
A Meshfree Method for the Poisson Equation with

3D Wall-Bounded Flow

by

Anna Vasilyeva

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

Author
Department of Aeronautics and Astronautics

August 19, 2010

I Ifl I A

Certified by...........
Ahmed F. Ghoniem

Ronal C. Crane (1972) Professor
Thesis Supervisor

[I/
A ccepted by

G(aduate
Eytan H. Modiano

Program Committee

Application

ARCHIVES

Chair,

A Meshfree Method for the Poisson Equation with 3D

Wall-Bounded Flow Application

by

Anna Vasilyeva

Submitted to the Department of Aeronautics and Astronautics
on August 19, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

The numerical approximation of the Poisson equation can often be found as a sub-
problem to many more complex computations. In the case of Lagrangian approaches
of flow equations, the Poisson equation often needs to be solved on an irregular point
distribution. Currently, mainly unstructured mesh-based approaches are used. Mesh-
free methods present a way to approximate differential operators on unstructured
point clouds without the need for mesh generation. In this thesis, a 3d meshfree fi-
nite difference Poisson solver is presented. Its performance has been studies based on
numerical convergence, parallel efficiency, and computational cost. Practical applica-
tion of the solver is presented in a simulation of a potential flow field in a wall-bounded
domain.

Thesis Supervisor: Ahmed F. Ghoniem
Title: Ronal C. Crane (1972) Professor

Acknowledgments

I would like to express my gratitude to Professor Ghoniem for his support of my

research during the last two years. I am very grateful for being given the opportunity

to work at the Reacting Gas Dynamics Laboratory and for the help and advice I have

received from him.

I would also like to thank my academic adviser Professor Radovitzky of the Aero-

Asto department, Barbara Lechner, Marie Stuppard, and Beth Marois of the depart-

ment's administrative staff for their kind support and useful advice.

I am grateful to my colleagues at the Reacting Gas Dynamics Lab, especially to

Fabrice Schlegel for guiding me along my research and offering helpful recommen-

dations for my work. A special thank you to Dr. Jean-Christophe Nave for his

help on various aspects of my project. A thank you also to Lorraine Rabb for her

administrative assistance.

Finally, I want to acknowledge my parents, brothers, and all my friends who have

offered me their support and encouragement throughout my time at MIT.

Contents

1 Introduction

2 Numerical Method for the Poisson Equation

2.1 Meshfree Finite Difference Stencil Formulation

2.1.1 Least Squares Method .

2.1.2 Higher Order Approximations and Neumann Boundary Points

2.2 W eight Function .

2.2.1 Poisson Weight Function Test Problem

3 Numerical Tests

3.1 Numerical Convergence

3.1.1 Neumann Boundary Points

3.1.2 Derivative Approximation

3.2 Neighbor Selection

3.2.1 Boundary Test

3.2.2 Point Distribution Test

3.2.3 Robust Neighbor Selection in 3d

3.3 Linear Solver Study

3.4 Parallel Efficiency

3.5 Computational Cost

4 Application to Confined Flow

4.1 Numerical Method .

21

. 2 1

. 27

. 3 0

. 3 1

. 34

. 36

. 38

. 38

. 39

. 43

4.1.1 Velocity Evaluation........ 48

4.2 Numerical Example . 49

5 Conclusions 56

List of Figures

2-1 Evolution of a 380 point least squares system approximate solution

with a decreasing -y and thus increasing weights 19

2-2 Error and system matrix condition number trends for 380 point least

squares system . 20

3-1 Computational domains for 2d and 3d systems with nonuniform dis-

tribution of interior points . 24

3-2 Solution of a 2d system . 25

3-3 Error convergence of 2d and 3d systems - regular grid in 2d (a) and 3d

(c), nonuniform grid in 2d (b) and 3d (d) 26

3-4 Solution of a 2d Neumann boundary value problem 28

3-5 Error convergence for first order approximation (a) and second order

approximation (b)....... ... 29

3-6 Error convergence of a 2d system for a derivative approximation . . . 30

3-7 Selected neighbor points all lie on one side of the central point near

the boundary . 33

3-8 Selected neighbor points are distributed around the central point (a)

but a central points can have too few neighbors selected (b) 33

3-9 Solution of a 2d system using distance (a) and combination of distance

and inverse convex hull (b) to set neighborhood criteria 35

3-10 Computational domain with a gap in 2d (a) and the resulting solutions

using distance (b) and inverse convex hull (c) to set neighborhood criteria 37

3-11 Parallel efficiency for stencil setup (a), matrix assembly and solve using

PETSc (b) and the entire solver (c) 42

3-12 Computational cost of system setup (a) and solution of arising system

(b) for 1 processor in 3d...... 44

4-1 Isosurfaces of vorticity for times t = 0, 2.85, 7.35, and 13.35 52

4-2 Time history of center of vorticity along the y-axis 53

4-3 Time history of velocity along the y-axis 53

4-4 Vorticity contours for using meshfree solver (left) and the image method

(right) for t = 0, 4.35, 8.85 and 13.35 55

List of Tables

3.1 Distribution of the number of negative stencil entries in the system

m atrix . 28

3.2 Number of iterations for various combinations of iterative solvers and

presconditioners . 40

4.1 Absolute error of normal velocity condition on the y = 3 face of the

cube after collision of vortex ring for the image method and meshfree

m ethod . 51

4.2 Absolute error of normal velocity boundary condition on the y = 3 face

of the cube after one time step for the meshfree method 52

Chapter 1

Introduction

As the need to solve larger and more complex computational problems grows, so does

the need to efficiently discretize domains used in these problems. One way to approach

this problem is with meshfree methods. Meshfree methods are useful in that they

eliminate the need for pre-specified connectivity of points and thus alleviate some of

the complications that come with discretizing a domain using a computational mesh.

They can also naturally handle issues with complex boundaries, large deformations,

and domain discontinuities.

Vortex methods [7] are a meshless approach to solving the Navier-Stokes equations,

and are useful in simulating flows at high Reynolds numbers with areas of strong

vorticity. These methods are based on a Lagrangian formulation, meaning that the

vortex elements advect with the local velocity. They have the advantage of not

needing to conform to the CFL condition and having minimal numerical dissipation.

However, a mesh can usually still reappear in stages like interpolation, or determining

velocity on a mesh and then interpolating it to domain particles such as in the vortex

in cell method [8]. This offsets some of the benefits of the Lagrangian vortex method

as it introduces numerical diffusion.

There is a need to develop and utilize efficient meshfree approaches in CFD.

Meshfree Poisson solvers have been implemented to simulate incompressible flows

by the Lagrangian particle method, particularly in the projection step [15]. This

is done when a standard finite difference Poisson solver cannot be directly applied.

Furthermore, moving least squares method for solving fluid dynamic problems have

been studied [4, 10], where spatial derivatives are approximated using an arbitrary

surrounding cloud of points.

The main focus of this thesis is to develop an efficient meshfree finite difference

Poisson solver that can be used in conjunction with vortex methods and preserve the

mesh-free nature of these methods. The solver is based on least squares approximation

and is applicable to problems where generating a mesh is complicated or costly,

specifically complex time-dependent geometries. Instead of a mesh, it approximates

differential operators by establishing meshfree neighborhood relations. The solver

thus allows us to treat velocity in a vorticity simulation in a completely meshfree

way.

