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Abstract

One fundamental problem in the field of network coding is to determine the network coding capacity
of networks under various network coding schemes. In this thesis, we address the problem with two
approaches: matroidal networks and capacity regions.

In our matroidal approach, we prove the converse of the theorem which states that, if a network
is scalar-linearly solvable then it is a matroidal network associated with a representable matroid
over a finite field. As a consequence, we obtain a correspondence between scalar-linearly solvable
networks and representable matroids over finite fields in the framework of matroidal networks.
We prove a theorem about the scalar-linear solvability of networks and field characteristics. We
provide a method for generating scalar-linearly solvable networks that are potentially different from
the networks that we already know are scalar-linearly solvable.

In our capacity region approach, we define a multi-dimensional object, called the network capac-
ity region, associated with networks that is analogous to the rate regions in information theory. For
the network routing capacity region, we show that the region is a computable rational polytope and
provide exact algorithms and approximation heuristics for computing the region. For the network
linear coding capacity region, we construct a computable rational polytope, with respect to a given
finite field, that inner bounds the linear coding capacity region and provide exact algorithms and
approximation heuristics for computing the polytope. The exact algorithms and approximation
heuristics we present are not polynomial time schenies and may depend on the output size.
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Chapter 1

Introduction

Network coding is a field at the intersection of network information theory and coding theory.

The central idea of the field of network coding is that increased capabilities of intermediate nodes

lead to improvements in information throughput of the network. In the traditional routing model

of information networks, intermediate nodes simply copy and forward incoming packets, and the

information flows were modeled as source-to-sink paths and Steiner trees. In the network coding

model, intermediate nodes are now allowed more complicated operations to code on incoming

packets and forward packets that might differ significantly from the incoming packets. It has been

shown numerous times that the network coding model allows greater information throughput than

in the traditional routing model and its applicability has been widely researched. One fundamental

problem in the field of network coding is to determine the network coding capacity, the maximum

amount of information throughput, of networks under various network coding schemes. In this

work, we address the problem with two approaches: matroidal networks and capacity regions.

1.1 Network Coding Model

We give a network coding model that we will use in this work. Most of it is adapted from [8].

Further additional definitions are relegated to relevant chapters. Throughout the work, we assume

that the networks are acyclic and the edges (or links) between nodes are delay-free and error-free.

Definition 1 (Network). A network A is a finite, directed, acyclic multigraph given by a 6-tuple

(V, e, y, A, S, R) where



1. zv is a node set,

2. e is an edge set,

3. P is a message set,

4. A is an alphabet,

5. S: v - 2 A is a source mapping, and

6. R: v - 2' is a receiver mapping.

We use a pair of nodes (x, y) to denote a directed edge from node x to node y; x is the start

node and y is the end node. For each node x, if S(x) is nonempty then x is a source and if R(x)

is nonempty then x is a receiver. The elements of S(x) are called the messages generated by x and

the elements of R(x) are called the messages demanded by x. An alphabet A is a finite set with at

least two elements. Each instance of a message is a vector of elements from the alphabet. For each

node x, let In(x) denote the set of messages generated by x and in-edges of x. Let Out(x) denote

the set of messages demanded by x and out-edges of x. For each node x, we fix an ordering of In(x)

and Out(x) such that all messages occur before the edges in the resulting lists. In our definition of

networks, there could be multiple source nodes and multiple receiver nodes with arbitrary demands.

There are several special classes of networks: unicast networks where there are exactly one

message, one source and one receiver; multicast networks where there are exactly one message and

one source, but an arbitrary number of receivers that demand the message; two-level multicast

networks where there are multiple messages and there are exactly one source node that generates

all the network messages and two receivers where one demands all the messages and the other

demands a subset of the messages; multiple unicast networks where there are multiple messages

and, for each message m, we have the unicast condition; multiple multicast networks where there

are multiple messages and, for each message m, we have the multicast condition. A general network

has multiple source nodes, multiple receiver nodes, and arbitrary demands of messages; they are

sometimes referred to as multi-source multi-sink networks in literature. A multicast network in

literature usually has multiple messages, but we restrict multicast networks to those with a single

message in this work.



We define edge function, decoding function, message assignment and symbol function with

respect to a finite field F of cardinality greater than or equal to JAI. We choose such F so that

each element from A can be uniquely represented with an element from F.

Definition 2 (Edge and Decoding Functions). Let k and n be positive integers. For each edge

e = (x, y), an edge function is a map

fe : (F k )a x (F")0 - F",

where a and /3 are number of messages generated by x and in-edges of x, respectively. For each

node x E v and message m E R(x), a decoding function is a map

fx,m : (F k a x (F")O -+ F k,

where a and 3 are number of messages generated by x and in-edges of x, respectively. We call k

and n the source dimension and edge dimension, respectively.

Each source sends a message vector of length k and each edge carries a message vector of

length n. We denote the collections of edge and decoding functions by Fe ={f e E E} and

Fd {fx,m : x E v, m E R(x)}.

Definition 3 (Message Assignment). A message assignment is a map a : p -+ Fk, i.e., each

message is assigned with a vector from Fk.

Definition 4 (Symbol Function). A symbol function is a map s : e -+ F" defined recursively, with

respect to A and Fe, such that for all e = (x, y) E c,

s(e) fe (a(mi),. . . , a(m), s(e+1), - - e- ,s +,)),

where m 1 , ... , m, are the messages generated by x and ea+1,. - - , ea,+ are the in-edges of x. Note

that the symbol function is well-defined as network N is a directed acyclic multigraph.

Definition 5 (Network Code). A network code on V is a 5-tuple (F, k, n, Fe, Fd) where

1. F is a finite field, with |F > |A|,



2. k is a source dimension,

3. n is an edge dimension,

4. Ye is a set of edge functions on network A,

5. Fd is a set of decoding functions on network N1.

We shall use the prefix (k, n) before codes when we wish to be more specific on parameters k

and n. When k and n are clear from the context, we will sometimes omit them. There are several

special classes of network codes: routing network codes, where edge and decoding functions simply

copy input vector components to output vector components, linear network codes, where edge

and decoding functions are linear over F, and nonlinear network codes, where edge and decoding

functions are nonlinear over F. Vector-linear network codes are linear network codes with k = n.

Scalar-linear network codes are linear network codes with k = n = 1.

Definition 6 (Network Code Solution). A network code (F, k, n, Fe, -Fd) is a network code solution,

or solution for short, if for every message assignment a : p - Fk,

fx,m(a(mi), ... , a(m), s(ea+1), . . . , s(ea+0 )) = a(m),

for all x G v and m G R(x). Note that in 1 , ... , m,, are messages generated by x, and ea+, . ,ea+

are in-edges of x. If the above equation holds for a particular node x E v and message m G R(x),

then we say node x's demand m is satisfied.

A network N is routing-solvable if it has a routing network code solution. Similarly, we say that

network 1 is linearly solvable (scalar-linearly solvable, vector-linearly solvable, nonlinearly solvable)

if it has a linear (scalar-linear, vector-linear, nonlinear) network code solution.

1.2 Previous Works

In a seminal work in 2000, Ahlswede et al. [1] introduced the network coding model to the prob-

lem of communicating information in networks. They showed that the extended capabilities of

intermediate nodes to code on incoming packets give greater information throughput than in the



traditional routing model. They also showed that the capacity of any multiple multicast network

of a certain class is equal to the minimum of min-cuts between the source node and receiver nodes.

Single source networks and linear network coding are comparatively well-understood. Li et

al. [22] showed that linear network coding is sufficient for certain multiple multicast networks.

Koetter and Mddard [20] reduced the problem of determining scalar-linear solvability to solving a

set of polynomial equations over some finite field and suggested connections between scalar-linearly

solvable networks and nonempty varieties in algebraic geometry. They showed that scalar-linear

solvability of many special case networks, such as two-level multicasts, can be determined by their

method. Dougherty et al. [9] strengthened the connection by demonstrating solvably equivalent

pairs of networks and polynomial collections; for any polynomial collection, there exists a network

that is scalar-linearly solvable over field F if and only if the polynomial collection is solvable over

F. It is known that scalar-linear network codes are not sufficient in general. The M-network

due to Koetter in [23] is a network with no scalar-linear solution but has a vector-linear solution.

Lehman and Lehman [21] using 3-CNF formulas also provided an example where a vector solution

is necessary.

More recently, matroidal approaches to analyze networks have been quite successful. Dougherty

et al. [7, 8] defined and studied matroidal networks and suggested connections between networks

and matroids. They used matroidal networks constructed from well-known matroids to show in

[6] that not all solvable networks have a linear solution over some finite-field alphabet and vector

dimension. They also constructed a matroidal network to show that Shannon-type information

inequalities are not sufficient for computing network coding capacities in general. Recently, El

Rouayheb et al. [10] strengthened the connection between networks and matroids by constructing

"solvably equivalent" pairs of networks and matroids via index codes with their own construction

method; the network has a vector-linear solution over a field if and only if the matroid has a

multilinear representation over the same field. In another recent work [25], Sun et al. studied

the matroid structure of single-source networks which they define as network matroid and showed

connections between the network matroids and a special class of linear network codes.

The capacity regions of networks are less well-understood, but a few explicit outer bounds of

capacity regions of networks exist. One easy set of outer bounds is the max-flow/min-cut bounds,

which were sufficient in the case of certain multiple multicast networks. Harvey et al. [16] combined



information theoretic and graph theoretic techniques to provide a computable outer bound on

the network coding capacity regions of networks. Yan et al.[27] gave an explicit outer bound for

networks that improved upon the max-flow/min-cut outer bound and showed its connection to a

kind of minimum cost network coding problem. They used their results to compute the capacity

region of a special class of 3-layer networks. Thakor et al. [26] gave a new computable outer bound,
based on characterizations of all functional dependencies in networks, that is provably tighter than

those given in [16] and [27].

Recently, explicit characterizations of capacity regions, albeit hard to compute, of networks were

given using information theoretic approaches. Yan et al.[28] provided an exact characterization of

the capacity regions for general multi-source multi-sink networks by bounding the constrained

regions in the entropy space. However, they noted that explicitly evaluating the obtained capacity

regions remains difficult in general. In a related work, Chan and Grant[3] showed that even the

explicit characterization of capacity regions for single-source networks can be difficult since the

computation of a capacity region reduces to the determination of the nonpolyhedral set of all

entropy functions and that linear programming bounds do not suffice.

The routing capacity regions of networks are better understood via linear programming ap-

proaches. Cannons et al.[2] defined the notion of network routing capacity that is computable with

a linear program and showed that every rational number in (0, 1] is the routing capacity of some

solvable network. Yazdi et al. [29, 30] extended a special case of Farkas Lemma called the "Japanese

Theorem" to reduce an infinite set of linear constraints to a set of finitely many linear constraints

in terms of minimal Steiner trees and applied the results to obtain the routing capacity region of

undirected ring networks. In a subsequent work, Kakhbod and Yazdi[19] provided the complexity

results on the description size of the finitely many inequalities obtained in [29, 30] and apply them

to the undirected ring networks.

1.3 Our Results

We organize our contributions into two parts: matroidal networks and network capacity regions.

In both approaches, we provide examples to demonstrate our main ideas.



1.3.1 Matroidal Networks

In our matroidal approach, we further study the matroidal networks introduced by Dougherty et

al. [8]. Our contributions can be summarized as follows and we refer to Chapter 2 for details:

1. We prove the converse of a theorem in [8] which states that, if a network is scalar-linearly

solvable then it is a matroidal network associated with a representable matroid over a finite

field.

2. We prove a theorem about the scalar-linear solvability of networks and field characteristics.

3. We provide a method for generating scalar-linearly solvable networks that are potentially

different from the networks that we already know are scalar-linearly solvable.

As a consequence, we obtain a correspondence between scalar-linearly solvable networks and

representable matroids over finite fields in the framework of matroidal networks. It also follows

that determining scalar-linear solvability of a network M is equivalent to determining the existence

of a representable matroid M over a finite field and a valid network-matroid mapping between M

and V. We obtain a set of scalar-linearly solvable networks that are potentially different from the

networks that are already known to be scalar-linearly solvable.

1.3.2 Network Capacity Regions

In our work concerning the network capacity regions, we continue the research along the lines

of work by Cannons et al. [2]. Our contributions can be summarized as follows and we refer to

Chapter 3 for details:

1. We define the network capacity region of networks and prove its notable properties: closed-

ness, boundedness and convexity.

2. We show that the network routing capacity region is a computable rational polytope and

provide exact algorithms and approximation heuristics for computing the region.

3. We define the semi-network linear coding capacity region that inner bounds the corresponding

network linear coding capacity region, show that it is a computable rational polytope and

provide exact algorithms and approximation heuristics for computing it.



While we present our results for the general directed acyclic networks, they generalize to directed

networks with cycles and undirected networks. We note that the algorithms and heuristics we

provide do have not polynomial running time in the input size. As our notion of the multi-

dimensional network capacity region captures the notion of the single-dimensional network capacity

in [2], our present work, in effect, addresses a few open problems proposed by Cannons et al. [2]:

whether there exists an efficient algorithm for computing the network routing capacity and whether

there exists an algorithm for computing the network linear coding capacity. It follows from our

work that there exist combinatorial approximation algorithms for computing the network routing

capacity and for computing a lower bound of the network linear coding capacity.



