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Abstract

A diode laser emitting at mid-infrared wavelength (2~5 pm) is an ideal light source for
petrochemical or industrial-important gas sensing. Antimony-based III-V compound
semiconductor material is the most prominent pseudomorphic epitaxy candidate for
this application. However, phosphide-based material not only has the potential to
reach this wavelength utilizing a strained active region but also takes the advantage
of sophisticated material study from telecommunication technology.

This thesis presents the realization of a 1.97 pm emission ridge waveguide laser
in design, fabrication, and characterization phases. Ino.85 Gao.15As/Alo.1Ino.4 8Gao.42As
strained multiple quantum wells structures have being built on InP substrates. Struc-
tural, optical, and electrical properties of the material have being tested and summa-
rized.

Thesis Supervisor: Leslie A. Kolodziejski
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Silvija Gradeeak
Title: Assistant Professor of Materials Science and Engineering



4k

9

9

9

9

4



Acknowledgments

I would like to give my first gratitude to Leslie, my advisor. To me, she is not only

a professor who navigates our group, but also an extraordinary mentor who guides

me through this challenging period. She always gives me confidence and optimistic

opinions, without which I could never finish this work.

Next, I thank Dr. Gale Petrich for enlightening me to the world of MBE. He is a

knowledgeable and patient teacher who explains every bolts and nuts of the technique

to me. I am very blessed to have Gale always being there for my instantaneous

difficulties. I see him a safety net as well as a valuable researcher in our group.

And then, I would like to acknowledge all the research partners from KACST. Dr.

Hamad, Dr. Salhi, Abdullah, and Ahmad. Special thank to Dr. Salhi, for his inspiring

research and living spirit that I still admire as a role model. I will always remember

the time we shared in the PL and optics lab, where I saw the first laser emission in

my life.

My very dear group mates: Sheila, Ta-Ming, Orit, and Mohammad, thank you for

being true friends and also my consultants in any questions.

Cordial thank to professor Silvija Gradecak, who is my thesis reader in Materials

Science Department. Your care and prompt email reply efficiently charge my working

power.

Finally I thank my family members, especially my parents. Thank you for giving me

so much freedom to do what I want, and nourish my soul in every possible way. You

are the best that I could ever ask for.

Thank you Alan, for simply being there waiting and listening.

Thank you, all the machines and equipments I had used in my work. No matter you

are a ranch or a MBE, I deeply thank you for reminding me that always be a humble,

honest, and courageous person.

Cambridge, 2010

PC Amy Chi



I

I

I

a

*

*

a

6



Contents

1 Introduction

1.1 Motivation for Long Wavelength . . . . . . . . . . .

1.2 Challenges in Building MIR Laser . . . . . . . . . .

1.2.1 MBE Growth . . . . . . . . . . . . . . . . .

1.2.2 Nonradiative Recombination and Threshold

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . .

2 Laser Design and Simulation

2.1 2 pm Strained InGaAs/InP Quantum Well Laser .............

2.2 Laser Structure and Optical Simulation . . . . . . . . . . . . . . . . .

3 Material Growth

3.1 Molecular Beam Epitaxy (MBE) . . . . . . . . . . . . . . . . . . . . .

3.2 Growth Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Material Characterization

4.1 Triple Axis XRAY Diffraction . . . . . . . . . . . . . . . . .

4.1.1 High Resolution X-Ray Diffractometer (HRXRD) Set

4.1.2 Result and Discussion . . . . . . . . . . . . . . . . .

4.2 Photoluminescence (PL) . . . . . . . . . . . . . . . . . . . .

4.2.1 PL Set U p . . . . . . . . . . . . . . . . . . . . . . . .

4.2.2 Wet Etch for Laser Structure . . . . . . . . . . . . .

4.2.3 Result and Discussion . . . . . . . . . . . . . . . . .

Up

15

15

16

16

17

20

23

23

24

29

29

30

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .



4.3 Electroluminescence (EL) . . . . . . . .

4.3.1 Electroluminescence Set Up . . .

4.3.2 Testing Materials Preparation . .

4.3.3 Result and Discussion . . . . . .

5 Device Characterization

5.1 Device Fabrication . . . . . . . . . . . .

5.2 Laser Characterization . . . . . . . . . .

5.3 Result and Discussion . . . . . . . . . .

5.3.1 L-I Measurement . . . . . . . . .

5.3.2 Thermal Resistance Measurement

6 Conclusion and Future Work

6.1 Antimony-Based Material System . . . . . . . . . . . . . . . . . . . .

6.1.1 2.3 prm Antimonide Diode Laser for Photo Acoustic Spectrom-

etry (PA S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1.2 Photonic Crystal Tunable Laser . . . . . . . . . . . . . . . . .

6.2 Extension to Longer Wavelength-Dilute Nitrogen Mateirals . . . . . .

A Sample ID

B Refractive Index

C L-I-V

. . . . . . . . . . . . . . . . 44

. . . . . . . . . . . . . . . . 44

. . . . . . . . . . . . . . . . 44

. . . . . . . . . . . . . . . . 46

49

. . . . . . . . . . . . . . . . 49

. . . . . . . . . . . . . . . . 50

. . . . . . . . . . . . . . . . 52

. . . . . . . . . . . . . . . . 52

. . . . . . . . . . . . . . . . 61

73

83



List of Figures

1-1 SRH, surface/interface, and Auger recombination process. [1] Rsrh, R,,

and Ra are the nonradiative recombination rate for Shockley-Reed-

Hall, surface and interface, and Auger mechanism. . . . . . . . . . . . 18

1-2 CHSH Auger recombination process. Filled and hollow circles are the

electrons and the holes, respectively, involved in this nonradiative re-

combination process. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2-1 2 pm emitting laser structure with layer content, individual layer thick-

ness, and doping level. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2-2 Optiwave simulation of the fundamental optical mode of an InGaAlAs/InP

ridge laser (left) and the refractive index profile (right) for different

ridge widths: (a) 2 pm, (b) 5 pm, and (c) 10 pm. The x and y coor-

dinates denote the spacial dimension of a ridge waveguide laser; and

the color palettes represent the mode intensity (left) and the refractive

index (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3-1 Layout of Veeco GEN200 MBE system. Six cryo pumps (pink), Two

turbo molecular pumps (orange), and four scrolling pumps (yellow, one

is movable, not shown) are equipped on the system. . . . . . . . . . . 31

4-1 Bruker D8 HRXRD instrumental setup. From left to right: X ray

source, Go~bel mirror, Ge (022) monochromator, slit, epitaxial sample,

slit, Ge (022) monochromator, detector. . . . . . . . . . . . . . . . . 34



4-2 (004) 20/w scan (DAD and TAD) on three laser samples A) VA153 B)

VA154 C) VA158. The blue line is the fit to the experimental data

shown in the black line . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4-3 (Figure 4-2 continued): (004) 20/w scan (DAD and TAD) on three

laser samples D) VA159 E) VA162 F) VA163. The blue line is the fit

to the experimental data shown in the black line. . . . . . . . . . . . 38

4-4 Both the (004) 20/w and (000) XRR on two PL samples A) VA156 B)

V A 161. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4-5 Block diagram of photoluminescence setup used to characterize thin

film s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4-6 Compilation of PL results from numerous samples after wet etch (laser

structures only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4-7 PL emission wavelength (black rectangles) and lattice mismatch (blue

inverted triangles) in the samples. . . . . . . . . . . . . . . . . . . . . 43

4-8 Block diagram of electroluminescent set up used in this experiment. . 44

4-9 EL spectra for broad area devices: A) VA153, B) VA154, C) VA158,

D) VA159, E) VA162A and VA162B (A and B denote differnet devices

made out of the same epi film). The measurement is obtained under

pulsed driving conditions: 100 ns pulse width, comparable injection

current, and various duty cycle (DC%) are labeled in each subfigures. 47

5-1 Cross-sectional SEM photograph of a ridge-stripe laser fabricated by

C ovega. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5-2 Power-current (L-I) testing set up used in the experiment. . . . . . . 51

5-3 Comparison between Covega's measurement (red squares) and the mea-

surement done in this work (blue squares). The blue triangles are the

result of the multiplication of a correction factor of 2 on the measured

data in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



5-4 Laser VA153 (a) optical power spectrum, (b) L-I curve under pulsed

excitation, (c) internal loss and injection efficiency, (d) L-I-V curve

under CW excitation. All measurements are at room temperature,

epi-side up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5-5 Laser VA154 (a) optical power spectrum, (b) L-I curve under pulsed

excitation, (c) internal loss and injection efficiency, (d) L-I-V curve

under CW excitation. All measurements are at room temperature,

epi-side up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5-6 Laser VA158 (a) optical power spectrum, (b) L-I curve under pulsed

excitation, (c) internal loss and injection efficiency, (d) L-I-V curve

under CW excitation. All measurements are at room temperature,

epi-side up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5-7 Laser VA159 (a) optical power spectrum, (b) internal loss and injection

efficiency, (c) L-I-V curve under CW excitation. All measurements are

at room temperature, epi-side down. . . . . . . . . . . . . . . . . . . 58

5-8 Laser VA162 (a) optical power spectrum, (b) internal loss and injection

efficiency, (c) L-I-V curve under CW excitation. All measurements are

at room temperature, epi-side down. . . . . . . . . . . . . . . . . . . 59

5-9 VA153 defects on the surface treated with and without the wet etch. . 60

5-10 Electroluminescence spectrum of VA163 FP laser device. . . . . . . . 60

5-11 Thermal resistance measurement for the laser device VA158 mounted

epi-side up: a) and b) are devices with 1.0 mm cavity; c) and d) are

devices with 1.5 mm cavity. . . . . . . . . . . . . . . . . . . . . . . . 62

5-12 Thermal resistance measurement for the laser device VA159 mounted

epi-side down: a) and b) are devices with 0.5 mm cavity; c) and d) are

devices with 1.0 mm cavity; e) and f) are devices with 1.5 mm cavity. 63

5-13 Thermal resistance with different device mounting configurations . . . 64

6-1 A schematic of various band alignments in the laser structures: a) Type

I, b) Type II, and c) Type III (broken type II). . . . . . . . . . . . . 67



6-2 Working principal and design schematic of quartz-enhanced Photo-

Acoustic Spectroscopy System . . . . . . . . . . . . . . . . . . . . . . 69



List of Tables

4.1 All 8 epitaxial samples with their structures, QW compositions, and

Q W num bers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Wet chemical etch solution used to remove contact layer and cladding

lay er. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

6.1 M IR laser diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.1 Refractive index used for optical mode simulation . . . . . . . . . . . 83

13



14



Chapter 1

Introduction

1.1 Motivation for Long Wavelength

III-V semiconductor diode laser is preferred nowadays rather than gas or solid state

laser in a variety of applications mainly because it is more compact, efficient, reliable

and potentially inexpensive. In order to maintain room temperature (RT), continu-

ous wave (CW) operation with low threshold current density (Jth), several milestones

in improving laser performance have been made. Double Heterojunction (DH) de-

fines the active region for carriers; concept of low dimensionality (i.e. quantum well,

quantum dash, and quantum dot) shrinks the active region and moves the laser from

gain-guided to index-guided. Incorporation of misfit strain in the active region fur-

ther decreases Jth and modifies the band structure to alleviate Auger recombination.

