
Investigation of Bond Graphs for Nuclear Reactor Simulations 
 

by 
 

Eugeny Sosnovsky 
 

B.S. Mechanical Engineering and Physics 
Worcester Polytechnic Institute, 2008 

 
 

Submitted to the Department of Nuclear Science and Engineering 
in Partial Fulfillment of the Requirements for the Degree of 

 
Master of Science in Nuclear Science and Engineering 

 
at the 

 
Massachusetts Institute of Technology 

 
May 2010 

 
Copyright © 2010 Massachusetts Institute of Technology 

All rights reserved. 
 
 
 
 

Signature of Author: ________________________________________________ 
Department of Nuclear Science and Engineering 

May 24, 2010 
 

Certified by:   ________________________________________________ 
Benoit Forget, Ph.D. 

Assistant Professor of Nuclear Science and Engineering 
Thesis Supervisor 

 
________________________________________________ 

Edward Pilat, Ph.D. 
Research Scientist 

Thesis Reader 
 

Accepted by:  ________________________________________________ 
Jacquelyn Yanch, Ph.D. 

Professor of Nuclear Science and Engineering 
Chair, Department Committee on Graduate Students

 





3 

Investigation of Bond Graphs for Nuclear Reactor Simulations 
 

by 
 

Eugeny Sosnovsky 
 

Submitted to the Department of Nuclear Science and Engineering 
in Partial Fulfillment of the Requirements for the Degree of 

 
Master of Science in Nuclear Science and Engineering 

 
May 2010 

 
Abstract 

This work proposes a simple and effective approach to modeling multiphysics nuclear 
reactor problems using bond graphs. The conventional method of modeling the coupled 
multiphysics transients in nuclear reactors is operator splitting, which treats the single physics 
individually and exchanges the information at every time step. This approach has limited 
accuracy, and so there is interest in the development of methods for fully coupled physics 
simulation. 

The bond graph formalism was first introduced to solve the multiphysics problem in 
electromechanical systems. Over the years, it has been used in many fields including nuclear 
engineering, but with limited scope due to its perceived impracticality in large systems. In this 
work, the bond graph formalism is for the first time applied to neutron transport, and coupled to 
heat transfer in a nuclear reactor. Fully coupled 1D diffusion reaction model is derived using 
bond graphs, and the transient solution obtained using a proof-of-concept bond graph processing 
code. The bond graph-based approach to coupled nuclear reactor simulation was shown to be 
accurate and stable. Suggestions are made for the expansion of the approach to larger problems 
and higher fidelity simulations. 

 
Thesis Supervisor: Benoit Forget 
Title: Assistant Professor of Nuclear Science and Engineering 





5 

Acknowledgements 
I would first like to acknowledge and deeply thank my advisor, Professor Benoit Forget, 

for his delicate but immensely helpful support and patience over the course of this project. I do 
not believe I would be able to have the degree of autonomy and creativity that I enjoyed under 
any other advisor, and for that I am endlessly grateful. 

It was well understood from the start, that this research is in its earliest stages, and was 
not yet ready to produce a finished product. For this reason, I would like to acknowledge and 
thank my sponsors over the course of this project. Firstly, the National Academy of Nuclear 
Training for the NANT fellowship that I was awarded. Secondly, the Department of Energy for 
the LDRD grant that was given in the early stages of this research. Lastly, I would like to thank 
the donors that made the Thomson fellowship that I enjoyed possible. I would also like to 
acknowledge and thank Christopher Newman and Glen Hansen of Idaho National Laboratory, 
who helped me frame the project, as well as receive the LDRD grant that made the project 
possible. 

Lastly, I would like to deeply thank my parents, Ray and Olga Hayes, without whose 
support I simply would not have been able to succeed. I must also thank them for taking care of 
Poirot, my pug, whose nonchalant attitude was more of an inspiration to me throughout this 
project than he may ever care to know. And finally, thank you Yana, my fiancé, for the love and 
support you have given me over the years. 





Table of Contents 
Abstract ........................................................................................................................................... 3 
Acknowledgements ......................................................................................................................... 5 
Table of Contents ............................................................................................................................ 7 
List of Figures ................................................................................................................................. 9 
List of Tables ................................................................................................................................ 11 
Nomenclature ................................................................................................................................ 13 
1.  Introduction ........................................................................................................................... 17 

1.1.  Background on Coupled Transient Core Modeling ....................................................... 17 
1.2.  Background on Multiphysics Modeling with Bond Graphs ........................................... 17 
1.3.  Objectives ....................................................................................................................... 18 

2.  Background ........................................................................................................................... 19 
2.1.  Neutron Transport .......................................................................................................... 19 
2.2.  Heat Transfer .................................................................................................................. 22 
2.3.  Neutron-Thermal Coupling ............................................................................................ 27 
2.4.  Bond Graph Formalism Theory ..................................................................................... 30 
2.5.  Bond Graph Formalism Example ................................................................................... 39 

3.  Coupled Neutron and Thermal Diffusion via Bond Graphs ................................................. 43 
3.1.  Thermal Diffusion via Bond Graphs .............................................................................. 43 
3.2.  Neutron Diffusion via Bond Graphs .............................................................................. 51 
3.3.  Coupled Diffusion via Bond Graphs .............................................................................. 57 
3.4.  Multidimensional Multigroup Neutron Diffusion via Bond Graphs .............................. 63 

4.  Bond Graph Processing Code Development ......................................................................... 67 
4.1.  General Algorithm Description ...................................................................................... 68 
4.2.  Symbolic and Numeric Expressions Summary .............................................................. 72 
4.3.  Sorting Procedure Description ....................................................................................... 74 
4.4.  Final Code Description ................................................................................................... 75 
4.5.  Possible Code Acceleration for Large Problems ............................................................ 75 

5.  Benchmark Problems ............................................................................................................ 77 
5.1.  Method of Manufactured Solutions Theory ................................................................... 77 
5.2.  Benchmark Problem Construction ................................................................................. 78 
5.3.  Benchmark Simulation Results ...................................................................................... 80 
5.4.  Conclusions .................................................................................................................... 80 

6.  Summary and Recommendations for Future Work .............................................................. 81 
6.1.  Summary ........................................................................................................................ 81 
6.2.  Recommendations for Future Work ............................................................................... 81 

Appendix A. Bond Graph Processing Code Documentation ........................................................ 83 
Appendix B. BGSD File Format Documentation ......................................................................... 89 
Appendix C. BGSD File Creator Documentation......................................................................... 97 
Glossary ...................................................................................................................................... 101 
References ................................................................................................................................... 107

7 





9 

List of Figures 
Figure 1. Uranium-235 Total Microscopic Cross-Section ............................................................ 29 
Figure 2. Bond Graph Formalism Summary................................................................................. 32 
Figure 3. Series RLC Circuit Schematic ....................................................................................... 39 
Figure 4. Series RLC Circuit Bond Graph Representation ........................................................... 40 
Figure 5. Series RLC Circuit Augmented Bond Graph Representation ....................................... 40 
Figure 6. Discretized 1D Domain ................................................................................................. 44 
Figure 7. Heat Diffusion Bond Graph Representation .................................................................. 46 
Figure 8. Discretized 1D Domain with Flat Thermal Shape Functions ........................................ 47 
Figure 9. Discretized 1D Domain with Flat Neutron Shape Functions ........................................ 52 
Figure 10. Neutron Diffusion Bond Graph Representation .......................................................... 56 
Figure 11. Discretized 1D Domain with Flat Coupled Shape Functions ...................................... 57 
Figure 12. Coupled Diffusion Bond Graph Representation ......................................................... 62 
Figure 13. 1D Slice of a Two-Group Neutron Diffusion Bond Graph Representation ................ 64 
Figure 14. 2D Diffusion Bond Graph Schematic Representation ................................................. 65 
Figure 15. Bond Graph Processing Code Summary ..................................................................... 67 
Figure 16. Benchmark Simulation Results ................................................................................... 80 
Figure 17. Bond Directionality Convention for 2-Port Elements ................................................. 95 
Figure 18. Annotated Bond Graph System Diagram .................................................................... 97 
Figure 19. BGSD_Creator Additional Information Specification Screen .................................... 98 
Figure 20. BGSD_Creator Element Type Selection Screen ......................................................... 99 
Figure 21. BGSD_Creator Expression Entry Screen .................................................................... 99 
Figure 22. BGSD_Creator Bond Directionality Entry Screen .................................................... 100 

 





11 

List of Tables 
Table 1. Range of Application of Modeling Formalisms ............................................................. 31 
Table 2. Causality-Direction Configurations ................................................................................ 32 
Table 3. Bond Variables in Various Physical Domains ................................................................ 33 
Table 4. Basic Elements ................................................................................................................ 34 
Table 5. Basic Elements in Various Physical Domains ................................................................ 39 
Table 6. Series RLC Circuit Equations ......................................................................................... 41 
Table 7. Time-modulated Source Elements .................................................................................. 45 
Table 8. Heat Diffusion Bond Graph Constituent Expressions with Uniform k .......................... 46 
Table 9. Heat Diffusion Bond Graph Constituent Expressions with Heterogeneous k ................ 50 
Table 10. Bond Graph Variables for Finite Volume-Discretized Neutron Diffusion ................... 55 
Table 11. Neutron Diffusion Bond Graph Constituent Expressions ............................................. 56 
Table 12. Modulated and 2-Port Resistors .................................................................................... 60 
Table 13. Signal Bonds ................................................................................................................. 61 
Table 14. Coupled Diffusion Bond Graph Constituent Expressions ............................................ 63 
Table 15. BGSolver Element Types ............................................................................................. 69 
Table 16. BGSolver Expression Types ......................................................................................... 72 
Table 17. Benchmark Problem’s Material and Geometric Properties .......................................... 78 
Table 18. Source, Storage and Junction Element and Expression Type Compatibility ............... 84 
Table 19. Resistive Element Expression and Causality Type Compatibility ............................... 85 
Table 20. Modulated Resistive Element Expression and Causality Type Compatibility ............. 86 





Nomenclature 
In this chapter, all symbols, expressions, notations, abbreviations and acronyms used in 

this text are defined. For symbols that have more than one meaning, all meanings are listed in a 
bullet-point list. 

Mathematical Notation 
Symbol Meaning Expression 

N\  N -dimensional real space  
a S∈  a is a member of set S   
a b≅  a is approximately equal to b  
a b≡  a is defined as b  

xG Vector x G
1

N

N

x

x

⎡ ⎤
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

xG # \  unless declared otherwise 

ix  Element i of vector xG  

A Matrix A 
11 1

1

N
M N

M MN

A A

A A

×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥

∈

⎣ ⎦

A
…

# % # \
…

 
unless 
declared 
otherwise 

ijA  Element ,i j  of matrix A  

ΤA  Transpose of matrix A 

11 1

1

M
N M

N MN

A A

A A

Τ ×

⎡ ⎤
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

A
…

# % # \
…

 

unless 
declared 
otherwise 

xG�  Time derivative of vector xG 
t

∂
=
∂
xx
GG�  

( )f∇ xG  

Gradient of scalar field ( )f xG ; 
unless stated otherwise, the 
gradient is over only the 
geometric space 

( )
1 2 N

f ff f
x x x

Τ
⎡ ⎤∂ ∂ ∂

∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦
xG …  for a 

Cartesian xG 

( ) ( ),f f ,∇ =∇xx y x yG
G G G G

unless stated otherwise 

( ),f∇x x yG
G G  Gradient of a scalar field 

( ,f x )yG G  over only the xG-space ( )
1 2

,
N

f ff f
x x x

Τ
⎡ ⎤∂ ∂ ∂

∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦
x x yG

G G …  
for a 
Cartesian 
xG

( )∇ ⋅ f x
G G  

Divergence of a vector field 
; unless stated otherwise, 

the divergence is over only 
the geometric space 

( )f x
G G

( ) 1 2

1 2

N

N

ff f
x x

∂
x

∂ ∂
∇⋅ = + +

∂ ∂ ∂
f x
G G …  for a 

Cartesian xG 

( ),∇ ⋅x f x yG
G G G  D

)
ivergence of a vector field 
( ,f x y
G G G  over only the xG-space ( ) 1 2

1 2

, N

N

ff f
x x x

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂x f x yG
G G G …  for a 

Cartesian xG 

13 



( )4
ˆˆd f

π
Ω∫∫ Ω  Integral of scalar field ( )ˆf Ω  

over all directions  Ω̂
( ) ( ) ( )

2

4 0 0
ˆˆ sin ,d f d d f

π π

π
ϕ θ θ θΩ = ϕ∫∫ ∫ ∫Ω  

for  in spherical coordinates Ω̂

( )d f
∀
∀∫∫∫ xG  Integral of scalar field ( )f xG  

over volume ∀  
( ) ( )1 1 1

0 0 0

, ,
x y z

x y z
d f dx dy dzf x y z

∀
∀ =∫∫∫ ∫ ∫ ∫xG  

for a Cartesian xG 

S
dSf∫∫w  Surface integral of quantity f  

over a surface S  S S
dSf d= ⋅∫∫ ∫∫ S f

JJG G
w  

( )a
f  Expression f  evaluated while 

holding a constant  

0f  Initial value of quantity f  ( )0 0f f t= =  
∀1 For all 1i 6∀ ∈ …  means “for all i from 1 to 6” 

⋅x yG G Scalar/dot/inner product of 
vectors x and G yG 1

N

i i
i

x y
=

⋅ = ∑x yG G  for Cartesian x and G yG 

Latin Symbols 
Symbol Meaning 
A Cross-sectional area 

jA  Mass number of isotope j 
b
G
 Vector of bond variables 

c Precursor concentration 
pc  Specific heat at constant pressure 
vc  Specific heat at constant volume 

Co Neutron confusion coefficient 
D Neutron diffusion coefficient 
E Neutron energy 
e Effort 
f  Flow 
h Specific enthalpy 
J  Current density 
k Thermal conductivity 
mG  Vector of modulating variables 
N  Number of neutrons 

bN  Number of bonds in the system 
e N Number of bond graph elements in the system 
jN  Number density of isotope j 

n Neutron density 
nG Vector of numeric variables 
o Thermal resistivity 

                                                 
1 Different from italicized ∀ , which means “volume.” 

14 



P 
⋅ Power 
⋅ Pressure 

p Generalized momentum 
exs  External neutron source 

T  Temperature 
t Time 
U  Thermal energy 

intU  Total internal energy of the system 
sensU  Sensible energy of the system 
latU  Latent energy of the system 
chemU  Chemical energy of the system 
nuclU  Nuclear energy of the system 

u Thermal energy density 
mu  Specific thermal energy 
vu  Thermal energy density in volume 
v′′uG  Heat flux vector 

V  Velocity 
n V Neutron velocity 

∀  Volume 
v Specific volume 
w Thermal energy generated per fission 

xG 
⋅ Position in geometric space 
⋅ State vector at time t 

Greek Symbols 
Symbol Meaning 
β  Total delayed neutron fraction 

iβ  Delayed group i delayed neutron fraction 
θ  Inclination angle from the z-axis 

dθ  Inclination angle from the z-axis of the direction vector 
pθ  Inclination angle from the z-axis of the position vector 

λ 
⋅ Decay constant 
⋅ Eigenvalue 

iλ  Delayed group i decay constant 
μ  Angle cosine 

0μ  Scattering angle cosine 
0μ  Mean scattering angle cosine 

ν  Average number of neutrons born per fission 
ρ  Mass density in volume 

jσ  Microscopic cross-section of type j 
jΣ  Macroscopic cross-section of type j 

15 
 



ϕ ⋅ Angular flux 
⋅ Azimuthal angle 

dϕ  Azimuthal angle of the direction vector 
pϕ  Azimuthal angle of the position vector 

φ Scalar flux 
( )Eχ  Spectrum function 
( )f Eχ  Prompt fission neutron spectrum function 
( )di Eχ  Delayed group i neutron spectrum function 

Ω̂ Direction unit vector 

ˆdΩ 
Differential element of the direction space 

( )ˆ sin d d dd d dθ θ ϕΩ =  

Abbreviations 
eaning Abbreviation M

AE Algebraic Equation 
BGS Bond Graph System 
BGSD escriptor Bond Graph System D
CAS Computer Algebra System 
DAE Differential-Algebraic Equation 
FEA Finite Element Analysis 
JFNK rylov Jacobian-Free Newton-K
MMS Method of Manufactured Solutions 
MOL Method Of Lines 
ODE Ordinary Differential Equation 
PDE Partial Differential Equation 
PIDE Partial Integro-Differential Equation 
SCAP Sequential Causality Assignment Procedure 
SME Symbolic Math Engine 
SMT Symbolic Math Toolbox 

16 



1. Introduction 
The important physics for reactor simulation include neutron transport, thermal 

hydraulics and mechanical response, which are all inherently strongly coupled. Most current 
efforts typically only model a single physics where the coupled data is determined externally. 
This is an imperfect approach, particularly for transient analysis, because the strong 
interdependence of the physics involved creates stability and accuracy issues. (Ref. [1]). The 
inability to accurately predict transients under accident scenarios is the primary reason for highly 
conservative safety limits imposed on reactors. Due to computational limitations, this approach 
was employed for many years. Therefore, there is a need for faster, more accurate fully coupled 
codes capable of handling coupled transient systems. The introduction of such codes would 
allow reducing the safety margins on reactor operation and manufacturing, and increase 
predictive capabilities for reactor simulations. 

A similar single physics approach was used in electromechanical systems until a new 
formalism was proposed and developed by Henry Paynter of MIT in the 1960s (Ref. [2]). This 
formalism is known as Bond Graphs, and it is a way of representing engineering systems as 
combinations of storage elements (capacitive and inertial), resistive elements, and junction 
elements, connected by bonds which transfer energy (or a similar conserved quantity) between 
the elements. 

Bond graph formalism has never been applied to the simulation of coupled multiphysics 
in nuclear reactors. In this work, this approach is developed, and the feasibility of such approach 
is investigated. 

1.1. Background on Coupled Transient Core Modeling 
Neutron-induced fission in nuclear reactors is the main source of heat in the system. Heat 

travels through the system, and in time, adjusts the temperature field in the reactor. Macroscopic 
neutron cross-sections are affected by temperature; the cross-sections themselves determine the 
scalar neutron flux field in the nuclear reactor. This field, in turn, determines the fission reaction 
rate, which determines the heat generation. 

The physical system is clearly tightly coupled, however, each individual type of physics 
is complicated enough to only be analyzed individually. This approach is known as operator 
splitting, and is the basis of most coupled nuclear reactor transient analysis. However, operator 
splitting has strong associated computational limitations, and so there is significant interest in the 
field to move away from operator splitting and towards fully coupled simulation. 

The approach proposed in this work for doing so is summarized in the next section. A 
more detailed discussion of the physical nature of the coupling in nuclear reactor simulation is 
given in section 2.3 (p. 27). 

1.2. Background on Multiphysics Modeling with Bond Graphs 
As mentioned above, bond graph formalism is a technique for modeling engineering 

systems as combinations of connected elements. Bond graphs were originally introduced for 
mechatronics, but over time grew from a comprehensive methodology to model mechatronic 
systems into a complete research field, concerned with modeling mechanical, electrical, 
magnetic, hydraulic, thermal, and even optical and financial systems. Bond graphs have been 
used for modeling various field problems, such as thermal diffusion, but have never been applied 
to neutron transport. 

17 



18 

The basic idea of modeling a system with bond graphs is to represent it using bond 
graphs, and then to apply a bond graph processing algorithm to the resulting bond graph system. 
This algorithm results in the formulation of the state derivative vector, which can then be 
integrated to obtain full information about the system’s dynamics. 

The bond graph processing algorithm is rigorous enough to be automated; however, there 
exists no available code capable of processing large, nonlinear and automatically generated bond 
graph systems. Such a code would need to be developed to model nuclear reactors using bond 
graphs. A detailed description of the bond graph formalism, the bond graph processing algorithm 
and other related material is provided in sections 2.4 (p. 30) and 2.5 (p. 39). 

1.3. Objectives 
As stated above, bond graph formalism has never been applied to neutron transport, and 

therefore to neutron transport and thermal hydraulic coupling. Furthermore, there currently exists 
no available bond graph processing code powerful enough to process the bond graphs that may 
arise from modeling the nuclear reactor multiphysics. For these reasons, to explore the feasibility 
of using bond graphs to model nuclear reactors, the following objectives need to be 
accomplished: 
1. To identify a method to represent neutron diffusion via bond graph formalism. 
2. To identify a method to couple neutron diffusion and thermal diffusion via bond graph 

formalism. 
3. To develop a code fit for automatic processing of systems modeled via bond graph 

formalism. 
4. To construct and run a benchmark and draw conclusions about the method’s feasibility. 



2. Background 
Several different types of physical effects take place in nuclear reactors. They include 

neutron transport, fuel depletion, (Refs. [3-5]), one and two-phase fluid dynamics, (Refs. [6,7]), 
heat transfer in fluids and heat diffusion in solids (Refs. [6,8]), materials stress mechanics (Ref. 
[9]), materials degradation under irradiation and materials chemistry (Ref. [10]). 

Fundamentally, all these phenomena interact with each other, and therefore can be 
considered coupled.2 This essentially means that changing the properties or the dynamics of one 
or more of the phenomena directly or indirectly affects all others. However, this coupling can be 
very weak; for example, the dynamics of the materials degradation under irradiation very weakly 
affect the thermal conductivity of the fuel material. For this reason, by inspection of the 
references above, these physical effects are generally all treated separately. 

The important physics in transient safety analysis of nuclear reactors are the ones that 
occur over time scales from milliseconds to several hours, but not longer. Of the list above, these 
include neutron transport, fluid dynamics and related heat transfer phenomena, and, if accounting 
for materials failure, the materials stress mechanics. In this work, neutron transport and heat 
transfer are considered; this occurs under the implicit assumption that the materials do not fail 
and therefore the reactor geometry does not change, except possibly under thermal expansion. 
This is a typical approach in modern reactor analysis. (Ref. [11]). 

In this chapter, the physics and common numerical approaches to these phenomena are 
first discussed individually in sections 2.1 and 2.2, followed by the discussion of the nature and 
mathematics of their coupling in section 2.3. The purpose of this work is to apply the bond graph 
formalism to modeling these phenomena, so a detailed introduction to bond graph formalism 
then follows in section 2.4. An example of application of bond graph formalism is then provided 
in section 2.5. 

2.1. Neutron Transport 
Typical assumptions in neutron transport analysis are (Ref. [3]): 

− Neutrons can be treated as point particles with no wave-like quantum mechanical effects, 
which is valid on the macroscopic scale considered. 

− High enough neutron density for the deterministic approach to be valid, which holds for at-
power nuclear reactor, with the neutron density on the order of 14 310 n cm . 

− No neutron-to-neutron interactions. Valid because atom density is on the order of 23 310 a cm , 
which is much greater than the neutron density on the order of 14 310 n cm . 

− Collisions are well-defined 2-body events which occur instantaneously. This is an 
experimentally validated fact for ( ),n a  collisions for any nuclide a.  

− Between collisions, neutrons stream with constant velocity. Valid because neutrons are 
neutral elementary particles, which only undergo weak nuclear, strong nuclear and 
gravitational interactions. 

− Material properties are unaffected by neutron interactions with the nuclides. Valid because of 
time scales considered; if depletion time scales were considered, macroscopic cross-sections 
would vary. 

Additionally, as discussed above, in this work completely stationary geometry and 
constant material composition in solids is assumed. Material composition in fluids can still vary, 

                                                 
2 Italicized terms are defined in the  chapter, p. 101. Glossary

19 



due to the motion of the fluid. In this section, the temperature dependence of the macroscopic 
cross-sections is neglected; thermal feedback is discussed in section 2.3. Additionally, both 
prompt and delayed neutron productions from all precursor groups are assumed to be isotropic. 

Under all of the above assumptions, the neutron transport partial integro-differential 
equation (PIDE) becomes Eq. (2.1). The 6-precursor group delayed neutron precursor equations 
become Eqs. (2.2) (Ref. [5]): 

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 4

0 4

6

1

1 ˆ ˆ ˆ ˆ, , , , , , , , , ,

ˆ ˆ ˆˆ , , , , ,

ˆˆ1 ,
4

1 ˆ, , , ,
4

t
n

s

f
f

di i i ex
i

t E t E E t E
V E t

dE d E E t E

E
dE d E E t E

E c t s t E

π

π

ϕ ϕ ϕ

ϕ

χ
β ν ϕ

π

χ λ

, , ,

π

∞

∞

=

∂
= − ⋅∇ −Σ +

∂

′ ′ ′ ′ ′ ′+ Ω Σ → → +

′ ′ ′ ′ ′ ′+ − Ω Σ +

+ +

∫ ∫∫

∫ ∫∫

∑

x Ω Ω x Ω x x Ω

x Ω Ω x Ω

x x Ω

x x Ω

G G G G

G G

G G

G G

 (2.1) 

( ) ( ) ( ) ( ) ( ) ( ),0 4
ˆˆ, , , , , ,   i i f i i ex ic t dE d E E t E c t c t i

t π
β ν ϕ λ

∞∂ ′ ′ ′ ′ ′ ′= Ω Σ − + ∀
∂ ∫ ∫∫x x x Ω x xG G G G � …, 1 6=

G  (2.2) 

using the following notation3: 
t Time 
xG Position in geometric space 
E Neutron energy 
Ω̂ Direction unit vector 

( )ˆ, , ,t Eϕ x ΩG  Angular flux density in energy4 

dE Energy differential 
ˆdΩ Differential element of the direction space 
( )nV E  Neutron velocity of a neutron with energy E 
( ),t EΣ xG  Macroscopic total cross-section 
( ),f EΣ xG  Macroscopic fission cross-section 

( ˆ ˆ, ,s E E′ ′ )Σ → →x Ω ΩG  Double differential macroscopic scattering cross-section 

( )4
ˆˆd f

π
Ω∫∫ Ω  Integral of scalar field ( )ˆf Ω  over all directions  Ω̂

( )Eν  Average number of neutrons born per fission caused by neutron 
with energy E 

( )f Eχ  Prompt fission neutron spectrum function 
( )di Eχ  Delayed group i neutron spectrum function 

β  Total delayed neutron fraction 
iβ  Delayed group i delayed neutron fraction 

                                                 
3 All symbols, mathematical expressions, acronyms and abbreviations used in this work are described in the 

 chapter, p. 13. Nomenclature
4 Note: angular neutron flux density in energy and external angular neutron source density in energy are 

both densities in the entire 7-phase space: they are densities in angle, energy, geometric space and rates in time. 
However, the terminology used here is the standard terminology and notation used to denote these quantities. 

20 



iλ  Delayed group i decay constant 

( )ˆ, , ,exs t Ex ΩG  External angular neutron source density in energy 
( ),ic t xG  Delayed group i precursor concentration 
( ), ,ex ic t x� G  Delayed group i external precursor concentration source 

The external neutron source exs  is a partially physical quantity – in certain reactors, 
external sources are used for start-up and other purposes. The external precursor concentration 
source ,ex ic� , however, is a nonphysical quantity, introduced in the equation only to be used as a 
corrective source if the method of manufactured solutions (MMS) is used. 