Chapter 2

Matroidal Networks Associated with

Representable Matroids

In this chapter, we further study the matroidal networks introduced by Dougherty et al. [8]. We

prove the converse of a theorem in [8] which states that, if a network is scalar-linearly solvable then

it is a matroidal network associated with a representable matroid over a finite field. From [8] and

our present work, it follows that a network is scalar-linearly solvable if and only if it is a matroidal

network associated with a representable matroid over a finite field. The main idea of our work is

to construct a scalar-linear network code from the network-matroid mapping between the matroid

and network. Thereby, we show a correspondence between scalar-linearly solvable networks and

representable matroids over finite fields in the framework of matroidal networks. It follows that

determining scalar-linear solvability of a network NV is equivalent to determining the existence of a

representable matroid M over a finite field and a valid network-matroid mapping between M and

N. We also prove a theorem about the scalar-linear solvability of networks and field characteristics.

Using our result and the matroidal network construction method due to Dougherty et al., we note

that networks constructed from representable matroids over finite fields are scalar-linearly solvable.

The constructed networks are potentially different from the classes of networks that are already

known to be scalar-linearly solvable. It is possible that our approach provides a superset, but this

is unknown at this time.



2.1 Definitions

Definition 7 (Global Linear Network Code). A global linear network code is a 5-tuple (F, k, n,

Omsg, kedge) where

1. F is a finite field, with |F| > ||41,

2. k is a source dimension,

3. n is an edge dimension,

4. Omsg is the global coding vector function on messages, $msg : p -+ (Fk*k)jyj, such that for

message m, $msg(m) = (M 1 ,..., M 1P1)T where Mi is a k x k matrix over F, and

5. #edge is the global coding vector function on edges, pedge : E -* (Fnxk)|I, such that for each

edge e, #edge(e) (M 1,..., Mi|)T where Mi is a n x k matrix over F.

Definition 8 (Global Linear Network Code Solution). A global linear network code (F, k, n,

#msg, #edge) is a global linear network code solution, if |F ;> JA and the following conditions are

satisfied:

1. For each message m G p, msg(m) = (0, ... ,0k x k, 0,.. , 0 )T where Ik x k is the k x k identity

matrix over F and is in the coordinate corresponding to message m.

2. For each node x E v and edge e E Out(x), if 4edge(e) = (M1,... , Mi 1 |)T, then there exist

matrices C1,..., Ca+O over F such that Mi =Z7+3 CjMj, for i = 1,... .

3. For each node x E v and message m E Out(x), if pmsg(m) = (M1,..., Mi11 1)T, then there
exisZmatice Ci . .. ,C' over F such that Mi = E'+ C M , for i = .

exist matrices C11,...,I Ca±,o C.?- for1 i Z 1,.., LIt.

Where, if n 1 , ... , ma are messages generated by x and ea+1, - - - , ea+p are in-edges of x, pmasg(mj) =

(Mj,...,M3 )T for j = 1,...,a and #edge(ej) = (Mi,..., M )T forj a +a +
C ... , C are n x k matrices and Ca+, .. ,C+ are n x n matrices that would appear as co-

efficients in a linear edge function; and C' ... ,C are k x k matrices and C+1,., ., , are

k x n matrices that would appear as coefficients in a linear decoding function.

As with the network codes, we shall sometimes use the prefix (k, n) to emphasize the source

and edge dimensions or omit k and n if they are clear from the context. It is straightforward



to check that the notions of linear network code solution and global linear network code solution

are equivalent, as noted in previous works in algebraic network coding (for instance, [20] for the

k =n = 1 case).

Proposition 9. Let A (v/, e, pt, A, S, R) be a network. Then, A has a (k, n) linear network code

solution if and only if it has a (k, n) global linear network code solution.

Proof. Let (F, k, n, Fe, Fd) be a (k, n) linear network code solution for A. Since /N is a directed

acyclic graph, we can order nodes in v with a topological sort so that each edge go from a lower-

ranked node to a higher-ranked node. The ordering of nodes induces an ordering of edges 61, . . , B'1i

such that no path exists from B& to j for i > j. We define #msg for all m and #edge for 81,... .I lei

in that order:

1. For each message m, we define #msg(m) = (0,... , 0, Ikxk, 0,. ., 0 )T where Ikxk is the k x k

identity matrix and is in the coordinate corresponding to m.

2. For each j = (x, y), the edge function f& can be written as

fs, (a(mi), . . . ,a(ma), s(ea+1), - -. ,s(o+#)). -3 a(mi) + E3 Ci s(el),

where m1,...,mc are messages generated by x and ea+1,.-.- e are in-edges of x; and

C1, . . Ca are n x k matrices and C+1, ... , Ca+0 are n x n matrices over F. Let #msg(mj) =

(Mj,...,M3)T for j 1,...,a and #edge(ej)= (M ,M 1 )T for j=

We define #edge(8j) = (M 1 , ... , M 1 i)T where Mi = E+ Ci -M.

Note that s(Bj) = 1'i Mi -a(mi). By construction, (F, k, n, #msg, #edge) is a valid (k, n) global

linear code that satisfies the first two properties of global linear network code solutions. We check

the third property. For each x E v and m E R(x), the decoding function fx,m can be written as

a a ,

fx,m(a(mi),.. ., a(ma), s(ea+1),..., s(ea+)) = E C -a(m1 ) + >: Ci -s(e),
z=1 i=a+1

and fx,m(a(mi),... , a(ma), s(ea+1), ... , s(ea+)) = a(m). Note that m 1,... , ma are messages

generated at x and ea+1, . . , ea+O are in-edges of x; C1,. . ., C, are k x k matrices and Ca+1 ., -



Ca+p are k x n matrices. Let #msg(mj) - (M3j , M )T for j = 1,... ,a and #edge(ej) =

(Mj,..., M1>)T for j a +1, .. . , a + #. It follows that [#msg (m)]i = "+7 C1 -Mil for all i, where

#bmsg(m)]i denotes the i-th coordinate of #msg(m); (F, k, n, #msg, #edge) is a (k, n) global linear

network code solution.

The converse direction is similar and so we only sketch the proof. Let (F, k, n, #msg, #edge) be a

(k, n) global linear network code solution for A". For each edge e, we define edge function fe by

fe(a(mi),... , a(m), s(e+), - , s(e )) = C- a(m) + E C -s(e),
1=1 1=a+1

where C1, ... , Cca+o are some matrices satisfying Definition 8. For each x E V and m E R(x), we

define decoding function fx, m similarly using matrices C1, . . . , Ca+O from Definition 8. l

We have the following corollaries from the definitions:

Corollary 10. Let N1 = (VI, e, p, A, S, R) be a network. Then, M has a (k, k) vector-linear network

code solution if and only if it has a (k, k) global vector-linear network code solution.

Corollary 11. Let N = (v, e, p, A, S, R) be a network. Then, NV has a scalar-linear network code

solution if and only if it has a global scalar-linear network code solution.

In this chapter, we will focus on scalar-linear network codes, that is linear network codes with

k =n = 1.

2.2 Matroids

We define matroids and three classes of matroids. See [24] for more background on matroids.

Definition 12. A matroid M is an ordered pair (S,I) consisting of a set S and a collection I of

subsets of S satisfying the following conditions:

1. 0 E I;

2. If I C I and ' C I, then I' E I;

3. If I1 and 12 are in I and I1I| < |I2\, then there is an element e of 12\I1 such that I1U{e} E 1.



The set S is called the ground set of the matroid M. A subset X of S is an independent set if it

is in I; X is a dependent set if not. A base B of M is a maximal independent set; for all elements

e E S \ B, B U {e} ( I. It can be shown that all bases have the same cardinality. A circuit of M

is a minimal dependent set; for all elements e in C, C \ {e} C I. For each matroid, there is an

associated function r called rank that maps the power set 2S into the set of nonnegative integers.

The rank of a set X C S is the maximum cardinality of an independent set contained in X.

Definition 13 (Matroid Isomorphism). Two matroids M 1 = (S 1,1 1) and M 2 = (S2,1 2) are

isomorphic if there is a bijection map 4 from S1 to S2 such that for all X C S1, X is independent

in M1 if and only if $(X) is independent in M 2.

Definition 14 (Uniform Matroids). Let c, d be nonnegative integers such that c < d. Let S be a

d-element set and I be the collection {X C S : KX < c}. We define the uniform matroid of rank

c on the d-element set to be Uc,d = (S,I).

Definition 15 (Graphic Matroids). Let G be an undirected graph with the set of edges, S. Let

I = {X C S X does not contain a cycle}. We define the graphic matroid associated with G as

M(G) = (S,1).

Definition 16 (Representable/Vector Matroid). Let A be a di x d2 matrix over some field F. Let

S = {1,.. ., d2 } where element i in S corresponds to the ith column vector of A and I {X C S

corresponding column vectors form an independent set}. We define the vector matroid associated

with A as M( A) = (S,I). A matroid M is F-representable if it is isomorphic to a vector matroid

of some matrix over field F. A matroid is representable if it is representable over some field. Note

that F is not necessarily finite.

The bases of Uc,d = (S, 1) are exactly subsets of S of cardinality c and the circuits are subsets of

S of cardinality c+ 1. Each base of M (G) is a spanning forest of G, hence an union of spanning trees

in connected components of G, and each circuit is a single cycle within a connected component.

It is known that the graphic matroids are representable over any field F. On the other hand, the

uniform matroid U2,4 is not representable over GF(2).



2.3 Matroidal Networks

We define matroidal networks and present a method for constructing matroidal networks from

matroids; for more details and relevant results, we refer to [8].

Definition 17. Let K be a network with message set t, node set v, and edge set e. Let M = (S, I)

be a matroid with rank function r. The network K is a matroidal network associated with M if

there exists a function f: pU E -> S, called the network-matroid mapping, such that the following

conditions are satisfied:

1. f is one-to-one on p;

2. f(p) E I;

3. r(f(In(x))) = r(f(In(x) U Out(x))), for every x E v.

We define f(A) to be {f(x)| x E A} for a subset A of p U e.

Theorem 18 (Construction Method). Let M = (S,I) be a matroid with rank function r. Let K

denote the network to be constructed, p its message set, v its node set, and e its edge set. Then,

the following construction method will construct a matroidal network K associated with M. We do

not address issues of complexity of the method.

We choose the alphabet A to be any set with at least two elements. The construction will

simultaneously construct the network K, the network-matroid mapping f : p U e -+ S, and an

auxiliary function g : S -+ v, where for each x 6 S, g(x) is either

1. a source node with message m and f(m) x; or

2. a node with in-degree 1 and whose in-edge e satisfies f(e) = x.

The construction is completed in 4 steps and each step can be completed in potentially many different

ways:

Step 1: Choose any base B ={b,... , b,(S) } of M. Create network source nodes n 1,. . . , n,(s) and

corresponding messages m, ... ,mr(s), one at each node. Let f(mi) = bi and g(bi) = ni.

Step 2: (to be repeated until no longer possible).

Find a circuit {xo, . .. ,x} in M such that g(x 1),.. . , g(xj) have been already defined but not g(xo).

Then we add:



1. a new node y and edges e1, ... , ej such that ej connects g(xi) to y. Let f(e ) = xi.

2. a new node no with a single in-edge eo that connects y to no. Let f(co) = xo and g(xo) = no.

Step 3: (can be repeated arbitrarily many times).

If {xo,... , xj} is a circuit of M and g(xo) is a source node with message mo, then add to the

network a new receiver node y which demands the message mo and has in-edges el,...., e where ej

connects g(xi) to y. Let f (ei) = x-.

Step 4: (can be repeated arbitrarily many times).

Choose a base B = {x1,... ,x(S)} of M and create a receiver node y that demands all the network

messages and has in-edges e1, ... ,er(S) where ej connects g(xi) to y. Let f(ei) = xi.

The following theorem is from [8]. The original theorem states with a representable matroid,

but the same proof still works with a representable matroid over a finite field.

Theorem 19. If a network is scalar-linearly solvable over some finite field, then the network is

matroidal. Furthermore, the network is associated with a representable matroid over a finite field.

2.4 Scalar-linear Solvability

We prove the converse of Theorem 19 and that a network is scalar-linearly solvable over a finite field

of characteristic p if and only if the network is a matroidal network associated with a representable

matroid over a finite field of characteristic p. In what follows, we assume that d2 > di.

Lemma 20. Let A be a d1 x d2 matrix over a finite field F and M(A) be the corresponding

representable matroid. Then, there exists an arbitrarily large finite field F' and a d1 x d2 matrix

A' over F' such that the corresponding matroid M( A') is isomorphic to M( A).