Broad waveguide separate confinement region (SCR) minimizes mode overlapping

with the doped cladding layers. [3]

Mid-infrared (MIR, 2~5 pm) wavelength laser is not as well studied as near

infrared laser, which has commonly been used in telecommunication applications

(1.3-1.5 pum) for decades. Moving toward longer wavelength must address different

materials of interest and inevitably, faces different challenges. Important applications

using MIR lasers could be categorized in the following:



" Many fundamental absorption lines of several crucial trace gases (CH 4, C0 2,

CO, HCl, etc. [3]) are situated in the MIR wavelength regime. Tunable diode

laser absorption spectroscopy (TDLAS) is suitable for portable low-cost and

room temperature (RT) trace pollutants analysis. For this application, laser

diodes that operate under RT with a few tens of milliwatt output power, and

good spectral purity are required.

" An important atmospheric transmission windows sits around 3.5~4.2 pm [4].

This facilitates infrared countermeasures to protect aircrafts, ships, and other

vehicles against heat-seeking missiles. Additionally, optical free space telecom-

munications applications are applicable in this wavelength range. Higher output

power, usually exceeding 1 watt, is required to meet this need.

* Laser surgery and medical diagnoses, such as noninvasive optical blood glucose

monitoring, could also benefit from the availability of mid IR light sources.

1.2 Challenges in Building MIR Laser

1.2.1 MBE Growth

A strained heterostructure is an inevitable choice for long wavelength laser using the

phosphide-based material system. Existence of miscibility gap in one quaternary alloy

along with strain-induced defects between interfaces may be avoided if one performs a

careful design prior to growth. Substrate temperature (Tsub), growth rate (GR), and

V/III flux ratio are the three major parameters contributing to thin film quality. GR

needs to be controlled at a low rate to allow ad-atoms to smoothly distribute them-

selves into one monolayer having uniform coverage. At the same time, GR should

also be fast enough to avoid background impurity incorporation. Optimal V/III ratio

creates enough overpressure during the growth to prevent the formation of point de-



fects. Excessively high group V overpressure will adversely hinder group III ad-atoms

from moving toward energetically favorable sites by decreasing ad-atom mobility, thus

activating 3D growth mechanisms. Finally, T,,b is the most sensitive parameter to

control because it affects all the reactions occuring on an epitaxial surface. Tsb

should be high to provide enough kinetic energy to ad-atoms, and low enough not

to activate interdiffusion. The former reduces surface roughness and the latter in-

hibits interfacial intermixing. Both of them have to be controlled to avoid interfacial

disorder, which commonly degrades device performance by decreasing electron mo-

bility and further altering the engineered bandgap of the device. Individual growth

windows for the above parameters could be found after iterative growths. These pa-

rameters may be machine-specific because they are based on different temperature-

and flux-monitoring techniques. Here T8 ub was monitored by a thermal couple and

diffuse reflectance spectroscopy (DRS); the molecular flux was monitored by beam

equivalent pressure ion gauge.

1.2.2 Nonradiative Recombination and Threshold

Threshold current of a laser diode is dictated by non-radiative and radiative (sponta-

neous emission) processes. Figure 1-1 illustrates three kinds of non-radiative recom-

bination that occur in the smaller bandgap materials.

Shockley-Read-Hall Recombination (SRH)

SRH recombination occurs with the presence of defects and impurities. Structural

defects such as vacancies/interstitials lead to dangling bonds. Impurities such as

shallow or deep level dopant (oxygen, for instance, especially in Al-containing alloys)

create extra energy states inside the forbidden band gap. The SRH recombination

lifetime is typically from 1 to 200 ns in antimony-containing material systems.[5]
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Figure 1-1: SRH, surface/interface, and Auger recombination process.[1] Rsrh, Rs,',
and Ra are the nonradiative recombination rate for Shockley-Reed-Hall, surface and
interface, and Auger mechanism.

Surface and Interface Recombination

Due to sudden termination of lattice periodicity or change in bond type in different

epi layer conjunction, the resulting unsatisfied bonds form minibands inside the band

gap. Interface recombination is most severe in reduced dimension structures such

as quantum well or quantum dot active regions, accounting for higher interface to

volume ratio. Multiple hetero-interfaces and low dimensional active region in a laser

structure unavoidably increase the surface and interface recombination rate.

Auger Recombination

Auger recombination is a nonradiative recombination process which accentuates under

high carrier density and high temperature environment. An Auger event describes the

energy and momentum generated from an electron-hole pair recombination process

transfers to a third carrier, resulting a promotion of energy state in this carrier. For

a samll band gap material, the energy and momentum conservation is easier to fulfill

in this three-particle process. Therefore, Auger recombination becomes a more severe

issue in the long wavelength (i.e. small bandgap) material system.

Auger recombination rate could be expressed as:

Ra = C(T) x n3



Where C(T) is proportional to exp(-Ea/kBT), and

Ea = in" (E - A) (1.2)
me + 2mhh -- so

C(T) is the Auger recombination coefficient, calculated to be 5x 10-29 cm 6 /s both

in AlGaAsSb/InGaAsSb and InGaAlAs/InP strained QW systems [6][7], n is the car-

rier density, Ea the thermal activation energy, imso, me, nhh are electron effective

masses in spin orbit, conduction, and heavy hole band respectively. E, is the bandgap

energy, A the spin orbit splitting energy. Figure 1-2 depicts the most prominent Auger

transition process, CHSH, in InGaAs strained layers.[2] CHSH process describes an

electron sitting at conduction band recombines with a hole at heavy-hole band. The

released relaxation energy is then contributing to promote another electron from the

split-off band to the heavy-hole band.

Figure 1-2: CHSH Auger recombination process. Filled and hollow circles are the
electrons and the holes, respectively, involved in this nonradiative recombination
process. [2]

Obviously Auger lifetime (-1/Ra) is affected by carrier density, temperature, band

gap, and the curvature of the band. Low bandgap material greatly satisfies the en-

...... ................................................. ......... . ............... . . ..... . ....................................................................................... ................... ............... .................. ...... .... ...... ......



ergy and momentum conservation within this three-particle process. Minimizing the

density of final states effectively decreases the Auger recombination rate; this can be

achieved by 1) tailoring the separation of energy levels through quantum confinement,

and by 2) strain incorporation. In 2), strain alters the valence band curvature and

lowers the hole density of states; also the downward-moving valence band maximum

increases the energy band gap. These two effects constructively alleviate Auger re-

combination.

Each of the recombination processes potentially increases the optical loss. Ulti-

mately higher threshold current density is required to achieve lasing. From the above

discussion, a well-controlled epitaxial growth on a strain-incorporated active region

is the first principal to obtain better device performance.

1.3 Thesis Overview

In this thesis, epitaxial growth, material characterization, device fabrication and char-

acterization of a strained InGaAs/InP multiple quantum wells type-I ridge laser will

be described in sequence. The stretegy in this study is to grow a series of "laser

structures" and "PL structures" with asymptotic level of indium inside the strained

InGaAs quantum well. The difference between the laser structures and the PL struc-

tures is that the epitaxial growth fully ceases once completing the InP capping layer,

which is on top of the active region. The epitaxial growth, on the other hand, con-

tinues on the laser structures with the waveguide, etch stop, cladding, and the top

contact. Through material characterization and device testing, the laser and PL

structures demonstrate wavelength extension with the increasing indium content. In

the future work section, a survey of antimony-based material system which emits at

comparable or longer wavelength, but with less strain incorporation, is documented.

Also the burgeoning field for longer wavelength emission (A>3 pm), namely the ad-

dition of dilute nitrogen (~1%) in antimony-based material system, is introduced in



the last section. A single-mode diode laser emitting near 2.0 Pm under RT operation

as a light source for photo-acoustic petrochemical sensor application was in collabo-

ration with Professor Rajeev Ram in EECS and Dr. A. Salhi in National Technology

Center, King AbdulAziz City for Science and Technology (KACST), Saudi Arabia.
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Chapter 2

Laser Design and Simulation

2.1 2 pm Strained InGaAs/InP Quantum Well Laser

The Mid InfraRed (MIR) semiconductor laser device is of great importance in terms

of ultra sensitive molecular sensing, since several crucial toxic gas molecules (CH 4 ,

C0 2 , CO, and HCl) have their fundamental absorption lines sitting in a spectrum

region spanning from 2 to 4 pm. The material of choice for wavelength between 2~3

pm is (AlGaIn)(AsSb) grown on a GaSb substrate. An alternative solution is the use

of InGaAs with high indium content as a quantum well and AlGaInAs barriers. This

combination allows obtaining an emission wavelength close to 2 pm when grown on

an InP substrate.

The sensing application can be achieved by MIR laser diodes operating under

room temperature with tens of milliwatt of output power. Previous studies show

the phosphide-based material could reach 2 pm emission if more than 1.5% strain is

incorporated in the InGaAs quantum wells (QWs). Kuang et al [8] had made a 2.2%

strained Ino.86Gao14As-InO.48Gao.42Al 0o1As-InP QW diode laser with a 2.2 pm emission

wavelength using solid source MBE. This aluminum-cladded design demonstrates

higher performance in carrier leakage and maximum operating temperature. In this

work, the strained QW concept was adopted to design and grow an aluminum-cladded,

phosphide-based laser structure.



2.2 Laser Structure and Optical Simulation

Understanding the energy band structure of a material would lead to fundamental

insight of its thermal, carrier transport, and optical properties. For a Type I strained

laser, the band offset is of primary importance. Many theoretical efforts have focused

on III-V energy band calculation. Here we use the model solid theory, originated

by Van de Walle [9] and mathematically implemented by M P C M Krijn [10] to

generate the conduction band and valence band offsets of the active region. All the

phosphide-related material parameter used in the calculation was tabulated in [11].

Model solid theory allows us to calculate band edge level on an absolute scale, with

respect to a common reference level. This reference level is the average electrostatic

potential in a semi infinite model solid. The approach facilitates the calculation of

the energy level shift due to lattice mismatch strain in the active region. In order to

reach 2.2 pm wavelength emission, calculation shows that a minimal 1.5% of strain, or

75% of indium, has to be incorporated in the InGaAs QW. Foutunately, at this alloy

composition, thermodynamic calculation confirms that it is out of the miscibility gap.

[2] Moreover, Auger recombination rate reaches its minimum at this alloy content. [2]

Given the 2 pm target emission wavelength, the QW thickness is determined by 1-D

Schr6dinger equation for confinement energy calculation. A 8 nm QW thickness is

determined after confirming it to the energy balance [12] and mechanical equilibrium

[13] critical thickness model.

The second part of the design focuses on the waveguide. The alloy content for

waveguide should provide enough band offset for carrier confinement, and at the

same time, maintain the large refractive index difference between itself and the InP

cladding layer. InGaAlAs quaternary alloy lattice-matched to InP is used to be

the waveguide and barrier material. The thickness of the waveguide determines the

number of existing optical modes and the optical confinement factor for the laser.

