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Abstract

Natural systems produce macromolecules that assemble into complex, highly ordered structures.
In particular, proteins and peptides derived from the 20 naturally occurring amino acids are
sequenced macromolecules that can fold into secondary and tertiary structures and can self
assemble into quaternary structures. Through weak interactions, these ordered systems produce
high-strength materials, provide physical cues to induce cell functions and morphologies,
efficiently harvest energy, and transport materials. One of the key challenges in the field of
polymer chemistry is the ability to generate synthetic systems that can demonstrate the highly
ordered structure, self-assembly, and responsive behavior of these macromolecules.

Synthetic polypeptides have received attention because of their unique structural properties and
biocompatibility. Like their naturally occurring analogs, these molecules have a poly(amino
acid) backbone and posses the ability to fold into secondary structures. Synthetic homo
polypeptides are synthesized by the ring opening polymerization of N-carboxyanhydrides formed
from naturally occurring amino acids. Although these macromolecules' secondary structure can
be controlled to some extent, we are limited by the given side chain, which dictates polymer
function, structure, and responsive behavior to temperature or pH among many other properties.
We have developed a new approach to the manipulation of synthetic polypeptide composition
and function through the introduction of a new NCA polymer, poly(Y-propargyl-L-glutamate)
(PPLG) which contains a pendant alkyne group that can be reacted with an azide by the 1,3
cycloaddition "click" reaction. With this system, we can incorporate functional groups that are
ordinarily difficult to introduce because of cross-reactions or exhaustive protection-deprotection
steps. In addition, we can more directly mimic the adaptive function and responsive behavior of
naturally occurring polypeptides.

This thesis focuses on the development of the PPLG system and the use of the system for
synthetic biomimics, drug delivery, and gene delivery. For synthetic biomimics, as an initial
example, densely grafted polymers were synthesized to demonstrate the utility of this synthetic
approach. In addition, synthetic antimicrobial polypeptides were synthesized to mimic naturally
occurring antimicrobial peptides. For drug and gene delivery, a library of pH responsive
peptides were synthesized and characterized.

Thesis Supervisor: Paula T. Hammond
Title: Executive Officer, Chemical Engineering

Bayer Professor of Chemical Engineering
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1 Introduction and Background

1.1 Motivation

Natural systems produce macromolecules that assemble into complex, highly ordered

structures.' In particular, proteins and peptides derived from the 20 naturally occurring amino

acids, are sequenced macromolecules that can fold into secondary and tertiary structures and can

self assemble into quaternary structures (Figure 1-1). Through weak interactions, these ordered

systems produce high-strength materials, provide physical cues to induce cell functions and

morphologies, efficiently harvest energy, and transport materials.2, 3 One of the key challenges

in the field of polymer chemistry is the ability to generate synthetic systems that can demonstrate

the highly ordered structure, self-assembly, and responsive behavior of these macromolecules. 4 8

In essence, can we mimic nature?

Primary structure secondary structure tertiary
structure

quaternary
structure

0 pleated sheet
P rmary
structure

Figure 1-1. Schematic of protein structure.
http://academic.brooklyn.cuny.edu/biology/bio4fv/page/3dprot.htm

Image adapted from:

.................... .



1.2 Synthetic polypeptides

Sequenced peptides can be accurately synthesized using a solid state peptide synthetic approach;

yet these molecules are limited to relatively short peptide sequences (< 30 residues) and small

quantities. This approach has low yields, requires time consuming processing steps, has costly

purifications, and is overall very expensive.4 While approaches that use genetic engineering or

synthetic biology are quite promising,5' 9' 10 these systems require significant development of

biological platforms and the purification can be challenging. Many synthetic polymers can be

produced that have controlled chain length but do not have the ability to adopt a secondary

structure, such as beta sheets or helices. These highly ordered structures are imperative because

they allow proteins and peptides to optimally display surface moieties that dictate cell signaling

and molecular docking as well as supramolecular shape and programmable function.1, 7, 11-13

Synthetic polypeptides, although simpler than proteins, introduce a powerful capability to

generate macromolecular species that have an amino acid backbone and thus possess the ability

to fold into stable secondary structures. Furthermore, these polymers have low toxicity, have

long-term biodegradability, and can be inexpensively produced on the large scale. These

properties give synthetic polypeptides an advantage over sequenced peptides prepared by either

solid state synthesis, genetic engineering, or other biosynthetic methods.