Proof. We show that any finite field F' that contains F as a subfield works; for instance, extension

fields of F. We consider the same matrix A over F', so choose A' = A, and show that a set of

column vectors of A is independent over F if and only if it is independent over F'. Assume columns

vi, ... , vk are dependent by some scalars ai's in F, alv1 + - - + akvk = 0. Since F' contains F, all

operations with elements of the subfield F stay in the subfield, and the same scalars still work in

F', i.e., aivi + - - + avk = 0 in F'. Hence, the vectors are dependent over F'. Assume column

vectors v1,... , V are independent over F. We extend the set of vectors to a basis of Fd,. Then,



the matrix formed by the basis has a nonzero determinant over F. By similar reasons as before, the

same matrix has a nonzero determinant when considered as a matrix over F'. Hence, the column

vectors of the basis matrix are independent over F' and, in particular, the column vectors vi, .. . , ok
are independent over F'.

Theorem 21. If a network N is matroidal and is associated with a representable matroid over a

finite field F, then K is scalar-linearly solvable.

Proof. Let .N = (v, e, y, A, S, R) be a matroidal network. Let A be the di x d2 matrix over the finite

field F such that K is a matroidal network associated with the corresponding matroid M(A) =

(S,-). By Lemma 20, we assume that the finite field F is large enough to represent all elements

in A, i.e., IF > |Al. By Definition 17, there exists a network-matroid mapping f : p U E -+ S.

Assume r(S) di; otherwise, we remove redundant rows without changing the structure of the

matroid. Let f(p) = {ii, ... , i , }. As f(p) E I, the columns indexed by f((p) form an independent

set. We extend f(t) to a basis B of Fdl, if necessary, by adding column vectors of A. Without loss

of generality, assume the first di columns of A form the basis B after reordering. By performing

elementary row operations, we uniquely express A in the form

A = [Id, | A']

where A' is a di x (d2 - di) matrix and such that {ii,.. ,ili} now corresponds to the first Ap|
columns of A. Note that the structure of the corresponding matroid stays the same. We introduce

dummy messages mili+1, ... , mc1d, if necessary, by adding a disconnected node that generates these

messages. We assign global coding vectors on the resulting K as follows:

1. for each edge e, let #edge(e) = Af(e); and

2. for each message m, let #msg (m) = Af(m),

where Ai denotes the i-th column of A. We show that the global linear network code defined above

is valid and satisfies all the demands. For each node x C v, we have r(f(In(x))) = r(f(In(x) U

Out(x))). It follows that for each edge e - Out(x), Af(e) is a linear combination of {Afe)

e' E In(x)}. Equivalently, #edge(e) is a linear combination of coding vectors in {#msg(m) : m E

In(x)} U {#edge(e) : e E In(x)}. For each message m E Out(x), Af(m) is a linear combination of



{Afe) : e' E In(x)}. Similarly, 0/msg(m) is a linear combination of coding vectors in {msg (m) :

m E In(x)} U {ledge(e) : e E In(x)}. Note, furthermore, that 0msg(m) is the standard basis vector

corresponding to m. It follows that the global linear network code (F, Fe, Fd) thus defined is a global

linear network code solution. Removing the dummy messages, it follows that K is scalar-linearly

solvable. E

Given an arbitrary matrix A, assigning its column vectors as global coding vectors will not

give a global linear network code solution necessarily. In essence, the theorem shows that, while

we cannot use column vectors of A directly, we can do the described operations to produce an

equivalent representation of A from which we can derive a global linear network code solution.

From Theorems 18 and 21, we obtain a method for constructing scalar-linearly solvable networks:

pick any representable matroid over a finite field F and construct a matroidal network K using

Theorem 18. Combining Theorems 19 and 21, we obtain the following theorem.

Theorem 22. A network is scalar-linearly solvable if and only if the network is a matroidal network

associated with a representable matroid over a finite field.

One implication of the theorem is that the class of scalar-linearly solvable networks in the

algebraic network coding problem corresponds to the class of representable matroids over finite fields

in the framework of matroidal networks. In effect, our results show a connection between scalar-

linearly solvable networks, which are tractable networks for network coding, and representable

matroids over finite fields, which are also particularly tractable in terms of description size.

In light of Dougherty et al.'s approach [7, 8], relationships between field characteristics and linear

solvability of matroidal networks are important. In the case of scalar-linear network codes, we fully

characterize a relationship with the following theorem. Note that a network might be a matroidal

network with respect to more than one representable matroids of different field characteristics and,

thus, is possibly scalar-linearly solvable with respect to fields of different characteristics.

Theorem 23. A network is scalar-linearly solvable over a finite field of characteristic p if and only

if the network is a matroidal network associated with a representable matroid over a finite field of

characteristic p.

Proof. We extend Theorems 19 and 21 and Lemma 20 to include field characteristic p, and the

statement follows straightforwardly. L



Corollary 24. Any matroidal network A associated with an uniform matroid is scalar-linearly

solvable over a sufficiently large finite field of any characteristic. The same holds for the graphic

matroids.

Proof. It is straightforward to show that for any uniform matroid M and a prime p, there is a

sufficiently large finite field F of characteristic p and a matrix A such that M is a representable

matroid associated with A over F. The same is true for graphic matroids. El

As a consequence, any matroidal networks constructed from uniform or graphic matroids will

not have interesting properties like those constructed from the Fano and non-Fano matroids in

Dougherty et al. [7, 8].

2.5 Examples

In this section, we provide examples of scalar-linearly solvable networks that follow from Theorem

21. As mentioned before, we get a method for constructing scalar-linearly solvable networks from

Theorems 18 and 21: pick any representable matroid over a finite field F and construct a matroidal

network. We assume A ={0, 1} throughout this section.

The Butterfly network 1 in Fig. 2-1 is a matroidal network that can be constructed from

the uniform matroid U2,3. The ground set S of U2,3 is {a, b, c}. Nodes 1-2 are the source nodes'

and nodes 5-6 are the receiver nodes. See Fig. 2-1 and Table 2.1 for details of the construction

and a global scalar-linear network code solution. Note that the sets under 'Variables' column are

order-sensitive.

Network A2 in Fig. 2-2 is a matroidal network constructed from the uniform matroid U2,4 . The

ground set S of U2,4 is {a, b, c, d}. Nodes 1 and 2 are the source nodes and nodes 7-9 are the receiver

nodes. U2,4 is a representable matroid associated with A [ 0 over F3 and, hence, it
0 1 1 1

has a scalar-linear network code solution over F3. See Fig. 2-2 and Table 2.2 for details.

Consider the graph G and the matroidal network M3 constructed from M(G) in Fig. 2-3. The

ground set S of M(G) is {1,... , 7}, representing the edges of G. Nodes 1-4 are the source nodes

and nodes 11-13 are the receiver nodes. M(G) is a representable matroid over field F2 and, by

Theorem 21, the network has a scalar-linear network code solution over F2 , as shown by the global
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Figure 2-1: The Butterfly network 1

constructed from U2,3
Table 2.1: Construction of the Butterfly net-
work Ni from U2 ,3.
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Figure 2-2: Network P2 constructed
from U2,4
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Table 2.2: Construction of Af2 from U2,4

Step Variables [ Nodes Ix g(x)
1 {3,4,5,7} ni-n4 3 ni

4 n2

5 n3

7 74

2 {1,4,5,7} n5, n6 1 n6

2 {2,1,3,4,5} n7,7n8 2 n8

2 {6,1,2,5} ng,nio 6 nio

3 {3,2, 7} ni
3 {4,3,6} n12
4 {1, 2,3,6} n13

Figure 2-3: Graph G and network V3 con-

structed from M(G)

Table 2.3: Construction of A 3

in Fig. 2-3
from M(G)

coding vectors on Nr3 in Fig. 2-3. This example shows that our results provide networks which

are different from the networks previously known to be scalar-linearly solvable such as multicast,

2-level multicast and disjoint multicast networks. It is possible that network NA3 can be constructed

from a set of polynomials as in Dougherty et al. [9] or via index codes as in El Rouayheb et al. [10].

Step Variables Nodes [ x g(x)

1 {a, b} ni, n2 a ni

b n2

2 {c, a, b} n3, n4 c n4

3 {b, a, c} n5

3 {a,b,c} n
4 none not used

Step [ Variables I Nodes x g(x)

1 {a,b} ni,7n2 a ni

b n2

2 {c, a, b} n3, n4 c n4

2 {d, a, c} n5, n6 d n6

3 {b,c,d} n7

3 {a, b, c} n8

4 {c,d} ng



2.6 Discussion and Conclusion

In this chapter, we showed that any matroidal network associated with a representable matroid

over a finite field is scalar-linearly solvable. Combined with an earlier result of Dougherty et al., it

follows that a network is scalar-linearly solvable if and only if it is a matroidal network associated

with a representable matroid over a finite field. It also follows that determining scalar-linear

solvability of a network is equivalent to finding a representable matroid over a finite field and a

valid network-matroid mapping. We also showed a relationship between scalar-linear solvability of

networks and field characteristics. Moreover, we obtained a method for generating scalar-linearly

solvable networks from representable matroids over finite fields and a set of scalar-linearly solvable

networks that are possibly different from those networks that we already know are scalar-linearly

solvable.

Unfortunately, the results presented in this chapter do not seem to generalize to vector-linear

network coding or more general network coding schemes. The difficulty is that the matroid structure

requires that a subset of the ground set of a matroid is either independent or dependent, but what

this corresponds to in vector-linear codes, for instance, is not clear. Instead of vectors over fields,

we now have vectors over rings (matrices over a field, to be more specific) in vector-linear network

coding, and we are unaware of suitable matroids on vectors over rings for our purpose. In fact,

El Rouayheb et al. [10] also made a similar observation and suggested that FD-relations are more

related to networks than are matroids.



Chapter 3

Network Capacity Regions

In this chapter, we study the network capacity region of networks along the lines of work by Can-

nons et al. [2]. We define the network capacity region of networks analogously to the rate regions

in information theory and show its notable properties: closedness, boundedness and convexity. In

the case of routing, we prove that the network routing capacity region C, is a computable rational

polytope and provide exact algorithms and approximation heuristics for computing the region. In

the case of linear network coding, we define an auxiliary region C', called the semi-network linear

coding capacity region, which is a computable rational polytope that inner bounds the network

linear coding capacity region, and provide exact algorithms and approximation heuristics for com-

puting C'. More specifically, we show the network routing capacity region C, (C') is an image of a

higher-dimensional rational polytope under an affine map and consider the computation of C, (Cj) as

the polytope reconstruction problem with a ray oracle. Our results generalize to directed networks

with cycles and undirected networks. We note that some underlying problems associated with

the polytope reconstruction problem are NP-hard, such as the minimum cost directed Steiner tree

problem, and that algorithms and heuristics we present are not polynomial time schemes. Rather,

the algorithms and heuristics may have exponential running time in the input size, depending on

the intermediate computations and the resulting output's description size.

As our notion of the multi-dimensional network capacity region captures the notion of the single-

dimensional network capacity in [2], our present work, in effect, addresses a few open problems

proposed by Cannons et al. [2]: whether there exists an efficient algorithm for computing the

network routing capacity and whether there exists an algorithm for computing the network linear



coding capacity. Computing the single-dimensional network capacity is equivalent to computing

a point on the boundary of the multi-dimensional network capacity region and a ray starting at

the origin and reduces to solving associated linear programs in the case of the network routing

capacity and (a lower bound of) network linear coding capacity. It follows from our work that

there exist combinatorial approximation algorithms for computing the network routing capacity

and for computing a lower bound of the network linear coding capacity.

A polytope has two equivalent descriptions; the vertex description in terms of vertices, or

the extreme points, of the polytope and the hyperplane description in terms of linear inequalities

defining facets of the polytope. In this work, we do not distinguish the two descriptions and use them

interchangeably, but we note that converting one description into another can be computationally

expensive; we use vertex enumeration algorithms to convert a hyperplane description into a vertex

one and facet enumeration algorithms (essentially, convex hull algorithms) for the conversion in the

other direction. See [12, 14, 18] for more details on polytopes and relevant algorithms.

In this chapter, we consider nondegenerate networks where, for each demand of a message at a

receiver node, there is a path from a source node generating the message to the receiver node and

where no message is both generated and demanded by the same node.

3.1 Fractional Network Coding Model

We define a fractional network coding model. Most definitions are adapted from Cannons et al. [2].

We use the notations where we write vectors or points in a multi-dimensional space with a hat as

in k and let ki denote the i-th coordinate of the vector k. We also use [k]i and k(i) to denote the

i-th coordinate to avoid confusions when necessary. When it is clear from the context, we omit the

hat to avoid cluttering symbols.