Using effective index method, the waveguide thickness is finalized to be 450 nm as

a result of sustaining only TEO mode. Also we need to minimize the internal loss

considering the absorption coefficient and confinement factor in the region where



the optical mode resides. After the active region and waveguide region parameters

are determined, the outer cladding thickness and doping profile is finalized and is

comparable to that found in the literature.

Commercial design software Harold [14] from Photon Design is used to optimize

the device structure further. It is an advanced hetero-structure model which solves

self-consistently Poisson's equation, current continuity equations, carrier capture-

escape balance equations, and the photon rate equation. Two dimensional (vertical

and longitudinal) and pulsed (isothermal) boundary condition was adopted in this

calculation. Having this tool, we calculate internal parameters such as internal quan-

tum efficiency and internal loss, L-I characteristics, and optimal number of quantum

wells given a particular cavity length.

For an emission wavelength near 2 ym, a complete laser structure will be: a n-type

InP substrate, a 500 nm Si-doped InP cladding layer, a 436 nm waveguide consisting

of 20 nm lattice-matched Ino.48 Gao.42Alo.1As barriers and two 8 nm compressively-

strained InO.85 GaO15As QWs. A 2.2 pm Be-doped InP cladding layer and a 100 nm

Be-doped InO.53 Gao.47As contact layer. An etch stop layer made of InO.48Gao. 42AlojAs

is inserted below the p-type InP cladding layer for fabrication convenience. The layer

sequence with the corresponding doping is illustrated in Figure 2-1.

p"-In 53 GEO 47As contact layer 5x 109 cM 3 (Be doped) loonm

p-type InP layer 1x 1018 cm-3 (Be doped) 2200nm

p-type Al. Ga042In0 4,As etch stop layer 1x 1018 cm-3 (Be doped) 20nm

p-type InP layer 2x 1017 cin-3 (Be doped) 50nm

Al0 IGaO42InOAs waveguide layer 200nm

InO GaO 15AsQW 8nn

Al0 GaOI42nAs barrier 20nin

n85 Gao As15 QW 8nm

Al0 ,Ga,. 4.InAs waveguide layer 200nm

n-type InP layer 5x 1017 enr3 (Si doped) 500nm

Figure 2-1: 2 pm emitting laser structure with layer content, individual layer thick-
ness, and doping level.



A In0.75Gao.25As quantum well surrounded by In 0 .48 Gao.42 Al0 .1As barriers provides

a large conduction band and valence band offset (AEc and AE,) . These large values

make the structure suitable for high temperature and continuous wave operation.

The active region reaches a wavelength of 2 pm with a reasonable amount of strain

of 2.11%.

Commercially designed software from Optiwave was used to simulate the optical

modes in the proposed structure. This simulation was based on finite-difference Beam

Propagation Method (BPM) to calculate the electromagnetic field propagation in

the refractive index environment. The refractive index entered in to the simulation

and its reference is documented in Appendix B. Note all indices that are used are

for 2 pm wavelength. Figure 2-2 shows that the optical mode resides in the high

refractive index region under the ridge (2.2 pm depth, various width). Improving

lateral optical confinement is observed with increasing ridge width. Optimization is

required when considering transversal mode number, optical lateral confinement, and

threshold current, in order to fulfill the application purpose.



b

Figure 2-2: Optiwave simulation of the fundamental optical mode of an In-

GaAlAs/InP ridge laser (left) and the refractive index profile (right) for different

ridge widths: (a) 2 pm, (b) 5 pm, and (c) 10 pm. The x and y coordinates denote

the spacial dimension of a ridge waveguide laser; and the color palettes represent the

mode intensity (left) and the refractive index (right).
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Chapter 3

Material Growth

3.1 Molecular Beam Epitaxy (MBE)

Solid source, dual-reactor Veeco GEN200 molecular beam epitaxy system in the Nano

Precision Deposition Lab was used to conduct all epitaxial growth in this thesis. MBE

is unique in its ultra high vacuum (UHV, <10- Torr) growth environment, which

ensures evaporated group III atoms or group V molecules travel in a line-of-sight

trajectory before reaching the vicinity of the substrate. To maintain UHV, this system

is equipped with six cryo pumps as primary pumping system; two turbo-molecular

pumps for phosphorous operation; and four scrolling pumps as the secondary pumping

system that brings the pressure from 760 Torr (1 atm) to 10- Torr. The specific

layout of the Veeco GEN200 is detailed in Figure 3-1. The cryo pump only operates

below 10 K and a vacuum of 10-3 Torr. A cryo pump causes cryo-condensation of

gas species on a series of baffles. In a similar principal, but without moving parts,

cryopanelling maintains the reactor body at 77K (liquid nitrogen boiling point) as

an auxiliary pumping system which collects condensable gases, particularly H2 0 and

heavier hydrocarbons. Extensive cryopanelling surrounding the deposition region is

an essential design for achieving high quality aluminum-containing films.

The MBE system has two reactors distinguished by their source materials. Reactor

A has group III materials: gallium, indium, aluminum; group V materials: arsenic,

phosphorous, nitrogen; doping materials: silicon and beryllium; and hydrogen for



regrowth surface cleaning. Reactor B also has all the above with an additional group

V material: antimony. Two gallium and two indium cells on each reactor ensure

high film quality by minimizing growth hiatus due to cell temperature adjustment.

A thermal effusion cell radiatively heats the solid source and the evaporants form a

molecular beam. A thermocouple is positioned in contact with the pyrolytic boron

nitride crucible, registering the source material temperature, and controls the power

to the heater via a proportionalintegralderivative (PID) feedback. Valve cracker is an

extended heating zone equipped in all group V cells in order to 1) pyrolyse tetrameric

molecules into dimeric molecules, or even monomeric molecules, and 2) control the

volatile group V flux through a precision valve opening rather than by controlling

source temperature. Utilizing dimeric or monomeric molecules not only supports

better film quality [15] but also preserves the quantity of group V materials during

growth. Fourteen two-inch wafers or seven three-inch wafers can be loaded into a

single reactor in one growth experiment. Only the loading chamber is exposed to

atmosphere; wafer transferring inside both reactors is controlled by an automated

robot arm.

A substrate heater, attached to the manipulator, radiatively heats the substrate

in proximity. Although the temperature in the system is primarily controlled by

the thermo-couple, diffuse reflection spectroscopy (DRS) is also used for accurate

substrate temperature measurement. The ionization guage is not sensitive enough to

measure dopant fluxes but is capable of measuring fluxes down to 10-11 Torr.

3.2 Growth Condition

Substrate temperature, growth rate, and V/III ratio were pointed out in Section 1.2.1

to be the most critical growth parameters. These data are documented in Appendix

A. Throughout all the growth experiments in this thesis, a nominal substrate tem-

perature between 590~600'C was used, whereas DRS showed a nonlinear shift of the

real temperature, which sits in 487~508'C. Group III and group V beam equivalent

pressure (BEP) were also tabulated in Appendix A. Direct calculation of BEP V/III



Figure 3-1: Layout of Veeco GEN200 MBE system. Six cryo pumps (pink), Two
turbo molecular pumps (orange), and four scrolling pumps (yellow, one is movable,
not shown) are equipped on the system.

ratio falls in 19~23. However, caution is required when examining the reports of

V/III ratio in literature. Normally the report should specify whether the parameter

is V/III BEP ratio or the V/III growth rate ratio. The latter is a common language

when reflection high energy electron diffraction (RHEED) is in use. Two curves need

to be obtained in the calibration runs: first, the growth rate as a function of group

III flux under excess group V overpressure, and second, the growth rate as a function

of group V flux under excess group III overpressure. One is able to claim, according

to the two curves measured, the V/III growth rate ratio given the group V and group

III flux used in the subsequent growth experiment. The numerator is the growth

rate on the first curve obtained under limiting group III flux; and the denominator is

the growth rate on the second curve obtained under limiting group V flux. Growth

under excess group V is adopted in this experiment for it provides better film quality.

Arsenic cell base temperature and valve position (in mil, 1 mil=0.001 inch) were also

recorded in Appendix A.

I - .- A" I . .. .... .... ......... - - ..:-: .......... W"M IWMI ffl '-M ---- - -",- - - - - .. - . . .



32



Chapter 4

Material Characterization

4.1 Triple Axis XRAY Diffraction

4.1.1 High Resolution X-Ray Diffractometer (HRXRD) Set

Up

The Bruker D8 HRXRD is used to analyze all epitaxial samples. It is a triple-

axis diffractometer (TAD) consisting of a four-bounce Ge (022) asymmetric beam

conditioner (first axis), the sample crystal (second axis), and a receiving three-bounce

Ge(022) analyzer crystal (third axis). This configuration gives a 25 arc-seconds beam

divergence and a 0.008 degree FWHM on Si (022). It is a versatile characterization

tool which allows one to perform high resolution xray diffraction (HRXRD) as well

as xray reflectometry (XRR) on a non-lattice matched, simple multilayer thin film

stacks.

Ideally this system is able to reach a 5 arc-seconds beam divergence with an al-

ternative four bounce Ge (044) symmetric monochromator. This condition is more

appealing to analyze a complicated laser structure consisting of multiple layers. How-

ever, the increase of 5 times in resolution is at the expense of signal intensity, which

turns out to be three orders of magnitude lower. To further increase the diffraction

beam intensity, double axis diffraction (DAD) is also used. In DAD, the analyzer

crystal at the receiving end is replaced by a slit. Shown in Figure 4-1 is a generic



diagram of a TAD system used in the measurement. Copper K, line (A=1.54 A) is

generated from electron bombardment. The divergent beam then passes through a

Gosbel mirror and enters a Ge (022) monochromator. The conditioned (more colli-

mated and spectrally pure) Xray beam reaches the sample after passing through a

0.2 mm slit. The reflected beam then enters a detection system that switchs between

a programmable receiving-slit or Ge (022) analyzer crystal.

Figure 4-1: Bruker D8 HRXRD instrumental setup. From left to right: X ray
source, Gosbel mirror, Ge (022) monochromator, slit, epitaxial sample, slit, Ge (022)
monochromator, detector.

A symmetric (004) 26/w measurement is first performed. By changing the detector

position along with the incident beam angle, different (hkl)s contribute to constructive

interference; therefore this type of scan is especially sensitive to perpendicular lattice

constant (az). Usually one spectrum is enough to obtain composition and thickness

information through software fitting assuming a simple structure with no lattice plane

tilt, strain, relaxation, or surface curvature. The conditions mentioned above compli-

cate the composition analysis and an extra asymmetric (224) or (115) scan should be

performed to gather more in-plain lattice, namely a, and ay, information if desired.

A multiple quantum well laser could be viewed as a superlattice structure embedding

in cladding layers. Thickness fringes, satellite peaks, and substrate peak complicate

the diffraction pattern with serious interference between each others' scattering am-

plitudes. Grazing angle (000) X-ray reflection (XRR) measurement is a time-efficient

technique performed to improve the fitting accuracy of the data. XRR is used to



measure the density, thickness and roughness of thin layers (20~200 nm). The above

information is obtained through critical angle, fringe thickness, and the overall sig-

nal decay analysis. LEPTOS [16] is the primary simulation and fitting software for

HRXRD used in this thesis. LEPTOS adopts recursion matrix extension to the dy-

namical diffraction theory, where the multiple scattering processes have been treated

exactly. The program models a heterostructure into a stack of parallel atomic planes.