1.3 Limitations of synthetic polypeptides generated from N-carboxyanhydrides

Synthetic polypeptides are synthesized by a well-studied ring-opening polymerization

(ROP) of N-carboxyanhydrides (NCA), shown in Figure 1-1. The polymerization can be

initiated by a variety of initiators; here the polymerization is initiated with a primary amine,

which is the method of initiation utilized in this body of work. There are a number of additional

initiation methods for controlling the polymerization and formation of homopolymers and block

20



copolymers."' 12-16 The NCA monomer is typically formed from amino acids containing alkyl

end groups or protected functional groups. The functional groups, in particular, the carboxylic

acid moiety (e.g. glutamate and aspartate) and amino (e.g. lysine) moiety, have been used to add

chemical complexities, such as pharmaceutical drugs and molecules that dictate hydrophobicity

or pH responsiveness.17-19 When creating polypeptides with functional groups, a three step

process is often required: (1) polymerization with the protected functional group, (2) the

deprotection of the functional group, and (3) the functionalization. If a high degree of

functionalization is required, the added chemical moieties are limited to small molecules and low

molecular-weight oligomers. There is a pressing need to create a more readily adaptable

platform to attach a broad range of groups at the amino acid backbone with ease and control.

Scheme 1-1. Ring opening polymerization of N-carboxyanhydrides initiated by a primary amine

/-NH2  + H N R NH2

R'

1.4 Click chemistry and polymers

Highly quantitative functionalization chemistries have been developed and evolved for

use with polymers over the past several years. Click reactions, which were first described by

Sharpless et al., 20 refer to a series of highly efficient reactions that include the adapted Huisgen

1,3-dipolar cycloaddition reaction between an alkyne and an azide to form a triazole (Scheme

1-2).20 These reactions have received a significant amount of attention because of their high

reaction efficiency (near 100%), mild reaction conditions, functional group tolerance, and few

byproducts.20  In recent years, click chemistry has been used in a wide variety of polymer

applications including functionalization of polymers with small molecules, formation of diblock



polymers, formation of new dendrimers, formation of macromonomers, crosslinking of micelles,

polymer attachment to surfaces, and the "grafting onto" method for the formation of molecular

brushes.21 30

Scheme 1-2. 1,3-dipolar cycloaddition reaction between an alkyne and an azide to form a
triazole20

Cu(I)

N R2+
N' NzzN' R2

1.5 A library or polypeptides based on PPLG

To broaden the range of capabilities possible with the NCA chemistry platform, we have

synthesized a new NCA polymer, poly(y-propargyl-L-glutamate) (PPLG), which incorporates an

alkyne group that can be easily reacted with an azide using click chemistry. 31 Ease of synthesis

of both small molecule and macromolecule side groups that exhibit a broad range of polarity and

charge provide a key platform for the generation of families of synthetic polypeptides. With this

system, we can incorporate functional groups that are ordinarily difficult to introduce because of

cross-reactions or exhaustive protection-deprotection steps. In addition, we can more directly

mimic the adaptive function and responsive behavior of naturally occurring polypeptides. In

Scheme 1-1, PPLG and a library of reactive click groups synthesized for this thesis are shown.

This library is just a small subset of a much larger library of polypeptides that can be synthesized

utilizing this approach.



