolymers Laboratory using an Applied Biosystems
3730 capillary DNA sequencer with the Big Dye Terminator Cycle Sequencing
Kit. Each obtained sequence was thresholded for base pairs of high quality
and alignment was performed manually.

We observed no mutations in the KlURA3 coding, promoter, and termi-
nator sequences. On the other hand, in most cases we found point muta-
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tions in the open reading frame of the rtTA gene (Figure 2.12, sixth row)
in both data-sets. Interestingly, most of the observed mutations occurred at
amino acid position 56, which, among others, had been previously identified
in in-vitro mutagenesis studies as involved in the functional transformation
between the rtTA and tTA proteins, the latter exhibiting the opposite doxy-
cycline regulation logic [47].

We note that there was a fair amount of variability in the observed muta-
tions, indicating that there are multiple ways in which the circuit adapted to
the imposed evolutionary pressure. The fact that all mutations were found
in the coding region of the rtTA gene could be related to the fact that this
gene is exogenous to the host organism and therefore had not being exposed
to long periods of evolutionary pressure compared to endogenous compo-
nents. It could also be a feature of this particular gene, which is interesting
in the sense that this system could be prove to be a good tool for engineering
genetic networks by experimental evolution as this component would offer
a large degree of plasticity, making such experiments feasible in laboratory
timescales.

2.6.3 Transfer function analysis

To test whether the circuit regulation had been significantly modified by the
observed mutations we chromosomally integrated a construct consisting of
the yellow fluorescent protein (YFP) driven by the TET07 promoter into
each mutant allowing us to further characterize each adapted population by
measuring its response to different inducer levels in what we will refer to as
the “transfer function”of the system.

To do this, a construct consisting of the TET07 promoter driving YFP
plus the UTR1 terminator region was cloned into the pRS303 plasmid [32]
and then integrated into the his3 locus of the strain to be characterized. Af-
ter the transformation was performed several colonies were chosen and after
growing them overnight in minimal media with different doxycycline concen-
trations YFP expression levels were quantified by flow cytometry (FACSCali-
bur HTS, Becton Dickinson). In some cases different colonies out of the same
transformation yielded different response curves, which we interpreted as the
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Figure 2.13: Mean fluorescence level as a function of doxycycline in uracil
rich media for selected mutants corresponding to different transfer function
classes.

original culture not being completely homogeneous at the time of finalization
of the adaptation run. Some colonies yielded no signal, which we interpreted
as failed transformants. For each culture, at least 4 signal-producing colonies
were analyzed and then frozen for future studies.

We observed 4 different transfer function classes, correlated with the ob-
served mutations (Figure 2.13, 2.12 sixth and seventh rows): (I) a wildtype-
like response, observed mostly in the cases in which no mutations were de-
tected; (II) positive regulation with a basal level higher than in the wildtype
case; (III) cases in which the role of the inducer got inverted, strongly corre-
lated with an amino acid change at position 56, though the substitution was
not always the same; and (IV) an unregulated response.
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2.7 Validation of observed genetic changes as

the source of a fitness increase

To explore if the observed genetic changes were correlated to the observed
fitter phenotypic states we decided to translate those changes into an ancestor
strain that had never been exposed to the selective pressure. Then we tested
whether the growth rate of these hybrid strains decreased when they had
to face the selective environment that the ancestor was subjected to during
the adaptation run. And furthermore, we analyzed whether their transfer
functions had been affected.

2.7.1 Transplants of the rtTA construct

In order to perform rtTA transplants from each adapted culture back into the
ancestor strain we first prepared the ancestor by inserting the YFP reporting
system described in section 2.6.3 to facilitate the determination of transfer
functions after each transplant. Then the original rtTA construct was deleted
by replacing it by a construct consisting of the NAT1 gene driven by the TEF
promoter and finished with the TEF termination sequence as PCRed out of
the pAG25 plasmid [48]. During the PCR step 50 base-pair DNA pieces ho-
mologous to regions flanking the target were added to each end. This PCR
product was introduced into the ancestor and transformants were selected in
the presence of the antibiotic nourseothricin. Deletions were confirmed by
PCR analysis, by checking for the absence of YFP signal at different doxy-
cycline levels and by confirming the loss of the ability to synthesize adenine
(the marker related to the original rtTA construct). Once the ancestor was
prepared in this way, the rtTA constructs from each adapted culture were
PCRed out of corresponding genomic preparations using primers that had
50 base-pair overhangs of homology to the region in the prepared ancestor
now containing the NAT1 construct. These PCR products were introduced
into the prepared strain and transformants were selected in media lacking
adenine. By performing the transplants in this way, the effect on the genome
of the ancestor strain with the reporter system was minimal.

We found a strong correlation between both the distribution of transfer

35



2. Gene duplications in the adaptation of a small synthetic gene circuit

0.2 0.4 0.6

0.2 0.4 0.6

I IVIIIII

I IVIIIII

I IVIIIII

transfer functions of adapted cultures
no doxycycline cultures 0.005 µg/ml doxycycline cultures

transfer functions of rtTA transplants

transfer function of selected transplant

growth rate in (-uracil, -doxycycline)

growth rate in (-uracil, +doxycycline)

Figure 2.14: For the adapted cultures presented in Figure 2.12 the rows
indicate, in order: distribution of observed transfer function classes of the
adapted cultures (labeled according to the scheme shown in Figure 2.13);
distribution of observed transfer function classes of strains that were con-
structed by transplanting the rtTA construct from each adapted culture into
the ancestral strain; the transfer function class of a selected rtTA transplant
chosen for growth rate characterization; the growth rate of such a clone in
media with no uracil and no doxycycline; and the growth rate of the same
clone in media with no uracil and 5µg/ml doxycycline.

function classes and growth rates measured on these transplanted strains
and the mutants (Figure 2.14). To further assess the functional implication
of the mutations in the rtTA gene and their impact on fitness we measured
the growth rates of the strains with rtTA transplants in media with a con-
centration of either 0 or 5µg/ml doxycycline (Figure 2.14, bottom two rows).
We found a strong correlation between the growth rate patterns in the dif-
ferent media and the observed transfer function classes, which demonstrates
that the rtTA transplants are not only responsible for the observed changes
in the YFP transfer function but that they also correlate with fitness.

This indicates that, in most cases, the observed mutations in the rtTA
gene are a major cause of the observed adaptation

2.7.2 Addition of an extra copy of the rtTA construct

To analyze the effect of having an additional copy of rtTA we inserted an
extra copy of this construct into the ancestor background and quantified the
change this produced on the transfer function associated with the system as
well as its effect on fitness.
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Figure 2.15: Normalized average P(TET07)YFP transfer functions (mean
± s.e., n = 4) for the ancestor and a strain like the ancestor but with an
additional copy of the rtTA construct (+1 rtTA). Solid lines represent fits
to Hill functions as guide to eye. The doxycycline concentration was nor-
malized to the mid-induction point of the transfer function of the ancestor
([doxycycline]1/2 = 0.33µg/ml).

Transfer function characterization

We digested the plasmid used for introducing the rtTA construct into the an-
cestor (see Section 2.2) with the restriction enzymes KpnI and NotI flanking
the construct and ligated it into a pRS304 [32] backbone digested with the
same enzymes. The pRS304 plasmid has a functional copy of the TRP1 gene,
which if integrated correctly confers W303 trp1 cells the ability to grow in
media with no tryptophan. We transformed the resulting plasmid linearized
with EcoNI into the ancestor and selected for positive transformants in me-
dia without tryptophan. We confirmed by qPCR on the rtTA gene that
the genomic content of rtTA had increased after this transformation and the
measurements we obtained were consistent with a single integration. After
this modification we introduced into the resulting strain the YFP reporting
system as described in Section 2.6.3.

An increase in the overall concentration of this transcriptional activator
implies that less doxycycline is needed to achieve a given rate of protein
production. This manifests in a shift of the transfer function curve towards
lower doxycycline concentrations (Figure 2.15).