We begin by formulating the meshfree finite difference in chapter 2 based on

Taylor expansion. Chapter 3 explores in depth a meshfree finite difference solver in

2d and 3d through various tests of numerical convergence, parallel efficiency, iterative

solvers, neighbor selection approaches, and computational cost. An implementation

of the solver in a confined flow simulation is described in chapter 4. This is followed

by some concluding remarks in chapter 5.

Chapter

Numerical Method for the Poisson

Equation

In this chapter we formulate a meshfree finite difference numerical scheme for solving

the Poisson equation using a least squares approximation. We consider the following

Poisson equation inside a domain Q

Au=f inQ (2.1)

with Dirichlet boundary conditions

u = g on r, (2.2)

or Neumann boundary conditions

=h
- :h on F. (2.3)

Solving this system with finite difference converts the problem into a linear system

of equations

A - u = f., (2.4)

where A is a matrix containing the meshfree finite difference stencils and u is the

vector of the approximate solutions.

2.1 Meshfree Finite Difference Stencil Formulation

Considering a function u E C', we want to approximate differential operators by

finitely many function values

OkU
D(xo) Zai u(xi) (k < 1), (2.5)

i=O

where the vector of coefficients a = (ao, ai, ... , am) is the finite difference stencil.

By using Taylor expansion, the function value of each point xo in a meshfree

domain can be approximated using the function values of its neighboring points xi.

In Id, defining the distance vector zii = - xo, the Taylor expansion around the

point xz is

1
a(xi) = U(xo) + uz(xo) + u.1(xo) -2 2(zo) . -i- ei, (2.6)

where ej is the error in the expansion at the point xi. A linear combination of the

above expansion with stencil coefficients (ao, a1, ., am) gives

a(i) =u(o)a + u(Xo)(5azi)+u(o)(azy)+e. (2.7)
i=O i=O jO i=O

Matching coefficients, equation (2.7) approximates the second derivative if

m m m

5a =0, a 0 ais=2. (2.8)
i=O i=O i=O

The above constraints on the stencil form a linear system

V - a = b, (2.9)

where a 1d Vandermonde matrix V and vector b take the following form

1 ... 1 0

V= ... m) b= 0. (2.10)

In general, for m neighboring points and k constraints defined by (2.8), there is one

unique stencil solution if m = k, an over-determined system with multiple stencil

solutions if m > k, and no stencil solution if m < k. For a consistent approximation

of the second derivative in 3d, for example, at least 10 neighbors are needed to

determine the stencil.

2.1.1 Least Squares Method

The finite difference stencil is computed using a weighted quadratic minimization

formulation
n 2

J = a(2.11)
i= 0

subject to constraints in (2.9), which we rewrite as

n

gi(a) = vijoa - bi = 0. (2.12)
j=0

The weights wi are assigned to each neighboring point in a way such that the neighboring

points closer to the central point in the meshfree domain have higher weight values

than those further away. The minimization of J can be obtained using Lagrange

multipliers
n

V J(a) = A Vgi (a), (2.13)
i=0

or
mn n

2 EAjvij. (2.14)
i=O j=0

In matrix form

2W-1 . a = VT . A, (2.15)

where W is a diagonal weight matrix containing the given weights of each neighbor

point for a specific central point

wo 0 ... 0

0 wi ... 0
W =(2.16)

0 0 ... W")

Solving (2.15) for a
1

a =WVT . A. (2.17)2

Putting (2.17) into (2.9) gives

1
V .(WVT .A) =b (2.18)2

and solving for A

A = 2(VWVT)-l - b. (2.19)

Putting (2.19) into (2.17) yields the stencil vector

a - (VTWV)-l(VTW) b. (2.20)

The stencil vector corresponding to the point x makes up the i-th row of the system

matrix A in (2.4). The system can then be solved for the approximate values of u(xi).

2.1.2 Higher Order Approximations and Neumann Boundary

Points

Both Neumann boundary points defined in (2.3) and higher order approximations

can be obtained by making modifications to the Taylor expansion and constraint

definitions in (2.8). If the constraints are set up to approximate the first derivative as

in the case of Neumann boundary points, the Taylor expansion needs to only include

the first two terms of (2.6), with the second order term included in the error of the

expansion. In this case, the constraints are given by

m m

Eaj = 0, Eaize = n, (2.21)
i=O i=O

where n is the normal vector for the directional derivative a. In 1d, the constraint

system would read

1 .1 0V = , b = . (2.22)

The above formulation along with the one presented in (2.10) guarantees at least

first order accurate approximations for the Poisson equation with either Dirichlet or

Neumann boundary conditions. Higher order approximations can be obtained by

including higher order terms in the Taylor expansion and setting them to zero in the

stencil constraints. For example, if the constraints in (2.10) were expanded to include

fourth order terms, the Vandermonde matrix V and vector b would be as follows

1 ... 1 0

X0 ... Xzm 0

V 9 . , b= 2. (2.23)
0 0

0 m 0

However, it can be seen from the above constraints that E>iZ sla = 0 is only

satisfied for positive stencil entries if ai = 0, which leads to an inconsistent approximation.

Imposing higher order conditions can thus lead to both positive and negative stencil

entries, which is undesirable since this worsens the stability of the system. This

also means that second order approximation of Neumann boundary points will never

lead to positive stencils due to the constraints K.0 ai = 0. Further discussion on

positive stencils can be found in Seibold [22].

Additionally, it should be noted that the constraint system can be reduced if the

first constraint in (2.8) is computed by the relation a0 = - En1 aj. The reduced

system for approximating the Poisson equation in ld is given by

V = , b = . (2.24)

With the reduced system in 3d, for instance, the invertible V matrix is 9 x 9 instead of

10x10. This does not, however, reduce the computational costs by much. Reducing

the V matrix also keeps the convergence rate the same.

2.2 Weight Function

The selection of the weight function can be quite arbitraty. Generally, it is desired

to select a function that will allow neighboring points far away from the central

point to carry little or no weight at all in the stencil calculation; in this sense, the

weight function restricts the number of points used in the approximation of differential

operators. In this thesis, we look at an exponentially decaying function

w(Xi - Xo) = exp(-yIIXi - Xo| 2), (2.25)

where -y is an adjustable constant. The approximation errors in our meshfree finite

difference formulation depend on -y. For instance, for the Poisson equation in ld

with a regular distribution of points, as the mesh size h decreases, the parameter

-y should increase so that the computed system matrix A will always consist of the
standard three point finite difference stencil $(1, -2,1). The same adjustment to the

-y parameter applies for approximations in higher dimensions. If -y is not adjusted, the

weight function might not decay fast enough and too many points will be included

as neighbors with high weight values. This will result in both positive and negative

stencil entries in the system matrix, worsening stability and causing oscillations in

the approximate solution.