The thickness and composition of each plane is varied until the best fit between the

simulation and experimental curve is achieved.

4.1.2 Result and Discussion

Table 4-1 shows basic information on all 8 epitaxial samples discussed in this study.

All the layer information generated by data fitting could be found in Appendix A.

Film thickness, density, alloy composition, residual stress, and roughness of the thin

film will be obtained after fitting the experimental data. Figure 4-2 and Figure 4-

3 show (004) 20/w scans on every laser structure. Two graphs are shown for each

sample, one with the higher signal intensity and broader scanning range and the

other with lower intensity and narrower range. The former is obtained by DAD and

the latter TAD. Because (000) XRR is a surface analysis (20-200 nm) technique,

the intensity oscillation feature could not be obtained for a complete laser structure

because the 2200 nm cladding layer is thicker than the distinction length (XRR for

laser structures is not shown here). Figure 4-4 shows both (004) 20/w scan in DAD

and TAD configurations, as well as the (000) XRR spectrum obtained from two PL

structures. Sample analyzer in the software is used to generate a convergent fit to

the data based on the above scans. The fitting process is configured to use "Genetic

Algorithm" first to find a global minimum and then "Levengerg-Marquardt" method

continues as a local minimizer for fine tuning the fit to the data.

The most prominent feature in the spectra is the substrate peak around 63.250

(20). Toward high angle side, the broader peak with very fine fringes close to 64* (20)

is attributed to the InGaAs top contact. The existence of this peak verifies a slight

tensile strain in the nominally lattice-matched contact layer due to unintentional



Sample
VA153
VA154
VA156
VA158
VA159
VA159
VA162
VA163

Table 4.1: All 8 epitaxial
numbers.

QW Composition #QW
Ino.66GaAs 2
Ino.66GaAs 3
Ino.7 GaAs 2
InO.7 GaAs 2
Ino.7nGaAs 3
Ino.76GaAs 2
Ino.74GaAs 2
Ino.7 5GaAs 3

samples with their structures,

dilute phosphorous incorporation. The quaternary waveguide layers are very close to

lattice-matched condition, and the superlattice nature generates a series of satellite

peaks between 63' to 640, which strongly interfere with the substrate's scattering

amplitude. Toward the small angle side, an even broader envelope containing periodic

fringes is observed, which then provides the information on the compressively-strained

InGaAs quantum well indicating its alloy content and thickness. The position of the

envelope maxima moves toward lower angle along with increasing indium content in

QWs. Note the diffraction pattern for structures with two QWs is different from that

with three QWs. An alternate increase and decrease of fringe maxima is shown in 3

QWs samples because the embedding environment modulates the fringe maxima and

period differently.

Structure
Laser
Laser
PL

Laser
Laser

PL
Laser
Laser

QW compositions, and QW



Figure 4-2: (004) 207w scan (DAD and TAD) on three laser samples A) VA153 B)

VA154 C) VA158. The blue line is the fit to the experimental data shown in the black

line.
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Figure 4-3: (Figure 4-2 continued): (004) 20/w scan (DAD and TAD) on three laser
samples D) VA159 E) VA162 F) VA163. The blue line is the fit to the experimental
data shown in the black line.
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Figure 4-4: Both the (004) 207w and (000) XRR on two PL samples A) VA156 B)

VA161.



4.2 Photoluminescence (PL)

4.2.1 PL Set Up

Figure 4-5 depicts the existing photoluminescence setup used for optical character-

ization of the epilayers. A 514.5 nm argon ion laser serves as the photoexcitation

source. The laser beam is then routed through a chopper, which is programmed at

534 Hz, in order to increase the signal to noise ratio with the presence of a lock-in

amplifier. Subsequently passing through a height adjusting mirror, the laser beam is

directed to hit the sample, which is positioned at an angle slightly off from 90'. The

sample holder is tilted to reflect the laser beam out of the optical axis. The light

emitted by the sample is routed through two focusing lens and then goes into a PbS

detector. The detected signal is transferred to a lock-in amplifier . All the samples

in this thesis were designed to emit in the MIR wavelength region, therefore grating

number three, which allows to scan from 900nm to the longest possible wavelength

2400 nm is in use.

Mirror
Heat

Sample diagra m Argon on Laser 514 nm o Exchanger
Holder CCD

Temperature Camera TV
Controller 2 m

C wpper Spectrometer 2 a 1
s Lens Lens Gratings PbS Lock-in Amplifier

Leis#1:LIV 
Detector Input Cho f

FilterController

Figure 4-5: Block diagram of photoluminescence setup used to characterize thin films.

All PL measurements are conducted at RT. Sample VA153, VA154, VA158, VA159,

VA162, and VA163 are complete laser structures. The sensitivity of the lock-in am-

plifier is set to be 2 mV for all the laser samples mentioned above. Sample VA156 and

VA161 are PL structures, which were measured under 2 mV and 1 mV sensitivity, re-

spectively. Note that the difference between samples designed for PL characterization



and the complete laser structure is that the epitaxial growth stops upon the comple-

tion of the waveguide layer in the former case. Incident light can easily penetrate

through the thin surface layer with little absorption penalty and reach the active re-

gion where radiative recombination takes place. However, with a thick 2.2 Pm upper

cladding in a complete laser structure, incident light intensity will inevitably decay

to a negligible value and only the recombination at the top contact layer is observed.

Therefore a wet etch process is introduced prior to the PL characterization of all laser

structures.

4.2.2 Wet Etch for Laser Structure

The wet etch process for this specific laser consists of two steps: 1) the removal of the

InGaAs contact layer, where an arsenide-based etchant is used; and 2) the removal

of the InP cladding layer, where a phosphide-based etchant is used. The chemical

solutions that are used are detailed in Table 4-2. All etching processes were carried

out at RT, using as-prepared etching solution. Theoretically, the second etching step

should stop at the InGaAlAs etch stop layer. However, in some samples, the InP

cladding was not thoroughly removed. From the energy band point of view, the

underlying etch stop turns into a 20 nm energy well that contributes to an extra

emission peak with low intensity.

Etch Solution Reference
For Arsenide H3PO4:H20 2 :H20 = 1:1:3 [17]

For Phosphide H3PO4:HCl:CH 3COOH = 1:1:2 [18]

Table 4.2: Wet chemical etch solution used to remove contact layer and cladding
layer.

4.2.3 Result and Discussion

Figure 4-6 is a compilation of the PL results obtained from all the structures grown.

PL structures show consistency in emission wavelength with their laser counterparts.

Structural information for each sample was documented in Appendix A. It is impor-

tant to note that the PL structures have higher intensity than similar laser structures



but comparable full-width- half-maximum (FWHM). Although one may attribute the

photon loss to the presence of a roughened surface or residual unetched materials, the

succeeding cladding growth may also affect the optical integrity of the active region.

The growth of the cladding layer is equivalent to a 2 hour annealing event. All

samples show FWHM around 40 meV at RT. The broad FWHM implys the crystal

quality may need improvement. Also note that the PL intensities from samples with

three quantum wells are higher than from samples with two quantum wells due to

more radiative recombination taking place in the additional quantum well. Figure

4-7 shows the trend that both PL emission wavelength and lattice-mismatch increase

with increasing indium content.

Z%

Z

1000 1200 1400 1600 1800 2000 2200 2400

Wavlength (nm)

Figure 4-6: Compilation of PL results from numerous samples after wet etch (laser
structures only)
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4.3 Electroluminescence (EL)

EL is a way to characterize the electrical properties of a laser device once the metal

contact is formed. An ohmic contact is required at the metal-semiconductor junction

to assure ease of carrier transport without a large resistance. A problematic metal

contact not only creates a Schottky barrier but also contribute to Joule heating of the

device. With increasing device temperature, higher threshold current will be needed.

This section describe a simple EL test where only the metal evaporation step to

form the contact is carried out in the clean room. The devices under characterization

are broad-area Fabry-Perot cavities without any ridge waveguide definition.

4.3.1 Electroluminescence Set Up

Figure 4-8 shows the generic scheme for the electroluminescent set up. ILX lightwave

LDC-3900 and LDC-3840 modular laser diode controllers are used as continuous and

pulsed laser drivers. A broad area Fabry-Perot laser diode is placed on a thermal elec-

tric probing stage which maintains room temperature. The luminescence generated

from the device is focused by a two-lens (aspheric and objective lens) set of optics

that allows XYZ control for fine adjustment and signal maximization. The light signal

is then guided by a multimode optical fiber to an optical spectrum analyzer (OSA,

YOKOGAWA AQ6375 1200~2400 nm).

Multimode Fiber 60 pm core

Continuous/ Pulsed Laser Diode on XYZ Stage with 2-lens _ OSALaser Driver H TE cooler H focusing Optics !

Figure 4-8: Block diagram of electroluminescent set up used in this experiment.

4.3.2 Testing Materials Preparation

All samples are first mechanically thinned to 150 pm and then each cample undergoes

the same metallization : Ge 18 nm/Au 30 nm/Ni 20 nm/Au 200 nm as the n-side



metal contact and Ti 30 nm/Pt 20 nm/Au 200 nm as the p-side metal contact,

followed by a 30 second, 400'C rapid thermal annealing (RTA) step. A rib-back

carbon steel surgical blade is used to cleave the wafer into 1 mm wide long stripes.

Inspection under an optical microscope ensures both facets are mechanically perfect,

then cleave the stripes into 1 mmx500 pm Fabry-Perot (FP) cavities.

The FP cavity is soldered to a copper block (heat sink) using lead-tin solder or

indium foil. First the hotplate is preheated to 250 C and rub the copper block is

scraped using sharp blades, in order to remove any surface oxide. The copper block

is placed on the hotplate for 5 minute and is then wetted by the lead-tin wire or

indium foil on one long side of the copper block. Although containing hazardous

material (lead), lead-tin solder is used for all the soldering processes in this thesis

because of its superior wetting property. Blades are used to remove excess molten

solder material to obtain as thin of a layer as possible. A thin and uniform soldering

layer is needed to prevent a short circuit when mounting the FP device. Keeping the

hot plate temperature to 155'C will retain a semi-liquid solder.

The following work is all conducted under the optical microscope due to the small

size of the FP cavity. Mount the device n-side down with a fine tweezer, and gently

adjust the position and angle of each die to be close and perpendicular to the edge of

the copper block. Extra care should be taken to avoid facet damage and the creation

of a short circuit. Turn off the hotplate, and allow the whole device to cool down

with the hotplate at a slow rate, in order to prevent the generation of strain-induced

micro-cracks due to thermal quenching.



4.3.3 Result and Discussion

Testing was carried out under both continuous- and pulsed-driving conditions. How-

ever, electroluminescence is only observed under pulsed condition. EL spectrum

shown in Figure 4-9 are all taken under 100 ns pulse width, with various duty cycles

(DC) and current injection. Lasing behavior is defined to have the FWHM of the

emission peak narrower than several nanometers. Only VA153, VA154, VA159, and

VA162 show lasing behavior whereas VA158 shows amplified spontaneous emission

(ASE). VA163 (not shown) has no features.