37



2. Gene duplications in the adaptation of a small synthetic gene circuit

Quantification in terms of a biochemical model of the underlying
circuit

To describe the binding response of the system to changes in rtTA dosage we
considered a biochemical model of the underlying interactions. We took into
account that doxycycline can bind to rtTA proteins and that in this active
configuration, rtTA can bind to any of M = 7 independent and identical
binding sites in the TET07 promoter region. Finally, we considered the
transcription rate to be proportional to the number of rtTA proteins bound
to the TET07 promoter. If we denote the concentration of free doxycycline
by d, the concentration of free rtTA by r, the concentration of active rtTA by
r? and the average concentration of TET07 sites with k bound rtTA proteins
across a population of cells by pk we can write the following equations for
describing this biochemical system:

dtot = d+ r +
M∑
k=1

kpk,

rtot = r + r? +
M∑
k=1

kpk,

ptot =
M∑
k=1

kpk,

dr = K1r
?,

r?pk = K2
k + 1

N − k
pk+1 (n = 0, . . . , N − 1).

(2.15)

In this system the first three equations represent conservation of the to-
tal amount of doxycycline (dtot), rtTA proteins (rtot) and transcription sites
(ptot), the fourth equation describes equilibrium in the binding between doxy-
cycline and rtTA and the last set of equations represent the equilibrium
binding of active rtTA to promoters with free binding sites.

This model can be reduced to the following equations for computing the
normalized average transcription f(

dtot − r? −Nptot
r?

K2 + r?

)(
rtot − r? −Nptot

r?

K2 + r?

)
= K1r, (2.16)
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Figure 2.16: Normalized average P(TET07)YFP transfer function for the
ancestor and a strain like the ancestor but with an additional copy of the
rtTA construct (+1 rtTA) as presented in Figure 2.15 and best fit to the
biochemical model described in section 2.7.2. The error bars represent the
10% nominal normal uncertainty considered in the fitting procedure.

f =
r?

K2 + r?
. (2.17)

Given parameters {dtot, rtot, Nptot, K1, K2} the first of these equations
can be solved numerically for r?, for instance by applying a bisection method
with r? ∈ [0, rtot]. The solution can then be plugged in equation (2.17) to
obtain the corresponding normalized average transcription level.

We fitted this model to the data consisting of the normalized average
transcription levels as a function of doxycycline considering the datasets co-
rresponding to both the ancestor and the strain that contains an extra copy
of rtTA. We used as fit parameters a transformation of {rAtot, rA+

tot , Nptot,
K1, K2} where rAtot represents the inferred total concentration of rtTA in the
ancestor and rA+

tot is the corresponding concentration in the strain that has
an extra copy of the rtTA construct. The transformation used consisted in
considering the following parameter combinations as independent:{

log10

(
rAtot
)
,
rA+
tot

rAtot
, log10

(
Nptot
rAtot

)
, log10

(
K1

rAtot

)
, log10

(
K2

rAtot

)}
(2.18)

In Figure 2.16 we show the results of a fitting procedure based on a
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Figure 2.17: a, Normalized transfer functions of 8 clones isolated from cul-
tures adapted in the absence of doxycycline and corresponding to trans-
fer functions of class I. b, As is b but for 11 clones isolated from cul-
tures that had been evolved in the presence of 0.005µg/ml doxycycline.
([doxycycline]1/2 = 0.33µg/ml).

Bayesian inference approach [49] considering a normal likelihood model with
a nominal uncertainty of 10% per data point.

The inferred value of the ratio rA+
tot /r

A
tot was (10± 8) (mean ± 95 % c.i.).

This value is consistent with an increase in rtTA production, though the
number is higher than what would be expected for just a duplication. One
potential explanation of this observation is that this increases could originate
from differences between transcriptional efficiencies at different chromosomal
locations.

Alternative models that consider different interaction structures at the
promoter sites (v.g. a model with independent sites but in which transcription
in driven at the same rate as long as one rtTA protein is bound, a model
that considers cooperativity through an effective Hill coefficient, etc.) yield
similar results.

Note that this analysis is essentially equivalent to considering that an
increase in the rtTA copy number produces a shift of the mid-point of the
normalized transfer function vs. doxycycline curve towards smaller values
and that a measurement of such a shift represents the effective increase in
the rtTA concentration.
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Figure 2.18: Growth rate profile over a range of doxycycline concentrations
for both the ancestor and the strain with an extra copy of the rtTA construct
(+1 rtTA).

Comparison with adapted cultures

We found that measurements of class I transfer functions associated with
cultures that adapted in the absence of doxycycline were consistent with the
curves measured in the ancestor (Figure 2.17a). On the other hand, class I
transfer functions of populations evolved in 0.005µg/ml doxycycline showed
profiles ranging from that of the ancestor to that of the ancestor containing an
extra copy of the rtTA construct (Figure 2.17b), providing further evidence
that some of these cultures include rtTA duplications.

Effect on fitness

Characterization of the growth rate of cultures as a function of doxycycline
for both the ancestor and the strain with an additional copy of rtTA evi-
denced that the benefit of duplicating this gene is more pronounced at a
concentration of 0.005µg/ml doxycycline (Figure 2.18), providing a partial
explanation for why this evolutionary solution was preferentially observed in
the adaptation experiment performed at 0.005µg/ml doxycycline.
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no doxycycline mutants

0.005 µg/ml doxycycline mutants

Figure 2.19: Schematic of the observed changes in the genetic circuit after
adaptation. The diagram on the top represents the initial system and on the
bottom, from left to right, the different boxes represent: no observed changes
in the circuit (hypothetical modifications somewhere else), increase of basal
production of Ura3, logic reversal of doxycycline regulation, a system that
has become independent of doxycycline and a system in which the genetic
dosage of rtTA had increased. The blue and red surrounding boxes indicate
in which set of experiments these circuit rewirings were observed.

2.8 Conclusions

Taken together, these experiments suggest that mutations in the rtTA gene
change its function in the circuit and improve growth through its effect on the
production of Ura3 transcripts and then proteins. These beneficial mutations
are observed in both datasets. However we only observed duplications of the
rtTA gene in mutants evolved in the presence of 0.005µg/ml doxycycline and
never in the absence of inducer. This suggests that the rtTA gene duplication
has a positive effect on fitness and becomes a viable additional evolutionary
path only in the presence of a low doxycycline concentration. If the dupli-
cation process occurs at a rate similar to that of point mutations [50] the
availability of an extra evolutionary path would result in the faster apparent
effective mutation rate compared to the evolution of mutants in media with-
out doxycycline in which duplications were never observed. This might pro-
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vide a partial explanation for the observed increase in the measured apparent
mutation rate across the two environments studied (Figure 2.11).

Our work illustrates how even simple genetic networks can evolve in di-
verse ways in response to a simple selective environment (Figure 2.19). We
discussed how alternative evolutionary solutions might become available as
the environment makes the underlying circuit work at different operating
points. In the case at hand the addition of a small amount of an extracellu-
lar inducer puts the network close to its inducibility threshold and triggers
the appearance of gene duplications of the upstream activator as feasible
evolutionary solutions to the imposed fitness constraint. Finally, we also dis-
cussed how the appearance of these alternative solutions affects the apparent
effective mutation rate of a culture.

These observations and approaches provide a framework for exploring how
the multitude of adaptive solutions that endogenous gene networks might
explore in the presence of selective pressure are constrained by the operating
state of the underlying circuit.
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Chapter 3

The effect of gene dosage in a
complex network of genes

3.1 Introduction

Having seen the effect of gene duplications on a small genetic system with
minimal interactions the question of what will be the effect of gene duplica-
tions in more complex system naturally arises. In this chapter I present an
exploration of this question in the context of the galactose uptake network
in the yeast Saccharomyces cerevisiae.