In this text, a significantly simplified neutron transport model is considered. A model this 
simple is inapplicable except for a preliminary analysis of real nuclear reactors. However, it can 
be used to test the potential of using the new approach explored in this work, thus making the 
simplified model ideal for a proof-of-concept study. The simplified model used in this text is a 
1D one-group neutron diffusion model with no delayed neutrons. The underlying additional 
assumptions for this simplified model are: 
– Neutron scattering is linearly anisotropic or fully isotropic. 
– All fission-born neutrons are prompt. 
– All macroscopic cross-sections in the model are one-group, constructed using an appropriate 

energy condensation technique (Ref. [4]). 
– The reactor geometry is that of an infinite slab reactor, thus reducing the problem to one-

dimensional. 
The resulting 1D one-group neutron diffusion equation is: 

 ( ) ( ) ( ) ( ) ( ) ( ) (, , , ,f an t x J t x x t x x t x s t x
t x

ν φ φ∂ ∂
= − + Σ −Σ +

∂ ∂
),ex  (2.3) 

using the following notation5: 
( ),n t x  Neutron density in 3D geometric space 
( ),t xφ  One-group scalar flux 
( ),J t x  Scalar net current density in the x+  direction 
( )f xΣ  One-group macroscopic fission cross-section 
( )a xΣ  One-group macroscopic absorption cross-section 
( ),exs t x  Neutron source density in 3D geometric space 

Here all relevant quantities have been integrated in energy and angle. ( ,t x)φ  is given by 
the definition of the one-group scalar flux: 

 ( ) ( ), nt x V n t x,φ =  (2.4) 
in which: 

n V One-group neutron velocity 
n is the flux-weighted average neutron velocity, which will be assumed given like the 

one-group macroscopic cross-sections. 
V

Neutron current density ( , )J t x  is given by Fick’s law (Ref. [3]): 

 ( ) ( ) (, ),J t x D x t x
x
φ∂

= −
∂

 (2.5) 

                                                 
5 From here onward: only quantities previously unused will be defined. 

21 
 



in which: 
( )D x  One-group neutron diffusion coefficient 

( )D x  is also a material property, which can be obtained a

 

ccording to: 

( ) ( ) ( ) ( )( )0

1
3 t s

D x
x x xμ

=
Σ − Σ

 (2.6) 

in which: 
( )t xΣ  One-group macroscopic total cross-section 
( )s xΣ  One-group macroscopic scattering cross-section 
( )0 xμ  Mean scattering angle cosine 

( )t xΣ  and ( )s xΣ  are both data which can be assumed to be given. ( )t xΣ  can also be 
related to other macroscopic cross-sections: 

( ) ( ) ( ) ( ) ( ) ( )t s a s c fx x x x x xΣ = Σ +Σ = Σ +Σ +Σ  (2.7) 
in which: 

( )c xΣ  One-group macroscopic capture cross-section 
Equations (2.6) and (2 ill generally hold for group-specific quantities as well. The 

mean scattering angle cosine 
.7) w
( )0 xμ  is, in general, a material property and will be assumed to be 

given. For elastic scattering, mean scattering angle cosine from isotope j is approximately given 
by (from Ref. [5]): 

0
2

3j
jA

μ ≅  (2.8) 

in which: 
0 jμ  Mean scattering angle co ins e from isotope j 
jA  Mass number of isotope j 

Using Eq. (2.8), the mean scattering angle cosine ( )0 xμ  can be estimated: 

 ( )
( )

( )
0

all 

2
3 sj

j
j

s

x
Ax

x
μ

⎛ ⎞Σ⎜ ⎟≅ ⎜ ⎟
⎜ ⎟Σ⎝ ⎠

∑  (2.9) 

in which: 
( )sj xΣ  One-group macroscopic scattering cross-section of isotope j 

Equation (2.9) is essentially a weighted average of the macroscopic scattering angle 
cosines from all present isotopes. From the inspection of Eq. (2.8), it is easy to see that ( )0 xμ  is 
dominated by light nuclei, the most important one being Hydrogen-1 with 0 2 3μ = . 

Equations (2.3)-(2.5) summarize the most basic neutron transport model analyzed in this 
text. More complicated models will be discussed, but for proof-of-concept analysis and basic 

del will suffice. 

2.2
coupling, this primitive mo

. Heat Transfer 
Three types of heat transfer occur in typical nuclear reactors. The first type of heat 

transfer is thermal conduction, which occurs due to the diffusion of thermal energy in solids. 
Thermal conduction is the primary mechanism responsible for heat transfer through the fuel and 
the cladding. The second type of heat transfer is convection, which occurs due to the mechanical 
motion and possibly boiling of the fluid in contact with the cladding. Convection is the primary 

22 



mode of heat removal from the fuel elements. Closely related to convection is advection, which 
refers to the transport of thermal energy by the fluid due to the bulk motion of the fluid, once the 
thermal energy has been collected by convection. The third type of heat transfer is thermal 
radiation, which occurs as infrared radiation by the heated cladding surfaces. Thermal radiation 
is almost always neglected in reactor analysis, since the materials are primarily opaque, and 
diffusio

 Secondly, it is the simplest type 
of heat 

possibl
 

 

 system. 
– Nuc

ponents is less common. Reference [13] contains such discussion, 
which 

tween the 4 components of the internal energy can be summarized in the 
following expression: 

n followed by convection dominate the heat removal from the fuel. (Ref. [8]). 
The simplest mode of heat transfer is pure thermal diffusion. In this text, it will be the 

primary heat transfer mode of interest, for several reasons. Firstly, it occurs in fuel, and is 
therefore coupled most directly to neutron transport in the fuel.

transfer to model, and is therefore a good starting point. 
Thermal diffusion without advection occurs only in solids, such as fuel pins. 

Fundamentally, thermal diffusion is an expression of thermal energy balance equation with a 
e external source and a diffusive operator. 
In general the internal energy of a system consists of 4 components:

– Sensible energy: energy associated with the particles’ kinetic energies.
– Latent energy: energy associated with the systems’ materials’ phases. 
– Chemical energy: energy associated with the chemical bonds of the particles in the

lear energy: energy associated with the nuclear bonds in the system’s nuclei. 
Most thermodynamic texts utilize the internal energy in some form (Ref. [12]), but an 

explicit discussion of its com
is summarized below. 
The relation be

int sens lat chem nuclU U U U U= + + +  (2.10) 
in which: 

intU  Total internal energy of the system 
sensU  Sensible energy of the system 
latU  Latent energy of the system 
chemU  Chemical energy of the system 
nuclU  Nuclear energy of the system 

In vast majority of thermodynamic analysis, nuclear energy of the system does not vary. 
Even in nuclear reactors, while nuclei fission and large amount of energy is released, the total 
binding energy in the remaining nuclei is still many orders of magnitude higher than the sensible, 
latent and chemical energy of the system. This is the case because the strong nuclear interaction 
forces are generally much stronger than the electromagnetic interaction forces which primarily 
account for the sensible, latent and chemical energies. (Ref. [14]). Furthermore, while sensible, 
latent and chemical energies can be measured relatively easily, nuclear energy is very difficult to 
measure since it requires splitting atoms. For these reasons, the total internal energy of the 
system is very rarely treated directly. Unless chemical reactions occur in a system, chemical 
energy also does not change. However, sensible energy changes any time the system temperature 
changes, and latent energy changes any time a phase change occurs. Both temperature and phase 
changes occur all the time in a nuclear reactor and other heat exchanging systems. Therefore, 
when analyzing the transient thermodynamics of the system, it is best to concentrate on the 
sensible and latent energies of the system. This combination of sensible and latent energies of the 
system thermal energy of the system:  is called the 

23 
 



 sens latU U U= +  (2.11) 
in which: 

U  Thermal energy of the system 
In practice, and in this text, the quantity referred to as the “internal energy” of the system 

is usually the thermal energy of the system. For that reason, the terms “internal energy” and 
“therm

 e

al energy” will be used interchangeably. 
All of the above quantities are extensive system properties, which means that they 

characterize the system as a whole, and not the internal distribution of ach property within the 
system. The intensive property corresponding to the thermal energy U  is the specific thermal 
energy, which is given by (assuming isotropic homogeneous system in thermodynamic 
equilibrium):  

 mU u m=  (2.12) 
in which: 

mu  Specific internal energy of the system’s material 
m Mass of the material in the system 

Typically, in literature, the symbol u is used to mean specific internal energy. Specific 
internal energies of engineering materials and working fluids are tabulated, and are generally 
functions of the material’s thermodynamic state, that is: 

( ),m mu u P T=  (2.13) 
in which: 

P Pressure 
T  Temperature 

Equation (2.13) is also known as the caloric equation of state (Ref. [7]). The 
thermodynamic state of any substance is fixed (determined) by a pair of any two values of its 
properties. Therefore, instead of defining mu  as a function of pressure and temperature, it can be 
defined as a function of temperature and specific volume. However, thermodynamic tables for 
most substances normally accept pressure and temperature as the inputs, so it is best to leave Eq. 
(2.13) i

pecific internal energy can be related to the volu
n its present form. 
S metric thermal energy density by: 

v m mu u u vρ= =  (2.14) 
in which: 

vu  Volumetric thermal energy density 
ρ  Material density 
v Fluid specific volume 

The specific thermal energy, pressure and specific volume of a fluid are often treated 
using a combined thermodynamic property, called ent

v
halpy: 

mh u P= +  (2.15) 
in which: 

h Fluid specific enthalpy 
Equation (2.15) can, in principle, be used for a solid, but solids do not do significant work 

by expansion, therefore most energy added to or removed from a solid is by heat transfer. 
It should be noted, that while a change in thermal energy is a measurable quantity, 

thermal energy itself is not. (Ref. [12]). However, in a heat transfer analysis of a nuclear reactor, 
and of vast majority of physical systems in general, interest is limited to the temperature field in 

24 



the system as a function of space and time, and possibly in the energy production and transfer 
rates. For this reason, as long as the rate of change of thermal energy density in volume can be 
related to the temperature field in the reactor, the absolute value of the thermal energy density is 
unimpo

, and specific heat at constant volume. Their formal definitions are given below 
(from Ref. [7]): 

 

rtant. 
Equations (2.13) and (2.14) relate the temperature and the volumetric thermal energy 

density of the substance, but are normally more convenient for use with fluids, since fluid 
specific thermal (internal) energies are tabulated in this form. For solids, as well as for 
incompressible liquids and ideal gases, instead of working with specific thermal energies, 
specific heat capacities are used instead. Specific heat capacity is a measure of the amount of 
thermal energy required to change the material’s temperature. Two types of specific heat 
capacity are most commonly found for working fluids and engineering materials: specific heat at 
constant pressure

p
P

hc
T
∂⎛ ⎞≡ ⎜ ⎟∂⎝ ⎠

 (2.16) 

m
v

v

uc
T

∂⎛≡ ⎜ ⎟∂⎝ ⎠
 ⎞  (2.17) 

in which: 
pc  Specific heat at constant pressure 
vc  Specific heat at constant volume 
( )P

f  Expression f  evaluated while holding P constant 
Both specific heats are intensive thermodynamic properties fixed by the state, similarly to 

mu  and 
s

h. 
For most liquids and solids, it is nearly impossible to hold the sub tance at a constant 

volume while heating it, so primarily, specific heat at constant pressure pc  is used. For most 
engineering materials, if P is held constant, enthalpy gain due to thermal expansion is generally 
small compared to the thermal energy gain from heating. The enthalpy loss due to thermal 
compression is also small if the material is being cooled. pc  does not vary considerably with 
temperature, so in most heat transfer analyses, it can be held constant for a solid, and used to 
relate temperature and thermal energy density by: 

 ( )v pu T c Tρ≅  (2.18) 
lAn imp icit assumption in Eq. (2.18) is that pc  is constant for all temperatures T . In 

reality, while pc  may be nearly constant around temperature T , it is likely very different for 
temperatures significantly different from T . For this reason, the thermal energy density of a solid 
material in Eq. (2.18) may actually be significantly different from the true thermal energy 
density. 

Fortunately, vu  itself is not an important quantity for us since the goal is to compute the 
temperature field in the system as a function of time, and to compute the various heat transfer 
and generation rates in the system as functions of time. Temperature field can be related to the 
heat transfer and generation rates by appropriate partial differential equations (PDEs), depending 
on the phase of the substance being modeled. These PDEs are generally all forms of thermal 
energy balance laws, but the ways in which thermal energy is transferred varies depending on the 
substance phase. 

25 
 



As stated above, in this text, primary interest lies in thermal conduction which occurs in 
solids, such as the fuel pins. In a solid, the temperature field can be related to the thermal energy 
density in volume by the thermal energy diffusion equation (Ref. [13]): 

 ( ) ( ) ( ),, , ,v v v exu t t u t
t
∂ ′′= −∇⋅ +
∂

x u x xG G G G�  (2.19) 

in which: 
( ),v t′′u xG G  Heat flux vector 
( ), ,v exu t x� G  External heat source density 

The heat flux vector depends on the temperature gradient. In most engineering materials, 
the linear thermal conductivity model is completely sufficient, which leads to Fourier’s law (Ref. 
[13]): 

 ( ) ( ) ( ), ,v t k T T t′′ ,= − ∇u x xG G G Gx  (2.20) 
in which: 

( ),k TxG  Material thermal conductivity 
Equation (2.19) does not contain a vu  term, only a rate of change of vu  and temperature 

terms are present. For this reason, as long as a base temperature is selected such that Eq. (2.18) 
holds well about that temperature, the above-mentioned discrepancy between the vu  being treated 
in Eq. (2.19) and the true vu  does not make a difference. All properties are functions of 
temperature, not thermal energy density. Inverting Eq. (2.18) yields temperature as a function of 
thermal energy density, assuming ( )vuρ  can be derived from the material properties table: 

 ( ) ( )
1

v v
v p

T u
u cρ

≅ u  (2.21) 

For reasons discussed above, equations (2.19)-(2.21) together provide an accurate model 
for pure thermal diffusion in a solid, as long as the temperature does not depart too far from the 
temperature at which pc  was evaluated. For most engineering materials, as long as the base 
temperature is well chosen, this is a good assumption. Furthermore, while thermal expansion can 
occur in a solid, the rate of change of ( )vuρ  is generally much slower in a fractional sense than 
the rate of change of vu  itself. Therefore, in a solid, a very good simplification, which neglects 
thermal expansion, is given by: 

 ( ) 1
v

p
vT u

cρ
≅ u  (2.22) 

Since 1D geometry is being treated for reasons discussed in section 2.1, Eqs. (2.19) and 
(2.20) reduce to: 

 ( ) ( ) (,, ,v v v eu t x u t x u t x
t x
∂ ∂ ′′= − +
∂ ∂

� ),x  (2.23) 

 ( ) ( ) (, ,v ),u t x k x T T t x
x
∂′′ = −
∂

 (2.24) 

Equations (2.22)-(2.24) form the basic thermal diffusion model used in this text.  
Besides the heat transfer in a solid, which is primarily analyzed in this text, heat transfer 

in a nuclear reactor also occurs in the working fluid. Fluid motion accounts for the convection of 
thermal energy from the cladding to the working fluid, and the advection of the thermal energy 
out of the nuclear reactor by the moving fluid. These processes are generally modeled by coupled 
Navier-Stokes equations, mass conservation equation and the equations of state (Ref. [7]). Heat 

26 



transfer by fluids is not modeled in this text, but it will have to be considered when moving 
beyond the proof-of-concept stage. 

2.3. Neutron-Thermal Coupling 
The two types of physics analyzed in this text are neutron transport and heat transfer. 

Uncoupled neutron transport was discussed in section 2.1, and uncoupled heat transfer was 
discussed in section 2.2. The primary models of interest in this text are the 1D neutron and 
thermal diffusion equations, so coupling for these equations will be treated in this section. 

The purpose of sustained fission in a power reactor is to create a heat generation rate, 
called “fission heat.” Therefore, part of the external source term in the heat balance equation (Eq. 
(2.23)) is the fission heat source, which models the heat generation due to fission reactions. 
Other types of neutron-nucleus reactions, such as radiative capture, also generate heat, but fission 
reactions are the dominant source of heat, so other absorptions are negligible for the purposes of 
heat generation. (Ref. [4]). The heat generation rate density due to fission can therefore be 
written as (temperature dependence of the cross-section is discussed below): 

 ( ) ( ) ( ), , ,,v f fu t x w x T t x= φΣ�  (2.25) 
in which: 

( ), ,v fu t x�  Heat generation rate density in volume due to fission 
w Thermal energy released per fission event 

Typically, in thermal hydraulic analysis of nuclear reactors, ,v fu�  is assumed given as an 
external source, independent of the temperature field in the reactor. From Eq. (2.25), it is clear 
that this approximation is of limited validity, particularly in transient analysis, in which both flux 
and cross-sections are guaranteed to change. 

The more complicated type of coupling present in the coupled nuclear reactor is the 
temperature dependence of the macroscopic cross-sections. 

For the following treatment, only one isotope is assumed; it is easily extendable to 
multiple isotopes by combining their individual contributions to the macroscopic cross-sections. 
Total cross-sections are treated below; however, exactly the same analysis is applicable to any 
type of cross-section. 

A one-group total macroscopic cross-section is given by (from Ref. [4]): 

 ( )
( ) ( ) ( )

( )

0
all 

0

, , ,
,

,

t
j

t

dEN T T E E
T

dE E

σ φ

φ

j j∞

∞

⎡ ⎤
⎢ ⎥⎣ ⎦

Σ =
∑ ∫

∫

x x
x

x

G G

( ),jN TxG

G
G  (2.26) 

in which: 
 Atom (number) density of isotope j at temperature T  

( ),j
t T Eσ  Total microscopic cross-section of isotope j at temperature T  and energy E 
( ), Eφ xG  Scalar flux density in energy at energy E 

The atom densities and microscopic cross-sections depend on temperature, which results 
in the temperature dependence of the one-group macroscopic cross-section. These dependencies 
are for two separate reasons. Consider the following expression for the atom density of isotope j: 

 ( ) ( ),
,

comp
j j k

A comp
m

T
N T NA x N

M
ρ

=
x

x
G

G  (2.27) 

in which: 

27 
 



jNA  Isotope abundance of isotope j 
kx  Molar fraction of element k of which j is an isotope 
AN  Avogadro’s number 

( )comp Tρ  Compound mass density at temperature T  
comp
mM  Molar mass of the compound 

Equation (2.27) assumes that isotope abundances and molar fractions of the elements in 
the compound are spatially homogeneous. As long as xG is within the compound, this is a good 
assumption. 

By inspection of Eq. (2.27), it is clear that the atom density depends on temperature due 
to the temperature dependence of the compound’s mass density. For isotropic materials, like 
most solids in the nuclear reactor, the dependence of density on temperature can be expressed 
using the coefficient of thermal expansion: 

 ( ) ( ) ( )vT T
T
ρ α ρ T∂

= −
∂

 (2.28) 

in which: 
( )v Tα  Material’s volumetric thermal expansion coefficient at temperature T  

Neglecting thermal variation of ( )v Tα , similarly to how thermal variation of pc  was 
neglected in section 2.2, Eq. (2.28) can be integrated to: 

 ( ) ( )0
0 e v T TT αρ ρ −=  (2.29) 

in which: 
0ρ  Material’s mass density at some reference temperature 0T  

0T  Reference temperature about which the equation holds accurately 
For most engineering materials, Eq. (2.29) holds well for a wide temperature range, as 

long as vα  is chosen at an appropriate average temperature. However, at higher temperatures, 
oxide materials can restructure, which can produce a jump in density. UO2 is an example of such 
material; up to 3 zones of different density can exist in a hot fuel pellet. (Ref. [8]). For these 
reasons, Eq. (2.29) is a good starting point, but should be used with caution. 

Regardless of the density relation used, it is well understood that the atom density in a 
solid material is generally weakly, but not negligibly, dependent on temperature. However, the 
stronger dependence of macroscopic one-group cross-section on temperature comes from the 
temperature dependence of the microscopic cross-section on temperature. Consider a sample 
total microscopic cross-section plotted in Figure 1 below. 

28 



 
Figure 1. Uranium-235 Total Microscopic Cross-Section 

(from Ref. [15]) 

Figure 1 clearly shows resonance peaks in the energy dependence of the microscopic 
cross-section. All cross sections of all isotopes exhibit this resonant structure to some degree. 
The reasons are related to the neutron matter wave function constructive interference with the 
standing wave of the nucleus. (Ref. [16]). However, for the present analysis it is sufficient to 
recognize the existence of these peaks, regardless of their physical nature. An increase in 
temperature of the material results in the broadening of these peaks, called Doppler broadening. 
This can be associated with the increased vibration frequencies of the nuclides. Therefore, in 
general, Doppler broadening accounts for an increase in the microscopic cross-sections of the 
material if temperature is increased, and vice versa. (Ref. [5]). 

Few-group macroscopic cross-sections for a reactor are normally generated using a 
variety of homogenization procedures, resonance absorption treatments, and other energy 
condensation techniques. Normally, to generate the coarse-mesh few-group cross-sections, a 
very fine group 1D pin-cell model is first run, which is used to generate the spectrum for a 2D 
lattice calculation. The lattice calculation then generates the spectrum function ( , E )φ xG  for the 
coarse mesh calculations in Eq. (2.26), which results in several few-group cross-section 
functions. (Ref. [5]). This procedure can, in principle, be repeated several times, at different 
temperatures, and the resulting cross-section database interpolated, usually using low-order 
polynomials, to construct an approximate ( ),t TΣ xG  function. A similar approach is taken in most 
operator splitting-type multiphysics code packages, such as Ref. [17]. 

Other approaches to the construction of ( ),t TΣ xG  are also possible; in general, the few-
group cross-section generation is an important and complicated part of reactor analysis. 
However, in this work, the focus will be on the transient coupling of the neutron and heat 
transport, not on the cross-section generation. For that reason, in this text, the temperature-
dependent cross section functions like ( ),t TΣ xG  will be assumed to be given. This is also 
consistent with many benchmark problems, in which the few-group cross-sections are typically 

29 
 



given explicitly. (Ref. [18]). For real reactor analysis, the cross-section generation will have to be 
incorporated in the modeling code; however, this is not part of the present work. 

To summarize: while the atom density dependence on temperature can be modeled and/or 
tabulated relatively easily, the microscopic cross-section thermal dependence, which accounts for 
the bulk of thermal feedback in a nuclear reactor, is far more complicated. For that reason, one-
group macroscopic cross-sections used in this text will be assumed to be given as explicit 
functions; in the future, their construction will have to be incorporated into the model. 

Recognizing the two types of coupling described above, Eqs. (2.3), (2.5), (2.23) and 
(2.24) can be rewritten in their coupled form: 

 ( ) ( ) ( ) ( ) ( ) ( ) (, , , , , , ,f an t x J t x x T t x x T t x s t x
t x

ν φ φ∂ ∂
= − + Σ −Σ +

∂ ∂
)ex  (2.30) 

 ( ) ( ) (, , ),J t x D x T t x
x
φ∂

= −
∂

 (2.31) 

 ( ) ( ) ( ) ( ) (,, , , ,v v f v eu t x u t x w x T t x u t x
t x

φ∂ ∂ ′′= − + Σ +
∂ ∂

� ),x  (2.32) 

 ( ) ( ) (, ,v ),u t x k x T T t x
x
∂′′ = −
∂

 (2.33) 

Equations (2.30)-(2.33), and their corresponding supportive expressions for D, φ and T  
constitute the primary model of interest in this work. More complicated models will be 
discussed, but this 1D one-group coupled thermal and neutron diffusion model will be studied in 
most detail. 

2.4. Bond Graph Formalism Theory 
In this text, nuclear reactor core, the nuclear plant itself, and multiple other engineering 

structures are viewed as dynamic engineering systems. The definition of the word “system” is 
adapted from Ref. [19], and implies that the system is composed of connected interacting parts 
and is conceptually or physically separate from its environment. Examples of dynamic systems, 
not necessarily limited to engineering, include an animal (composed of organs and fluids), a 
financial system, a mechatronic device or a reactor core. The components of larger systems, such 
as the nuclear reactor core which is a component of a nuclear power plant, can be viewed to be 
engineering systems themselves. In theory, this subdivision is nearly endless, and can continue 
down to individual atoms which themselves are physical systems. 

Numerous algorithms exist for constructing and analyzing mathematical models for 
various classes of engineering systems. In this context, a “mathematical model” is a set of 
mathematical relations which can be solved to obtain a meaningful description of the system’s 
dynamic or stationary behavior. This definition is adapted from Ref. [19]. 

Generally, in the analysis of an engineering system, a necessary step is the representation 
of the system via some more or less abstract formalism, from which the mathematical model can 
be derived. (Ref. [19]) Brown (Ref. [20]) refers to these formalisms as “modeling languages.” 
Some examples of these formalisms include: 
− Operational block diagram 
− Electric circuit schematic 
− Kinematic diagram 
− Dynamic schematic 
− Free-body diagram 
− Piping network schematic 

30 



− General schematic diagram 
These formalisms were generally developed for specific types of systems, thus each 

formalism can only cover a specific physical domain. The range of application of the formalisms 
listed above is given in Table 1 below. 

Table 1. Range of Application of Modeling Formalisms 

Formalism Types of systems modeled Physical effects modeled 
Operational block 
diagram 

Directed signal flow systems (i.e., 
automatic control systems) 

All possible in directed signal 
flow systems 

Electric circuit 
schematic 

Electric circuits and networks All present in electric circuits 

Single-body 
diagram 

Bodies under applied forces and 
torques 

Free-body dynamics or loaded-
body stresses 

Kinematic 
schematic diagram 

Rigid-body linkages and mechanisms Rigid-body kinematics (position, 
velocity, acceleration) only 

Dynamic schematic 
diagram 

Rigid-body linkages and mechanisms 
with compliant and damping elements 

Rigid-body dynamics 
(kinematics and loads) 

Piping network 
schematic 

Systems of pipes Pressure, flow rate and thermal 
fluid dynamics 

General schematic 
diagram 

Systems with multiple physical 
domains 

Varies 

 
All of the above formalisms, except for the general schematic diagram, have algorithmic 

procedures for formulating the mathematical models describing the system. For example, the 
implementation of Kirchhoff’s laws or nodal voltage methods results in the mathematical models 
for electric circuits. This is the basis of many codes for circuit analysis, like SPICE. (Ref. [21]) 
As a rule of thumb, the implementation of the more general formalisms is less algorithmic. The 
general schematic diagram is the only formalism out of the ones listed here capable of describing 
multi-domain systems. However, it is not standardized and there exists no formal algorithm for 
formulating equations from a general schematic diagram. For these reasons, the general 
schematic diagrams are primarily only used for illustrating complex systems, and not for actual 
mathematical modeling. 

None of the conventional formalisms, such as the ones listed above, are fit for detailed 
dynamic modeling of mechatronic systems. For this reason, in the 1960s, a new formalism for 
modeling engineering system dynamics was developed by Henry Paynter of MIT. (Ref. [2]) This 
formalism was named the Bond Graph Method, or simply Bond Graphs. 

Over time, the bond graph formalism grew from a comprehensive methodology to model 
mechatronic systems into a complete research field, concerned with modeling mechanical, 
electrical, magnetic, hydraulic, thermal, and even optical and financial systems. (Ref. [20]). In 
this section, the formalism is described in its current form, and it is developed further in the next 
chapters. 

Fundamentally, the process involved in modeling a system via bond graph formalism is 
summarized in Figure 2 below. One can see that the formalism is generally similar to those listed 
above. The main difference is in the first step: the bond graph system is capable of representing 
multiple physical domains, without restriction to a particular type of engineering system. This 
makes the bond graph formalism ideal for multiphysics simulations. 

31 
 



 
Figure 2. Bond Graph Formalism Summary 

A bond graph system (BGS), like the formalisms listed above, completely describes the 
engineering system it models. It does so by representing the system using two types of 
fundamental entities: bond graph elements connected by bonds. The bonds carry bond variables 
between the elements’ ports, and the elements’ constituent equations impose the bond variables 
onto the bonds as functions of time, other bond variables and state variables. 

Every bond in a bond graph system is associated with distinct “effort” and “flow” 
variables. Bonds are typically numbered, for convenience. Effort on bond i is denoted ie , and 
flow on that same bond is denoted if . All efforts and flows in a BGS are referred to in this text as 
bond variables. 

A bond always points from one element to another element. In an augmented bond graph 
system a bond also has an associated causality, which determines which way the bond delivers 
the effort and the flow. A bond graph system without assigned causalities is called acausal. The 
meaning of the direction in which the bond points is explained in detail below; in general, the 
direction of positive flow (of conserved quantity – usually energy) across a bond is in the 
direction the bond points. The four possible configurations of bond direction and causality are 
given in Table 2 below. The direction of the half-arrow (by convention, regular bonds have half-
arrows, and special signal bonds have full arrows) is the direction of the positive flow. The 
direction of the causal stroke (the short mark at the end of the bond) is the direction of causality, 
explained in Table 2. 

