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Abstract 
Neuroanatomical bilateral asymmetry is a widespread feature in both vertebrates and 
invertebrates. Although mostly bilaterally symmetric, the nervous system of 
Caenorhabditis elegans displays bilateral asymmetry. Bilateral asymmetry in C. elegans 
arises in part from left-right asymmetric cell lineages. The single left-right unpaired MI 
neuron is normally generated from the right side of an otherwise left-right symmetric cell 
lineage that on the left gives rise to the e3D epithelial cell. We performed genetic screens 
and isolated mutants that displayed symmetry in this normally asymmetric cell lineage, 
with the MI neuron transformed into an e3D-like cell. We identified that a C. elegans Otx 
homeodomain protein CEH-36 and two basic helix-loop-helix proteins NGN-1 and 
HLH-2 promote the generation of the MI neuron and are required to establish the bilateral 
asymmetry in this cell lineage. We found that CEH-36 is asymmetrically expressed and is 
present in an MI precursor cell on the right but not in an e3D precursor cell on the left. 
This bilaterally asymmetric CEH-36 expression in turn promotes asymmetric NGN-1 and 
HLH-2 expression, leading to the generation of the MI neuron on the right side of the cell 
lineage. The Otx/bHLH transcriptional cascade is evolutionarily conserved, and our 
results suggest that this transcriptional cascade plays a role in establishing 
neuroanatomical bilateral asymmetry in other animals. We also discovered that a 
mutation in a replication-dependent histone H3 gene his-9 transforms the MI neuron into 
an e3D-like cell. This mutant allele of his-9 causes an altered-function activity that is 
predicted to impair the interaction of the mutant HIS-9 protein with another histone H3 
molecule and inhibit the formation of a histone H3-H4 tetramer. Replication-dependent 
histones H3-H4 are deposited onto replicating DNA by the heterotrimeric protein 
complex CAF-1. We observed that loss of function of each of three genes encoding 
members of the C. elegans CAF-1 complex transformed MI into an e3D-like cell. We 
propose that CAF-1-mediated nucleosome formation is impaired by the presence of 
mutant HIS-9 proteins that are unable to form the histone H3-H4 heterotetramer. We also 
found that two histone-modifying enzymes SET-16 and UTX-1 are required to establish 
the bilateral asymmetry in this cell lineage. set-16 encodes a protein homologous to the 
human MLL protein, a histone methyltransferase specific for histone H3 lysine 4, and 
utx-1 encodes a protein homologous to human UTX protein, a histone demethylase 
specific for histone H3 lysine 27. Our results reveal a novel mechanism of establishing 
neuroanatomical bilateral asymmetry and suggest that nucleosome formation and histone 
H3 modification are required to establish this bilateral asymmetry. 
 
Thesis Advisor: H. Robert Horvitz 
Title: Professor of Biology 
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Introduction 

 

Lateralization of human brain function  

 

 Bilateral asymmetry of brain function is a widespread feature of humans and other 

animals. The discovery of lateralized human brain function came from Broca’s 

observations on a patient named “Tan,” who was not able to produce any recognizable 

words or phrases but could only produce a single repetitive syllable “tan.” In Tan’s 

autopsy, a lesion was found on the left frontal lobe (Broca 1865; Berker et al. 1986).  

Broca’s careful documentation suggested the connection between speech and the inferior 

frontal gyrus of the left hemisphere. 

 That function of human brain is lateralized was further strengthened by the 

pioneering experiments on patients with split brains (Gazzaniga 2005). Split-brain 

patients are patients who have undergone corpus callosotomy, a severing of a large part 

of the corpus callosom that connects the two hemispheres of the brain, as a treatment for 

severe epilepsy (Van Wagenen and Herren 1940). Studies of the split-brain patients thus 

allowed researchers to gain insights into hemispheric differences and functional laterality, 

including the dominance of the left hemisphere for language and speech (Milner 1962). 

 

Lateralized behaviors in vertebrates 

 

Lateralized behaviors are observed in many vertebrate species, including birds, 

amphibians and fish (Bisazza et al. 1998). A variety of species show lateralized behavior 
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in response to predators. For example, toads are more likely to elicit escape responses 

when a simulated predator is presented onto their left monocular field than when it is 

introduced into their right monocular field (Lippolis et al. 2002). Similarly, fish display a 

preference in positioning themselves to inspect an image of a predator on its right side 

(De Santi et al. 2001). Aggressive responses are also strongly lateralized. Lizards and 

toads direct more aggressive responses to conspecifics on their left side than they do to 

those on their right side (Robins et al. 1998; Hews and Worthington 2001). Likewise, 

adult zebrafish preferentially uses their right eye when approaching prey, and when 

presented with two equivalent targets they prefer to attack the one on the right (Miklosi 

and Andrew 1999; Miklosi et al. 2001). 

 

Structural asymmetries of vertebrate nervous system 

 

Structural asymmetry is also a widespread feature in the nervous system. The human 

brain displays several anatomical asymmetries. The most prominent aspects of structural 

asymmetry are the size and position of the frontal and the occipital petalia: the left 

occipital pole is frequently wider and protrudes further posteriorly than the right, and the 

right frontal area is often wider and protrudes further anteriorly than the left (LeMay 

1976). Other structural asymmetries in the human brain include the size of Heschl’s 

gyrus, which houses the primary auditory cortex, with the left Heschl’s gyrus larger than 

that on the right (Penhune et al. 1996). 

 Structural asymmetry is also observed in other vertebrate species. The habenulae 

are dorsal diencephalic nuclei that display bilateral asymmetry in many vertebrate 
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species. The habenulae are part of an evolutionarily conserved limbic-system conduction 

pathway that connects telencephalic nuclei to the interpeduncular nuclei of the midbrain 

(Sutherland 1982). The habenulae display bilateral asymmetry in size and sometimes also 

in neuronal organization and connectivity in most vertebrate species thus far studied 

(Concha and Wilson 2001), including zebrafish (Concha et al. 2000), frog (Braitenberg 

and Kemali 1970) and lizard (Engbretson et al. 1981). In zebrafish, the habenulae show 

bilateral asymmetry in neuronal organization and connectivity: the zebrafish habenular 

nuclei can be subdivided into medial and lateral subnuclei. The lateral subnucleus is 

substantially larger than the medial subnucleus on the left, whereas the medial subnucleus 

is larger than the lateral subnucleus on the right (Aizawa et al. 2005; Gamse et al. 2005). 

There is also bilateral asymmetry in connectivity in the habenula, as manifested by their 

innervations to the interpeduncular nucleus in the midbrain: axons from the left habenula 

predominantly innervate the dorsal interpeduncular nucleus, whereas those from the right 

habenula predominantly project to the ventral interpeduncular nucleus (Aizawa et al. 

2005). 

 

Relationship between functional and structural asymmetries 

 

Little has been established as to whether functional asymmetry is associated with 

anatomical asymmetry. On one hand, Geschwind and Levitsky reported that the planum 

temporale, the region known to be important for language functions, display anatomical 

asymmetry, with the left planum temporale larger than that on the right in two-thirds of 

individuals (Geschwind and Levitsky 1968). Given the left-hemisphere dominance for 
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language functions, this observation indicated a possible relationship between anatomical 

asymmetry and functional asymmetry. On the other hand, Watson (1836) showed that 

individuals with situs inversus, a condition in which asymmetries of all thoracic and 

abdominal organs and at least some brain anatomy are reversed, are no more left-handed 

than the rest of the population.  

 A recent study of zebrafish gave insight into the relationship between structural 

and functional asymmetries in the brain. Barth and colleagues isolated a frequent situs 

inversus (fsi) mutant line of zebrafish that shows reversed asymmetry of viscera and 

neural structures, including that of habenula nuclei (Barth et al. 2005). By comparing the 

lateralized behaviors of fsi fish with those of wild-type animals, they discovered that 

laterality of some behaviors, including approaching a target to bite, was reversed in fsi 

mutant animals, suggesting that these behaviors are influenced by the neuroanatomical 

asymmetry. By contrast, laterality of other behaviors was unaffected in fsi animals. It 

remains to be determined whether these behaviors are regulated by structural 

asymmetries that are not affected in fsi mutants or are regulated independently of 

anatomical asymmetry. The discovery of concordant reversal of neuroanatomical and 

behavioral asymmetry highlights the importance of understanding developmental 

mechanisms by which bilateral asymmetries in nervous systems are established. 

 

Developmental mechanisms that establish bilateral asymmetries in vertebrates 

 

The nodal signaling pathway establishes bilateral asymmetry of visceral organs 
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Studies over the last decade have led to the identification of the role of cilia in 

determining bilateral asymmetry of visceral organs in vertebrate embryos (Levin 2005; 

Raya and Izpisua Belmonte 2006; Shiratori and Hamada 2006). The first observation that 

suggested the link between cilia and left-right determination of viscera came from the 

discovery of Kartagener syndrome. Patients with Kartagener syndrome show situs 

inversus and display the loss of motility of respiratory cilia and sperm flagella (Afzelius 

1976). Respiratory cilia and sperm flagella of Kartagener patients were found to lack 

dynein arms. Subsequently, it has been observed that the iv mutant mouse, which displays 

defects in left-right patterning, also carries a mutation in one of the dynein genes (Supp et 

al. 1997). These observations led to the discovery that monocilia present in the mouse 

node, a transient midline structure located at the anterior tip of the primitive streak, rotate 

and generate a leftward flow of extra-embryonic fluid in the node (Nonaka et al. 1998) 

and that various mouse mutants in which this leftward fluid flow, referred to as nodal 

flow, is no longer present as a result of the immotile cilia display abnormal left-right 

patterning (Nonaka et al. 1998; Marszalek et al. 1999; Okada et al. 1999; Supp et al. 

1999; Murcia et al. 2000). Moreover, reversal of the direction of nodal flow by the 

imposition of an artificial flow causes the reversal of left-right patterning (Nonaka et al. 

2002). These observations demonstrate that nodal flow is important in directing 

subsequent left-right patterning events in mouse embryos.  

 The role of nodal flow in left-right patterning appears to be conserved in other 

vertebrate species. In rabbit embryos, monociliated cells are present in the posterior 

notochordal plate, and a leftward fluid flow is detectable just anterior to Hensen’s node 

(Okada et al. 2005). In zebrafish, monocilated cells are present in the Kupffer’s vesicle, a 
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structure equivalent to the mouse node, and it has been shown that these ciliated cells 

rotate and generate a leftward fluid flow (Essner et al. 2005; Kramer-Zucker et al. 2005; 

Okada et al. 2005). Reduction or absence of this flow results in the disruption of left-right 

patterning, suggesting that the role of nodal flow in left-right patterning is evolutionarily 

conserved in vertebrate species.  

 Nodal flow localizes a morphogen or morphogens asymmetrically around the 

node. This asymmetry is then transferred to asymmetric gene expressions in the lateral 

plate mesoderm, in which the gene nodal, a member of the transforming growth factor-β 

(TGF-β) family, is expressed exclusively on the left (Levin et al. 1995; Collignon et al. 

1996). Establishment of left-sided nodal expression in the lateral plate mesoderm requires 

a complex regulatory network composed of both positive and negative regulators, 

including other TGF-β signals (Hamada et al. 2002): positive regulators include nodal 

itself (Lowe et al. 2001) and GDF1 (Rankin et al. 2000), whereas lefty-1 and lefty-2 , 

expression of which are negatively regulated by nodal, exert negative effects on nodal 

expression (Meno et al. 1999; Meno et al. 2001).  The concerted actions of these positive 

and negative regulatory loops establish the left-right asymmetry of nodal expression in 

the lateral plate mesoderm. 

The left-sided expression of nodal in turn induces asymmetric expression of its 

downstream genes, including the homeodomain transcription factor pitx2 (Piedra et al. 

1998; Ryan et al. 1998; St. Amand et al. 1998; Yoshioka et al. 1998). This asymmetric 

expression of pitx2 is maintained until later in development and is evident in the primodia 

of asymmetrical organs, such as the heart, lung and gut. Mutant mice lacking the pitx2 

gene were generated, and it was observed that whereas murine lungs normally display 
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bilateral asymmetry in the numbers of lobes, with a single lobe on the left and four lobes 

on the right, pitx2 mutant mouse show right pulmonary isomerism, with both lungs 

displaying an apparent right lobular pattern (Kitamura et al. 1999; Lin et al. 1999; Lu et 

al. 1999), suggesting that pitx2 drives bilaterally asymmetric organogenesis. 

 

Developmental mechanisms that establishes bilateral asymmetry of vertebrate nervous 

systems 

 

Despite the substantial knowledge of the developmental mechanisms that establish the 

bilateral asymmetry of visceral organs, little is known about the molecular basis of 

nervous system bilateral asymmetry in vertebrates. Studies focusing on the zebrafish 

habenula, however, have provided some insight into this problem.  

The developing dorsal diencephalon of zebrafish expresses several components of 

the nodal signaling pathway, including the nodal ligand and the transcription factor pitx2 

(Concha et al. 2000; Liang et al. 2000). In embryos in which nodal signaling is activated 

or inactivated bilaterally, the directionality of the habenular asymmetries, including the 

size of medial and lateral subnuclei and connectivity to the interpeduncular nuclei, are 

randomized, but the asymmetries are still present (Concha et al. 2000; Aizawa et al. 

2005), indicating that the nodal signaling pathway is not required for generating 

asymmetry itself but rather for superimposing laterality on such asymmetry.  

 A recent study suggests that the bilateral asymmetry of the size of the habenular 

subnuclei is generated by an asymmetry in the timing of neurogenesis (Aizawa et al. 

2007). As described above, in zebrafish the medial habenular subnuclei are larger than 
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the lateral subnuclei on the right, while the lateral subnuclei are lager than the medial 

subnuclei on the left (Aizawa et al. 2005). It was observed that neural precursors for the 

lateral subnuclei are born at an earlier stage than those for the medial subnuclei, leading 

to the hypothesis that left-right differences in the ratio of lateral and medial subnuclei 

involve asymmetry in the timing of the activation of neurogenesis on the two sides 

(Aizawa et al. 2007). Consistent with this hypothesis, alteration of the timing of 

neurogenesis by means of genetic hyperactivation and repression of Notch signaling 

results in the loss of bilateral asymmetry in the relative sizes of the habenular subnuclei. 

 

Abnormal brain asymmetries and disease 

 

Abnormality in brain asymmetry has been implicated in several neuropathologies. 

Reduced asymmetry in the size of the planum temporale has been reported in patients 

with schizophrenia (Rossi et al. 1992; Petty et al. 1995), although there are controversial 

studies reporting normal planar anatomical asymmetry in patients with schizophrenia 

(Kulynych et al. 1995; Frangou et al. 1997). A functional study using fMRI reports the 

loss of functional language lateralization in patients with schizophrenia (Li et al. 2007), 

supporting the notion that schizophrenia is associated with abnormal brain asymmetry. 

Likewise, patients with persistent developmental stuttering display reduced asymmetry in 

the Heschl’s gyrus (Jancke et al. 2004). In addition, reduced or reversed asymmetry in the 

planum temporale has been observed in subjects with developmental dyslexia, a highly 

heritable disorder manifested by a specific impairment of reading ability (Hynd et al. 

1990; Larsen et al. 1990). Linkage studies identify at least nine regions that are likely to 
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harbor candidate dyslexia susceptibility genes (Scerri and Schulte-Korne 2010). It 

remains to be determined whether these genes are required to establish structural bilateral 

asymmetry in the brain.  

 

Functional asymmetries of the C. elegans nervous system 

 

The C. elegans nervous system exhibits functional asymmetries in two pairs of left-right 

symmetrical neurons, the ASE and the AWC neurons (reviewed in Hobert et al. 2002). 

 

Functional lateralization of the ASE neurons 

 
The left and right ASE gustatory neurons (ASEL and ASER) are structurally symmetric 

in a number of features, including the location of their nuclei, axodendritic morphology, 

morphology of specialized sensory endings and synaptic partners (Ward et al. 1975; 

White et al. 1986). Although anatomically symmetric, the left and right ASE neurons 

display marked asymmetry in their functions and detect different sets of chemoattractants 

(Pierce-Shimomura et al. 2001; Ortiz et al. 2009). For example, ASEL primarily senses 

sodium and magnesium, whereas ASER primarily senses chloride and potassium (Pierce-

Shimomura et al. 2001). This functional asymmetry is thought to be important to 

discriminate different salt cues: animals can chemotax toward a salt in a saturating level 

of another salt if the two salts are sensed by distinct ASE neurons, whereas they cannot 

do so if the two salts are sensed by a same ASE neuron (Pierce-Shimomura et al. 2001; 

Ortiz et al. 2009).  
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 The ASE neurons display bilateral asymmetry in their patterns of gene expression. 

For example, the putative receptor-type transmembrane guanylyl cyclase genes gcy-6, 

gcy-7 and gcy-14 are expressed in ASEL but not in ASER, whereas the guanylyl cyclase 

genes gcy-1, gcy-5 and gcy-22 are expressed in ASER but not in ASEL (Yu et al. 1997; 

Ortiz et al. 2006). Mutants for some of these genes have been isolated and shown to be 

defective in chemotaxis to salts specific to an ASE neuron in which these genes are 

expressed: for example, mutants for gcy-1, which is normally expressed in ASER, are 

defective in chemotaxis to ASER-sensed potassium but not to ASEL-sensed sodium or 

magnesium, while mutants for gcy-14, which is normally expressed in ASEL, are 

defective in chemotaxis to ASEL-sensed sodium but not to ASER-sensed chloride, 

suggesting that asymmetric expression of these guanylyl cyclase genes is a molecular 

basis for the lateralized function of the ASE neurons. 

 

Developmental mechanism that establishes the ASE bilateral asymmetry 

 

The establishment of the ASE bilateral asymmetry occurs after the generation of the two 

post-mitotic ASE cells. The two ASE neurons are initially born with similar states, with 

both cells expressing ASEL- and ASER-specific genes, and this symmetry persists until 

an early larval stage (Johnston et al. 2005). Thus, the ASEL and ASER neurons are 

generated with a largely symmetrical, hybrid ASEL/ASER precursor fate, and during 

later development each ASE cell adopts a bilaterally asymmetric fate. 

 Genetic screens have identified genes required to establish the ASE bilateral 

asymmetry. The developmental mechanism that establishes the ASE bilateral asymmetry 
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involves a regulatory network composed of multiple transcription factors and a 

microRNA. At the core of this pathway are the C2H2 zinc-finger transcription factor 

DIE-1, the NKX-type homeobox protein COG-1 and the microRNA lsy-6 (Chang et al. 

2003; Johnston and Hobert 2003; Chang et al. 2004). These factors form a feedback loop 

in which die-1 promotes expression of lsy-6, which inhibits translation of cog-1, which 

inhibits expression of die-1. It has been proposed that die-1 is likely to be the output 

regulator of the loop and that the activity of DIE-1 determines whether each ASE cell 

adopts one of two mutually exclusive states, the ASEL or ASER fate (Johnston et al. 

2005): in ASEL, lsy-6 is active and downregulates cog-1, which results in activation of 

die-1 function, whereas in ASER, lsy-6 is inactive, and hence cog-1 is active, which 

results in inactivation of die-1 function. Although this feedback circuit is required for 

establishing the ASE bilateral asymmetry and explains how the two ASE neurons adopt 

distinct fates, a symmetry-breaking event that impinges upon the regulatory feedback 

loop to establish the bilateral asymmetry remains to be determined. 

 Factors acting downstream of this feedback loop have also been isolated. The Lim 

homeobox gene lim-6 and the zinc-finger gene fozi-1 are under the control of DIE-1 and 

are responsible for executing the ASEL cell fate (Pierce-Shimomura et al. 2001; Johnston 

et al. 2006). In addition, ceh-36, which encodes an Otx/Otd homeodomain transcription 

factor, was initially proposed to be required for the establishment of the ASE bilateral 

asymmetry (Chang et al. 2003). However, another study revealed that ceh-36 mutant 

animals fail to express a bilaterally expressed ASE cell-fate reporter in both ASEL and 

ASER neurons, indicating that ceh-36 is required for the specification of the general ASE 

cell fate rather than for the establishment of the bilateral asymmetry (Lanjuin et al. 2003).  
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Functional lateralization of the AWC neurons 

 

Like the ASE neurons, the left and right AWC olfactory neurons are structurally similar 

but display bilateral asymmetry in their patterns of gene expression (Troemel et al. 1999). 