In a diploid background we combinatorially deleted one of the two copies
of the regulatory genes of this network (GAL2, GAL3, GAL4, GAL80 ) ob-
taining 16 diploid strains that allowed us to measure and characterize the
effect of the dosage of all these genes around the diploid phenotype. Inter-
estingly we found that only two of these genes had a significant effect in
a phenotype of choice, strengthening the notion presented in the previous
chapter that the effect of a gene duplication is strongly dependent on the
operating point of the underlying genetic circuit. Furthermore, we found
that the activity of the network was invariant to a change in network dosage,
i.e. the phenotype did not change if the copy numbers of all genes were
modified in a proportional manner.
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3. The effect of gene dosage in a complex network of genes

This last observation is interesting not only in the context of evolutionary
phenomena but it is also important as a potential way for cells to cope with
undesirable variations in network-dosage and therefore maintain optimal ac-
tivity levels in gene networks. The number of copies of a gene network in a
cell, or network dosage, has a direct effect on cellular phenotypes [51,52]. Net-
work dosage is altered in situations such as the switching of some organisms
between haploid and diploid life forms [53,54], doubling of chromosomes dur-
ing cell cycle [55,56], genome-wide duplication of genetic content [16,57], and
global variation [58] in gene expression. Different phenotypes have different
levels of sensitivity to such variations and the need for effective compensation
mechanisms arises when cells cannot tolerate these alterations.

It is believed that in the transition between haploid and diploid forms
of life cells utilize a volume-mediated compensation mechanism to keep the
concentrations of transcription factors constant as cell volume increases with
ploidy [53]. However, this mechanism cannot subdue the effects of global
expression variation and genome duplication or loss events as they affect
cellular phenotypes independently of cell volume. These observations raise
the question of whether there are alternative layers of dosage compensation
mechanisms independent of external factors such as cell volume. To what
extent would network activity be robust to alterations in network dosage if
we fixed cell volume and therefore excluded its compensatory effect? Could
there be a molecular mechanism intrinsic to the network structure that helps
cells diminish the effects of dosage variations? Despite the fundamental na-
ture of these questions, what these mechanisms are and how they can be
implemented has remained unclear.

3.2 The galactose uptake network

The galactose upkate network (GAL network in short, Figure 3.1) is an ideal
platform to experimentally investigate the question of the effect of gene and
network-dosage. It has a well-characterized [59] bistable expression profile
due to nested positive and negative feedback loops, ubiquitous regulatory
elements in eukaryotic gene networks. Bistability [59–61] is a dynamical
system property giving rise to two distinct gene expression states (OFF and
ON) in a population of isogenic cells grown in the same environment. In
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Figure 3.1: Regulatory components of the galactose uptake network and their
interaction topology. Red arrows with pointed and blunted ends denote acti-
vating and inhibiting molecular interactions, respectively. Gal3p? represents
the galactose-bound, active form of Gal3p. The shuttling of Gal80p between
the cytoplasm and the nucleus is denoted by the bidirectional red arrows.
The dotted blue arrows show how the transcriptional feedback loops are es-
tablished through Gal2p, Gal3p, and Gal80p.

a bistable gene network, the fraction of cells occupying the ON-state can
be defined as the inducibility of the system and serves as a quantitative
phenotypic trait.

In the GAL network, four genes (GAL2, GAL3, GAL4, and GAL80 ) play
key roles in regulating gene expression. The constitutively expressed Gal4p
protein is a transcriptional activator that regulates expression of the other
GAL pathway genes by binding to DNA sites upstream of the corresponding
open reading frames [62]. Gal80p binds [63] to this protein and prevents
Gal4p-mediated transcriptional activation, establishing a negative feedback
loop. The protein Gal3p is activated [64] by galactose molecules that are
imported into the cell by the galactose permease Gal2p. In its active form,
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Gal3p sequesters the Gal80p repressor to the cytoplasm, indirectly promo-
ting transcription [65, 66]. As a result, Gal2p and Gal3p contribute to the
network architecture by forming two positive feedback loops. Excepting the
constitutive GAL4 promoter, the activities of the different GAL pathway
promoters are similar to each other [59] as they are regulated by the same
transcriptional machinery.

3.3 Inducibility curve as a quantitative phe-

notype

To quantify the activity of the GAL pathway at the single-cell level, we used
the yellow fluorescent protein (YFP) driven by the GAL1 promoter as our
reporter system and measured expression profiles at different galactose con-
centrations using flow cytometry. In order to do this KpnI-PGAL1 -BamHI and
BamHI-YFP -EcoRI fragments were cloned into the pRS402 backbone [31,32]
upstream of CYC1 transcriptional terminator and then integrated into a
W303 mat α strain, selecting for positive transformants in plates lacking
adenine. A W303 mat a strain was tagged with a HIS3 marker by trans-
forming the pRS303 plasmid into it [31, 32]. Finally a diploid strain, that
we will refer to as wildtype, was created by mating these two. The PGAL1

promoter sequence corresponds to the 669 base-pair region directly upstream
of the start codon of the GAL1 gene.

Cultures were grown in synthetic dropout media with the appropriate
amino-acid supplements. Cells were first grown overnight during 20 hours in
a 30 ◦C shaker, using 2 % w/v raffinose as the carbon source. This overnight
growth period was followed by an induction stage of 20 hours in a 30 ◦C
shaker, with cultures now containing 0.1 % w/v glucose and 0 − 0.4 % w/v
galactose as carbon sources. After the induction period, the expression dis-
tributions were determined by flow cytometry (FACScan; Becton Dickin-
son). The densities of the cultures were kept low throughout the experiment
(OD600 < 0.33 at the end of the induction period) to prevent nutrient deple-
tion. The volume of all cultures was 10 ml during both the overnight growth
and induction periods.
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Figure 3.2: Histograms show the induction profile of the wildtype galactose
pathway when the galactose concentration varies between 0 and 0.4 %w/v.
The activity of the pathway was read-out at the single-cell level using YFP
driven by the GAL1 promoter. At least 10,000 cells were analyzed by flow
cytometry.

In Figure 3.2 we present histograms of the expression levels of the YFP
gene across populations of cells grown in media with different levels of galac-
tose, the inducer of the system. For intermediate concentrations it can be
seen that only a fraction of the cells expresses this gene significantly whereas
the remaining cells fail to express it beyond basal values. Measurements
of the same distributions after 6 extra hours of culturing in the inducing
conditions did not exhibit significant changes in the distributions. These
observations indicate that the system is bistable [59].

Given that the expression peaks corresponding to the ON and OFF states
are well separated in these histograms, it is possible to quantify the fraction
of ON cells, i.e. the fraction of cells that are expressing the YFP gene off
the GAL1 promoter in a manner significantly different than that observed in
cells grown in the absence of galactose. This was done manually by setting
a threshold in between the two observed expression peaks.

We will refer to a sequence of the measured fractions of actively expressing
cells for a series of increasing galactose concentrations as the inducibility
curve of the system (Figure 3.3) and we will use this notion as our phenotype
of interest. This phenotype describes the range of galactose concentrations
at which the organism is able to turn on the galactose uptake system and
therefore take advantage of this additional source of energy.

48



3. The effect of gene dosage in a complex network of genes

fra
ct

io
n 

of
 O

N
 c

el
ls

 [%
]

[galactose] [% w/v]

100

80

60

40

20

0

10-2 10-1 100

Figure 3.3: Inducibility curve: fraction of ON cells as a function of galactose
concentration. The solid line is a guide to the eye constructed by fitting a
Hill function to the data.

3.4 Effective model for describing the obser-

vations

We interpreted these experimental results in the context of an effective model
in which the total concentrations of the different regulatory GAL proteins
affect slow transitions between transcriptionally active (ON) and inactive
(OFF) states [67]. We chose the functional dependence of these rates on the
concentration of the regulatory proteins by using simple functional relation-
ships reflecting the cascade of interactions among the network components.
We restricted the corresponding transcription rates to obtain steady-state
concentrations compatible with previous measurements of transcript levels
in different environments [68, 69]. Finally, as an approximation to the dy-
namics of this model, we used a set of differential equations for describing
the fraction of ON-cells under a given condition.