2.2.1 Poisson Weight Function Test Problem

To examine the weight function, we consider a one dimensional Poisson problem

-nU" = f in]0,1[(.6
U = 0 on [0,1],

with f (x) = sin(#(x))(#&(x)) 2 - cos(#(x))#2X(x), where #(x) = 97rx 2. The problem

in (2.26) has a unique solution

u(x) = sin(97rx 2). (2.27)

We use equation (2.25) as the weight function and calculate the weight for every

point in the domain. Figure 2.1 demonstrates the stability problem of having too

many neighboring points with high weight values. It is therefore appropriate to

use a weight function that depends on the average mesh size h as well as distance

between the neighboring points and central point. We adjust the weight function to

the following

w(x - xo) =exp(-p(I - XoI)2). (2.28)
h

Two important factors for an accurate approximation are the global error in

the approximation and the condition number of the final system matrix. A low

condition number indicates better accuracy of the linear equation solution from matrix

inversion. If we take the approximation error to be the error in the maximum norm

defined by

le||& = max' leil, (2.29)

where A is the system matrix in (2.4), then Figure 2.2 shows the trends in error

and conditon number of the system matrix for a 380 point least squares system with

varying parameter p.

Based on Figure 2.2, the following can be noted:

" The approximation error decreases with an increasing p while the condition number

increases.

" The best p values for the weight function seem to be between 1 and 2.

" Even though the condition number increases with increasing p, the system matrices

for larger p values stay reasonably conditioned.

" Both the approximation errors and condition numbers level off with a large enough

y value.

Figure 2-1: Evolution of a 380 point least squares system approximate solution with
a decreasing 'y and thus increasing weights

0.05

0.04

0.03

0.02

0.01 -

x 106

Figure 2-2: Error and system matrix condition number trends for 380 point least
squares system

Chapter 3

Numerical Tests

In this chapter we investigate the numerical convergence, computational performance,

and parallel efficiency of the meshfree finite difference approach described in chapter

2. We look at a Poisson problem formulation in 2d and 3d. In 2d we examine the

numerical convergence of a Dirichlet and Neumann boundary problems and several

neighbor selection approaches. For a 3d system, since the global linear system

in finite difference can often pose a computational bottleneck, we examine various

linear solvers and preconditioners provided by the fully parallel toolkit for scientific

computation PETSc library [1, 2] and parallel performance. Furthermore, we consider

the computational effort of the method and compare the meshfree approach to standard

finite difference.

3.1 Numerical Convergence

We use the meshfree solver to approximate the Laplace operator in a circular and

spherical domains. The Laplace equation in three-dimensional spherical coordinates

is
1 a 2U 1 a OU 1 &2u

AU(r, 0, #) (r) + - (sin 0) + = 0 (3.1)
r2 Or or r2 sin 0 0 0 r2 sin2 g 04 2

If we take into account spherical symmetry, then a = 0 and -- = 0. We investigate

the numerical convergence of the meshfree solver by considering the following Dirichlet

boundary value problem in 3d

1 & B&u1 0 (r2)= 0 on r E (0.2, 1)
r2 or or (3.2)

u(0.2) = 1, u(1) = 0.

The unique solution to this problem is

1 1
U(r) = .(3.3)

4r 4

Following the setup and boundary conditions in (3.2) but using polar coordinates,

the Laplace equation in 2d is reduced to

r r(r O) = 0, (3.4)

with a unique solution
1

u(r) ln(r). (3.5)
ln(O.2)

Figure 3.1 shows the 2d and 3d computational domains described by this problem.

Two cases are considered for each domain: regular distribution of both interior

and boundary points and nonuniform distribution of interior points. The regular

distribution is generated by placing equidistantly spaced points on concentric circles

between the two boundaries. The nonuniform distribution is generated by taking

the regular grid and introducing a small perturbation to every interior point. This

guarantees that the points remain somewhat distributed throughout the domain

without any major gaps but do not lie on any set grid. The points on the boundaries

are kept evenly distributed in both cases.

Figure 3.2 shows a solution of a 2,828 point 2d system. We use the weight function

defined in (2.28), with the parameter p = 2. The number of neighbors for each

central point is kept fixed to the 6 closest neighbors, guaranteeing a consistent Laplace

approximation in 2d.

Based on the Taylor expansion in (2.6), first order convergence is expected for the

approximation of this Laplacian. However, systems with enough average symmetry

actually achieve second order convergence. Figure 3.3 shows second order convergence

for the regular grid in both 2d and 3d and first order convergence for the nonuniform

grid case. For the error of the nonuniform grid case, an average of 5 runs are taken

along with the maximum and minimum error over the 5 runs. We use the error in the

maximum norm as defined by (2.29). For the regular grid, the error is plotted against

the average mesh size while for the nonuniform grid it is shown against the number

of interior points. A reference line is plotted along with the error. The reference line

is of slope 2 for second order convergence and of slope 1 for first order convergence.

The 2d system ranges from 198 to 2,828 total points, while for the 3d system we use

6,272 to 856,570 total points to test error convergence.

0.6~ ++

0.6 -+0.4 + ~ 44 44

0.6 4+ 4+ 4 :+ + * +

0.2 4 +4 44

+ + 4 + ++. + 4 + * + + +

+ 4 +4 +
-0.4 . - 0 444 4 0 *

-04 444

44*+ + +* t + 44 4+

0.2 ~ 4 + 40.2 '4 4 +.

-0.2 -. 4 4 +

4* + +4 44 + *4 *+

-048 +-4

+ ++

44 4

F 4omin fr 2 a

-0strbutin ofinteior4oint

-02,

~~ 444 44":1~ 4

-10 4

00.

-0.5 - 4 42 V

Fiur 31:Copuatonl omin fr d nd3dsytes it nnuifr

distrbutin ofinteior oi0t

0.7-

0

0.5

40.5 -0.5

Figure 3-2: Solution of a 2d system

.........

mesh size h

(a)

E

510

mesh size h

(c)

Figure 3-3: Error convergence of 2d and
(c), nonuniform grid in 2d (b) and 3d (d)

K

4 1

1013

(b)

100 - --

103 i (a

(d)

3d systems - regular grid in 2d (a) and 3d

3.1.1 Neumann Boundary Points

To test the numerical convergence for Neumann boundary conditions, we discretize

a unit square domain in 2d. We consider the following 2d Neumann boundary value

problem

AU = -coswx in (0, 1) x (0, 1)
(3.6)

On= 0 onxz= 0, y= 0,z=1,y = 1.

The unique solution to this problem is

1
u(x, y) = 12 cos 7x. (3.7)

7

Figure 3.4 shows the solution of a 1,286 point system. The Neumann boundary

conditions yield first order convergence when the system of constraints for the finite

difference stencil is represented by (2.22). When higher order terms are included in

the Taylor expansion, the solution yields higher order convergence. This can be seen

in Figure 3.5 where first order convergence is achieved when higher terms are not

included in the approximation and second order when one extra term is included in

the Taylor expansion. Figure 3.5 also includes a reference line of slope 1 for first

order convergence and slope 2 for second order convergence. The range of points is

taken between 285 and 2,597. However, as mentioned earlier, although higher order

approximations yield higher order convergence rates, they also result in an increase

in the variation between positive and negative stencil values in the system matrix.

Ideally, negative stencil values only appear on the diagonal of the system matrix,

corresponding to the central points. Table 3.1 shows the distribution of negative

stencil entries for systems of various sizes that either include or do not include higher

order terms in the Taylor expansion. This does not include the central stencil entry.