The G-protein-coupled receptor STR-2 is randomly expressed in either the left or the 

right AWC neuron, and never in both in individual animals. Approximately half of 

animals in a population express str-2 exclusively in AWCL, whereas the other half 

express str-2 in AWCR. The str-2-expressing AWC neuron is termed AWCON, while the 

non-str-2-expressing AWC neuron is called AWCOFF. The AWCON and AWCOFF neurons 

also display asymmetry in their functions. Cell killing experiments reveal that the 

AWCOFF neuron is required for animals to chemotax toward a specific odor, 2,3-

pentanedione, whereas the AWCON neuron is required for the response to another odor, 

butanone (Wes and Bargmann 2001). In addition, it has been observed that AWCOFF, but 

not AWCON, is required for benzaldehyde chemotaxis in the presence of a high 

concentration of butanone, suggesting that asymmetric diversity in the left-right pair of 

the AWC neurons is important for odorant discrimination (Wes and Bargmann 2001).  

 

Developmental mechanism that establishes the AWC bilateral asymmetry 

 

The developmental mechanism that establishes the stochastic bilateral asymmetry of the 

AWC neurons involves a cell-cell interaction that likely occurs between the two AWC 

cells (Troemel et al. 1999). Cell killing experiments indicate that when a precursor cell of 
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one AWC cell is ablated during embryogenesis, the remaining AWC cell always adopts 

an AWCOFF fate, suggesting that AWCOFF is the default state. The two AWC neurons are 

located on opposite sides of the animals, but their axons contact each other (White et al. 

1986). Mutations in axon guidance genes that disrupt these contacts cause a two-AWCOFF 

phenotype, suggesting that the cell-cell communication between the AWC neurons 

occurs in the axons (Troemel et al. 1999). This cell-cell communication between the 

AWC neurons does not involve Notch signaling pathway, and it was observed that 

mutations in components of the C. elegans Notch signaling cascade did not cause defects 

in generating the AWC bilateral asymmetry (Troemel et al. 1999). 

 Genetic screens have identified several mutants that show neuronal symmetry 

(Nsy) defects, with either two AWCON or two AWCOFFcells. Two nsy genes, nsy-4 and 

nsy-5, were identified based on their loss-of-function phenotype of two AWCOFF cells 

(Vanhoven et al. 2006; Chuang et al. 2007). These two genes appear to participate in the 

cell-cell communication that establishes the AWC asymmetry. nsy-4 encodes a 

transmembrane protein similar to the claudin subfamily that likely modulates ion channel 

function or cell adhesion (Vanhoven et al. 2006), and nsy-5 encodes an innexin protein 

that forms gap junction channels (Chuang et al. 2007). Consistent with the potential role 

of these genes in cell-cell communication, mosaic analyses identify both cell-autonomous 

and non cell-autonomous actions of these genes (Vanhoven et al. 2006; Chuang et al. 

2007). Although it is not entirely clear how these genes function to establish the AWC 

asymmetry, genetic analysis suggests that they act in parallel pathways to mediate cell-

cell interactions that involves the two AWC neurons and numerous other neurons that 
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connect with the AWC neurons through NSY-5-dependent gap junctions (Chuang et al. 

2007). 

 Once the stochastic decision of the AWCON and AWCOFF fates is determined 

through cell-cell interactions, a calcium signal appears to be triggered in a future AWCOFF 

cell to execute the AWCOFF fate. This calcium signaling initiates with calcium entry 

though voltage-gated calcium channels, which in turn activate the calcium/calmodulin-

dependent protein kinase CaMKII, which then activates a downstream MAP kinase 

cascade to specify the AWCOFF fate (Troemel et al. 1999; Sagasti et al. 2001; Tanaka-

Hino et al. 2002; Chuang and Bargmann 2005). Thus, a relative difference in the strength 

of calcium signaling between the two AWC cells is thought to be established by cell-cell 

interaction, which in turn triggers asymmetric calcium signaling, leading to bilateral 

functional asymmetry of the AWC neurons.  

 

Structural asymmetries of the C. elegans nervous system 

 

In addition to functional asymmetry, the C. elegans nervous system also displays 

structural asymmetry. The anatomy of the C. elegans nervous system has been 

extensively characterized, and the adult hermaphrodite contains 302 neurons (Ward et al. 

1975; Albertson and Thomson 1976; White et al. 1976; Hall 1977; White et al. 1986). 

The morphology, position, chemical and electric connectivity of all neurons are known. 

The complete description of the anatomy of the C. elegans nervous system reveal the 

precise cells that display anatomical bilateral asymmetry: of 193 neurons located in the 

head region of the hermaphrodite, 176 neurons are in bilaterally symmetrical pairs, and 
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17 are single left-right unpaired neurons. Of these 17 single unpaired neurons, ten 

neurons exhibit left-right symmetry in their patterns of axodendritic processes. The 

remaining seven neurons are single left-right unpaired neurons that also display bilateral 

asymmetry in their morphology. These asymmetric neurons present in the head region of 

the hermaphrodite are named AVL, I4, I6, MI, RID, RIH and RIS neurons.  

 

The invariant cell lineage of C. elegans 

 

The development of C. elegans has been extensively described at single-cell resolution. 

The direct observation of cell divisions, cell migrations and cell deaths in living animals 

led to the elucidation of the complete cell lineage of C. elegans (Sulston and Horvitz 

1977; Kimble and Hirsh 1979; Sulston et al. 1983). These studies revealed that the 

somatic cell lineage of C. elegans is essentially invariant from animal to animal and 

identified the precise developmental origins of all somatic cells, including left-right 

paired and unpaired cells.  

 The complete cell lineage revealed that most left-right paired cells are generated 

from pairs of left-right analogous blastomeres that undergo left-right symmetric cell 

lineages (Sulston et al. 1983). For example, the left-right pairs of the ADL, OLL, ADF, 

AWB, ASE, ASJ and AUA neurons are generated from left-right symmetric cell lineages 

of two analogous blastomeres, ABalpppp and ABpraaap, that undergo identical cell 

lineages and give rise to these neurons on the left and right sides of animals, respectively 

(Figure 1). By contrast, most left-right unpaired cells arise from left-right asymmetric cell 

lineages. For example, of the seven asymmetric neurons present in the head region of the 
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hermaphrodite, six neurons arise from left-right asymmetric cell lineages in which 

symmetry of the cell lineage is disrupted by differential cell-fate determination on two 

sides (see below). The exception is the RID neuron, which arises from a precursor cell 

that lacks an apparent left-right analogous blastomere.  

 

The ABaraap cell lineage gives rise to the single unpaired MI neuron 

 
This thesis work aims to understand the mechanism by which left-right asymmetry is 

established in C. elegans cell lineages that give rise to asymmetric neurons, and in 

particular, the cell lineage that generates the MI neuron. The MI neuron is a pharyngeal 

motor neuron located in the anterior-dorsal region of the pharynx (Albertson and 

Thomson 1976). The MI neuron is unipolar and sends a single process circumferentially 

to the pharyngeal nerve ring. Neither the neurotransmitter used by the MI neuron nor the 

function of the MI neuron has been identified. 

The MI neuron is generated from a left-right asymmetric cell lineage. The 

blastomere ABaraap divides and generates two daughter cells, ABaraapa and ABaraapp, 

which are a pair of left-right analogous blastomeres that undergo nearly identical cell 

lineages to give rise to six identical sets of left-right paired cells, including the M2, M3 

and NSM pharyngeal neurons, the m1 and m2 pharyngeal muscles and the mc1 and mc2 

pharyngeal marginal cells (Figure 2). The anteriormost descendants of these two left-right 

paired analogous blastomeres differ in their cell fates: the ABaraappaaa cell becomes the 

MI neuron on the right side of the cell lineage, and the ABaraapaaaa cell differentiates 

into the e3D pharyngeal epithelial cell on the left. The e3D epithelial cell is a member of 

three e3 pharyngeal epithelial cells that display three-fold radial symmetry: e3D, e3VL 
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and e3VR are located in the dorsal, ventral left and ventral right of the pharynx, 

respectively (Albertson and Thomson 1976). Thus, the left-right asymmetric ABaraap 

cell lineage gives rise on the right to the single unpaired MI neuron and on the left to the 

e3D epithelial cell, which is arranged with two other e3 cells to form a three-fold 

symmetric structure. 

 

Concluding remarks 

 
 Anatomical and functional bilateral asymmetries of the brain are a common 

feature in many animals. Functional lateralization of the nervous system is thought to be 

important for behavior and cognitive functions and in at least some cases is generated by 

anatomical asymmetry. Abnormalities in brain asymmetry have been implicated in 

several neuropathologies. Despite the importance of neuroanatomical bilateral 

asymmetry, the developmental mechanisms that establish such asymmetry remain largely 

elusive. 

Although mostly bilaterally asymmetric, the C. elegans nervous system displays 

both anatomical and functional asymmetry. This thesis work aims to understand the 

developmental mechanisms that establish anatomical asymmetry in the C. elegans 

nervous system and particularly concerns the development of the single asymmetric MI 

neuron, which is generated from the invariant left-right asymmetric ABaraap cell lineage. 

In Chapter Two, I describe the role of an evolutionarily conserved transcriptional cascade 

in establishing the bilateral asymmetry of the ABaraap cell lineage and show that this 

transcriptional cascade is asymmetrically activated on the right side of the cell lineage but 

not on the left, leading to the induction of a bilaterally asymmetric neurogenesis on the 
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right to give rise to the MI neuron. In Chapter Three, I report the isolation of a mutant 

histone gene that causes symmetry in this normally asymmetric cell lineage and show 

that nucleosome assembly machinery is required for the generation of the MI neuron and 

the bilateral asymmetry in this cell lineage, demonstrating a novel mechanism of 

establishing a neuroanatomical asymmetry by nucleosome assembly. In Chapter Four, I 

summarize additional observations that indicate the role of histone-modifying enzymes in 

establishing the asymmetry of the cell lineage and establish that chromatin-modifying 

factors are required to generate the bilateral asymmetry of the cell lineage. 
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Figures 

 

Figure 1. A Left-Right Symmetric Cell Lineage Generates Left-Right Paired 

Neurons. The ABalpppp and ABpraaap blastomeres undergo symmetric cell lineage and 

give rise to an identical set of left-right paired neurons. X indicates programmed cell 

death. 
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Figure 2. The Left-Right Asymmetric ABaraap Cell Lineage Generates the Single 

Unpaired MI neuron. The ABaraapa and ABaraapp blastomeres undergo asymmetric 

cell lineage and give rise to the single unpaired MI neuron on the right and the e3D 

epithelial cell on the left. X indicates programmed cell death. 
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Chapter II 

 

Otx-dependent Expression of Proneural bHLH Genes Establishes a Neuronal 

Bilateral Asymmetry in C. elegans 

 

 

 

Shunji Nakano, Ronald E. Ellis, and H. Robert Horvitz 

 

 

 

 

Ronald E. Ellis isolated ngn-1(n1921) mutants and noted that the MI neuron is 

transformed into an e3D-like epithelial cell in ngn-1(n1921) mutants.  

I performed the rest of the experiments.
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Summary 

Bilateral asymmetry in Caenorhabditis elegans arises in part from cell lineages that differ 

on the left and right sides of the animal. The unpaired MI neuron descends from the right 

side of an otherwise left-right symmetric cell lineage that generates the MI neuron on the 

right and the e3D epithelial cell on the left. We isolated mutations in three genes that 

caused left-right symmetry in this normally asymmetric cell lineage by transforming MI 

into an e3D-like cell. These genes encode the proneural bHLH proteins NGN-1 and 

HLH-2 and the Otx homeodomain protein CEH-36. We identified the precise precursor 

cells in which ceh-36 and ngn-1 act and showed that CEH-36 protein is asymmetrically 

expressed and is present in an MI progenitor cell on the right but not in its bilateral 

counterpart. This asymmetric CEH-36 expression promotes asymmetric ngn-1 and hlh-2 

expression, which in turn induces asymmetric MI neurogenesis. Our results indicate that 

this left-right asymmetry is specified within the two sister cells that first separate the left 

and right branches of the cell lineage. We conclude that the components of an 

evolutionarily conserved otx/bHLH pathway act sequentially through multiple rounds of 

cell division on the right to relay an initial apparently cryptic asymmetry to the 

presumptive post-mitotic MI neuron, thereby creating an anatomical bilateral asymmetry 

in the C. elegans nervous system. 
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Introduction 

Left-right asymmetry is a widespread feature of animal anatomy. Studies over the last 

decade have advanced our understanding of mechanisms that establish left-right 

asymmetry in visceral organs of vertebrate embryos (for reviews, see Levin 2005; 

Shiratori and Hamada 2006). In addition to visceral organs, the nervous systems of both 

vertebrates and invertebrates display anatomical asymmetry (Concha and Wilson 2001; 

Toga and Thompson 2003), and in some cases such neuroanatomical asymmetries have 

been shown to be important for nervous system function (Pascual et al. 2004; Barth et al. 

2005). The identification of the molecular mechanisms by which neuroanatomical 

asymmetry is established is thus important to understand both neural development and 

neural function. To date, our knowledge of the molecular and cellular bases of specifying 

anatomical asymmetry within the nervous system is limited. 

The nervous system of Caenorhabditis elegans displays bilateral asymmetry (for 

review, see Hobert et al. 2002). Because the complete cell lineage of C. elegans has been 

described and the somatic cell lineage is essentially invariant from animal to animal 

(Sulston and Horvitz 1977; Kimble and Hirsh 1979; Sulston et al. 1983), the 

developmental origins of all cells, including all left-right paired and unpaired cells, are 

known. Much of the left-right symmetry arises from pairs of left-right analogous 

blastomeres, which through bilaterally symmetric cell lineages give rise to sets of left-

right paired cells. To create either left-right asymmetry or three-fold symmetry, the 

bilateral symmetry in cell lineages must be disrupted.  

The C. elegans pharynx, the animal’s feeding organ, contains single unpaired 

neurons as well as sets of cells arranged with three-fold symmetry (Albertson and 
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Thomson 1976). For example, the MI motor neuron is a single unpaired neuron located in 

the anterior-dorsal region of the pharynx. The cell body of the MI neuron sends a single 

unilateral process circumferentially to the pharyngeal nerve ring. Numerous epithelial 

cells in the pharynx display three-fold radial symmetry. For example, the three e3 

epithelial cells are located on the ventral left (VL), ventral right (VR) and dorsal (D) 

regions of the pharynx. e3VL and e3VR are generated from a left-right symmetric cell 

lineage, whereas the e3D epithelial cell and the MI neuron are generated as lineally 

homologous descendants from a left-right asymmetric cell lineage. At the 50-cell stage of 

embryogenesis, the blastomere ABaraap divides and generates two multipotent daughter 

cells, ABaraapa and ABaraapp, which are a pair of left-right analogous blastomeres that 

give rise to six identical sets of left-right paired cells of diverse cell types, including the 

M2, M3 and NSM pharyngeal neurons, the m1 and m2 pharyngeal muscles and the mc2 

pharyngeal marginal cells (Figure 1A). The anteriormost descendants of ABaraapa and 

ABaraapp differ in their cell fates: whereas ABaraapaaaa differentiates into the e3D 

epithelial cell, its lineally homologous cell ABaraappaaa becomes the MI neuron. When 

this left-right asymmetry is specified and how information concerning the asymmetry is 

transduced to generate MI on the right and e3D on the left are unknown. 

In this study we report that ngn-1, a bHLH gene that is a member of the 

neurogenin gene subfamily, hlh-2, the C. elegans ortholog of the Drosophila 

melanogaster gene Daughterless and the mammalian gene E2A, and ceh-36, a C. elegans 

homolog of the mammalian homeodomain gene Otx, are required for breaking symmetry 

in this left-right asymmetric cell lineage. Loss-of-function mutations in these genes 

transform the presumptive MI neuron into an e3D-like epithelial cell, resulting in left-
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right symmetry in this normally asymmetric cell lineage. We define a transcriptional 

cascade in which ceh-36 promotes expression of ngn-1 and hlh-2 and show that induction 

of this transcriptional pathway is bilaterally asymmetric. We identify the precise 

precursor cells in which ceh-36 and ngn-1 act to establish the bilateral asymmetry. Our 

results suggest that the developmental program that establishes the bilateral asymmetry is 

triggered by the asymmetric expression of ceh-36 between ABaraapa and ABaraapp, the 

pair of left-right sister cells that generate the left and right branches of the cell lineage, 

respectively.  
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Results 

 
ngn-1 and hlh-2 Mutants Lack the MI Neuron and Contain an Extra e3D-like 

Epithelial Cell 

 

To identify genes required for establishing left-right asymmetry in the cell lineage that 

gives rise to the MI neuron on the right and the e3D epithelial cell on the left (Figure 1A), 

we performed genetic screens to look for mutations that affect this cell lineage. We 

particularly focused on identifying genes that when mutated result in a left-right 

symmetry in this normally asymmetric cell lineage. Such mutants might lack MI and 

contain an extra e3D-like cell, or alternatively lack e3D and contain an extra MI-like 

neuron. The MI neuron and the e3D epithelial cell can be identified using Nomarski 

optics based on their size, morphology, and the position of their nuclei within the pharynx 

(Figure 2A). We performed screens using Nomarski optics and recovered four mutations 

(n1921, n5020, n5052 and n5053) that cause the apparent absence of MI and presence of 

an extra e3D-like cell (Figure 2B, C, see Experimental Procedures for details). As 

described below, n1921, n5020 and n5052 confer recessive phenotypes, fail to 

complement and are alleles of the gene ngn-1. n5053 is an allele of the gene hlh-2 (see 

below) and semidominantly causes the absence of MI and the presence of an extra e3D-

like cell. Strains homozygous for the n5053 mutation are not viable and die as embryos.  

ngn-1 and hlh-2 mutants lack a neuronal nucleus in the anterior-dorsal region of 

the pharynx where MI is normally located in wild-type animals. To confirm that the 

missing neuron in these mutants is the MI neuron, we tested if these mutant animals 

express a gfp cell-fate reporter that is normally expressed in the MI neuron in wild-type 
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animals. The reporter sams-5::gfp was expressed in the MI neuron of wild-type animals 

(Table 1A, Figure 2E, for identification of this reporter, see Experimental Procedures). 

We introduced the sams-5::gfp reporter into ngn-1 and hlh-2 mutants and found that 

sams-5::gfp was not expressed in these mutants (Table 1A, Figure 2F, G), indicating that 

MI is absent from the pharynx of these mutants.  

ngn-1 and hlh-2 mutants contain an extra nucleus that resembles the nucleus of 

the e3D epithelial cell (Figure 2B, C). To determine if this extra cell adopts the fate 

normally associated with e3D, we tested whether these extra cells express a gfp cell-fate 

marker that is expressed in the e3D epithelial cell of wild-type animals. The reporter 

D2096.6::pes-10::gfp was expressed in the e3 pharyngeal epithelial cells, including e3D, 

of wild-type animals (Figure 2I, Table 1B, for identification of this reporter, see 

Experimental Procedures). We introduced D2096.6::pes-10::gfp into ngn-1 and hlh-2 

mutants and found that D2096.6::pes-10::gfp was also expressed in the extra cell with a 

nucleus morphologically similar to that of the e3D epithelial cell (Figure 2J, K, Table 

1B), indicating that these mutants generate an extra e3D-like cell.  

 

ngn-1 and hlh-2 Mutations Generate Symmetry in a Normally Left-Right 

Asymmetric Cell Lineage 

 

Using Nomarski optics, we found that the absence of MI and the presence of an extra 

e3D-like cell in ngn-1 and hlh-2 mutants were perfectly correlated: when MI was absent 

the extra e3D-like cell was always present, and when MI was present the extra e3D-like 

cell was always absent (n=600, data not shown). We did not observe any animals that 
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contained or lacked both MI and the extra e3D-like cell. This perfect correlation strongly 

suggested that these mutations transform MI into an e3D-like cell, thereby generating 

symmetry in a normally left-right asymmetric cell lineage (Figure 1B).  