3.4.1 Model specification

We consider an effective stochastic model in which a given promoter site of
each of the GAL regulated genes (GAL2, GAL3 and GAL80 ) can be in either
a state of active transcription (ON-state) or in a state in which transcription

49



3. The effect of gene dosage in a complex network of genes

occurs less often (OFF-state) [67,70]. Each of these states is characterized by
its typical transcription rate. We chose to parameterize the system so that
one copy of the GALi gene will produce the corresponding proteins at rate θi
(which coarse-grains the processes of transcription, translation and protein
folding) when in the ON-state and at rate λθi, when in the OFF-state. So
λ represents the relative transcriptional strength of the OFF-state compared
to the ON-state.

We consider that slow stochastic transitions between these transcriptional
states are possible and that the total concentration of the different regulatory
proteins affects the rate at which the OFF → ON transitions takes place.

OFF
hρ(x2,x3,x4,x80) //

ON
h

oo (3.1)

In this scheme the parameter h represents a typical timescale at which these
transitions take place and ρ is a dimensionless function that quantifies how
the total concentrations of the different GAL proteins (x2, x3, x4, x80) affect
the rate of OFF → ON transitions. This description is valid as long as
the molecular interactions that shape the regulating function ρ occur much
more rapidly than the typical timescale at which protein concentrations
change due to the processes of transcription, translation, and protein di-
lution/degradation.

We parameterized ρ by taking into account what is known about the way
the different GAL proteins interact with each other and affect transcription.
First, it is known that the GAL4 protein is the main transcriptional activator
when it is not bound by GAL80 proteins, so we proposed the form

ρ =

(
x?4
K4

)η
(3.2)

where K4 represents the effective typical concentration scale of the interac-
tion, η > 0 is its typical effective nonlinearity, and x?4 is the concentration
of GAL4 that is not bound by GAL80 and can therefore freely activate
transcription. Instead of writing a set of reactions for describing how x?4 de-
pends on the total concentrations of the GAL network proteins, we propose
to use simple functional forms that effectively describe the main nature of
the interactions (Figure 3.4).
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Figure 3.4: Simplified schematic of the GAL Network: ON-cells express
(blue dotted arrows) both the positive (Gal2p and Gal3p) and the nega-
tive (Gal80p) regulators of the network while the OFF-cells gene expression
does not exceed basal levels. Gal4p is a constitutively expressed protein. Red
arrows with pointed and blunted ends reflect the rapid positive and negative
effects of one network component on another, respectively.

In these functional forms, the molecular interactions are characterized by
typical concentration scales of action for each protein and by typical degrees
of nonlinearity quantified by positive exponents. In this case, we know that
the amount of free GAL4 proteins will be a decreasing function of the con-
centration of GAL80 proteins in the nucleus and an increasing fraction of
the total concentration of GAL4 proteins. Therefore, we propose to use the
form

x?4 =
x4

1 +
(
x?80
K80

)β (3.3)

where x?80 is the concentration of GAL80 proteins in the nucleus. This quan-
tity, in turn, is regulated by the active GAL3 proteins due to sequestration

x?80 =
x80

1 +
(
x?3
K3

)α (3.4)

where x?3 is the concentration of active GAL3 proteins. The internal galactose
concentration, g?, regulates the activation of GAL3 proteins and therefore

51



3. The effect of gene dosage in a complex network of genes

we propose to write

x?3 =
x3

1 +
(
g?

Kg

)−ν (3.5)

Note that in this case the number of active GAL3 proteins is an increasing
function of the concentration of internal galactose because we assume ν > 0.
Finally, the concentration of internal galactose is regulated by the concen-
tration of galactose with which the cells were grown, g, and the amount of
GAL2 proteins (the galactose permease) and so we write

g? =
g

1 +
(
x2
K2

)−µ (3.6)

Equations (3.2) to (3.6) describe how the rate of the OFF → ON transi-
tions is regulated by the total concentrations of the different proteins involved
as well as the concentration of external galactose.

To finalize the specification of the model, we also assumed that protein
degradation rates were slow compared to the growth rate of the organism
and so we only included the effect of the dilution of proteins at rate γ, the
average growth rate of yeast in the laboratory.

We simulated this system by using a custom-written C++ implemen-
tation of the Gillespie algorithm [71], which considered the production of
proteins, their dilution due to cell growth, and the transitions between the
transcriptional states as first-order stochastic reactions. In Figure 3.5 we
show sample trajectories for the different variables in a simulation corres-
ponding to the parameters reported in Sections 3.4.2 and 3.5.2.

3.4.2 Constraints on model parameters

To keep our model realistic, we constrained the values of several parameters
to previously measured quantities. However, some quantities (especially the
effective parameters we introduced) were difficult to estimate based on pub-
lished work and therefore we extracted them out by fitting the model to some
of our data.
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Figure 3.5: Stochastic simulations of the proposed model. Left sub-panels:
traces of the different variables (PGALi ON: number of promoters in an ON
state; galip: protein concentrations) corresponding to one realization of the
stochastic model proposed in section 3.4.1 for a time of 24 h. Right sub-
panels: Distribution of the different variables after 24 h (left) and 48 h (right)
across 100 independent realizations. The fact that these distributions are
similar to each other indicates that the process has reached a steady state.
In all cases, simulations were started from initial conditions corresponding
to an OFF state, namely: all promoters were OFF and the initial protein
concentrations were chosen as θiλ/γ for GAL2, GAL3 and GAL80 and as
θ4/γ for GAL4. The parameters used were those indicated in Sections 3.4.2
and 3.5.2; the value of h used in this set of simulations was h = 2.5 h−1.

On one hand, the doubling time of yeast in the environments used in this
study is about 90 minutes, which imposes the constraint γ ' 0.46 h−1.

Previous high-throughput studies identified fold-differences in transcript
levels for several yeast genes under different growth conditions [69]. More
specifically, yeast cells were grown in two separate environments, one pro-
moting the expression of the GAL genes and one repressing it. Average dif-
ferences of about 5.5-fold and 3.7-fold were reported for GAL3 and GAL80,
respectively [69]. A high-throughput study that quantified the amount and
localization of different yeast proteins reported that there were about 800
GAL3 and 700 GAL80 proteins per cell when the GAL genes were re-
pressed [68], which in the context of the proposed model would correspond
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Parameter Value
θ2 1500 proteins/h
θ3 1500 proteins/h
θ4 100 proteins/h
θ80 1500 proteins/h
λ 0.2
γ 0.46 h−1

Table 3.1: Parameters fixed based on previous observations.

to the situation in which these genes are in the OFF transcriptional state.
Considering these observations and with the aim of simplifying the descrip-
tion further, we assumed that all GAL-regulated genes in the network follow
a similar regulation scheme and fixed the values of the parameters θ3, θ80
and λ so as to obtain basal expression levels of about 750 proteins per
cell and a 5-fold increase in protein levels when the network is fully in-
duced. So, taking the dilution rate into account, this implies the constraints
θ3 ' θ80 ' 1725 proteins/h and λ ' 0.2. Related experimental evidence
for GAL2 is more elusive and for the sake of simplicity we assumed the
same transcription rate as for GAL3 and GAL80. The same studies also
reported that the level of GAL4 transcripts does not change significantly
between galactose-free and galactose-rich media [69] and that GAL4 pro-
teins are present at a concentration of about 200 proteins per cell [68], which
implies the constraint θ4 ' 92 proteins/h.