From the emission wavelength on the optical spectrum analyzer, peak positions

shift to longer wavelength with samples containing more indium. Samples tested with

the same injection current are prone to lase under lower duty cycle. This is because

less self-heating keeps the threshold current low. With increasing duty cycle from

pulse (DC 0.5%) to semi-continuous (DC 5%) condition, ASE is observed instead of

the defined lasing peak.

o,
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Figure 4-9: EL spectra for broad area devices: A) VA153, B) VA154, C) VA158, D)
VA159, x) VA162A and VA162B (A and B denote differnet devices made out of the
same epi film). The measurement is obtained under pulsed driving conditions: 100 ns
pulse width, comparable injection current, and various duty cycle (DC%) are labeled

in each subfigures.
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Chapter 5

Device Characterization

5.1 Device Fabrication

Seven ridge-stripe laser samples (VA152, VA153, VA154, VA158, VA159, VA162,

VA163) were fabricated by Covegal. Back-end processing includes reactive ion etch,

spin-on glass, wafer thinning, metal evaporation (back and front side), and laser bar

cleaving. The first two steps were performed for current confinement and planariza-

tion. P-side metal (Ti/Pt/Au total 930 nm) and n-side metal (Au/Ge/Ni/Pt/Au

total 880 nm) were deposited before and after wafer lapping respectively. The pro-

cessed wafer is then cleaved into 1.5 cm bars with 20 laser dies on each bar. Figure 5-1

shows the scanning electron microscope cross-sectional view of the ridge laser. Each

sample has two identical sets of laser bars in various cavity lengths (0.5 mm, 1 mm,

1.5 mm). The L-I (light intensity vs. injection current) testing results from devices

with different cavity lengths allow one to obtain internal parameters such as internal

loss and current injection efficiency. The corresponding principals and processes are

detailed in the following section.

'Thorlabs acquired Covega Technlogy and renamed the company Thorlabs Quantum Electronics,
a world class developer of InP proprietary techonologies.



Figure 5-1: Cross-sectional SEM photograph of a ridge-stripe laser fabricated by
Covega.

5.2 Laser Characterization

The processed wafer is cleaved into laser devices, with different cavity lengths, and

then placed on the thermal electric (TE) cooler. After the L-I is measured for different

cavity lengths, internal parameters, namely injection efficiency (,i) and internal loss

(ai) is extracted from the behavior of inverse differential efficiency to cavity length

(1/7d-L). Changing the TE cooler temperature enables one to extract the thermal

resistance of the laser diode.

VA152, VA153, VA154, and VA158 were mounted epi-side up using SnPb solder

on a copper block. VA159, VA162, and VA163 were mounted in the same fashion

but with epi-side down. The mounted devices were then placed on a TE cooler and

electrically pumped by a pulsed or continuous laser driver. All L-I-V measurements

were carried out under room temperature. A Melles Griot broadband power meter was

used to detect the output power from one facet. A schematic illustration of L-I testing

set up is shown in Figure 5-2. Since the power meter head only has a circular opening

of 1 cm in diameter, some portion of the output power was not collected, therefore

generating a coupling loss. In Figure 5-3, this loss was found to be 50% compared

with Covega's measurement (see Appendix C) using an extended InGaAs detector



with integrating sphere. After correction, the power that was measured closely follows

Covega's measurement when the injection level is near threshold. Power measurement

only goes up to 200 mA under pulse condition, where this correcting factor is valid

to apply.

Continuous/ Laser Diode XYZ Stage with Power Meter Broadband
Pulse Laser On TE cooler 2-lens focusing Optics Head Power Meter
DriverI

Figure 5-2: Power-current (L-I) testing set up used in the experiment.
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Figure 5-3: Comparison between Covega's measurement (red squares) and the mea-
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5.3 Result and Discussion

5.3.1 L-I Measurement

Prior to measuring the output power from a laser diode, one should make sure the

power is solely contributed from a narrow lasing bandwidth. Multiple longitudinal

modes on each device is observed using the optical spectrum analyzer [see Figure

5-4(a)]. For devices mounted epi-side up, pulsed excitation with 5% duty cycle and

100ns pulse width was used to obtain L-I curve [see Figure 5-4(b)] in order to avoid

threshold shift. Devices with a longer cavity show lower differential efficiency because

of lower mirror loss am:

1 1
am = -ln(-) (5.1)

L R

where L is the cavity length (in cm) and R the facet reflectivity. R-0.32 for laser

devices based on InP material.[1] For devices mounted epi-side down, L-I behavior

under pulsed and CW conditions show good agreement; the threshold current shift

is negligible under this low thermal resistant-mounting configuration. Therefore it is

valid to obtain threshold and differential efficiency using CW excitation for epi-side

down mounting condition.

Threshold current density Jth and quantum differential efficiency qd is obtained

from L-I curve. The former intersects with abscissa and the latter could be derived

from the slope.

Pd = 2 x --- X AP= 77 X ( (5.2)
hc AI am + (ai)

In which AP is the power coming out from one facet and Al the injection current.

Since the device facets were not treated with antireflection or high reflection coat-

ings, the factor of 2 in equation 5.2 accounts for power exiting both facets. Internal

parameters of a laser is extracted from the above multiple-cavity length (L's) mea-



surement. Carrier injection efficiency 71i , and internal modal loss (a) is obtained by

curve-fitting the inverse differential efficiency. (see Figure 5-4(c), two devices with

0.1 cm and 0.15 cm cavity length was marked in hollow circle.) The relation between

internal and external parameters is the following:

1 a 1
- * L + - (5.3)

77d i Iln(jA) 7i

Internal loss a is associated with optical propagation along the cavity and mainly

due to the overlap of the optical mode with the high carrier density region, such as

the doped cladding and the undoped quantum wells. The measured intervalence band

carrier absorption on p-doped (p=1018 cm- 3 ) InP wafer is around 40 cm- [19], which

leads to an internal loss on the order of 2 cm 1 ; whereas the loss we obtained was one

order of magnitude larger than this value. Two reasons may account for such high

loss: 1) crystal defects may be present in p-cladding layers due to non-optimized epi-

taxial growth conditions. Figure 5-9 shows the top contact of VA154 laser structure

examined with an optical microscope. Areas identified are that treated with and with-

out chemical etch. Small elongated surface defects were observed in both regions and

among all the samples grown in this thesis. 2) Unoptimized crystal quality in the ac-

tive region. The broad FWHM on PL emission peak shown in Section 4.2.3 indicates

structural imperfection in the active region, where multiple epi-layer interfaces reside.

The photons generated within the active region may suffer from severe scattering loss.

The carrier injection efficiency qi indicates the fraction of the terminal current

that is injected into the active region as carriers. Current leakage and thermionic

emission prevent carriers from entering the active region. There are several factors

that may lower the injection efficiency: structure imperfection at the side wall of the

ridge becomes a shunt path around the active region; the laser device is operating

under high temperature or high carrier injection which enlarges the energy span of

the carrier distribution and allows those high energy carriers to escape from the ac-

tive region. We calculated i to be approximately 70%, which is comparable to most



working laser devices. Nevertheless, a better design may be a 20 pm broad area de-

vice that would ensure minimal side wall roughness. Of course, a broad area device

may lead to the excitation of multiple transverse modes.

L-I-V measurements under continuous excitation are shown in Figure 5-4(d) with

a diode turn-on voltage around 1V. In Figure 5-4(b), differential efficiency is lower in

the device with a longer cavity whereas in Figure 5-4(d), a higher injection current

(400 mA) is required to observe thermal roll off. The former is the result of the lower

mirror loss in Equation 5.2 and the latter is due to better heat dissipation in the

longer cavity devices. Similar trend is shown in sample VA154 (Figure 5-5), VA158

(Figure 5-6), VA159 (Figure 5-7), VA162 (Figure 5-8). For devices mounted epi-side

down, the threshold current and differential efficiency measured under CW excitation

are similar to those measured under pulsed excitaion. Therefore, the L-I curves shown

in Figure 5-7 and Figure 5-8 were only measured under CW excitation. Note the data

points used in internal parameters fitting are based on the number of working devices

in the experiment. In Figure 5-10, only the lasing feature was observed in VA163.

However, Covega demonstrated that VA163 is a working device. (see Appendix C)
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Figure 5-9: VA153 defects on the surface treated with and without the wet etch.
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Figure 5-10: Electroluminescence spectrum of VA163 FP laser device.



5.3.2 Thermal Resistance Measurement

Thermal resistance indicates how the device temperature changes with input power.

The lasing wavelength is a function of device temperature and therefore level of

current injection. Knowing the change of wavelength with temperature under fixed

current-AI,, and the other way around, IT, allows one to estimate the thermal

resistance Rth in (K/W) of the device.

R A = (5.4)
AA AP

AP is the thermal power, obtained by subtracting optical power output from to-

tal electrical power input. The measurement of the first term in Equation 5.4 was

conducted under pulse excitation in order to minimize the heating effect contributed

from current injection. The only variable in this measurement is the TE cooler tem-

perature. The measurement of the second term in the equation was conducted under

CW excitation but with a fixed TE cooler temperature. Note the constant T in the

second term denotes the constant exterior temperature provided by a TE cooler as

opposed to the interior temperature in the laser active region.

All devices were placed on a TE cooler for temperature adjustment. The emission

wavelength was recorded from the spectrum measured by the OSA with similar testing

apparatus as in the electroluminescence measurement. To adjust electrical input

power, one simply changes the injection current on CW laser driver and records the

voltage drop across the device. This potential difference comes from the sum of the

built-in voltage and the series resistance between two terminals. Figure 5-11 shows the

thermal resistance Rth of VA158 laser device with 1.0 mm and 1.5 mm cavity length,

mounted epi-side up. High Rth was observed for shorter cavity devices indicating

poorer heat dissipation from the active region under CW operation. In other words,

under the same initial condition, providing equivalent amount of thermal power, will

cause the shorter cavity device to have a higher device temperature.

Similarly, Figure 5-12 shows the same measurements on VA159 laser device mounted

epi-side down. A laser device with higher Rth is prone to have higher threshold cur-



rent and accordingly an early thermal roll-off. However, one could leverage this

phenomenon to create a sensitive tunable laser, since wavelength tuning also relies on

a temperature change of the laser.

Figure 5-13 compares Rth under different mounting configurations. The laser

devices mounted epi-side down have smaller thermal resistance because less thermal

mass exists between the active region and the heat sink. Due to the insufficient data

points in this figure, a fit is not able to perform based on four laser devices. The

conclusion in this comparison is a clear trend stating that a lower thermal resistance

could be obtained for a longer cavity device mounting epi-side down.
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Chapter 6

Conclusion and Future Work

This thesis presented the design, growth, fabrication, and characterization of the In-

GaAs strained multiple quantum well lasers on the InP substrates. The identification

of the epitaxial materials, the study of the electrical, optical, and thermal property of

these specific long wavelength laser devices were documented. Concluded from all the

characterization results, we demonstrated 1) a 2.07 pm electroluminescence spectrum

from a broad area laser device at room temperature and pulsed driving condition;

and 2) a 1.97 pm wavelength emission with 10 mW output power from a ridge laser

device (2 pm ridge width) at room temperature and CW driving condition. This

1.97 pm edge-emitting laser is going to be fabricated into a butterfly package with

fiber pig-tail, in order to implement in the photo acoustic spectroscopy system for

petrochemical trace gas detection.