Scheme 1-3. PPLG and a library of reactive click groups synthesized for this thesis
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There are many potential applications for this system, several of which are illustrated in

Figure 1-2. From left to right, these applications are pH responsive polymers that interact

reversibly with biological cell membranes or liposomal structures, polyelectrolytes for layer by

layer deposition, reversible colloid formation for drug and gene delivery, highly grafted

polypeptides designed to exhibit biophysical properties appropriate to mimic the intracellular

microenvironment, and responsive hydrogels for tissue engineering. This thesis focuses on the

development of the PPLG system and the use of the system for synthetic biomimics, drug

delivery, and gene delivery. For synthetic biomimics, as an initial example, densely grafted

polymers were synthesized to demonstrate the utility of this synthetic approach. In addition,

synthetic antimicrobial polypeptides were synthesized to mimic naturally occurring antimicrobial

peptides. For drug and gene delivery, a library of pH responsive peptides were synthesized and

........ ...... ............................ ............ ...



characterized. A brief introduction of each area of research and the role of PPLG in each area is

provided below.

III'

Polyelectrolyte
Munlayer FNm

Layer by Layer

pH Responsive
Colloids

Synthetic
Biomimics

Figure 1-2. Schematic illustrating application of the clickable synthetic polypeptides. The LBL
image is from Hammond PT. Advanced Materials. 2004;16(15):1271-93 . , The synthetic
biomimics image is from K. Lienkamp et. al., Macromolecules 2007, 40, 2486.33, and the
hydrogel image was provided by Abigail Oelker (PhD).

1.6 Synthetic biomimics

1.6.1 Proteoglycans and glycoproteins

A cell's extracellular matrix consists of macromolecules, such as glycoproteins,

proteoglycans, and collagen, that control both the mechanical structure and the

microenvironment. 2 These properties provide physical cues that are necessary to induce various
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cell functions and morphologies. An important goal of tissue engineering is to mimic the

environment of the extracellular matrix on several levels, mechanically, chemically, and

architecturally.34 Glycoproteins are loosely grafted brush polymers that contain short

oligosaccharide side chains that can contain 1-60 wt% carbohydrates. Proteoglycans contain

polypeptides that are heavily grafted with unbranched glycosaminoglycan chains, typically 80

sugars long and contain as much as 95 wt% carbohydrates.3 5  These macromolecules, in

particular, have the ability to absorb a large amount of water and form gels which give elasticity

and structural integrity to many tissues including blood vessels, skin, and cartilage. 33 These

large macromolecules are difficult to isolate and therefore the development of synthetic mimics

would aid in providing a fundamental understanding as to the role of these macromolecules in

the extracellular environment. With these macromolecules in mind, the synthetic approach for

highly efficient grafting onto a peptide backbone was developed for the PPLG system.

1.6.2 Antimicrobial peptides

The overuse of systemic antibiotics has led to a rise in multidrug resistant bacteria.36

Compounded by a lack of discovery and approval of new classes of antibiotics, there is a

pressing need for the development of novel antimicrobial agents.36' 37 Antimicrobial peptides

(AmPs) are a promising alternative to traditional small molecule antibiotics. These peptides are

components of the natural immune system and show broad spectrum activity against bacteria,

fungi, and some viruses. Unlike traditional antibiotics, these macromolecules have a low

propensity to induce pathogen resistance. These short peptide sequences (20-50 residues) adopt

amphiphilic topologies in which the hydrophobic and positively charged hydrophilic segments

segregate. The positive charge interacts with the negatively charged bacteria phospholipid

membrane and the hydrophobic portion can penetrate into the membrane resulting in disruption



of the membrane and in some cases bacteria death.38 Despite the advantages over traditional

antibiotics, there are several limitations which hinder the use of AmPs. AmPs are subject to

proteolytic degradation, can be toxic to mammalian cells, and are expensive to produce. 38, 39

Polymeric synthetic mimics of AmPs could provide a promising alternative to naturally

occurring AmPs. With the PPLG system, we have a great deal of control over polymer

functionality as well as secondary structure, making this synthetic strategy useful for developing

AmP mimics.