When dealing with large and complex problems, a high number of negative stencil

entries can greatly affect the convergence of the system matrix to a solution.

number of points no higher terms higher terms
221 3 0
437 7 0
672 13 7
1152 22 10
2597 43 17
4485 57 23

Table 3.1: Distribution of the number of negative stencil entries in the system matrix

0.15-

0.1 -

0.05-

0-

-0.05

-0.1-

-0.15

-0.2
0

0.8

Figure 3-4: Solution of a 2d Neumann boundary value problem

102

1 02 10~
mesh size h

(a)

E -2
: 10

E
C

0

mesh size h

(b)

Figure 3-5: Error convergence for first order approximation (a) and second order
approximation (b)

29

jwl - - - - - - -- -- W-w-

i b

.................

.

...

.

.................

...
... -- ---- - -- - -- -

.................................

........................

...
...

......................

.....

...............
...
.... :

........... -

........................ I

....

..............

..........

....*-

......................

...

...

3.1.2 Derivative Approximation

The goal with our meshfree solver is to be able to approximate the derivate of

a function from its Poisson formulation. We therefore also analyze the numerical

convergence of derivate approximation of u from (3.2). The derivative approximation

is then based on

(3.8)

where A is the system matrix containing the stencil entries for a derivative approximation.

We use a regular grid defined for (3.4) to test error convergence for this case in 2d. The

error convergence using error in the maximum norm for a derivative approximation

is shown in Figure 3.6, along with a reference line of slope 1. The system matrix with

the stencils is based on second order approximation of the derivative. This derivative

approximation yields a first order convergence, losing one order from the second order

convergence observed for the approximation of the function value u in Figure 3.3(a).

10'
mesh size h

Figure 3-6: Error convergence of a 2d system for a derivative approximation

10'

0U= A-u,
On

............... I

. I - -

...

.

. - -

.

.

.

4

3.2 Neighbor Selection

Neighbor selection is an important step in setting up the stencil vector for each point

in finite difference. There are various ways to define neighborhood criteria in mehsfree

methods. Several such methods have been previously reviewed [16, 19, 21]. The key is

to understand the geometry of the domain and the point distribution of the problem

in order to select the best approach. Sometimes it is necessary to utilize more than

one option within the same problem. We look at two ways of selecting neighbors

and test out how they address the problem of point distribution and difficulties with

boundaries in problem (3.4).

Neighbor selection based on distance:

This is probably the easiest way to select neighbors for any point x in the domain.

Taking into consideration the number of neighboring points needed to approximate

the Laplace operator in a given dimension, neighbor selection for this case involves

selecting n closest neighbors to a central point. In a 2d case, since there are 6

constraints given in (2.9), n needs to be 6 or greater to obtain a consistent stencil.

The rest of the points can be assigned a weight of zero and thus not be included in

the stencil calculation, speeding up the computational process as the resulting system

matrix in (2.4) will be very sparse. However, depending on the spread of the points

in the domain, this neighbor selection process can result in a lopsided distribution

of neighboring points around a central point. Figure 3.7 demonstrates this when the

2d domain in problem (3.4) has central points lying very close to the boundary points.

Neighbor selection based on an inverse convex hull:

Neighbor selection in this case starts with taking the central point x as the origin

and mirroring all other points at the unit circle so that points that lie inside the unit

circle go outside and those on the outside go inside. We use the following relation for

the new points z3 that are mirrored from points xj

zi = Xi + 2. X(3.9)

Through this inverse mapping, the original closest points to the central point have

mirror points that are furthest away. A convex hull is then constructed to the mirror

points. These mirror points that span the convex hull correspond to the original

points that are taken as neighbors.

This method of neighbor selection is more expensive that just going by distance.

However, there are fast convex hull algorithms in 2d and 3d [11, 231. There is the

advantage of guaranteeing that no point in the domain will have all of its neighbors

lying on one side. On the other hand, depending on the original distribution of points,

this method can result in too few neighbors selected than needed to approximate the

Laplace operator. This is demonstrated in Figure 3.8.

0.6

0.4

0.2

0

-0.2

-0.4

-0.6 -0.4 -0.2 0
x

0.2 04 0.6

Figure 3-7: Selected neighbor points all lie on one side of the central point near the
boundary

0.6 .0.4 - 2 0 0.2 OA 0.6

Figure 3-8: Selected neighbor points are distributed around the central point (a) but
a central points can have too few neighbors selected (b)

+ PONt clou polnts
* selected negbor poits
+ canter point

+++++ + +

4-*+ + + + + +

4.+

' ol

+ aicludpoi I
+ Cnt .pont

G selected nelgiar paires

+ +4 + + + +

+ + + + +.

+ + +* + +. + + +

+

+ 1 carer poit
0 selected neigtta pairs

++ + + + + + + +

+

-. -04 -02 0 0.2 4
x

..

3.2.1 Boundary Test

Using the two neighbor selection approaches from the previous section and considering

the problem of central points near the boundaries having poor distribution of points

around them as in Figure 3.7, we test out the inverse convex hull approach on all

points next to the boundaries in 2d. The remaining interior points are set on a

regular grid and we select the 6 closest neighbors for their finite difference stencil

calculation. The total number of points in the point cloud for this test is set to 500

'points. The results are shown in Figure 3.9 where plot (a) is generated using neighbor

selection based strictly on distance and plot (b) is generated using the inverse convex

hull approach on points near the boundaries. There are obvious irregularities seen in

Figure 3.9(a), arising from the poor distribution of points near the boundaries; these

irregularities can be seen at the u = 0 mark and at u = 0.5. In Figure 3.9(b), points

that lie near the boundaries have 6 or more neighbors selected by the inverse convex

hull approach. At most, 8 points span the inverse hull for these points.

1A 1A

1I2
1.2

0.8, 0.8

0.4.4A

0.2 0.

00

-1 0.5
-0.5 .

-15

0.55 0.55

0.5 0.5

y 1 1xy 1 1x

Figure 3-9: Solution of a 2d system using distance (a) and combination of distance

and inverse convex hull (b) to set neighborhood criteria

.. - , " - ..

3.2.2 Point Distribution Test

We also look at the need to include different neighborhood criteria when dealing with

a gap inside the domain. If the 2d domain is discretized as shown in Figure 3.10(a),

using distance to find the closest neighbors will result in poor neighbor selection. In

this case, points near the gap are treated with the inverse convex hull for neighbor

selection while only 6 closest neighbors are selected for stencil calculation of the

remaining interior points. The results of the two systems are shown in Figure 3.10

(a), (b): one that uses only 6 closest neighbors and one that uses the inverse convex

hull approach for points near the gap. Clearly using a neighborhood criteria based

strictly on distance is insufficient for this case. A deformity can be seen in Figure 3.10

(a) that corresponds to the location of the hole in the domain. Poor point distribution

leads to an inconsistent approximation.

-0.8 -0.6 -0.4 -0.2 00.2 0.4 0.6 0.8

Figure 3-10: Computational domain with a gap in 2d (a) and the resulting solutions
using distance (b) and inverse convex hull (c) to set neighborhood criteria

I++ + +4 -- +44 + ++
+ ++

+ . . .+.++.+.+ + +
4- . -.-.-.-.-.-.-.-.-.-. 4.4.4.4. .- +4+
.+44+4444 + + ---

. +
.4 4 4 4 4 4 4 4 .4-

.~ ~ 4 4- .4..4..4-.4-.. 4.. 4-.4-..4..
*4.44444444+. .4.