We tested the hypothesis that these mutations transform MI into an e3D-like cell 

using laser microsurgery experiments to determine whether the extra e3D-like cell in 

ngn-1(n1921) mutants is generated from the cell lineage that normally gives rise to MI. If 

ABaraappaaa, which normally becomes MI in wild-type animals, instead adopts an e3D-

like cell fate in ngn-1 mutants, then elimination of a precursor cell of ABaraappaaa from 

ngn-1(n1921) mutant embryos by laser ablation should result in the absence of the extra 

e3D-like cell (Figure 1C, D). We observed developing ngn-1(n1921) embryos and 

identified ABaraappa, the grandmother cell of the presumptive MI neuron. Elimination of 

ABaraappa by laser ablation prevented the generation of the extra e3D-like cell in 

ngn-1(n1921) animals (Table 1C). It is conceivable that this reduction in the number of 

the e3D-like cells could be attributed to the absence of e3D rather than of the extra e3D-

like cell, if the intact ABaraappa cell were required to specify ABaraapaaaa to become 

the e3D cell. We ruled out this possibility by testing whether the MI grandmother cell, 

ABaraappa, is required for the fate specification of the e3D epithelial cell in wild-type 

animals. We observed developing wild-type embryos and performed laser ablation 

experiments to eliminate the MI grandmother cell and found that this operation did not 

change the number of the e3D cells compared to that in unoperated wild-type embryos 

(Figure 1C, Table 1C). We concluded that the extra e3D-like cell in ngn-1(n1921) 

mutants is generated from the cell lineage that normally gives rise to MI and that the MI 
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neuron is transformed into an e3D-like epithelial cell in ngn-1 and hlh-2 mutants, 

resulting in the loss of left-right asymmetry in the cell lineage (Figure 1B). 

  

ngn-1 Encodes a bHLH Protein of the Neurogenin Subfamily 

 

We mapped n1921 to a 153 kb region of LG IV that includes the ngn-1 locus. We 

generated a 15.1-kb ngn-1 genomic DNA clone that contains 12.4 kb 5’ upstream and 1.5 

kb 3’ downstream sequence of the predicted ngn-1 coding region and found that this 

ngn-1 genomic DNA clone rescued the MI transformation phenotype caused by n1921 

(Table 2A). We also performed an RNA interference (RNAi) experiment and found that 

RNAi using dsRNA corresponding to the predicted third exon of ngn-1 phenocopied the 

n1921 mutation (Table 3).  

 ngn-1 is predicted to encode a 184-amino-acid protein similar to members of the 

neurogenin bHLH subfamily (Figure 3). We determined the DNA sequence of ngn-1 in 

our mutants and identified a mutation in each case (Figure 4A, see Figure 5 for details 

concerning the mutation found in n5052). In addition, we characterized an ngn-1 deletion 

allele, ngn-1(ok2200Δ), which lacks the second and third exons of ngn-1 and eliminates 

the entire coding sequence for the bHLH domain, thus likely defining a null allele of 

ngn-1 (Figure 4A). ngn-1(ok2200Δ) mutants exhibited the MI transformation (Table 1A, 

B).  

These findings establish that ngn-1 is required for breaking symmetry in this cell 

lineage. 
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n5053 Is an Allele of hlh-2, the C. elegans Ortholog of E2A/Daughterless 

 

We mapped n5053 to a 2 map-unit interval of LG I between dpy-5 and unc-13. This 

genomic region contains the gene hlh-2, the C. elegans ortholog of E2A/Daughterless 

(Krause et al. 1997). Because E2A in mammals and Daughterless in Drosophila encode 

bHLH proteins that form heterodimers with other bHLH proteins, including mammalian 

NeuroD1 (Poulin et al. 1997; Longo et al. 2008) and Drosophila Atonal (Jarman et al. 

1993), respectively, both of which are closely related to the neurogenin subfamily, we 

examined whether n5053 is an allele of hlh-2. We determined the DNA sequence of the 

hlh-2 locus in n5053 mutants and found a G-to-A transition mutation that alters the splice 

acceptor sequence preceding the second exon (Figure 4B). We generated an hlh-2 

genomic clone that contains 12.2 kb 5’ upstream and 5.2 kb 3’ downstream region of the 

hlh-2 coding sequence and found that n5053 mutants transformed with this hlh-2 

genomic clone were rescued for the MI transformation as well as the embryonic lethality 

(Table 2B, C). We also observed that RNAi treatment of hlh-2 caused the MI 

transformation (Table 3). Furthermore, we isolated an hlh-2 deletion allele, 

hlh-2(n5287Δ), that removes the entire coding sequence except for the first exon. This 

deletion eliminates the coding sequence corresponding to the entire bHLH domain, thus 

presumably defining a null allele of hlh-2 (Figure 4B). In animals heterozygous for 

hlh-2(n5287Δ), the MI neuron was transformed into an e3D-like cell (Table 1A, B), and 

animals homozygous for the hlh-2(n5287Δ) displayed embryonic lethality. These results 

indicate that loss of hlh-2 function causes the MI transformation and suggest that hlh-2 is 

a haplo-insufficient locus required for breaking bilateral symmetry in the cell lineage. 
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 A physical interaction between NGN-1 and HLH-2 has been shown previously 

using yeast two-hybrid studies (Grove et al. 2009). We examined whether NGN-1 and 

HLH-2 directly interact using an in vitro pull-down assay with purified proteins and 

found that His-tagged NGN-1 proteins associated with HLH-2 proteins but not with a 

control protein, MBP (Figure 4C). These results suggest that NGN-1 and HLH-2 form a 

transcriptional heterodimer required for breaking symmetry in a left-right asymmetric cell 

lineage. 

 

ngn-1 Acts Cell Autonomously to Establish a Left-Right Asymmetry 

 

To identify when and where ngn-1 functions to establish left-right asymmetry in the cell 

lineage, we performed a mosaic analysis of ngn-1. Specifically, we generated 

ngn-1(n1921) mutant animals carrying an extrachromosomal array containing the ngn-1 

rescuing construct marked with the cell-autonomous gfp markers sur-5::gfp (Yochem et 

al. 1998) and unc-119::gfp (Maduro and Pilgrim 1995). Extrachromosomal arrays in C. 

elegans are mitotically unstable, resulting in the generation of clones of cells that lose the 

arrays. We examined ngn-1(n1921) animals carrying the array using Nomarski optics 

equipped with epifluorescence and examined ABaraappaaa, which normally becomes MI 

in wild-type animals to determine (1) the fate of ABaraappaaa, i.e., an MI neuronal fate 

or an e3D-like epithelial fate, judged by the size and the morphology of its nucleus and 

(2) the presence or the absence of the array in the ABaraappaaa cell, judged by GFP 

fluorescence. Based on these two criteria, each animal was classified into one of four 

categories: Class I animals, ABaraappaaa differentiated into an MI neuron that retained 
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the array; Class II animals, ABaraappaaa differentiated into an MI neuron that lacked the 

array; Class III animals, ABaraappaaa was transformed into an e3D-like cell that retained 

the array; and Class IV animals, ABaraappaaa was transformed into an e3D-like cell that 

lacked the array (Figure 4D). If ngn-1 acts cell autonomously to establish the left-right 

asymmetry in the cell lineage, then ABaraappaaa transformed into an e3D-like cell 

should not retain the array, resulting in the absence of the Class III animals. Of 300 

animals examined, 36 animals contained ABaraappaaa transformed into an e3D-like cell. 

All of these 36 animals were classified as Class IV, in which ABaraappaaa adopted an 

e3D-like cell fate and did not retain the array; no animals were categorized as Class III 

(Figure 4D). The remaining 264 animals contained an ABaraappaaa that differentiated 

into an MI neuron. Of these animals, 251 animals were classified as Class I, in which 

ABaraappaaa differentiated into an MI neuron that retained the array, which is consistent 

with the cell-autonomous action of ngn-1. The remaining 13 animals were categorized as 

Class II, in which ABaraappaaa differentiated as normal into an MI neuron despite the 

absence of the array. These 13 Class II animals presumably at least in part reflect the 

incomplete penetrance of the ngn-1(n1921) mutation (Table 1A, B). In short, our data 

support a strong association between the specification of the MI neuron fate and the 

presence of the array in ABaraappaaa (p < 0.001) and indicate that ngn-1 acts cell-

autonomously to break bilateral symmetry in the cell lineage.  

We further examined the 36 animals of Class IV, in which ABaraappaaa was 

transformed into an e3D-like cell that had lost the array. We determined the cell division 

at which the array had been mitotically lost by scoring the presence or absence of the 

array in cells that shared a precursor cell with ABaraappaaa at some point of their lineage 
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history. From this analysis, we identified 10 animals that had an extra e3D-like cell and 

had lost the array at the cell division of ABaraapp (Figure 4E). This observation indicates 

that the presence of a functional ngn-1 gene in ABaraapp is insufficient to generate an MI 

neuron and thus that to generate MI a functional ngn-1 gene is necessary at or later than 

the stage of ABaraappa, the MI grandmother cell. By contrast, we identified no animals 

that had lost the array at the next cell division, that of the MI grandmother cell, 

ABaraappa (Figure 4E). This result suggests that in all animals in which the array was 

present in the MI grandmother cell, ABaraappaaa differentiated as normal into an MI 

neuron whether the array was (Class I animals) or was not (Class II animals) transmitted 

to the presumptive MI neuron. Thus, the presence of the array in the MI grandmother cell 

was sufficient to rescue the MI transformation phenotype of ngn-1(n1921) mutants. 

Together, these findings indicate that the presence of the ngn-1 wild-type gene in the MI 

grandmother cell is both necessary and sufficient to generate an MI neuron and establish 

left-right asymmetry in the cell lineage. 

 

Expression of ngn-1 and hlh-2 Is Left-Right Asymmetric 

 

To identify when and where ngn-1 is expressed during embryogenesis, we generated a 

translational ngn-1::gfp fusion gene by an in-frame insertion of a gfp coding sequence 

into the 3’ end of the ngn-1 coding sequence flanked by the 12.4 kb 5’ upstream and 1.5 

kb 3’ downstream genomic sequence. We integrated this ngn-1::gfp transgene into the C. 

elegans genome and found that the ngn-1::gfp transgene rescued the MI transformation 

defect of ngn-1(n1921) mutants (Table 2A), indicating that this ngn-1::gfp is functional. 
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We used this ngn-1::gfp to examine expression of ngn-1 during embryonic development. 

Because mosaic analysis of ngn-1 suggested the cell-autonomous action of ngn-1, we 

asked whether ngn-1 is expressed in the cell lineage that gives rise to the MI neuron. We 

observed developing embryos carrying ngn-1::gfp and found that NGN-1::GFP protein 

became detectable in the nucleus of the MI mother cell (Figure 6A-C). By contrast, 

NGN-1::GFP was not detectable in the e3D mother cell (Figure 6A-C), indicating that 

expression of ngn-1 is left-right asymmetric within this asymmetric cell lineage.  

 We also analyzed hlh-2 expression during embryogenesis. Immunostaining 

experiments using an HLH-2 antibody had demonstrated previously that HLH-2 is 

present in all cells up to the 100-200-cell stage of embryonic development (Krause et al. 

1997). To test specifically whether hlh-2 is expressed in the MI mother cell, we generated 

a translational hlh-2::gfp fusion gene by an in-frame insertion of a gfp coding sequence to 

the 3’ end of the hlh-2 coding sequence flanked by the 18.7 kb 5’ upstream and 10.6 kb 

3’ downstream genomic sequence. We integrated this hlh-2::gfp transgene into the C. 

elegans genome and found that hlh-2::gfp rescued the MI transformation as well as the 

embryonic lethality of hlh-2(n5053) mutants (Table 2B, C), indicating that hlh-2::gfp is 

functional. We observed developing embryos carrying hlh-2::gfp and found that, like 

NGN-1::GFP, HLH-2::GFP was also localized asymmetrically: HLH-2::GFP was 

detectable in the MI mother cell but not in the e3D mother cell (Figure 6G-I). These 

results indicate that both ngn-1 and hlh-2 are expressed asymmetrically and suggest that 

this left-right asymmetric expression of ngn-1 and hlh-2 establishes bilateral asymmetry 

in the cell lineage.  
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ceh-36, an Otx/Otd Homeodomain Gene, Is Required for Establishing the e3D-MI 

Bilateral Asymmetry 

 

To identify factors that regulate the left-right asymmetric expression of ngn-1 and hlh-2, 

we performed additional genetic screens to look for mutations that cause left-right 

symmetry in this normally asymmetric cell lineage. We mutagenized wild-type animals 

carrying the e3D cell-fate reporter, D2096.6::pes-10::gfp, and screened for mutants in 

which an extra e3D-like cell was present or e3D was absent (see Chapter IV). Among the 

isolates we recovered were three allelic mutations (n5333, n5339 and n5340) that caused 

the presence of an extra e3D-like cell (Table 1B, Figure 2L). We introduced the MI cell-

fate reporter sams-5::gfp into these mutants and observed that these mutants failed to 

generate the MI neuron (Table 1A, Figure 2H), indicating that, like ngn-1 and hlh-2 

mutations, these mutations transform MI into an e3D-like cell, thereby generating 

symmetry in the normally asymmetric cell lineage (Figure 1B).  

We mapped n5333 to a 100 kb region of LG X that includes the gene ceh-36. We 

generated a 5.7 kb ceh-36 genomic DNA clone that contains 2.5 kb 5’ upstream and 1.1 

kb 3’ downstream sequence of the ceh-36 coding region and found that this ceh-36 

genomic DNA clone rescued the MI transformation phenotype caused by n5333 (Table 

4). ceh-36 encodes a 257 amino acid protein similar to members of the Otx/Otd 

homeodomain subfamily (Chang et al. 2003; Lanjuin et al. 2003; Koga and Ohshima 

2004). We determined the DNA sequence of ceh-36 in our mutants and identified a 

mutation in each case (Figure 7A). In addition, we characterized a ceh-36 deletion allele, 

ceh-36(ok795Δ), which lacks the entire coding sequence of ceh-36 except for the first 
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exon, thus likely defining a null allele of ceh-36 (Figure 7A). We observed that animals 

homozygous for the ceh-36(ok795Δ) deletion displayed larval lethality and exhibited the 

MI transformation (Table 1A, B). These findings establish that ceh-36 is required for 

breaking symmetry in this cell lineage. 

 

Establishment of the MI-e3D Asymmetry Does Not Require Genes that Specify Non-

anatomical Neuronal Bilateral Asymmetries 

 
Some aspects of left-right asymmetry in the C. elegans nervous system are not apparent 

anatomically: left-right pairs of the ASE gustatory neurons and the AWC olfactory 

neurons are each morphologically similar but distinct both functionally (Pierce-

Shimomura et al. 2001; Wes and Bargmann 2001) and in their patterns of gene 

expression (Yu et al. 1997; Troemel et al. 1999; Ortiz et al. 2006). 

 We tested if genes that specify the left-right asymmetry of the ASE neurons and 

the AWC neurons are required to establish bilateral asymmetry in the cell lineage that 

gives rise to the MI neuron. We observed that in cog-1, lim-6, lin-49 and lsy-6 mutants, in 

which the asymmetry of the ASE neurons is lost (Chang et al. 2003; Johnston and Hobert 

2003), and in inx-19, nsy-4 and unc-43 mutants, in which the asymmetry of the AWC 

neurons is lost (Troemel et al. 1999; Vanhoven et al. 2006; Chuang et al. 2007), both the 

MI neuron and the e3D epithelial cell were correctly specified (Table 5A, B). We also 

asked if mutations in genes encoding components of Notch signaling pathway, including 

lin-12 and glp-1 (Yochem et al. 1988; Austin and Kimble 1989), and Wnt signaling 

pathway, including pop-1 (Lin et al. 1995), affect the MI-e3D bilateral asymmetry. We 

observed that in lin-12, glp-1 and pop-1 mutants, both MI and e3D were normally present 
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(Table 5C). These results indicate that ceh-36, ngn-1 and hlh-2 represent novel 

components that establishes a bilateral asymmetry in the C. elegans nervous system. 

 

ngn-1 Is Required for the General Cell-Fate Specification of the AWC Neurons 

 

ceh-36  has been previously shown to be required for the general cell-fate specification of 

the AWC and ASE neurons (Lanjuin et al. 2003). We asked whether ngn-1 is also 

required for the general cell-fate specification of the AWC and ASE neurons. We 

introduced a general cell-fate reporter for the ASE neurons, flp-6::gfp (Kim and Li 2004), 

into ngn-1(ok2200Δ) mutants and found that the expression of this reporter in 

ngn-1(ok2200Δ) mutants was indistinguishable from that in wild-type animals (Table 6). 

We also introduced a general cell-fate reporter for the AWC neurons, odr-1::dsRed 

(Vanhoven et al. 2006), into ngn-1(ok2200Δ) mutants and observed that expression of 

odr-1::dsRed was often missing in ngn-1(ok2200Δ) mutants (Table 7), indicating that, 

like ceh-36,  ngn-1 is required for the general cell-fate specification of the AWC neurons. 

 

ceh-36 Acts Cell Autonomously to Establish a Left-Right Asymmetry 

 

To identify when and where ceh-36 functions to generate the MI neuron, we performed a 

mosaic analysis of ceh-36 similar to our ngn-1 mosaic analysis. We generated ceh-36 

(n5333) mutant animals carrying an extrachromosomal array containing the ceh-36 

rescuing construct marked with the cell-autonomous gfp markers sur-5::gfp (Yochem et 

al. 1998) and unc-119::gfp (Maduro and Pilgrim 1995) and determined in each animal (1) 
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the fate of ABaraappaaa, i.e., an MI neuronal fate or an e3D-like fate and (2) the presence 

or the absence of the array in the ABaraappaaa cell. Based on these criteria, we classified 

each animal into one of four categories, as we did in our ngn-1 mosaic analysis (Figure 

7B). Of 350 animals examined, 28 animals contained ABaraappaaa transformed into an 

e3D-like epithelial cell. All of these 28 animals were classified as Class IV; no animals 

were categorized as Class III. The remaining 322 animals contained an ABaraappaaa that 

differentiated into an MI neuron. Of these animals, 288 animals were classified as Class 

I, and the remaining 34 animals were categorized as Class II (Figure 7B). In short, our 

data support a strong association between the specification of the MI neuron fate and the 

presence of the array in ABaraappaaa (p < 0.001) and indicate that ceh-36 acts cell-

autonomously to break bilateral symmetry in the cell lineage.  

We further examined the 28 animals of Class IV, in which ABaraappaaa was 

transformed into an e3D-like cell that had lost the array and determined the cell division 

at which the array had been mitotically lost. We identified eight animals that had an extra 

e3D-like cell and had lost the array at the cell division of ABaraap (Figure 7C). By 

contrast, we identified no animals that had lost the array at the next cell division, that of 

the MI great grandmother cell, ABaraapp (Figure 7C). Together, these findings indicate 

that the presence of the ceh-36 wild-type gene in the MI great grandmother cell is both 

necessary and sufficient to rescue the MI transformation defect of ceh-36(n5333). 

 

Left-Right Asymmetric Expression of ngn-1 and hlh-2 Is Abolished in ceh-36 

Mutants 
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Our mosaic analyses suggest that the site of ceh-36 action is one cell division earlier than 

that of ngn-1 action: our ceh-36 mosaic analysis indicates that the presence of the ceh-36 

wild-type gene in the MI great grandmother cell (ABaraapp) is both necessary and 

sufficient to generate the MI neuron, while our ngn-1 mosaic analysis indicates that the 

presence of the ngn-1 wild-type gene in the MI grandmother cell (ABaraappa) is both 

necessary and sufficient to generate the MI neuron (Figure 7D). Because these 

observations suggest that ceh-36 acts upstream of or in parallel to ngn-1, we examined 

expression of ngn-1 in ceh-36(n5333) mutant embryos. We introduced the ngn-1::gfp 

transgene into ceh-36(n5333) mutants, observed developing ceh-36(n5333) mutant 

embryos carrying ngn-1::gfp and found that NGN-1::GFP was not detectable in the 

nucleus of the MI mother cell (Figure 6D-F). We also asked whether expression of hlh-2 

in the MI mother cell requires ceh-36. We introduced the hlh-2::gfp transgene into 

ceh-36(n5333) mutants, observed developing ceh-36(n5333) mutant embryos carrying 

hlh-2::gfp and found that, like NGN-1::GFP, HLH-2::GFP was not localized to the 

nucleus of the MI mother cell (Figure 6J-L). These observations indicate that 

establishment of left-right asymmetric expression of ngn-1 and hlh-2 requires ceh-36 and 

that ceh-36 acts upstream of ngn-1 and hlh-2 to establish left-right asymmetry in the cell 

lineage.  