1.7 Drug and Gene Delivery

Polymer therapeutics and drug carriers show great promise for applications such as drug

and gene delivery. They have many features of biological macromolecular drugs with the added

benefit of synthetic versatility. 40 There are many types of polymer therapeutics, as shown in

Figure 1-3; however the focus of this thesis is on the design of polymeric micellar drug and gene

delivery carriers.

8 Polyineric drug or sequestrant b Polymer-protin conjugate C Polyplei: polymer-OM complex
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Cationic

MW - 5-40,000 Da
~20 rm 40-00 rml

d Polymer-drug conjugate 0 polymeric rnicae
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Targeting resiue block

Drug__ blockt

5-15 nm O-1 00 r
Figure II Schematic repreeentation of polymer therapeutica now in, or progressing towards, clinical development.
The nano-sized and frequently multiconponent nature of these structures is visile. Mw, molecular weight.

Figure 1-3: Polymer therapeutics 40
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1.7.1 Delivery Barriers

For the effective intravenous delivery of drug carriers through the blood stream to desired

tissue (e.g. organ or tumor), there are four main barriers that must be overcome:"

1. The carriers must have a long blood circulation time. Small molecule drugs are

rapidly cleared from plasma by the kidneys. This obstacle can be avoided by

designing a system with a high molecular weight.

2. The carrier must be small enough to be taken up from the blood into target tissue.

3. Carriers must be taken up by cells and undergo endocytosis. Targeting may be

necessary for systems that have low permeability through cellular membranes or

when specific tissue is targeted.

4. Intracellular trafficking is important such that the gene or drug reaches the desired

target inside the cell.

In addition to overcoming the systemic barrier to delivery, the delivery vehicles must be

designed to successfully encapsulate the desired cargo, whether it is a drug or genetic material,

and release the cargo at the desired location.

1.7.2 A modular delivery system

To overcome the barriers of systemic delivery, modular delivery systems are being

designed with multiple functional domains. We have selected a simple block copolymer system

with a poly(ethylene glycol) (PEG) block and a PPLG block that can be easily functionalized

with small molecules to optimize either pH responsive drug delivery or gene delivery. The PEG

block can also have an attached target moiety. A schematic of the design is show in Figure 1-4.



The rational design of this system is explained below. Each polymer of the diblock system was

selected to overcome different barriers of systemic delivery.

TgiResponsive
Targeting "Click" Groups
MoleculeA A A

"Stealth" Biocompatible 0
PEG Polypeptide

Figure 1-4. Schematic of drug or gene delivery vehicle

1.7.3 Designing micelles: overcoming the delivery barriers

Micelle delivery systems have shown great promise in the area of both drug and gene

delivery. When designing these particles, controlling size and surface properties is of utmost

importance. For both active and passive targeting systems, the longer the micelle system

circulates in the body the better chance it has of reaching its desired target. For example, passive

drug delivery to cancerous tumors takes advantage of the enhanced permeation and retention

effect (EPR).41 Because of the increased circulation time of these colloids, they are able to

extravasate into the leaky vasculature of tumor tissue. Since the lymphatic drainage system for

tumor tissues are poorly developed, the end result is the accumulation of the colloidal

nanoparticles in tumors. In the literature, there are numerous examples of diblock copolymer

systems that take advantage of EPR effect. 17, 19, 42-44

To increase circulation time in the blood stream, particle size is very important. Particles

must have a diameter smaller than 150 nm in order to avoid the reticuloendothelial system (RES)

. .. . .. ........................ .... .. . .... ........... ........... ........................ .... .... .
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but larger than 2-3 nanometers to avoid being filtered out by the kidneys. 45 The size of the

particles is also important in determining the rate of endocytosis of the particles; endocytosis in

non-phogocytic cells will not occur for particles larger than 150 m46 Overall, an intermediate

particle size is desired.