We note that in the model at hand the stochasticity in the change of the
transcriptional plan is described by slow transitions between two different
states. In this framework, the fluctuations in protein expression levels play
a secondary role in establishing the fraction of active cells under a given
condition, though they still play a major role in shaping the distributions
associated with OFF and ON expression states. Furthermore, the way we
set up the regulation scheme indicated by equations (3.2)-(3.6) allows us to
interpret the constants Ki as being expressed in terms of the typical con-
centrations of the associated proteins. Therefore, we don’t lose generality
by using parameter values θi that might deviate slightly from experimental
measurements.
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Figure 3.6: Simulations similar to those described in Figure 3.5 but for a
fixed galactose concentration of 0.1 %w/v and three different values of the
parameter h, which quantifies the timescale of the stochastic transitions.

The values of the parameters used in simulations and fits presented in
this study and constrained along these guidelines can be found in Table 3.1.

In order to obtain OFF and ON expression states that are well-separated
from each other, the time that it takes for protein levels to equilibrate has
to be shorter than the typical timescale of the transitions between the two
transcriptional states. We quantified the timescale of transitions through the
parameter h in equation (3.1). Exploring a range of values for this quantity,
we found reasonable agreement with the experimental results for h = 2.5 h−1.
If the value of h is too high (Figure 3.6c) the distribution of protein num-
bers becomes monomodal; on the other hand if this parameter is too low
(Figure 3.6a) the dynamics of establishment of fractions would be too slow
compared to the experimental observations and in the case of multiple pro-
moters it would lead to the appearance of three distinct expression states,
which is something that is not observed experimentally. We also note that
all inferences presented in this work are based on the analytical approxima-
tion described in the next section, where the exact value of the parameter h
becomes immaterial.
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3.4.3 Analytical approximation

Stochastic simulations of the model described above are computationally
time consuming. To simplify the exploration of parameters and/or alterna-
tive models, we developed an approximation for the steady-state fraction of
actively transcribing cells in a macroscopic population. We note that the
presentation of the approximation proposed here is not a rigorous derivation.
We based it on intuition and heuristic observations, and we eventually con-
firmed its power by comparing inferences drawn from it to those obtained
from detailed stochastic simulations.

For one cell, we can approximate the time-evolution of the number of
proteins associated with each GAL-network-regulated gene with a set of
Langevin equations [38,39,58] of the form

ẋi = θi [φ+ λ(1− φ)]− γxi + ξi (3.7)

where xi represents the concentration of the protein associated with the GALi
gene, φ is a random binary variable that indicates whether the cell is tran-
scribing or not, and ξi is a random variable that approximates the intrinsic
stochasticity associated with the processes of protein production and dilu-
tion.

An equation for the evolution of mean protein numbers across a popula-
tion of cells, 〈xi〉, can be obtained by averaging equation (3.7) above. If we
assume that the intrinsic noise in protein expression can be neglected and we
consider a steady state situation, we obtain a set of equations of the form

0 = θi [λ+ (1− λ)〈φ〉]− γ〈xi〉 (3.8)

where 〈φ〉 represents the fraction of cells that are actively transcribing. Fol-
lowing a mean-field approximation approach, we estimate the fraction 〈φ〉
with the value that we would infer from assuming a constant background of
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protein concentrations equal to their average values, namely

〈φ〉 '
〈

kOFF→ON(x2, x3, x4, x80)

kOFF→ON(x2, x3, x4, x80) + kON→OFF

〉
' 1

1 + kON→OFF

kOFF→ON(〈x2〉,〈x3〉,〈x4〉,〈x80〉)

=
1

1 + [ρ (〈x2〉, 〈x3〉, 〈x4〉, 〈x80〉)]−1

≡ f (〈x2〉, 〈x3〉, 〈x4〉, 〈x80〉)

(3.9)

where we have explicitly incorporated the parameterization proposed in equa-
tion (3.1) and where we have assumed that the different copies of each pro-
moter act in a correlated way due to the effect of the different proteins
involved.

Taking into account that GAL4 is not subject to regulation, the argument
above implies that, in order to obtain a self-consistent solution, the following
set of algebraic equations must be satisfied:

0 = θ2 [λ+ (1− λ)f(x2, x3, x4, x80)]− γx2
0 = θ3 [λ+ (1− λ)f(x2, x3, x4, x80)]− γx3
0 = θ4 − γx4
0 = θ80 [λ+ (1− λ)f(x2, x3, x4, x80)]− γx80

(3.10)

where we have dropped the angled brackets to simplify notation. We note
that these equations imply that in equilibrium the concentrations of GAL2,
GAL3, and GAL80 will be proportional to each other through their relative
transcriptional strengths,

x2
θ2

=
x3
θ3

=
x80
θ80

(3.11)

which allows us to reduce this set of relations to just one equation:

0 = θ3

[
λ+ (1− λ)f

(
θ2
θ3
x3, x3,

θ4
γ
, θ80
θ3
x3

)]
− γx3 (3.12)

Solving this equation for x3 and then computing f
(
θ2
θ3
x3, x3,

θ4
γ
, θ80
θ3
x3

)
al-

lows us to obtain an approximation for the fraction of actively transcribing
cells in a given population. For instance, we solved this equation by bi-
section search considering as extrema the minimum and maximum possible
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Figure 3.7: Fraction of ON cells according to the analytical approximation
described in Section 3.4.3 (solid line) and the stochastic simulations described
in Section 3.4.1 (dots). In the case of the stochastic simulations, the fraction
of ON cells was determined by dividing the GAL3 expression profile in two
regions separated by the gray line shown in the right sub-panels of Figures 3.5
and 3.6 and counting the fraction of cells in the region that corresponds to
higher expression levels. That gray line lies exactly in between the maximal
and basal expression levels. Blue dots are the fractions obtained from 100
simulations at 24 h and the gray dots correspond to the results at 48 h.

GAL3 concentrations that can be achieved under this scheme (λθ3/γ and
θ3/γ respectively).

In Figure 3.7 we compare the results obtained from detailed simulations
of the stochastic process specified in Section II to the deterministic approxi-
mation proposed in this section for a range of galactose values that includes
those used in the experiments presented in this article. We observe reason-
able agreement, which supports the usefulness of the approximation proposed
as a proxy for studying the behavior of the system in a manner that is less
taxing from the computational point of view.
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Figure 3.8: Fraction of ON cells as a function of galactose concentration for
both diploid and haploid strains. The strains display similar induction pro-
files. The solid lines are guides to the eye constructed by fitting a sigmoidal
function to the data.

3.5 Effect of gene dosage on inducibility pro-

files and network-dosage invariance

We observed similar inducibility profiles between haploid and diploid strains
that contain the same reporter system (Figure 3.8), demonstrating that the
system is invariant to ploidy changes. This indicates that the system might
be built in such a way that parallel changes in copy numbers are intrinsically
compensated or, in this case, it could be possible that the compensation
is due to a volume-mediated effect. As the ploidy of yeast increases the
rate at which genes are transcribed goes up as there are more gene copies
available for transcription but, at the same time, the volume of the cells
also goes up, diluting transcripts and proteins. One hypothesis is that these
two mechanisms, having opposing effects on the steady state concentrations
of regulatory agents, might be what underlies the observed network-dosage
compensation.

To dissect how network-dosage variations affect the inducibility of the net-
work in the absence of volume effects, we systematically reduced the number
of copies of the 4 regulatory genes in the GAL network from 2 to 1 in diploid
backgrounds by using KanMX4 and NatMX4 gene deletion cassettes [48,72]

59



3. The effect of gene dosage in a complex network of genes

WT

GAL80
GAL80

GAL4
GAL4

GAL3
GAL3

GAL2
GAL2

GAL80
GAL80

GAL4
GAL4

GAL3GAL2
GAL2

GAL3 (+/-)

GAL80
GAL4
GAL4

GAL3
GAL3

GAL2
GAL2

GAL80 (+/-)

GAL80
GAL80

GAL4
GAL4

GAL3
GAL3

GAL2

GAL2 (+/-)

GAL80
GAL80GAL4

GAL3
GAL3

GAL2
GAL2

GAL4 (+/-)

Figure 3.9: Construction scheme of the first-order dosage-varied yeast strains.
Each rectangle denotes a diploid strain that was dosage-halved in one of the
four regulatory genes of the network.