4-~~~ 4-.---44444 4-4 .4.4- .-.4.44- .- .
4- . -4.4.+.-.-.-.-.-.-. - .-.4.4.4.4.4.4.4.4 .4

- 4-.-4-.-4-4-4-.-4-4-.-.-.-4-4-4.4.4.4-4-4-4-4. 4

4- .4.4.4.4. .4.4.4.4.+..-. . .4.4.4. .4. .-
4- 4 "

. .4.4.4.4.4.4.-4-4-..4.4.4.-.-.-.-.-4-
........4-

..- 4 . -4-.-4-4-4-.-.-.-4-4-.-.-.-.-..
4- .- 4-4-4.4.4-4.4.4.4.4-4-4- 4

4- 4-4-4-4.4.4-4.4-4..4-4-4-
+ I + 1 4 + + +%4j,4- * + +- + I I

..... 11 -

01
1.

3.2.3 Robust Neighbor Selection in 3d

Large systems need an efficient way to handle neighbor search so as to make meshfree

finite difference favorable over standard finite difference or other grid-dependent

methods. For our 3d solver, we look to do a range search for the neighboring

points around a central point with a range that always included more neighbors

than necessary for a consistent approximation, which is at least 10 neighbors in 3d.

This guarantees that every point will have enough neighbors selected. Furthermore,

we select a range large enough so that there is some distribution of points around

the central point. However, this means that we are always using a relatively large

number of neighbors when dealing with a fine mesh. This requires a certain amount

of data management. A naive nearest neighbor algorithm would scan an entire list

of points in the domain, resulting in an O(N 2) effort, where N is the size of the

point set. To avoid this, we utilize a k-dimensional tree data structure to find the

neighbors in a given range1 . Our nearest neighbor algorithm operates on a kd-tree.

The advantage of a range search on a kd-tree data structure is that it reduces the

effort to be logarithmic in N for a fixed range size [18]. The complexity of the range

search operation is generally 0(N log N). We set the range size for our 3d solver to

be 3 times the average mesh size. Furthermore, when the solver is used in a time-

stepping scheme with little shift in the position of particles between time steps, the

kd-tree structure from one time step can be used for the next time step, thus reducing

the time it takes to build the tree.

3.3 Linear Solver Study

The resulting system matrix that results from the meshfree finite difference formulation

in Chapter 2 is very sparse and non-symmetric. To solve the resulting large system in

our 3d solver, we use preconditioned Krylov-subspace methods that are provided by
1A kd-tree is a binary tree used to store a finite set of points from a k-dimensional space. A pivot

and a splitting plane are selected from which the root of the tree is built. In 3d, its construction
involves splitting the points based on x-coordinate, then on y-coordinate, then on z-coordinate, and
so on in alternating fashion. Studies of this algorithm can be found in [5, 12].

the PETSc library. We test various solvers provided by the library since depending

on the problem at hand, there are always some solvers that outperform others.

Furthermore, preconditioning is a key element when dealing with non-symmetric, and

relatively ill-conditioned matrices; we therefore also test out the various preconditioners

provided by the PETSc library. We selected iterative methods BiCGSTAB [25] and

GMRES (general minimal residual method) [28] with various restart parameters and

preconditioners block Jacobi and additive Schwarz, all provided by the software. Table

3.2 shows the number of iterations that various combinations of linear solvers and

preconditioners need to converge to a solution for a 3d problem described in (3.2)

for a system of 225,825 points. The stopping criterion for all cases is when the

relative decrease in the residual norm is 10'. Table 3.2 also shows the performance

of the iterative solvers with various preconditioners when the system is solved using

a different number of processors. PETSc is set up to be executed in a parallel

environment and uses MPI for its message-passing communication. Depending on

the type of solver used, the parallel solver can be slower than the serial one. This

mainly has to do with the communication time needed between the processors being

greater than the amount of work each processor is actually given to do. This is

further addressed in section 3.4. Most preconditioners provided by the software

need more iterations before converging when used over more processors. This is

particularly seen with the block Jacobi preconditioner. For multiple processors,

the PETSc implementation of the block Jacobi preconditioning sets one block per

processor and uses ILU (incomplete lower-upper) factorization to solve each block.

Based on the number of iterations in Table 3.2, the best combination of iterative

solver and preconditioner is the BiCGSTAB and additive Schwarz. This combination

also scales best for more processors.

3.4 Parallel Efficiency

We further test our 3d solver for parallel efficiency. We use the MPI standard for all

message passing between processors. There are two parts to parallelize in the solver:

Linear Solver/PC itr (1proc) itr (4 proc) itr (16 proc) itr (32 proc)
GMRES(30)/Block Jacobi 41 53 87 128
GMRES(30)/ASM 43 50 62 70
BiCGSTAB/Block Jacobi 31 37 69 89
BiCGSTAB/ASM 31 32 39 45

Table 3.2: Number of iterations for various combinations of iterative solvers and
presconditioners

one is the main algorithm that determines the meshfree finite difference stencil as

defined by (2.20) for each point in the domain, and the other is the setup of the

stencils in a system matrix and solving the final system in (2.4). The first part

is at best divided between the processors based on the total number of points for

which finite difference stencils need to be determined. This generally results in all

processors working on about the same number of points. The second part concerning

the global system matrix is done automatically by the PETSc library. For p number

of processors, parallel efficiency is computed by

Tse
E = T', (3.10)

pT

where T.e is the runtime of the code in serial and T is the runtime of the code for p

number of processors. Figure 3.11 shows the parallel efficiency for the stencil setup,

matrix assembly and solving the linear system, and for the entire program.

The parallel efficiency of the stencil setup is high but not at 100 percent and

slightly drops as more processors are added. Even though in general the number of

points each processor is assigned is the same, the efficiency drops due to the number

of neighbors given for each point in the domain. The range search described in

section 3.2.3 does not guarantee that for every central point there will be an equal

number of neighbors. In fact, for a random point distribution setting, most central

points will have a slightly different number of neighbors. This is particularly true

when comparing points near the boundaries and those further away. It is easy to see

that points near the boundaries will generally have less neighbors given by the range

search. To optimize data management, the solver is set up in such a way that only

the central point and its selected neighbors are carried through for stencil calculation,

meaning that central points with more neighbors will have larger V and W matrices

and thus more operations. As a result, even though every processor is in charge of

the same number of points, some processors have to perform a greater number of

calculations if the points they are given have a larger set of neighbors. The uneven

amount of work each processor has to do only increases when more processors are

added. This results in a drop in efficiency.

Unlike with the setting up the meshfree stencil, setting up the system matrix

and solving it using the PETSc library does not result in a high parallel efficiency.

Computing, communication, and memory requirements are different when using this

software in serial and in parallel. Every processor needs to be in charge of a relatively

large number of points (>20,000) for there to be a meaningful parallel speedup. This

can be seen in Figure 3.11(b), where the parallel efficiency sharply increases when

the problem size is increased to a certain point for a specific number of processors.