The RES is also aided by the adsorption of proteins onto the nanoparticle surface, which

would promote phagocytosis.47 The design of surface properties such that proteins do not adsorb

is very important in increasing circulation time. Neutrally charged surfaces have a lower

tendency to be cleared by the RES than charged surfaces. Cationic particles stick to negatively

charged cell membranes and are then quickly removed from circulation. 48 Furthermore, some

cationic polymers can cause hemolysis and are cytotoxic. 49' 50 Anionic particles are recognized

by receptors found on macrophages and are therefore rapidly cleared from the body.5 1

The most common surface coverage for particles is the neutral polymer, poly(ethylene

glycol) (PEG). This water soluble polymer has stealth-like properties when delivered

systemically. PEG decreases the toxicity of the nanoparticle by decreasing the interaction with

the body and is used to reduce the rate of uptake by the RES, therefore increasing circulation

half-life. When PEG is in the blood stream, water molecules form a sheath around the PEG.

This neutral coating prevents the adsorption of opsonins to the particle surface and significantly

reduces the interaction of the particle with the physiological environment. 0 ' 53 Due to these

properties, PEG is often selected as the hydrophilic, exterior block of diblock micelle drug and

gene carriers, including PEG-b-poly(amino-acids).1 7' 19, 44, 54-58 For our system, PEG has been

selected as the exterior polymer because of its stealth properties and diblock polymers created

with an exterior PEG block can be tuned to the proper size for systemic delivery.



To provide cargo protection and overcome the intracellular barriers, we focused on

designing the interior block using the biocompatible PPLG polymers with varied side groups.

For drug delivery, the goal is to develop a block that is pH responsive, such that in the blood

stream (pH 7.00-7.45)59 the interior block is hydrophobic to solublize a hydrophobic drug and in

the endosome (early endosome pH 5.5-6.3 and late endosome pH < 5.5 )60-62 or the hypoxic

region of tumors (pH approaching 6.0)," the interior block becomes hydrophilic, thus

destabilizing the micelle to release the drug.

For gene delivery, the amine groups have two different roles. The first is to complex the

positively charged polymer with the negatively charged siRNA or DNA. Cationic polymers with

primary or in some cases secondary amines are typically selected for this role. A secondary role

of many cationic polymers is to assist the polyplexes in endosomal escape through the "proton

sponge" effect. The "proton sponge" effect is the use of cationic functional groups with pKa

values that lie near the range of 5-6 so that when the polyplexes are inside the acidic endosome,

the amines become protonated. To maintain an acidic environment, the endosome generates

more acidic protons, resulting in more chloride ions and water entering the endosome. As a

result, the osmotic pressure increases, and the endosomal membrane destabilizes and ruptures,

releasing the polyplex into the cytoplasm. 63

1.8 Thesis Overview

The remainder of this thesis is divided into 5 additional chapters. Chapter 2 contains

detailed experimental protocols for all of the remaining Chapters. This chapter also provides

additional protocols for materials that were synthesized but are not reported in later chapters.

This information is provided to aid future researchers working with the PPLG and other clickable

polypeptide systems.



In Chapter 3, the PPLG system is initially described. A model PPLG-g-PEG system is

used to show the capabilities of this synthetic approach. The kinetics of the PPLG click reaction,

the efficiency of the grafting onto reaction, and backbone integrity during the reaction were

examined. The goal of this brush polymer system is to mimic naturally occurring

biomacromolecules on the molecular level.

Chapter 4 explores the use of the PPLG system to create an entire library of pH

responsive polypeptides. These polymers include both poly(Y-propargyl L-glutamate) (PPLG)

based homopolymers and poly(ethylene glycol-b-y-propargyl L-glutamate) (PEG-b-PPLG) block

copolymers substituted with various amine moieties that range in pKa and hydrophobicity,

providing the basis for a library of new synthetic structures that can be tuned for specific

interactions and responsive behaviors. These properties are of interest for a number of

applications; preliminary experiments were performed that demonstrate that these polymers are

strong candidates for drug and gene delivery.