 

Expression of ceh-36 Is Left-Right Asymmetric 

 

To identify when and where ceh-36 is expressed during embryogenesis, we generated a 

translational ceh-36::gfp fusion gene by an in-frame insertion of a gfp coding sequence 
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into the 3’ end of the ceh-36 coding sequence flanked by the 2.5 kb 5’ upstream and 1.1 

kb 3’ downstream genomic sequence. We integrated this ceh-36::gfp transgene into the 

C. elegans genome and found that the ceh-36::gfp transgene rescued the MI 

transformation defect of ceh-36(n5333) mutants (Table 4), indicating that this 

ceh-36::gfp is functional. We asked whether ceh-36 is expressed in the cell lineage that 

gives rise to the MI neuron. We observed developing wild-type embryos carrying the 

ceh-36::gfp transgene and found that CEH-36::GFP was localized to the nucleus of the 

MI grandmother cell but not to that of the e3D grandmother cell (Figure 8A-C). 

CEH-36::GFP in the MI grandmother cell became detectable 25 minutes after this cell 

was generated. We also found that CEH-36::GFP was present in the nucleus of the MI 

mother cell but not in that of the e3D mother cell (Figure 8D-F). These results indicate 

that expression of ceh-36 is left-right asymmetric and suggest that this left-right 

asymmetric expression of ceh-36 triggers expression of ngn-1 and hlh-2 on the right side 

of the cell lineage but not on the left, leading to a bilaterally asymmetric neurogenesis 

that gives rise to the MI neuron. 
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 Discussion 

 

Bilateral asymmetry is a conserved and fundamental feature of nervous systems. Despite 

its importance, the molecular and cellular mechanisms that establish neuroanatomical 

asymmetry have been largely elusive. Although Otx homeodomain proteins and 

proneural bHLH transcription factors have been shown to play pivotal roles in 

neurogenesis, they have not previously been shown to establish bilateral asymmetry. In 

this study, we establish that two proneural bHLH genes, ngn-1 and hlh-2, and the Otx 

homeodomain gene ceh-36 are required for the generation of the single unpaired MI 

motor neuron by breaking left-right symmetry in an otherwise symmetric cell lineage. 

Our results indicate that expression of ceh-36 is left-right asymmetric in this cell lineage 

and that CEH-36 proteins are present in the MI grandmother cell but not in the e3D 

grandmother cell. ceh-36 is required for the left-right asymmetric expression of ngn-1 

and hlh-2. We propose that the asymmetric localization of CEH-36 proteins promotes 

left-right asymmetric expression of ngn-1 and hlh-2 in the MI grandmother cell but not in 

the e3D grandmother cell. The ngn-1 and hlh-2 products generated in the MI 

grandmother cell are then transmitted to the MI mother cell, leading to the formation of a 

heterodimer between NGN-1 and HLH-2 in the MI mother cell but not in the e3D mother 

cell. This asymmetric localization of NGN-1 and HLH-2 then induces an asymmetric 

neurogenic program, giving rise to the MI neuron on the right side of the cell lineage and 

the e3D epithelial cell on the left (Figure 8G). Thus, the left-right asymmetric activation 

of the ceh-36, ngn-1 and hlh-2 transcriptional cascade induces a bilaterally asymmetric 

neurogenic program that establishes left-right asymmetry in the cell lineage.   



 66 

 

Our ceh-36 mosaic analysis indicates that the presence of the ceh-36 wild-type 

gene in the MI great grandmother cell (ABaraapp) is necessary and sufficient to generate 

an MI neuron. This observation suggests that transcription of ceh-36 initiates in this cell 

(Figure 8G). Our expression analysis of ceh-36 supports this notion: we observed a 

CEH-36::GFP functional protein localized to the nucleus of the MI grandmother cell 25 

minutes after its generation. Because fluorophore formation of the variant of GFP we 

used requires at least 30 minutes (Heim et al. 1995), and because the MI great 

grandmother cell divides about 30 minutes after its generation to give rise to the MI 

grandmother cell, it is highly likely that transcription of ceh-36 indeed initiates in the MI 

great grandmother cell. By contrast, our expression analysis of ceh-36 indicates that 

CEH-36::GFP was not detectable in the e3D grandmother cell. This observation suggests 

that ceh-36 is not transcribed in the e3D great grandmother cell, ABaraapa. We suggest 

that the developmental program establishing the bilateral asymmetry in this cell lineage is 

triggered by an asymmetric transcription of ceh-36 in which ceh-36 is transcribed in the 

MI great grandmother cell, ABaraapp, but not in the e3D great grandmother cell, 

ABaraapa (Figure 8G). The great grandmother cells of MI and e3D are the earliest 

precursor cells that separate the left and right sides of the cell lineage. Our results thus 

reveal that the determination of the left-right asymmetry of this cell lineage occurs at 

least three cell generations prior to the generation of MI and e3D and suggest that the 

commitment to produce this bilaterally asymmetric cell lineage occurs within ABaraapa 

and ABaraapp, the two blastomeres that generate the left and right branches of the cell 

lineage.  
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Our results indicate that mutations in genes required to establish the bilateral 

asymmetries of the AWC and ASE neurons do not affect the MI-e3D asymmetry and thus 

suggest that the ceh-36/ngn-1/hlh-2 transcriptional cascade is a novel pathway that 

establishes a bilateral asymmetry in the C. elegans nervous system. The AWC bilateral 

asymmetry is established after the generation of the two post-mitotic AWC neurons 

through an interaction between these cells (e.g., Chuang et al. 2007). Likewise, the ASE 

bilateral asymmetry is established by a regulatory pathway that acts within the two post-

mitotic ASE neurons (Johnston et al. 2005). By contrast, our results indicate that ceh-36 

and ngn-1 act within dividing cells that are progenitors to MI and e3D to establish the 

MI-e3D bilateral asymmetry. Thus, our studies reveal a novel mechanism for how the 

asymmetric activation of a genetic pathway that functions through three rounds of cell 

division leads to an anatomical bilateral asymmetry manifested by post-mitotic 

differentiated cells. 

Our finding that loss-of-function mutations in ngn-1 and ceh-36 caused 

transformation of the MI neuron into a non-neuronal e3D epithelial-like fate 

demonstrates that the role of neurogenin and otx genes in promoting neurogenesis is 

evolutionarily conserved from C. elegans to mammals (Fode et al. 1998; Ma et al. 1998; 

Omodei et al. 2008). Do these genes in vertebrates also act to establish bilateral 

asymmetry in the nervous system? The epithalamus of the diencephalon displays 

anatomical asymmetries in many vertebrate species (Concha and Wilson 2001). For 

example, in zebrafish the habenular nuclei in the dorsal diencephalon display anatomical 

left-right asymmetry (Concha et al. 2000). It has been shown that the establishment of 

this left-right difference in the habenular structure requires asymmetry in the timing of 
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neurogenesis (Aizawa et al. 2007) and that the habenula express the zebrafish ngn1 gene 

(Mueller and Wullimann 2003). In addition, the zebrafish ngn3 gene is asymmetrically 

expressed in the anterior-ventral diencephalon, with stronger expression on the left side 

than on the right (Wang et al. 2001). Furthermore, in mammals, otx2 is required for the 

generation of the mesencephalic dopaminergic neurons, in which it promotes expression 

of ngn2 in the mesencephalic dopaminergic progenitors (Omodei et al. 2008). It has been 

shown that ngn2 is also required for the generation of the mesencephalic dopaminergic 

neurons, including those located in the retro-rubral area (Andersson et al. 2006), and that 

the retro-rubral area displays bilateral asymmetry in the number of the dopaminergic 

neurons (Zaborszky and Vadasz 2001). Given our results, these observations raise the 

intriguing possibility that an evolutionarily conserved transcriptional cascade composed 

of an otx homeodomain gene and a neurogenin bHLH gene is involved in establishment 

of nervous system bilateral asymmetry in many animals, including mammals.  
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Experimental Procedures 

 
C. elegans Strains 

C. elegans strains were cultured at 20 °C as described previously (Brenner 1974). N2 

(Bristol) was the wild-type strain. The following extrachromosomal arrays, integrants and 

mutations were used and have been described (Riddle et al. 1997), except those from this 

study or otherwise indicated: 

LGI: dpy-5(e61), hlh-2(n5053, n5287) (this study), unc-13(e51), unc-55(e1170), 

inx-19(ky634) (Chuang et al. 2007), pop-1(q645) (Siegfried and Kimble 2002). 

LGII: nIs362[D2096.6::pes-10::gfp, lin-15AB(+)] (this study), cog-1(ot28) (Chang et al. 

2003). 

LGIII: nIs394[ngn-1::gfp, lin-15AB(+)] (this study), ynIs67[flp-6::gfp] (Kim and Li 

2004), lin-12(n137sd, n941), glp-1(e2141).  

LGIV: lin-1(e1275), ngn-1(n1921, n5020, n5052, ok2200) (this study, ok2200 was 

provided by the C. elegans Gene Knockout Consortium), unc-17(e245), 

nIs407[hlh-2::gfp, lin-15AB(+)] (this study), unc-43(n498sd, n1186), nsy-4(ky616) 

(Vanhoven et al. 2006), lin-49(sa470) (Chamberlin et al. 1999). 

LGV: nIs396[sams-5::gfp, lin-15AB(+)] (this study). 

LGX: ceh-36(n5333, n5339, n5340, ok795Δ) (this study, ok795Δ was provided by the C. 

elegans Gene Knockout Consortium), kyIs258[odr-1::dsRed] (Vanhoven et al. 2006), 

lin-15AB(n765), nIs363[D2096.6::pes-10::gfp, lin-15AB(+)] (this study), 

nIs445[ceh-36::gfp, lin-15AB(+)] (this study), lim-6(nr2073) (Chang et al. 2003). 

Extrachromosomal arrays: nEx1538[ngn-1(+), lin-15AB(+), sur-5::gfp], 

nEx1564[ngn-1(frameshift), lin-15AB(+), sur-5::gfp], nEx1613[hlh-2(+), sur-5::gfp], 
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nEx1622[hlh-2(frameshift), sur-5::gfp], nEx1638[ngn-1(+), sur-5::gfp, unc-119::gfp], 

nEx1703[ceh-36(+), sur-5::gfp, unc-119::gfp, lin-15AB(+)], 

nEx1704[ceh-36(frameshift), sur-5::gfp, unc-119::gfp, lin-15AB(+)] (all this study). 

 

 

Isolation of ngn-1(n1921, n5020 and n5052) and hlh-2(n5053)  

The wild-type N2 strain was mutagenized with ethyl methanesulfonate (EMS), and F2 

progeny were observed using Nomarski optics (Brenner 1974). ngn-1(n5020 and n5052) 

and hlh-2(n5053)/+ were isolated from screens looking for animals in which the MI 

neuron was missing and an extra e3D-like epithelial cell was present. ngn-1(n1921) was 

recovered from screens looking for animals in which one or more extra neuronal cells 

were present in the anterior pharynx. The extra neuronal cells in the anterior pharynx of 

ngn-1(n1921) mutants result from a dislocation of the M2 neurons, which are normally 

located in the posterior pharynx (Ellis 1989). 

 

Isolation of ceh-36(n5333, n5339 and n5340) 

Wild-type animals carrying the D2096.6::pes-10::gfp reporter were mutagenized with 

EMS, and F3 progeny were observed using a fluorescence-equipped dissecting 

microscope. ceh-36(n5333, n5339 and n5340) were isolated as animals that contained an 

extra cell expressing the D2096.6::pes-10::gfp reporter.  

 

 

Isolation of hlh-2(n5287Δ) 
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Genomic DNA pools from EMS-mutagenized animals were screened by PCR for 

deletion alleles of hlh-2, essentially as described (Jansen et al. 1997; Liu et al. 1999).  

hlh-2(n5287Δ) was isolated from a frozen stock and backcrossed to the wild type four 

times. The hlh-2(n5287Δ) allele removes sequence between nucleotide 18388 of cosmid 

M05B5 and nucleotide 2042 of cosmid C01H6 and inserts the 15 bp sequence 

GAGCAATGGCGGCAG at that site.  

 

Identification of MI and e3D Cell Fate Reporters 

As previously reported, the reporter sams-5::gfp is expressed in a single pharyngeal 

neuron of wild-type animals (The Genome BC C. elegans Gene Expression Consortium). 

We identified this cell as the MI neuron based on the morphology and position of its 

nucleus (Albertson and Thomson 1976). The D2096.6::gfp was previously shown to be 

expressed in pharyngeal epithelial cells, pharyngeal muscle cells, and pharyngeal 

marginal cells (Gaudet and Mango 2002). We generated a variant of the D2096.6::gfp 

reporter, D2096.6::pes-10::gfp, that retains expression in the e3 pharyngeal epithelial 

cells, including e3D, but lacks expression in the pharyngeal muscle cells or pharyngeal 

marginal cells. 

 

Mapping of n1921 

We isolated F2 Lin non-Unc and Unc non-Lin progeny from the strain lin-1(e1275) n1921 

unc-17(e245) after crossing with the wild-type polymorphic strain CB4856 and 

determined the presence or absence of n1921 using Nomarski optics and by identifying 

crossover sites, essentially as described (Wicks et al. 2001). We mapped n1921 to a 153-
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kb interval between nucleotides 121452 of cosmid Y69A2AR and 8514 of cosmid 

Y54G2A. 

 

Mapping of n5333 

We isolated F2 Dpy non-Unc and Unc non-Dpy progeny from the strain nIs361; 

dpy-6(e14) n5333 unc-3(e151) after crossing with the wild-type polymorphic strain 

CB4856 carrying nIs361 and determined the presence or absence of n5333 using a 

fluorescence-equipped dissecting microscope and by identifying crossover sites, 

essentially as described (Wicks et al. 2001). We mapped n5333 to a 100-kb interval 

between nucleotides 4694 of cosmid R03E1 and 4554 of cosmid E02H4. 

  

 

RNA Interference 

We performed RNAi of ngn-1 or hlh-2 by growing eri-1(mg366) or wild-type animals, 

respectively, on HT115(DE3) E. coli harboring the ngn-1 RNAi construct (pSN241) or 

the hlh-2 RNAi construct (pSN243), respectively. The presence or absence of the MI 

neuron in the progeny of the animals grown on these bacteria was determined using 

Nomarski optics. 

 

Cell Ablation 

The wild-type or ngn-1(n1921) mutant embryos carrying the D2096.6::pes-10::gfp 

reporter were directly observed from the 28-cell stage until the generation of ABaraappa. 

Laser microsurgery of ABaraappa was performed as described previously (Avery and 
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Horvitz 1987). The operated embryos were recovered and grown at 20 °C. After 

hatching, the number of e3D-like epithelial cells was determined using the 

D2096.6::pes-10::gfp reporter. 

 

Mosaic Analyses 

We observed animals of genotype ngn-1(n1921); nEx1638[ngn-1(+), sur-5::gfp, 

unc-119::gfp] and of genotype ceh-36(n5333) lin-15AB(n765); nEx1703[ceh-36(+), 

sur-5::gfp, unc-119::gfp, lin-15AB(+)] using Nomarski optics equipped with 

epifluorescence. Fisher’s tests were used for statistical analyses of the association 

between the fate specification of the MI neuron and the presence of the array in 

ABaraappaaa. To determine the cell division at which the array was lost in the Class IV 

animals, we determined the presence or absence of the array as judged by GFP 

fluorescence in the following cells: e1D, e1VL, e1VR, e2VR, e3D, e3VR, I2R, I5, M2L, 

M2R, M3L, M3R, mc2DL, mc2DR, MCR, NSML and NSMR. Based on the cell lineages 

that give rise to these cells (Sulston et al. 1983), we determined the cell division at which 

the array was lost. 

 

Expression Analyses of ngn-1::gfp, hlh-2::gfp and ceh-36::gfp 

Gravid hermaphrodites carrying the ngn-1::gfp,  hlh-2::gfp and ceh-36::gfp reporters 

were dissected to obtain early-stage embryos. The cell divisions of these embryos were 

directly observed using Nomarski optics and epifluorescence.  
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Germline Transformation Experiments 

Germline transformation experiments were performed as described (Mello et al. 1991).  

To generate animals carrying the sams-5::gfp reporter, we injected pSN363 into 

lin-15AB(n765) mutants at 50 ng/µl together with 20 ng/µl of EK L15, a lin-15 rescuing 

plasmid (Clark et al. 1994). To generate animals carrying the D2096.6::pes-10::gfp 

reporter, we injected pSN330 into lin-15AB(n765) mutants at 80 ng/µl together with 25 

ng/µl of EK L15. For transformation rescue of ngn-1(n1921), we injected 

pSN265[ngn-1(+)] or pSN286[ngn-1(frameshift)] into ngn-1(n1921); lin-15AB(n765) 

mutants at 5 ng/µl together with 25 ng/µl of EK L15 and pTG96[sur-5::gfp] (Yochem et 

al. 1998). For transformation rescue of hlh-2(n5053), we injected pSN292[hlh-2(+)] or 

pSN300[hlh-2(frameshift)] into the wild-type at 1 ng/µl together with 25 ng/µl of pTG96. 

The resulting animals carrying the extrachromosomal arrays were mated to transfer the 

arrays into an hlh-2(n5053)/+ background. To generate mosaic animals for ngn-1, we 

injected pSN265[ngn-1(+)] into ngn-1(n1921) mutants at 5 ng/µl together with 40 ng/µl 

of pTG96[sur-5::gfp] and 40 ng/µl of pSN276[unc-119::gfp]. For ngn-1::gfp and 

hlh-2::gfp expression analyses, we injected pSN349[ngn-1::gfp] or pSN372[hlh-2::gfp] 

into lin-15AB(n765) animals at 5 ng/µl or 1 ng/µl, respectively, together with 25 ng/µl of 

EK L15. For transformation rescue of ceh-36(n5333) and mosaic analysis of ceh-36, we 

injected pSN388[ceh-36(+)] or pSN394[ceh-36(frameshift)] into ceh-36(n5333) mutants 

at 5 ng/µl together with 40 ng/µl of pTG96[sur-5::gfp] and 40 ng/µl of 

pSN276[unc-119::gfp]. For ceh-36::gfp expression analysis, we injected 

pSN402[ceh-36::gfp] into lin-15AB(n765) animals at 20 ng/µl together with 25 ng/µl of 

EK L15. 
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Physical Interaction between His-NGN-1 and HLH-2 

We purified His-NGN-1 proteins from an E. coli BL21(DE3) strain carrying pSN261 

using an Ni-NTA (Qiagen) column and HLH-2 proteins from an E. coli ER2566 strain 

carrying pSN252 using the IMPACT™ system (New England BioLabs). Purified His-

NGN-1 (1 µM) was mixed with HLH-2 protein or MBP (Maltose Binding Protein) 

(1µM) in the presence of Ni-NTA agarose, and the protein mixtures were washed three 

times. We eluted the proteins bound to the Ni-NTA with 200 mM imidazole solution and 

analyzed the amount of the HLH-2 or MBP proteins in the eluates by western blot 

analysis using anti-HLH-2 antibody (kindly provided by Michael Krause) or anti-MBP 

antibody (New England BioLabs). 

 

Molecular biology 

To create the sams-5::gfp reporter (pSN363), we amplified 447 bp of the sams-5 genomic 

sequence by PCR using the wild-type genomic DNA and the primers 5’-

GAGCATGCGTGGCACTCTCTATCCAGACA-3’ and 5’-

CTCTAGAAACTTGTTCTTGGACATTGTAGCA-3’. The resulting PCR product was 

digested by SphI and XbaI and cloned into the vector pPD122.56 digested by the same 

restriction enzymes. To create the D2096.6::pes-10::gfp reporter (pSN330), we amplified 

1.7 kb of the D2096.6 genomic sequence by PCR using the wild-type genomic DNA and 

the primers 5’-GCCAAGCTTGTGTTGGATACGGTGGAACA-3’ and 5’-

CTGCTAGCGGCTCGCGCAAGAGCACACTGT-3’. The resulting PCR product was 

digested by HindIII and NheI and cloned into the pPD122.53 digested by the same 
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restriction enzymes to generate pSN328. We further modified pSN328 to increase the 

GFP fluorescence signal. Expression of D2096.6::gfp was shown to be dependent on the 

transcription factor PHA-4, and introduction of an “UP” mutation (Gaudet and Mango 

2002) into a PHA-4 binding site of the D2096.6 promoter region was shown to increase 

the affinity of PHA-4 to the D2096.6 promoter, resulting in an increase of the GFP 

fluorescence signal of the D2096.6::gfp reporter (Gaudet and Mango 2002). To generate 

the D2096.6::pes-10::gfp reporter (pSN330), we performed site-directed mutagenesis 

using pSN328 and the primers 5’-

TCCAGTGTCCAGCCATCTGTTTGCGTCGTTTCAAATGCTCGA-3’ and 5’-

TCGAGCATTTGAAACGACGCAAACAGATGGCTGGACACTGGA-3’ to introduce 

an UP mutation into the D2096.6 promoter region of pSN328. 