Definition 25 (Capacitated Network). A capacitated network K is a finite, directed, acyclic

multigraph given by a 7-tuple (V, e, p, c, A, S, R) where

1. v is a node set,

2. e is an edge set,

3. t is a message set,



4. C : E -+ Z+ is an edge capacity function,

5. A is an alphabet,

6. S : v ~ 2P is a source mapping, and

7. R: v -+ 2 is a receiver mapping.

As we shall use only capacitated networks in this chapter, we use N1 to denote a capacitated

network. We refer to networks defined in Chapter 1 as ordinary networks. We assume that the

messages in p are indexed as m 1,..., mjpi. We define fractional edge function, fractional decoding

function, and fractional message assignment with respect to a finite field F, where |F > JAl, a

source dimension vector k, and an edge dimension n:

Definition 26 (Fractional Edge and Fractional Decoding Functions). Let A = (vI, e, , c, A, S, R)

be a capacitated network and m 1,... , mj, 1 be the messages. Let k = (k1, ... , kjpj) be a vector of

positive integers and n be a positive integer. For each edge e = (x, y), a fractional edge function is

a map

fe : (Fkii) x . . x (Fkia) x (Fnc(e,+1)) x .. . x (Fnc(ea+)) -+ Fnc(e),

where mi,, . . ., mi, are a messages generated by x and ea+1,-- , a+ are 3 in-edges of x. For each

node x E v and message mj E R(x), a fractional decoding function is a map

fx,,j : (F kii) X -. -- X (F ki_) x (Fnc(e1+1)) x ... x (Fnc(e,+,3)) -> Fkj,

where mi,. . ., mi, are a messages generated by x and ea+1, - - -,a+ are /3 in-edges of x.

We call k = (k1,. .. , k1p) the source dimension vector, where ki is the source dimension for

message mi, and n the edge dimension. We denote the collections of fractional edge and fractional

decoding functions by Fe = {fe : e E e} and Fx,m = {fx,m : x C v, m E R(x)}, respectively.

Definition 27 (Fractional Message Assignment). Let A = (v E, y, c, A, S, R) be a capacitated

network and m1,..., mj be the messages. A fractional message assignment is a collection of maps

a = (a1..., a1 1 i) where a, is a message assignment for mi, a2 : mi -> Fki.

Definition 28 (Fractional Network Code). Let M = (v, c, y, c, A, S, R) be a capacitated network

and m 1,. . . , mij,1 be the messages in p. A fractional network code on Af is a 5-tuple (F, k, n, Fe, Fd)



where

1. F is a finite field, with \F| > |A|,

2. k = (k 1,.. ., kIlA) is a source dimension vector,

3. n is an edge dimension,

4. J7e is a collection of fractional edge functions on N,

5. F~d is a collection of fractional decoding functions on .V.

As with the ordinary network codes in Chapter 1, we have different kinds of fractional network

codes defined analogously: fractional routing network codes, fractional linear network codes, and

fractional nonlinear network codes. We shall use the prefix (k, n) before codes to emphasize the

parameters k and n.

Definition 29 (Fractional Network Code Solution). Let /= (v, E, y, c, A, S, R) be a capacitated

network and m 1 ,..., m11 be the messages. A fractional network code (F, k, n, Fe, Fd) is a fractional

network code solution, or fractional solution for short, if for every fractional message assignment

a (ai, . . . , ali),

fx,m, (ail (mi 1 ), ... , ai, (mi), s(ea+1), . - - , s(ea+)) = aj(mj),

for all x c v and ng G R(x). Note that mi, ... ,mi, are a messages generated by x and

e,+1, --.. - ea+0 are 3 in-edges of x. If the above equation holds for a particular x E v and message

m E R(v), then we say node x's demand m is satisfied.

As with network code solutions for ordinary networks, we have special classes of fractional

network code solutions: fractional routing network code solutions, fractional linear network code

solutions, and fractional nonlinear network code solutions. When it is clear from the context, we

refer to them by appropriate abridged versions from time to time.

If (F, k, n, Fe, Fd) is a fractional network code solution for A= (V, e, P, c, A, S, R), source node

x E v sends a vector of ki symbols from F for each message mi E S(x); each receiver node x E v

demands the original vector of ki symbols corresponding to message mi for each m. E R(r); and

each edge e carries a vector of c(e)n symbols. We refer to coordinates of the symbol vector of



length ki corresponding to message mi as message mi's coordinates. Note that each coordinate of a

message is independent from others. We use coordinates and symbols for messages interchangeably;

the i-th symbol of message m refers to the i-th coordinate of the message. We refer to coordinates

of the symbol vector of length c(e)n on edge e as edge e's coordinates. Note that a coordinate of

edge e can be active, meaning it actively carries a symbol in the fractional network code solution, or

inactive, meaning it is not used in the solution. For instance, if an edge with 5 available coordinates

has to send 2 independent symbols through the edge, then it suffices to use only 2 coordinates; in

this case, the coordinates that carry symbols are active and the other 3 coordinates are inactive.

We define a notion of minimal network code solutions as follows:

Definition 30 (Minimal Fractional Network Code Solution). A fractional network code solution

(F, in, Fe, Fd) for N is minimal if the set A of all active coordinates of edges in the solution is

minimal, i.e., there exists no (k, n) fractional network code solution for K with the set of active

coordinates that is a strict subset of A.

3.2 Network Capacity Regions

3.2.1 Definitions

Definition 31 (Achievable Coding Rate Vector). Let K (v, C, et, c, A, S, R) be a capacitated

network. A vector of positive numbers ,..., E Q is an achievable coding rate vector if

there exists a fractional network code solution (F, k, n, Fe, Fd) for K where k = (k1 ,. .. ,kl).

Definition 32 (Network Capacity Region). Let K = (v, e, y, c, A, S, R) be a capacitated network

and m1,..., m 1t be the messages. The network capacity region C of K is the closure of all achiev-

able coding rate vectors in RI|I,

C = closure{- . - - z,..., ) is an achievable coding rate vectors}
n n n n

By definition, a network capacity region is a set of points in the Euclidean space R+.

There are different classes of achievable coding rate vectors and, hence, corresponding classes

of network capacity regions: the network routing capacity region, C, which is the closure of all



achievable routing rate vectors; the network linear coding capacity region, C1, which is the closure

of all achievable linear coding rate vectors; and the network nonlinear coding capacity region, C,
which is the closure of all achievable nonlinear coding rate vectors (or the network capacity region,

equivalently).

3.2.2 Properties

We show that the network capacity regions are closed, bounded and convex sets and satisfy an

additional property.

Theorem 33. Let A = (v, E, p, c, A, S, R) be a capacitated network and m 1,... ,nll be the mes-

sages. The corresponding network capacity region C is a closed, bounded and convex set in R 1.

Proof. (Closedness) By definition, C is a closure of a set and, hence, closed.

(Boundedness) We show that - is bounded for all i in the achievable coding rate vectorn

,...,n. By symmetry, it suffices to show for -. Let n be the edge dimension, vi be

the set of nodes in v that generate message mi and -y be the sum of capacities of out-edges of nodes

in vi. Then, ki < -yn as we cannot send more than -yn independent coordinates of message mi and

expect receivers to recover all the information. Hence, n-< -Y. It follows that C is bounded.

(Convexity) Let xO, xi E C and A E [0, 1]. We show that x = (1 - A)xo + Axi E C. We write

x = xo + A(xi - xo). There exists sequences of achievable coding rate vectors converging to xo

and xi, say {yo,j} and {y1,g} respectively. Let {Aj} be a sequence of rationals converging to A.

Then, yj = yOj + Aj(y,j - yo,j) is an achievable coding rate vector for j = 1, 2,. Let Aj = ,
q

YO,j= ,... ,±L and y1j = , .. , . Then,

Yj (q - p)kn' + pk'in (q - p)kli n' I+ pk/ n)

There exists a fractional network code solution (F, I, qnn', 7 e, Fd) where k = ((q - p)kin' +

pk'in, ... , (q - p)ki 1in' + pkn); if NC1 and NC 2 are two fractional network code solutions with

rate vectors yOj and y1,j, then for first (q - p)nn' coordinates we employ (q - p)n' copies of NCI



and for the remaining pnn' coordinates we employ pn copies of NC 2. Then,

Ix - yjI o + A(xI - zo) - yoj - Aj(yij - yoj)

(1 - A)xo - (1 - Aj)yo,j + Ax 1 - Ajyi,jl

< |(1 - A)xo - (1 - Aj)yo,jl + Ax1 - Ajyi,jl.

Since Aj -- A and yoj -- xo, (1- Aj)yo,j converges to (1- A)xo and |(1- A)xo - (1- Aj)yo,j| can

be made arbitrarily small for sufficiently large j. Similarly, |Ax1 - Ayyjl can be made arbitrarily

small for sufficiently large j. It follows that the sequence of achievable coding rate vectors {yj}

converges to x and that x E C. E

Corollary 34. Let 1 = (vI, y, c, A, S, R) be a capacitated network and m 1,... , m be the mes-

sages. The corresponding network routing capacity region, Cr, and network linear coding capacity

region, C1, are closed, bounded and convex regions in R±.

We note that the network capacity regions are of very special kind by definition:

Proposition 35. The network capacity region C is a region such that if r (ri,... rigI) E C, then

the parallelepiped [0, ri] x ... x [0, rly;] is contained in C. The same holds for the network routing

capacity region Cr and the network linear coding capacity region C1.

We use bd C to denote the boundary of the network capacity regions. Similarly, we use bd C,

and bd Ci to denote the boundaries of corresponding regions.

3.3 Network Routing Capacity Regions

In this section, we prove that the network routing capacity region is a bounded rational polytope,

and provide exact algorithms and approximation heuristics for computing it. Since multi-source

multi-sink networks can be reduced to multiple multicast networks, it suffices to show the results

with respect to the multiple multicast networks; for each message m, we add a "super source node"

that generates the message m and connects to source nodes that generate m via edges of infinite,

or sufficiently large, capacities. We assume that the given networks in this section are multiple

multicast networks for simpler presentation of results.



3.3.1 Properties

Theorem 36. The network routing capacity region C, is a bounded rational polytope in R' and is

computable.

Proof. (Polytope) It suffices to consider minimal fractional routing solutions since any fractional

routing solution can be reduced to a minimal one by successively making unnecessary active edge

coordinates inactive. For each coordinate of a message m, it suffices to route it along a Steiner

tree rooted at the source node of m and spanning all the receiver nodes demanding m. Hence, any

minimal fractional routing solution consists of routing messages along Steiner trees. Let T be the

set of all Steiner trees rooted at the source node of message mi and spanning all receiver nodes

that demand mi, and T be the union, T = T U ... U 7w. Note that T is a finite set. Then, any

minimal fractional routing solution (F, k, n, .Fe, .Fd) satisfies the following constraints:

ETGTT(e) -x(T) < c(e) -n, Ve E e

7TEE, x(T) = ki, V1 < i <

x > 0,

where x(T) is the number of times Steiner tree T is used in the solution and T(e) is an indicator

that is 1 if the Steiner tree T uses the edge e, or 0 otherwise. Dividing all variables x(T) by n, we

obtain

ETy T(e) -x(T) < c(e), Ve E E

ZTTx(T) LV

x > 0.

It follows that all minimal fractional routing solutions, after scaling by n, satisfy

>TCTT(e) -x(T) < c(e), Ve E c

x > 0.

As the coefficients are in Q, the above set of inequalities defines a bounded rational polytope P,

with rational extreme points, in R7 . The polytope is bounded, because edge capacities are finite

and no Steiner tree can be used for routing for infinitely many times. Each minimal fractional

routing solution reduces to a rational point inside the polytope P, and each rational point x inside



P has a minimal fractional routing solution (F, k, n,YFe, F) that reduces to it, such that

.. x(T),...,-t x(T) .
TET1 Te'Tj

To see the latter statement, we take a rational point in P, put rationals under a common denomina-

tor, and choose appropriate k and n. As rational points are dense, the closure of the rational points

corresponding to minimal fractional routing solutions is exactly P. It follows that the network

routing capacity region C, is the image of P under the affine map

: (x(T))TGT - x(T), , (T)
(TETi TETI|,1

As the affine map preserves rationality, it follows that the network routing capacity region is a

bounded rational polytope in R.

(Computability) We show that we can compute the vertex description (the extreme points) of

the polytope Cr. We compute the vertices vi,. .. , Vh of polytope P by any vertex enumeration

algorithm where the starting point can be any point that corresponds to using a single Steiner tree

for the maximum number of times allowed by the network. We compute the images of the vertices

of P under the affine map #L4. The network routing capacity region is given by the vertices of the

convex hull of points @r(Vi), . .. , @'(vh) in R .

The network routing capacity defined by Cannons et al. [2] corresponds to a point on the bound-

ary of polytope C,; it is exactly the intersection point between the (outer) boundary bd Cr and the

ray z = (1,... ,1)t, t > 0. As the ray has a rational slope, the intersection point is rational and,

hence, Corollary IV.6 in [2] follows straightforwardly. We use P, to denote the "parent" polytope,

in Theorem 36, of the network routing capacity region Cr.

3.3.2 Algorithms

We provide exact algorithms and approximation heuristics for computing the network routing

capacity region Cr. This subsection goes together with next two subsections, so we advise the

reader to refer to these subsections as necessary. We assume that a capacitated network IV is

given if not stated explicitly. We already provided an exact algorithm for computing C, in the



proof of Theorem 36, which we refer to as Algorithm VertexEnurmRoute. The algorithm takes the

hyperplane description of Pr and outputs the hyperplane description of Cr. Since the polytope

Pr is defined in a high dimensional space R1 where |TI could be exponential in the description

size of networks, Algorithm VertexEnumRoute may not be efficient in practice as there could be

exponentially many vertices.