Table 2. Causality-Direction Configurations 

Configuration Causality Direction of positive flow 

 
Effort is delivered from A to B
Flow is delivered from B to A Positive flow is from A to B 

 
Effort is delivered from B to A
Flow is delivered from A to B Positive flow is from A to B 

 
Effort is delivered from B to A
Flow is delivered from A to B Positive flow is from B to A 

 
Effort is delivered from A to B
Flow is delivered from B to A Positive flow is from B to A 

 

32 



Generally, causality is not inherently a part of the model, and is instead assigned to the 
bonds in a BGS using an augmentation procedure. Augmentation procedures and signal bonds 
are used in a later part of this text. For now, it suffices to say that augmentation procedures are 
automatic, and require no user input, while signal bonds are special bonds often representing 
nonlinear coupling. The most common and simplest augmentation procedure is SCAP: 
Sequential Causality Assignment Procedure, described in detail in Ref. [19]. It is summarized 
below in this section, following a brief discussion of the bond graph elements. Its usage is 
implied when constructing bond graphs of physical systems throughout this text. 

The most important decision about modeling a new physical domain with bond graphs is 
deciding what the “effort” and “flow” variables represent. In most energy-related domains, these 
choices have long been established, and are summarized in Table 3 below. 

Table 3. Bond Variables in Various Physical Domains 

Domain Effort variable Flow variable 
Mechanical translational Force Velocity 
Mechanical rotational Torque Angular velocity 
Electric circuit Voltage Electric current 
Hydraulic Pressure Volumetric flow rate 
Thermal conduction Temperature Heat flow 

 
This table shows that generally, flow goes from concentrations of higher to lower effort, 

which is how energy transfer occurs. For all of the above physical domains except thermal 
conduction, the following equation also holds: 

 ii iP e f=  (2.34) 
in which: 

iP Power carried by bond i 
i e Effort on bond i 
if  Flow on bond i 

Equation (2.34) does not hold for the choice of variables for thermal conduction as 
described in Table 3, because TU�  (T  – temperature, U�  – heat flow) does not have dimensions of 
power. Rather, the flow variable itself – the heat flow – is the power carried by the bond. For this 
reason, when the thermal bonds were first introduced, they were called pseudo-bonds. (Refs. [22-
24]). An alternative way to represent thermal conduction, and more generally, transient 
thermodynamics, is to use T  as the effort variable, and S  – entropy flow rate – as the flow 
variable. This representation is used in many conventional bond graph texts, such as Refs. 
[20,25]. It is particularly convenient for lumped thermodynamic analysis, in which it has been 
extended to account for both energy and mass conservation using 

�

convection bonds. (Ref. [26]). 
However, the thermodynamic representation is less convenient for treating discretized field 
problems important in nuclear analysis. Therefore, in this text, the pseudo-bond graph approach 
shown in Table 3 is used, because it is simpler and generally easier to work with. 

Table 4 below summarizes the basic types of elements used in this text, along with the 
number of ports they have and the general form of their constituent equations. The specific 
values/functions used in these equations will be discussed further in the text. The notation used 
in this table and in this text is generally adapted from Refs. [19,20], with exceptions in the 
storage element notation and the element numbering. Also, in Ref. [20], the symbol q is used 
instead of 

�
f  to represent flow. 

33 
 



Table 4. Basic Elements 

Element Element 
name 

Type of 
element Constituent equation(s) 

 
Source of 
Effort Source ie A=  

 
Source of 
Flow Source if A=  

 
Inertial 
Element Storage 

( )i l

l i

f I p
p e
=

=�
 

 
Capacitive 
Element Storage 

( )i l

l i

e C q
q f
=

=�
  

Resistive 
Element Damping ( )i ie R f=  or ( )i if G e=  

depending on causality 

1-junction Junction 
1 1

0

i i i k i k

i k

l l
l i

f f f

d e

f+ + − +

+

=

= = = =

=∑

…
 

0-junction Junction 
1 1

0

i i i k i k

i k

l l
l i

e e e e

d f

+ + − +

+

=

= = = =

=∑

…
 

Note: A is a constant. d
1 for bonds directed toward the junction
1 for bonds directed away from the junctionl

+⎧
≡ ⎨−⎩

 

 
Many special elements also exist, a lot of which are described in Refs. [19,20]. Generally, 

they are combinations of the basic 7 elements listed in Table 4 above. They are introduced later 
in the text. Bond graphs with these special elements are analyzed in the same way as bond graphs 
with only the basic elements. 

Here every element type is discussed. All elements are shown in the table in 
integral/appropriate causality. Integral causality is discussed below. 

Source Elements 
Source elements impose either a flow (SF) or an effort (SE) on the bond connected to 

them. This implies that the bonds connected to these elements are automatically assigned the 
causality shown in Table 4. In certain texts, regular source elements can sometimes be time-
modulated, that is, , however, in this work, time-modulated elements are referred to as ( )A A t=
modulated elements, and will be introduced in section 3.3 (p. 57). 

Source elements have exactly 1 bond connected to them, and therefore have exactly 1 
constituent equation associates to them. 

34 



In energy bond graphs, source elements represent the physical inputs of energy into the 
system – either by setting a constant potential (sources of effort) or by imposing a constant 
current (sources of flow). Since the source elements’ imposed quantities are independent of the 
resistance encountered, the sources are potentially capable of putting out infinite power. Thus, in 
energy bond graphs, they represent idealized generalizations, similar to ideal batteries in an 
electrical circuit (SE element) or perfect thermal insulators (SF element imposing zero flow). 

During SCAP, the source elements’ bonds are augmented first, since their causality is 
prescribed. If a causal conflict arises during this assignment, this corresponds to a major 
modeling flaw, like trying to enforce two dissimilar temperatures at one point.  

Storage Elements 
Storage elements are the only elements that have variables associated to them, same way 

bonds do. These variables are called displacement variables for Capacitive elements, and 
momentum variables for Inertial elements. The symbols used for these are conventionally q for 
displacement and p for momentum. These variables are sometimes affiliated with the bond 
connected to the element (Ref. [19]), and not with the element itself, but in this text the storage 
variable iq  (or ip ) corresponds to the storage element iC (or iI). 

A general capacitive element imposes an effort on its bond as a function of its 
displacement. A general inertial element imposes a flow on its bond as a function of its 
momentum. Storage elements have exactly 1 bond connected to them, but have 2 constituent 
equations. One of these equations is algebraic, similarly to all other elements, while the other is 
differential, and relates the bond variable delivered to the element to the displacement or 
momentum of the element. Therefore, the number of differential state equations in a bond graph 
system corresponds to the number of storage elements in integral causality. 

The storage elements in Table 4 are shown in integral causality. This means that each 
element contributes a state variable to the system’s state vector, which means that there will be 
an ordinary differential equation associated with this element. In integral causality, each storage 
element has two associated equations: one differential equation which becomes a state equation 
for the system, and one algebraic equation. For a capacitive element in integral causality, these 
equations are (from Table 4): 

 ( )e C q=  (2.35) 
 q f=�  (2.36) 
We can see that, for a storage element in integral causality, the state derivative is 

integrated in time to evaluate the bond variable enforced by the capacitive element. This is the 
origin of the term “integral causality.” 

Storage elements can also be in derivative causality – in that case, effort e is delivered to 
a capacitive element, and flow f  is delivered to an inertial element (see Table 2 above for 
associated causal strokes). In general, storage elements in derivative causality are much more 
complicated to treat, since while they store a conserved quantity, the bond variable that is 
delivered to them does not serve as a state derivative variable. Instead, to compute their “state” 
variable’s derivative, the time derivative of the bond variable supplied to the storage element has 
to be evaluated. This is the origin of the term “derivative causality.” For a capacitive element in 
derivative causality, Eqs. (2.35) and (2.36) are inverted: 

 ( )1q C e−=  (2.37) 
 f q= �  (2.38) 

35 
 



Equation (2.37) assumes that the capacitive element’s function is invertible; if it’s not, an 
additional algebraic equation which evaluates q implicitly is required. Equation (2.38) is the 
differential equation associated with every capacitive element, but because the element is in 
integral causality, the time derivative term is treated as the known term in the equation. To relate 
the time derivative to other terms in the system, we take a time derivative of Eq. (2.37) and plug 
it into Eq. (2.38): 

 ( ) ( )1 1C e C e
f q

t e
e

− −∂ ∂
= = =

∂ ∂
� � (2.39) 

The time derivative e generally results in making implicit one or more of the state 
equations of the system, since e itself depends on the system’s state. Additionally, the derivative 

�

( )1C e− e∂ ∂  may be a complicated and/or unstable numerically. 
Implicit ordinary differential equations (ODEs) are generally more computationally 

expensive to integrate, since an explicit ODE vector can be turned implicit for a more efficient 
time integration, but the reverse is generally impossible. 

For these reasons, if possible, derivative causality is avoided. In this text, the bulk of the 
work is with BGSs that arise from field problem discretizations, and therefore all storage 
elements end up in integral causality. This is a very significant and useful restriction on the 
nature of problems tackled. 

During SCAP, the storage elements receive their causal assignments (preferably integral) 
immediately after the storage elements receive theirs and the assignments are propagated through 
the junction elements. Derivative causality assignments can happen if either a storage element’s 
causality assignment forces a derivative causality (when propagated through the junction 
elements) onto a storage element, or when an integral causality assignment on a storage element 
propagate the derivative causality onto another storage element. 

Another rare occurrence is what’s called a “bond graph mesh,” described in detail in Ref. 
[20]. In a mesh, attempting to put an integral causality on a storage element can result in a 
contradiction – causalities propagate through the junction elements and contradict each other on 
some bond. This is a case of SCAP failure, and a more complicated augmentation procedure 
becoming necessary. This case, and how to handle it, is described in Ref. [20]; in vast majority 
of physical models, including all models in this text, bond graph meshes do not happen, and so 
we can assume SCAP to always succeed. 

Storage elements can also be multiport, but such storage elements are not used in this 
text. Interested readers are referred to Refs. [19,20]. 

Damping Elements 
Damping elements, or resistive elements, are elements which control the rate of transfer 

and dissipation of the conserved quantity. Resistive elements in general do not have a preferred 
causality: as shown in Table 4, the resistive element can enforce either an effort or a flow. For a 
resistive element without a preferred causality, the following holds: 

 ( ) ( )1R f G f−=  (2.40) 
 ( ) ( )G e R e1−=  (2.41) 
However, physical constraints will sometimes force the algebraic equation to a given 

form, thus only one causality can be written; this happens when the resistive element’s 
constitutive function ( )R f  or ( )G e  is not invertible and so Eqs. (2.40) and (2.41) are undefined. 
This causality restriction is not reflected in the bond graph, but is simply a property of the 
element’s constitutive relation. A modified version of SCAP, described in Ref. [27], allows the 

36 



user to force specific causalities on the resistive elements. This comes at the cost of additional 
algebraic equations accompanying the state derivative vector, thus turning the system of ODEs 
into a system of Differential-Algebraic Equations (DAEs). The addition of algebraic equations 
also happens when causality to resistive elements remain unassigned. SCAP has provisions for 
handling these unassigned elements, and the modified SCAP from Ref. [27] handles those 
elements formally, with the same effect. In the context of this work, the nature of the bond 
graphs handled has no instance of this algebraic loop problem caused by unassigned resistive 
elements, since all BGSs handled are fully causal. 

Multiport resistive elements also exist, and are described in section 3.3 (p. 57). They are 
essentially connected single-port resistive elements with the individual constituent equations 
replaced by several of them, one for every port. It should be noted that resistive elements are, by 
definition, non-conservative – they may dissipate the conserved quantity provided to them. 
Multiport elements are also capable of doing so, and are sometimes called “non-conservative 
couplers.” 

Junction elements 
The junction elements used in this text are the 1-junction and the 0-junction. In general, 

junction elements propagate and distribute the conserved quantity, without storing, generating or 
dissipating any of it, and without impeding its rate of transfer. As with the sources of effort/flow, 
and the capacitor/inertial element, the 1 and 0-junctions are “dual elements.” Specifically, across 
a 1-junction, all efforts add to 0 and all flows are equal, and over a 0-junction, all flows add to 0 
and all efforts are equal. For this reason, sometimes the 1-junction is referred to as the “series 
junction” (a single current over all elements, net potential over the circuit is zero), and the 0-
junction is referred to as the “parallel junction” (the currents entering the node are the currents 
coming out, and the potential drop is the same across all connected parallel branches). For this 
reason, these elements are sometimes denoted by “s-junction” and “p-junction,” respectively. 

The causality requirements on junction elements are stringent: exactly one bond on a 1-
junction may deliver flow to the junction, and, symmetrically, exactly one bond on a 0-junction 
may deliver effort to the junction. So, for example, a source of effort connected to 0-junction 
automatically makes the junction enforce efforts on all other bonds connected to it. The causality 
assignments may thus travel through the BGS’s junction structure, and may in principle conflict, 
if a specific bond graph mesh is encountered.  

Junction elements are by definition multiport elements. In fact, once the augmentation 
procedure is completed, the entire junction structure can be thought of as a large multiport 
junction element. This view was utilized by Rosenberg in an early attempt to sufficiently 
formalize step 2 of the algorithm in Figure 2 – the equation formulation step. (Ref. [28]). The 
algorithm developed in Ref. [28] does not work for nonlinear systems, and so cannot be utilized 
in this text. 

The other two basic junction element types are the transformer (TF) and gyrator (GY) 
elements. These are not used in this work, and are not described in Table 4 above, but together 
with the 7 elements described in Table 4 they form the so-called “9 basic bond graph elements.” 
(Ref. [19]). It is worth noting that some of the 9 basic elements themselves can be viewed as 
combinations of other elements: for example, an appropriately picked SE and GY pair is 
identical to an SF element, and a C and GY pair is identical to an I element. Nonetheless, these 9 
elements are considered the basic building blocks of bond graph models; more complicated 
elements are very frequently combinations or multiport generalizations of the basic 9 elements. 

37 
 



Sequential Causality Assignment Procedure 
The sequential causality assignment procedure, SCAP, is quoted verbatim from Ref. [19]: 

1. Choose any source (SE, SF), and assign its required causality. Immediately extend the causal 
implications through the graph as far as possible, using the constraint elements (0, 1, GY, 
TF). 

2. Repeat step 1 until all sources have been assigned. 
3. Choose any storage element (C or I), and assign its preferred (integration) causality. 

Immediately extend the causal implications through the graph as far as possible, using the 
constraint elements (0, 1, GY, TF). 

4. Repeat step 3 until all storage elements have been assigned a causality. In many practical 
cases all bonds will be causally oriented after this stage. In some cases, however, certain 
bonds will not yet have been assigned. We then complete the causal assignment as follows: 

5. Choose any unassigned R-element and assign a causality to it (basically arbitrary). 
Immediately extend the causal implications through the graph as far as possible, using the 
constraint elements (0, 1, GY, TF). 

6. Repeat step 5 until all R-elements have been used. 
7. Choose any remaining unassigned bond (joined to two constraint elements), and assign a 

causality to it arbitrarily. Immediately extend the causal implications through the graph as far 
as possible, using the constraint elements (0, 1, GY, TF). 

8. Repeat step 7 until all remaining bonds have been assigned. 
… 

There are several situations that can arise when applying causality according to the 
procedure given: 
1. All storage elements have integral causality, and the graph is complete after step 4… 
2. Causality is completed by using R-elements or bonds, as indicated in steps 5-8… 
3. Some storage elements are forced into differentiation causality at step 3… 
 

In this text, only the simple case of “full causality” is encountered, due to the physical 
origin of the bond graphs built. For this reason, we do not have to explicitly run an augmentation 
procedure during the analysis: we only need to know the causalities on the ports of the resistive 
elements, which can be declared manually when building the bond graph. The reason is, upon 
inspection of Table 4, that if we assume integral causality, the equations of all other elements 
except for resistors do not explicitly depend on the causality of the connected bonds. Therefore, 
if we know that a BGS is fully causal in advance, and we know the causality on resistive 
elements’ bonds, SCAP can be omitted. 

The basic elements described in this section can be viewed as generalizations of the 
various equivalence concepts, such as the mass and heat diffusion analogy, the electrical circuit 
analogy used in heat transfer, or the analogy between oscillating mechanical systems and 
oscillating electrical circuits. The roles of the basic elements in several physical domains, 
adapted from Ref. [20], are listed in Table 5 below: 

38 



Table 5. Basic Elements in Various Physical Domains 

Element type Corresponding physical element6 
Electrical circuit Mechanical translational Mechanical rotational 

Source of Effort Voltage source Linear actuator Torque motor actuator 
Source of Flow Current source Linear servo actuator Servo motor 
Inertial element Inductor Mass Flywheel 
Capacitive element Capacitor Linear spring Torsional spring 
Resistive element Resistor Damper Rotational damper 
1-junction In-series wiring No one-to-one correspondence, but the junctions are 

still used to connect other elements 0-junction In-parallel wiring 
 
In continuous systems that first need to be discretized, the elements play a more 

mathematical role, and do not have one-to-one analogies with physical devices. However, in 
discrete physical systems, the one-to-one correspondences exist and allow for direct construction 
of bond graph representations of physical systems. Most engineering systems are combinations 
of discrete networks of devices and continuous fields, and the bond graph formalism can 
represent these systems after the continuous fields have been discretized. 

The principles described in this section will now be illustrated using an example. 

2.5. Bond Graph Formalism Example 
Consider a series RLC circuit in Figure 3 below. The values V , C′, L and R′ denote the 

battery voltage, capacitor’s capacitance, inductor’s inductance and resistor’s resistance, 
respectively. In this section, this system is fully analyzed using the bond graph formalism, 
following the basic steps of the bond graph process summarized in Figure 2 above. 

 
Figure 3. Series RLC Circuit Schematic 

Step 1. Casting the problem as a bond graph system 
In general, the casting of a physical system as a bond graph system starts with a 

discretization of the system. In many cases, including this one, and networks in general, the 
system is already fully discrete, so there is no need for discretization. 

References [19,20] describe algorithms for constructing bond graph representations for 
general electrical schematics. In this simple case, it is sufficient to recognize that the four circuit 
elements are connected in series, and by inspection of Table 5 above, construct the following 
bond graph representation: 

                                                 
6 These are examples only, other physical roles are possible. 

39 
 



 
Figure 4. Series RLC Circuit Bond Graph Representation 

Here the 1-junction represents the in-series connection, the source of effort represents the 
fixed-voltage battery, the capacitive element represents the electrical capacitor, the inertial 
element represents the inductor, and the resistive element represents the resistor. 

Step 2. Formulation of algebraic equations 
Normally, before we formulate the algebraic equations we should attempt to reduce the 

bond graph. This is a complicated process which pays off later by reducing computational 
complexity. It relies heavily on graph theory. There is a strong mathematical theory behind the 
equivalences of various bond graph representations, studied in detail in Refs. [29,30], and 
applied to an example in Ref. [31]. Fundamentally, bond graph reduction involves replacing the 
bond graph diagram with a diagram that will yield the same solutions for the same state 
variables. References [19,20] list several collections of equivalent bond graph structures, which 
involve replacing junction structures with smaller junction structures. Linear constant coefficient 
elements also allow combining several resistive, capacitive or inertial elements into one element. 
In circuit theory this corresponds to equivalent resistances, capacitances and inductances of 
series and parallel circuits. 

In this case, the BGS in Figure 4 is already fully reduced, so we do not need to reduce it 
further. The next step is to augment the BGS. Using the SCAP described in section 2.4, and 
numbering the bonds for convenience, we arrive at the following augmented BGS: 

 
Figure 5. Series RLC Circuit Augmented Bond Graph Representation 

By comparing the augmented BGS above to Table 4 (p. 34), we can see that this BGS has 
full integral causality. Therefore, we can now follow Table 4 to formulate the algebraic 

40 



equations. Typically the state variables are numbered, but here we just refer to them as q and p, 
since there is only 1 capacitor and 1 inertial element. Physically, the displacement q corresponds 
to the charge stored on its capacitor, and the momentum p corresponds to the flux linkage on the 
inductor (Ref. [21]). 

The algebraic equations for this bond graph are formulated using Table 4, and are listed 
in Table 6 below. Here, the relationships are linear and constant coefficient, but in general, more 
complex algebraic relationships may exist; the most general relationship would involve a table 
look-up function. One of the virtues of the bond graph representation is that the representation 
itself allows us to identify the kinds of connections between the elements, without dealing 
directly with the underlying equations. In this case, one of the elements – often the resistor – 
could be nonlinear, possibly due to a large expected current, or extreme operating conditions. 
However, the representation in Figure 5 would not change, since the element is still there; the 
constituent equation of the element would be different, but that can be addressed later in the 
modeling. 

Notice that the differential equations are not yet involved – those will come into play in 
step 4, after the algebraic equations are sorted in step 3. 

Table 6. Series RLC Circuit Equations 

Element Equation(s) 
SE 1e V=

1-junction

1 2

1 3

1 4

1 2 3 40

f f
f f
f f

e e e e

=
=

=
= − − −

 

C ( )2 1e C q′=  
I ( )3 1f L p=  

R 4 4e R f′=

Step 3. Sorting of algebraic equations 
During the sorting step, we are trying to solve the equations from step 2 for the bond 

variables in terms of time and state variables (p and q). In this case, the system is small and 
simple to solve: 

 

1

2

3

4

1 2 3 4

1

1

1

e V

e q
C

Re V q p
C L

Re p
L

f f f f
L

p

=

=
′

′
= − −

′
′

=

= = = =

 (2.42) 

41 
 



Step 4. Formulation of ODEs 
Now we can formulate the ODEs, following the rules for storage elements from Table 4. 

This involves only retaining the algebraic equations whose flows and efforts are the time 
derivatives of the state variables. This yields: 

 

1

1

q p
L

Rp V q
C L

=

p
′

= − −
′

�

�
 (2.43) 

T ese are the state equations for this system. They can alternatively be written in the 
form 

h
( ),t=x f x
GG� G  where t is time and [ ]q p Τ=xG  is the state vector. Integrating these ODEs yields 

, which is the state of the system. Finding ( )txG ( )txG  completes the model of the system. 

Step 5. Integration of ODEs 
The ODEs are usually integrated numerically; the method is independent of the bond 

graph formalism. Their integration yields ( )txG . In this case, the ODEs are simple enough to be 
integrated analytically. Applying analytical linear ODE system solution techniques (Ref. [32]), 
we can obtain the general solution. 

The solution can then be post-processed. When the state of the system as a function of 
time t is known, the solutions of algebraic equations (see Eq. (2.42)) can be used to obtain any 
information about the system. In this case, variables q and p are the charge stored on the 
capacitor and the flux linkage on the inductor, so if they are known as functions of time, other 
quantities, like the current through the battery 1f , or the voltage drop across the resistor 4e , can be 
algebraically evaluated at any time. 

This example concludes the summary of bond graphs. Although not obvious from the 
example, the real benefit of the bond graphs is the capability to couple any number of physical 
domains together, and process them all simultaneously, processing their bond graph system. This 
is generally superior to the operator-splitting approach typically implemented in most modern 
multiphysics codes. 

42 



3. Coupled Neutron and Thermal Diffusion via Bond Graphs 
As discussed in section 2.4 (p. 30), to model coupled physics using bond graphs, the 

physics are individually represented, and the bond graph representations are then connected by 
coupling bonds. In this chapter, bond graph representations of 1D thermal diffusion are first 
constructed in section 3.1. Then, 1D neutron diffusion is represented with bond graphs in section 
3.2, and the models are coupled in section 3.3. In section 3.4, potential representations for more 
complicated physics are discussed. 

3.1. Thermal Diffusion via Bond Graphs 
Two types of bond graph representations of thermal diffusion exist in literature: 

thermodynamic true bond graphs, and thermal pseudo-bond graphs. For reasons discussed in 
section 2.4 (p. 30), in this work thermal pseudo-bond graph representation is used. 

As discussed in section 2.2 (p. 22), 1D thermal diffusion in a solid material is modeled by 
the following equations: 

 ( ) ( ) (,, ,v v v eu t x u t x u t x
t x
∂ ∂ ′′= − +
∂ ∂

� ),x  (3.1) 

 ( ) ( ) (, ,v ),u t x k x T T t x
x
∂′′ = −
∂

 (3.2) 

 ( ) 1
v

p
vT u

cρ
= u  (3.3) 

Boundary conditions of some sort are required; in this study, Dirichlet boundary 
conditions will be used. Neumann and mixed boundary conditions could also be easily 
implemented, so Dirichlet boundary conditions are only treated here as an example. Initial 
condition function ( )0

vu x  is also assumed given. If an initial temperature distribution ( )0T x  is 
specified instead, Eq. (3.3) can be used to derive ( )0

vu x . 
The primary application of bond graphs has always been for discrete systems modeling 

with well-defined element boundaries. A lumped element heat conduction model is a form of 
such discrete system. Even prior to bond graph formalism being introduced, the notion of 
thermal resistances and capacitances has been used widely in thermal system modeling. The 
lumped volume discussion of thermal pseudo-bond graph representations below is adapted from 
Ref. [19]. 

The lumped element approach typically used in thermal pseudo-bond graph models 
works only for uniform material properties; that is, constant k, ρ  and pc . In lumped heat transfer 
analysis, thermal capacitance of a lumped volume is defined as the ratio of the volume’s average 
temperature to the thermal energy stored in the volume. This definition of capacitance is the 
reciprocal of the electrical definition, which is the ratio of the charge (thermal energy) stored on 
the capacitor to the voltage imposed by it (temperature). Thermal resistance between two lumped 
volumes is defined as the ratio of the difference in temperatures of the two volumes to the heat 
flow rate between them. The corresponding equations for these definitions are: 

 T CU=  (3.4) 

 j i
j i

T
U

R
→

→

Δ
=�  (3.5) 

in which: 
T  Average temperature in the lumped volume 
C Thermal capacitance 

43 



U  Total thermal energy in the lumped volume 
j iU →
�  Heat flow rate from lumped volume j to lumped volume i 

j iT →Δ  Temperature difference between lumped volume j and lumped volume i 
R Thermal resistance 

Using the above assumptions about the material properties, the values of the capacitance 
and the resistance are given by: 

 1

p

C
c∀ρ

=
Δ

 (3.6) 

 xR
kA
Δ

=  (3.7) 

in which: 
∀Δ  Volume of the lumped volume 
xΔ  Distance across which the heat transfer occurs 

A Cross-sectional area through which the heat transfer occurs 
By conservation of thermal energy, the overall rate of change of thermal energy in a 

lumped volume is the sum of heat flows in and out of the volume, that is: 
 

all all 
i j i i k

i k
exU U U→ → U= − +∑ ∑� � � �  (3.8) 

in which: 
iU�  Rate of change of thermal energy stored in lumped volume i 
j iU →
�  Heat flow from lumped volume j into lumped volume i 

i kU →
�  Heat flow from lumped volume i into lumped volume k 

,ex iU�  Heat generation rate in lumped volume i from an external heat source 
The lumped parameter approach can be applied to a discretized 1D domain. Consider the 

discretized domain in Figure 6: 

 
Figure 6. Discretized 1D Domain 

Each finite cell i can be viewed as a separate lumped volume, connected with thermal 
resistors to neighboring lumped volumes. In this case, the average distance across which the heat 
transfer occurs is the distance between the centers of the nearby cells, that is: 

 1
1 2 1 2 2

i ix
i i i

xx x x −
− −

Δ Δ
= − = +  (3.9) Δ

For boundary cells, the average distance across which the heat transfer occurs is the 
distance between the boundary cell center and the boundary: 

 1
1 2 2

xx Δ
Δ =  (3.10) 

44 



 1 2 2
x

x

N
N

x
x +

Δ
Δ =  (3.11) 

Using this discretization, the heat generation rate by the external heat source can be 
computed as a volume integral of the external heat source density over the lumped volume: 

 ( ) ( )1 2

1 2
, ,i

i
,

x

ex i v exx
U t A dxu t x+

−

= ∫� �  (3.12) 

The initial conditions 0
iU  can be similarly computed by: 

 ( )1 2

1 2

0 i

i

0x

i x vU A dxu+

−

= ∫ x  (3.13) 

In pseudo-bond graph representation, effort corresponds to temperature, and flow 
corresponds to heat flow rate. Using this convention and comparing Eqs. (3.4) and (3.5) to Table 
4 (p. 34), we can see that they correspond to the constituent equations of a capacitor and a 
resistor, respectively. j iT →Δ  here is a difference of efforts imposed on a resistor, which itself sets 
a flow ijU →

� . The heat flows supplying and removing thermal energy from a lumped volume are 
the flows to and from the neighboring lumped volumes, or the boundary. Therefore, we can view 
the thermal resistors as connecting two neighboring finite cells. The flow entering the thermal 
resistor is the flow leaving it, by energy conservation, so a thermal resistor is represented by a 
resistor connected to a 1-junction. The resistor sets its flow by Eq. (3.5), while the 1-junction 
provides the difference of efforts.  