In Chapter 5, the PPLG system was utilized to synthesize an entire library of

antimicrobial polypeptides that mimic naturally occurring AmPs. The effect of the side chain

functionality and the polypeptide length was evaluated using a modified microdilution assay to

determine the minimum inhibitory concentration (MIC), or the lowest point at which visible

bacteria growth is inhibited, against both gram-negative and gram-positive bacteria. A bacteria

attachment assay was also carried out on polypeptide coatings to evaluate their potential efficacy

for use as antimicrobial surface coatings. To determine their level of biocompatibility, red blood

cell (RBC) lysis was monitored in the presence of these polypeptides.

Chapter 6 includes the overall conclusion for this thesis as well as suggestions of future

applications and extensions of the clickable polypeptide system.

31



1.9 References

1. Deming, T. J., Synthetic polypeptides for biomedical applications. Prog. Polym. Sci.

2007, 32 (8-9), 858-875.

2. Griffith, L. G.; Swartz, M. A., Capturing complex 3D tissue physiology in vitro. Nat.

Rev. Mol. Cell Biol. 2006, 7 (3), 211-224.

3. Ober, C. K.; Zheng, S. Z. D.; Hammond, P. T.; Muthukumar, M.; Reichmanis, E.;

Wooley, K. L.; Lodge, T. P., Research in Macromolecular Science: Challenges and

Opportunities for the Next Decade. Macromolecules 2009, 42 (2), 465-471.

4. Badi, N.; Lutz, J. F., Sequence control in polymer synthesis. Chemical Society Reviews

2009, 38 (12), 3383-3390.

5. Connor, R. E.; Tirrell, D. A., Non-canonical amino acids in protein polymer design.

Polymer Reviews 2007, 47 (1), 9-28.

6. Langer, R.; Tirrell, D. A., Designing materials for biology and medicine. Nature 2004,

428 (6982), 487-492.

7. Patterson, J.; Martino, M. M.; Hubbell, J. A., Biomimetic materials in tissue engineering.

Materials Today 2010, 13 (1-2), 14-22.

8. Tomalia, D. A.; Wang, Z. G.; Tirrell, M., Experimental self-assembly: the many facets of

self-assembly. Current Opinion in Colloid & Interface Science 1999, 4 (1), 3-5.

9. Montclare, J. K.; Tirrell, D. A., Evolving proteins of novel composition. Angewandte

Chemie-International Edition 2006, 45 (27), 4518-4521.

10. Wang, A.; Nairn, N. W.; Johnson, R. S.; Tirrell, D. A.; Grabstein, K., Processing of N-

terminal unnatural amino acids in recombinant human interferon-beta in Escherichia coli.

ChemBioChem 2008, 9 (2), 324-330.



11. Bromley, E. H. C.; Channon, K.; Moutevelis, E.; Woolfson, D. N., Peptide and Protein

Building Blocks for Synthetic Biology: From Programming Biomolecules to Self-Organized

Biomolecular Systems. A CS Chemical Biology 2008, 3 (1), 38-50.

12. Deming, T. J., Methodologies for preparation of synthetic block copolypeptides:

materials with future promise in drug delivery. Advanced Drug Delivery Reviews 2002, 54 (8),

1145-1155.

13. Deming, T. J., Polypeptide and polypeptide hybrid copolymer synthesis via NCA

polymerization. Peptide Hybrid Polymers 2006, 202, 1-18.

14. Aliferis, T.; Iatrou, H.; Hadjichristidis, N., Living polypeptides. Biomacromolecules

2004, 5 (5), 1653-1656.

15. Gibson, M. I.; Cameron, N. R., Experimentally Facile Controlled Polymerization of N-

Carboxyan hydrides (NCAs), Including O-Benzyl-L-threonine NCA. J Polym. Sci. Pol. Chem.

2009, 47(11), 2882-2891.