Algorithm 1 Algorithm VertexEnumRoute(A)

1: Form the hyperplane description of polytope Pr.
2: Compute the vertices of Pr with a vertex enumeration algorithm and obtain v 1 ,. . . , vh.
3: Compute the image of the vertices, r(Vi), ... , (vh)
4: return convex hull of Vr(Vi), ... , (V)

To design more efficient algorithms and approximation heuristics, we recast the computation of

the network routing capacity region as the polytope reconstruction problem with a ray oracle and

use related results in literature [5, 15]. More specifically, we formulate the reconstruction problem

as follows:

Definition 37 (Polytope Reconstruction Problem). Let Q be a polytope in Rd that contains the

origin in its interior and ORay be a ray oracle that given a ray of the form = rt, t > 0, computes

the intersection point between the ray and the boundary of Q. Compute a polytope description of

9 using a finite number of calls to the oracle 0 Ray.

We reduce the computation of the network routing capacity region C, to a polytope reconstruc-

tion problem by 1) reflecting C, around the origin to get a symmetric polytope Q in RIPI that

contains the origin in its interior and 2) solving the linear programs similar to the one in Cannons

et al. [2] to implement the ray oracle ORay. To reflect Cr, we map all calls to the ray oracle to

equivalent calls with rays defined in R1 i. We use the algorithm outlined in Section 5 of Gritzmann

et al. [15] to compute all the facets of the resulting polytope Q and recover the facets of the network

routing capacity region Cr. We refer to the overall algorithm as Algorithm FacetEnumRoute. The

main idea of the algorithm is to first find a polytope Q' that contains Q and whose facet-defining

hyperplanes are a subset of those for Q (Theorem 5.3 in [15]), and then successively add more

facet-defining hyperplanes of Q to Q' by using ORay. In other words, we start with a polytope that

contains Q and successively shrink it until it becomes Q. By Theorem 5.5 in Gritzmann et al. [15],



we need at most

fo(Q) + - 1_1(Q) + (5|p| - 4)fjp 1-i(Q)

calls to the ray oracle ORay to compute the facets, where fi(Q) denotes the number of i-dimensional

faces of Q (the 0-th dimensional faces being the points). Because of the symmetries around the

origin, we need at most

fo(Cr) + (|pl - 1)f 12 I(Cr) + (51/pl - 4)fjpjj1(Cr)

calls to the ray oracle where fi(Cr) denotes the number of i-dimensional faces of Cr that do not

contain the origin.

Algorithm 2 Algorithm FacetEnumRoute(N, ORay)

1: Form the hyperplane description of Pr in R .
2: Internally, reflect Cr around the origin to get the polytope Q in RI.
3: Using ORay, compute a polytope Q' containing Q.
4: while Q' has undetermined facets do
5: Compute the vertices of Q'.
6: Using ORay, compute the intersection points on rays defined by the vertices of Q'.
7: Add newly found facet-defining hyperplanes of Q to Q'.
8: end while
9: Retrieve facets of Cr.

10: return the facet description of Cr.

Depending on the implementation of ORay, we get exact algorithms and approximation heuris-

tics for computing Cr. If we use an exact algorithm for the ray oracle ORay, we get an exact

hyperplane description of the network routing capacity region via Algorithm FacetEnum-Route. If

instead we use an approximation algorithm for the oracle that computes some point r such that

the actual intersection point lies between r and Ar, then we obtain approximation heuristics that

compute a set of points r such that the boundary bd C, lies between points r and Ar. We note that

an approximation algorithm for Oy does not necessary work with Algorithm FacetEnumRoute

to give an approximation algorithm for Cr, where an A-approximation of Cr would be a polytope

P such that P C Cr C AP. While an approximation algorithm for the oracle ORy does not

necessarily lead to a polytope description of Cr, it might be faster and more efficient than exact

algorithms and, hence, more applicable to compute a quick "sketch" of the capacity region Cr. One



approximation heuristic for computing the region C, would be to take a sufficiently large number

of rays evenly spread apart throughout the space RIP and use an approximate oracle ORay to find

the approximate intersection points. As there are many simple variations of this approach, we do

not go into the details of the heuristics themselves in this work.

3.3.3 Implementations of Exact and Approximate Oracle ORay

In this subsection, we provide both exact and approximation algorithms for the ray oracle ORy

used in Algorithm FacetEnumRoute. The implementations of the oracle reduce to solving a linear

program. We use any linear programming algorithms, such as the ellipsoid algorithm and simplex

algorithm, to solve the linear program exactly and obtain an exact oracle ORay. For the approximate

ray oracles, we design a combinatorial approximation algorithm using techniques by Garg and

K6nemann [13]. Alternatively, we could use the ellipsoid algorithm with an approximate separation

oracle, but as the ellipsoid algorithm is slow in practice, this might not be a viable approach. As

the network routing capacity region C, is a rational polytope, it suffices to consider rays with a

rational slope in

Algorithms

Given the hyperplane description of the polytope Pr,

EZTT T(e) . x(T) < c(e), Ve E c

S> 0,

and a ray with a rational slope, z = t, t > 0, we want to compute the rational intersection point

of the ray and the boundary of Cr. It is straightforward to see that the intersection point is exactly

Amaxd where Amax is the optimal value to the linear program

max A

s. t. E y TT(e) - x(T) c(e), Ve E E

Ers> x(T) Ag, V1 < i < p|

X, A > 0.



Since the coefficients of the linear program are rational, the optimal value Amax and the corre-

sponding solution x are also rational. While written in a different form, the linear program is

equivalent to the one in Cannons et al. [21 when the ray is 2 = (1, .. . , 1)t, t > 0. We use any linear

programming algorithm, such as the ellipsoid algorithm and simplex algorithm, to solve the above

linear program exactly and obtain Algorithm OracleRayExactRoute. We note that the running

time of Algorithm OracleRayExact-Route could be poor as the linear program has exponentially

many variables (one for each Steiner tree) and the associated separation problem is NP-hard (the

minimum cost directed Steiner tree problem).

Algorithm 3 Algorithm OracleRayExact-Route(A, )
1: Form the linear program (3.3.1) corresponding to NV and 4.
2: Solve the linear program with a linear programming algorithm and obtain Amax.
3: return Amaxq-

We now provide a combinatorial approximation algorithm for solving the linear program (3.3.1)

and, hence, for oracle ORay. It computes a point i such that Amax is on the line segment between

i and (1 + w)Ai for some numbers w > 0 and A > 1. The main idea is to view solving (3.3.1) as

concurrently packing Steiner trees according to the ratio defined by 4, and use the results for the

multicommodity flow and related problems by Garg and K6nemann [13]. Instead of a shortest path

algorithm, we use a minimum cost directed Steiner tree algorithm for our purpose. We assume

we have an oracle ODSteiner that solves the minimum cost directed Steiner tree problem, which is

well-known to be NP-hard, within an approximation guarantee A:

Definition 38 (Minimum Cost Directed Steiner Tree Problem). Given an acyclic directed multi-

graph 9 = (v, e), a length function 1 : c -+ R-, a source node s and receiver nodes ni,... , nk, find

a minimum cost subset of edges e' such that there is a directed path from s to each ni in e'. The

cost of a subset E' is Y 1e

First, we consider networks with exactly one message to route. In this case, the linear pro-

gram (3.3.1) reduces to the following simpler linear program:

max 'ET x(T)

s. t. ZTETT(e) . x(T) < c(e), Ve Ec e (3.3.2)

X > 0,



where T is the set of all Steiner trees rooted at the source node of the message and spanning all

the receiver nodes demanding the message. Note that the original problem now reduces to the

fractional directed Steiner tree packing problem (compare to the fractional Steiner tree packing

problem in [17]). To solve (3.3.2), we use Algorithm DSteinerTreePacking which is a straightfor-

ward modification of the maximum multicommodity flow algorithm given in Section 2 of Garg and

K6nemann [13]. In Algorithm DSteinerTreePacking, mincost(l) denotes the cost of the (approxi-

mate) minimum cost directed Steiner tree found by ODSteiner-

Algorithm 4 Algorithm DSteinerTreePacking(A, W, ODSteiner, A)
1: r/= Aw 3 = (1 + )((1 + rj)L)- 1 /7
2: f = 0;.l(e) = , Ve CE
3: while mincost(l) < A do
4: Use ODSteiner to compute an approximate minimum cost Steiner tree T, under the length 1.
5: d = mmn c(e)
6: f f + d

7: Update l(e) - l(e) I + r/ , Ve s.t. T(e) 1.
8: end while
9: return f / log 1 +7

Essentially the same analysis in [13] works for Algorithm DSteinerTreePacking except that our

approximation guarantee is worse by a factor of A since we use an approximate oracle ODSteiner-
We omit the analysis and summarize the performance of the algorithm as follows. For computations

involving r/ and w, we refer to Appendix A.1.1.

Theorem 39. For 0 < w < 1, Algorithm DSteinerTreePacking computes a (1 +w)A-approximate

solution to the linear program (3.3.2) in time O(w-2 |e log L . TDSteiner), where L is the maximum

number of edges used in any Steiner tree in T and TDSteiner is the time required by oracle ODSteiner

to solve the minimum cost directed Steiner tree problem within an approximation guarantee of

A> 1. Note thatL< |W.

We now give Algorithm OracleRayApproxRoute, for oracle ORay, which computes a (1 + w)A-

approximate solution to the linear program (3.3.1). It uses Algorithm DSteinerTreePacking as a

subroutine.



Algorithm 5 Algorithm OracleRayApprox-Route(V, W, ODSteiner, A, )

1: Using Algorithm DSteinerTreePacking, compute the approximate value zi to the linear pro-
gram (3.3.2) for each message mi separately.

2: z = mini (; scaling-f actor = Ii'qj 7 z
3: q = scaling-f actor - 4
4: q = - ; 6 = (IE /(1 - r/A))- qA

5: N = 2 [i logi, r,

separately

6: while true do
7: t = 0; l(e) = 6,Ve E
8: for phase i = 1, . . ., N do
9: for iteration j = 1, ... , p do

10: y = qj
11: while -y > 0 do
12: Using ODSteiner, compute the minimum cost directed Steiner tree T Tj, under 1.
13: d = min{-y, c(e) : T(e) = 1}
14: - = - - d

15: Update l(e) =1(e) (1 + ,Ve such that T(e) = 1.

16: if Ze l(e)c(e) > 1 then

17: Goto Line 25.
18: end if
19: end while
20: end for
21: t = t + 1
22: end for
23: scaling-f actor = 2scaling-f actor; e =24

24: end while
25: return scaling-f actor - t/ log 1+,



Analysis

While Algorithm OracleRayApproxRoute is closely related to the maximum concurrent flow algo-

rithm given in Section 5 of Garg and K6nemann [13], there are significant differences and we give an

analysis of the algorithm below. The linear program (3.3.1) can be thought of as the "concurrent"

fractional directed Steiner tree packing problem. We have directed Steiner trees partitioned into

different groups according to the network messages. Then, computing the optimal value of the

linear program (3.3.1) is equivalent to fractionally routing along the Steiner trees so that the ratios

among the overall usages of groups of Steiner trees correspond to the ratios among the coordinates

of the q vector.

The dual linear program corresponding to (3.3.1) is

min el(e)c(e)

s. t. 1e rTe> l(e) - z(i) 0, Vi < i < |p|,VT E (3.33)

1 iz(i) ;

l,z > 0.

From the dual linear program, we note that the associated separation problem is exactly the

minimum cost directed Steiner tree problem. Let mincosti(l) denote the cost of the minimum

cost directed Steiner tree in 7 under the length function 1. Define D(1) = e& l(e)c(e) and

ca(i) = qj mincostj(l). Then, solving the dual linear program is equivalent to finding an

assignment of lengths to edges, 1 : c --> R+, so as to minimize D(). Let 3 be the optimal value of

the dual linear program, i.e., in mn D()

We first consider a modified version of Algorithm OracleRayApprox.Route, with the infinite

while-loop in line 6 removed, with variable scalingf actor and line 23 removed, and with the finite

for-loop in line 8 replaced with an infinite while-loop. The following holds:

Theorem 40. Assume 13 > 1. For 0 < w < 1, Algorithm OracleRayApproxRoute, with the

modifications, returns a (1 + w)A-approximate solution to the linear program (3.3.1) in at most

~log1+ I1 A number of phases.

Proof. Algorithm OracleRayApproxRoute in lines 8-22 proceeds in phases which in turn consist of

|j iterations. Each iteration consists of variably many number of steps of the while-loop in line 11,



depending on how quickly -y is decreasing. In each j-th iteration in line 9, qj units of message mj

are routed using Steiner trees in 'T. By lines 16-18, the algorithm terminates as soon as D(l) > 1.