U  is a displacement on a capacitor, whose rate of change is the flow supplied to the 
capacitor, which is set by Eq. (3.8). Equation (3.8) is a form of flow balance equation, which is 
imposed by a 0-junction. 

As stated above, Dirichlet boundary conditions are assumed. This means that functions 
( )leftT t  and ( )rightT t , the temperatures at the left and right boundaries, respectively, are given. 

These are externally imposed efforts, dependent only on time. Similarly, the flow contributed to 
a volume by the external source ( ),ex iU t�  is also an externally imposed quantity, dependent only 
on time. Both of these have the form similar to sources of effort and flow, respectively, except 
that the efforts and flows imposed here are time dependent. Therefore, time-modulated source 
elements are now introduced: 

Table 7. Time-modulated Source Elements 

Element Element name Type of 
element Constituent equation(s) 

 
Time-modulated 
Source of Effort Source ( )ie A t=  

 
Time-modulated 
Source of Flow Source ( )if A t=  

 
The Dirichlet boundary conditions and the external sources clearly have the form of the 

time-modulated sources of effort and flow, respectively. 
Combining all these interpretations, the bond graph representation of a 1D thermal 

diffusion problem using lumped finite volumes can be constructed. It is given in Figure 7 below. 
The constituent expressions for all elements in this bond graph representation are 

summarized in Table 8 below. Figure 7 and Table 8 together summarize the bond graph 

45 
 



representation algorithm which arises from lumped volume representation. The initial conditions 
for the capacitors’ displacements have been specified in Eq. (3.13). 

 
Figure 7. Heat Diffusion Bond Graph Representation 

 

Table 8. Heat Diffusion Bond Graph Constituent Expressions with Uniform k 
Element7 Constituent Expressions8 

TSEleft ( )leftT t  

Rleft
1

2
x
kA
Δ  

Ci
1

i pc∀ ρΔ
 

Ri–1/2 
1

2
i ix x

kA
−Δ + Δ

TSFi ( ),ex iU t�  
 
As stated above, the problem with the lumped volume representation is that it assumes 

spatially uniform and constant k, ρ  and pc . For certain problems, these assumptions are 
unacceptable. Fortunately, a more rigorous mathematical treatment of Eqs. (3.1)-(3.3) can be 
used, which utilizes the finite volume discretization method. (Ref. [33]). It results in a discretized 
formulation which can be represented with bond graphs. Such a treatment accounts for variable 
coefficient problems, and therefore for heterogeneous material properties. 

The only simplifying assumption to make for use with finite volume discretization is to 
assume that thermal conductivity, while it may vary in space, is not temperature dependent: 

 ( ) ( ),k x T k x≅  (3.14) 

                                                 
7 Element subscripts indicate which cell or inter-cell boundary the element belongs to. 
8 The constituent expressions are either the linear elements’ moduli (for capacitive and resistive elements), 

or the expressions the elements impose on their bonds (for source elements). 

46 



Strictly speaking, this assumption is not necessary. However, retaining the temperature 
dependence of the thermal conductivity introduces nonlinearity for heat flux evaluation between 
cells, which would be preferable to avoid. Therefore, for the present analysis, temperature 
dependence of the material properties will be neglected. 

Fundamentally, the finite volume discretization method relies on breaking the domain 
into finite cells, and approximating the surface integrals across the cell boundaries to evaluate the 
inter-cell fluxes. These approximate fluxes are then utilized to construct a system of rate balance 
ordinary differential equations, thus completing the system discretization. (Ref. [33]). 

Flux functions, by definition, are functions of spatial derivatives of the unknown variable; 
Eq. (3.2) is one example. The approximate integral fluxes in finite volume method are integrals 
of these flux functions over the surface of the cell. In 1D, the “surface” between two nearby cells 
is simply the domain’s cross-sectional area, over which the flux does not vary. Therefore, the 
surface integral of vu′′ at cell interface 1 2ix −  is simply given by: 

 ( ) ( )
1 2

1 2, ,
i

v vS
dSu t x Au t x

−
−i′′ ′′=∫∫w  (3.15) 

Using finite volume discretization, there are two ways to approximate the surface 
integrals at cell boundaries. The first way is to evaluate the derivatives under the integrals using 
interpolations based on cell-averaged (nodal) values, and then evaluate the integrals. The second 
way is to do it in reverse order: using piecewise shape functions within the cells, imposing 
constraints on the shape functions’ coefficients using the nodal values, and integrating the 
resulting shape functions. The second approach is the basis of spatial homogenization used in 
virtually all neutron transport codes and approaches, and will be utilized here as well. 

Consider the following piecewise-constant shape functions for the flux function and the 
temperature: 

 ( ) ( ) 1 2 1 2,  for i i iT t x T t x x x− −≅ < <  (3.16) 
 ( ) ( ), 1 2 1,  for v v i i iu t x u t x x x− −′′ ′′≅ < <  (3.17) 

in which: 
( )iT t  Average temperature in finite cell i at time t 

( ), 1 2v iu t−′′  Average heat flux in the interval i1ix x x− < <  at time t 
These shape functions are similar to the shape functions used by Stacey in his coarse 

mesh FEA derivations (Ref. [5]). They are illustrated in Figure 8 below. Notice, that the 
temperature shape function in Eq. (3.16) implies a similar shape function for vu  itself, because of 
Eq. (3.3). 

 
Figure 8. Discretized 1D Domain with Flat Thermal Shape Functions 

47 
 



To obtain a solution in terms of these functions, first Eq. (3.1) has to be adjusted. 
Integrating both sides of the equation over the finite cell volume defined by the interval 

( 1 2 1 2,i ix x x− +∈ ), using the notation from the lumped volume treatment above: 

 ( ) ( ) ( )1 2

1 2
,,i

i

x

i vx ex iU t A dx u t x U t
x

+

−

∂ ′′= − +
∂∫� �  (3.18) 

As stated above, the cell average temperature iT  can be related to cell total energy iU . To 
do so, integrating Eq. (3.3) over the finite cell volume defined by the interval in Eq. (3.18) and 
rearranging: 

 ( ) ( )1
i

i p
iT t

c∀ ρ
=
Δ

U t  (3.19) 

The total cell external source rate ( ),ex iU t�  is given by Eq. (3.12). The initial conditions 0
iU  

are given by Eq. (3.13). 
To simplify the integral on the right hand side of Eq. (3.18), the first fundamental 

theorem of calculus can be used. (Ref. [34]). In 2D or 3D, the Gauss-Ostrogradsky theorem9 
would be used instead. (Ref. [32]). Writing out the integral from Eq. (3.18): 

 ( ) ( ) ( )1 2

1 2
1 2 1 2, , ,i

i

x

v v i vx
A dx u t x A u t x u t xix

+

−
−

∂
+

⎡ ⎤′′ ′′ ′′− = −⎣ ⎦∂∫  (3.20) 

Equation (3.20) can simply be thought of as the difference in inflow and outflow of heat 
into the finite volume i. Equation (3.17) illustrates, that a flat flux function is assumed between 
nearby cell centers. Implementing such flat flux function in Eq. (3.20), and plugging the resultant 
equation into Eq. (3.18): 

 ( ) ( ) ( ) ( ), 1 2 , 1 2 ,i v i v i ex iU t Au t Au t U t− +′′ ′′= − +� �  (3.21) 
To evaluate the heat flux integrals at the cell edges, the flat flux functions have to be 

related to the temperature averages. To do so, the shape functions in Eqs. (3.16) and (3.17) are 
again utilized. As was stated above, temperature dependence of the material properties is 
neglected. Rearranging Eq. (3.2): 

 
( ) ( ) (1 ,vu t x T t x

k x x
),∂′′ = −

∂
 (3.22) 

( )k x  is thermal conductivity, so the quantity ( )1 k x  can be interpreted as thermal 
resistivity. In this text, the symbol ( )o x  will be used for it; plugging it into Eq. (3.22) yields: 

 ( ) ( ) (,v ),o x u t x T t x
x
∂′′ = −
∂

 (3.23) 

Integrating Eq. (3.23) over the finite volume defined by the interval ( )1,i ix x x−∈ : 

 ( ) ( ) (
1 1

,i i

i i

x x

vx x
A dxo x u t x A dx T t x),

x− −

∂′′ = −
∂∫ ∫  (3.24) 

Recognizing that the flat shape function of ( ),vu t x′′  in this interval (Eq. (3.17)) results in 
)( ,vu t x′′  being constant under the integral allows us to simplify the left side of the equation: 

 ( ) ( ) ( ) ( )
1 1

, 1 2,i

i i

ix x

v v ix x
A dxo x u t x Au t dxo x

− −
−′′ ′′=∫ ∫  (3.25) 

Denoting the average thermal resistivity in the interval ( )1,i ix x x−∈  1 2io − : 

 ( )
1

1
1

1 2 2 2
i

i

xi i
i x

x xo dxo x
−

−
−

−

Δ Δ⎡ ⎤= +⎢ ⎥⎣ ⎦ ∫  (3.26) 

                                                 
9 Often called the divergence theorem. 

48 



Notice, that instead of averaging the thermal conductivity over the interval of interest, the 
thermal resistivity was averaged. This is to be expected: it is a well-known fact in circuit theory 
that resistances, not conductances, add in series to yield the overall resistance, which can then be 
inverted to yield the overall conductance. (Ref. [21]). Equation (3.26) is a continuous form of 
this fact. 

Using Eq. (3.26) allows us to further simplify Eq. (3.25): 

 ( ) ( ) ( )
1

1
, 1 2 1 2,

2 2
i

i

x i
v v i ix

ix xA dxo x u t x Au t o
−

−
− −

Δ Δ⎡ ⎤′′ ′′= +⎢ ⎥⎣ ⎦∫  (3.27) 

Simplifying the right hand side of Eq. (3.24): 

 ( ) ( ) ( )
1

1, ,i

i

x

ix
A dx T t x A T t x T t x, ix−

−

∂
− = −⎡ ⎤⎣ ⎦∂∫  (3.28) 

Implementing the flat shape function of ( ),T t x  (Eq. (3.16)) simplifies the equation 
further: 

 ( ) ( ) ( )
1

1,i

i

x

i ix
A dx T t x A T t T t

x−
−

∂ ⎡ ⎤− = −⎣ ⎦∂∫  (3.29) 

Combining Eqs. (3.27) and (3.29) to construct the flux surface integral estimate as a 
function of temperatures: 

 ( ) ( ) ( )1
, 1 2

1
1 22 2

i i
v i

i i
i

T t T t
Au t A

x x o

−
−

−
−

−
′′ =

Δ Δ⎡ ⎤+⎢ ⎥⎣ ⎦

 (3.30) 

For boundary cells, the flux shape functions on the boundary side only occupy the half of 
the cell adjacent to the boundary, that is: 

 ( ) ( ),1 2 1 2 1,  for v vu t x u t x x x′′ ′′≅ < <  (3.31) 
 ( ) ( )

1 2, 1 2,  for 
x xv v N N xNu t x u t x x x

++′′ ′′≅ < <  (3.32) 
Running the analysis similar to Eqs. (3.24)-(3.30) for these boundary flux integrals, and 

recognizing that the temperatures at the boundaries are given as exact functions ( )leftT t  and 
( )rightT t , yields the following flux surface integral estimates as function of temperatures: 

 ( ) ( ) ( )1
,1 2

1
1 22

left
v

T t T t
Au t A

x o

−
′′ =

Δ⎡ ⎤
⎢ ⎥⎣ ⎦

 (3.33) 

 ( ) ( ) ( )
, 1 2

1 22

x

x

x

x

N right
v N

N
N

T t T t
Au t A

x
o

+

+

−
′′ =

Δ⎡ ⎤
⎢ ⎥
⎣ ⎦

 (3.34) 

Similarly to Eq. (3.26), the averaged thermal resistivities are given by: 

 ( )1

1 2

1
1

1 2 2
x

x

xo dxo x
−Δ⎡ ⎤= ⎢ ⎥⎣ ⎦ ∫  (3.35) 

 ( )1 2

1

1 2 2
Nxx

x
Nx

xN
N x

x
o dxo x+

−

+

Δ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

∫  (3.36) 

The formal finite volume discretization with heterogeneous material properties is now 
complete and can be summarized. Cell total energy and temperature are related by Eq. (3.19). 
Equation (3.12) yields the cell total external heat rate. Equation (3.21) relates the rate of change 
of total stored energy in a cell to other rates, and the heat flux integrals are evaluated using Eq. 

49 
 



(3.30). The averaged thermal resistivity is given by Eq. (3.26). The boundary heat flux integrals 
and averaged thermal resistivities are given by Eqs. (3.33)-(3.36), respectively. 

As in the lumped volume interpretation, temperatures are efforts, heat flows are flows 
and cell total thermal energies are displacements. With these assumptions, equations from the 
above summary can be compared to Table 4 (p. 34) and Table 7 above. Equation (3.19) is a 
standard capacitor equation and Eq. (3.12) is a flow imposed by a time-modulated source of 
flow. The addition of flows in Eq. (3.21) is imposed by a 0-junction, and the inter-cell flow 
imposed in Eq. (3.30) proportional to a difference in efforts is a combination of a resistive 
element and a 1-junction, which is connected to the 0-junctions that set the neighbor-cell 
temperatures (efforts). The boundary temperatures in Eqs. (3.33) and (3.34) are externally 
imposed efforts, imposed onto 0-junctions by time-modulated sources of effort. Equations (3.33) 
and (3.34) themselves are identical, in their form, to Eq. (3.30), which, as stated previously, has 
the form of a resistive element connected to a 1-junction. The initial conditions for the 
capacitors’ displacements are defined in Eq. (3.13). 

Combining all these interpretations, the bond graph representation of a 1D thermal 
diffusion problem using formally derived finite volume discretization can be constructed. The 
bond graph system itself happens to be identical to the one obtained for spatially uniform 
material properties problem using lumped volume representation, given in Figure 7 above. 
However, the element constituent expressions are now slightly different, resulting from the 
formal derivation which was necessary for the spatially heterogeneous thermal conductivity. The 
new constituent expressions are given in Table 9 below: 

Table 9. Heat Diffusion Bond Graph Constituent Expressions with Heterogeneous k 

Element Constituent Expressions
TSEleft ( )leftT t  

Rleft
1 1 2

2
x o

A
Δ

 

Ci
1

i pc∀ ρΔ
 

Ri–1/2 
( )1 1

2
i i i 2x x o

A
− −Δ + Δ

TSFi ( ),ex iU t�  
 
It is notable, that with a uniform thermal conductivity k, the constituent expressions in 

Table 8 and Table 9 are the same, since the averaged thermal resistivities would all reduce to 1 k . 
This indicates that the physical arguments that lead to the lumped volume formulation are 
equivalent to the formal mathematical arguments which resulted in the finite volume 
discretization, allowing for a spatially heterogeneous conductivity. 

It is also interesting, that the integral rate balance Eq. (3.21), together with the heat flux 
in Eq. (3.30), is very similar to a more common finite difference discretization of Eq. (3.1). Such 
finite difference discretization, along with more complicated ones, are studied in detail in Ref. 
[35]. If an explicit forward Euler time stepping is used, and the material properties are assumed 
uniform and cell widths all equal, the local numerical stability requirement is given by: 

 2

1
2p

k t
c xρ

Δ
≤

Δ
 (3.37) 

50 



in which: 
tΔ  Time step 

This stability requirement is called “local,” because it does not account for the boundary 
conditions, which may destabilize the problem. However, this is rarely the case in practical heat 
diffusion problems. 

For finite volume discretization, numerical stability is less well defined than for finite 
difference discretization, because only the error in the integral properties of the solution can be 
recovered (and is of any interest, if a finite volume discretization is used in the first place). 
Reference [33] provides a rigorous mathematical study of the numerical stability and 
convergence properties of finite volume discretizations for hyperbolic (advection) problems; for 
parabolic (transient diffusive) problems, criteria similar to Eq. (3.37) can be constructed using 
von Neumann analysis and other techniques normally used in finite difference methods. 

Rigorous proofs of convergence using finite volume methods are generally unavailable in 
multidimensional hyperbolic problems. (Ref. [33]). Even for the more simple parabolic 
problems, such analysis can be very complicated, and typically involves numerous assumptions 
of limited physical validity. For coupled problems, such analysis is generally impossible. 

Finite difference-type convergence criteria can often be used to provide an order-of-
magnitude estimate for the size of time step required for the stability of an explicit method. 
However, in general, we will be more interested in experimentally proving the consistency, 
stability and convergence of the method on a well-studied problem. Due to the currently limited 
body of theoretical numerical analysis tools available for nonlinear coupled problems, and the 
extreme complexity of such problems, this is how most practical multiphysics codes are 
currently tested. (Ref. [17]). 

The fundamental difference between finite volume and finite difference methods is that 
the finite volume methods are integral-conservative, while finite difference methods are not. 
Furthermore, finite volume methods, similarly to how it was done in the study above, are prone 
to averaging properties, while finite difference methods essentially sample them out of the 
domain. In heat transfer either technique is usually sufficient. However, in the more sensitive 
neutron diffusion studies, integral rate conservation, at least within the model, is a necessary 
requirement. 

The above similarity between finite volume and finite difference discretization methods 
is the reason for why methods which rely on homogenized (averaged) data are often called 
“finite difference methods” in neutron transport. They often happen to be finite volume methods 
instead. 

The general mathematical techniques and bond graph representation developed in this 
section will now be used in neutron diffusion representation, and then for coupling the two types 
of physics. 

3.2. Neutron Diffusion via Bond Graphs 
Neutron transport of any kind, including neutron diffusion, has never been represented 

with bond graphs. In this section, the first such representation is proposed, in close parallel with 
heat diffusion in section 3.1. The equations treated are very similar to the heat diffusion 
equations, so the accompanying discussion from the formal treatment of the finite volume 
discretization in section 3.1 is applicable here as well. 

As discussed in section 2.1 (p. 19), 1D one-group neutron diffusion is modeled by the 
following equations: 

51 
 



 ( ) ( ) ( ) ( ) ( ) ( ) (, , , ,f an t x J t x x t x x t x s t x
t x

ν φ φ∂ ∂
= − + Σ −Σ +

∂ ∂
),ex  (3.38) 

 ( ) ( ) (, ),J t x D x t x
x
φ∂

= −
∂

 (3.39) 

 ( ) ( ), nt x V n t x,φ =  (3.40) 
These equations are very similar to Eqs. (3.1)-(3.3), except for the absorption and fission 

generation terms, which do not exist in heat diffusion. 
As with heat diffusion, some type of boundary conditions are required. Again, Dirichlet 

boundary conditions, ( )left tφ  and ( )right tφ  will be used, because zero Dirichlet boundary 
conditions are often used to approximate vacuum boundaries. An extrapolation-distance 
boundary condition would again be of Dirichlet type, but with modified geometry. (Ref. [3]). 
Initial conditions are assumed specified by the function ( )0n x , which can be easily derived from 
an initial flux function ( )0 xφ  using Eq. (3.40). 

As with thermal diffusion, consider the following piecewise-constant shape functions for 
the scalar flux and scalar net current density: 

 ( ) ( ) 1 2 1 2,  for i it x t x x xiφ φ − −≅ < <  (3.41) 
 ( ) ( )1 2 1,  for i i iJ t x J t x x x− − < <  (3.42) ≅

in which: 
( )i tφ  Average scalar flux in finite cell i at time t 

( )1 2iJ t−  Average net current density in the interval i1ix x x− < <  at time t 
These shape functions are identical to the shape functions used by Stacey in his coarse 

mesh FEA derivations (Ref. [5]). They are illustrated in Figure 9 below. Similar arguments to 
temperature and thermal energy density shape function hold, and so the flux shape function in 
Eq. (3.41) implies a similar shape function for n. 

 
Figure 9. Discretized 1D Domain with Flat Neutron Shape Functions 

Strictly, 1D analysis is only applicable to an infinite slab reactor, because otherwise 
neutrons will leak through the other two dimensions, which 1D analysis cannot readily account 
for. However, to stay consistent with the fixed cross-sectional area type treatment from section 
3.1, the analysis here will also assume a fixed cross-sectional area A. A dimensionless number 
like A  can be used, thus making the treatment equivalent to an infinite 1D slab reactor. 1=

To relate the cell average flux iφ  to the total number of neutrons in a cell, we integrate Eq. 
(3.40) over the finite cell volume defined by the interval ( )1 2 1 2,i ix x x− +∈ : 

52 



 ( ) ( )n
i

i

Vt Ni tφ
∀

=
Δ

 (3.43) 

in which: 
( )iN t  Rate of change of the total number of neutrons in finite cell i at time t 

Integrating both sides of Eq. (3.38) over the finite cell volume defined by the interval 
( )1 2 1 2,i ix x x− +∈ : 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

1 2 1 2
,, ,i i

i i

x x

i f ax x
N t A dx J t x A dx x x t x Sex i t

x
ν φ+ +

− −

∂ ⎡ ⎤= − + Σ −Σ +⎣ ⎦∂∫ ∫�  (3.44) 

in which: 
( )iN t�  Rate of change of the number of neutrons in finite cell i at time t 
( ),ex iS t  Neutron generation rate in finite cell i from an external neutron source 

The external neutron source rate ( ),ex iS t  is given by: 

 ( ) ( )1 2

1 2
, ,i

i

x

ex i exx
S t A dxs t x+= ∫  (3.45) 

−

The initial conditions are similarly given by: 
 ( )1 2

1 2

0 i

i

0x

i x
N A dxn x+

−

= ∫  (3.46) 

To simplify the first (streaming) integral on the right hand side of Eq. (3.44), using the 
first fundamental theorem of calculus: 

 ( ) ( ) ( )1 2

1 2
1 2 1 2,i

i

x

i ix
A dx J t x A J t J t

x
+

−
− +

∂ ⎡ ⎤− = −⎣ ⎦∂∫  (3.47) 

Simplifying the second (reaction) integral on the right hand side of Eq. (3.44): 
 ( ) ( ) ( ) ( )1 2

1 2
, ,,i

i

x

f a i f i a i ix
A dx x x t x tν φ ∀ ν φ+

−

⎡ ⎤⎡ ⎤Σ −Σ = Δ Σ −Σ⎣ ⎦ ⎣ ⎦∫  (3.48) 

in which: 
,f iΣ  Homogenized one-group fission cross-section in finite cell i 

,a iΣ  Homogenized one-group absorption cross-section in finite cell i 
The homogenized cross-sections are given by: 

 ( )1 2

1 2
,

i

i

x

f i fx
i

A dx x
∀

+

−

Σ = Σ
Δ ∫  (3.49) 

 ( )1 2

1 2
,

i

i

x

a i ax
i

A dx x
∀

+

−

Σ = Σ
Δ ∫  (3.50) 

Equation (3.48) can be thought of as the net rate of neutron production due to absorption. 
Plugging it back into Eq. (3.44) simplifies the rate balance equation further: 

 ( ) ( ) ( ) ( )1 2 1 2 , , ,i i i i f i a i i exN t AJ t AJ t t S t∀ ν φ− + ( )i⎡ ⎤= − + Δ Σ −Σ +⎣ ⎦
�  (3.51) 

To relate the flat current density functions to the flux averages, rearranging Eq. (3.39): 

 
( ) ( ) (1 ,J t x t x

D x x
φ ),∂

= −
∂

 (3.52) 

Similarly to comparing thermal conductivity and its reciprocal, thermal resistivity, the 
reciprocal of ( )D x  also needs a name. In this text, the name confusion coefficient, and the 
symbol Co are proposed: 

 ( ) ( )
1Co x

D x
≡  (3.53) 

53 
 



Plugging Eq. (3.53) into Eq. (3.52) and integrating it over the finite volume defined by 
the interval ( )1,i ix x x−∈ : 

 ( ) ( ) (
1 1

,i i

i i

x x

x x
A dxCo x J t x A dx t x),

x
φ

− −

∂
= −

∂∫ ∫  (3.54) 

Using the flat shape function of ( ),J t x  from Eq. (3.42) in this interval to simplify the left 
hand side of the equation: 

 ( ) ( ) ( ) ( )
1 1

1 2,i

i i

ix x

ix x
A dxCo x J t x AJ t dxCo x

− −
−=∫ ∫  (3.55) 

Denoting the average confusion coefficient in the interval ( )1,i ix x x−∈  1 2i−Co : 

 ( )
1

1
1

1 2 2 2
i

i

xi i
i x

x xCo dxCo x
−

−
−

−

Δ Δ⎡ ⎤= +⎢ ⎥⎣ ⎦ ∫  (3.56) 

Plugging Eq. (3.56) into Eq. (3.55): 

 ( ) ( ) ( )
1

1
1 2 1 2,

2 2
i

i

x i i
ix i

x xA dxCo x J t x AJ t Co
−

−
− −

Δ Δ⎡ ⎤= +⎢ ⎥⎣ ⎦∫  (3.57) 

Using the first fundamental theorem of calculus to simplify the right hand side of Eq. 
(3.54): 

 ( ) ( ) ( )
1

1, ,i

i

x

ix
A dx t x A t x t x, ix

φ φ φ
−

−

∂
− = −⎡ ⎤⎣ ⎦∂∫  (3.58) 

Implementing the flat flux shape functions from Eq. (3.41): 

 ( ) ( ) ( )
1

1,i

i

x

i ix
A dx t x A t t

x
φ φ φ

−
−

∂ ⎡ ⎤− = −⎣ ⎦∂∫  (3.59) 

Combining Eqs. (3.57) and (3.59) to construct the current surface integral as a function of 
cell fluxes: 

 ( ) ( ) ( )1
1 2

1
1 22 2

i i
i

i i
i

t t
AJ t A

x x Co

φ φ−
−

−
−

−
=

Δ Δ⎡ ⎤+⎢ ⎥⎣ ⎦

 (3.60) 

Dirichlet boundary conditions are used, therefore the fluxes at the boundaries are given as 
functions of time. Therefore similar analysis will work to compute the current surface integrals at 
the boundaries. Applying similar analysis for boundary cells yields the following averaged 
confusion coefficients: 

 ( )1

1 2

1
1

1 2 2
x

x

xCo dxCo x
−Δ⎡ ⎤= ⎢ ⎥⎣ ⎦ ∫  (3.61) 

 ( )1 2

1

1 2 2
Nxx

x
Nx

xN
N x

x
Co dxCo x+

−

+

Δ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

∫  (3.62) 

The current surface integrals at the boundaries are then given by: 

 ( ) ( ) ( )1
1 2

1
1 22

left t t
AJ t A

x Co

φ φ−
=

Δ⎡ ⎤
⎢ ⎥⎣ ⎦

 (3.63) 

 ( ) ( ) ( )
1 2

1 22

x

x

x

x

N right
N

N
N

t t
AJ t A

x
Co

φ φ
+

+

−
=

Δ⎡ ⎤
⎢ ⎥
⎣ ⎦

 (3.64) 

The finite volume discretization of the neutron diffusion equations is now complete and 
can be summarized. Cell total number of neutrons and flux are related by Eq. (3.43). The 

54 



external cell total neutron source rate is given by Eq. (3.45). Equation (3.51) relates the rate of 
change of the total number of neutrons in a cell to other rates. The net rate of neutron production 
due to absorption is given by Eq. (3.48). The current surface integrals are evaluated using Eq. 
(3.60), and the homogenized confusion coefficient is given by Eq. (3.56). The boundary current 
surface integrals are evaluated using Eqs. (3.63) and (3.64), and the boundary homogenized 
confusion coefficients are given by Eqs. (3.61) and (3.62). 