(Figure 3.9), obtaining 16 different diploid yeast strains including the hemi-
zygous and the wildtype strains that have all 4 genes at one and two copies,
respectively.

3.5.1 Effect of removing one copy of each gene

Figures 3.10a,b show how the wildtype inducibility levels are affected by
the dosage of each regulatory gene in the network. Halving the dosage of
GAL3 dramatically reduces the inducibility of the system whereas halving
the dosage of GAL80 makes the cells need less galactose to reach full in-
duction (Figure 3.10a). Interestingly, varying GAL2 or GAL4 dosage levels
turned out not to have a large effect on network activity (Figure 3.10b).
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Figure 3.10: a, Inducibility profiles of the GAL network hemizygous in GAL3
(blue) or GAL80 (red) relative to the wildtype profile (black). Network
inducibility is highly sensitive to GAL3 and GAL80 dosage. b, Inducibility
profile of the GAL network hemizygous in GAL2 (green) or GAL4 (orange)
relative to the wildtype profile (black). Network inducibility is almost neutral
to GAL2 and GAL4 dosage. In both a and b, the thick solid lines represent
the best fit of the model described in section 3.4 to the 5 different inducibility
profiles shown in these two figures.

3.5.2 Fitting procedure to the analytical model and
best fit results

We determined the set of parameters that best describes the data by con-
fronting the measurements with the predictions of the model described in
section 3.4 using a Bayesian inference approach [49]. Briefly, we assumed
that for a given set of parameters, the likelihood of observing each measure-
ment follows a normal distribution centered on the value indicated by the
model and with an estimated uncertainty of 10% which is representative of
the repeatability of the experiments. Applying Bayes theorem, this defines
a distribution over parameter space where each parameter set gets weighed
according to its likelihood of representing the data. We sampled this dis-
tribution using a Metropolis-Hastings algorithm, which allowed us to obtain
estimates of the parameter set that has the highest likelihood of being a good
description of the data as well as corresponding uncertainties.
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Parameter Sampling parameters
symbol unit starting point jump width min max
K2 proteins 1000 200 0.1 4000
Kg proteins 0.03 0.01 0.002 1
K3 proteins 2.0 0.5 0.1 10
K80 proteins 8.0 0.5 0.3 200
K4 proteins 1.0 2.5 0.1 200
µ - 0.50 0.25 0.05 20
ν - 1.0 0.20 0.05 20
α - 0.85 0.02 0.04 20
β - 5.0 0.5 0.05 50
η - 1.5 0.2 0.05 20

Table 3.2: Summary of the parameters used in the fitting procedure. Start-
ing point indicates the initial value used in the Metropolis Hastings proce-
dure [49]. “Jump width” is the standard deviation of the normal distribution
used to create new targets and “min” and “max” represent imposed hard
boundaries beyond which sampling was not allowed.

The sampling algorithm was run by following 10 independent Markov
chains starting from the point indicated in Table 3.2. For each parameter,
normal distributions with widths as indicated in the same table and centered
in the previous point were used as jump distributions. We also imposed lower
and upper bounds as indicated in that table but the chains stayed away from
the boundaries except in the case of K2, which we relate to the fact that
the experimental system does not exhibit much sensitivity to changes in the
dosage of GAL2 in the conditions explored. Each chain was followed for
10,000 iterations and only the second half of the simulations was used to
draw inferences.

In Figure 3.11, we show the inferred distributions for each parameter and
in Table 3.3 we report first order statistics that describe the inferred values
for each fit parameter.
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Parameter Inferences
symbol unit mode mean standard deviation
K2 proteins 600 1700 1000
Kg proteins 0.052 0.040 0.008
K3 proteins 4.1 2.9 0.7
K80 proteins 8 8 2
K4 proteins 2 8 6
µ - 0.9 0.6 0.2
ν - 1.3 1.5 0.2
α - 0.85 0.82 0.02
β - 6.1 6.6 0.7
η - 1.6 1.8 0.2

Table 3.3: Summary of the inferred parameters statistics.

3.5.3 Combinatorial exploration of gene dosage varia-
tions

To explore the degree of dosage compensation in the GAL network, we mea-
sured the inducibility profiles of all 16 different strains, grouped the mea-
surements in 4 different dosage-perturbation orders depending on how many
genes had their dosage halved, and compared the profiles to one another
(Figures 3.12). The strongest second-order compensation was observed when
both GAL3 and GAL80 were dosage-perturbed in the same strain. At the
third-order, irrespective of the second-order genetic background on which the
dosage of a third gene was reduced, halving the dosage of GAL3 (GAL80 )
always decreased (increased) the inducibility levels. On the other hand, vary-
ing the dosage of GAL2 had a neutral effect on inducibility and halving
the dosage of GAL4 decreased it slightly. The fit to our model based on
the measurements on the wildtype and first-order dosage-perturbed strains
(solid lines in Figure 3.10) reasonably predicts how most higher order dosage
perturbations to the GAL network affect the cellular inducibility profiles
(Figure 3.12) indicating the usefulness of the chosen modeling approach as a
framework for describing the observations.
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Figure 3.11: Metropolis-Hastings samples of parameter values according to
their likelihood of describing the experimental data, following a Bayesian-
inference approach [49].

3.5.4 Network-dosage invariance

We uncovered the level of network-dosage compensation in the system when
we analyzed the inducibility profile of the fourth-order hemizygous strain in
comparison to the one of the wildtype strain. We observed similar inducibility
levels for the two strains, implying the presence of network-dosage invariance
in the GAL network even in the absence of volume-mediated compensation
effects (Figure 3.13).
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Figure 3.12: Systematic dosage variations and network-dosage compensation.
The color of each filled circle represents the network inducibility level for a
specific galactose concentration (0.025− 0.4 %w/v). Inducibility is quantified
by measuring the fraction of ON-cells in a bimodal population. The rect-
angular, color-coded bars reflect the predictions of the model based on the
best fit to the data presented in Figure 3.10. The genetic background of each
strain is specified by a square at its immediate left. Each big square con-
tains four subsections that represent the four regulatory genes of the GAL
network (top-left: GAL2, top-right: GAL3, bottom-left: GAL4, bottom-
right: GAL80 ). Grey (white) color marks the presence of two (one) copies
of a specific gene. A line between two strains indicates that the two genetic
backgrounds differ by a single copy of a specific gene and the color of the
line codifies that gene (blue for GAL3, red for GAL80, green for GAL2, and
orange for GAL4 ).

3.5.5 Contribution of each gene

To show, in a concise fashion, the contribution of each regulatory gene in
affecting wildtype inducibility levels, we quantified the average contribution
of the second copy of each regulatory gene to network inducibility by cal-
culating two quantities associated with each gene. We computed both the
mean deviation (∆) and mean squared deviation (χ2) of the fraction of ON
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Figure 3.13: Similarity between the inducibility profiles of the wildtype strain
(black) and the strain containing one copy of each regulatory gene (gray):
the inducibility curve is robust to the variation in network dosage. The thick
solid lines represent model predictions.

cells at a given galactose concentration after having halved the copy number
of a given gene, averaging over all the galactose concentrations and genetic
backgrounds. Figure 3.14 depicts the importance of GAL3 as an activator
and GAL80 as an inhibitor over the relatively smaller contributions of GAL2
and GAL4 on the inducibility profiles.

The fact that only two of the regulatory genes produce a significant shift in
phenotype when their dosage is altered is reminiscent of what was observed in
the simpler system discussed in Chapter 2 in the sense that it is the operating
point of the network what determines whether a quantitative change in the
rate of production of a gene will have a significant impact on phenotype or
not. In the case at hand one could say that, in some sense, GAL2 and GAL4
are operating in a regime of saturation and therefore the network output is
not affected if their dosage is modified. Interestingly, these genes are known
to be required for the network to be functional: if GAL4 is knocked out the
galactose system cannot turn on [73] and a full deletion of GAL2 leads to
a significant decrease in network inducibility [74]. This indicates that the
property we observed is only local to the state around which the network is
operating.