Let t be the last phase in which the algorithm terminates. Let lif7 denote the length function I

and -yij the variable -y at the start of s-th step of the while-loop (line 11) of j-th iteration in phase

i. Let denote the Steiner tree T selected in the s-th step of j-th iteration in phase i. Let li,o

be the length function at the start of phase i and lji be the length function at the end of phase

i (after the termination of the |pl-th iteration). Note that lI+i,o = 1iI1I. Let 1i,j1 be the length

function at the start of iteration j of phase i. For simplicity, we denote D(Iigi) and a(lii1I) by

D(i) and a(i), respectively. Then,

D (lf,5) = i~ (e) -c(e-)

= D(ll) + 71(<l- -yj) is (e)

e:T;) i(e)=1

< D(l -1 ) + q(8y1 - s )Amincostj(l ).

Then,

D(li,j+ 1 ) < D(I,3 ) + nAE (7 1 -. y2s3) mincostj+1(li'j+1)
S

D(lIj) + rAqj+l mincostj+1(li,j+1)

< D(lij) + rAqj+ 1 mincostj+1(li,1,1),

where we used the fact that mincost (isj) < mincost (li,j+1) as the length function and mincost

are nondecreasing in any fixed argument throughout the algorithm. After summing up the above



inequalities over the iterations of phase i, we get

D(li,li) < D(iii_1 ) + r/Aqi11 i mincost1 IAI (i i,i)

< D(li,1iI 2 ) + rA(qI A_1 mincostI 1 _1 (l,,i1 ) + qI/I mincost I (l1 , I1 ))

IMi
< D(l1,o) + nA Lqj mincostj (l1,ii),

j=1

and it follows that

D(i) < D(i - 1) + nAa(i).

Since D() > #, it follows that D(i) _ Since D(0) =ej, we have for i > 1,

D~i < .C1
D (1 -rA/#)i

_ _____ r/ A i-

1 7-A/# # / -ijA

< eI-rA
< 1 - r7A/ 1

where the last inequality uses the assumption that > 1. The algorithm terminates in phase t for

which D(t) > 1. Hence,
7A (t -1)

1 < D(t) < eI N- >.
- 1- r/A

And it follows that
3 rA

t - 1 (1 - rA) ln -'A (3.3.4)

In the first t - 1 phases, we have routed (t - 1)qj units of message mj, for j =1,...,p This

routing solution may violate the edge capacity constraints, but, by the following claim, we obtain

a feasible solution with A > io t-1 See Claim 5.1 in [13] for the proof of the claim as the same

proof works here.

Claim 41. There exists a feasible solution with A > t-1
log1 + 7



Thus, the ratio of the values of the optimal dual and feasible primal solutions, (, is strictly less

than -j- log1 ,+,. By (3.3.4), we get

< A logi+j 7A ln1/
1-A In 1-1A - (1 - 7A)ln(1+ I) In7A

For 3 = (\el/(1 - rA))-l/7A, the ratio nl11 equals (1 - A)- 1 and, hence,

(qA r/qA < A-3A.
(1 - rA) 2 ln(1 + 7) - (1 - 7 A)2 I(r - q2 /2) -

For r/ =A o, (1--qA)- 3 A is at most our desired approximation ratio (1+w)A (see Appendix A.1.2

for details). By weak-duality, we have

/3 1
1 <_( < 3 log + o I

and, therefore, the number of phases in line 8 is strictly less than 1+/3 log1+ 1/6, which implies that

Algorithm OracleRayApproxRoute terminates in at most 22 log 1+ 1 IAl number of phases. El

Note that by Theorem 40, the running time of Algorithm OracleRayApproxRoute, with the

modifications, depends on 0. Note that # can be reduced/increased by scaling the 4 vector/capac-

ities appropriately. We now remove the assumption / > 1 and analyze the running time of Algo-

rithm OracleRayApproxRoute as a whole.

Theorem 42. For 0 < w < 1, Algorithm OracleRayApproxRoute computes a (1 + w)A-approz-

imate solution to the linear program (3.3.1) in time O(w- 2 (| plog AIpI + Ie\)Alog Ie -TDSteiner),

where TDSteiner is the time required to solve the minimum cost directed Steiner tree problem with

oracle ODSteiner within an approximation guarantee A.

Proof. To remove the dependency of the running time on 3, we update the 4 vector and variable

scaling-factor appropriately. Let z* be the exact maximum fractional Steiner tree packing value

for message mi in line 1 and let z* = mini z-. Then, z* is an upper bound on the maximum rate

at which the messages can be routed in a minimal fractional routing solution. Since zi < z* < Azi,

< 0 < Az. We scale the 4 vector as in line 3 so that 1 < / < Alp|. The assumption /3 > 1 is

satisfied, but 3 could now be as large as Ap|. We employ the doubling trick as explained in Section



5.2 in [13] and line 23 accomplishes this, together with N = 2 K1- logi+n 1!IA] in the for-loop in

line 8. Since we halve the "current" value of # after every N phases, the total number of phases

is at most NlogAlp|. Since there are \pl iterations per phase, there are at most NjpilogAlpi

iterations in total. Each iteration consists of variably many number of steps and, in all steps but

the last, we increase the length of an edge by a factor of 1 -,. By similar reasons as in the proof

of Claim 5.1 in [13], the length of each edge can increase by a factor of 1 + 77 at most logi+, j times

throughout the algorithm. Hence, the total number of steps of the while-loop in line 11 exceeds

the total number of iterations by at most ce log 1+o j. The total number of steps, hence calls to the

oracle ODSteiner, is at most Njpb log Alpl + |Ej log 1+ ,-

Note that E) =('). Then,

Njp) log AjpI + l log1+- Njpj log Alplt + log1 + 1 -

p|jy log Alp| |09+ | |+ |e\1911
= I0 qA 1og1+o 1 -,qA i7A 108+ 1 - 7 A)

p logAlpc+ cl ln lf + ln(1/(1 -7A))

A ln(1 +,q)

O0 ! log AIpl + cl In |c| + ln(1/(1 - nA))
q A ± -- T12/2

- o _plogA _p_+ lnlel+Inl/(1-w)
( w/A - (w/A)2/2)

= O(w 2 (j|jlog A jp + jc)A log |cl)

3.3.4 Implementations of Oracle ODSteiner

The oracle ODSteiner solves the minimum cost directed Steiner tree problem (Definition 38). A brute

force approach is to loop through all possible subsets of c and select one with the minimum cost that

satisfies the directed Steiner tree conditions. Since checking whether a subset of edges supports a

directed path from the source to each receiver node can be done in O(vl+|E) time, the brute force

approach has the total running time of O((ivl + |E)2IEI) and finds an exact optimal solution. We can

also compute an 0(k)-approximate solution by computing a shortest path from the source to each

receiver and combining the paths to form a tree, where k is the number of receivers. A shortest



path can be computed efficiently and there are many shortest path algorithms. For instance,

the Dijkstra algorithm suffices for our purpose and gives an 0(k)-approximate solution in time

O(lvI(IvI+ I c) log lv) with a binary minheap. There exists an efficient approximation algorithm for

the minimum cost directed Steiner tree problem with a significantly better approximation guarantee

by Charikar et al. [4]. Charikar et al. designed a family of algorithms that achieves an approximation

ratio of i(i - I)ki in time O(n'k2i) for any integer i > 1, where n is the number of nodes and k is

the number of receivers. For our problem, k < lv| and n < Ivi and we get algorithms that achieve

an approximation ratio of i(i - i)ivll/i in time O(lvl 3i) for any integer i > 1. For i = log Ivi, we

obtain an approximation ratio of O(log 2 Ivi) in time of O(Iv13 iog|Iv). We summarize with Table 3.1.

Note the tradeoff between the approximation ratio A and the running time.

Table 3.1: Implementations of oracle ODSteiner

Algorithm for ODSteiner Approximation Ratio A Time
BruteForce 1 O((Ivi + l)2k1)
ShortestPathApproximation O(|vi) O((lvl 2 + VJllei) log lvi)
Charikar et al. [4] i(i - 1)ivil/i O(1vl 3i)

O(log2
IlV) O( 1v13 log IvI)

3.4 Network Linear Coding Capacity Regions

In this section, we show a computable inner bound on the network linear coding capacity region C,

with respect to a given finite field. In particular, we show how to compute a polytope C', which we

call the semi-network linear coding capacity region, that is contained in C1. If Cj is strictly bigger

than Cr, then linear coding helps improve the information throughput through the network. It is

unknown at this time how good of an approximation the polytope Cj is to the actual network linear

coding capacity region C1. Unlike in the computation of the network routing capacity region, the

finite field is important in the computation of Cj. We assume that a network N1, not necessarily a

multiple multicast network as in Section 3.3, and a finite field F are given in what follows, if not

stated explicitly.



3.4.1 Definitions

Definition 43 (Weight Vectors and Partial Scalar-Linear Network Code Solutions). Let NC be a

network with unit edge capacities and m 1 , ... , ml, be the messages. The weight vectors associated

with A, or simply weight vectors, are vectors w in {O, I}I| such that there exists a scalar-linear

network code solution for A when only messages mi with wi 1 are considered, i.e., for A with

the new message set p' = {mi : wi = 1}. We refer to the scalar-linear network code solutions

corresponding to these weight vectors as partial scalar-linear network code solutions, or partial

scalar-linear solutions for short.

Note that by definition, Steiner trees are also partial scalar-linear network code solutions.

Definition 44 (Simple Fractional Linear Network Code Solution). Let M = (v, E, ,, c, A, S, R) be

a capacitated network and m1 ,.. ,m11| be the messages. A fractional network code (F, k, n, Fe, Fd)

is a simple fractional linear network code solution, or simple fractional linear solution for short,

if the fractional network code is linear over the finite field F and can be decomposed into a set of

partial scalar-linear solutions of N (when considered with unit edge capacities).

Definition 45 (Semi-Network Linear Coding Capacity Region). Let M = (v, e, y, c, A, S, R) be

a capacitated network and m1, ... , m, be the messages. The semi-network linear coding capacity

region CI of M is the closure of all coding rate vectors achievable by simple fractional linear network

code solutions. Note C1 c R/.

Clearly, the network linear coding capacity region C1 contains the semi-network linear coding

capacity region C' as the set of fractional linear code solutions is a superset of the set of simple

fractional linear code solutions.

3.4.2 Properties

Theorem 46. Assume a finite field F is given. The semi-network linear coding capacity region C',

with respect to F, is a bounded rational polytope in Rl and is computable.

Proof. (Polytope) The proof is similar to the proof of Theorem 36. Let A = (v, e, y, c, A, S, R)

be a network. Let WI, ... , wk, be all the weight vectors associated with M. Let Wi be the set

of all partial scalar-linear network code solutions that satisfy the demands corresponding to the



weight vector wi and W be the union, W = W1 U ... U Vk,. Note that Wi's are finite nonempty

disjoint sets. Then, any simple fractional linear code solution (F, k, n, Fe, F) can be decomposed

into partial scalar-linear solutions in )/V and satisfies the following constraints:

EWeI/V W(e) - x(W) < c(e) - n, Ve c c

Zk2i1 W wi ]x(W) kj, V1 < j pifl

x > 0,

where x(W) is the number of times the partial scalar-linear solution W is used in the fractional

linear solution and W(e) is an indicator that is 1 if the solution W uses edge e, or 0 otherwise.

After dividing all the variables x(W) by n, it follows that all simple fractional linear code solutions

satisfy

EweV W(e) -x(W) < c(e), Ve E E
X > 0.(3.4.1)x > 0.

Using the affine map

k' k'

01: (X(W))wew [Wi]1X(W) , ... , [wilipx(W),

i=1 WCWi i=1 WEVwi

we follow the similar lines of reasoning as in Theorem 36 to show that the semi-network linear

coding capacity region Cj is a bounded rational polytope in R .

(Computability) We apply the same proof for C, to C' using the inequalities in (3.4.1). I

We use Pl' to denote the "parent" polytope of C' defined by (3.4.1).

3.4.3 Algorithms

We obtain algorithms and heuristics for computing the semi-network linear coding capacity region

C' from algorithms and heuristics in Section 3.3.3 with little modifications; we use the polytope

description of Pl instead of Pr and use the ray oracle ORay for C'. We denote the resulting algorithms

by Algorithms VertexEnumLCode and FacetEnumLCode. We omit the details of the algorithms.

This subsection goes together with next two subsections.



3.4.4 Implementations of Exact and Approximate Oracle ORay

Algorithms

We provide the implementations of oracle Oy for the semi-network linear coding capacity region

Cj. As the region C1' is a rational polytope, it suffices to consider rays with a rational slope. Given

the hyperplane description of the polytope Pil,

Ewcw W(e) -x(W) c(e), Ve E e

x > 0,

and. a ray with a rational slope of the form 1 = qt, t > 0, we would like to compute the rational

intersection point of the ray and the boundary of polytope C'. The intersection point is Amaxq

where Amax is the optimal value to the linear program:

max A

s. t. Ewew W(e) -x(W) < c(e), VeEE ( )

k1 w > Aq3, VI j < p|
XA > 0,

where w 1,..., WkI are the weight vectors associated with network N. Since the coefficients of

the linear program are rational, the optimal value Amax and the corresponding solution x are

rational. We can use any linear programming algorithm to solve (3.4.2) exactly, as in Algorithm

OracleRayExact Route, and obtain Algorithm OracleRayExactLCode. We omit the pseudocode.