6.1 Antimony-Based Material System

The mid-infrared (MIR) semiconductor laser device is of great importance in terms of

ultra sensitive molecular sensing, since several crucial toxic gas molecules (CH 4, CO 2 ,

CO, and HCl) have their fundamental absorption lines sitting in a spectrum region

spanning from 2 to 3 pm. The sensing application can be achieved by MIR laser

diodes operating under room temperature and outputting tens of milliwatt power in

two major material systems: phosphide base and antimonide base. This thesis stud-



ied the former material system in a strained InGaAs quantum wells (QWs) structure.

In this section, a brief survey of the antimonide based MIR wavelength laser structure

will be presented.

An antimony-based III-V edge-emitting diode laser is commonly categorized by

its band alignment. Figure 6-1 schematically shows type I, type II (staggered), and

type III (broken type II) band offsets. Table 6-1 indicates laser structures within

MIR (2-5 pm) range and their performance specification. Type I laser has been the

work horse in 2 to 3 pam region, especially for InGaAsSb/AlGaAsSb strained quan-

tum well laser; the laser has specific application for tunable diode laser absorption

spectroscopy (TDLAS). For TDLAS, high operational temperature and low Jth are

the main performance criteria. The advantages of type I band alignment include

1) 2-dimensional density of state in the quantum well (QW) structure, 2) improved

carrier confinement, 3) convenient to tune the energy level (emission wavelength)

with QW width and composition, and 4) compressive strain could couple with quan-

tum size effect and lower hte in-plane heavy hole effecitve mass, resulting in lower Jth.

For longer wavelengths, type I band alignment shows decreasing characteristic

temperature (T,), output power and differential efficiency. The longest emitting

wavelength reported under CW RT operation is reported to be 3.04 Pm [20]. For

wavelengths beyond 3 pm, no CW antimony-based diode laser operates under RT

due to the large Auger coefficient, less hole confinement, and increasing expansion of

the optical mode into the cladding layer. Type II "W" laser starts showing superior

quality based on its low Auger recombination rate and substantial overlap between

electron and hole wavefunctions. The benefit of this structure with spatial separated

carriers is to tailor the longer wavelength emission by adjusting quantum confinement.

The longest wavelength reported so far under CW and RT is a single stage "W" laser

emitting at 4.02 tm [21].

Quantum cascade laser (QCL) is another important structure that shows extraor-

dinary temperature stability for optical phonon scattering being the dominant non-
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Figure 6-1: A schematic of various band alignments in the laser structures: a) Type
I, b) Type II, and c) Type III (broken type II).

radiative process between intersubband transition. Interband quantum cascade laser

(ICL) is analogous to a broken type II QCL. Sophisticated wavefunction engineering

was exploited in these calculation- and fabrication-intense structures [22],[23].
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Band perating and Diagram Emission ctive Structure
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"W" T=218K [ InAs/GalnSb/InAs/AIGaSb

Type 1l CW ameabove 3.25 10 QW

"W" T=195K InAs/GalnSb/InAs/AIGaAsSb
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Table 6.1: MIR laser diodes
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6.1.1 2.3 pm Antimonide Diode Laser for Photo Acoustic

Spectrometry (PAS)

Figure 6-2 illustrates the working principal and schematic of the PAS system'. Mod-

ulated light first passes through a plastic resonant cell containing the target gas.

Non-radiative relaxation following the absorption process generates modulated heat

(pressure wave), which is then detected by a built-in amplifier. In order to have a

sensitive and strong signal, a high spectral purity light source is required. Therefore,

a compact semiconductor laser which emits at the fundamental absorption line of the

target gas is the best candidate. A widely tunable laser diode is more desirable not

only for multi-gas detection but also for higher spectral sensitivity.

$IthNIm

Figure 6-2: Working principal and design schematic of quartz-enhanced Photo-
Acoustic Spectroscopy System.

lDesigned by Dr. Harry Lee, MIT
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6.1.2 Photonic Crystal Tunable Laser

Tunable lasers are conventionally obtained by employing a sampled grating structure.

As an example, a tunable four-section cavity requires four contacts, front and rear

Distributed Bragg Reflector (DBR) mirrors, and an epitaxial regrowth step. A tuning

range up to 40 nm with a side-mode suppression ratio (SMSR) greater than 40 dB

[24] was reported. On the other hand, a coupled-cavity tunable laser [24] was also

reported but suffers due to a complex fabrication process. By combining the 2-

D gratings and coupled-cavity design, the photonic crystals (PhCs) tunable laser

achieves single mode tuning over a comparable range as in DBR laser. Currently

47 nm of tuning range and 40 dB SMSR was reported [25]. In antimonide material

system, aluminum is usually used in the thick cladding layer, which limits the regrow

crystal quality. 2-D PhCs coupled cavity laser avoids unrealistic DBR fabrication in

Al-containing antimonide system and bring along several advantages [26]: 1) easy

control of cavity length and mirror reflectivity, 2) very simple technological process

[27], 3) small component footprints which allow higher chip integration density, 4)

easy to integrate other components such as wavelength monitors [28], and 5) unlike

the sample gratings, the PhCs cavity displays an almost flat spectral response, leading

to potentially very large tuning range. The only limitation is the gain curve of the

active medium.



6.2 Extension to Longer Wavelength-Dilute Nitro-

gen Mateirals

From Section 6.1, type II "W" and QCL lasers are good candidates to extend the

wavelength to 3-5 pm range. InAs/GaInSb and InAs/AlSb superlattice is the mate-

rial considered to match special band alignment, which in practice is challenging in

MBE growth, since the four layers of the "W" structure contain three distinct materi-

als with growth temperatures that differ by more than 100 C. The interface chemistry

is complex since the adjacent layers share neither a common cation nor a common an-

ion. Interfacial bond type (GaAs- or InSb-like) is also sensitive to laser performance.

Not only are these structures are challenging to grow, but the performance is also

unsatisfactory in terms of RT operation. An alternative to (AlGaln)-(PAsSb) mate-

rial system starts to emerge by introducing dilute nitrogen (< 5%) into the epitaxial

active region.

GaInNAs material system is of interest to realize low-cost telecommunication

(1.3-1.55 pm) lasers [29]. To reach MIR wavelength region, smaller bandgap InAsN

active material has been fabricated [30] and proposed [31],[32] on InP and InAs sub-

strates. Dilute nitride antimonide alloy with even narrower band gap has received

less attention both theoretically and experimentally. Band anticrossing model (BAC)

is now well established for explaining conduction band splitting in dilute nitride ma-

terials. BAC is essentially the interaction between spatially-localized nitrogen states

and the conduction band of the underlying nitrogen-free semiconductor. This model

yields the following dispersion relations for the two coupled bands:

E±(k) = x [Ec(k) + EN] ± [Ec(k) - EN] 2 +4V2X (6.1)

where Ec(k) is the conduction band dispersion of the unperturbed (nitrogen free)

semiconductor, EN the isoelectronic level of the nitrogen, E± the split (perturbed)

conduction bands; V is the interaction potential between Ec(k) and EN; x is the

nitrogen fraction.



A recent theoretical study combines type II band alignment with dilute nitride

material [33]. An InAsN/GaSb/InAsN "W" quantum well lattice-matched to InAs

substrate was designed to operate at 3.3 pm, RT. The calculation was performed by

using 10-band k * p Hamiltonian including strain and BAC. First, layer thickness

and quantum well numbers were determined from optical momentum matrix element

optimization. This involes the calculation of energy levels and wave function overlap.

Second, E - k dispersion and carrier distribution derive gain spectrum and Auger

coefficient under various temperature. By evaluating a reasonable optical loss in this

design, a threshold current density is estimated to be 500 A/cm 2, implying dilute-

nitride InAsN/GaSb/InAsN "W" quantum wells are suitable for mid-infrared laser

operation at RT. In reality, nitrogen incorporation in the epitaxial film remains a

challenging topic. The difficulties include the limited solubility of nitrogen atoms,

phase segregation, nonradiative defects caused by the low growth temperature, and

ion damage from the nitrogen plasma source.[34] Based on the abundant theoreti-

cal study on this promising new material system, the unsolved problem in material

realization is surely a very interesting topic for material scientists.



Appendix A

Sample ID

The first part of each sample ID is the purpose and proposed structure for this epitaxy

run. QW composition, expected PL emission wavelength, QW numbers, and real

substrate temperature (DRS measurement) were denoted on the title. Layer by layer

composition, growth time, intended thickness, doping level, and lattice mismatch were

detailed in the table. The second part of each sample ID includes MBE flux condition,

HRXRD (004) 20/w spectrum, and PL spectrum. Group III beam equivalent pressure

(BEP), group V base temperature (0 C) and valve position (mil) were documented in

the lower left table. The third part of the sample ID records the final structure data

obtained by fitting the HRXRD spectrum in LEPTOS program.



VA153 In(.65)Ga(0.35)As Laser 1750nm 2QWs 508C
To grow a 1. 75um laser with 2 InO.65GaAs QWs
Corresponding PL structure is VA151; Corresponding Laser Structures are VA150 and VA 52
2 wafers grown; one is to be shipped to Covega for Processing

Inl(0.53)GalAs:Be 5.14min 100nm 3e19 LM

In12P:Be 23.57min 500nm 1e18 =>1el9

Inl2P:Be 70.71min 1500nm 1e18

In2(0.53)Ga2(0.313)AI(0.156)As:Be 0.985min 20nm 1e18 LM
In1P:Be 7.071min 150nm 3e17

in2(0.53)Ga2(0.313)AI(0.156)As 8.862min 180nm LM

In2(0.53)Ga2(0.313)AI(0.156)As 0.985min 20nm LM

In 2(0.65)GalAs 0.265min 8nm 0.8%CS
in2(0.53)Ga2(0.313)AI(0.156)As 0.985min 20nm LM
in12(0.65)GalAs 0.265min 8nm 0.8%CS

In2(0.53)Ga2(0.313)AI(0.156)As:Si 9.847min 200nm LM

InIP :Si 23.57min 500nm 3e17

In1P buffer:Si 23.57min 50nm 1018
InP (S-doped)