As stated above, neutron diffusion has never been represented with bond graphs. 
However, by comparing the above listed equations to the similar equations in heat diffusion, in 
section 3.1, one can clearly see an analogy between the cell temperatures and the cell scalar 
fluxes, as well as cell total thermal energies and cell total numbers of neutrons. It is proposed to 
use this analogy from now on in the bond graph representation of neutron diffusion. The 
proposal is summarized in Table 10. 

Table 10. Bond Graph Variables for Finite Volume-Discretized Neutron Diffusion 

Bond graph variable Physical meaning 
Effort Scalar flux 
Flow Neutron current10 
Displacement Number of neutrons 

 
With these variable representations, equations from the above summary can be compared 

to Table 4 (p. 34) and Table 7 above. Equation (3.43) is a capacitor equation. Equation (3.45) is a 
flow imposed by a time-modulated source of flow. The rate balance in Eq. (3.51) is an addition 
of flows imposed by a 0-junction. The net rate of neutron production, Eq. (3.48), which does not 
have an analogy in the heat diffusion equations, yields a flow proportional to an effort, which is 
the function of a linear resistor. The inter-cell flow from Eq. (3.60), which is proportional to a 
difference in efforts, is a combination of a resistive element and a 1-junction, which is connected 
to the 0-junctions in the neighboring cells that set the neighboring cells’ scalar fluxes. The 
boundary scalar fluxes in Eqs. (3.63) and (3.64) are externally imposed efforts, imposed onto 0-
junctions by time-modulated sources of effort. Equations (3.63) and (3.64) are, similarly to Eq. 
(3.60), resistive elements connected to a 1-junction. 

Combining all these interpretations, the bond graph representation of a 1D one-group 
finite-volume discretized neutron diffusion problem can be constructed. It is given in Figure 10 
below. 

                                                 
10 The neutron current has the dimensions of, and is in many cases equivalent to, a reaction rate. 

55 
 



 
Figure 10. Neutron Diffusion Bond Graph Representation 

The constituent expressions for the elements in this representation are given in Table 11 
below. 

Table 11. Neutron Diffusion Bond Graph Constituent Expressions 

Element Constituent Expressions
TSEleft ( )left tφ  

Rleft
1 1 2

2
x Co

A
Δ

 

Ci
n

i

V
∀Δ

 

Ri–1/2 
( )1 1

2
i i i 2x x Co

A
− −Δ + Δ

Ri ( ), ,

1

i a i f i∀ νΔ Σ − Σ  
TSFi ( ),ex iS t  

 
Applying the finite difference stability analysis for forward Euler stepping, similar to the 

one in section 3.1, and neglecting the net production term, the local stability criterion comes out 
to: 

 2

1
2n

tDV
x
Δ

≤
Δ

 (3.65) 

In a coupled problem, both the heat and neutron diffusion phenomena would take place 
simultaneously. The local stability criteria in Eqs. (3.37) and (3.65) would both have to be 
satisfied for local stability. This would not necessarily guarantee convergence, but gives a good 
order of magnitude estimate for the time step tΔ . Generally, in most engineering materials, the 
requirement in Eq. (3.65) is a more stringent one, due to the large value of nV . Again, it must be 
stressed, that these are only order of magnitude estimates for stability of a coupled problem’s 
time integrator, and that the net production term in the neutron diffusion equation significantly 
complicates the stability analysis. 

56 



Now, that the heat and neutron diffusion problems have been represented with bond 
graphs, a coupled problem can be represented. 

3.3. Coupled Diffusion via Bond Graphs 
As discussed in section 2.3 (p. 27), the coupled 1D heat and one-group neutron diffusion 

equations are: 

 ( ) ( ) ( ) ( ) ( ) ( ) (, , , , , , ,f an t x J t x x T t x x T t x s t x
t x

ν φ φ∂ ∂
= − + Σ −Σ +

∂ ∂
)ex  (3.66) 

 ( ) ( ) (, , ),J t x D x T t x
x
φ∂

= −
∂

 (3.67) 

 ( ) ( ), nt x V n t x,φ =  (3.68) 

 ( ) ( ) ( ) ( ) (,, , , ,v v f v eu t x u t x w x T t x u t x
t x

φ∂ ∂ ′′= − + Σ +
∂ ∂

� ),x  (3.69) 

 ( ) ( ) (, ,v ),u t x k x T T t x
x
∂′′ = −
∂

 (3.70) 

 ( ) 1
v

p
vT u

cρ
= u  (3.71) 

The boundary conditions are still assumed to be Dirichlet for both temperature and scalar 
flux; therefore, functions ( )left tφ , ( )right tφ , ( )leftT t  and ( )rightT t  are assumed given. The initial 
conditions are specified by functions ( )0

vu x  and ( )x0n , which can be derived from initial flux and 
temperature distributions using Eqs. (3.68) and (3.71). 

The same shape functions for temperature, scalar flux, heat flux and current density are 
used in the coupled model discretization as in the individual model discretization. Together, they 
are shown in Figure 11 below: 

 
Figure 11. Discretized 1D Domain with Flat Coupled Shape Functions 

The coupling does not greatly affect the discretization, but does modify the homogenized 
properties in the neutron diffusion equation and fission source is added in the heat diffusion 
equation. First, the new homogenized properties are treated below. They are now functions of 
temperature: 

 ( ) ( )( )1 2

1 2
, , ,i

i

x

f i fx
i

AT dx x T
∀

+

−

t xΣ = Σ
Δ ∫  (3.72) 

 ( ) ( )( )1 2

1 2
, , ,i

i

x

a i ax
i

AT dx x T
∀

+

−

t xΣ = Σ
Δ ∫  (3.73) 

57 
 



 ( ) ( )( ) ( )( )1 2

1 1 2

1
1

1 2 , , , ,
2 2

i i

i i

x xi i
i x x

x xCo T dxCo x T t x dxCo x T t x−

− −

−
−

−

Δ Δ⎡ ⎤ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ∫ ∫  (3.74) 

 ( ) ( )( )1

1 2

1
1

1 2 , ,
2

x

x

xCo T dxCo x T t x
−Δ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ∫  (3.75) 

 ( ) ( )( )1 2

1

1 2 , ,
2

Nxx

x
Nx

xN
N x

x
Co T dxCo x T t x+

−

+

Δ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∫  (3.76) 

A flat temperature shape function was assumed in section 3.1, which means that under 
each of the integrals in Eqs. (3.72)-(3.76), temperature is constant. Therefore, the expressions 
can be rewritten as functions of cell-averaged temperatures: 

 ( ) ( )1 2

1 2
, ,i

i

x

f i i f ix
i

AT dx
∀

+

−

x TΣ = Σ
Δ ∫  (3.77) 

 ( ) ( )1 2

1 2
, ,i

i

x

a i i a ix
i

AT dx
∀

+

−

x TΣ = Σ
Δ ∫  (3.78) 

 ( ) ( ) ( )1 2

1 1 2

1
1

1 2 1 1, ,
2 2

i i

i i

x xi i
i i i i ix x

x xCo T T dxCo x T dxCo x T−

− −

,
−

−
− − −

Δ Δ⎡ ⎤ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ∫ ∫  (3.79) 

 ( ) ( )1

1 2

1
1

1 2 1 1,
2

x

x

xCo T dxCo x T
−Δ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ∫  (3.80) 

 ( ) ( )1 2

1

1 2 ,
2

Nxx

x x x
Nx

xN
N N Nx

x
Co T dxCo x T+

−

+

Δ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∫  (3.81) 

Equations (3.77) and (3.78) yield a convenient expression for the new net rate of neutron 
production due to absorption in cell i: 

 
( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

1 2

1 2

, ,

, , , , ,i

i

x

f ax

i f i i a i i i

A dx x T t x x T t x t x

T t T t t

ν φ

∀ ν φ

+

−

⎡ ⎤Σ −Σ =⎣ ⎦

⎡ ⎤= Δ Σ −Σ⎣ ⎦

∫
 (3.82) 

With these modified homogenized properties, the rest of the neutron diffusion 
discretization from section 3.2 stays the same. Now the integrated heat source can be treated. 
Integrating it over the cell volume defined by the interval ( )1 2 1 2,i ix x x− +∈  yields the temperature-
dependent fission heat source: 

 ( )( ) ( ) ( )( ) ( )1 2

1 2
,, , ,i

i

x

f i f ix
A dxw x T t x t x w T t ti iφ ∀+

−

Σ = Δ Σ∫ φ  (3.83) 

Notice, that all averaged temperatures and homogenized fluxes are dependent on time. 
Together, Eqs. (3.77)-(3.83), can be implemented into the original single physics 

discretizations (sections 3.1 and 3.2). The discretized neutron diffusion is now given by Eqs. 
(3.84)-(3.88): 

 ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )1 2 1 2 , , ,i i i i f i i a i i i exN t AJ t AJ t T t T t t S t∀ ν φ− + i
⎡ ⎤= − + Δ Σ −Σ +⎣ ⎦

�  (3.84) 

 ( ) ( )n
i

i

Vt Ni tφ
∀

=
Δ

 (3.85) 

 ( ) ( ) ( )

( )
1

1 2
1

1 2 1,2 2

i i
i

i i
i i

t t
AJ t A

x x Co T Ti

φ φ−
−

−
− −

−
=

Δ Δ⎡ ⎤+⎢ ⎥⎣ ⎦

 (3.86) 

58 



 ( ) ( ) ( )

( )( )
1

1 2
1

1 2 12

left t t
AJ t A

x Co T t

φ φ−
=

Δ⎡ ⎤
⎢ ⎥⎣ ⎦

 (3.87) 

 ( ) ( ) ( )

( )
1 2

1 22

x

x

x

x x

N right
N

N
N N

t t
AJ t A

x
Co T

φ φ
+

+

−
=

Δ⎡ ⎤
⎢ ⎥
⎣ ⎦

 (3.88) 

The discretized heat diffusion is now given by Eqs. (3.89)-(3.93): 
 ( ) ( ) ( ) ( )( ) ( ), 1 2 , 1 2 , ,i v i v i i f i i i ex ( )iU t Au t Au t w T t t U t∀ φ− +′′ ′′= − + Δ Σ +� �  (3.89) 

 ( ) ( )1
i

i p
iT t

c∀ ρ
=
Δ

U t  (3.90) 

 ( ) ( ) ( )1
, 1 2

1
1 22 2

i i
v i

i i
i

T t T t
Au t A

x x o

−
−

−
−

−
′′ =

Δ Δ⎡ ⎤+⎢ ⎥⎣ ⎦

 (3.91) 

 ( ) ( ) ( )1
,1 2

1
1 22

left
v

T t T t
Au t A

x o

−
′′ =

Δ⎡ ⎤
⎢ ⎥⎣ ⎦

 (3.92) 

 ( ) ( ) ( )
, 1 2

1 22

x

x

x

x

N right
v N

N
N

T t T t
Au t A

x
o

+

+

−
′′ =

Δ⎡ ⎤
⎢ ⎥
⎣ ⎦

 (3.93) 

The finite volume discretization of the coupled diffusion equations is now complete and 
can be summarized. Total number of neutrons in a cell can be related to the scalar flux by Eq. 
(3.85). Total energy in a cell and temperature are related by Eq. (3.90). The external neutron and 
heat source rates remained unaffected by coupling, and are still given by Eqs. (3.45) and (3.12), 
respectively. The rate of change of the total number of neutrons in a cell is related to other rates 
by Eq. (3.84). Equation (3.89) relates the rate of change of total stored energy in a cell to other 
rates. The net rate of neutron production due to absorption is given by Eq. (3.82), and the net rate 
of heat generation due to fission is given by Eq. (3.83). The corresponding homogenized 
properties are evaluated using Eqs. (3.77) and (3.78). The neutron current surface integrals 
between cells are evaluated using Eq. (3.86), and their boundary versions are evaluated using 
Eqs. (3.87) and (3.88). The corresponding homogenized confusion coefficients are evaluated 
using (3.79)-(3.81), respectively. The heat flux surface integrals between cells are given by Eq. 
(3.91), and the boundary heat fluxes by Eqs. (3.92) and (3.93). The corresponding averaged 
quantities are unchanged from section 3.1, and are given by Eqs. (3.26), (3.35) and (3.36), 
respectively. 

In many of these equations, the specific values of the coefficients changed, due to the 
introduced temperature dependence. However, the equations’ overall forms did not change. This 
means that the bond graph representation for these equations stays almost the same, although the 
constituent expressions for the elements may be different. The difference in the bond graph 
representation comes from the fact that, for example, the flow of neutrons between two cells is 
now no longer only proportional to the difference in efforts (scalar fluxes), which made it a 
combination of a linear resistor and a 1-junction. This quantity is still proportional to the 
difference in efforts, but the constant of proportionality is now a function of two temperatures – 
two efforts. To treat such dependency, a new element is needed, called modulated resistor, or 

59 
 



MR; in this case, a modulated linear resistor11 can be used. This element, in its general form, is 
introduced in Table 12 below.  

Table 12. Modulated and 2-Port Resistors 

Element Element name Type of 
element 

Constituent 
equation(s) 

 

Modulated 
Resistor 

Modulated 
damping ( ), ,i i j kf G e e e=  

 

2-port 
Nonconservative 
Coupler 

Multiport 
damping 

( )j

j( )
1

2

2 ,

2 ,

i i

j i

f R e e

f R e e

=

=
 

 
In this case, the modulated resistor element is in a modulated coefficient form. In this 

form, the coefficient is the modulated proportionality constant between the effort and the flow of 
the resistor. The constituent equation therefore is: 

 
( )

1

j k,i if e
R e e

=

                                                

 (3.94) 

As described in section 2.4 (p. 30), a bond generally has two associated bond variables – 
an effort and a flow. However, in this case, while the MR element is modulated by two efforts, it 
does not impose any flows back on the modulating bonds. Therefore, it can be said, that while 
these bonds carry information, they do not carry a conserved quantity – similarly to signal bonds 
in operational block diagrams used a lot in control theory. (Ref. [20]). This introduces a new 
bond type into the bond graph representation (mentioned in section 2.4) – the signal bond, which 
carries a single bond variable from a junction. Such junction must impose the causality on the 
signal bond: a 1-junction makes the bond deliver a flow from the junction, and a 0-junction 
makes the bond deliver an effort from the junction. For the purposes of SCAP, the junction’s 
causalities must be set through other bonds connected to it; that is, some element must impose a 
flow on a 1-junction or an effort on a 0-junction. In this case, the thermal 0-junction is ideal as 
the source junction of the modulating signal bonds, as all efforts it imposes correspond to the 
effort imposed on it by the thermal capacitor. (See Figure 7 for details). This effort, in turn, is the 
average temperature in the finite cell, according to Eq. (3.19). The other bond variable on a 
signal bond is zero, and does not contribute to any of the algebraic equations in the system. 

The standard symbol for signal bonds is a line with an arrow symbol in the middle. 
Sometimes, a regular full arrow is used instead, similarly to the notation in operational block 
diagrams. Signal bonds are also sometimes referred to as activated bonds or active bonds, 
because they were originally used to model active electronic amplifiers. (Refs. [19,20]). The 
notation and underlying assumed equations for signal bonds are summarized in Table 13 below: 

 
11 A “modulated linear resistor” refers to the resistor’s equations’ quasilinear form. This means, that the 

flow imposed by the resistor is proportional to the effort supplied to the resistor through the resistor’s main port, 
denoted by bond i in the table. The proportionality constant is nonlinearly dependent on the modulating variables 
supplied through the signal ports, denoted by signal bonds j and k in the table. 

60 



Table 13. Signal Bonds 

Augmented signal 
bond 

Constituent 
equation(s) 

0

0
i

i

e e
f
=

=
 

1

0
i

i

f f
e
=

=
 

 
For boundary resistors, the modulation is only performed by the boundary cells’ 

temperatures, as seen from Eqs. (3.87) and (3.88). 
Besides the newly-introduced modulated resistor, an additional element is required to 

model the coupling, called the R2 element. It is shown in Table 12, and is defined below. Both 
resistive elements in Table 12 are shown in the causality in which they will be used, but it must 
be noted, that other causalities are generally possible. For the purposes of SCAP, each port of the 
R2 element can be treated as an independent resistor. 

The other additions from coupling are the temperature modulation of the net rate of 
neutron production (originally a resistor) and of the fission heat generation term. By the bond 
variable definitions specified in sections 3.1 and 3.2, the two terms are both flows, a neutron and 
a thermal flow, respectively. The other bond variable definitions state that temperature is a 
thermal effort and scalar flux is a neutron effort. Together, these neutron and heat production 
terms can be written in the following form: 

 
( ) ( )

( )
, ,

,

T TN
i a i i f i i ii

T T N
i i f i i i

e ef
f w e e

∀ ν

∀

Ne⎡ ⎤⎡ ⎤Δ Σ − Σ⎡ ⎤ ⎣ ⎦⎢ ⎥=⎢ ⎥ ⎢ ⎥Δ Σ⎣ ⎦ ⎣ ⎦
 (3.95) 

in which: 
N

if  Neutron flow corresponding to net neutron removal rate due to absorption in 
finite cell i  

T
if  Thermal flow corresponding to fission heat generation rate in finite cell i 
N
ie  Average scalar flux in finite cell i 
T
ie  Average temperature in finite cell i 

By comparing Eq. (3.95) to the 2-port nonconservative coupler element in Table 12, it is 
clear that Eqs. (3.95) and the R2 constituent equations are in the same form. By convention, it 
will be assumed, that bond i is the bond coming from the neutron side of the coupler, and bond j 
is the bond coming from the thermal side of the coupler. With this assumption, the functions 12R  
and 22R  are the first and second equations in Eqs. (3.95), the neutron flow and effort are if  and ie , 
and the thermal flow and effort are jf  and je . 

The neutron and thermal flow rates set by the R2 coupler are parts of Eqs. (3.84) and 
(3.89), respectively. These rate balance equations are set by the 0-junctions, which also impose 
the cell average scalar flux and temperature as their efforts. Therefore, the R2 element will 
connect the neutron and thermal 0-junctions, with the bond orientation discussed above. 

Equations (3.95) are generally nonlinear. However, in the absence of temperature 
dependence of the cross-sections, they become linear: 

61 
 



 , ,

,

N
i a i f i Ni

iT
i i f i

f
e

f w

∀ ν

∀

⎡ ⎤⎡ ⎤Δ Σ − Σ⎡ ⎤ ⎣ ⎦⎢ ⎥≅⎢ ⎥ ⎢ ⎥Δ Σ⎣ ⎦ ⎣ ⎦
 (3.96) 

To summarize, the modulation of the neutron resistors by the temperatures introduces an 
MR element, modulated through signal bonds by the cell temperatures from the thermal 0 
junctions. The temperature modulation of the net neutron removal rate by absorption, together 
with the heat generation rate by fission, introduces an R2 element. None of the other elements in 
the single physics discretization are affected by coupling. The initial conditions are also 
unchanged from the single physics treatments, and are given by Eq. (3.13) and (3.46) for the 
initial heat and neutron distributions, respectively. 

With these modifications to the bond graph representation, the overall bond graph 
representation of coupled diffusion equations can finally be constructed. It is shown in Figure 12 
below. 

The constituent expressions for all elements in this bond graph representation are 
summarized in Table 14 below. Figure 12 and Table 14 together summarize the bond graph 
representation algorithm which arises from the finite volume discretization of the coupled 
diffusion equations. The initial conditions for the capacitors’ displacements have been specified 
in Eqs. (3.13) and (3.46). The quantities which are affected by coupling in the constituent 
expressions in Table 14 are defined in this section; the quantities which remained unaffected are 
defined in the corresponding single-physics sections 3.1 and 3.2. 

 
Figure 12. Coupled Diffusion Bond Graph Representation 

62 



Table 14. Coupled Diffusion Bond Graph Constituent Expressions 

Domain Element Constituent Expressions12 

Thermal 

TSEleft ( )leftT t  

Rleft
1 1 2

2
x o

A
Δ

 

Ci
1

i pc∀ ρΔ
 

Ri–1/2 
( )1 1

2
i i ix 2x o

A
− −Δ + Δ

TSFi ( ),ex iU t�  

Neutronics 

TSEleft ( )left tφ  

Rleft
( )1 1 2 1

2
x Co e

A
Δ

 

Ci
n

i

V
∀Δ

 

Ri–1/2 
( ) ( )1 1 2 ,

2
i i i i 1 ix x Co e e

A
− − −Δ + Δ

TSFi ( )S t,ex i  

Coupled R2i
( ) ( )
( )

, ,

,

i a i from f i from to

i f i from to

e e

w e e

∀ ν

∀

e⎡ ⎤Δ Σ − Σ⎣ ⎦

Δ Σ  
 
This bond graph representation is the main result of this chapter. Constructing it 

completes step 1 of the bond graph process discussed in section 2.4 (p. 30) and summarized in 
Figure 2 (p. 32). To continue the analysis of the coupled 1D one-group nuclear reactor, steps 2-5 
have to be executed. The whole purpose of using the bond graph formalism is that steps 2-5 are 
algorithmic, and can be executed automatically. A proof-of-concept code, designed to execute 
these steps, was developed, and is described in chapter 4 (p. 67). 

The bond graph representation presented in this section still represents very limited 
physics. The main assumptions for this preliminary analysis are that these physics are 1D and 
one-group. In the next section, the extension to 2D two-group diffusion is discussed. 

3.4. Multidimensional Multigroup Neutron Diffusion via Bond Graphs 
Only neutron diffusion representation with bond graphs will be discussed in this section. 

The 2D heat diffusion bond graph can be constructed very similarly, and the coupling is also 
similar to section 3.3. 

The model derived in this section is not utilized further in this text, due to requiring faster 
processing than the proof-of-concept code developed in chapter 4 (p. 67) can provide. For this 

                                                 
12 The constituent expressions are either the linear elements’ moduli (for capacitive and 1-port resistive 

elements), or the expressions the elements impose on their bonds (for source and R2 elements). For the R2 elements, 
tof , ,  and  refer to the flow and effort on the bond that points toward the element, and the flow and effort 

on the bond that points away from the element, respectively. As discussed above, 
toe fromf frome

tof  is the flow on the neutron side, 
and  is the flow on the thermal side. fromf

63 
 



reason, instead of giving a detailed derivation, several physical arguments are made from which 
a bond graph representation is derived. The constituent expressions for the individual elements 
are not derived in the present work, but will be derived when 2D systems are modeled in the 
future. 

By inspecting the bond graph representation developed for 1D one-group neutron 
diffusion in section 3.2, it can be seen, that the outcome is essentially a sequence of connected 
bond graph blocks. With every scalar flux is associated a 0-junction and a capacitor, with every 
absorption and fission production term is associated an R element connected to the junction. A 
TSF element imposes an external neutron source on the cell. The cells are connected with 
combinations of 1-junctions and R elements, which represent the diffusion terms. 

In the 2D two-group case, two complications arise and will be discussed individually. 
First, there are now two neutron groups, which means that there are two scalar fluxes, one for 
each group. Corresponding to each flux is a neutron density, which, when integrated over the cell 
finite volume, is the group neutron total. These group fluxes and group neutron totals are related 
to each other identically to the 1D case, therefore, for each energy group, there will be a neutron 
capacitor and a 0-junction in each cell. Group-to-group scattering does not explicitly appear in 
the one-group model, but in a multigroup model, the neutrons may be removed from a group 
total in a cell not only by streaming or absorption, but also by scattering to another energy group. 
Scattering rate from group g to group g′ is only a function of the source group g scalar flux and 
the differential scattering cross-section. If upscattering is not neglected, then the reverse is also 
true. Together, these two statements combine to form a net scattering rate from group g to group 

; this rate is a function of both groups’ fluxes, but is not proportional to the difference in them. 
This is an example of a 2-port coupling in which 2 rates (flows) are functions of 2 scalar fluxes 
(efforts). Such coupling can be achieved using an R2 element. If the scattering cross-sections are 
dependent on temperature, then the element would become a modulated MR2 element, and 
temperature would have to be supplied to it via a modulating bond. There is also now a TSF 
element for each energy group. 

g′

 
Figure 13. 1D Slice of a Two-Group Neutron Diffusion Bond Graph Representation 

64 



The second addition to the model is the transition from 1D to 2D. This addition is 
simpler, and is discussed in detail in literature about the finite volume method (Ref. [33]). The 
model is two-group, so there are now two rates of diffusion between nearby cells, one for each 
energy group. These rates are still proportional to the difference in corresponding scalar group 
fluxes. This means that there is now a set of a 1-junction with a connected R element between 
every finite cell for every energy group. 

Combining these modifications, a 1D slice of the above representation is presented in 
Figure 13 above. 

To expand this representation to 2D, the 1D slices have to be combined, with an inter-cell 
boundary between each slice. A schematic of the resulting representation is presented in Figure 
14 below. 

 
Figure 14. 2D Diffusion Bond Graph Schematic Representation 

Adding heat diffusion into the model would simply place another layer of connected cells 
on top of the bond graph system above. This layer would be connected through R2 elements with 
both energy groups, assuming fast fission is possible. These elements would replace the R 
elements connected to the 0-junctions in the BGS above. The heat diffusion layer itself would 
modulate all of the resistive elements in the two neutronics layers in the BGS above. 

Overall, the above schematic and representation clearly show that 2D multigroup bond 
graph representations can be constructed just as easily as 1D one-group, which means that the 
model studied in this text is an adequate proof-of-concept, but is not by any means a limit of the 
method. 

In the next chapter, a code is developed to process general bond graph representations. 

65 
 





4. Bond Graph Processing Code Development 
As was discussed in section 2.4 (p. 30), after a bond graph representation is constructed 

for a system, the resulting BGS can be processed. This processing occurs in steps 2-5 of the bond 
graph method (see Figure 2, p. 32). The major benefit of the bond graph formalism is that the 
processing of the BGS can be completely automated. In this chapter, a code developed for this 
project that automates these four steps is described. 

The four general steps that a bond graph processing code is supposed to execute are 
summarized in Figure 15 below. 

 
Figure 15. Bond Graph Processing Code Summary 

In Figure 15, the following notation is used: 
bN  Number of bonds in the BGS 

xG State vector: vector of all storage variables in the bond graph 
xG�  State time derivative vector: the ODE system to integrate 
( ),te xGG  Vector of all bonds’ efforts as a function of time and state 
( ),tf x
G G  Vector of all bonds’ flows as a function of time and state 

Several attempts have previously been made to automate these steps. A matrix-based 
vector field-type formulation has been developed for a purely linear BGS processing by 
Rosenberg (see Ref. [28]). However, in that formulation, along with most other commercial bond 
graph processing codes, only linear bond graph systems can be processed. This makes the 
commercially available codes, as well as the algorithmic formulation in Ref. [28] inapplicable 
for processing the coupled physics bond graphs which arise from nuclear reactor modeling. 

Because no fitting bond graph processing code exists to automatically treat the bond 
graph representations of interest, such code was developed. This bond graph processing code 
package was named BGSolver, and it is a proof-of-concept bond graph processing MATLAB 
code package. It is important to note, that BGSolver was not meant to be a high performance tool 
for large system analysis. Instead, it is only a proof-of-concept package that demonstrates the 
possibility of executing the steps in Figure 15 and resolving nonlinear bond graph systems. 
BGSolver was written to satisfy the following requirements: 
− To accept a BGS together with its constituent expressions as a file input. 
− To be able to execute steps 2-5 in Figure 15 without any input from the user, except for the 

ODE integration method type and parameters. 