To generate an expression construct for His-NGN-1 (pSN261), we amplified a full-length 

ngn-1 cDNA sequence by PCR using yk411e12 and the primers 5’-

GCTGGTCATATGTACCATCATTCACCATTCT-3’ and 5’-

GCGGATCCTCAATGATGTGGGAAGCTTGG-3’. The resulting PCR product was 

digested by NdeI and BamHI and cloned into the vector pPROEX (Life Technologies) 

digested by the same restriction enzymes. To generate an expression construct for HLH-2 

(pSN252), we amplified a full-length hlh-2 cDNA sequence by PCR using yk492c11 and 

the primers 5’-GCACCATGGCGGATCCAAATAGCCA-3’ and 5’-

GGTGGTTGCTCTTCCGCAAAACCGTGGATGTCCAAACT-3’. The resulting PCR 

product was digested by NcoI and SapI and cloned into the vector pTYB3 (New England 

BioLabs) digested by the same restriction enzymes. To generate the unc-119::gfp reporter 

(pSN276), we amplified 2.3 kb of unc-119 genomic sequence by PCR using the wild-
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type genomic DNA and the primers 5’-GCGCATGCTCCAATCGGAAACGCGAACA-

3’ and 5’-GCTCTAGATTCATATATGCTGTTGTAGCTGA-3’. The resulting PCR 

product was digested by SphI and XbaI and cloned into the vector pPD122.56 digested 

by the same restriction enzymes. To generate the ngn-1 genomic clone (pSN265) capable 

of rescuing the MI transformation defect caused by n1921, we transformed the yeast FY2 

strain with the vector pRS426 (Christianson et al. 1992) digested by BamHI and XhoI 

and the six PCR products amplified using the wild-type genomic DNA and the following 

six pairs of the primers:  5’-

GTAACGCCAGGGTTTTCCCAGTCACGACGCGCGAAAAGACAGCTGAAACGGT

-3’ and 5’-GTTTGCGCACTTCTGGGGCTACAGT-3’, 5’-

ACCCTTAGCACCCAGTTTTTAGGCTTC-3’ and 5’-

GGCGTGGCATAGATCCATTGGTAGA-3’, 5’-

GCTCGAAATGAGCTCTGAATTTCGGCGA-3’ and 5’-

GTCGATGCACCATGTCTGTTATTGCT-3’, 5’-

CCAAACACAGTGGAGATAGGCGCTAACA-3’ and 5’-

GGGCACCACTGTGGAAAATGACTGACT3’, 5’-

CCACCATATCTCCAGACTGGTGTTCCGGT-3’ and 5’-

GCCAAGTGAGAGCAAATTTGACTAGACGA-3’, 5’-

CACCATTCCAATCACCATGCTTCCCA-3’ and 5’-

GCGGATAACAATTTCACACAGGAAACAGCCTTGGATTGGATCAACATTTGGT-

3’. Plasmid DNA was isolated from transformed yeast and amplified in TOP10 E. coli 

strain (Invitrogen). To generate the ngn-1 genomic clone carrying a frameshift mutation 

(pSN286), we transformed the yeast FY2 strain as we did to generate pSN265 (see 
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above), except that one of the PCR products corresponding to the ngn-1 coding sequence 

was generated by a two-step site-directed mutagenesis. In the first PCR amplification, 

two PCR products were obtained using the wild-type genomic DNA and the two sets of 

the primers: 5’-CCACCATATCTCCAGACTGGTGTTCCGGT-3’ and 5’-

TCCATATCATTTTCTCGTTCACATATCTAAATCTTGCTCGCCA-3’, 5’-

GCCAAGTGAGAGCAAATTTGACTAGACGA-3’ and 5’-

TGGCGAGCAAGATTTAGATATGTGAACGAGAAAATGATATGGA-3’. The 

resulting two PCR products were used for the template of the second PCR amplification 

using the primers 5’-CCACCATATCTCCAGACTGGTGTTCCGGT-3’ and 5’-

GCCAAGTGAGAGCAAATTTGACTAGACGA-3’. Plasmid DNA was isolated from 

transformants and transferred to and prepared from TOP10 E. coli. To generate a 

derivative of pRS426 with a reduced copy number in E. coli (pSN291), we amplified the 

rop gene using pBR322 and primers 5’-

GGCACTAGTGGAACACCTACATCTGTATTAACGA-3’ and 5’-

CTATGAGCTCCGCTTACAGACAAGCTGTGACCGT-3’. The resulting PCR product 

was digested by SpeI and SacI and cloned into the vector pRS426 digested by the same 

restriction enzymes. To generate the hlh-2 genomic clone (pSN292) capable of rescuing 

the lethality and transformation of the MI neuron into an e3D-like epithelial cell of 

n5053, we transformed the yeast FY2 strain with pSN291 digested with BamHI and XhoI 

and the six PCR products amplified using wild-type genomic DNA and the six pairs of 

the following primers: 5’-

GTAACGCCAGGGTTTTCCCAGTCACGACGGCAACGGAGAGCCGATGTTACGG

T-3’ and 5’-CTTCCGACCGCACATCTGGTATTGGT-3’, 5’-
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GGATCTTGCACAATTGAGCTGGGT-3’ and 5’-

GCCGAATTTGCCGAATTTGCCGT-3’, 5’-GTTGCCGTGCTTAACAAACTCGGA-3’ 

and 5’-GTTGGCTATTTGGATCCGCCATTGA-3’, 5’-

CTTCAAATGGGGTTGTCTTGACGA-3’ and 5’-

GTTGAGAAATCACAGGACCTCCA-3’, 5’-CGAGTTCGTGACATCAATTCGGCA-

3’ and 5’-GAGGCAGCCAGCTGGAATCAAATCT-3’, 5’-

CAGACAATCCTGTGGTTGTGTTGA-3’ and 5’-

CGTTAATACAGATGTAGGTGTTCCACTAGTGAGGTCCTTGACCAAAAGTGAT

CA-3’. Plasmid DNA was isolated from transformed yeast and amplified in TOP10 E. 

coli. To generate the hlh-2 genomic clone carrying a frameshift mutation (pSN300), we 

transformed the yeast FY2 strain as we did to generate pSN292 (see above), except that 

one of the PCR products corresponding to the hlh-2 coding sequence was generated by a 

two-step site-directed mutagenesis. In the first PCR amplification, two PCR products 

were obtained using the wild-type genomic DNA and the two sets of the primers: 5’-

CTTCAAATGGGGTTGTCTTGACGA-3’ and 5’-

ATCCGTTGTTTGCACTCGGAGGATACGG-3’, 5’-

GTTGAGAAATCACAGGACCTCCA-3’ and 5’-

CCGTATCCTCCGAGTGCAAACAACGGAT-3’. The resulting two PCR products were 

used for the template of the second PCR amplification using the primers 5’-

CTTCAAATGGGGTTGTCTTGACGA-3’ and 5’-

GTTGAGAAATCACAGGACCTCCA-3’. Plasmid DNA was isolated from transformed 

yeast and amplified in the TOP10 E. coli. To generate a translational ngn-1::gfp 

transgene (pSN349), we inserted a gfp coding sequence into the 3’ end of the ngn-1 
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genomic sequence. We amplified the gfp coding sequence by PCR using pPD95.75 and 

primers 5’-

TCAGAGCCCAAGCTTCCCACATCATAGCTTGCATGCCTGCAGGTCGA-3’ and 

5’-ACTTTGAACAAAAAATTGTGCTATTTGTATAGTTCATCCAT-3’. The resulting 

PCR product was used to transform the yeast FY2 strain together with pRS426 digested 

by BamHI and XhoI and the six PCR products using the wild-type genomic DNA and the 

six pairs of the following primers: 5’-

GTAACGCCAGGGTTTTCCCAGTCACGACGCGCGAAAAGACAGCTGAAACGGT

-3’ and 5’-GTTTGCGCACTTCTGGGGCTACAGT-3’, 5’-

ACCCTTAGCACCCAGTTTTTAGGCTTC-3’ and 5’-

GGCGTGGCATAGATCCATTGGTAGA-3’, 5’-

GCTCGAAATGAGCTCTGAATTTCGGCGA-3’ and 5’-

GTCGATGCACCATGTCTGTTATTGCT-3’, 5’-

CCAAACACAGTGGAGATAGGCGCTAACA-3’ and 5’-

GGGCACCACTGTGGAAAATGACTGACT-3’, 5’-

CCACCATATCTCCAGACTGGTGTTCCGGT-3’ and 5’-

AGTCGACCTGCAGGCATGCAAGCTATGATGTGGGAAGCTTGGGCTCT-3’, 5’-

GCATGGATGAACTATACAAATAGCACAATTTTTTGTTCAAAGT-3’ and 5’-

GCGGATAACAATTTCACACAGGAAACAGCCTTGGATTGGATCAACATTTGGT-

3’. Plasmid DNA was isolated from transformed yeast and amplified in TOP10 E. coli. 

To generate a translational hlh-2::gfp transgene (pSN372), a gfp coding sequence was 

inserted into the 3’ end of the hlh-2 genomic sequence. The E. coli SW102 strain 

(Warming et al. 2005) harboring the fosmid WRM0610DG01 (Source BioScience) was 
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transformed with a PCR product amplified using pGalK and primers: 5’-

AAGATGCTTGATGACAATGCACCATCCGCGCAGTTTGGACATCCACGGTTTC

CTGTTGACAATTAATCATCGGCA-3’ and 5’-

GATTGGGAATGATAGTTTGAAATGCTTAAAAAGTCAATTTTTAAATTTATCAG

CACTGTCCTGCTCCTT-3’. Transformants capable of growing on plates containing 

galactose as a whole carbon source were subsequently transformed with a PCR product 

amplified using pPD95.75 and primers: 5’-

AAGATGCTTGATGACAATGCACCATCCGCGCAGTTTGGACATCCACGGTTTA

GCTTGCATGCCTGCAGGTCGA-3’ and 5’-

AGATTGGGAATGATAGTTTGAAATGCTTAAAAAGTCAATTTTTAAATTTATTT

GTATAGTTCATCCATGCCA-3’. Transformants capable of growing on plates 

containing 2-deoxy-galactose and glycerol were selected. Plasmid DNA was prepared 

from the transformants and was verified to contain a recombined fosmid in which the gfp 

coding sequence was inserted into the 3’ end of the hlh-2 genomic sequence. To generate 

an ngn-1 RNAi construct (pSN241), we amplified the third exon of the ngn-1 gene by 

PCR using the wild-type genomic DNA and the primers 5’-

GCTCTAGACGAGACGGGTTCCTGTGGCCT-3’ and 5’-

GCTCGAGTCAATGATGTGGGAAGCT-3’. The resulting PCR product was digested 

by XbaI and XhoI and cloned into the vector pPD129.36 digested by the same restriction 

enzymes. To generate an hlh-2 RNAi construct (pSN243), we amplified the third exon of 

the hlh-2 gene by PCR using the wild-type genomic DNA and the primers 5’-

GCTCTAGAATGGTCTTGGTGGAGATACCA-3’ and 5’-

CGCAAGCTTTCTCGAGCATTATTCTGTGA-3’. The resulting PCR product was 
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digested by XbaI and HindIII and cloned into the vector pPD129.36 digested by the same 

restriction enzymes. To generate the ceh-36 genomic clone (pSN388) capable of rescuing 

the MI transformation of ceh-36(n5333) mutants, we amplified 5.7 kbp of the ceh-36 

genomic sequence by PCR using the wild-type genomic DNA and the primers 5’- 

CCTAGGATTATGGTATTCGCAGACAGT-3’ and 5’- 

GTGGTAGGGAACATTAATCCAGTGAGT-3’. The resulting PCR product was cloned 

into the pGEM-T easy vector (Promega). To generate a ceh-36 genomic clone carrying a 

frameshift mutation (pSN394), we performed site-directed mutagenesis using pSN388 

(see above) and the primers 5’- 

AGCGGTCGTCGAGCAGGTCGGCGGTGAACGTACCTCGTTCAACAGAGGA-3’ 

and 5’- 

TCCTCTGTTGAACGAGGTACGTTCACCGCCGACCTGCTCGACGACCGCT-3’. To 

generate a ceh-36 genomic clone carrying XmaI and NheI restriction enzyme sites 

(pSN398), we performed site-directed mutagenesis using pSN388 (see above) and the 

primers 5’- 

AAATATTACTGCCTACTCTCCACTTCCCGGGATGCGCTAGCTAAGTTTTGAAT

ATTCCCTTTTG-3’ and 5’- 

CAAAAGGGAATATTCAAAACTTAGCTAGCGCATCCCGGGAAGTGGAGAGTA

GGCAGTAATATTT-3’. To generate a translational ceh-36::gfp transgene (pSN402), we 

amplified a gfp coding sequence using pPD95.79 and the primers 5’- 

GGATCCCCGGGATTGGCCAAAGGA-3’ and 5’- 

CCGCTAGCGAAGTCAGAGGCACGGGCGCGAGA-3’. The resulting PCR product 
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was digested with XmaI and NheI and cloned into pSN398 (see above) digested by the 

same restriction enzymes. 
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Table 1. 

ngn-1, hlh-2 and ceh-36 mutations cause symmetry in a normally asymmetric cell lineage 

(A) ngn-1, hlh-2 and ceh-36 mutants fail to generate the MI neuron 

Genotype % animals missing MI c n 

wild-type 0 50 

ngn-1(n1921) 98 100 

ngn-1(n5020) 97 100 

ngn-1(n5052) 62 100 

ngn-1(ok2200Δ) 99 100 

hlh-2(n5053)/ + a 30 100 

hlh-2(n5287Δ)/ + a 32 100 

ceh-36(n5333) 94 100 

ceh-36(n5339) 42 d 100 

ceh-36(n5340) 91 d 100 

ceh-36(ok795Δ)b 93 82 

(B) ngn-1, hlh-2 and ceh-36 mutants generate an extra e3D-like epithelial cell 

 % animals with one or two e3D-like cells e  

Genotype one e3D-like cell two e3D-like cells n 

wild-type 100 0 50 

ngn-1(n1921) 5 95 100 

ngn-1(n5020) 9 91 100 
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ngn-1(n5052) 42 58 100 

ngn-1(ok2200Δ) 2 98 100 

hlh-2(n5053)/ + a 87 13 100 

hlh-2(n5287Δ)/ + a 85 15 100 

ceh-36(n5333) 3 97 100 

ceh-36(n5339) 51 49 100 

ceh-36(n5340) 5 95 100 

ceh-36(ok795Δ)b 4 96 98 

(C) Ablation of the MI grandmother prevents the generation of the extra e3D-like epithelial cell 

  % animals with one or two e3D-like cells e  

Genotype Cell ablated one e3D-like cell two e3D-like cells n 

wild-type None 100 0 50 

ngn-1(n1921) None 4 96 50 

wild-type ABaraappa 100 0 3 

ngn-1(n1921) ABaraappa 100 0 5 

a To score hlh-2(n5053)/+ and hlh-2(n5287Δ)/ + animals, we allowed hermaphrodites of 

genotype dpy-5(e61) + unc-13(e51)/ + hlh-2 + to self-fertilize and examined their non-Dpy 

non-Unc progeny. 

b To score ceh-36(ok795Δ) animals, we allowed hermaphrodite of genotype ceh-36(ok795Δ)/+ 

to self-fertilize and examined progeny that arrested development at the first larval stage. 

c The absence of the MI neuron was determined using an MI cell-fate marker, sams-5::gfp. All 

strains were homozygous for the sams-5::gfp reporter nIs396. The populations of animals of 
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each genotype examined in (A) were different from those examined in (B).  

d The absence of the MI neuron in these animals was determined using Nomarski microscopy.  

e The number of the e3D-like epithelial cells was determined using an e3D cell-fate marker, 

D2096.6::pes-10::gfp. All strains except for ceh-36(ok795Δ) were homozygous for the 

D2096.6::pes-10::gfp reporter nIs363. The number of the e3D-like epithelial cells in 

ceh-36(ok795Δ) mutants was determined using the D2096.6::pes-10::gfp reporter nIs362. 
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Table 2. Rescue experiments by ngn-1 and hlh-2 transgenes 

(A) Rescue of ngn-1(n1921) by ngn-1 transgenes 

Genotype  % animals missing MI a n 

wild-type 0 50 

ngn-1(n1921) 96 50 

ngn-1(n1921); nEx[ngn-1(+)] 8 50 

ngn-1(n1921); nEx[ngn-1(frameshift)] 94 50 

ngn-1(n1921); nIs[ngn-1::gfp] 4 50 

(B) Rescue of hlh-2(n5053) by hlh-2 transgenes 

Genotype  % animals missing MI a n 

wild-type 0 50 

hlh-2(n5053)/ + b 32 50 

hlh-2(n5053)/+; nEx[hlh-2(+)] b 0 50 

hlh-2(n5053)/+; nEx[hlh-2(frameshift)] b 26 50 

hlh-2(n5053)/+; nIs[hlh-2::gfp] b 0 50 

(C) Rescue of embryonic lethality in hlh-2(n5053) mutants by the hlh-2 transgenes 

Transgene present in the parent of  

dpy-5(e61) hlh-2(n5053) unc-13(e51)/ +++  

% Dpy Unc progeny c n 

no transgene 0 647 

nEx[hlh-2(+)] 12 348 

nEx[hlh-2(frameshift)] 0 313 
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nIs[hlh-2::gfp] 18 296 

a The presence or absence of the MI neuron was determined using Nomarski microscopy.  

b We allowed hermaphrodites of genotype dpy-5(e61) + + unc-55(e1170) / + 

hlh-2(n5053) unc-13(e51) + with or without each transgene to self-fertilize and examined 

their Non-Dpy non-Unc progeny. 

c We allowed hermaphrodites of genotype dpy-5(e61) hlh-2(n5053) unc-13(e51)/ +++ 

with or without each transgene to self-fertilize and determined the fraction of Dpy Unc 

progeny. 
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Table 3. RNA interference of ngn-1 and hlh-2 cause symmetry in a normally asymmetric 

cell lineage  

Genotype a % animals missing MI b n 

vector(RNAi) 0 50 

hlh-2(RNAi) 62 100 

eri-1(mg366); vector(RNAi) 0 50 

eri-1(mg366); ngn-1(RNAi) 92 100 

a The wild-type or eri-1(mg366) strain was grown on bacteria expressing the double-

stranded RNA, and the presence or absence of the MI neuron in their progeny was scored 

using Nomarski microscopy. 

b The presence or absence of the MI neuron was determined using Nomarski microscopy. 
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Table 4. Rescue experiments demonstrating that ceh-36 is required to break left-right 

symmetry in the cell lineage 

Genotype  % animals missing MI a n 

wild-type 0 50 

ceh-36(n5333) 96 50 

ceh-36(n5333); nEx[ceh-36(+)] 4 50 

ceh-36(n5333); nEx[ceh-36(frameshift)] 96 50 

ceh-36(n5333); nIs[ceh-36::gfp] 4 50 

a The presence or absence of the MI neuron was determined using Nomarski microscopy. 
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Table 5. Candidate-gene approaches did not identify genes required to establish the 

bilateral asymmetry in the ABaraap cell lineage 

(A) Mutations affecting the ASE bilateral asymmetry do not affect the MI-e3D 

asymmetry 

Genotype  % MI or e3D absent a n 

wild-type 0 50 

cog-1(ot28) 0 50 

lim-6(nr2073) 0 50 

lin-49(sa470) 0 50 

lsy-6(ot71) 0 50 

(B) Mutations affecting the AWC bilateral asymmetry do not affect the MI-e3D 

asymmetry 

Genotype % MI or e3D absent a n 

wild-type 0 50 

inx-19(ky634) 0 50 

nsy-4(ky616) 0 50 

unc-43(n498 n1186) 0 50 

unc-43(n498sd) 0 50 

(C) Mutations in lin-12, glp-1 and pop-1 do not affect the MI-e3D bilateral asymmetry 

Genotype % MI or e3D absent a n 

wild-type 0 50 



 100 

lin-12(n137sd) 0 50 

lin-12(n941)b 0 30 

pop-1(q645)b 0 30 

glp-1(e2141) 0 30 

a The presence or absence of MI and e3D was determined using Nomarski microscopy. 

b To score these animals, we allowed hermaphrodites of genotype pop-1/hT2[qIs48] and 

lin-12/hT2[qIs48] to self-fertilize and examined their myo-2::gfp-negative progeny.  
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Table 6.  ngn-1 is not required for the general cell-fate specification of the ASE neurons 

 % animals with zero, one or two ASEs expressing 

flp-6::gfp  

 

Genotype a zero ASE one ASE two ASEs n 

wild-type 0 0 100 30 

ngn-1(ok2200Δ) 0 0 100 30 

a All strains were homozygous for the flp-6::gfp reporter ynIs67. 
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Table 7.  ngn-1 is required for the general cell-fate specification of the AWC neurons 

 % animals with zero, one or two AWCs expressing 

odr-1::dsRed  

 

Genotype a zero AWC one AWC two AWCs n 

wild-type 0 0 100 50 

ngn-1(ok2200Δ) 5 44 46 50 

ngn-1(ok2200Δ); nEx[ngn-1(+)] 0 2 98 50 

a All strains were homozygous for the odr-1::dsRed reporter kyIs258. 
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Figures  

 
Figure 1. The MI Neuron Is Generated from a Left-right Asymmetric Cell Lineage. 