VA153 In(.65)Ga(0.35)As Laser 1750nm 2QWs 508C

BEPInl 5.65E-07 Torr

BEPin2 2.72E-07 Torr

BEP Gal 4.46E-07 Torr

BEP Ga2 2.22E-07 Torr

BEP-Al 0.35E-07 Torr
BEP As/Vaive As 114E-07/280

BEP-P/Vaive P 133E-07/297

T sub/DRS 600C/508C

VA153 In(O.65)Ga(0.35)As Laser 1750nm 2QWs 508C

nl (0.527)GalAs(0.89)P:Be 5.14min 99.6nm 3e19 0.39%TS

Inl2As(0.0014)P:Be 23.57min 496.5nm 1e18 =>1e19

Inl2As(0.0001)P:Be 70.71min 1506nm 1e18

In2Ga2(0.355)AI(0.145)As:Be 0.985min 17.7nm 1e18 0.2%TS

inlAs(0.0084)P:Be 7.071min 155nm 3e17

In2Ga2(0.33A(0.1 4)As 8.862min 201.8nm 0.007%CS

ln2Ga2(0.33)AI(O. 1 35)As 0.985min 23.7nm 0.007%CS

In12(0.665)GalAs 0.265min 6.78nm 0.9%CS

In2Ga2(0.33)AI(0.1 4)As 0.985min 23.7nm 0.007%CS

In12(0.665)GalAs 0.265min 6.78nm 0.9%CS

In2Ga2(0.33)AI(0.14)As:Si 9.847min 217nm 0.007%CS

InlAs(0.0065)P :Si 23.57min 515nm 3e17

inlAs(0.001)P buffer:Si 23.57min 473nm 1e18

InP (S-doped)
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VA154 In(.65)Ga(0.35)As Laser 1750nm 3QWs 485C
To grow a 75um laser with 3 InO.650aAs QWs
Correspondong PLn trucreisVA1.CorespdingLa ructures are VAI 53 and I 55 um versions: VA15O and VA152

2 wafers grown; one is to be shipped to Covega for Processing

In1(0.53)GaAs:Be 5.159min 100nm 3e19 LM

in12P:Be 23.51min 500nm 1e18 =>1e19

In12P:Be 70.525min 1500nm 108

in2(0.53)Ga2(0.313)Al(0.156)As:Be 0.98min 20nm 1e18 LMV

IniP:Be 7.052min 150nm 3e17

In2(0.53)Ga2(0.313)Al(0. 156)As 8.819min 180nm LM

In2(0.53)Ga2(0.313)AI(0.156)As 0.98min 20nm LM

In12(0.65)GalAs 0.265min 8nm 0.8%CS

In2(0.53)Ga2(0.313)Al(0. 156)As 0.98min 20nm LMV

in12(0.65)Ga1As 0.265min 8nm 0.8%CS

In2(0.53)Ga2(0.313)Al(0. 156)As 0.98min 20nm LMV

in12(0.65)Ga1As 0.265min 8nm 0.8%CS

In2(0.53)Ga2(0.313)AI(0. 156)As:Si 9.799min 200nm LM

n1P :Si 23.51min 500nm 3e17

InP buffer:Si 23.51min 500nm 1018

InP (S-doped)

VA154 In(O.65)Ga(0.35)As Laser 1750nm 3QWs 485C

BEPInl 5.64E-07 Torr

BEP in2 2.73E-07 Torr

BEP Gal 4.42E-07 Torr

SEPGa2 2.22E-07 Torr

BEP Al 0.353E-07 Tort

BEPAsNalveAs 114E-07/280
BEP_PNalve P 122E-07/297

T sub/DRS 590C/485C

VA154 In(.65)Ga(0.35)As Laser 1750nm 3QWs 485C

Inl(0.53)GalAs(0.89)P:Be 5.159min 106.7nm 3e19 0.37%TS

In12As(0.0047)P:Be 23.51 min 498.5nm 1.18 =>1e19

In12As(O.0015)P:Be 70.525min 1516.8nm 1I18

In2Ga2(0.368)AI(0.15)As:Be 0.98min 17.21nm le8 0.32%TS

InlAs(0.01 15)P:Be 7.052min 164.4nm 3e17

In2Ga2(0.335)AI(0.14)As 8.819min 195nm 0.027%TS

In2Ga2(0.32)AI(O. 1 45)As 0.98min 23nm 0.04%CS

In12(0.66)GalAs 0.265min 7.25nm 0.88%CS

In2Ga2(0.32)AI(0.145)As 0.98min 23nm 0.04%CS

In12(0.66)Ga1As 0.265min 7.25nm 0.88%CS

In2Ga2(0.32)AI(0. 1 45)As 0.98min 23nm 0.04%CS

in12(0.66)Ga1As 0.265min 7.25nm 0.88%CS

In2Ga2(0.33)AI(0.14)As:Si 9.799min 190nm 0.04%CS

InlAs(0.0003)P :Si 23.51 min 504nm 3e17

InP buffer:Si 23.51 min 483nm 1i18

InP (S-doped)

................................................. ........ . ........... ............



VA156 In(O.7)GaAs PL 1900nm 2QWs 493C
To grow a 1.9um PL Structure with 2 Strained InO 7GaAs QWs
The two In0.7GaAs quantum wells are clad with InGaAlAs
The entire structure will be grown at a slightly higher temperature than usual (same temp at VA150)

In12P 5.722min 60nm

In2(0.53)Ga2(0.315)AI(0.1 55)As 3.033min 60nm LM

In12(0.7)Gal(0.3)As 0.353min 8nm 1.16%CS

In2(0.53)Ga2(0.31 5)Al(0.1 55)As 1.011 min 20nm LM

in12(0.7)Ga1(0.3)As 0.353min 8nm 1.16%CS

In2(0.53)Ga2(0.315)A(0.1 55)As 3.033min 60nm LM

In2P buffer 27.22min 180nm

InP

BEP in1

BEP_1n2

BEP Ga1

BEPGa2

BEP Al

SEPAsNalveAs

BEP PIVaIveP

T sublORS

3.57E-07 Torr

2.65E-07 Torr

2.75E-07 Torr

2.15E-07 Torr

0.344E-07 Torr

114E-07/270

118E-07/297

600C/493C

VA156 In(.7)GaAs PL 1900nm 2QWs 493C

ln12(As0.0012)P 5.722min 63.2nm

In2(0.523)Ga2(0.334)A(0.143)As 3.033min 62.9nm 0.04%TS

In1 2(0.713)Gal (0.287)As 0.353min 9.26nm 1.253%CS
ln2(0.523)Ga2(0.334)AI(O.143)As 1.011 min 20.64nm 0.04%TS

In 2(0.713)Gal (0.287)As 0.353min 9.26nm 1.253%CS

In2(0.523)Ga2(0.334)A(0.143)As 3.033min 63.42nm 0.04%TS

In2P buffer 27.22min 215.9nm

InP



VAI 58 In(O.75)GaAs Laser 2QWs 487C
To grow a 1 85um laser with 2 InO.75GaAs QWs

Corresponding PL structure is VA156. Corresponding Laser Structures are VA] 50 and VA152 (1 55um) and

VA153 and VA154 (1.75um)
2 wafers grown one is to be shipped to Covega for Processing

Inl(0.53)Ga1As:Be 8.219min 100nm 3e19 LM

Inl2P:Be 29.495min 500nm 1e18 =>1e19

in12P:Be 88.48min 1500nm 1e18

n2(0.53)Ga2(0.313)AI(O.156)As:Be 1.027min 20nm 1el8 LM

In1P:Be 8.848min 150nm 3017

1n2(0.53)Ga2(0.313)Al(0.156)As 9.244min 180nm LM

1n2(0.53)Ga2(0.313)AI(0.1 56)As 1.027min 20nm LM

in12(0.75)GalAs 0.356min 8nm 1.5%CS

1n2(0.53)Ga2(0.313)AI(0.156)As 1.027min 20nm LM

In12(0.75)GalAs 0.356min 8nm 1.5%CS

1n2(0.53)Ga2(0.313)A1(0.156)As:Si 10.275min 200nm LM

IMP :Si 29.495min 500nm 3e17

InIP buffer:Si 29.495min 500nm 1.18

InP (S-doped)

VA1 58 In(.75)GaAs Laser 2QWs 487C

BEPIn1 3.58E-07Torr
BEP-En2 2.6E-07 Torr

BEPGal 2.74E-07 Torr

BEPGa2 2.13E-07 Torr

BEPAl 0.332E-07 Torf

BEPAsaiaveAs 112E-07/270

BEPPNaveP 119E-07/297

T sub/DRS 590C/487C

VA158 In(.75)GaAs Laser 2QWs 487C

Inl(0.5425)Ga1AsP(0.11):Be 8.219min 98.15nm 3e19 0.3%TS

ln12(AsO.000004)P:Be 29.495min 491nm 1018 =>1e19

nl 2(AsO.000005)P:Be 88.48min 1461 nm 1e18

ln2(0.548)Ga2(0.328)A(0. 1 24)As:Be 1.027min 25nm 1e18 0.13%CS

IniP:Be 8.848min 136nm 3e17

1n2(0.527)Ga2(0.33)Al(0.1 43)As 9.244min 199nm 0.01%TS

1n2(0.525)Ga2(0.35)Al(0.1 25)As 1.027min 20nm 0.03%TS

ln12(0.71)GalAs 0.356min 9.65nm 1.23%CS

1n2(0.525)Ga2(0.35)A(0.1 25)As 1.027min 20nm 0.03%TS

In12(0.71)GalAs 0.356min 9.65nm 1.23%CS

In2(0.526)Ga2(0.33)A(0.1 44)As:Si 10.275min 250nm 0.02%CS

n1P :Si 29.495min 468nm 3917

In1(AsO.00564)P buffer:Si 29.495min 459nm 1e18

InP (S-doped)

......................
............... .... .................... . ..... . ............ . ... ........ ... . .. ......... . ...........



VA159 In(O.7)GaAs Laser 3QWs 489C
To grow a 1.85um laser with 3 InJ.7OGaAs QWs
Corresponding PL structure is VA156; Corresponding Laser Structures are VA! 58 (1 85um), VA150 and VA152
(1 55um), and VA153 and VAl154(1 75um)
2 wafers grown; one is to be shipped to Covega for Processing

In1(0.53)Ga1As:Be 8.234min 100nm 3e19 LM
In12P:Be 29.02min 500nm 1e18=>1e19
In12P:Be 87.05min 1500nm 1e18

In2(0.53)Ga2(0.313)AI(0.156)As:Be 1.016min 20nm 1e18 LM
In1P:Be 8.705min 150nm 3e17
In2(0.53)Ga2(0.313)AI(0.1 56)As 9.1 46min 180nm LM
in2(0.53)Ga2(0.313)AI(0.156)As 1.016min 20nm LM
in12(0.7)Ga1As 0.352min Snm 1.16%CS
In2(0.53)Ga2(0.313)AI(0.156)As 1.016min 20nm LM
in12(0.7)GalAs 0.352min 8nm 1.16%CS
In2(0.53)Ga2(0.313)AI(0.156)As 1.016min 20nm LM
In12(0.7)Ga1As 0.352min 8nm 1.16%CS
In2(0.53)Ga2(0.313)AI(0. 1 56)As:Si 10.162min 200nm LM
InP :Si 29.02min 500nm 31 7
i1P buffer:SI 29.02min 500nm 1e18

InP (S-doped)