67 



− To be able to handle all of the element types necessary for modeling coupled diffusion 
equations, in all possible causalities. 

In this chapter, the underlying algorithms and logic of the code are described in some 
detail. The mechanics of the implementation of the code, including the specific MATLAB file 
names and their roles, as well as the complete lists of constituent expressions for all possible 
element, expression and causality type combinations, are described in Appendix A (p. 83). The 
file format used to describe a BGS together with its constituent expressions is described in 
Appendix B (p. 89). A Graphical User Interface (GUI), which can be used to create simple BGS 
files for BGSolver, is described in Appendix C (p. 97). 

The general algorithm underlying BGSolver’s operation is presented in section 4.1. 
Section 4.2 summarizes how the code works simultaneously with symbolic and numeric 
expressions. The details of the most complicated and restrictive step in the processing algorithm, 
the sorting step, are described in section 4.3. Concise instructions for how to operate the code are 
presented in section 4.4, and a short discussion of possible means of acceleration of the code to 
make it applicable for large problems is given in section 4.5. 

4.1. General Algorithm Description 
MATLAB was chosen as the environment to develop BGSolver. It is well understood, 

that for high performance computational applications, MATLAB is inapplicable (Ref. [36]); 
however, it is an ideal environment for preliminary algorithm development and testing. More 
important, MATLAB was chosen because of its Symbolic Math Engine (SME), provided as part 
of its Symbolic Math Toolbox (SMT), and the capability to sort the AEs by simply running a 
symbolic algebraic solver on them. 

The MATLAB SME is a version of a Computer Algebra System (CAS), implemented in 
the MATLAB environment using the MuPAD symbolic engine. (Ref. [37]). In BGSolver, it was 
chosen to perform the most crucial step: the sorting of the AEs to yield the bond variable vectors 
as functions of time and state. Similar sorting capabilities are available in several other software 
packages, such as Maple (Ref. [38]), but those packages are generally meant exclusively for 
symbolic manipulation of equations, and are unfit for code development. Implementing a CAS in 
MATLAB, however, allows BGSolver to use powerful numerical tools while using symbolic 
sorting to formulate the state derivative vectors. 

Many of the elements’ constituent expressions, along with the state derivative vector 
itself, are MATLAB numerical expressions. This means that they are sequences of relatively 
low-level commands, accept only numerical data as inputs, and most importantly, cannot be 
manipulated symbolically. However, the sorting procedure requires at least some degree of such 
manipulation. For this reason, BGSolver had to be able to work with both symbolic and numeric 
expressions; section 4.2 outlines how this was accomplished. The symbolic sorting procedure 
itself is discussed in more detail in section 4.3. In this section, the general algorithm of the code 
is discussed. 

Overall, BGSolver supports 18 different element types and 7 element expression types. 
BGSolver is only capable of treating fully causal bond graphs, which is acceptable, because as 
was shown in chapter 3 (p. 43), only fully causal bond graphs arise from coupled PDE 
discretization. For this reason, no augmentation procedure such as SCAP was implemented in 
BGSolver – the code assumes that causalities are provided for elements which accept several 
causalities, and that the appropriate/integral causality is used for all other elements. 

68 



All possible combinations of element, expression and causality types, and the resultant 
AEs are listed in Appendix A (p. 83). In this section, it is sufficient to recognize, that every 
element imposes 1 AE for every bond connected to it. 

The 18 element types that BGSolver accepts are summarized in Table 15 below: 

Table 15. BGSolver Element Types 

Type of 
element 

Element 
symbol Element name 

Admits 
modulating 
variables 

Admits 
multiple 
causalities13 

Source 

SE Source of Effort No No 
SF Source of Flow No No 
MSE Modulated Source of Effort Yes No 
MSF Modulated Source of Flow Yes No 

Storage 

C Capacitive element No No 
I Inertial element No No 
MC Modulated Capacitive element Yes No 
MI Modulated Inertial element Yes No 

Damping 

R Resistor No Yes 
R2 2-port Resistor No Yes 
MR Modulated Resistor Yes Yes 
MR2 Modulated 2-port Resistor Yes Yes 

Junction 

1 1-junction No No 
0 0-junction No No 
TF Transformer No No 
GY Gyrator No No 
MTF Modulated Transformer Yes No 
MGY Modulated Gyrator Yes No 

 
In BGSolver, because the systems treated are only fully causal, signal bonds are not 

explicitly implemented. Instead, the modulated elements that admit modulating variables, 
besides having associated constituent expressions, can have lists of modulating variables 
associated with them. These lists contain all bond variables that in a bond graph system would be 
delivered to the modulated elements via signal bonds; they may also contain time, since time-
modulated elements are treated as regular modulated elements by BGSolver. Only resistive 
(damping) elements admit several different causalities. For reasons discussed below, it is 
generally necessary to specify the resistive elements’ causal configurations to BGSolver, because 
otherwise it is impossible to write the resistive elements’ equations. 

The BGS is provided to BGSolver using a Bond Graph System Descriptor (BGSD) file. 
The BGSD file format was developed specifically for BGSolver and is described in detail in 
Appendix B (p. 89). The BGSD file can be thought of as a text representation of a bond graph 
system diagram – it contains information about all elements and bonds in the BGS, as well as the 

                                                 
13 If an element “admits multiple causalities,” that implies, that the element is capable of imposing several 

different variable types onto its bond, and so is capable of enforcing several different types of AEs, depending on 
causality. A junction element admits more than one causal configuration, but they are all equivalent, because the 
AEs do not change regardless of the junction’s causality. BGSolver only works with fully causal bond graphs, so 
storage elements only admit integral causalities. 

69 
 



initial conditions, but does not necessarily contain all elements’ expressions. Some elements’ 
expressions may be separate MATLAB functions, either stored in memory when BGSolver is 
executed, or saved as MATLAB function .m files. In this case, the BGSD file will only contain 
the MATLAB function handle that references these functions. For example, such a function 
handle can be written in the BGSD file as “@sin” and refer to the MATLAB numeric sine 
function. The numeric14 functions which are referenced by handles are very important, because 
among other things, these can include the table interpolation and piecewise polynomial 
functions, which are essential for working with realistic material properties. 

The BGSD file is a text file, and can, in principle, be either written completely by hand, 
or be generated using a script code. Such a script code generally will not do more than 
homogenize the material properties, integrate the source functions in space, and construct the 
BGS according to the bond graph representation algorithm for the physics of interest. Such 
algorithms were described for coupled neutron and heat diffusion in chapter 3 (p. 43). 

A simple Graphical User Interface (GUI) was developed to construct BGSD files for 
small BGSs. This GUI was primarily used for testing out BGSolver’s ability to process various 
types of bond graph systems, and not for constructing BGSD files for physical systems of 
interest. Nevertheless, the GUI proved useful both for debugging and for implementing new 
models for discrete dynamic systems, like electrical circuits. The GUI was named 
BGSD_Creator, and is described in detail in Appendix C (p. 97). 

Both elements and bonds are numbered in a BGSD file, for convenience. Generally, the 
algorithm is insensitive to how the elements are numbered, however, when creating a BGSD file, 
it is important to later have a way to interpret the numbered bond and storage variables. To do so, 
simple functions can be written that, for example, return the bond index i of the effort that 
corresponds to the temperature in cell j. 

After the BGSD file is read, the symbolic variables can be instantiated. Generally, 
MATLAB does not require variable instantiation, as it is a weakly dynamically typed language, 
but symbolic variables are different, and have to be instantiated. The symbolic variables include 
time, an appropriate storage variable for every storage element, and a pair of bond variables for 
every bond. Additionally, every numeric expression has a corresponding symbolic variable, for 
reasons described in section 4.2. 

After the symbolic variables are instantiated, AEs can be formulated. As was described in 
section 2.5 (p. 39), in step 3 of the bond graph method, the AEs are solved simultaneously to 
yield the bond variable vectors ) and ( ,te xG G ( ),tf x

G G . Combined, these bond variable vectors will be 
referred to as ( ,t )b x

G G . The algebraic equation system formed in step 2 of the bond graph method 
can therefore be viewed as a large vector of algebraic equations, of the following general form: 

 ( ) 2, , bNt = ∈F b x 0
JG GG G \  (4.1) 

in which: 
( ), ,tF b x
JG G G  System of algebraic expressions  

b
G
 Vector of bond variables 

0
G
 Zero vector of length 2  bN
2 bN\  2 bN -dimensional real vector space 

                                                 
14 Expressions which use MATLAB function handles are called “numeric,” and symbolic expressions are 

called “closed-form” in this chapter. 

70 



In step 2 of the bond graph method, BGSolver goes through every element in the BGS, 
and uses its tables of element types, expression types and causalities to construct the 
corresponding equations. These tables are provided in Appendix A. By the end of this process, 

)( , ,tF b x
JG G G  is constructed, and can be sorted. The “sorting” really refers to step 3 in the bond graph 
method, the solution of Eq. (4.1) to find ( ),tb x

G G . Because numeric functions are used, the sorting 
procedure is actually more complicated, but conceptually the description presented here is 
adequate. The details of the implementation of the numeric functions in ( , ,t )F b x

JG G G  are discussed 
in section 4.2, and the details of the sorting with these numeric functions are discussed in 4.3. 

After the sorting procedure is complete, ( ),tb x
G G  is known. The flows on the capacitive 

elements’ bonds and the efforts on the inertial elements’ bonds form the state derivative vector 
. This allows BGSolver to proceed to step 4, and to trim the large vector ( ,tx xG G� ) )( ,tb x

G G  to retain 
only the state derivative vector . After the state derivative vector is formed, the only thing 
that remains is to integrate it in time to construct the state vector 

( ,tx xG G� )
( )txG . 

Integrating a first order system of ODEs ( ),tx xG G�  is a standard problem in numerical 
analysis. When solving hyperbolic and parabolic PDEs, such problems arise when the Method of 
Lines (MOL) is used. (Ref. [35]). The time integration method chosen has to ensure stable 
integration, which, if an explicit method is used, normally places certain restrictions on the 
maximum time step size. An implicit method may also be used to integrate ; in that case, it 
will require solving a generally nonlinear algebraic system with each time step. An implicit time 
integration method is generally much more stable, which allows using large time steps without 
destabilizing the integrator. (Ref. [35]). 

( ,tx xG G� )

The main benefit of using the bond graph formalism for nuclear reactor multiphysics is 
the fact that treating the entire physical system simultaneously allows one to integrate ( ),tx xG G�  
using any stable numerical method. Such method may be of 2nd or greater order of accuracy in 
time; adaptive time stepping can also be used. By comparison, operator splitting, the 
conventional approach to reactor multiphysics, is limited to 1st order in time, even if a high order 
time integrator is used to integrate the individual physics at each time step. (Ref. [1]). Operator 
splitting is capable of yielding higher order accuracy in time only if iterations between the 
individual physics are performed, which is computationally expensive, and is generally not done. 
(Ref. [17]). This means, that assuming an appropriate time integration method is chosen, the 
bond graph formalism can easily exceed the maximum possible order of accuracy in time that 
operator splitting can yield. 

A particularly important time integration technique involves using an implicit method, 
like Crank-Nicolson, together with an efficient nonlinear Jacobean-Free Newton-Krylov (JFNK) 
system solver method. JFNK is based on avoiding the construction of the Jacobian at every time 
step while still making use of parts of the approximate Jacobian, computed through a variety of 
means. (Ref. [1]). In the future, JFNK-based implicit time integrators may be one of the possible 
types of solver used in step 5 for large-scale bond graph processing codes. They are not used in 
the present work. 

MATLAB has several efficient implicit and explicit time integrators. The time 
integrators, in general, use adaptive time stepping based on the approximate Jacobian of ( ),tx xG G� ; 
therefore, these methods do not have a theoretical order of accuracy in time. BGSolver is set up 
to construct a MATLAB function handle for the state derivative vector ( ),tx xG G� , and then to either 

71 
 



use the MATLAB time integrator specified in the BGSD file, or to use a custom-written one. It 
may be useful to custom-write simple methods for theoretical studies, but for practical problems, 
due to the expected stiffness, more efficient, and likely implicit, time integrators should be used. 

While it is not formally a part of the bond graph method, after  is computed, 
BGSolver is set up to post-process the results. In doing so, the code evaluates the bond variable 
vectors ) and ) as functions of time. These calculations are generally useful, because in 
practice, the state variables themselves are normally of little practical value, and the bond 
variables are truly what interests the user. In the case of coupled nuclear reactors, the reaction 
rates (neutron flows), temperature distributions (thermal efforts) and power rates (thermal flows) 
are generally of far greater importance than the neutron and thermal energy totals in finite cells. 
Quantities like total assembly power s a function of time can then be computed by simple 
algebraic manipulations of  and 

( )txG

 

a
)

( ,te xG G ( ,tf x
G G

( ,te xG G ( ),tf x
G G ; these operations are problem-specific, and are not 

done by BGSolver. 
In the next section, the different expression types that BGSolver accepts are summarized. 

4.2. Symbolic and Numeric Expressions Summary 
All elements listed in Table 15 above have one or more associated constituent 

expressions. As stated above, 7 types of constituent expressions are supported by BGSolver. 
Table 16 below summarizes these expression types, and outlines which ones require a specified 
causality if they are used for a damping element. (Otherwise, causality never needs to be 
specified). In general, not every expression type is usable with every element type – for example, 
source elements have no input from the bond that is connected to them, and so cannot use CE, 
NE, CME or NME expression types. The full table of compatibilities of element and expression 
types is provided in Appendix A (p. 83). 

Table 16. BGSolver Expression Types 

Expression 
type’s symbol Expression type’s name 

Requires causality 
specification for R 
and MR elements15 

CC Constant Coefficient No 
CMC Closed-form Modulated Coefficient No 
NMC Numeric Modulated Coefficient No 
CE Closed-form Expression Yes 
NE Numeric Expression Yes 
CME Closed-form Modulated Expression Yes 
NME Numeric Modulated Expression Yes 

 
A CC expression is simply a number, either imposed by a source element, or a linear 

element’s modulus. For a simple linear element, like a capacitor, the CC expression takes the 
following form: 

 e Cq=  (4.2) 
Here C acts as the constant coefficient. An R2 element with a CC expression is still a 

linear constant coefficient expression, of the following form: 

                                                 
15 R2 and MR2 elements always require causality specifications. 

72 



 11 12

21 22

2 2
2 2

to to

from from

f eR R
f eR R

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢⎢ ⎥ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (4.3) 

In this case, efforts are inputs and flows are outputs. Four different causal configurations 
for R2 elements are possible, all of which are supported by the code. They are described in detail 
in Appendix A. 

In general, coefficient-type expressions are expressions in which one or more variables 
set by the element is/are proportional to one or more of the input variables. Equation (4.2) is an 
example of such proportionality. The input variable may be a storage variable for the storage 
elements (Eq. (4.2)), or one or more bond variables delivered to the element (Eq. (4.3)). This 
proportionality constant may be modulated, and is the coefficient itself. For source elements, the 
“coefficient” is actually the value of the bond variable imposed by the source. 

The more general expression types are “expressions” – general functions of the input 
variable (or variables), which are imposed on the output variables of the element. These 
expressions may be modulated, in which case the modulating variables act as additional inputs to 
the functions. Two examples of such expressions are: 

 ( )e C q=  (4.4) 

 
( )
( )

1

2

2 ,

2 ,

to fromto

from to from

R e ef
f R e e

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (4.5) 

Source elements cannot have CE, NE, CME or NME as their expression types, because 
they do not have input variables. Modulated source elements are always of either CMC or NMC 
type. 

Both expression-type and coefficient-type expressions can be of two classes: a closed-
form expression and a numeric expression. The difference comes from the fact that, as stated 
above, MATLAB SME is used for sorting the AEs, and later for constructing and evaluating the 
state derivative vector. All symbolic variables for SME are objects, which can be equated to an 
expression in terms of other symbolic variables, and therefore can be symbolically manipulated. 
Generally, any SME expression can be considered closed-form, because of a finite set of 
algebraic expressions that can be implemented in SME and combined to form other 
mathematical expressions. 

However, MATLAB functions cannot be directly handled by SME, because MATLAB 
functions are just pointers to sequences of low level commands in memory. MATLAB functions 
are more general than combinations of closed-form algebraic expressions; most importantly, they 
can involve piecewise polynomials and table look-up functions. Both of these are necessary for 
working with practical data. For these reasons, while MATLAB functions may have closed-form 
equivalents, when making SME work with a MATLAB function, it is generally necessary to do 
so in several steps. Doing so is illustrated in an example. 

First, the following variables are assumed to be in memory: 
fun MATLAB function handle to be evaluated by the SME 
V MATLAB vector which contains the inputs for fun (assumed known) 
n Symbolic variable which represents fun for the SME 
expr Symbolic expression to evaluate, which fun is a part of 

In practice, expr may be a state derivative function, fun a resistive variable’s 
constituent expression, and V a time-dependent input for the constituent expression. When 
integrating expr in time, it would therefore be necessary to evaluate fun at every time step, so 

73 
 



a procedure has to be devised for doing so. Once V is in memory, the following code can be used 
to evaluate expr: 

 
F = fun(V); % Evaluating the function numerically 
X = subs(expr,n,F); % Plugging the numeric value into the expression 

 
In general, it’s possible that V itself depends on other numeric functions’ values, so the 

cycle has to be repeated more than once. Whether or not this is necessary, and if so, what order 
the numeric variables have to be evaluated in, is taken care of by the sorting procedure, described 
in the next section. 

4.3. Sorting Procedure Description 
As was described in section 4.1, the sorting procedure involves obtaining the bond 

variable vectors  and  by solving the AE system ( ,te xG G ) )( ,tf x
G G ( ), ,t =F b x 0

JG GG G . In section 4.2, it was 
shown, that some of the constituent expressions provided to the BGSD may in fact be numeric 
MATLAB functions. The symbol nG will be used for these numeric functions. It was also 
discussed, that while these numeric functions’ lists of input variables are provided, they cannot 
be manipulated directly by the SME. Therefore, more fully, this problem can be stated as 
follows: 

Given 

⋅ ( ), , ,t =F b x n 0
JG GG GG  

⋅ List of variable inputs to each member of nG; may include variables in { }, ,t b x
G G  

⋅ List of variables in b
G
 which constitute xG�  

⋅ List of MATLAB function handles for nG 

Find 
⋅ ( ), ,tb x n
G GG  

⋅ A way to evaluate nG based on ( ), ,tb x n
G GG  

⋅  ( ), ,tx x nGG G�

With ( ), , ,tF b x n
JG

)
G GG  constructed, the system can be trivially solved for ( , ,tb x n

G GG  using 
SMT’s solve command. The outcome is a vector of symbolic expressions of length 2 , as 
expected. 

bN

Due to nG G being present in the bond variable vector, it will generally be impossible to 
evaluate G G  based on time ( , ,tx x n� ) t and state xG alone, because at least some of the numeric 
variables nG will have to be evaluated. This problem was solved using the notion of numeric 
layers. Consider the following algorithm: 

 
10 Set layer counter 1l = . 
20 Loop through the bond variable vector ( ), ,tb x n

G GG , recording which bond variables can be 
evaluated using only time t and state xG, without evaluating any numeric variables. Assign 

se bond variables to the numeric layer 1. Together, these bond variables will be denoted 
(

the
) ( )1l =b b . 

G G

30 Loop through the numeric variable vector nG, recording which numeric variables can be 
evaluated using only t, xG and ( )1b

G
. Assign these numeric variables to the numeric layer 1. 

Together, these numeric variables will be denoted ( ) ( )1l =n nG G . 
40 Increment layer counter 1l l= + . 

74 



50 Loop through ( ), ,tb x n
G GG , recording which bond variables can be evaluated using only t, xG and 

all ( )knG  with k l< . Assign these bond variables to the numeric layer l. 
60 Loop through nG, recording which numeric variables can be evaluated using only t, xG and all 

( )kb
G

 with k l≤ . Assign these numeric variables to the numeric layer l. 
70 If all bond and numeric variables have been assigned to a layer, quit. Otherwise, go to 40. 

 
BGSolver implements this algorithm after ( ), , ,t =F b x n 0

JG GG GG  is solved and ( ), ,tb x n
G GG  is 

found. Having all bond and numeric variables assigned to numeric layers is very useful, because 
it allows the code to execute the expressions in an appropriate order to evaluate ( ), ,tb x n

G GG , and 
therefore . An inspection of the above algorithm shows, that if variables are evaluated in 
the order in which they are assigned to layers (that is, layer 1 bond variables first, then layer 1 
numeric variables, layer 2 bond variables, etc.), the expressions can be executed sequentially 
with no problem for the code. 

( ,tx xG G� )

Assigning all symbolic expressions in the problem to layers completes the sorting step, 
and allows the code to construct . ( ),tx xG G�

The only issue with this approach is speed. The looping described in the algorithm above 
is time-consuming. More importantly, the substitution of numeric values into symbolic 
expressions in MATLAB is a slow and memory-intensive process, due to the object-oriented 
nature of the SME. For these reasons, it is well understood, that while the code demonstrates the 
theoretical ability to automatically generate and integrate the state equations, it would be 
inapplicable for large problems. 

Section 4.5 contains a more detailed discussion of how the code may be made more 
robust. In the next section, BGSolver is concisely summarized. 

4.4. Final Code Description 
When a problem is being modeled with bond graphs, the bond graph processing code 

BGSolver expects a BGSD text file input. BGSD files are documented in Appendix B. 
During processing, BGSolver will request the initial and final time for the time integrator. 

All other processing is fully automatic. 
The code’s main product are four arrays: T, X, E and F. They are summarized below: 

T Vertical vector of time points at which X, E and F were computed 
X Vertical array of horizontal state vectors xG, evaluated at time points T 
E Vertical array of horizontal effort vectors eG, evaluated at time points T 
F Vertical array of horizontal flow vectors f

G
, evaluated at time points T 

These four arrays can be further post-processed; more advanced plots and even videos of 
the outcomes can be constructed. All this processing is problem-specific and is not done by 
BGSolver. 

The Symbolic Math Engine used for the sorting of AEs in step 3 significantly slows 
down the problem, and prevents the code from being expandable. In the next section, the 
possibility of expansion of the code to more realistic problems is discussed. 

4.5. Possible Code Acceleration for Large Problems 
As discussed in sections 4.2 and 4.3, the use of SME to sort the AEs places an 

unavoidable limit on BGSolver’s productivity. This procedure, along with symbolic 

75 
 



manipulations altogether, has to be replaced to accelerate the code sufficiently for large 
problems. 

Although not discussed in more detail in this text, one possible way of doing so may 
involve taking the vector field approach proposed by Rosenberg (Ref. [28]), and expanding it to 
nonlinear systems. Specifically, it may be possible to construct a multi-layer state derivative 
vector of the following form: 

 ( )( ), ,t t=x Ag Bh x
GGG G�  (4.6) 

in which: 
A, B Constant matrices 
gG, h
G
 Vector functions 

Such construction may allow for a fully numeric bond graph processing, as well as fully 
constructing a Jacobian matrix for faster time integration and uncertainty quantification. 

76 



5. Benchmark Problems 
In chapter 3 (p. 43), 1D one-group coupled neutron and heat diffusion problem was 

represented with bond graphs. In chapter 4 (p. 67), a bond graph processing code capable of 
automatically processing such representations was described. The next logical step is to test the 
resulting approach using a benchmark problem. 

Unfortunately, most multiphysics benchmark problems (i.e., Ref. [18]) available in 
literature are too complicated for the proof-of-concept code package tested here. For this reason, 
a benchmark problem fit for the preliminary testing has to be developed. The Method of 
Manufactured Solutions (MMS) is used in this chapter to do so. 

Section 5.1 concisely summarizes the theory of MMS, and a benchmark problem is 
constructed using MMS in section 5.2. A sample run result for this problem is shown and 
discussed in section 5.3. The conclusions about the potential of the use of bond graphs for 
coupled nuclear reactor multiphysics simulations are summarized in section 5.4. 

5.1. Method of Manufactured Solutions Theory 
Consider a sample 1D PDE system in Eq. (5.1): 

 (
2

2, , , ,t
t x x

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

u u uF u S
G G G

)t x+
JG GG  (5.1) 

in which: 
( ),t xuG  Unknown vector function 

2

2, , ,t
x x

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂⎝ ⎠

u uF u
G GJG G  Known function of time and uG which defines the PDE 

( ),t xS
G

 External source vector 
Equations like Eq. (5.1) are generally not solvable analytically. However, assuming 

sufficiently smooth material properties and uG, F
JG

 can be evaluated analytically. Therefore, while 
no exact solution will generally exist for Eq. (5.1), an exact solution can be intentionally 
constructed using the following procedure: 
1. Pick an arbitrary, but realistic and smooth set of material properties. 
2. Using these material properties, construct F

JG
. 

3. Pick an arbitrary, but realistic (order-of-magnitude) for the material properties chosen, exact 
solution function vector ( ),t xuG . ( ),t xuG  has to be sufficiently smooth to be analytically 
evaluated by F

JG
. 

4. Analytically differentiate ( ),t xuG  to construct 
t

∂
∂
uG  and 

2

2, , ,t
x x

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂⎝ ⎠

u uF u
G GJG G . 

5. Subtract 
2

2, , ,t
x x

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂⎝ ⎠

u uF u
G GJG G  from 

t
∂
∂
uG  to obtain the corrective source function: 

 ( )
2

2, , ,t x t
t x

⎛
,

x
⎞∂ ∂

= − ⎜
∂

⎟∂ ∂ ∂⎝ ⎠

u uS F u uG G GG JG G  (5.2) 

6. The material properties chosen above, together with the corrective source from Eq. (5.2), 
now constitute a problem with a known exact solution ( ),t xuG . Numerical methods can be 
tested using this problem; a good numerical method is expected to converge to the exact 
solution ( ),t xuG . 

77 



It must be recognized, that MMS works best when S
G
 sets the shape of the solution, but 

not its general scale. The reason for this, is that if the solution is dominated by S
G
, and not by F

JG
, 

any error made in discretizing S
G
 will overshadow the potential errors made from the 

discretization of F
J

. This is undesirable for testing numerical methods, so care must be taken to 
keep S

G
 on a smaller scale than 

G

F
J

. 
G

MMS is clearly applicable to the coupled diffusion problem discussed in chapter 3 (p. 
43). A benchmark problem for the coupled problem is constructed using MMS in section 5.2. 

5.2. Benchmark Problem Construction 
The coupled diffusion problem’s PDEs are repeated below, for convenience: 

( ) ( ) ( ) ( ) ( ) ( ) (, , , , , ,f an t x J t x x T t x x T t x s t x
t x

ν φ φ∂ ∂
= − + Σ −Σ +

∂ ∂
),ex  (5.3) 

 ( ) ( ) (, , ),J t x D x T t x
x
φ∂

= −
∂

 (5.4) 

 ( ) ( ), nt x V n t x,φ =  (5.5) 

 ( ) ( ) ( ) ( ) (,, , , ,v v f v eu t x u t x w x T t x u t x
t x

φ∂ ∂ ′′= − + Σ +
∂ ∂

� ),x  (5.6) 

 ( ) ( ) (,v ),u t x k x T t x
x
∂′′ = −
∂

 (5.7) 

 ( ) 1
v

p
vT u

cρ
= u  (5.8) 

The diffusion coefficient is constructed using the cross-sections and the mean scattering 
angle cosine (assumed constant): 

 ( ) ( ) ( )( )0

1,
3 , ,t s

D x T
x T xμ

=
Σ − Σ T

1

 (5.9) 

The spatial domain considered below is 0 x≤ ≤ . The other geometric and material 
properties used are listed in Table 17. Unless explicitly specified otherwise, the material 
properties are all constants. 