(A) In the wild type, left-right asymmetry in the ABaraap cell lineage is seen in the 

different cell fates of the MI neuron and the e3D epithelial cell. (B) In ngn-1, hlh-2 and 

ceh-36 mutants, left-right asymmetry in the cell lineage is lost as a result of the cell-fate 

transformation of the presumptive MI neuron into an e3D-like cell. (C, D) The predicted 

ABaraap cell lineages of (C) the wild type and (D) n1921 mutants after laser ablation of 

the grandmother cell of the MI neuron, ABaraappa. X in red indicates the cell killing of 

ABaraappa by laser microsurgery.  
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Figure 2. ngn-1(n1921), hlh-2(n5053) and ceh-36(n5333) Cause Transformation of 

the MI Neuron into an e3D-like Epithelial Cell. (A) Nomarski image of a region of the 

anterior wild-type pharynx. The wild-type pharynx contains the MI neuron (arrow) and 

the e3D epithelial cell (arrowhead). The nucleus of the MI neuron is small and granular, 

while that of the e3D epithelial cell is larger, oval in shape, and has a distinct nucleolus. 

(B-D) Nomarski image of a region of anterior (B) ngn-1(n1921), (C) hlh-2(n5053) and 

(D) ceh-36(n5333) pharynges. The pharynx in these mutants lacks the MI neuron (dotted 

arrow) and contains two e3D-like epithelial cells (arrowheads). (E) sams-5::gfp reporter 

expression in the wild type. The sams-5::gfp reporter is expressed in the MI neuron 

(arrow). (F-H) sams-5::gfp reporter expression in (F) ngn-1(n1921), (G) hlh-2(n5053) 

and (H) ceh-36(n5333) mutants. The sams-5::gfp reporter failed to be expressed in the 

pharynx of these mutants. (I) D2096.6::pes-10::gfp reporter expression in the wild type. 

The D2096.6::pes-10::gfp reporter was expressed in the e3D epithelial cell (arrowhead). 

(J-L) D2096.6::pes-10::gfp reporter expression in (J) ngn-1(n1921), (K) hlh-2(n5053) 

and (L) ceh-36(n5333) mutants. The D2096.6::pes-10::gfp reporter was expressed in the 

e3D epithelial cell and the extra e3D-like epithelial cell (arrowheads). Scale bar, 5 µm.  
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Figure 3. NGN-1 is a bHLH Protein of the Neurogenin Subfamily. Alignment of the 

bHLH domain of the predicted NGN-1 protein (accession no. NP_500236) with its 

Xenopus tropicalis homolog neurog 1 (accession no. NP_001116895), Danio rerio 

homolog Neurog 1 (accession no. NP_571116), and Mus musculus homolog NEUROG 3 

(accession no. NP_033849). Black and gray boxes indicate residues identical and similar 

among the four proteins, respectively. 
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Figure 4. NGN-1 Binds to HLH-2 and Acts Cell-Autonomously. (A) Gene structure of 

ngn-1 and mutations associated with each mutant are shown. The black boxes indicate 

exons, and white boxes untranslated regions. (B) Gene structure of hlh-2 and mutations 

associated with hlh-2 mutants are shown. The black boxes indicate exons, and white 

boxes untranslated regions. (C) In vitro pull-down experiments between hexa-histidine-

tagged NGN-1 (His-NGN-1) and HLH-2. Proteins included in each reaction are 

indicated. The amounts of HLH-2 protein (left panel) and MBP protein (right panel) in 

the initial reaction mixture (10% input) and in the bound fraction (Pull down) after 

extensive washing was determined by western blot analyses. The numbers indicate the 

positions of molecular weight markers. (D) Mosaic analysis of ngn-1. Mosaic animals 

were grouped into four classes based on cell fates and the presence of the 

extrachromosomal array in ABaraappaaa (see text). The number of mosaic animals in 

each class is indicated. (E) Determination of the site of the extrachromosomal array loss 

in each of the 36 Class IV animals with an e3D-like ABaraappaaa cell lacking the array. 

A portion of the cell lineage showing the origin of ABaraappaaa is shown. The numbers 

represent the fraction of Class IV animals in which the extrachromosomal array was lost 

at the corresponding cell division. 
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Figure 5. The deletion-insertion Mutation Associated with ngn-1(n5052). The gene 

structures of ngn-1 and mdf-2 are shown. The black boxes indicate exons, the white boxes 

untranslated regions. The DNA sequences of the wild-type and ngn-1(n5052) strains are 

aligned. Uppercase letters correspond to the DNA sequence present in both strains 

(indicated by the asterisks) and lowercase letters to the DNA sequence associated with 

the deletion-insertion mutation.  



TTTCAACAACAAAAACCtcttgactctcaagtgctccggcaaccgccctatgatgacgcaatagACATTATAC
*****************                                               *********
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Figure 6. Expression of ngn-1 and hlh-2 Is Left-right Asymmetric. (A) Nomarski 

image of a wild-type embryo carrying ngn-1::gfp. (B) Fluorescence image of the same 

embryo. (C) Merged image of (A) and (B). (D) Nomarski image of a ceh-36(n5333) 

mutant embryo carrying ngn-1::gfp. (E) Fluorescence image of the same embryo. (F) 

Merged image of (D) and (E).  (G) Nomarski image of a wild-type embryo carrying 

hlh-2::gfp. (H) Fluorescence image of the same embryo. (I) Merged image of (G) and 

(H). (J) Nomarski image of a ceh-36(n5333) embryo carrying hlh-2::gfp. (K) 

Fluorescence image of the same embryo. (L) Merged image of (J) and (K). The arrows 

indicate the MI mother cell, ABaraappaa, and the arrowheads the e3D mother cell, 

ABaraapaaa. Anterior is to the left, ventral to the top. Scale bar, 5 µm. 
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Figure 7. ceh-36 Acts Cell-Autonomously to Establish a Bilateral Asymmetry. (A) 

Gene structure of ceh-36 and mutations associated with each mutant are shown. The 

black boxes indicate exons, and white boxes untranslated regions. (B) Mosaic analysis of 

ceh-36. Mosaic animals were grouped into four classes based on cell fates and the 

presence of the extrachromosomal array in ABaraappaaa (see text). The number of 

mosaic animals in each class is indicated. (C) Determination of the site of the 

extrachromosomal array loss in each of the 28 Class IV animals with an e3D-like 

ABaraappaaa cell lacking the array. A portion of the cell lineage showing the origin of 

ABaraappaaa is shown. The numbers represent the fraction of the Class IV animals in 

which the extrachromosomal array was lost at the corresponding cell division. (D) Cell 

lineage diagram indicates the sites of actions of ceh-36 and ngn-1. The wild-type ceh-36 

gene in the MI great grandmother cell (ABaraapp) is necessary and sufficient to rescue 

the MI transformation of ceh-36(n5333) mutants. The wild-type ngn-1 gene in the MI 

grandmother cell (ABaraappa) is necessary and sufficient to rescue the MI transformation 

of ngn-1(n1921) mutants. 
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Figure 8. Expression of ceh-36 Is Left-Right Asymmetric. (A-C) Expression of ceh-36 

at the stage of the MI grandmother cell. (A) Nomarski image of an embryo carrying 

ceh-36::gfp. (B) Fluorescence image of the same embryo. (C) Merged image of (A) and 

(B). The arrows indicate the MI grandmother cell, ABaraappa, and the arrowheads the 

e3D grandmother cell, ABaraapaa. (D-E) Expression of ceh-36 at the stage of the MI 

mother cell. (D) Nomarski image of an embryo carrying ceh-36::gfp. (E) Fluorescence 

image of the same embryo. (F) Merged image of (D) and (E). The arrows indicate the MI 

mother cell, ABaraappaa, and the arrowheads the e3D mother cell, ABaraapaaa. Anterior 

is to the left, ventral to the top. Scale bar, 5 µm. (F) A model for the establishment of the 

left-right asymmetric cell lineage. The ellipses represent proteins. The solid and dotted 

arrows in red indicate the presence and absence of transcriptional induction, respectively. 

“Target” represents a locus induced by a heterodimer of NGN-1 and HLH-2. 
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Chapter III

Histone H3 mutations and loss of the CAF-1 complex eliminate

a C. elegans neuronal bilateral asymmetry

Shunji Nakano and H. Robert Horvitz



120

Abstract

Replication-dependent histone H3 proteins are deposited onto replicating DNA by

chromatin assembly factor 1 (CAF-1) 1-4. Genetic analysis of histone functions in

multicellular organisms has been challenging because of the high copy number of

histone genes. Here we report the first isolation of a mutant allele of a histone H3

gene in a multi-cellular organism recovered from genetic screens. This mutation is

an allele of a C. elegans replication-dependent histone H3 gene, his-9, and causes the

loss of a single left-right unpaired MI neuron. The MI neuron normally is generated

from the right side of an otherwise left-right symmetric cell lineage that on the left

generates the e3D epithelial cell 5. We show that the absence of the MI neuron in

his-9 mutants results from left-right symmetry in this normally asymmetric cell

lineage, with the MI neuron transformed into an e3D-like epithelial cell. This

mutant allele of his-9 causes an altered-function activity that is predicted to impair

the interaction of the mutant HIS-9 proteins with another histone H3 molecule and

inhibit the formation of a histone H3-H4 tetramer. We further show that the C.

elegans CAF-1 complex is required to establish the bilateral asymmetry in this cell

lineage and propose that CAF-1-mediated nucleosome formation is compromised in

animals carrying a his-9 gain-of-function mutation. Our results indicate a novel

mechanism of establishment of a neuroanatomical bilateral asymmetry by CAF-1-

mediated nucleosome assembly and implicate a new therapeutic strategy for

treatment of diseases that result from abnormal chromatin regulation, including

cancers.
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Results and Discussion

Anatomical and functional bilateral asymmetries of the brain are widespread features of

humans and other animals and are thought to be important for behavior and cognitive

functions 6. Molecular mechanisms that establish brain bilateral asymmetry remain

largely elusive. Although mostly bilaterally symmetric, the C. elegans nervous system

displays a variety of bilateral asymmetries 7. For example, the MI motor neuron is a

single left-right unpaired neuron located in the pharynx 8. The MI neuron is generated

from an invariant left-right asymmetric cell lineage 5 in which the blastomere ABaraap

divides and generates two daughter cells, ABaraapa and ABaraapp, that give rise to

identical sets of left-right paired cells, except for two cells, the left-right unpaired MI

neuron on the right side of the cell lineage and the e3D pharyngeal epithelial cell on the

left (Fig. 1a).

To elucidate the mechanism that establishes the left-right asymmetry in this cell

lineage, we performed genetic screens using an e3D cell-fate reporter,

D2096.6::pes-10::gfp (see Chapter II), and looked for mutants in which an extra e3D-like

cell was present or e3D was absent (see Chapter IV). Among the isolates we recovered

was the mutation, n5357, which caused the presence of an extra e3D-like cell (Fig. 1b).

We introduced an MI cell-fate reporter, sams-5::gfp (see Chapter II), into n5357 mutants

and observed that MI was missing in n5357 animals (Fig. 1b), indicating that MI is

transformed into an e3D-like cell, resulting in left-right symmetry in this normally

asymmetric cell lineage (Fig. 1a). n5357 causes a cold-sensitive and semi-dominant

phenotype (Fig. 1c). To ask whether n5357 is a gain- or loss-of-function mutation, we

performed a gene-dosage study. We found that the presence of a free duplication
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chromosome covering the n5357 region neither enhanced or suppressed the MI

transformation caused by n5357 (Fig. 1d, and see Methods for details), indicating that

n5357 is a gain-of-function mutation and is likely an altered-function mutation.

We mapped n5357 to a 55 kb interval of chromosome II (Fig. 2a). This region

contains a cluster of 13 predicted histone genes. We performed DNA sequence analysis

of n5357 and identified a mutation in the gene his-9, which encodes a histone H3 protein

9. The amino acid sequence of HIS-9 protein displays higher identity to those of the

human replication-dependent histones H3.1 and H3.2 than to that of the replication-

independent histone H3.3 (Fig. 3). The C. elegans genome contains 13 other replication-

dependent histone H3 genes that encode proteins with amino acid sequences identical to

that of HIS-9 protein. n5357 animals carry a transition mutation that is predicted to alter

the glutamine 125 codon to an ochre stop codon (Fig. 2a). To test whether this DNA

lesion is responsible for MI transformation in n5357 animals, we generated genomic

clones carrying the wild-type his-9(+) or a mutant his-9(Q125ochre) gene and three wild-

type histone genes (his-10, his-11 and his-12) located 5’ upstream of his-9 (Fig. 2b).

Because our gene dosage study indicated that n5357 is an altered-function mutation, we

tested whether introduction of the his-9(Q125ochre) clone into wild-type animals causes

MI transformation. We observed that wild-type animals transformed with the

his-9(Q125ochre) clone displayed MI transformation (Fig. 2b). By contrast, wild-type

animals carrying the wild-type his-9(+) clone did not show MI transformation (Fig. 2b),

indicating that the transition mutation we identified in n5357 animals is responsible for

MI transformation. To test whether this mutation alters the activity of the HIS-9 protein

rather than that of HIS-10, HIS-11 or HIS-12 protein, we introduced a frameshift
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mutation into the his-9 locus of the his-9(Q125ochre) clone and found that this genomic

clone, his-9(f.s.Q125ochre), did not cause MI transformation (Fig. 2b). We conclude that

n5357 is an allele of his-9 that causes symmetry in this normally left-right asymmetric

cell lineage.

Previous crystal-structure analysis of the nucleosome core particle identified the

histone H3 amino acid residues that mediate the interactions between two histone H3s

and between histones H3 and H4 10 (Fig. 4a). The his-9(Q125ochre) mutation is predicted

to eliminate two residues, leucine 126 and isoleucine 130, that are engaged in the H3-H3

interaction. To elucidate the cause of his-9 gain-of-function activity, we introduced into

wild-type animals his-9 genomic clones in which the his-9 coding sequences were

truncated at the glutamine 125 codon (ΔQ125-A135), the arginine 116 codon (ΔR116-

A135), the aspartic acid 106 codon (ΔD106-A135) and the leucine 92 codon (ΔL92-A135)

(Fig. 4b). We observed that the his-9(ΔQ125-A135), his-9(ΔR116-A135) and

his-9(ΔD106-A135) clones, all of which eliminate HIS-9 residues important for the H3-

H3 interaction, caused MI transformation (Fig. 4b). By contrast, the his-9(ΔL92-A135)

clone, which is predicted to lack residues involved in both the H3-H3 and H3-H4

interactions, did not cause MI transformation (Fig. 4b). These results suggest that a

mutant HIS-9 protein that is unable to interact with another H3 protein but retains its

interaction with an H4 protein results in an altered-function activity.

An interaction between two histone H3 proteins is important for the formation of

the histone H3-H4 heterotetramer, and this interaction is mediated in part by a hydrogen

bond between histidine 113 of one histone H3 protein and aspartic acid 123 of another

histone H3 molecule 10. To test whether the lack of histone H3-H3 interaction sites results
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in an altered-function activity of his-9, we generated mutant his-9 genomic clones in

which the histidine 113 codon or the aspartic acid 123 codon was altered to an aspartic

acid codon (H113D) or a histidine codon (D123H), respectively (Fig. 4b). We introduced

each mutant his-9 clone into wild-type animals and observed that both his-9(H113D) and

his-9(D123H) clones caused MI transformation (Fig. 4b). By contrast, the wild-type

his-9(+) clone did not cause MI transformation (Fig. 4b). These results strongly suggest

that mutant HIS-9 proteins unable to form a histone H3-H4 heterotetramer through

interaction with another histone H3 protein display an altered-function activity and cause

left-right symmetry in this normally asymmetric cell lineage.

We previously showed that the establishment of the bilateral asymmetry in this

cell lineage requires asymmetric expression of a transcriptional cascade in which the Otx

homeodomain protein CEH-36 is expressed in the MI grandmother cell but not in the e3D

grandmother cell, and that CEH-36 promotes asymmetric expression of two proneural

bHLH proteins, NGN-1 and HLH-2, in the MI mother cell but not in the e3D mother cell

(see Chapter II). We therefore examined the expression of CEH-36, NGN-1 and HLH-2

in animals carrying the his-9(H113D) transgene. We found that expression of these

proteins remained left-right asymmetric (data not shown), indicating that the altered-

function his-9 activity affects a process downstream of or in parallel to the left-right

asymmetric expression of CEH-36, NGN-1 and HLH-2.

Biochemical studies have revealed that human CAF-1 mediates the incorporation

of histones H3-H4 into nucleosomes 2. CAF-1 preferentially binds to a histone H3-H4

heterodimer that contains the replication-dependent histone H3.1 rather than the

replication-independent histone H3.3 3. CAF-1 is composed of three subunits, p150, p60
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and p48 11,12. The C. elegans genome encodes proteins homologous to these factors,

including the p150 homolog T06D10.2 13, the p60 homolog Y71G12B.1 13 and the p48

homologs LIN-53 14 and RBA-1 15. We observed that inactivation of T06D10.2,

Y71G12b.1 and rba-1 but not of lin-53 by RNA interference (RNAi) caused the MI

transformation phenotype (Figs. 5a, b; data for lin-53 not shown); in addition, RNAi

treatment of all of these genes caused incompletely penetrant embryonic lethality (data

not shown). Furthermore, we isolated a deletion allele of rba-1, rba-1(n5418Δ), that

eliminates the entire coding sequence of rba-1 (Fig. 5c), thus presumably defining a null

allele of rba-1. We examined rba-1(n5418Δ) mutants and another deletion mutants,

rba-1(tm3122Δ) (Fig. 5c; tm3122Δ was provided by S. Mitani, personal communication),

and observed that both deletion mutants displayed maternal-effect embryonic lethality:

rba-1(n5418Δ) and rba-1(tm3122Δ) deletion homozygous animals derived from their

respective heterozygous mothers did not show MI transformation (Fig. 5d). These

observations suggested that the MI transformation defect in the rba-1 mutants might be

maternally rescued. To test whether rba-1 is required to specify the MI neuronal fate, we

asked whether the zygotic loss of rba-1 activity enhances the MI transformation defect in

a sensitized background. We observed that both rba-1(n5418Δ) and rba-1(tm3122Δ)

mutations enhanced the MI transformation defect of his-9(n5357) mutants (Fig. 5d).

These results indicate that the C. elegans CAF-1 complex is required to establish the

bilateral asymmetry in this cell lineage.

Although biochemical studies have been performed to elucidate the mechanism of

CAF-1-mediated nucleosome formation 3,16-18, the role of CAF-1 in the development of

multicellular organisms remains largely unknown. Our results indicate that in C. elegans
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the CAF-1 complex is required to establish the bilateral asymmetry in a specific cell

lineage and thus suggest a novel mechanism of establishment of a neuronal bilateral

asymmetry by CAF-1-dependent nucleosome formation. We propose that CAF-1-

mediated nucleosome formation is compromised in animals carrying a his-9 gain-of-

function mutation that disrupts the formation of the histone H3-H4 heterotetramer.