Regarding the notion of network-dosage invariance these experimental ob-
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Figure 3.14: a, Contribution of the second copy of each regulatory gene
to network inducibility quantified as the squared difference (χ2) between
inducibility levels in strains that differ in one copy of the corresponding
gene and averaged across different galactose concentrations and genetic back-
grounds. b, Signed contribution of the second copy of each regulatory gene to
network inducibility quantified as the signed difference (∆) between inducibil-
ity levels in strains that differ in one copy of the corresponding gene and
averaged across different galactose concentrations and genetic backgrounds.

servations suggest that it may be possible to build a network dosage invariant
phenotype into a gene network by using only 2 components. However, up to
this point, it is not clear whether the specific wiring topology of the network
components would also play a role in this or not.

3.6 Minimal conditions required for network-

dosage invariance

In order to investigate the necessary features that can make natural gene
networks display dosage invariance, we considered a set of genes subject to a
common regulation scheme and set to address the general question of what
conditions on the regulation scheme guarantee would the activity of the tran-
scriptional center to be invariant to proportional changes in the transcription
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rates of all the genes involved. Such changes would be produced as an organ-
ism undergoes a change in ploidy, as chromosomes are replicated throughout
cell cycle, in genome-wide duplication or loss events and/or by global noise
in the expression of transcription factors.

3.6.1 Analysis of generic systems

We consider that each gene is transcribed and then translated proportionally
to the activity of its transcription center (a number between 0 and 1 that
might represent, for instance, the fractional occupancy of active promoter
sites), the proportionality constant being the maximal transcriptional rate
associated with the gene. We assume that all proteins are effectively de-
graded at the cell-division rate (γ), thinking about a situation in which the
lifetime of the proteins is much longer than the cell-division time. We further
consider that proteins generated off each gene interact with each other on fast
timescales and that this interaction defines the state of the transcriptional
center. Finally, we consider a mean field approximation in the sense defined
in Section 3.4.3.

Under these conditions, we describe the time evolution of the concentra-
tions of the relevant proteins by the following set of differential equations:

dx1
dt

= θ1f(ρ, x1, . . . , xN)− γx1
...

dxN
dt

= θNf(ρ, x1, . . . , xN)− γxN

(3.13)

In these equations, xi represents the average total concentration of the
protein coded by the i -th gene, θi is the transcriptional strength associated
with it, γ is the dilution rate, ρ is some external control parameter (v.g.,
galactose in the case of GAL network) and f(ρ, x1, . . . , xN) is a dimensionless
quantity that takes values in [0, 1] and represents the activity level of the
transcriptional system under consideration given a background of protein
concentrations x1, . . . , xN . We can think that f represents the fraction of
active promoter sites. Under the context of this framework, one approach to
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formalize the question we are interested in addressing is to ask: what family
of functions f representative of biochemical interactions describe systems in
which the steady state value of f is invariant to proportional changes in all
the θs for a wide range of the control parameter ρ (i.e., exploring the full
range of values of f , so as to get an inducible system).

One-dimensional case

Let’s first consider the simplest possible case: a network with just one gene.
At steady state, we have

θf(ρ, x) = γx (3.14)

Mathematically, in order for a function to be invariant with respect to a
variable, its derivative with respect to that variable has to be zero. Taking
the derivative of the above expression with respect to θ we get

f + θ
∂f

∂x

dx

dθ
= γ

dx

dθ
(3.15)

from where we obtain that

df

dθ
=
∂f

∂x

dx

dθ
=

f ∂f
∂x

γ − θ ∂f
∂x

. (3.16)

We conclude that for the system to be invariant for nontrivial fractions
(f 6= 0) we need ∂f

∂x
= 0 at the value of x that solves the steady state equation.

But if the system is to be inducible, we should assume that the value of x
will change as we change ρ and therefore in order to get invariance across
a range of induction conditions we need f to be independent of x, i.e. we
cannot have feedback at all.

This means that the only possible way of getting an invariant system with
just one species is if the system is not auto-regulated, which makes the situa-
tion trivial: if the state of a promoter is not affected by the proteins it codes
for, its fractional occupancy will be invariant to changes in its transcriptional
strength. This situation corresponds to the case of a constitutively regulated
gene. Having more copies of that gene in the cell is not expected to impose
any change in the state of its constitutive promoter.
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Two-dimensional case

Now we consider a network composed of two genes. The system under con-
sideration is represented by the following set of differential equations:

dx1
dt

= θ1f(ρ, x1, x2)− γx1,

dx2
dt

= θ2f(ρ, x1, x2)− γx2
(3.17)

and we are interested in studying how the value of f in steady state will be
affected by proportional changes in θ1 and θ2.

Let’s first note that using the same regulation scheme for the two genes
imposes the condition that at steady state we must have (all variables repre-
sent steady state values from now on)

θ1
θ2

=
x1
x2

(3.18)

which implies that whatever change x1 might undergo, x2 is going to suffer
a proportional modification as well. To study system behavior with respect
to proportional changes in θ1 and θ2, we introduce an additional parameter
δ in the following way: {

(1 + δ)θ1f(ρ, x1, x2) = γx1,

(1 + δ)θ2f(ρ, x1, x2) = γx2,
(3.19)

which allows us to vary the transcriptional rates in a proportional manner
and to explore how the value of f is affected by such changes.

Taking derivatives of both sides of (3.19) with respect to δ, we obtain

θ1f + (1 + δ)θ1

[
∂f

∂x1

dx1
dδ

+
∂f

∂x2

dx2
dδ

]
= γ

dx1
dδ

. (3.20)

Using equation (3.18) relating x1 to x2 at steady state, we can write
dx2
dδ

= θ2
θ1

dx1
dδ

and plugging this expression into (3.20) we can solve the resulting

equation for dx1
dδ

:

dx1
dδ

=
θ1f

γ − (1 + δ)
(
θ1

∂f
∂x1

+ θ2
∂f
∂x2

) (3.21)
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where everything is evaluated at steady state. This implies that the change
in f due to some small change in δ is proportional to

df

dδ
=

∂f

∂x1

dx1
dδ

+
∂f

∂x2

dx2
dδ

=

(
θ1

∂f
∂x1

+ θ2
∂f
∂x2

)
f

γ − (1 + δ)
(
θ1

∂f
∂x1

+ θ2
∂f
∂x2

) . (3.22)

We conclude that for the system to be invariant with generality we need
to satisfy

θ1
∂f

∂x1
+ θ2

∂f

∂x2
= 0 (3.23)

at steady state, but this implies that the signs of ∂f
∂x1

and ∂f
∂x2

have to be
different; i.e. we need one activator and one inhibitor.

Therefore, a gene circuit with two components that are regulated by the
same transcriptional machinery requires components of opposite sign for the
activity of the system to be invariant to network dosage. Contrary to the
one-dimensional case, the genes here do not have to give up their feedback
regulation schemes. This describes a minimal condition necessary to build
dosage-invariant phenotypes into gene networks.

3.6.2 Topology requirements on two-dimensional sys-
tems

To further explore if certain wiring topologies of 2-component generic net-
work configurations would make it easier or harder for the cells to display
dosage invariance, we performed numerical investigations on the possible
network topologies in which an activator and an inhibitor are controlled by
similar transcriptional machineries and analyzed their inducibility properties
(Figure 3.15).

In the context of the proposed modeling framework, each interaction
topology is represented by a 4-parameter functional form defining the re-
lationship between the fraction of transcriptionally active cells (f) and the
total concentrations of the activating (a) and inhibiting (i) agents. We con-
sider that each one of these agents has a typical scale of action related to
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parameters Sa and Si and an effective nonlinearity around that point quan-
tified by parameters α and β following the functional forms described below.
We also consider the presence of an external inducing agent, g, that essen-
tially affects the scale of action of the activator.