Table 17. Benchmark Problem’s Material and Geometric Properties 

Property Value/Expression Property Value/Expression 
( ),s x TΣ  6 k 1
( ),a x TΣ  2.5 0.5T+ pc 1
( ),f x TΣ  2 0.3T− ρ  1

0μ  2 3 w 1
nV  1 A 1

ν  2.5   
 
With the material properties chosen, the exact solution can be chosen to construct the 

corresponding corrective sources. A convenient choice of the exact solutions are polynomial 
functions, scaled in time. Even if initially a rise in power is observed (if the starting temperature 
is sufficiently low), the properties in Table 17 will clearly result in the power eventually 
stabilizing, because of the growing absorption and reducing fission cross-sections. The exact 
solution should reflect this behavior, and simulate a rise to power stabilized by a negative 
thermal feedback. 

78 



The following shape functions were used for the exact solutions: 
 ( ) 4 3 25.56 11.11 4.94 0.61 2.5T x x x x x∞ = − + + +

4 3 2
 (5.10) 

 ( ) 33.33 66.67 33.67 0.33x x x x xφ∞ = − + −  (5.11) 
in which: 

( )T x∞  The solution that the temperature approaches as t →∞ 
( )xφ∞  The solution that scalar flux approaches as t →∞ 

As described above, these shape functions were scaled in time to yield the exact solution 
functions: 

 ( ) ( ) ( ), 1 e t e tT t x T x− −
∞= − +  (5.12) 

 ( ) ( ) ( ), 1 e tt x xφ φ−
∞= −  (5.13) 

From Eqs. (5.12) and (5.13), the initial condition functions can be constructed: 
 ( )0 1T x =  (5.14) 
 ( ) 0x0φ =  (5.15) 

in which: 
( )0T x  The initial condition function for temperature 
( )0 xφ  The initial condition function for scalar flux 

The Dirichlet boundary condition functions can also be constructed: 
 ( ) ( )2.5 1 e et

left
tT t − −= − +  (5.16) 

 ( ) ( )2.5 1 e et
right

tT t − −= − +  (5.17) 
 ( ) 0left tφ =  (5.18) 
 ( ) 0right tφ =  (5.19) 
The material properties, initial and boundary conditions, and the exact solution function 

are known. It remains to construct the corrective source functions. First, defining the shape 
derivative functions: 

 ( ) ( )T x T x
x∞ ∞

∂′ =
∂

 (5.20) 

 ( ) ( )
2

2T x T x
x∞ ∞
∂′′ =
∂

 (5.21) 

 ( ) ( )x x
x

φ φ∞ ∞

∂′ =
∂

 (5.22) 

 ( ) ( )
2

2x x
x

φ φ∞ ∞

∂′′ =
∂

 (5.23) 

With these definitions, the corrective source functions can be found by plugging the 
material properties in Table 17 and Eqs. (5.12) and (5.13) into Eqs. (5.3)-(5.8). The following 
corrective sources result: 

 ( ) ( )( ) ( )( ) ( ) ( ) ( ), , e 1 , , , 1 et t
v ex fu t x T x w x T t x t x T xφ− −

∞ ∞′′= − − Σ − −�  (5.24) 

 

( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( )( ) ( ) ( ) ( ) ( )
( )( ) ( )( )

2

2

0

, e , , , , , ,

1 e
, , 1 e

6 , , , ,

t
ex a f

t
t

t s

s t x x x T t x t x x T t x t x

x T x
D x T t x x

x T t x x T t x

φ φ ν φ

φ
φ

μ

∞

−
∞ ∞−

∞

= +Σ − Σ −

′ ′−
′′− − +

−

 (5.25) 

⎡ ⎤Σ − Σ⎣ ⎦
With these corrective source functions, the benchmark problem is constructed. In section 

5.3, the simulation results are provided. 

79 
 



5.3. Benchmark Simulation Results 
A MATLAB script was developed to construct a BGSD file using the discretization 

algorithm in section 3.3 (p. 57). The script accepts the geometric and material properties and 
external source functions as inputs. For the benchmark problem, these parameters were outlined 
in section 5.2 above. 

The domain was discretized into 15 finite slabs. Applying BGSolver to the resultant 
BGSD file and using MATLAB ode45 Runge-Kutta-type ODE integrator produced the 
following result: 

 
Figure 16. Benchmark Simulation Results 

Figure 16 clearly shows that the code traced the solution in time, and did not diverge 
from it even during the transient. The temperature and flux peaks of the numerical solution also 
did not appear to desynchronize in time, which is a common problem in operator splitting. This 
verification clearly demonstrates, that the coupled multiphysics bond graph-based approach can 
be effectively used to simulate 1D one-group coupled diffusion equations, and is very accurate in 
doing so even with a relatively coarse spatial mesh. 

5.4. Conclusions 
A benchmark coupled neutron and thermal diffusion problem was created using the 

method of manufactured solutions. The benchmark was simulated using BGSolver, and 
demonstrated that the method successfully modeled the transient. The scalar flux and 
temperature peaks did not desynchronize in time at all, which is the main desired advantage for 
fully coupled simulations. 

For these reasons, the test can be considered successful. The bond graph-based approach 
to coupled nuclear reactor simulation was shown to be accurate and stable, and to exceed 
operator splitting in accuracy. Larger tests are required to fully understand the approach’s 
limitations. 

80 



6. Summary and Recommendations for Future Work 
Section 6.1 summarizes the main results of this dissertation. Section 6.2 outlines several 

possible directions to continue this work in. 

6.1. Summary 
The objectives of the project were: 

1. To identify a method to represent neutron diffusion via bond graph formalism. 
2. To identify a method to couple neutron diffusion and thermal diffusion via bond graph 

formalism. 
3. To develop a code fit for automatic processing of systems modeled via bond graph 

formalism. 
4. To construct and run a benchmark and draw conclusions about the method’s feasibility. 

All these objectives were successfully achieved. Neutron diffusion, and thermal diffusion 
of heterogeneous materials, were discretized using rigorous finite volume formulations. The 
resulting discretization was then used as the basis for a bond graph representation of these 
physics. A MATLAB-based bond graph processing code was developed, and utilized to simulate 
a benchmark coupled neutron and thermal diffusion problem. The simulated solution accurately 
traced the exact solution in time, and did not desynchronize even during the fastest part of the 
transient. This fact illustrated the desired advantage of the coupled modeling approach over the 
conventional operator splitting. 

Currently, the symbolic engine in the bond graph processing code is the limiting factor in 
the developed code package. However, for the above reasons, the bond graph-based approach to 
coupled nuclear reactor simulation was deemed feasible, and appropriate for high-fidelity 
simulation. Suggestions were made for accelerating the bond graph processing code; when those 
are implemented, the code can be used for running large simulations. 

6.2. Recommendations for Future Work 
Bond graph formalism was deemed appropriate for high fidelity coupled simulations of 

nuclear reactors. However, the proof-of-concept code BGSolver written as part of this project is 
clearly inappropriate for large problems, because of the symbolic engine used in the code. 
Another issue with the code is its use of MATLAB ODE integrators to integrate the state 
derivative vectors; these integrators are efficient on single machines, but are not parallelizable 
over clusters. This is a strong limitation against the use of the code for large problems. 

For these reasons, it is recommended to continue this work as follows: 
1. To identify a fully numeric method to replace the sorting step in the bond graph processing 

code. One direction to look in is to expand Rosenberg’s vector field-based approach. 
2. To implement this numeric method as the sorting procedure, thus phasing the MATLAB 

symbolic engine out of the code. 
3. To utilize a higher performance, parallelizable time integration package for integrating the 

large ODE systems. One such package which should be explored is TRILINOS (Ref. [39]). 
4. To develop and implement bond graph representation techniques for more complicated 

physics, such as advection, two phase flow, multigroup NP  and S  neutron transport. N

5. To continue expanding the code’s capabilities, increasing both its speed and range of 
representable physics. 

81 



82 

The most important recommendation of these is the first one – it is critical to turn the 
sorting procedure in the code to a fully numeric one. Doing so will remove a major bottleneck in 
the code, which currently serves as the main limiting factor. 



Appendix A. Bond Graph Processing Code Documentation 
The bond graph processing code developed for this project was named BGSolver. The 

version associated with this text is BGSolver 1.01. The BGSD file format (summarized in section 
Appendix B, p. 89), the BGSD_Creator and the BGSD_Generator tools are all versioned 
similarly, and are all in versions 1.01. 

BGSolver 1.01 utilizes MATLAB Symbolic Math Toolbox. SMT’s syntax conventions 
changed between versions; the code is known to work in MATLAB R2009a x86 version. It may 
be incompatible with other versions of MATLAB and/or SMT. 

The BGSD_Creator tool for creating simple BGSD files is described in Appendix C (p. 
97). 

BGSolver 1.01 supports 18 element types and 7 expression types. Section 4.2 (p. 72) 
summarizes the differences between the expression types and classes, and the consequences for 
the code of using each expression type. Only fully causal systems are supported. The constituent 
equations for the source, storage and junction elements for all their possible expression types are 
listed in Table 18 below. The constituent equations for the resistive elements for all their possible 
expression types and causalities are listed in Table 19. 

The following notation is used in these tables: 
e Effort on the single bond connected to the element 
f  Flow on the single bond connected to the element 
A Constant 
( )A mG  Function of modulating variables 

mG  Vector of modulating variables (may include time) 
q Capacitive element’s displacement 
p Inertial element’s momentum 
toe  Effort on the “to bond” – the bond pointing toward the 2-port element 
frome  Effort on the “from bond” – the bond pointing away from the 2-port element 
tof  Flow on the “to bond” – the bond pointing toward the 2-port element 
fromf  Flow on the “from bond” – the bond pointing away from the 2-port element 

i e Effort on bond i connected to the junction element 
if  Flow on bond i connected to the junction element 

i Bond index of the first bond connected to the junction element 
i k+  Bond index of the last bond connected to the junction element 

ld  
1 for bonds directed toward the junction
1 for bonds directed away from the junctionld

+⎧
≡ ⎨−⎩

 

T  Transformer’s coefficient 
( )T mG  Modulated transformer’s coefficient 

G Gyrator’s coefficient 
( )G mG  Modulated gyrator’s coefficient 
( )G e  Resistive element’s constituent expression for f  

The differences between numeric and closed-form expressions were outlined in section 
4.2. They are different in implementation, but mathematically, their constituent equations are 
identical. 

83 



Table 18. Source, Storage and Junction Element and Expression Type Compatibility 

Element type Expression 
type 

Corresponding constituent 
equation(s) 

SE Source of Effort CC e A=
SF Source of Flow CC f A=

MSE Modulated Source 
of Effort 

CMC, 
NMC ( )e A= mG  

MSF Modulated Source 
of Flow 

CMC, 
NMC ( )f A= mG  

C Capacitive element 
CC e Cq=
CE, NE ( )e C q=  

I Inertial element 
CC f Ip=
CE, NE ( )f I p=  

MC Modulated 
Capacitive element 

CMC, 
NMC ( )e C q= mG  

CME, NME ( ),e C q= mG  

MI Modulated Inertial 
element 

CMC, 
NMC ( )f I p= mG  

CME, NME ( ),f I p= mG  

1 1-junction  
1 1

0

i k i k

i k

l l
l i

i if f f f

d e

+ + − +

+

=

= = = =

=∑

…
 

0 0-junction  
1 1i i i k i ke e e e

0
i k

l l
l i

d f

+ + − +

+

=

= = = =

=∑

…
 

TF Transformer CC ,to from out toe Te f Tf= =  
GY Gyrator CC ,to out from toe Gf e Gf= =  

MTF Modulated 
Transformer 

CMC, 
NMC ( ) (to from from toT f),e T e f= =m mG G  

MGY Modulated Gyrator CMC, 
NMC ( ) (,to from from toe G f e G f)= =m mG G

 
None of the elements in Table 18 are affected by causality, because fully causal system is 

assumed. However, resistive elements are still affected by causality. Except for the coefficient 
forms of the 1-port resistive element, the elements’ constituent expressions vary depending on 
the causality they are in. Table 19 below lists all possible combinations of expression and 
causality types for pure resistive elements. 

84 



Table 19. Resistive Element Expression and Causality Type Compatibility 

Element 
type 

Expression 
type 

Causality Corresponding constituent 
equation(s) Input Output

R Resistive 
element 

CC 
f e e Rf=  
e f

CE, NE 
f  e ( )e R f=  

e f  ( )f G e=  

R2 
2-port 
Resistive 
element 

CC 

to

from

f
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

 to

frome
e⎡ ⎤

⎢ ⎥
⎣ ⎦

 11 12

21 222 2
to2 2to

from frome fR R
e fR R⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢⎢ ⎥ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 

to

frome
e⎡ ⎤

⎢ ⎥
⎣ ⎦

 to

from

f
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

 11 122 2to to

21 222 2from from

f eR R
f eR R

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢⎢ ⎥ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 

to

from

f
e
⎡ ⎤
⎢ ⎥
⎣ ⎦

 to

fromf
e⎡ ⎤

⎢ ⎥
⎣ ⎦

 11 122 2to to

21 222 2from fromf eR R
e fR R⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢⎢ ⎥ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 

to

fromf
e⎡ ⎤

⎢ ⎥
⎣ ⎦

 to

from

f
e
⎡ ⎤
⎢ ⎥
⎣ ⎦

 11 122 2to to

21 222 2from from

f eR R
e fR R
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢⎢ ⎥ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 

CE, NE 

to

from

f
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

 to

frome
e⎡ ⎤

⎢ ⎥
⎣ ⎦

 
( )12 ,to fromR f fe

( )22 ,
to

from to from
e R f f

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

to

from

e
e
⎡ ⎤
⎢ ⎥
⎣ ⎦

 to

from

f
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
( )12 ,to fromR e ef

( )22 ,
to

from to from
f R e e

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

to

from

f
e
⎡ ⎤
⎢ ⎥
⎣ ⎦

 to

from

e
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
( )12 ,to fromR f ee

( )22 ,
to

from to from
f R f e

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

to

from

e
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

 to

from

f
e
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
( )12 ,to fromR e ff

( )22 ,
to

from to from
e R e f

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
Modulated resistive elements have similar constituent expressions. However, their 

coefficients and expressions also accept modulating variables (time and bond variables) as 
inputs. The possible combinations of expression and causality types for modulated resistive 
elements are listed in Table 20 below. 

85 
 



Table 20. Modulated Resistive Element Expression and Causality Type Compatibility 

Element Expression 
type 

Causality Corresponding constituent 
equation(s) Input Output

MR 
Modulated 
Resistive 
element 

CMC, 
NMC 

,mG e ( )e R f= mf G  
,e mG f

CE, NE 
,f mG  e ( ),e R f= mG  

,e mG  f  ( ),f G e= mG  

MR2 

Modulated 
2-port 
Resistive 
element 

CMC, 
NMC 

,to

from

f
f⎢ ⎥

⎣ ⎦
m

⎡ ⎤ G  to

frome
e⎡ ⎤

⎢ ⎥
⎣ ⎦

 
( ) ( )
( ) ( )

11 12

21 22

2 2
2 2

to to

from from

R R
e fR R
e f⎡ ⎤⎡ ⎤ ⎡

= ⎢ ⎥
⎤

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

m m
m m

G G
G G

,to

frome⎢ ⎥
⎣ ⎦

m
e⎡ ⎤ G  to

from

f
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
( ) ( )
( ) ( )

11 12

21 22

2 2
2 2

to to

from from

f e⎡ ⎤R R
f eR R

⎡ ⎤ ⎡
= ⎢ ⎥

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

m m
m m

G G
G G

,to

from

f
e⎢ ⎥
⎣ ⎦

m
⎡ ⎤ G  to

fromf
e⎡ ⎤

⎢ ⎥
⎣ ⎦

 
( ) ( )
( ) ( )

11 12

21 22

2 2
2 2

to to

from from

R R
f eR R
e f⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

m m
m m

G G
G G

,to

fromf⎢ ⎥
⎣ ⎦

m
e⎡ ⎤ G  to

from

f
e
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
( ) ( )
( ) ( )

11 12

21 22

2 2
2 2

to to

from from

f e⎡ ⎤R R
e fR R
⎡ ⎤ ⎡

= ⎢ ⎥
⎤

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

m m
m m

G G
G G

CE, NE 

,to

from

f
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

mG  to

from

e
e
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
( )
( )

1

2

2 , ,

2 , ,

to fromto

from to from

R f fe
e R f f

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

m

mG

G
 

,to

from

e
e
⎡ ⎤
⎢ ⎥
⎣ ⎦

mG  to

from

f
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
( )
( )

1

2

2 , ,

2 , ,

to fromto

from to from

R e ef
f R e e

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

m

mG

G
 

,to

from

f
e
⎡ ⎤
⎢ ⎥
⎣ ⎦

mG  to

from

e
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
( )
( )

1

2

2 , ,

2 , ,

to fromto

from to from

R f ee
f R f e

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

m

mG

G
 

,to

from

e
f

⎡ ⎤
⎢ ⎥
⎣ ⎦

mG  to

from

f
e
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
( )
( )

1

2

2 , ,

2 , ,

to fromto

from to from

R e ff
e R e f

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

m

mG

G
 

 
BGSolver 1.01 is a package of MATLAB .m files, consisting of:  

BGSolve The main script file which executes the code. All other files are referenced by 
this file. 

readBGSD A function file that reads a BGSD file and returns a data structure with all the 
data from the BGS. 

getbvids 
A function file that takes a vector of symbolic bond variables as an argument, 
and returns their bond variable IDs. This operation is used when numeric 
layers are being assigned. 

getnvids 
A function file that takes a vector of symbolic numeric variables as an 
argument, and returns their numeric variable IDs. This operation is used when 
numeric layers are being assigned. 

86 



evalxdot 

A function file that takes a time value, a state vector and an appropriate data 
structure as arguments, and evaluates the state derivative vector with these 
inputs. This operation is used to construct a MATLAB function handle for the 
state derivative vector to then integrate the ODE system. 

evalbvars 
A function file that takes a vector of time values, an array of state vectors and 
an appropriate data structure as arguments, and evaluates the bond variables at 
these time values. This operation is used in post-processing. 

BGSD_Generator 1.01 consists of a single file: 

writeBGSD 

A function file that takes an appropriate data structure, describing a BGS, as 
an argument, and writes a BGSD file based on this data structure. This 
operation is used by problem-discretizing scripts which are set up to construct 
the BGSD files. 

BGSD_Creator 1.01 also consists of a single file: 

BGSD_Creator 

A function file that starts up a MATLAB Java GUI that asks the user a 
series of questions and constructs and writes a BGSD file based on the 
answers. This operation is useful for debugging the BGSolver code, and 
for trying new types of bond graph system models. 

The code’s main product are four arrays: T, X, E and F. They are summarized below: 
T Vertical vector of time points at which X, E and F were computed 
X Vertical array of horizontal state vectors xG, evaluated at time points T 
E Vertical array of horizontal effort vectors eG, evaluated at time points T 
F Vertical array of horizontal flow vectors f

G
, evaluated at time points T 

87 
 





Appendix B. BGSD File Format Documentation 
The purpose of the BGSD file is to contain all information about a specific fully causal 

bond graph system, including all of its elements and their constituent equations or values, initial 
conditions, and bonds which connect the elements. The file can also contain additional 
information about elements, such as their names, in the form of character strings. 

BGSD stands for Bond Graph System Descriptor. The BGSD file is referred to as “the 
BGSD” in this documentation. 

BGSD format differs between versions of code, because different versions of BGSolver 
support different types of elements and expressions. The format provided here is for code version 
1.01. 

The format presented in this appendix is not problem-specific, and can be used for 
describing any BGS, modeling any physical system. Any fully causal BGS described by this 
format can be processed by BGSolver 1.01. 

General notes 
A BGSD file consists of 7 sections: 

− File Header Section 
− Specified System Information Section 
− Element List Section 
− Bond Directionality Matrix Section 
− Expression List Section 
− Initial Value List Section 
− File End Section 

They are presented separately below. Notice that only text in Courier font appears 
in the BGSD, the rest is just comments. 

Line format 
A BGSD file consists of lines. Almost any line has the following general syntax: 

keyword string 
Here, the keyword indicates what type of information (if any) is contained in the string. 

The keyword cannot be empty, but the string can be. They are separated by exactly one space. 
Notice that the keyword appears exactly as shown in the text below, while the string is 

different based on whatever information that string is intended to contain. For example, if the 
BGSD file is intended for software version 1.01, the following will be the SVF line in the File 
Header: 
SVF 1.01 

The 7 sections of the BGSD file are presented below. In every section description the 
syntax of the section is given first, followed by an explanation of the meaning of each line. 

File Header 
BGSD 
SVF Version 
SVC Version 
NOTES If_Notes 
Notes_Entry 
NOTESEND 

89 



Comments 
I. BGSD – “Bond Graph System Descriptor” keyword. It is the first line of the file header. 
II. SVF – “Software Version For” keyword.  

Version – The version number of the processing software that the BGSD was created for. 
III. SVC – “Software Version Created” keyword. 

Version – The version of the software that the BGSD was created by. If SVC and SVF 
mismatch, the processing software throws a warning. 

IV. NOTES – “Notes” keyword. It indicates the beginning of the optional Notes section. 
If_Notes – Whether or not there are any optional notes entered. It can be one of the 
following keywords: 
• 0 – There are no optional notes entered. The NOTESEND keyword follows. 
• 1 – There are optional notes entered. The Notes_Entry follows. 

V. Notes_Entry – The optional notes entry. This is a line of any text, in double quotation 
marks. 

VI. NOTESEND – “Notes End” keyword. It’s present whether or not any optional notes were 
entered. 

Specified System Information 
SCI SC_Info 
SMI SM_Info 
SLI SL_Info 
SRI SR_Info 
SEI SE_Info 
SSI SS_Info 
SNI SN_Info 

Comments 

I. SCI – “Specified Causality Information” keyword. 
SC_Info – Specified information about causality of the BGS. This can be one of the 
following keywords: 
• FC – “Full Causality” 
• UC – “Unknown Causality” 
Software v1.01 only works with BGSDs that are known to be fully causal. 

II. SMI – “Specified Modulation Information” keyword. 
SM_Info – Specified information about the modulated elements of the BGS. This can be 
one of the following keywords: 
• NMEP – “No Modulated Elements Present” 
• TMEP – “Time-Modulated Elements Present” 
• SMEP – “Signal-Modulated Elements Present” 
• UMP – “Unspecified if Modulation Present” 
Software v1.01 does not use this information, but it will be used in future versions. 

III. SLI – “Specified Linearity Information” keyword. 
SL_Info – Specified information about linearity of the BGS. This can be one of the 
following keywords: 

90 



• ACC – “All Constant Coefficients” – All elements’ expressions are constant coefficients 
• ABSCON – “All But Source Constant” – Source elements’ expressions may be time-

modulated, the other elements’ expressions are constant coefficients 
• NCC – “Non-Constant Coefficients” – Expressions other than constant coefficients may 

be present 
• UL – “Unspecified Linearity” 
Software v1.01 does not use this information, but it will be used in future versions. 

IV. SRI – “Specified Reduction Information” keyword. 
SR_Info – Specified information about whether or not the BGS should be reduced. A 
reduction of a BGS refers to replacing it with an alternative BGS with identical state 
equations, but fewer bonds, elements, or both. Typically this is achieved by eliminating 
bypassed 1-port elements, or replacing a junction structure with a simpler equivalent junction 
structure. SR_Info can be one of the following keywords: 
• FR – “Fully Reduced” 
• UR – “Unknown if Reduced” 

V. SEI – “Specified Error Information” keyword. 
SE_Info – Specified information about whether or not to check the BGS for errors. 
Examples of errors include 1-port elements with multiple bonds connected to them, 2-port 
elements with any number of bonds other then 2 connected to them, and similar errors that 
prevent the BGSD from making physical sense. SE_Info can be one of the following 
keywords: 
• CE – “Check for Errors” 
• DNCE – “Do Not Check for Errors” 

VI. SSI – “Specified Solver Information” keyword. 
SS_Info – Specified information about the solver to use to solve the ODEs formulated by 
the sorter. SS_Info can be one of the following keywords: 
• MSSNS – “MuPAD Symbolic Solver then Numeric Solver” 
• NSO – “Numeric Solver Only” 

VII. SNI – “Specified Numeric Information” keyword. 
SN_Info – Specified information about the numeric solver to use if a numeric solver is used 
to solve the ODEs formulated by the sorter. SN_Info can be one of the following 
keywords: 
• ode15s – Use MATLAB’s ode15s solver (stiff systems, low accuracy) 
• ode45 – Use MATLAB’s ode45 solver (non-stiff systems, medium accuracy) 
• ode113 – Use MATLAB’s ode113 solver (non-stiff systems, high accuracy) 

Element List 
EL Number 
ENAMES Name_IDs 
Name_List 
EINFOS Info_IDs 
Info_List 
ETYPES Element_Types  
ELEND 

91 
 



Comments 

I. EL – “Element List” keyword. 
Number – Number of bond graph elements in the Bond Graph System being described in the 
BGSD. 

II. ENAMES – “Element Names” keyword. 
Name_IDs – List of 1s and 0s, one value for every element in the BGSD, listed in the order 
of increasing element IDs. 1 indicates that the element’s name is specified, 0 indicates that 
the element’s name is not specified. The specified names themselves are listed in the 
Name_List. 

III. Name_List – List of the specified names of the elements, one name per line, in double 
quotation marks. Only the elements whose corresponding values in the Name_IDs list are 
1s have specified names. 

IV. EINFOS – “Element Infos” keyword. 
Info_IDs – List of 1s and 0s, one value for every element in the BGSD, listed in the order 
of increasing element IDs. 1 indicates that the element’s info is specified, 0 indicates that the 
element’s info is not specified. The specified infos themselves are listed in the Info_List. 

V. Info_List – List of the specified infos of the elements, one info per line, in double 
quotation marks. Only the elements whose corresponding values in the Info_List are 0s 
have specified infos. 

VI. ETYPES – “Element Types” keyword. 
Element_Types – List of element types, one element type for every element in the list, 
listed in the order of increasing element IDs. Each type can be one of the following 18 
keywords: 
SE, SF, I, C, R, TF, GY, 1, 0, MSE, MSF, MI, MC, MR, MTF, MGY, R2, MR2 

VII. ELEND – “Element List End” keyword. This keyword concludes the Element List. 

Bond Directionality Matrix 
BDM Number 
Table 
BDMEND 

Comments 

I. BDM – “Bond Directionality Matrix” keyword. 
Number – Number of bonds in the BGS. 

II. Table – Table which stores the bond directionality information according to the following 
logic: 
For every nonzero cell value: 
Row Number of that Cell – EID of the element the bond points From 
Column Number of that Cell – EID of the element the bond points To 
Value of that Cell – the bond’s ID Number. Bond IDs are similar to element IDs described 
above. 
The resulting table is an eN  matrix which is mostly 0s. eN  is the number of elements in 
the BGS. 

e N×

III. BDMEND – “Bond Directionality Matrix End” keyword. 

92 



Expression List 
Notice that the blank lines are not in the BGSD, and are given here just for simplifying 

reading. The indented lines are also only indented to simplify reading and are not indented in the 
BGSD. 
EXPRL Number 
EXPRIDS Expression_IDs 
EXPRTYPES Expression_Types 
 
Expression_Blocks 
 
EXPRLEND 

Comments 

I. EXPRL – “Expression List” keyword. 
Number – Number of bond graph elements with constituent expressions in the BGSD. 

II. EXPRIDS – “Expression IDs” keyword. 
Expression_IDs – List of element IDs of elements with constituent expressions, in order 
of increasing element IDs. 

III. EXPRTYPES – “Expression Types” keyword. 
Expression_Types – List of expression types, one expression type for every element in 
the expression list, listed in the order of increasing element IDs. Each type can be one of the 
following 7 keywords: 
CC, CMC, NMC, CE, NE, CME, NME 

Expression_Blocks consists of an expression block for every element with a constituent 
expression in the BGSD. Every such block has the following form: 
 
EID ID_Number 
EC Causality 
Expression 
 
IV. EID – “Element ID” keyword. 

ID_Number – Unique identification number of the element whose expression follows. 
V. EC – “Element Causality” keyword. 