Figure 3.11(c) shows the overall parallel efficiency of the solver with a sharp increase

in the efficiency when using 64 processors on a larger data set. As seen in the PETSc

parallel efficiency case for using 16 and 32 processors (Figure 3.11 (b)), after the sharp

increase the efficiency slightly decreases and levels off. The same trend would most

likely occur when using 64 processors. This means that using more processors will

generally lower the overall parallel efficiency of the solver.

We looked to compare our documented performance of using the PETSc library

to similar problems found in literature. Because most of the studies we looked at

have implemented the PETSc linear solvers on either smaller problems than the ones

we are testing with our solver or those that are symmetric, we focused on the trend

of the parallel results rather than the actual parallel efficiency. The general trend is

the same: for smaller problems, parallel efficiency decreases with an increase in the

number of processors. For better efficiency, each processor needs to be assigned a

relatively large scale problem [6, 14].

-+4 processors

-+ -16 processors

-+ 26 processors

0.85

0.8- - --- -

0.75---

number of points

number of points

(b)

0.4' - _____

104 10
number of points

(c)

Figure 3-11: Parallel efficiency for stencil setup (a), matrix assembly and solve using
PETSc (b) and the entire solver (c) 42

3.5 Computational Cost

Other than the need to develop neighborhood relations between points, the fundamental

difficulty in mehsfree finite difference is overcoming the numerical effort that is required

for the setup of stencils for differential operators. In any standard finite difference

formulation, the stencils are known and can be hard coded. The computation effort

of mehsfree finite difference stencil setup has been reviewed by Seibold [22]. For

k number of constraints and m number of neighbors, the total number of flops is

approximately k(k + 1)m + . The first term dominates for a well posed number of3.

neighbors, resulting in a 90m effort in 3d. This estimation assumes that Cholesky

decomposition is used to solve the (VTWV) - 1b part of stencil equation (2.20). The

matrix VTWV is always symmetric positive definite and thus has numerous efficient

options for solving systems of linear equations with it. Figure 3.12 shows the CPU

time using one processor required for our 3d solver to setup the stencil and solve

the arising system using PETSc. We use the BiCGSTAB method along with the

additive Schwarz preconditioner to solve the system. Furthermore, profiling the

PETSc performance shows that the majority of time is spent in applying the preconditioner

and solving the system and not in setting up the PETSc system, even without using

multiprocessors, meaning that time is not being spent in message passing between

processors.

If a regular grid can be easily generated, then the computational effort for meshfree

finite difference cannot compare to that of standard finite difference. Not only can

the stencil matrix be hard-coded in standard finite difference, it is also symmetric.

This is often not the case with meshfree finite difference. Convergence of the final

system is thus less favorable with linear solvers in the meshfree case.

The advantage of meshfree finite difference mainly comes when dealing with

complex geometry or discontinuity. In the case of problem posed in (3.2), a regular

grid for standard finite difference cannot be imposed due to the boundaries. If

encountered in a physical problem, options such as the Boundary Element Method

(BEM) are available [3], but they might prove to be not very accurate, or expensive

and not very adaptive. Meslifree finite difference is a more adaptive method as shown

in section 3.2 if the right neighbor selection approach is taken.

55

50

45

40 -_

30

OU

70 --

60

50

40

30

20-

101 Q I
0 100000 200000 300000 400000 50000

n

(b)

Figure 3-12: Computational cost of system
(b) for 1 processor in 3d

setup (a) and solution of arising system

Chapter 4

Application to Confined Flow

In this chapter we look at a wall-bounded flow problem. In particular, we simulate

using a three-demensional vortex element method [7] the evolution of a vortex ring at

an intermediate Reynolds number in a finite size box using our 3d meshfree Poisson

solver to impose the normal flux boundary condition. In wall-bounded flows, the

vorticity induced velocity field is computed as in an unbounded flow. The no-through

flow boundary condition is accounted for by adjusting the velocity using the potential

velocity generated by the wall-bounded potential flow. Various methods have been

utilized to determine the potential velocity in confined flow problems, some grid based

and some not [8, 9, 133. In our case, by using a meshfree method for the potential

flow, we keep the grid-free nature of the solution along with the Taylor expansion

imposed accuracy of finite difference.

In what follows, we first formulate the numerical algorithm for the evolution of

the vorticity field in a three-dimensional viscous flow. We then show the adaptivity

of the meshfree solver in computing the potential velocity field to satisfy the normal

velocity boundary conditions.

4.1 Numerical Method

We consider the three-dimensional incompressible Navier-Stokes equations in their

vorticity-velocity formulation

+ u. VW - W - Vu -vAO = 0, (4.1)

where w is the vorticity field, u is the velocity field, v is the kinematic viscosity, and

V is the gradient operator. The relationship between the vorticity and velocity is

defined by w = V x u. The velocity field also satisfies V -u = 0. Typically, a viscous

splitting algorithm is used to solve the inviscid and the viscous parts of (4.1) in a

time-stepping scheme [7]. That is, for every time step, we consider a convection step

O
-w*Vu -- u-VW (4.2)

and a diffusion step
O
t = ,(4.3)

while retaining the advantages of Lagrangian vortex methods of avoiding the CFL

requiements and suppressing numerical dissipation.

Convection Step:

We discretize the vorticity field using the vortex particle i with location Xi, vorticity

wi, and volume d
N

w(x, t) = (wid)(t)f,(x - xi(t)), (4.4)

where f, is a radially symmetric cutoff function having radius o and is defined as

f,(x) = 1f(I). We take a low-order algebraic cutoff function as used in [20, 27]

3 1
f (r) = 1 (4.5)

47r (1 + r2)5/2-

The convection step in (4.2) can be expressed in a Lagrangian formulation

dj= u(XJ). (4.6)

This equation is solved using a second order predictor/corrector scheme. Evaluation

of the velocity field is described in section 4.1.1.

Diffusion Step:

For the diffusion step in (4.3), we use the redistribution scheme proposed by Wee

and Ghoniem [26], which is an extension of a vorticity redistribution method used in

[24]. The key idea in this method is to redistribute the vorticity onto a grid using a

modified interpolation kernel. The interpolation of a source particle at one time step

is done to its nearest grid points lying on a uniform grid in a successive time step.

That is, if we define f as the fraction of the ith particle's strength that is transferred

to the jth particle at the nth time step, the strength of the particles at time step

n + 1 is
N

(wj dV)"l fin (widVi)" (4.7)

The redistribution fraction is obtained through

fig = A3(x -x)A 3 (Y ")A 3(z-zi) (4.8)

where the interpolation kernel A3 is defined as

1 - 2c2 + |(I (3C2 _ 2 + 1 | <1,
A3(, C)= (2 - 2((3 - |(|)(1 - |)) 1 C2 | < 2,

0 2 < E|

The variable c in the interpolation kernel is the diffusion length scale to grid size

ratio, c = vAtl/Ax. This completes the diffusion step, reducing the remeshing and

diffusion processes into one step.

As the velocity normal to each wall is zero means that particles should not be able

to cross the boundaries. During the diffusion step, however, the algorithm permits

some particles to cross over. To counteract this, we take the closest particles that

diffused outside the boundaries and add their respective vorticity components to the

vorticity components of their mirror images lying within the boundries. We use all

particles that lie 3Ax outside the boundaries, where Ax is the diffusion step grid size.