VA159 In(O.7)GaAs Laser 3QWs 489C

BEP Ini 3.61E-07 Torr

BEP In2 2.65E-07 Torr

BEPGal 2.7E-07 Torr

BEP Ga2 2.13E-07 Torr

BEPAl 0.331E-07 Torr
BEPAs/ValveAs 114E-071270
BEPP/ValveP 119E-07/297

T sub/ORS 590C/489C

VA159 In(O.7)GaAs Laser 3QWs 489C

Ini(0.55)Ga1P(0.11)As:Be 8.234min 98nm 3e19 0.24%TS
In12(AsO.000001)P:Be 29.02min 511nm 1618 =>1 19
In12(AsO.00544)P:Be 87.05min 151Onm 1d18

In2(0.557)Ga2(0.306)A(0. 1 37)As:Be 1.016min 22.37nm 1e18 0.19%CS
In1As(0.000034)P:Be 8.705min 157.8nm 3e17

in2(0.53)Ga2(0.32)AI(0.15)As 9.146min 185nm 0.008%CS
In2(0.53)Ga2(0.32)AI(0.15)As 1.016min 21 nm 0.008%CS

In12(0.71)GalAs 0.352min 8.69nm 1.23%CS
In2(0.53)Ga2(0.32)A(0.1 5)As 1.016min 21nm 0.008%CS
In12(0.71)Ga1As 0.352min 8.69nm 1.23%CS
In2(0.53)Ga2(0.32)AI(0.15)As 1.016min 21 nm 0.008%CS
In12(0.71)Ga1As 0.352min 8.69nm 1.16%CS
In2(0.53)Ga2(0.32)AI(0.15)As:Si 10.162min 186nm 0.008%CS
In1(AsO.003)P :Si 29.02min 503nm 3e17

in1(As.000012)P buffer:Si 29.02min 412nm 1018

InP (S-doped)



VA161 In(.77)GaAs PL 2QWs 489C
To grow a 95ur PL Structure with 2 Strained In.77GaAs QWs

The two In0 77GaAs quantum wells are clad with InGaAAs

The entire structure will be grown at a slightly higher temperature than usual (same temp at VA150)

InIP 13.03min 60nm

In2(0.53)Ga2(0.315)AI(0.1551)As 3.18min 60nm 0.018%CS

Inl(0.77)Gal(0.23)As 0.438min 8nm 1.646%CS

In2(0.53)Ga2(0.315)AI(0.1 551)As 1.06min 20nm 0.018%CS

in1(0.77)Gal(0.23)As 0.438min 8nm 1 .64%CS

n2(0.53)Ga2(0.315)AI(0.1 551)As 3.18min 60nm 0.018%CS

In2P buffer 18.02min 180nm

InP

BEP inl 2.49E-07 Torr

BEP In2 2.52E-07 Torr

BEP Gal 1.82E-07 Torr

BEP Ga2 2.04E-07 Torr

SEPAl 0.33E-07 Torr

BEP_As/VaveAs 114E-07/280

SEP_PNalveP 119E-07/297

T sub/DS 600C/489#C

VA161 In(.77)GaAs PL 2QWs 489C

In1As(0.0189)P 13.03min 52.1nm 0.06%CS

In2(0.52)Ga2(0.323)AI(0.1 57)As 3.18min 47nm 0.006%TS

In2(0.528)Ga2(0.312)AI(0. 1 6)As 3.18min 21.6nm 0.004%TS

In (0.764)Gal(0.236)As 0.438min 8.939nm 1.6%CS

In2(0.528)Ga2(0.312)AI(0.16)As 1.06min 21.6nm 0.004%TS

In (0.764)Gal (0.236)As 0.438min 8.939nm 1.6%CS

In2(0.526)Ga2(0.345)A(0.129)As 3.18min 64.5nm 0.02%TS

In2As(0.0127)P buffer 18.02min 182nm

InP

... .. .. .................................. ................................................... . .....



VA162 In(.76)GaAs Laser 2QWs 489C
To grew a 1.95um laser with 2 In. 76GaAs QWs
Corresponding PL structure is VA 161, Corresponding Laser Structures are VAI 50 and VA 152
(1.55um), VAI 53 and VA 154 (1 75um) and VA 158 and VA159 ([Lt85um)

2 wafers grown, one is to be shipped to Covega for Processing

In1(0.53)Ga1As:Be 12.217min 100nm 3.19 LM

In12P:Be 34.32min 500nm 1e18 =>1e19

In12P:Be 102.96min 1500nm 1.18

In2(0.53)Ga2(0.313)AI(0.1 56)As:Be 1.061 min 20nm 1.18 LM

In1P:Be 10.296min 150nm 3e17

In2(0.53)Ga2(0.313)AI(0.156)As 9.546min 180nm LM

In2(0.53)Ga2(0.313)AI(0.156)As 1.061min 20nm LM

in12(0.76)GalAs 0.441min 8nm 1.57%CS

In2(0.53)Ga2(0.313)AI(0.156)As 1.061min 20nm LM

In12(0.76)Ga1As 0.441 min 8nm 1.57%CS

In2(0.53)Ga2(0.313)AI(0.1 56)As:Si 10.61 min 200nm LM

in1P :SI 32.32min 500nm 3e1 7

In1P buffer:Si 34.32min 500nm 1e18

InP (S-doped)

VA162 In(O.76)GaAs Laser 2QWs 489C

BEP Inl 2.49E-07 Torr

BEP_1n2 2.51E-07 Torr

BEPGal 1.77E-07 Torr

SEPGa2 2.04E-07 Torr

BEPAl 0.33E-07 Torr

BEPAsVaiveAs 114E-07/280

BEPPfaiveP 118E-07/297

T sub/DRS 600C/489C - -

VA1 62 In(0.76)GaAs Laser 2QWs 489C

In1 (0.55)Ga1As(0.9)P:Be 12.217min 101nm 3e19 0.2%TS

In12P:Be 34.32min 503.7nm 1e18 =>1019

ln12As(0.001)P:Be 102.96min 1574.6nm 1e18

In2(0.49)Ga2(0.344)AI(0.176)As:Be 1.061 min 15.97nm 1e18 0.698%CS

In1As(0.0155)P:Be 10.296min 171.28nm 3e1 7

in2(0.53)Ga2(0.32)Al(0.15)As 9.546min 171.36nm 0.008%CS

In2(0.534)Ga2(0.317)Al(0.149)As 1.061 min 20.73nm 0.035%CS

In12(0.739)Ga1As 0.441 min 9.24nm 1.43%CS

In2(0.534)Ga2(0.317)AI(0.149)As 1.061 min 20.73nm 0.035%CS

In12(0.739)Ga1As 0.441 min 9.24nm 1.43%CS

In2(0.53)Ga2(0.32)AI(0. 15)As:Si 10.61 min 207.82nm LM

In12As(0.0051)P :Si 32.32min 513.61 nm 3el17

in2As(0.01 13)P buffer:Si 34.32min 450.15nm 1e18

inP (S-doped)



VA163 ln(O.76)GaAs laser 3QWs 492C
To grow a 1 95un laser with 3 InO.76GaAs QWs

Corresponding PL structure is VA161; Corresponding Laser Structures are VA162 (1.95um), VA150 and

VA152 (1.55um), VA153 and VA154 (175um) and VA158 and VA159 (1 85um)

2 wafers grown; one is to be shipped to Covega for Processing

Inl(0.53)GalAs:Be 12.22min 100nm 3e19 LM

In12P:Be 34.1min 500nm 1e18 =>1e19

Inl2P:Be 102.29min 1500nm 1.18

in2(0.53)Ga2(0.313)AI(0.156)As:Be 1.057min 20nm 1e18 LM

InlP:Be 10.23min 150nm 3e17

In2(0.53)Ga2(0.313)AI(0.1 56)As 9.51 min 1 80nm LM

in2(0.53)Ga2(0.313)AI(0.156)As 1.057min 20nm LM

Inl2(0.7)GalAs 0.439min 8nm 1.16%CS

In2(0.53)Ga2(0.313)AI(0.156)As 1.057min 20nm LM

Inl2(0.7)GalAs 0.439min 8nm 1.16%CS

In2(0.53)Ga2(0.313)AI(0.1 56)As 1.057min 20nm LM

In12(0.7)GalAs 0.439min 8nm 1.16%CS

In2(0.53)Ga2(0.313)AI(0.1 56)As:Si 10.567min 200nm LM

IniP :Si 34.1min 500nm 3e17

In1P buffer:Si 34.1min 500nm 1e18

InP (S-doped)

VA 63 In(O.76)GaAs laser 3QWs 492C

BEPIn1 2.49E-07 Torr

BEPIn2 2.53E-07 Torr

BEPGal 1.75E-07 Torr

BEPGa2 2.04E-07 Torr

BEP Al 0.33E-07 Torr

BEPAs/ValveAs 114E-07/280 i

BEP_PNaveP 118E-07/297 a.]
1 IM 20 140 50 100 2000 220 2-0

T sub/DRS 590C/492C weruem

VA163 In(.70)GaAs laser 3QWs 492C

Inl (0.556)Gal As(0.89)P:Be 12.22min 91.5nm 3919 0.1 9%TS

nl 2As(0.001 35)P:Be 34.1 min 524nm 1el8 =>1el9

Inl2As(0.0008)P:Be 102.29min 1476nm 1e18

ln2Ga2(0.357)AI(0.1 3)As:Be 1 .057min 16.5nm 1018 0.11 %TS

InlAs(0.0127)P:Be 10.23min 142.65nm 3.17

In2Ga2(0.323)AI(0.1 56)As 9.51 min 178.11 nm 0.05%CS

ln2Ga2(0.32)AI(0.16)As 1.057min 20.57nm 0.06%TS

In12(0.75)GalAs 0.439min 9.63nm 1.5%CS

In2Ga2(0.32)AI(0.1 6)As 1.057min 20.57nm 0.06%TS

Inl2(0.75)GalAs 0.439min 9.63nm 1.5%CS

In2Ga2(0.32)AI(0.16)As 1.057min 20.57nm 0.06%TS

Inl2(0.75)GalAs 0.439min 9.63nm 1.5%CS

In2Ga2(0.32)AI(0.16)As:Si 10.567min 220.8nm 0.06%TS

In 2P :Si 34.1 min 521.7nm 3.17

InlAs(0.0052)P buffer:Si 34.1 min 488.2nm lel8

InP (S-doped)

.................................. ............................... ................- ,.. - ...... .... - - . .. .. 11 . . . ........ .... .....
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Appendix B

Refractive Index

Layer n ref. Thickness
Ino. 53Gao.47As 3.43 [35] 100 nm
InP 3.132 [36] 2200 nm
InO.4 8Gao.42Alo.1As 3.42 [37] 20 nm
InP 3.132 50 nm

Ino.48GaO.42Alo.1As 3.42 200 nm
Ino.85Gao.15As 3.486 [38] 8 nm
InO.48 Ga0 .42Alo.1As 3.42 20 nm
InO. 85Gao.15As 3.486 80 nm
Ino.48 Gao.42Al0o1As 3.42 200 nm
InP 3.132 500 nm
InP 3.132 350 pm

Table B.1: Refractive index used for optical mode simulation
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Appendix C

L-I-V
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VA158
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VA162
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