Causality – Causality vector of the element whose expression follows. For 2-port 
elements the vector is in the order of input, output. Causality vector consists of a single entry 
for every port of the element, with the following possible values: 
• 0 – Causality for this element is irrelevant/unspecified. 
• 1 – Effort is input on the port. 
• 2 – Flow is input on the port. 

VI. Expression – Element’s expression. The expression format depends on the expression 
type and also on the element’s type. The formats are presented below: 
• For all elements other than R2 and MR2, each element has one constituent expression. 

o For CC expression type: 
Coefficient 

o For CMC expression type: 

93 
 



MPARAM List 
Mod_CF_Expression 

o For NMC expression type: 
MPARAM List 
Mod_Function_Handle 

o For CE expression type: 
CF_Expression 

o For NE expression type: 
Function_Handle 

o For CME expression type: 
MPARAM List 
Mod_CF_Expression 

o For NME expression type: 
MPARAM List 
Mod_Function_Handle 

• For R2 and MR2 elements, each element has two or four constituent expressions. 
o For CC expression type, matrix of the following form: 

Coefficient1 Coefficient2 
Coefficient3 Coefficient4 

o For CMC expression type: 
MPARAM List 
Mod_CF_Expression1 
Mod_CF_Expression2 
Mod_CF_Expression3 
Mod_CF_Expression4 

o For NMC expression type: 
MPARAM List 
Mod_Function_Handle1 
Mod_Function_Handle2 
Mod_Function_Handle3 
Mod_Function_Handle4 

o For CE expression type: 
CF_Expression1 
CF_Expression2 

o For NE expression type: 
Function_Handle1 
Function_Handle2 

o For CME expression type: 
MPARAM List 
Mod_CF_Expression1 
Mod_CF_Expression2 

o For NME expression type: 
MPARAM List 
Mod_Function_Handle1 
Mod_Function_Handle2 
 

The keywords are described below: 

94 



a. Coefficient – A single number. 
b. MPARAM – “Modulating Parameters” keyword. 
c. List – Double-quoted, comma-separated list of parameters modulating the expression. 

They are in the following format: 
• Effort on bond # N  – ‘eN’ 
• Flow on bond # N  – ‘fN’ 
• Time – ‘t’ 

d. Mod_CF_Expression – A MuPAD expression in double quotes for the expression being 
defined. It is a one-line expression which involves some of the modulating parameters listed 
in the MPARAM line, as well as the independent variable. It does not involve the quantity 
actually being defined (the output), as that is assumed, based on the causality. So, if trying 
to define an expression of the format ( ) 2f x x= , the Expression will be: 

“x^2” 
The independent variable(s) are specified according to the following: 
• q – Displacement associated with the port (Capacitive element). 
• p – Momentum associated with the port (Inertial element). 
• e – Effort input associated with the port (Resistive element in Conductance causality). 
• f – Flow input associated with the port (Resistive element in Resistance causality). 
For 2-port elements, the i and o (“input” and “output,” or “to” and “from”) bonds are 
specified according to the convention in Figure 17 below. Notice that “input” bonds still have 
an output quantity, and “output” bonds still have an input quantity, according to the bonds’ 
causalities. Here, “input” and “output” is just a naming convention for the bonds’ directions. 

 
Figure 17. Bond Directionality Convention for 2-Port Elements 

• ei – Effort input on the input bond of a 2-port element. 
• fi – Flow input on the input bond of a 2-port element. 
• eo – Effort input on the output bond of a 2-port element. 
• fo – Flow input on the output bond of a 2-port element. 
For modulated elements, the following modulating independent variables are also used (all 
modulating variables have to be listed in the List of Modulating Parameters): 
• t – Time. 
• eN – Effort on bond # N . 
• fN – Flow on bond # N . 

e. Mod_Function_Handle – A MATLAB function handle. The function handle’s 
arguments are in the following order: 

95 
 



• Independent variable(s), for a 2-port element – as a 1 2×  vector. For a 2-port element, the 
vector’s elements are first that from the input bond, then that from the output bond. 

• Modulating parameters, in a vector. The order of elements in that vector is the same as 
the order of variables in the List of Modulating Parameters. 

f. CF_Expression – A Maple expression in double quotes for the expression being 
defined. It is a one-line expression, similar to the Mod_CF_Expression, defined above, 
but without the modulating variables. Everything else is the same. 

g. Function_Handle – A MATLAB function handle, similar to the 
Mod_Function_Handle, defined above, but without the modulating variables. 
Everything else is the same. After the functions are listed, is the EXPRLEND keyword. 

VII. EXPRLEND – “Expression List End” keyword. 

Initial Value List 
EV0L Number 
EV0IDS Initial_Value_IDs 
EV0 Initial_Values 
EV0LEND 

Comments 

I. EV0L – “Element Values at 0 List” keyword. 
Number – Number of storage elements with initial values in the BGSD. 

II. EV0IDS – “Element Values at 0 IDs” keyword. 
Initial_Value_IDs – List of element IDs of elements with initial values, in order of 
increasing element IDs. 

III. EV0 – “Element Values at 0” keyword. 
Initial_Values – List of initial values, separated by spaces. The initial values are given 
in the order of increasing element IDs, with the corresponding element IDs given in the 
EV0IDS list above. 

IV. EV0LEND – “Element Values at 0 List End” keyword. 

File End 
BGSDEND 

Comments 

BGSDEND – “Bond Graph System Descriptor End” keyword. 

96 



Appendix C. BGSD File Creator Documentation 
BGSD_Creator 1.01 is a Graphical User Interface (GUI) for creating BGSD files for 

simple bond graph systems. The BGSD file format is described in Appendix B (p. 89). In this 
appendix, BGSD_Creator is used to construct the bond graph system for the RLC circuit from 
section 2.5 (p. 39). 

Like BGSolver 1.01, BGSD_Creator 1.01 has only been tested in MATLAB R2009a x86. 
To create a BGSD file using BGSD_Creator, the user is expected to have the following: 

– A complete diagram of the bond graph system 
– All bonds must be numbered 
– All elements must be numbered 
– All constituent expressions of the elements must be known 
– All initial values of the storage variables must be known 

Consider the following bond graph system: 

 
Figure 18. Annotated Bond Graph System Diagram 

This BGS is clearly identical to the one in section 2.5, except in this one, specific 
numerical values are assigned to each element, and the elements are numbered. All zero initial 
conditions are assumed. 

After starting the BGSD_Creator by typing “BGSD_Creator” in the MATLAB 
prompt, and clicking “Create a new BGSD file” button, the user is asked for some text 
information about the system being modeled. This part does not affect the BGS itself and can be 
clicked through. After that, the GUI requests additional information about the BGS; this screen is 
shown in Figure 19 below. 

Most questions asked at this stage are not utilized by BGSolver 1.01; however, the choice 
of the numeric ODE solver chosen at this stage may make a difference for some problems. 
Leaving the default stiff solver ode15s on the user can proceed to the next stage, in which the 
numbers of elements and bonds are requested. The bond graph system above has 5 elements and 
4 bonds, which can be entered. After these numbers are entered, the element types, and optional 
names and infos (not used by the solver, but can be used in post-processing) can be specified. 
The element type selection screen, with the elements from Figure 18 already entered, is shown 
below in Figure 20. 

After the element types are chosen, the constituent expressions for the elements can be 
entered. At this point, the GUI goes through every element chosen previously, and asks the user 
for the expression type, causality (if applicable), and expression itself. In this case, all elements 

97 



have constant coefficient expressions, so the expression entry screens are very simple. A sample 
expression entry screen for the resistive element is shown in Figure 21 below. 

After the expressions are entered, the bond directionality screen comes up. In this screen, 
the user can enter the connections that the bonds in the BGS make. The filled-out bond 
directionality entry screen for the BGS in Figure 18 is shown in Figure 22 below. 

After the bond directionality is specified, the initial condition table is provided. After 
entering the initial conditions, the user can save the BGSD file. 

Clearly, large BGSD files cannot be created using the BGSD_Creator GUI. However, it 
was used successfully for testing the BGSolver code on small problems, which is its primary 
purpose. The code may also prove to be convenient for modeling discrete dynamic systems using 
the bond graph processing package developed in this project, because discrete dynamic systems 
generally have much less elements and bonds than discretized coupled systems do. 

 

 
Figure 19. BGSD_Creator Additional Information Specification Screen 

98 



 
Figure 20. BGSD_Creator Element Type Selection Screen 

 
Figure 21. BGSD_Creator Expression Entry Screen 

99 
 



 
Figure 22. BGSD_Creator Bond Directionality Entry Screen 

100 



Glossary 
This chapter includes a list of definitions of various terms used in this text, which may be 

helpful to the reader. 

Acausal bond graph system 
Adapted from Ref. [19]: 
An acausal bond graph system is a bond graph system in which no bonds have been 

assigned causality. 

Augmented bond graph system 
Adapted from Ref. [19]: 
An augmented bond graph system is a bond graph system in which every bond has been 

assigned causality. 

BGSD_Creator 
BGSD_Creator stands for Bond Graph System Descriptor Creator. It is a simple 

MATLAB graphical user interface, developed to create simple BGSD files for testing the 
BGSolver bond graph processing code and new physical models. 

BGSolver 
BGSolver stands for Bond Graph Solver. It is a MATLAB bond graph processing code 

package which utilizes the MATLAB symbolic toolbox as the equation sorting engine, 
formulates the ODEs using the sorted equations and integrates the ODEs using a specified 
numerical method. BGSolver was developed as part of this project, and used as a proof-of-
concept test of the applicability of the bond graph method to coupled nuclear reactor modeling. 

Bond 
In this text: a scalar bond connects two bond graph elements, pointing from one element 

to the other. Bonds are typically numbered, for convenience. A full bond i has two variables 
associated with it: effort variable ie  and flow variable if . A signal (also known as “activated” or 
“active”) bond only has one of the associated variables – the other is automatically zero. 
Depending on the bond’s causality, the flow variable is carried one way across the bond, and the 
effort variable – the other way. 

In most bond graph modeling texts (for example, Refs. [19,20]) bonds carry power, with 
the direction the bond points in being the direction of positive power flow, and the power carried 
across the bond i being given by: 

 ii iP e f=  (G.1) 
in which: 

iP Power carried by bond i 
i e Effort on bond i 
if  Flow on bond i 

In this text, bonds are not restricted to carrying power, and thus the Eq. (G.1) does not 
necessarily hold. 

A vector bond is a collection of scalar bonds pointing from one field (“tensor”) element 
to another field element in the same physical domain. Examples of vector bonds include 

101 



convection bonds (Ref. [26]) and 3D mechanical bonds (Ref. [40]). Vector bonds are not used in 
this text. 

Bond graph element 
Adapted from Ref. [19]: 
In this text: a bond graph element is a constituent object of a bond graph system which 

has ports to which bonds connect, and exactly one constituent equation per port. The number of 
ports and the forms the constituent equations take depend on the element type. The constituent 
equations take as inputs the causal inputs to the element (variables delivered by the bonds 
connected to the element’s ports), and set the outputs delivered by the same bonds to the 
elements on the other sides of the bonds. 

Bond graph system 
In this text: a mathematical structure consisting of bond graph elements connected with 

bonds. A bond graph system typically models an engineering system, with the mathematical 
model (equations describing the system) derivable from the bond graph system. 

In many texts (for example, Refs. [19,20,25]), the term “bond graph” is used instead of 
“bond graph system.” 

Bond variables 
In this text: efforts and flows in a bond graph system are referred to as “bond variables.” 

Causality 
Adapted from Ref. [19]: 
In this text: the causality is a property of a bond, determining which way the bond 

delivers effort. By extension, the bond delivers flow the opposite way. Causality is assigned to 
bonds during the system augmentation. 

Confusion coefficient 
The name proposed in this text for the reciprocal of the neutron diffusion coefficient. 

Symbol Co is used for the confusion coefficient: 

 ( ) ( )
1,
,

Co T
D T

≡x
x

G
G  (G.2) 

Convection bond 
Adapted from Ref. [26]: 
A vector bond with two efforts and one flow, representing a thermodynamic energy and 

mass transfer by a fluid. Convection bonds are primarily used in lumped thermodynamic 
analysis. In this text, simpler pseudo-bonds are used instead. 

Convergence plot 
Adapted from Ref. [35]: 
A convergence plot is a log-log plot of the error of a numeric scheme versus the time, or 

spatial step size used by the scheme. If the scheme exhibits asymptotic convergence, the plot 
should look like a straight line, whose slope is the observed order of accuracy (also known as 
order of convergence) of the scheme. 

102 



Coupled phenomena 
In this text, the mathematical definition of coupled phenomena is used. 
Adapted from Ref. [36]: 
Physical phenomena x and y are considered uncoupled if changing the properties or the 

dynamics of phenomenon x does not affect the properties and the dynamics of phenomenon y 
and vice versa. 

Physical phenomena x and y are considered triangularly coupled if changing the 
properties or the dynamics of phenomenon x affects the properties or the dynamics of 
phenomenon y, but not vice versa. 

Physical phenomena x and y are considered fully coupled if changing the properties or 
the dynamics of either of the phenomena affects the properties or the dynamics of the other 
phenomenon. 

Simple linear uncoupled, triangularly coupled and fully coupled dynamic models are 
illustrated in Eq. (G.3): 

 11 11 11 12

22 21 22 21 22

Uncoupled (diagonalized) phenomena Triangularly coupled phenomena Fully 

0 0
0

A A A Ax x x x x
A A A Ay y y y yt t t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦�����	����
 �����	����


coupled phenomena

x
A y�����	����


 (G.3) 

Internal energy 
From Ref. [13]: 
Strictly, the internal energy of a system is the total energy due to the kinetic energy of its 

particles and the potential energy associated with the crystalline structure of the materials, as 
well as the chemical and nuclear bonds of the particles in the system. This makes the internal 
energy of a system the combination of sensible, latent, chemical and nuclear energies of the 
system. 

Generally in thermodynamic and heat transfer analysis of a system, only the sensible and 
latent energies, known together as the thermal energy, are considered. For this reason, in this 
text, internal energy refers only to the thermal energy. 

Mathematical model 
Adapted from Ref. [19]: 
In this text: a mathematical model of a given engineering system is a system of partial 

differential and integro-differential, ordinary differential and algebraic equations, the solution for 
which describes the engineering system’s dynamic (for dynamic models) or static (for steady-
state models) behavior. The accuracy of the description is dependent upon the assumptions made 
when constructing the models, the numerical accuracy of the solution, the quality of physical 
data available for the system’s properties, and other factors. 

Mechatronic system 
In this text: a mechatronic system is any engineering system that includes, at least, 

mechanical (translational and/or rotational) and electrical components. 

Method of manufactured solutions 
The method of manufactured solutions is a technique for benchmarking proof-of-concept 

codes, which consists of several steps: 

103 
 



1. Write out the system of the fundamental partial differential equations that the code is trying 
to solve, along with some set of material and geometric properties describing the system. 

2. Pick an arbitrary but physically reasonable smooth solution function for each PDE in the 
system. 

3. Plug the smooth “manufactured” solutions from step 2 into each PDE. 
4. Solve for the “corrective” external source functions in each PDE. 

The new problem now consists of the material and geometric properties from step 1 with 
the corrective external source functions from step 4. The exact solutions to this new problem are 
the manufactured solutions from step 3. Having exact solutions to the problem, obtained without 
the use of codes, allows for a much more in-depth analysis of the code and convergence studies 
than using fine-mesh solutions and/or other higher performance codes. 

Modulated element 
Adapted from Ref. [19]: 
In this text: an element whose constituent equation(s) include not only the variables 

delivered to it by its full bonds, but also time (for time-modulated variables), and bond variables 
on bonds other than the bonds connected to the element. These additional (modulating) variables 
are delivered to the modulated element via signal bonds. 

Modulated elements have “M” in front of their names: for example, the symbol of a 
Modulated Source of Effort is MSE. 

Numeric layer 
During the sorting procedure (step 3 of the bond graph method), the algebraic equations 

(AEs) are solved and the bond variable vector is found. The bond variable vector is a function of 
time, state vector and, if they are present, one or more numeric variables. The numeric variables 
are the symbolic variables which serve as the symbolic placeholders for the MATLAB functions 
in the constituent expressions of the elements in the bond graph system being processed. The 
bond variables and the numeric variables are then separated between several numeric layers, with 
the following structure: 
⋅ To evaluate bond variables in layer 1, no numeric variables need to be known. 
⋅ To evaluate numeric variables in layer 1, only the bond variables in layer 1 need to be known. 
⋅ To evaluate bond variables in layer 1i > , only numeric variables in layers 1 j i≤ <  need to be 

known. 
⋅ To evaluate numeric variables in layer 1i > , only bond variables in layers 1 j i≤ ≤  need to be 

known. 
MATLAB functions cannot be directly manipulated by the symbolic math toolbox. 

However, this structure allows using the symbolic sorter to solve the AEs formed in step 2, even 
if some of the AEs may involve numeric expressions with underlying MATLAB functions. 

Physical domain  
In this text: part of a system governed by a certain unique set of physical laws, which 

govern specific behavior. Geometrically, several physical domains may be present in a region of 
a system. Examples of physical domains include: 
− Translational mechanics of a body 
− Rotational mechanics of a body 
− Electrical circuits and networks 

104 



− Hydraulic and acoustic networks 
− Magnetic fields 
− Neutron transport 

In Ref. [19], the term “energy domain” is used in place of “physical domain,” because in 
most physical domains, energy is a conserved quantity. Therefore, the way the energy is stored 
and power transferred through the system is dependent on the physical domain the energy is in. 
In this text, several domains are considered where conservation of energy is not part of the 
governing laws (i.e., neutron transport), and therefore the term “physical domain” is suggested. 

Reticulation 
Adapted from Ref. [20]: 
Reticulation of a system is the process of decomposing the system into interacting 

component parts. The result of this decomposition can also be referred to as the reticulation. 
Reticulation involves making simplifying assumptions about both the nature of the component 
parts and about their interactions. Generally, a good reticulation of an engineering system is not 
unique, nor are dynamically equivalent reticulations necessarily identical in their structure and 
complexity. 

Signal bond 
See bond. 

System 
Quoted verbatim from Ref. [19]: 

1. A system is assumed to be an entity separable from the rest of the universe (the 
environment of the system) by means of a physical or conceptual boundary. An animal, for 
example, can be thought of as a system that reacts to its environment (the temperature of 
the air, for example) and that interchanges energy and information with its environment. In 
this case the boundary is physical or spatial. An air traffic control system, however, is a 
complex, man-made system, the environment of which is not only the physical 
surroundings but also the fluctuating demands for air traffic, which ultimately come from 
human decisions about travel and the shipping of goods. The unifying element in these two 
disparate systems is the ability to decide what belongs in the system and what represents an 
external disturbance or command originating from outside the system. 

2. A system is composed of interacting parts. In an animal we recognize organs with specific 
functions, nerves that transmit information, and so on. The air traffic control system is 
composed of people and machines with communication links between them. Clearly, the 
reticulation of a system into its component parts is something that requires skill and art, 
since most systems could be broken up into so many parts that any analysis would be 
swamped with largely irrelevant detail. 

Thermal energy 
From Ref. [13]: 
The combination of sensible and latent energies of the system. If no chemical or nuclear 

reactions occur, all changes in the internal energy of the systems are due to changes in the 
thermal energy of the system. Only the sensible energy of the system is dependent on the 
system’s thermodynamic state (temperature and pressure). For this reason, in this text, the terms 
internal energy and thermal energy are used interchangeably. 

105 
 



106 

Vector bond 
See bond. 



References 
1. D. A. Knoll and D. E. Keyes, “Jacobian-free Newton-Krylov methods: a survey of approaches 
and applications,” Journal of Computational Physics 193 (2), 357-397 (2004). 
2. H. M. Paynter, Analysis and Design of Engineering Systems. (The MIT Press, Cambridge, 
MA, 1961). 
3. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis. (John Wiley & Sons, Inc., 
Hoboken, NJ, 1976). 
4. A. F. Henry, Nuclear-Reactor Analysis. (The MIT Press, Cambridge, MA, 1975). 
5. W. M. Stacey, Nuclear Reactor Physics, 2nd ed. (Wiley-VCH Verlag GmbH & Co. KGaA, 
Weinheim, Germany, 2007). 
6. S. M. Ghiaasiaan, Two-Phase Flow, Boiling and Condensation in Conventional and Miniature 
Systems. (Cambridge University Press, Cambridge, UK, 2008). 
7. P. K. Kundu and I. M. Cohen, Fluid Mechanics, 4th ed. (Academic Press, Burlington, MA, 
2008). 
8. N. E. Todreas and M. S. Kazimi, Nuclear Systems, Vol. 1. (Taylor & Francis Group, LLC, 
New York, NY, 1990). 
9. R. L. Norton, Machine Design – An Integrated Approach, 3rd ed. (Prentice Hall, Upper Saddle 
River, NJ, 2006). 
10. ASM International Handbook Committee, ASM Handbook, Vol. 13C, 10th ed. (ASM 
International, Materials Park, OH, 2007). 
11. I. Gouja, M. Avramova and A. Rubin, “Development and Optimization of Coupling 
Interfaces Between Reactor Core Neutronics and Thermal-Hydraulic Codes,” presented at the 
PHYSOR 2010 Conference, Pittsburgh, PA, 2010. 
12. M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics, 5th ed. (John 
Wiley & Sons, Inc., Hoboken, NJ, 2004). 
13. F. P. Incropera, D. P. DeWitt, et al., Fundamentals of Heat and Mass Transfer, 6th ed. (John 
Wiley & Sons, Inc., Hoboken, NJ, 2007). 
14. K. S. Krane, Introductory Nuclear Physics. (John Wiley & Sons, Inc., Hoboken, NJ, 1988). 
15. K. Shibata, T. Kawano, et al., “Japanese Evaluated Nuclear Data Library Version 3 Revision-
3: JENDL-3.3,” Journal of Nuclear Science and Technology 39 (11), 1125-1136 (2002). 
16. R. L. Liboff, Introductory Quantum Mechanics, 4th ed. (Addison Wesley, San Francisco, CA, 
2003). 
17. M. Clergeau, F. Dubois, et al., “HEMERA: A 3D Computational Tool for Analysis of 
Accidental Transients,” presented at the PHYSOR 2010 Conference, Pittsburgh, PA, 2010. 
18. “NEACRP 3-D LWR Core Transient Benchmark.” H. Finnemann and A. Galati, OECD 
Nuclear Energy Agency, (1992). 
19. D. C. Karnopp, D. L. Margolis and R. C. Rosenberg, System Dynamics: Modeling and 
Simulation of Mechatronic Systems, 4th ed. (John Wiley & Sons, Inc., Hoboken, NJ, 2006). 
20. F. T. Brown, Engineering System Dynamics: A Unified Graph-Centered Approach, 2nd ed. 
(CRC Press, Boca Raton, FL, 2007). 
21. A. R. Hambley, Electrical Engineering: Principles and Applications, 3rd ed. (Prentice Hall, 
Upper Saddle River, NJ, 2005). 
22. D. C. Karnopp, “Pseudo Bond Graphs for Thermal Energy Transport,” Journal of Dynamic 
Systems, Measurement and Control, Transactions of the ASME, Series G 100 (3), 165-169 
(1978). 

107 



108 

23. D. C. Karnopp, “A Bond Graph Modeling Philosophy for Thermofluid Systems,” Journal of 
Dynamic Systems, Measurement and Control, Transactions of the ASME, Series G 100 (1), 70-
75 (1978). 
24. D. C. Karnopp, “State Variables and Pseudo Bond Graphs for Compressible Thermofluid 
Systems,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 
Series G 101 (3), 201-204 (1979). 
25. F. E. Cellier, Continuous System Modeling. (Springer-Verlag, New York, NY, 1991). 
26. F. T. Brown, “Convection Bonds and Bond Graphs,” Journal of the Franklin Institute 328 (5-
6), 871-886 (1991). 
27. P. J. Gawthrop and L. Smith, “Causal Augmentation of Bond Graphs with Algebraic Loops,” 
Journal of the Franklin Institute 329 (2), 291-303 (1992). 
28. R. C. Rosenberg, “State-Space Formulation for Bond Graph Models of Multiport Systems,” 
Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Series G 93 
(1), 35-40 (1971). 
29. J. D. Lamb, D. R. Woodall and G. M. Asher, “Bond Graphs I: Acausal Equivalence,” 
Discrete Applied Mathematics 72, 261-293 (1997). 
30. J. D. Lamb, D. R. Woodall and G. M. Asher, “Bond Graphs II: Causality and Singularity,” 
Discrete Applied Mathematics 73, 143-173 (1997). 
31. J. D. Lamb, G. M. Asher and D. R. Woodall, “Bond Graphs III: Bond Graphs and Electrical 
Networks,” Discrete Applied Mathematics 73, 211-250 (1997). 
32. E. O. Kreyszig, Advanced Engineering Mathematics, 9th ed. (John Wiley & Sons, Inc., 
Hoboken, NJ, 2006). 
33. R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems. (Cambridge University 
Press, Cambridge, UK, 2002). 
34. D. Varberg, E. J. Purcell and S. E. Rigdon, Calculus, 8th ed. (Prentice Hall, Upper Saddle 
River, NJ, 2000). 
35. R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: 
Steady-State and Time Dependent Problems. (Society for Industrial and Applied Mathematics, 
Philadelphia, PA, 2007). 
36. G. Strang, Computational Science and Engineering. (Wellesley-Cambridge Press, Wellesley, 
MA, 2007). 
37. The MathWorks, “MATLAB – Symbolic Math Toolbox.” (2010). Available at 
http://www.mathworks.com/products/symbolic/. (Accessed on 4/25/2010). 
38. Maplesoft, “Maple 14 – Math & Engineering Software.” (2010). Available at 
http://www.maplesoft.com/products/Maple/index.aspx. (Accessed on 4/25/2010). 
39. Sandia National Laboratories, “The Trilinos Project.” (2009). Available at 
http://trilinos.sandia.gov/. (Accessed on 4/23/2009). 
40. E. P. Fahrenthold and J. D. Wargo, “Vector and Tensor Based Bond Graphs for Physical 
Systems Modeling,” Journal of the Franklin Institute 328 (5-6), 833-853 (1991). 

http://www.mathworks.com/products/symbolic/
http://www.maplesoft.com/products/Maple/index.aspx
http://trilinos.sandia.gov/

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	1. Introduction
	1.1. Background on Coupled Transient Core Modeling
	1.2. Background on Multiphysics Modeling with Bond Graphs
	1.3. Objectives

	2. Background
	2.1. Neutron Transport
	2.2. Heat Transfer
	2.3. Neutron-Thermal Coupling
	2.4. Bond Graph Formalism Theory
	2.5. Bond Graph Formalism Example

	3. Coupled Neutron and Thermal Diffusion via Bond Graphs
	3.1. Thermal Diffusion via Bond Graphs
	3.2. Neutron Diffusion via Bond Graphs
	3.3. Coupled Diffusion via Bond Graphs
	3.4. Multidimensional Multigroup Neutron Diffusion via Bond Graphs

	4. Bond Graph Processing Code Development
	4.1. General Algorithm Description
	4.2. Symbolic and Numeric Expressions Summary
	4.3. Sorting Procedure Description
	4.4. Final Code Description
	4.5. Possible Code Acceleration for Large Problems

	5. Benchmark Problems
	5.1. Method of Manufactured Solutions Theory
	5.2. Benchmark Problem Construction
	5.3. Benchmark Simulation Results
	5.4. Conclusions

	6. Summary and Recommendations for Future Work
	6.1. Summary
	6.2. Recommendations for Future Work

	Appendix A. Bond Graph Processing Code Documentation
	Appendix B. BGSD File Format Documentation
	Appendix C. BGSD File Creator Documentation
	Glossary
	References