Specifically, we hypothesize that a mutant HIS-9 protein forms a heterodimer with a

histone H4 protein and that this mutant HIS-9-H4 heterodimer binds to CAF-1. CAF-1

bound by a mutant HIS-9-H4 heterodimer cannot complete the deposition of a histone

H3-H4 heterotetramer because of the lack of an interaction between the mutant HIS-9

protein and another histone H3 molecule (Fig. 6).   

Abnormality in chromatin regulation is thought to cause numerous human

diseases, including cancers 19. In some cases, aberrant patterns of histone H3 methylation

are thought to cause inappropriately high expression of an oncogene(s) 20-22 and

abnormally low expression of a tumour-suppressor gene(s) 23-25. Given our observation

that expression of mutant histone H3 proteins recapitulated the loss-of-function

phenotype of CAF-1 and a previous report that depletion of p60 induced cell death in

proliferating but not in quiescent human cells 26, introduction of these mutant histone H3

proteins into cells with abnormal chromatin regulation might be of therapeutic benefits

for the treatment of such diseases.
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Methods

C. elegans strains

C. elegans strains were cultured as previously described 27. N2 (Bristol) was the wild-type

strain. All strains were cultured at 20 °C unless otherwise indicated. The following

extrachromosomal arrays, integrants, duplication chromosomes and mutations were used

and have been described 28, except those from this study or otherwise indicated:

LGI: rba-1(n5418Δ, tm3122Δ) (this study; tm3122Δ was provided by Shohei Mitani),

nIs450[his-9(H114D), unc-76(+), unc-25::mStrawberry] (this study).

LGII: rrf-3(pk1426) 29, rol-1(e91), his-9(n5357) (this study) unc-52(e444),

nIs447[his-9(+), unc-76(+), tph-1::mStrawberry] (this study).

LGIII: nIs394[ngn-1::gfp, lin-15AB(+)] (Chapter II).

LGIV: nIs407[hlh-2::gfp, lin-15AB(+)] (Chapter II), nIs451[his-9(H114D), unc-76(+),

unc-25::mStrawberry] (this study).

LGV: nIs396[sams-5::gfp, lin-15AB(+)] (Chapter II).

LGX: nIs445[ceh-36::gfp, lin-15AB(+)] (Chapter II), nIs363[D2096.6::pes-10::gfp,

lin-15AB(+)] (Chapter II).

Free duplications and extrachromosomal arrays: mnDp34(II;f) 30, nEx1708[his-9(+),

unc-76(+), tph-1::mStrawberry], nEx1709[his-9(Q125ochre), unc-76(+),

tph-1::mStrawberry], nEx1711[his-9(H113D), unc-76(+), unc-25::mStrawberry],

nEx1712[his-9(D123H), unc-76(+), sre-1::mStrawberry], nEx1713[his-9(f.s.

Q125ochre), unc-76(+), tph-1::mStrawberry], nEx1723[his-9(ΔR116-A135), unc-76(+),
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tph-1::mStrawberry], nEx1724[his-9(ΔD106-A135), unc-76(+), tph-1::mStrawberry],

nEx1725[his-9(ΔL92-A135), unc-76(+), tph-1::mStrawberry] (this study).

Isolation of n5357

We mutagenized wild-type animals carrying the D2096.6::pes-10::gfp reporter with ethyl

methanesulfonate (EMS), and F3 progeny were observed using a fluorescence-equipped

dissecting microscope. his-9(n5357) was isolated as an animal that contained an extra cell

expressing the D2096.6::pes-10::gfp reporter.

Gene-dosage study of n5357

We allowed hermaphrodites of genotype rol-1(e91) n5357 unc-52(e444); nIs363;

mnDp34 to self-fertilize at 15 °C and determined the MI transformation defect of their

Rol Unc and non-Rol non-Unc progeny at 15 °C. We noted that the MI transformation

defect in these Rol Unc (rol-1 n5357 unc-52/rol-1 n5357 unc-52) animals was less severe

than that of animals of genotype n5357/n5357. We found that this difference in the

penetrance of the MI transformation defects was caused by the presence of a mutation(s)

that partially suppresses MI transformation and is derived from strains carrying

unc-52(e444). We did not further study this suppressor activity.

Mapping of n5357

We crossed rol-1(e91) n5357 unc-52(e444) animals with the wild-type polymorphic

strain CB4856 and isolated F2 Rol non-Unc progeny, determined the presence or absence
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of n5357 and identified crossover sites, essentially as described 31. We mapped n5357 to a

55 kb interval between nucleotides 13781415 and 13837046 of LGII.

RNAi experiments

We performed RNAi of rba-1 by growing wild-type animals on E. coli HT115(DE3)

harboring the rba-1 RNAi construct (Open Biosystems) and RNAi of T06D10.2 and

Y71G12B.1 by growing RNAi-sensitive rrf-3(pk1426) animals on E. coli HT115(DE3)

harboring the T06D10.2 (pSN411) and Y71G12B.1 (pSN392) RNAi construct,

respectively. The MI transformation defect in the progeny of these animals was

determined using the D2096.6::pes-10::gfp reporter.

Isolation of rba-1(n5418Δ)

Genomic DNA pools from EMS-mutagenized animals were screened by PCR for

deletion alleles of rba-1, essentially as described 32.  rba-1(n5418Δ) was isolated and

backcrossed to the wild-type N2 strain four times. The rba-1(n5418Δ) allele removes

sequence between nucleotides 35977 and 37677 of cosmid K07A1.

Molecular biology

To create the genomic his-9(+) clone, we amplified 3.8 kb of the his-9 genomic sequence

by PCR using the wild-type genomic DNA and the primers 5’-

CCAACAAGTGCCAAATTCACTGCTATTGCA-3’ and 5’-

GTGATAATATCCCATGTAAATCAACGT-3’. The resulting PCR product was cloned

into the pGEM-T easy vector (Promega). To create mutant his-9 clones, we performed
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site-directed mutagenesis using the wild-type his-9 genomic clone as a template. We

generated a frameshift construct by inserting a single thymine base after the threonine 3

codon of his-9. The codon changes we used were as follows: CAT-to-GAC(H113D) and

GAC-to-CAT(D123H). To create the mStrawberry expression vectors pSN198 and

pSN199, we cloned the mStrawberry coding sequence 33 into the AgeI and EcoRI sites of

the vector pPD95.75 and pPD122.56, respectively. To create unc-25::mStrawberry, we

amplified 1.8 kb of the unc-25 genomic sequence by PCR using the wild-type genomic

DNA and the primers 5’-CGAATTTTTGCATGCAAAAAACACCCACTTTTTGATC-

3’ and 5’-CGGGATCCTCGAGCACAGCATCACTTTCGTCAGCAGC-3’. The

resulting PCR product was digested with BamHI and SphI and cloned into the vector

pSN198 digested with the same restriction enzymes. To create sre-1::mStrawberry, we

amplified 4.0 kb of the sre-1 genomic sequence by PCR using the wild-type genomic

DNA and the primers 5’-GCAAGCTTCATGAATATGTACCTATCACGA-3’ and 5’-

CAGGCATGCAACGGCGAGTATTGTAAATTCA-3’. The resulting PCR product was

digested with HindIII and SphI and cloned into the vector pSN198 digested with the same

restriction enzymes. To create tph-1::mStrawberry, we amplified 1.7 kb of the tph-1

genomic sequence by PCR using the wild-type genomic DNA and the primers 5’-

GCGCATGCTTCTCGCGAATTGCGGCCGACA-3’ and 5’-

GCGGATCCGAGCTGAAAGTACAGAAATTACTGA-3’. The resulting PCR product

was digested with BamHI and SphI and cloned into the vector pSN199 digested with the

same restriction enzymes. To generate the RNAi construct of T06D10.2 (pSN411), we

amplified the T06D10.2 genomic sequence by PCR using the wild-type genomic DNA

and the primers 5’- GTCTAGATGGATGAATCTCATGTTACCGA-3’ and 5’-
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CCTCGAGTTAGTAGAACTTGACTGCAATCA-3’. The resulting PCR product was

digested with XbaI and XhoI and cloned into the vector pPD129.36 digested with the

same restriction enzymes. To generate the RNAi construct of Y71G12B.1 (pSN392), we

amplified the Y71G12B.1 genomic sequence by PCR using the wild-type genomic DNA

and the primers 5’-GTCTAGAAAACGTCTATTCGTCGCCAGCA-3’ and 5’-

GCTCGAGTAGGTTCCATATAAATCCGACGA-3’. The resulting PCR product was

digested with XbaI and XhoI and cloned into the vector pPD129.36 digested with the

same restriction enzymes.

Germline transformation experiments

Germline transformation experiments were performed as described 34. To generate

animals carrying the his-9 genomic constructs, we injected each his-9 genomic clone into

unc-76(e911) mutants at 1 ng/µl together with 20 ng/µl of p76-16B, an unc-76 rescuing

plasmid 35, and 40 ng/ul of tph-1::mStrawberry, sre-1::mStrawberry or

unc-25::mStrawberry.
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Figures

Figure 1. n5357 causes symmetry in a normally left-right asymmetric cell lineage. a,

The ABaraap cell lineages in the wild type and n5357 mutants. b, Expression of the

D2096.6::pes-10::gfp and sams-5::gfp reporters in a wild type and an n5357 animal.

D2096.6::pes-10::gfp reporter was expressed in e3D of the wild type and in e3D and the

extra e3D-like cell of the n5357 mutant (arrowheads). The sams-5::gfp reporter was

expressed in MI of the wild type (arrow) and was not expressed in the n5357 mutant.

Scale bar, 5 µm. c, d, Percentage of animals showing the MI transformation defect. The

MI transformation defects in (d) were determined at 15 °C. We noted that the MI

transformation defect of n5357/n5357 animals in (d) was less severe than that of

n5357/n5357 animals in (c) and found that this difference was caused by a background

mutation(s) present in n5357/n5357 strain used in (d)  (See Methods for details).
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Figure 2. n5357 is an allele of his-9. a, A physical map of the n5357 region and the

location of a mutation in the his-9 locus of n5357 animals are shown. The numbers

indicate the chromosome coordinates to which the n5357 mutation was mapped. b,

Germline transformation experiments using genomic his-9 clones. The structure of each

genomic clone and the percentage of animals showing the MI transformation defect at 15

°C are shown.
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Figure 3. Alignment of amino acid sequences of HIS-9 protein and human histone

H3 proteins. Alignment of the predicted HIS-9 protein (accession no. NP_496894) with

Homo sapiens histones H3.1 (accession no. NP_003520), H3.2 (accession no.

NP_066403) and H3.3 (accession no. NP_002098). Black boxes indicate residues

identical among three or more of the four proteins. The site of the n5357 mutation is

shown.
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Figure 4. Mutations altering the C-terminus of HIS-9 cause MI transformation. a,

Genomic region present in his-9 clones, the amino acid sequence of HIS-9 and the site of

the n5357 mutation are shown. Residues in blue and red are involved in interaction with

histones H4 and H3, respectively. b, The predicted HIS-9 amino acid sequence of each

genomic clone and percentages of animals showing the MI transformation defect are

shown. Residues substituted by mutagenesis are shown in green.
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Figure 5. The CAF-1 complex is required to establish the MI-e3D bilateral

asymmetry. a, Expression of the D2096.6::pes-10::gfp and sams-5::gfp reporters in

progeny of animals grown on bacteria expressing double-strand RNA of control (vector)

or genes encoding each member of the CAF-1 complex. The arrowheads indicate e3D

and the extra e3D-like cell, and the arrow indicates MI. Scale bar, 5 µm. b, Percentage of

animals showing the MI transformation defect. c, Gene structure of rba-1 and deletion

mutations in each mutant are shown. Black boxes indicate exons, and white box an

intron. d, Percentage of animals showing the MI transformation defect. Each set of rba-1

deletion homozygotes was derived from their respective heterozygous mothers.
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Figure 6. Model for inhibition of CAF-1-mediated nucleosome assembly by mutant

HIS-9 proteins. In wild type, each CAF-1 complex binds to a histone H3-H4

heterodimer and mediate the deposition of the histone H3-H4 heterotetramer onto a locus

required to promote generation of the MI neuron. In his-9(gf) mutants, a mutant HIS-9

protein binds to a histone H4 protein to form a mutant HIS-9-H4 heterodimer. CAF-1

bound by a mutant HIS-9-H4 heterodimer cannot complete the deposition of a histone

H3-H4 heterotetramer onto a locus required to promote generation of the MI neuron,

leading to transformation of MI into an e3D-like cell. See texts for details.
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Chapter IV

Chromatin-Remodeling Factors Are Required to Establish a Bilateral Asymmetry

of the C. elegans Nervous System

Shunji Nakano and H. Robert Horvitz
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 Introduction

Histone proteins are subject to various post-translational modifications, including

phosphorylation, ubiquitination, acetylation and methylation (Kouzarides 2007). The

methylation of lysine residues on histone amino-terminal tails is associated with a variety

of biological processes, including transcriptional regulation. In particular, the

trimethylation of histone H3 lysine 27 (H3K27me3) is associated with transcriptionally

repressed loci, while the trimethylation of histone H3 lysine 4 (H3K4me3) is often found

at transcriptionally active loci (Sims et al. 2003).

Numerous enzymes that catalyze the methylation or demethylation of specific

histone H3 residues have been identified. Many SET-domain containing proteins have

been shown to catalyze the methylation of histones. For example, the Drosophila E(Z)

protein and its mammalian homolog EZH2 protein are histone methyltransferases

(HMTs) specific for H3K27 (Cao et al. 2002; Muller et al. 2002), while the mammalian

MLL proteins catalyze the methylation of H3K4 (Milne et al. 2002; Nakamura et al.

2002). Recent studies identified JmjC-domain containing proteins that demethylate lysine

residues of histones. For example, the mammalian UTX protein is a histone demethylase

(HDM) specific for H3K27 (Agger et al. 2007; Lan et al. 2007; Lee et al. 2007), whereas

RBP2, also referred to as JARID1A, catalyzes the demethylation of H3K4 (Christensen et

al. 2007).

Recently, some promoters in mammalian embryonic stem cells have been

observed to carry both H3K4me3 and H3K27me3 (Bernstein et al. 2006; Mikkelsen et al.

2007). The chromatin domain with this combination of methylation marks was termed a

“bivalent” domain and was proposed to serve to poise key developmental genes for
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lineage-specific activation or repression upon differentiation. A study of zebrafish also

provides evidence that the bivalent domain exists in vivo (Vastenhouw et al. 2010). In

addition to these observations, it has been found that UTX physically interacts with the

MLL complex and that this complex catalyzes the methylation of H3K4 and

demethylation of H3K27 (Lee et al. 2007). Likewise, RBP2 was found to bind to the

EZH2-containing PRC2 complex (Pasini et al. 2008). These findings raised the

hypothesis that these complexes, by catalyzing the methylation and demethylation of

H3K4 and H3K27, modify the bivalent marks in embryonic stem cells to resolve to active

monovalent H3K4me3 and repressive H3K27me3 marks upon the commitment to cell

lineages.

We have previously shown that an altered-function mutation of a C. elegans

histone H3 gene, his-9, causes the loss of a single left-right unpaired MI neuron. The MI

neuron normally is generated from the right side of an otherwise left-right symmetric cell

lineage that on the left generates the e3D epithelial cell (Sulston et al. 1983; Figure 1A).

The absence of the MI neuron in his-9 mutants results from left-right symmetry in this

normally asymmetric cell lineage, with the MI neuron transformed into an e3D-like

epithelial cell. Inactivation of the C. elegans CAF-1 (Chromatin Assembly Factor-1)

complex by RNAi treatment also caused transformation of MI into an e3D-like cell,

indicating that CAF-1-mediated nucleosome formation is required to establish the

bilateral asymmetry in this cell lineage (see Chapter III). In this study, we performed a

candidate-gene approach to test whether C. elegans HMT and HDM genes are required to

establish this MI-e3D bilateral asymmetry. We show that SET-16, a C. elegans H3K4

HMT homologous to mammalian MLL, and UTX-1, a C. elegans H3K27 HDM
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homologous to mammalian UTX, are required for establishing the MI-e3D bilateral

asymmetry. In addition, we conduct a genetic screen and recover 12 mutations that cause

symmetry in this normally asymmetric cell lineage. We show that two of these 12

mutations are alleles of egl-27, which encodes a protein homologous to the mammalian

MTA, a member of a chromatin-remodeling complex.
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Results

set-16 and utx-1 Are Required to Establish a Neuronal Bilateral Asymmetry

The C. elegans genome contains at least 38 genes that are predicted to encode proteins

with a SET domain (Andersen and Horvitz 2007) and at least 11 genes that are predicted

to encode proteins with a JmjC domain (WormBase, http://www.wormbase.org). To

identify HMTs and HDMs that are involved in generating the bilateral asymmetry of the

cell lineage that gives rise on the right to the MI neuron and on the left to the e3D

epithelial cell (Figure 1A), we examined previously isolated mutants for 35 of the 49

predicted HMT and HDM genes and performed RNA interference (RNAi) of each of the

remaining 14 genes. We asked whether these mutants and animals subjected to RNAi of

these genes display symmetry in the normally asymmetric cell lineage by transforming

either the MI neuron into an e3D-like epithelial cell or the e3D epithelial cell to an MI-

like neuron. We found that mutants for two of the 49 genes, set-16 and utx-1, displayed a

defect in generating the bilateral asymmetry in this cell lineage (Table 1).

set-16 encodes a protein homologous to mammalian MLL, which catalyzes the

methylation of H3K4. We examined two deletion alleles of set-16, n4526Δ and gk438Δ

(Figure 1F), and found that both mutants displayed larval lethality as previously reported

(Andersen and Horvitz 2007) and contained an extra cell that expressed an e3D cell-fate

reporter, D2096.6::pes-10::gfp (see Chapter II, Figure 1C, D). We also observed that

set-16 mutant animals often lacked the MI neuron (data not shown), indicating that the
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MI neuron is transformed into an e3D-like cell in set-16 mutants, resulting in symmetry

in the normally asymmetric cell lineage (Figure 1A, B).

utx-1 encodes a protein homologous to mammalian UTX, which catalyzes the

demethylation of H3K27. We examined two deletion alleles of utx-1, tm3118Δ and

tm3136Δ (Figure 1G), and found that both mutants showed larval lethality (data not

shown) and contained an extra e3D-like cell (Figure 1C, E), suggesting that utx-1 is also

required to establish the MI-e3D bilateral asymmetry (Figure 1A, B). The utx-1 mutant

phenotype was maternally rescued: whereas utx-1 homozygous mutant animals derived

from utx-1 homozygous mothers displayed larval lethality and the MI transformation

defect, utx-1 homozygous mutant animals derived from utx-1 heterozygous mothers did

not show lethality or the MI transformation defect (data not shown).

These results indicate that the establishment of the MI-e3D bilateral asymmetry

requires two histone-modifying enzymes, SET-16, an H3K4 HMT, and UTX-1, an

H3K27 HDM.

An F3 Non-Clonal Screen Identified 12 Mutations that Cause the MI

Transformation

Our observation that the utx-1 mutant phenotype was maternally rescued suggested that

mutants for some C. elegans genes might show symmetry in this normally left-right

asymmetric cell lineage only when they are derived from homozygous mothers. We

could not have isolated such mutants from our previous screen for animals defective in

the establishment of the MI-e3D asymmetry, because this screen was designed to seek
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mutant animals in the F2 generation (see Chapter II). To isolate such mutants, we

mutagenized wild-type strains carrying an e3D cell-fate reporter, D2096.6::pes-10::gfp,

and looked for animals in the F3 generation that contained an extra e3D-like cell or lacked

e3D. From this screen, we recovered 12 mutations that caused the presence of an extra

e3D-like cell (Table 2): n5333, n5335, n5336, n5338, n5339, n5340, n5342, n5348,

n5351, n5354, n5356 and n5357. We observed these mutants using Nomarski optics and

found that the MI neuron was missing in all 12 mutants (data not shown), indicating that,

like set-16 and utx-1 mutations, these mutations transform the MI neuron into an e3D-like

cell, causing symmetry in this normally asymmetric cell lineage.