Using techniques by Garg and K6nemann [13], we provide a combinatorial approximation algo-

rithm, Algorithm OracleRayApprox-LCode, for solving the linear program (3.4.2) approximately.

While the linear program (3.4.2) looks similar to the linear program (3.3.1), it is much harder to

solve. The algorithm computes a point i such that Amadx is between i and (1 + w)B, for some

numbers w > 0 and B > 1. We assume we have oracles OSLinear and OFCover for the following two

subproblems related to (3.4.2):

Definition 47 (Minimum Cost Scalar-Linear Network Code Problem). Given a network 1 =

(v,e y, c, A, S, R) with unit edge capacities, a finite field F and a length function 1 : e -+ R+,

compute the minimum cost scalar-linear network code solution for N1 with respect to F, if it exists.



The cost of a solution is the sum of lengths of the edges used in the solution. If there is no scalar-

linear solution, then report "unsolvable."

Without the minimum cost condition, the above problem reduces to the decidability problem of

determining whether or not a network has a scalar-linear solution, which is NP-hard by Theorem

3.2 in Lehman and Lehman [21]. Hence, the above problem is at least as hard as any NP-hard

problem. We assume that OSLinear solves the minimum cost scalar-linear network code problem

exactly.

Definition 48 (Fractional Covering with Box Constraints Problem). Given an n x m nonnegative

integer matrix A, a nonnegative vector b, a positive vector c and a nonnegative integer vector u,

compute

min E"_1c(j)x(j)

s.t. A(i,j)x(j) b(i),

x(j) < uKj),

x > 0.

In Algorithm OracleRayApproxLCode, OFCover solves

following form with an approximation guarantee of B:

min y(i)Ui(l)

s. t. Ej [wi]j y(i) > qj,

y(j) < [qj],

y > 0,

V1 < j < Ip

VI < j < k'

where w1 , .. . , Wk' are the weight vectors associated with the network and U (l) is the cost of the

minimum cost partial scalar-linear solution in VV with respect to the length function 1.

V1 < i < n

V1 < j < m

the fractional covering problem of the

(3.4.3)



Algorithm 6 Algorithm OracleRayApproxLCode(A, W, OSLinear, OFCover, B, 4)
1: Using Algorithm DSteinerTreePacking, compute the (approximate) value zi to (3.3.2) for each

message mi separately.
2: z mini Z; scalingf actor z
3: 4 scalingf actor - 4
4: q = w- 9 = (|El/(1 - qB))-1/r/B

5: N = 2 log1+r 1!B

6: while true do
7: t = 0 ;l(e) = ,VeE C
8: for phase i 1,..., N do
9: 7 = 1

10: while - > 0 do
11: Using OSLinear, compute Ui(l) for each weight vector wi and corresponding partial scalar-

linear solution Wi with the minimum cost.
12: Using OFCover, solve (3.4.3) to get the y(l), ... y(k) values.
13: W = y(1)W 1 + - - - + y(k')Wrk

f W-(e)
14: s = max c(e): e such that W(e) > c(e)

15: W W
S

16: 7 = -Y

17: Update I(e) = 1(e) (1 + r ).

18: if E, l(e)c(e) > 1 then
19: Goto Line 26.
20: end if
21: end while
22: t = t +1
23: end for
24: scaling-f actor = 2scaling-f actor; = 24
25: end while
26: return scaling-f actor - t/ log 1+r;



Analysis

The corresponding dual linear program of (3.4.2) is

min Ze l(e)c(e)

s.t. ZeE W(e)l(e) _ [w]jz(j) > 0, VI < i < k' VW E Wi
s. t EeG j=:(3.4.4)

> 1 qjz(j) > 1

l,z > 0.

We rewrite the dual linear program (3.4.4) as two recursively nested linear programs. Consider

the following linear program derived from the dual program:

max E _I qz(j)

s. t. EZ -[wi]jz(j) < U(l), VI < i < k' (3.4.5)

z > 0,

where Uj(l) = minwewi Ee W(e)l(e). Let D(l) = l(e)c(e) and a(l) be the optimal value of

the linear program (3.4.5). Then, solving (3.4.4) is equivalent to finding an assignment of lengths

to the edges, I : E -* R+, so as to minimize (. Let 0 denote the optimal value of (3.4.4), i.e.,
. D~l)

min D(. The dual linear program for (3.4.5) is

min Ei y(i)Ui(l)

s.t. EZ l [w ]y(i) > qj, V1 <; j< |p (3.4.6)

y > 0.

Let a'(y) = minjgqjo 1w ] ad ')) y(i) U (l). Without loss of generality, weqj an D=1Y(y)i1)

assume that an optimal solution to (3.4.6) satisfies y(j) < [qj] for all j; then (3.4.6) is equivalent

to (3.4.3). Solving (3.4.6) is equivalent to finding an assignment of values to variables y, y

{i, ... , k'} -- R+, so as to minimize , Y. Let /3' be the optimal value of (3.4.6), i.e., /' =

mind . By linear programming duality, a(l) =3'. Then,

/3 min D(1) min D(1)
a(l) DI(y)

min, (Y)



First, we consider Algorithm OracleRayApprox_LCode with the infinite while-loop in line 6

removed, with variable scaling-factor and line 24 removed, and with the finite for-loop in line 8

replaced with an infinite while-loop.

Theorem 49. Assume # > 1. For 0 < w < 1, Algorithm OracleRayApprox_LCode, with modifica-

tions as explained above, returns a (1 + w)B-approximate solution to the linear program (3.4.2) in

at most KI log 1+ 1 IBl number of phases.

Proof. Let li,j-1 denote the length function I and 7Yj_1 the variable -y at the start of the j-th

iteration (of the while-loop in line 10) in phase i. Let Wj denote the fractional solution W

computed in the j-th iteration in phase i. Let li,O be the length function at the start of phase i,

or equivalently, at the end of phase i - 1. For simplicity, we denote D(li+1,o) and a(li+1,o) by D(i)

and a(i). Note that for each phase i and iteration j,

D (lijg) = E (e) c(e)

ee

D (lij,-1) + 17 Elij -1(e) (-Yi,j -I - 'yi,j) [Y(1)I4Wi + ... + y (k') Wk,

SD(li,j -1) + r/(7 j_1 - -yjj,)Ba(li'j-1)

< D(li,_ 1 ) + n(7ij..1 -- yj)Ba(lj+1,o),

where W1,..., W, and y( 1),... , y(k') are the partial scalar-linear solutions and variable y from

line 11. Note that we used the fact that oz is a nondecreasing function to obtain the last inequality.

Summing up the above inequality over the iterations, we obtain

D(li+1 ,o) < D(li+ 1,- 1 ) + r/(7+1,-1 - 7i+1,o)Ba(li+1,o)

" D(li+1,- 2 ) + 77(Yi+1,-2 - yi+,o)Ba(li+1,o)

" D(li,o) + r/Ba(lj+1,o),

where li+1,-j (similarly, hi+1,-j) denote the length function I (variable -y) at the start of the j-th



from the last iteration in phase i. It follows that D(i) < D(i - 1) + rBoZ(i). From here, the analysis

is the same as Theorem 40, with B replacing A. El

While the running time of Algorithm OracleRayApprox_LCode depends on 13 by Theorem 49,

we can reduce/increase it by scaling the 4 vector/capacities appropriately. We now remove the

assumption that Q > 1 and analyze the running time of Algorithm OracleRayApprox_LCode as a

whole.

Theorem 50. For 0 < w < 1, Algorithm OracleRayApproxLCode computes a (1 + w)B-approx-

imate solution to the linear program (3.4.2) in time O(w--2(log Alpj -+\e)B log E\ - (TFCover +

k'TSLinear )), where TFCover is the time required to solve the fractional covering problem by OFCover

within an approximation guarantee B and TSLinear is the time required to solve the minimum cost

scalar-linear network code problem exactly by OSLinear-

Proof. Let z* be the exact maximum fractional Steiner tree packing value for message mi in line 1

and let z* = mini -. Note that z* is an upper bound on the maximum rate at which the demands
qj

can be satisfied by a simple fractional linear code solution. Since zi < z* < Azi, < < Az. We

scale the q vector and get 1 < 0 < Alp . The assumption 3 > 1 is satisfied, but now # could be as

large as Alpl. We employ the doubling trick with N = log,+o 1,,]. Then, the total number

of phases is at most N log Alp|. Each phase consists of variably many number of iterations of the

while-loop in line 10 and, in all iterations except the last, we increase the length of an edge by a

factor of 1+q. Hence, the total number of iterations exceeds the total number of phases by at most

lel log 1+ q. The total number of calls to the oracle OFCover is at most N log A Ip IEI log 1~n q. For

each iteration, we call the oracle OSLinear exactly k' times to compute the Uj(l) values and, hence,

the total number of calls to the oracle OSLinear is at most (N log Alpi + 1E log,+, 1)k. From here,

the proof follows Theorem 42 closely. LI

3.4.5 Implementations of Oracles OSLinear and OFCover

In this subsection, we discuss implementations of oracles OSLinear and OFCover-



Oracle 0 SLinear

We only consider implementations of exact oracle OSLinear for the minimum cost scalar-linear

network code problem (Definition 47). The assumption that the finite field F is fixed for the

computation of semi-network linear coding capacity region is important; it ensures termination of

algorithms for OSLinear, given that the decidability of the linear coding problem without a fixed

finite field is unknown at this time.

A brute force approach is to loop through all possible subset of active edges and try all possible

combinations of global linear coding vectors (see Section 2.1) on these edges in time O(2kIIFII/I1kI).

For each edge e = (x, y), it takes O(lyI) time to check if the global coding vector on e is the span

of global coding vectors on in-edges of x, where I is the maximum in-degree of any node. The total

running time is O(2I|F||I'IIC!p||e|I) and is exponential in not only in le|, but also in the number of

messages, Ipl. The brute force approach requires O(IFIIPHEI) space.

We propose a faster algorithm of our own that solves the minimum cost scalar-linear network

code problem using dynamic programming. First, we relabel nodes so that edges go from a lower-

numbered node to a higher-numbered one and arrange the nodes in a line in order. This can be

done as the network is acyclic and by a topological sort algorithm. Let ni, ... , niI be the nodes in

order. Second, we create states indexed by a triple (i, E&, #j), where

1. i is an integer, 1 < i <Jul - 1,

2. ei is the set of edges that have the start node in {ni, ... , ni } and the end node in {nj+1, . .,

n1o1}, and

3. #i is the global coding vectors on edges in ei.

In each state (i, ei, #i), we store the minimum cost scalar-linear solution, if it exists, with the

set of global coding vectors #i on ei when the network is restricted to nodes ni, . . . , ni. In essence,

we consider the restricted network of nodes ni, . . . , ni and compute its minimum cost scalar-linear

solution based on the minimum cost scalar-linear solutions found on the restricted network of nodes

ni,... , ni_1. See Algorithm OracleSLinearDP for more details. Note that valid-next-state and

valid-prev-state are linked lists.

Theorem 51. Algorithm OracleSLinearDP solves the minimum cost scalar-linear network code

problem in time O(|F|2 "'P'lJMzI2 ) and space O(|F|I"|), where Q = maxi ejil.



Proof. Let &J = maxi lcil. Then, the number of states with a specific pair of i and Ei is at most |FI-*

and the time to compute the states of the form (i, ci, #j) from the states of the form (i-1, c-, #i_1)

takes O(IF|2III ja 2 ), by simply looping pairs of the states (i, ej, #i) and (i - 1, c-1j, #i-1) and

checking if the global coding vectors in #i follow from those in #i_1. As i ranges from 1 to

|vI - 1, the total running time of the algorithm is O(lF| 21414, I I 2). The total space required is

O(IFIi'') if we use the "sliding window" trick where we only keep states in two consecutive levels

(corresponding to two consecutive values of i) at any time. 0

Algorithm 7 Algorithm OracleSLinearDP(A, 1)

1: Sort nodes with a topological sort algorithm: ni,... ,ni.
2: valid-next-state +- 0; validprev-state <- (0, 0, 0), the trivial empty solution.
3: for i = 1,...,IvI - do
4: Update valid-prev-state so that only states that satisfy demands on ni exist in the list.
5: valid-next-state +- NULL
6: for each possible coding vector combination 4j+1 on cji do
7: Find, if possible, a state in valid-prev-state that leads to a minimum cost solution for

(i+ 1, C1i+1, # i+1)-
8: If successful, add the state (i + 1, ei+1, #j+1) to valid-next-state.
9: end for

10: valid-prev-start <- validnext-state

11: end for
12: From valid-prev-state, pick the minimum cost solution that satisfies all the demands at n,.
13: return the minimum cost solution found or "unsolvable" if no such solution exists.