4.1.1 Velocity Evaluation

We use the Helmholtz decomposition to describe the velocity field. This description

includes the rotational component u, of the velocity field that accounts for the

vorticity in the flow and the potential component ug that is used to enforce the

boundary conditions. The presence of potential velocity also ensures that the boundaries

are compatible with the velocity field along with the vorticity field. The Helmholtz

decomposition is defined by

u = UW + u0. (4.9)

The potential velocity component can be determined from the potential function #
by the relation up = V0. The potential is a scalar field whose relationship to the

velocity vector satisfies irrotationality. The velocity can also be expressed in terms

of a stream function 4, whose relationship to the velocity vector satisfies continuity.

The velocity field can be rewritten as

u = V x ± + V#. (4.10)

Furthermore, if we define Q and F as the fluid domain and the boundary surface,

respectively, than the relationship between the stream function 0 and vorticity w is

-A@ = w inQD
(4.11)

A.-=0 inQ.

The potential # needs to satisfy

A#=O inQ

gg (4.12)
0 - (V x p) .n on IF. (.2

On

To evaluate the vortical velocity u, along with velocity gradient Vu, that are

needed in the convection step, we use a multi-purpose adaptive tree-code proposed

in [20]. The vortical velocity is determined by the Biot-Savart law

uW (x,t) = X')xW(x dx'. (4.13)
7 4-r L |x - x/1|

The tree-code uses the Rosenhead-Moore kernel to rewrite the velocity as

N

u(x, t) :- ~Ix- 12+ 2)3/2 x widV. (4.14)
S47 (Ix - X2+o.3/

The computational effort of the adaptive tree-code is about O(N log N), where N

is the total number of computational elements. The potential velocity ug and Vuo

are computed using the meshfree finite difference formulation in Chapter 2 for the

equations in (4.12). The two velocity fields are added to represent the total velocity

field u in (4.2).

4.2 Numerical Example

We now look at simulating a single vortex ring in a wall-bounded domain at an

intermediate Reynolds number Re = 500. This is an extension of the vortex ring

simulation done in [20, 26]. The vortex ring is of radius R and core radius a. The

vorticity of the core of the ring is set to

KF R2 r2 2Rr
wo = 10- 7 exp[-K(+ 2 2 sin 0)]. (4.15)

xaa 2 +a 2 a2

Here, r = VX 2 + y 2 + z 2, tan 0 = , K = (2.241822) a = 0.35, circulation
Y4 'R

IF = 1 and R = 1. Following the interpolation in the diffusion step, the problem

size is controlled by removing particles whose strength is less than a specified limit,

lwidVil < 10".

We first form the boundaries of a finite size box and place the vortex ring in its

center. We use a cube with a side length of 6 centered at the origin. The grid size for

the boundaries and the diffusion step is set to Ax = 0.1. The boundaries of the cube

remain the same throughout the simulation. The grid generated by the diffusion step

is used in the convection step to solve for the potential function in (4.12) using the

meshfree Poisson solver with Neumann boundary conditions. With each time step,

we retain the solution of the potential function from the previous time step as the

starting value of the iterative procedure that solves the system in (2.4). Figure 4.1

shows isosurfaces of vorticity magnitude at various time steps, capturing the collision

of the ring with the wall.

To validate the potential velocity and its gradient results obtained using the

meshfree solver, we use the image method to treat the effects of the 6 walls of the

cube during each convection step. For the wall positioned at z-3, for instance, the

image method results in placing an image vorticity at

Ximg = X, Yimg = y, Zjmq = 3 + (3 - z), (4.16)

with the magnitude of vorticity of

Wimgr = -Wx, imgy = -WY, Wimg,z = Wz. - (4.17)

This procedure is repeated for each wall. Furthermore, to account for the edges and

corners of the cube, extra images are placed across each edge and each corner. In

total, 26 images are used to guarantee that the normal-velocity boundary conditions

are enforced.

In Figure 4.2, the center of vorticity in the y direction is plotted for the two

cases. The maximum value is reached at the time of the collision of the vortex ring

with the wall. Figure 4.3 shows the speed of the vortex ring in the y-direction. To

better visually compare the two cases, Figure 4.3 also shows the vorticity contours for

various time steps. The two methods show a difference in the location of the center

of vorticity and speed after the collision of the vortex ring with the wall. However,

both methods also show to have similar errors in correctly calculating a zero normal

velocity on each of the boundaries after the collision of the vortex ring with the wall,

with the image methods faring slightly better. Table 4.1 shows the breakdown of the

maximum absolute error between the normal velocity on the y = 3 face of the cube

as calculated using the two methods and the expected zero normal velocity.

time max. abs. error: image method max. abs. error: meshfree method
t = 5.85 5.25 E-02 5.68 E-02
t = 7.35 3.69 E-02 3.97 E-02
t = 10.35 2.22 E -02 2.41 E-02

Table 4.1: Absolute error of normal velocity condition on the y = 3 face of the cube
after collision of vortex ring for the image method and meshfree method

The image method for this case lacks accuracy as more images might be needed

in the calculation of the potential velocity. With the meshfree method, the accuracy

is lost in the calculation of the potential function. We use a rather coarse grid in

this example with a tolerance of 10-- in the relative decrease in the residual norm

as a stopping criteria for iterative solver for the global system matrix. A smaller

tolerance would mean a more accurate potential function. However, in the tested

cases, lowering the tolerance causes the BiCGSTAB method to fail to converge in

10,000 iterations for various time steps. The accuracy of the meshfree solver does

improve when for a more refined grid. Table 4.2 shows the maximum absolute error

on the y = 3 face of the cube after one time step for various mesh sizes.

mesh size maximum absolute error
0.12 9.83E-05
0.1 7.43E-05
0.08 3.03E-05
0.05 1.93E-05

Table 4.2: Absolute error of normal velocity boundary condition on the y = 3 face of
the cube after one time step for the meshfree method

V

!I

V

Figure 4-1: Isosurfaces of vorticity for times t = 0, 2.85, 7.35, and 13.35

I AlZ

0.5

0

0 5 10 15 20 25 30 35
time

Figure 4-2: Time history of center of vorticity along the y-axis

0 5 10 15 20 25 30 35
time

Figure 4-3: Time history of velocity along the y-axis

0 gig M

4

3

Figure 4-4: Vorticity contours for using meshfree solver (left) and the image method
(right) for t = 0, 4.35, 8.85 and 13.35

... -

Chapter 5

Conclusions

A meshfree finite difference solver has been described, tested, and implemented in a

wall-bounded flow simulation to treat boundary conditions. The solver is based purely

on nodal points without the need to prespecify node connectivity, as is required with

traditional meshing. The point distribution for the meshfree finite difference approach

does not need to be regular. The method implements a local iterative weighted least

squares approximation using neighbor relations to compute finite difference stencils.

The resulting stencils are not guaranteed to be positive and form nonsymmetric

system matrices for the cases where regular point distribution are not desired. For

large problems with complex geometries, these matrices are often ill-conditioned.

Various options for dealing with the global stencil matrices have been shown through

the use of the parallel PETSc library.