The 12 Mutations that Cause the MI transformation Are Alleles of At Least Six

Genes

Based on complementation tests and mapping experiments, we concluded that the 12

mutations are alleles of at least six genes. Three isolates, n5348, n5354 and n5356, failed

to complement ngn-1(n1921) (see Chapter II) and carry transition mutations in the ngn-1

locus (Figure 2A), indicating that these mutations are alleles of ngn-1. Three allelic

mutations, n5333, n5339 and n5340, are alleles of ceh-36 and are described in Chapter II.

Another mutation, n5357, is an allele of his-9 and is described in Chapter III. Two

mutations, n5335 and n5338, failed to complement each other and are alleles of egl-27

(see below). Two mutations, n5342 and n5351, cause or are linked to incompletely-

penetrant larval lethality (data not shown) and fail to complement each other for the

lethality as well as for the MI transformation defect. Both the lethality and the MI
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transformation defect of n5342 and n5351 animals were maternally rescued (data not

shown). The remaining mutation, n5336, causes a strict maternal-effect MI

transformation: n5336 homozygous animals derived from heterozygous mother did not

show the MI transformation, whereas n5336 heterozygous animals derived from a cross

between n5336 homozygous hermaphrodites and wild-type males displayed the MI

transformation (data not shown).

n5335 and n5338 Are Alleles of egl-27, a Member of the MTA family

We mapped n5335 to a 2 m.u. interval of LG II that contains the gene egl-27. egl-27

encodes a protein homologous to the mammalian Metastasis-Associated proteins or

MTAs (Ch'ng and Kenyon 1999; Herman et al. 1999; Solari et al. 1999), which are

components of the mammalian NuRD (Nucleosome Remodeling and Deacetylase)

complex (Xue et al. 1998). Given the involvement of MTA proteins in chromatin

regulation and of the histone-modifying enzymes SET-16 and UTX-1 in establishing the

MI-e3D bilateral asymmetry, we tested whether n5335 and n5338 are alleles of egl-27.

We identified mutations in the egl-27 locus in each of these mutants (Figure 2B). We also

examined other egl-27 alleles independently isolated previously, including egl-27(e2394)

(Figure 2B), and found that in all egl-27 mutants examined, the MI neuron was

transformed into an e3D-like cell (Table 3). Furthermore, egl-27(e2394) failed to

complement n5335 and n5338 (data not shown). We concluded that n5335 and n5338 are

alleles of egl-27 and that egl-27 is required to establish the MI-e3D bilateral asymmetry.
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The mammalian NuRD complex comprises at least seven proteins, including

MTA1, the histone deacetylases HDAC1 and HDAC2, the histone-binding proteins

RbAp46 and RbAp48, the ATP-dependent chromatin remodeling enzyme Mi2 and a

protein of unknown function p66 (Ahringer 2000). Because the C. elegans genome

contains genes encoding proteins homologous to the members of the mammalian NuRD

complex, including histone deacetylases HDA-1 and HDA-2, histone binding proteins

RBA-1 and LIN-53, the Mi2 homologs LET-418 and CHD-3 and the p66 homolog

DCP-66, we undertook a candidate-gene approach and tested whether the left-right

asymmetric ABaraap cell lineage is disrupted in C. elegans mutants for these genes. We

reported previously that rba-1, a C. elegans homolog of the mammalian RbAp46/48, is

required for establishing the MI-e3D bilateral asymmetry, likely through interaction with

two other components of the C. elegans CAF-1 complex (see Chapter III). We observed

that mutants for the other genes did not display such a defect (data not shown). We also

found that RNAi of hda-1 or lin-53 did not cause symmetry in this normally asymmetric

cell lineage (data not shown). These results suggest that egl-27 functions independently

of the putative C. elegans NuRD complex to establish the MI-e3D bilateral asymmetry.
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Discussion and Future Directions

The bilateral asymmetry of the nervous system is a widespread feature both in vertebrates

and invertebrates. Despite its importance, the molecular mechanisms that establish

neuronal bilateral asymmetry remain largely elusive. Although histone-modifying

enzymes have been shown to promote neurogenesis, they have not been shown to act in

establishing neuronal bilateral asymmetry. In this study, we demonstrate that the

establishment of the left-right asymmetry of the ABaraap cell lineage requires two

histone-modifying enzymes, the H3K4 HMT SET-16 and the H3K27 HDM UTX-1.

Because the mammalian homologs of these proteins form a complex that activates

expression of their target genes by methylating H3K4 and demethylating H3K27, we

propose that SET-16 and UTX-1 also form a protein complex that modifies the

methylation of H3K4 and H3K27 to promote expression of genes required to establish

the bilateral asymmetry of the cell lineage. Our results indicate a novel mechanism of

generating a bilateral asymmetry in the C. elegans nervous system and reveal that

developmental mechanisms establishing the MI-e3D bilateral asymmetry involve histone

modifications catalyzed by these enzymes.

 What are the target genes of the putative SET-16/UTX-1 complex? Given that

the establishment of the MI-e3D bilateral asymmetry requires a CEH-36/NGN-1/HLH-2

transcriptional cascade (see Chapter II) and nucleosome formation mediated by the C.

elegans CAF-1 complex (see Chapter III), the SET-16/UTX-1 complex might act to

impinge upon this transcriptional cascade or nucleosome formation. In the former case,

ceh-36, ngn-1 and hlh-2 are candidates to be target genes of this SET-16/UTX-1
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complex. In mammals, it has been shown that otx2, a ceh-36 homolog, contains a bivalent

domain in embryonic stem cells (ESC) and that this bivalent domain resolves to an active

H3K4 monovalent domain in neural progenitor cells (NPC) and to a repressive H3K27

monovalent domain in embryonic fibroblasts (MEF) (Mikkelsen et al. 2007). By contrast,

E2A, an hlh-2 homolog, is associated with an H3K4 monovalent mark in ESCs, NPCs

and MEFs, and Neurog1 and Neurog2, ngn-1 homologs, are associated with a bivalent

mark in ESCs and NPCs. Thus, it seems plausible that ceh-36 might be a target of the C.

elegans SET-16/UTX-1 complex. Like otx2, ceh-36 might contain a bivalent domain in a

precursor cell shared by both the MI neuron and the e3D epithelial cell, such as the

ABaraap cell (Figure 1A); upon separation of the left and right branches of the cell

lineage, this bivalent domain might resolve to an H3K4 monovalent domain in the MI

precursor cell, ABaraapp, and an H3K27 monovalent domain in the e3D precursor cell,

ABaraapa, leading to the asymmetric ceh-36 expression (see Chapter II) that establishes

the MI-e3D bilateral asymmetry.

 Our survey of C. elegans HMTs and HDMs did not identify a role of an H3K27

HMT or an H3K4 HDM. MES-2 and RBR-2 are the C. elegans homologs of the

mammalian H3K27 HMT, EZH2, and the mammalian H3K4 HDM, RBP2, respectively.

We observed that in mes-2 mutants and rbr-2(RNAi) animals, both the MI neuron and the

e3D epithelial cell were present (Table 1). If a target gene of the SET-16/UTX-1 complex

were truly marked with the bivalent domain, and this bivalent domain were to resolve to a

repressive monovalent H3K27 mark in the left branch of the cell lineage that normally

gives rise to the e3D epithelial cell, then it would be expected that loss of mes-2 and rbr-2

functions would result in transformation of the e3D cell into an MI-like neuron. One
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explanation for our observation might be that even though expression of a bivalently

marked gene is derepressed in an e3D precursor cell of mes-2 mutants and rbr-2(RNAi)

animals, such ectopic expression of the target gene might not be sufficient to transform

the e3D cell into an MI-like neuron. It remains to be determined whether ectopic

expression of a target gene is sufficient to transform the e3D cell into an MI-like neuron

and whether loss of mes-2 and rbr-2 function causes derepression of a target gene in the

left branch of the cell lineage that normally gives rise to the e3D epithelial cell.

Alternatively, it is possible that a SET-16/UTX-1 complex regulates expression of

genes other than ceh-36, ngn-1 and hlh-2. We have shown that an altered-function

mutation in a histone H3 gene his-9 causes transformation of the MI neuron into an e3D-

like cell and that this altered-function activity of his-9 likely impairs the CAF-1-mediated

nucleosome formation that might normally acts downstream of or in parallel to the

asymmetric expression of CEH-36, NGN-1 and HLH-2. It is plausible that the CAF-1

complex and the SET-16/UTX-1 complex share targets required for establishing the

bilateral asymmetry in this cell lineage. If so, the CAF-1 complex might first deposit

histones H3-H4 onto its target locus, and the SET-16/UTX-1 complex might then modify

histone H3 proteins at that locus. Further studies will be needed to test whether set-16 and

utx-1 are required for the asymmetric expression of ceh-36, ngn-1 and hlh-2.

The target genes of the CAF-1 complex remain to be determined. Identification of

the CAF-1 targets will also help clarify whether the CAF-1 complex acts downstream of

or in parallel to the CEH-36/NGN-1/HLH-2 transcriptional cascade: it is possible that the

CAF-1 complex acts downstream of the NGN-1/HLH-2 heterodimer where the

NGN-1/HLH-2 complex activates expression of its target genes in the MI mother cell and
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that the CAF-1 complex mediates the nucleosome formation at these NGN-1/HLH-2

target loci during S-phase of the MI mother cell necessary to maintain expression of these

genes in the post-mitotic MI neuron. Additional experiments are required to identify the

targets of the CAF-1 complex. Different approaches might be taken to address this

question, with success dependent on the number of targets biologically important for

establishing the bilateral asymmetry. A biochemical approach might be able to identify

multiple loci with altered distribution of nucleosomes in his-9(n5357) mutants or

rba-1(n5418Δ) mutants. Alternatively, given the observation that the zygotic loss of

rba-1 function enhanced the MI transformation caused by the his-9(n5357) mutation (see

Chapter III), an F1 clonal enhancer screen to look for mutations that enhance the MI

transformation defect caused by his-9(n5357) might be able to recover a single target of

the CAF-1 complex required to establish the MI-e3D bilateral asymmetry.

Our findings indicate that egl-27, a C. elegans homolog of the mammalian MTAs,

is required to establish the MI-e3D bilateral asymmetry. Although mammalian MTA

proteins are known to be members of the NuRD complex, we observed that loss of

function of genes encoding other members of the putative C. elegans NuRD complex did

not cause symmetry in this normally left-right asymmetric cell lineage, suggesting a

novel action of EGL-27 in establishing the MI-e3D bilateral asymmetry. We speculate

that EGL-27 might interact with the putative SET-16/UTX-1 complex, the CAF-1

complex or an as yet unidentified complex to establish the MI-e3D bilateral asymmetry.

Further studies will be needed to determine whether egl-27 regulates expression of

ceh-36, ngn-1 or hlh-2 and whether EGL-27 physically interacts with any of the proteins

we have identified that are required to establish the MI-e3D bilateral asymmetry.
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Identification of the two remaining genes mutated in n5342 and n5336 animals should

help elucidate the mechanism that establishes the left-right asymmetry in this cell lineage

and possibly other cell lineages.
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Experimental Procedures

C. elegans Strains

C. elegans strains were cultured at 20 °C as described previously (Brenner 1974). N2

(Bristol) was the wild-type strain. The following mutations were used and have been

described (Andersen and Horvitz 2007), except those from this study or otherwise

indicated:

LGI: blmp-1(tm548Δ), dcp-66(gk370Δ), dpy-5(e61) (Riddle et al. 1997), lin-53(n3368Δ)

(Lu Massachusetts Institute of Technology. PhD Thesis Dept. Biology. 1999),

lin-59(sa489) (Chamberlin et al. 1999), met-1(n4337Δ), set-18(gk334Δ).

LGII: dpy-10(e128) (Riddle et al. 1997), egl-27(e2394, n170) (Herman et al. 1999),

egl-27(n5335, n5338, ok151Δ, ok1670Δ) (this study, ok151Δ and ok1670Δ were provided

by the C. elegans Gene Knockout Consortium), F43G6.6(hc184Δ) (this study, provided

by the C. elegans Gene Knockout Consortium), hda-2(ok1479Δ) (Lans et al. 2010),

mes-2(bn11) (Holdeman et al. 1998), n5357 (this study), rol-6(e187) (Riddle et al. 1997),

set-4(n4600Δ), set-11(n4488Δ), set-13(n5012Δ), set-17(n5017Δ), set-24(n4909Δ),

unc-4(e120) (Riddle et al. 1997).

LGIII: met-2(n4256Δ), n5342, n5351 (this study), set-1(tm1821Δ), set-2(n4589Δ),

set-3(n4948Δ), set-16(n4526Δ), set-16(gk438Δ), set-25(n5021Δ), T26A5.5(ok2364Δ) (this

study, provided by the C. elegans Gene Knockout Consortium), unc-32(e189) (Riddle et

al. 1997).
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LGIV: dpy-20(e1282) (Riddle et al. 1997), eri-1(mg366) (Kennedy et al. 2004), n5336

(this study), psr-1(ok714Δ) (Zullig et al. 2007), set-9(n4949Δ), set-21(ok2320Δ),

unc-5(e53) (Riddle et al. 1997).

LGV: dpy-11(e224) (Riddle et al. 1997), hda-1(ok1595Δ) (Matus et al. 2010),

let-418(n3719) (Ceol et al. 2006), mes-4(bn73) (Bender et al. 2006), set-5(ok1568Δ) set-

22(n5015Δ), set-31(ok1482Δ).

LGX: ceh-36(n5333, n5339, n5340) (this study), chd-3(ok1651Δ) (this study, provided by

the C. elegans Gene Knockout Consortium), F18E9.5(gk384Δ) (Agger et al. 2007),

nIs363[D2096.6::pes-10::gfp, lin-15AB(+)] (see Chapter II), lon-2(e678) (Riddle et al.

1997),  set-6(tm1611Δ), set-8(tm2113Δ), set-12(n4442Δ), set-19(ok1813Δ),

set-20(ok2022Δ), set-28(n4953Δ), set-30(gk315Δ), utx-1(tm3118Δ, tm3136Δ) (this study,

provided by Shohei Mitani, Tokyo Women’s Medical University).

An F3 non-clonal screen

We mutagenized wild-type animals carrying an e3D cell-fate reporter,

D2096.6::pes-10::gfp, with ethyl methanesulfonate, and observed their F3 progeny using

a fluorescence-equipped dissecting microscope. From screens of approximately 100,000

F3 mutagenized animals, we recovered 12 independent mutations that caused the presence

of an extra e3D-like cell.

Mapping of egl-27(n5335)
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We allowed hermaphrodites of genotype dpy-10(e128) unc-4(e120)/n5335 to self-fertilize

and observed that one of eight Dpy non-Unc progeny segregated n5335 and that seven of

eight non-Dpy Unc progeny segregated n5335.

Mapping of n5336

We allowed hermaphrodites of genotype unc-5(e53) dpy-20(e1282)/n5336 to self-fertilize

and observed that eight of nine Unc non-Dpy progeny segregated n5336 and that one of

nine non-Unc Dpy progeny segregated n5336.

Mapping of n5342

To map n5342, we followed the maternal embryonic lethality that is linked to n5342. We

crossed n5342 hermaphrodites with males of genotype dpy-5(e61)/+; rol-6(e189)/+;

unc-32(e189)/+ or unc-5(e53)/+; dpy-11(e224)/+; lon-2/0 and observed that four of 20

dpy-5, seven of 20 rol-6, zero of 20 unc-32, four of 20 unc-5, four of 20 dpy-11 and six of

20 lon-2 F2 progeny segregated the maternal lethal mutation.
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Table 1.

set-16 and utx-1 are required to establish the MI-e3D left-right asymmetry

Genotype (%) MI transformationa n

wild-type 0 30

set-16(n4526Δ)b 8 100

set-16(gk438Δ)b 1 100

utx-1(tm3118Δ)c 20e 100

utx-1(tm3136Δ)c 18e 100

a The percentage of the MI transformation defect was determined using an e3D cell-fate reporter,

nIs363[D2096.6::pes-10::gfp] (see Chapter II).

b We allowed animals of genotype set-16/eT1[nIs267];nIs363 to self-fertilize and examined myo-2::gfp-negative

progeny to determine the presence and absence of the MI neuron and the e3D epithelial cell.

c We allowed animals of genotype dpy-6 utx-1 nIs363 unc-3/szT1 to self-fertilize and isolated Dpy Unc progeny.

We then allowed these Dpy Unc animals to self-fertilize and examined their progeny to determine the presence and

absence of the MI neuron and the e3D epithelial cell.

We observed that the MI neuron and the e3D epithelial cell were present in the following animals (n=30):

blmp-1(tm548Δ), lin-59(sa489), mes-2(bn11), mes-4(bn73), met-1(n4337Δ), met-2(n4256Δ), set-1(tm1821Δ), set-

2(n4589Δ), set-3(n4948Δ), set-4(n4600Δ), set-5(ok1568Δ), set-6(tm1611Δ), set-8(tm2113Δ), set-9(n4949Δ), set-

10(RNAi), set-11(n4488Δ), set-12(n4442Δ), set-13(n5012Δ), set-14(RNAi), set-15(RNAi), set-17(n5017Δ), set-

18(gk334Δ), set-19(ok1813Δ), set-20(ok2022Δ), set-21(ok2320Δ), set-22(n5015Δ), set-23(RNAi), set-24(n4909Δ),

set-25(n5021Δ), set-26(RNAi), set-27(RNAi), set-28(n4953Δ), set-29(RNAi), set-30(gk315Δ), set-31(ok1482Δ),

C29F7.6(RNAi), F18E9.5(gk384Δ), F23D12.5(RNAi), F29B9.2(RNAi), F43G6.6(hc184Δ), jmjd-2(RNAi),

psr-1(ok714Δ), rbr-2(RNAi), T07C4.11(RNAi), and T26A5.5(ok2364Δ).
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Table 2. Twelve mutations that cause the MI transformation are alleles of at least six

genes.

Group Gene Allele LG Notes

1 ngn-1 n5348

n5354

n5356

N.D. Show zygotic effects. Carry transition mutations in the

ngn-1 locus.

2 ceh-36 n5333

n5339

n5340

XR Show zygotic effects. Carry mutations in the ceh-36

locus.

3 his-9 n5357 IIR Shows zygotic effect. Carries a transition mutation in

the his-9 locus

4 egl-27 n5335

n5338

IIC Show zygotic effects. Carries transition mutations in

the egl-27 locus.

5 N.D. n5342

n5351

IIIC Both display incomplete penetrant embryonic lethality.

Both the MI transformation and lethality are

maternally rescued.

6 N.D. n5336 IVR Shows strict maternal effect.
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Table 3. egl-27 is required to establish the MI-e3D bilateral asymmetry.

Genotype % MI transformationa n

wild-type 0 50

egl-27(e2394) 29 100

egl-27(n170Δ) 7 100

egl-27(n5335) 24 100

egl-27(n5338) 29 100

egl-27(ok151Δ) 32 100

egl-27(ok1670Δ) 6 100

a The penetrance of the MI transformation was determined using an e3D cell-fate

reporter, D2096.6::pes-10::gfp (see Chapter II).
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Figures

Figure 1. set-16 and utx-1 Are Required to Establish the MI-e3D Bilateral

Asymmetry. (A) The left-right asymmetric ABaraap cell lineage in wild type. The left-

right asymmetry is seen in the different cell fates of the MI neuron and the e3D epithelial

cell. (B) In set-16 and utx-1 mutants, left-right asymmetry in the cell lineage is lost as a

result of the cell-fate transformation of the presumptive MI neuron into an e3D-like cell.

(C) D2096.6::pes-10::gfp reporter expression in the wild type. The D2096.6::pes-10::gfp

reporter was expressed in the e3D epithelial cell (arrowhead). (D, E)

D2096.6::pes-10::gfp reporter expression in (D) set-16(n4526Δ) and (E) utx-1(tm3118Δ)

mutants. The D2096.6::pes-10::gfp reporter was expressed in the e3D epithelial cell and

the extra e3D-like epithelial cell (arrowheads). Scale bar, 5 µm. (F) Gene structure of

set-16 and mutations associated with each mutant are shown. (G) Gene structure of utx-1

and mutations associated with each mutant are shown. The black boxes indicate exons,

and white boxes untranslated regions.
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Figure 2. Mutations in ngn-1 and egl-27 Cause MI Transformation. (A) Gene

structure of ngn-1 and mutations associated with each mutant are shown. The black boxes

indicate exons, and white boxes untranslated regions. (B) Gene structure of egl-27 and

mutations associated with each mutant are shown. The black boxes indicate exons.
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