Clearly, the asymptotic behavior of Algorithm OracleSLinearDP is much better than that

of the brute force approach when 4 < l in the network. We summarize algorithms for oracle

OSLinear with Table 3.2:

Table 3.2: Implementations of oracle OSLinear

Algorithm for OSLinear Approximation Ratio Time Space
BruteForce 1 O(21EI IF 1II16 pI Ipe|I) O(IFIT III)
Algorithm OracleSLinearDP 1 O(IF 2 Iu 1,t I 2) O(IFI'A'*)

Oracle OFCover

The oracle OFCover solves the fractional covering problem (Definition 48). We can solve the problem

with a polynomial-time linear program solver such as the ellipsoid algorithm. In our problem of



networks, the number of variables of the linear program (3.4.3) is at most 21|1 and the number of

constraints is |l. Hence, a polynomial-time linear program solver will give an exact solution in

time polynomial in 21I. As the ellipsoid algorithm could be slow in practice and could depend on

21'I poorly, the actual running time might not be practical. Fleischer [11] proposed a combinatorial

approximation algorithm for the covering problem that solves within an approximation ratio of

(1 + w) by using O(w- 221P log(cTu)) calls to an oracle that returns a most violated constraint

(where w > 0). Note that Fleischer's algorithm is proposed for nonnegative integer matrix A and

nonnegative integer vectors b, c and u, but the algorithm still works for our formulation of the

fractional covering problem. As there are |p1 constraints and at most 21M| variables, the oracle for

the most violated constraint can be implemented in time 0(21| J|pl), and this leads to an algorithm

that computes a (1 + w)-approximate solution in time O(W -22211j1P llog(cTu)). We summarize with

Table 3.3:

Table 3.3: Implementations of oracle OFCover

Algorithm for Ocover Approximation Ratio B Time
Ellipsoid Algorithm 1 polynomial(21, Iy|)
Fleischer [11] 1 + W O(w-- 22211yiu log(cTu))

3.5 Examples

In this section, we provide examples of network capacity regions in the case of two messages. Instead

of Algorithm FacetEnumRoute (or FacetEnum_LCode), we use Algorithm BoundaryTrace2D as the

polytope reconstruction algorithm. Algorithm BoundaryTrace2D is similar to the algorithm given

by Cole and Yap [5] in that the common main idea is that three collinear boundary points define a

face. Algorithm BoundaryTrace2D is different from Cole and Yap [5] in that it considers rays that

start from the origin. See the pseudocode for the details of Algorithm BoundaryTrace2D. Note L is

a linked list. We refer to Appendix A.2.1 for a proof of its correctness. The algorithm works both

for C, and C' with an appropriate oracle ORay.

The example networks are given in Figure 3-1. Nodes 1 and 2 are the source nodes and nodes

5 and 6 are the receiver nodes. To compute the exact description of Cr or C', we hard-coded the

corresponding linear programs and used a linear program solver, linprog, in MATLAB. As the

networks are simple, it was easy to enumerate all Steiner trees and partial scalar-linear solutions,



Algorithm 8 Algorithm BoundaryTrace2D(N, ORay)

1: .C+-0
2: Using ORay, compute the intersection points on x = ej - t, t ;> 0 for i = 1, 2 and obtain (xi, y1)

and (x2, y2).

3: Insert (xI, -1), (X1 , yi),(x 2 , y2), and (-1, y2) onto the head of L, in that order.
4: cur-pointer +- the head of L

5: while there exist three distinct points after cur-pointer do
6: Let ptl, pt2, pt3, and pt4 be the four consecutive points starting at cur-pointer.
7: Let line 11 go through ptl and pt2, and line 12 go through pt3 and pt4.
8: if intersection point p exists between 11 and 12 then
9: Using ORay, compute the boundary point r on x = pt, t > 0.

10: if r = pt2 and r # pt3 then
11: Insert point r into L between pt2 and pt3.
12: else
13: Advance cur-pointer.
14: end if
15: else
16: Advance cur-pointer.

17: end if
18: end while
19: return L U (0, 0), except (x1, -1) and (-1, y2).

and the corresponding linear programs were small. While this approach worked for the particular

examples we present, it might not be suitable for bigger or more complicated networks. To get

around the numerical issues, we used the tolerance of .05; for instance, two points whose corre-

sponding coordinates differ by at most .05 are considered the same point. For the networks, we

assume A = {0, 1}. For the semi-network linear coding capacity regions, we assume the finite field

F is F2 . To obtain approximate intersections points, we simply used an approximate oracle ORay

in place of the linear program solver. We note that the approximate oracle 0Ray worked well with

Algorithm BoundaryTrace2D and led to its successful termination for these networks, but this may

not hold for arbitrary networks in general.

For the network routing capacity region of network NA1 in Figure 3-2, we used o = .5 in

Algorithms OracleRayApproxRoute and DSteinerTreePacking for ORay and the algorithm due

to Charikar et al. [4] for ODSteiner with the approximation ratio A = O(log2 IvI). For the semi-

network linear coding capacity region of network M1 in Figure 3-3, we used w = .5 in Algorithms

OracleRayApprox-Route and DSteinerTreePacking for ORay, the algorithm due to Fleischer [11)

with the approximation ratio B = 1.1 for OFCover, and Algorithm OracleSLinearDP for OSLinear-
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For the network routing capacity region of network N2 in Figure 3-4, we used w = .5 in

Algorithms OracleRayApprox-Route and DSteinerTreePacking for ORay and the algorithm due

to Charikar et al. [4] for ODSteiner with the approximation ratio A = O(log 2 vI). For the semi-

network linear coding capacity region of network M 2 in Figure 3-5, we used w = .5 in Algorithms

OracleRayApproxRoute and DSteinerTreePacking for ORay, the algorithm due to Fleischer [11]

with the approximation ratio B = 1.1 for OFCover, and Algorithm OracleSLinearDP for OSLinear-

For the network routing capacity region of network K3 in Figure 3-6, we used w = .5 in Algo-

rithms OracleRayApproxRoute and DSteinerTreePacking for ORay and the brute force algorithm

for ODSteiner with the approximation ratio A = 1. For the semi-network linear coding capacity

N3.

M1 m2 M1 m2
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region of network K 3 in Figure 3-7, we used w = .9 in Algorithm OracleRayApproxRoute, w = .5

in Algorithm DSteinerTreePacking, the algorithm due to Fleischer [11] with the approximation

ratio B = 1.1 for 0 FCover, and Algorithm OracleSLinearDP for OSLinear.

3.6 Discussion and Conclusion

In this chapter, we defined the network capacity region of networks analogously to the rate regions in

information theory. In the case of the network routing capacity region, we showed that the region is

a rational polytope and provided exact algorithms and approximation heuristics for computing the

exact
.1 - -+---- approximation

1.5



polytope. In the case of the network linear coding capacity region, we defined an auxiliary polytope,

the semi-network linear coding capacity region, that is a rational polytope and that inner bounds the

network linear coding capacity region. We provided exact algorithms and approximation heuristics

for computing the auxiliary polytope. We noted that the algorithms and heuristics presented in

this chapter are not polynomial time schemes.

Our results have a few straightforward extensions. We can design membership algorithms

that given a rate vector, determines whether or not there exists a fractional network code solu-

tion that achieves it from algorithms we provided, for the network routing capacity region and

semi-network linear coding capacity region. Also, we can compute corresponding approximate so-

lutions (x(T))TEr for linear program (3.3.1) by storing counters for Steiner trees T in Algorithm

OracleRayApproxRoute; the same is true for (x(W))ww.

While our results apply to the networks defined on directed acyclic multigraphs, they generalize

to directed networks with cycles and undirected networks straightforwardly. In the computation

of the network routing capacity region, we consider minimal fractional routing solutions that can

be decomposed into a set of Steiner trees defined appropriately for directed networks with cycles

(or undirected networks) and modify the algorithms correspondingly. In the computation of the

semi-network linear coding capacity region, we consider simple fractional linear coding solutions

that can be decomposed into a set of partial scalar-linear solutions defined appropriately for the

networks and modify the algorithms correspondingly.

In connection to Cannons et al. [2), our work essentially addresses a few problems proposed

by Cannons et al.: whether there exists an efficient algorithm for computing the network routing

capacity and whether there exists an algorithm for computing the network linear coding capacity.

It follows from our work that there exist combinatorial approximation algorithms for computing the

network routing capacity and for computing a lower bound of the network linear coding capacity.

We conclude with a few open problems related to our work: determine how good of an inner

bound the semi-network linear coding capacity region is to the network linear coding capacity

region; design an efficient algorithm, if possible, for computing the linear coding capacity region

and network capacity region; design an efficient algorithm, if possible, for the minimum cost scalar-

linear network code problem.



Appendix A

Computations and Proofs

A.1 Computations

A.1.1 Computation in Theorem 39

From Section 2 of Garg and Kbnemann [13] and the fact that oracle ODSteiner is an approximate

oracle with the approximation guarantee of A, it follows that the ratio of dual optimal and primal

feasible solutions, (, satisfies

( < (1 - A.

We choose rq appropriately to make sure that the ( < (1 + w)A. It suffices to choose 7 such that

(1 - 2)>2 < 1 + w, or equivalently, (1 - r/)1 < (1 + W)1/ 2 . By the Taylor Series Theorem, for

0 < w < 1, we have

1+ - w (1+ w) 1 /2.
2 8

Note that for 0 < <

2 1
(1-)-1=1+, r+r2 + ... 1+ < 1+ 2.

Then, for 7 = no, we have that 0 < w < 1 implies 0 < q < and that

(1 - r/)~7 < 1 + 27 < 1 + O < 1 + 1o - 2 < (1 + u)1/2.
8 2 8



A.1.2 Computation in Theorem 42

We want to choose r/ appropriately so that (1- rA)- 3 < (1 +w), or equivalently, that (1 - 7rA) 1 <

(1 + w) 1/ 3. By the Taylor Series Theorem, for 0 < w < 1, we have

1 1

Note that for 0 < rA < 2

211

(1-A)- 1+ rA + (r/A) 2 +... - 1+r/A < 1±+ 2r/A.

Then, for r 9 = we have that 0 < w < 1 implies 0 < 77A < ! and that

2 1 1
(1- r1A)- < 1+ 2r1A < 1+ -w < 1+ - 1 2 < (1+ w)1/ 3

9- 3 9

A.2 Proofs

A.2.1 Proof for Algorithm BoundaryTrace2D

Without loss of generality, we prove that Algorithm BoundaryTrace2D is correct for the computa-

tion of the network routing capacity region Cr. Note that L is a linked list of computed boundary

points (and the two auxiliary points (xi, -1) and (-1, y2)) ordered clockwise. When two lines

intersect, we mean that the lines intersect in exactly one point. When a line goes through a line

segment, we mean that the line intersects the line segment in exactly one point.

Theorem 52. Algorithm BoundaryTrace2D calls the oracle ORay O(n) times where n is the number

of edges in the polygon Cr.

Proof. We first show that, for each edge c of Cr, the number of distinct boundary points computed in

the interior of the edge (excluding the vertices) is at most 3 throughout the execution of Algorithm

BoundaryTrace2D. Let edge e have 3 distinct boundary points computed in its interior: P1, P2, and

p3, ordered clockwise. Then, any 4 consecutive boundary points in L cannot produce a ray in line

9 that goes through the interior of edge e. If the set of 4 consecutive points contains at most 2 of

P1, P2, and p3, then, clearly, the ray does not go through the interior of e. If the set of 4 consecutive



points contains all 3 points P1, P2, and p3 and a point before p1 in L, then the intersection point p

in line 8 is exactly pt2 and no new boundary point is created. Similarly, it can be shown in other

remaining cases that no new boundary point is introduced.

Note that, for each boundary point b in E, there can be at most 3 calls to oracle ORay associated

with it; a call to compute the boundary point for the first time, a call if b appears as pt2 in line 6

and as the boundary point r in line 9, and a call if b appears as pt3 in line 6 and as the boundary

point r in line 9. As there are n - 2 edges and n - 1 vertices on the outer boundary of Cr and 0(1)

calls to ORy for each boundary point computed, the statement follows. l

The correctness of BoundaryTrace2D follows from the fact that each vertex on the outer bound-

ary of Cr is computed by oracle ORay and that after enough boundary points have been computed,

the cur-pointer in the algorithm will advance to termination. It is easy to see that all vertices of the

polygon Cr are included in the returned list L. Assume a vertex v is missed in £ and the algorithm

terminated successfully. Assume that ptl, pt2, pt3 and pt4 are the four consecutive points in the

resulting list such that the line segment between the origin and v and the line segment between

pt2 and pt3 intersect. Note that pt2 and pt3 are on different edges of C,. Then, it is easy to see

that we have the ray in line 9 going through the interior of the line segment between pt2 and pt3

and, hence, a new boundary point would have been added. Therefore, cur-pointer should not have

advanced to termination, and this contradicts that the vertex v is missing from L.
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