The convergence of the method is showed to depend on the selected weight function

as well as the average mesh size. The accuracy and numerical convergence of the

solver are shown using a circular domain with both irregualr and regular distribution

of points. Further examples in 2d are used to examine the solver's adaptivity when

dealing with domain discontinuities and inconsistent distribution of points near the

boundaries. It has been noted that the method requires a certain degree of adequite

point distribution and enough neighbors to guarantee a consisten approximation.

Keeping in mind that the method can get quite expensive without proper data

management, this can only be achieved by having an idea of how the points are

distributed within the domain before using the solver.

Meshfree methods have been studied for incompressible flow problem applications,

particularly in simulations by the Lagrangian particle method where particles can be

used as gird points for the meshfree method. This makes them well suited for vortex

methods. The 3d mehsfree solver developed in this work has been applied to an

intermediate Reynolds number confined flow simulation as an add on to the vortex

element method. The meshfree solver is used to treat the effects of the boundaries and

satisfy the normal flux boundary condition. This requires an accurate evaluation of

the potential function used to calculate the potential velocity and its gradients, posing

a Neumann boundary problem. The results from using the meshfree solver to treat

the potential velocity has been compared to those produced using the image method.

The two methods show differences in the location of the center of vorticity and speed

after the collision of the votrex ring with the wall. In terms of the meshfree method,

the accuracy of solver might have been compromised by the low grid resolution and

the selected stopping criteria for the iterative method used to solve the global system

for the potential function. Further work on the solver would include running the

confined flow simulation in parallel so that a finer mesh can be used and its effect on

the numerical convergence can be studied.

Finally, at the current stage it is difficult to make any real assumptions as to how

this meshfree solver will fare against other methods, for instance Panel methods [171,

aimed at calculating the velocity potential in wall-bounded flows. Choosing the right

approach greatly depends on the problem and geometry at hand. The meshfree finite

difference method is adaptive however, and can be applied to any step where using

a mesh is troublesome, a relatively high order accuracy can be achieved, and data

management can be done efficiently.

Bibliography

[1] S Balay, K Buschelman, V Eijkhout, W Gropp, D Kaushik, M Knepley,
LC McInnes, B Smith, and H Zhang. Portable, extensible toolkit for scientific
computation - version 3.0, 2009.

[2] S Balay, K Buschelman, V Eijkhout, W Gropp, D Kaushik, M Knepley,
LC McInnes, B Smith, and H Zhang. Petsc user manual - revision 3.1. Technical
Report ANL-95/11, Argonne National Laboratory, March 2010.

[3] P.K. Banerjee and R. Butterfield. Boundary Element Methods in Engineering
Science. McGraw Hill, New York, 1981.

[41 T. Belytschko, Y. Krongauz, D. Organ, and M. Fleming. Meshless methods: An
overview and recent developments. In Computer Methods in Applied Mechanics
and Engineering, pages 3-47, 1996.

[5] Jon Louis Bentley. Multidimensional divide-and-conquer. Commun. A CM,
23(4):214-229, 1980.

[6] 0. Ceylan and . Kalenderli. Parallel computation of two dimensional electric
field distribution using petsc. Lecture Series on Computer and Computational
Sciences, 1:1-3, 2004.

[7] G.-H Cottet and P.D. Koumoutsakos. Vortex Methods: Theory and Practice.
Cambridge University Press, 2000.

[8] G.-H. Cottet and P. Poncet. Particle methods for direct numerical simulations
of three-dimensional wakes*. Journal of Turbulence, 3:38-+, October 2002.

[9] G.-H. Cottet and P. Poncet. Advances in direct numerical simulations of 3d
wall-bounded flows by vortex-in-cell methods. J. Comput. Phys., 193(1):136-
158, 2004.

[10] G.A. Dilts. Moving least squares particle hydrodynamics i, consistency
and stability. International Journal for Numerical Methods in Engineering,
44(8):1115-1155, 1999.

[11] William F. Eddy. A new convex hull algorithm for planar sets. ACM Trans.
Math. Softw., 3(4):398-403, 1977.

[12] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm
for finding best matches in logarithmic expected time. A CM Trans. Math. Softw.,
3(3):209-226, 1977.

[13] A. Gharakhani and A.F. Ghoniem. Bem solution of the 3d internal neumann
problem and a regularized formulation for the potential velocity gradients.
International Journal for Numerical Methods in Fluids, 24:81-100, 1997.

[14] P.A. Kler, E.J. Lopez, L.D. Dalcin, F.A. Guarnieri, and M.A. Storti. High
performance simulations of electrokinetic flow and transport in microfluidic chips.
Comput. Methods Appl. Mech. Engrg., 198:2360-2367, 2009.

[15] J. Kuhnert and S. Tiwari. Finite pointset method based on the projection method
for simulations of the incompressible navier-stokes equations. In M. Griebel and
M.A. Schweitzer, editors, Meshfree methods for Partial Differential Equations,
volume 26, pages 373-388. Springer, 2002.

[16] T. J. Liszka, C. A. M. Duarte, and W. W. Tworzydlo. hp-meshless cloud method.
Comp. Meth. Appl. Mech. Eng, 139:263-288, 1996.

[17] J.L. Panel. Panel methods in computational fluid dynamics. Annu. Rev. Fluid
Mech. 1990, 22:255-274, 1990.

[18] F.P. Preparata and M. Shamos. Computational geometry: an introduction.
Springer Verlag, New York, 1985.

[19] A.G. Petschek P.W. Randles, L.D. Libersky. On neighbors, derivatives, and
viscosity in particle codes. Technical Report LA-UR-99-2560, Los Alamos
National Laboratory, Los Alamos, NM, September 1999.

[20] Fabrice Schlegel, Daehyun Wee, and Ahmed F. Ghoniem. A fast 3d particle
method for the simulation of buoyant flow. J. Comput. Phys., 227(21):9063-
9090, 2008.

[21] B. Seibold. Minimal positive stencils in meshfree finite difference methods for
the Poisson equation. ArXiv e-prints, February 2008.

[22] Benjamin Seibold. M-Matrices in Meshless Finite Difference Methods. PhD
thesis, University of Kaiserslautern, Germany, 2006.

[23] Raimund Seidel. A convex hull algorithm optimal for point sets in even
dimensions. Technical report, Vancouver, BC, Canada, 1981.

[24] S. Shankar and L. van Dommelen. A new diffusion procedure for vortex methods.
J. Comput. Phys., 127(1):88-109, 1996.

[25] H. A. van der Vorst. Bi-cgstab: a fast and smoothly converging variant of bi-cg
for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.,
13(2):631-644, 1992.

[26] Daehyun Wee and Ahmed F. Ghoniem. Modified interpolation kernels for
treating diffusion and remeshing in vortex methods. J. Comput. Phys.,
213(1):239-263, 2006.

[27] G. S. Winckelmans and A. Leonard. Contributions to vortex particle methods for
the computation of three-dimensional incompressible unsteady flows. J. Comput.
Phys., 109(2):247-273, 1993.

[28] Mi young Kim, Sin jae Kang, and Jong hyeok Lee. Gmres: A generalized minimal
residual algorithm for solving nonsymmetric linear systems. SIAM J. Scientific
Statistical Computing, 7:856-869, 1986.