In the network configuration at the left of Figure 3.15a the activator
indirectly activates transcription by regulating the effective activity of the
repressor, which directly inhibits transcription, giving rise to the functional
form

f =
1

1 +
[

Sii
1+(Saga)α

]β . (3.24)

The activator could in principle directly enhance transcription, giving
rise to an alternative network topology as depicted in the middle panel of
Figure 3.15a. In this case, the positive and the negative feedback loops run
in parallel to each other and there is no interaction between the activator and
inhibitor. The corresponding functional relationship could be parameterized
as

f =

[
1

1 + (Saga)−α

] [
1

1 + (Sii)β

]
. (3.25)

Yet another network configuration would be achieved if the inhibitor gave
up its direct repressor role and the activator assumed a direct activator func-
tion (Figure 3.15a, right panel), leading to

f =
1

1 +
[

Saga
1+(Sii)β

]−α . (3.26)

We randomly sampled the parameters characterizing these forms over
large ranges to obtain numerical inducibility curves corresponding to the
networks carrying one or two copies of the network genes. In order to do this
we computed numerical approximations to the dynamical system represent-
ing the evolution of the overall concentrations of activator (a) and inhibiting
(i) agents according to a modeling scheme analogous to that described in
section 3.4.3, i.e. we numerically solved the equations{

ȧ = θa [λ+ (1− λ)f(ρ, a, i)]− γa
i̇ = θi [λ+ (1− λ)f(ρ, a, i)]− γi

(3.27)
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Figure 3.15: a, Schematics of the different generic network topologies ex-
plored. Blue and red circles represent activating (a) and inhibiting (i) agents,
respectively, in all 3 networks. Dashed blue arrows denote the transcrip-
tional production of the network components. The green square represents a
transcriptional center. Pointing red arrows show direct activation while the
blunt red arrows represent inhibition. b, For each configuration depicted in
a, parameters were randomly sampled from a large range of values and fed
into the proposed quantitative model to obtain numerical induction curves
corresponding to the network configuration with one or two copies of the
network genes. A proxy for the area between the two curves was quanti-
fied and plotted on the y-axis to represent the degree of dosage-invariance in
the system. The difference between these numerical curves and a reference
induction curve was also calculated and plotted on the x-axis to represent
the ability of the network to be induced in a similar way as the experiment
galactose system described in this Chapter.

over a time interval of 24 h and computed the value of f corresponding to
the values of a and i achieved at that point. Under some conditions this
procedure yielded multiple solutions in the case of the network topology pre-
sented in the center column of Figure 3.15; to obtain an average inducibility
level for each galactose concentration we averaged the results across ten ran-
dom initial conditions (a0, i0) distributed uniformly across a range of values
enclosing the possible physiological steady states that a and i could attain
(a0 ∈ [0, θa/γ], i0 ∈ [0, θi/γ]).

For each pair of these numerical curves, we calculated the level of dosage
invariance by integrating the area between the two curves, large areas co-
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rresponding to large penalties to network-dosage invariance, and vice versa
(Figure 3.15b, y-axis). The penalty figures presented in Figure 3.15 are num-
bers proportional to discrete estimates of this area based on finite sampling.

In principle, a high degree of dosage invariance can be observed at sev-
eral different inducibility levels. For example, a biological network always
staying in its OFF state is network-dosage invariant, but it lacks the ability
to respond to signals of any kind. Therefore, it is important to determine if
a dosage-compensated system is also inducible or not. In a similar way as
before, we quantified the relative inducibility levels of our numerical curves
relative to a reference induction profile why measuring the area between the
curves with large differences with respect to the reference curve correspon-
ding to large penalties to wildtype inducibility (Figure 3.15b, x-axis).

A comparative examination of the dot-plots corresponding to each net-
work configuration reveals that the topologies at left and right allow their
host networks to be both dosage-invariant and inducible. The specific inter-
action scheme in the two networks is essential for the systems to display such
a behavior (Figure 3.15, left and right panels). However, the choice between
activator and inhibitor in directly influencing transcription is not essential
as long as the effect of the other is indirect.

The green regions in Figure 3.15b enclose networks that are both dosage-
invariant and inducible (low penalties in both axes). To observe whether
there were further restrictions on these systems we analyzed the distribution
of parameters in these regions (Figure 3.16). The parameter that quanti-
fies the nonlinearity of the interaction between the inhibiting and activating
agents (α in Figure 3.16a and β in Figure 3.16b) was the only one severely
restricted in the values it took, with values following a narrow distribution
centered around 1. This finding suggests a further requirement on the net-
work architecture: the effective stoichiometry of the interaction between the
activating and inhibiting agents has to be 1-to-1 in order to produce a sys-
tem that is both inducible and network-dosage invariant. This can be also
understood by noting that any function of the form f = f(x1/x2) will satisfy
equation (3.23).

74



3. The effect of gene dosage in a complex network of genes

a)

b)

102 103 104 105

Si [a.u.] α

α

β

β

Sa [a.u.]

Sa [a.u.]Si [a.u.]

co
un

ts

102 103 104 105

co
un

ts

0

20
10

30
40
50

0

20
10

30
40
50

0

20
10

30
40
50

co
un

ts

102 103 104 105

co
un

ts

54321 54321

co
un

ts

co
un

ts

50

100
150

200

0

0

20
10

30
40
50

0

20
10

30
40
50

0

20
10

30
40
50

50

100
150

200

0

co
un

ts

102 103 104 105

co
un

ts

54321 54321

Figure 3.16: a, For the left configuration in Figure 3.15, histograms of the
parameter values corresponding to the green region shown in that figure,
where the system is both inducible and network-dosage invariant. b, As
in a but for the right configuration shown in Figure 3.15. In addition to
the topology requirement, a 1-to-1 stoichiometric interaction between the
activating and inhibiting agents is essential to display a system that is both
inducible and dosage-compensated at the network level.

3.6.3 Relationship to the GAL network

We note that the GAL system satisfies the requirements described in this
section: the interaction circuitry (Figure 3.1) between its activator (GAL3 )
and inhibitor (GAL80 ) indeed accommodates the topology depicted in the
left panel of Figure 3.15. Regarding the stoichiometry requirement, it has
been experimentally shown that GAL3 and GAL80 share a 1-to-1 interaction
stoichiometry [75]. These observations further validate our findings about the
minimal set of essential elements that are necessary to build a network-dosage
invariant phenotype into a natural gene network.

3.7 Conclusions

We observed the effect of gene dosage in a phenotype controlled by a complex
genetic network and noted how the dosage of some of the genes had no effect
around the operating point of the system.
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Furthermore, we observed that the system at hand had the special prop-
erty of network dosage invariance, i.e. the phenotype was conserved if the
copy number of all the genes involved was modified in the same way.

We developed a framework for rationalizing these observations and by
analyzing it we identified a volume-independent mechanism responsible from
network-dosage invariance in gene networks. In order for a natural gene
network to display such a behavior, it has to have at least two network com-
ponents: one positive and one negative regulator. These components have to
interact with a 1-to-1 effective stoichiometry and the topology of the under-
lying circuit has to be such that only one of them would directly affect tran-
scription. Even though it is not necessarily true that these requirements will
apply to different quantitative phenotypes, the developed framework could
be applied to the analysis of different situations with minimal modifications.

This type of interaction topology is frequently observed [76–79] in nat-
ural gene circuits due to the abundant nature of sequestration-based signal
transduction schemes in which an active protein is sequestered into an in-
active complex by another protein in the network. Cells might implement
this compensation mechanism when they need to exert extra layers of con-
trol over their phenotypes. Changes in ploidy, fluctuations in the number of
chromosomes during cell cycle progression, global variation in gene expres-
sion, and genome duplication or loss are among the situations that can cause
variations in network-dosage and raise the need for compensation.

In the evolutionary front, this analysis allows one to understand what
network topologies are more likely to maintain or change phenotypes in the
face of genomic duplication events.
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