16. Lu, H.; Cheng, J. J., Hexamethyldisilazane-mediated controlled polymerization of alpha-

Amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 2007, 129 (46), 14114-14115.

17. Osada, K.; Kataoka, K., Drug and gene delivery based on supramolecular assembly of

PEG-polypeptide hybrid block copolymers. In Peptide Hybrid Polymers, Springer-Verlag Berlin:

Berlin, 2006; Vol. 202, pp 113-153.

18. Yokoyama, M.; Kwon, G. S.; Okano, T.; Sakurai, Y.; Seto, T.; Kataoka, K., Preparation

of micelle-forming polymer-drug conjugates. Bioconjugate Chem. 1992, 3 (4), 295-301.

19. Lavasanifar, A.; Samuel, J.; Kwon, G. S., Poly(ethylene oxide)-block-poly(L-amino acid)

micelles for drug delivery. Advanced Drug Delivery Reviews 2002, 54 (2), 169-190.

20. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry: Diverse chemical function

from a few good reactions. Angewandte Chemie-International Edition 2001, 40 (11), 2004-2021.



21. Hawker, C. J.; Wooley, K. L., The convergence of synthetic organic and polymer

chemistries. Science 2005, 309 (5738), 1200-1205.

22. Joralemon, M. J.; O'Reilly, R. K.; Hawker, C. J.; Wooley, K. L., Shell Click-crosslinked

(SCC) nanoparticles: A new methodology for synthesis and orthogonal functionalization. J Am.

Chem. Soc. 2005, 127 (48), 16892-16899.

23. Helms, B.; Mynar, J. L.; Hawker, C. J.; Frechet, J. M. J., Dendronized linear polymers

via "click chemistry". J. Am. Chem. Soc. 2004, 126 (46), 15020-15021.

24. Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.;

Frechet, J. M. J.; Sharpless, K. B.; Fokin, V. V., Efficiency and fidelity in a click-chemistry route

to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angewandte

Chemie-International Edition 2004, 43 (30), 3928-3932.

25. Gondi, S. R.; Vogt, A. P.; Sumerlin, B. S., Versatile Pathway to Functional Telechelics

via RAFT Polymerization and Click Chemistry. Macromolecules 2007, 40 (3), 474-481.

26. Vogt, A. P.; Sumerlin, B. S., An Efficient Route to Macromonomers via ATRP and Click

Chemistry. Macromolecules 2006, 39 (16), 5286-5292.

27. Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K., Highly

Efficient "Click" Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP.

Macromolecules 2005, 38 (18), 7540-7545.

28. Riva, R.; Schmeits, S.; Jerome, C.; Jerome, R.; Lecomte, P., Combination of Ring-

Opening Polymerization and "Click Chemistry"; Toward Functionalization and Grafting of

Poly(c-caprolactone). Macromolecules 2007, 40 (4), 796-803.

29. Constable, E. C.; Housecroft, C. E.; Neuburger, M.; Rosel, P., Clicking hard-core sugar

balls. Chem. Commun. 2010, 46 (10), 1628-1630.

30. Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Kaltgrad, E.; Finn, M. G.; Fokin, V. V.;

Sharpless, K. B.; Hawker, C. J., Multivalent, bifunctional dendrimers prepared by click

chemistry. Chem. Commun. 2005, (46), 5775-5777.



31. Engler, A. C.; Lee, H. I.; Hammond, P. T., Highly Efficient "Grafting onto" a

Polypeptide Backbone Using Click Chemistry. Angewandte Chemie-International Edition 2009,

48 (49), 9334-9338.

32. Hammond, P. T., Form and function in multilayer assembly: New applications at the

nanoscale. Advanced Materials 2004, 16 (15), 1271-1293.

33. Lienkamp, K.; Noe, L.; Breniaux, M.-H.; Lieberwirth, I.; Groehn, F.; Wegner, G.,

Synthesis and Characterization of End-Functionalized Cylindrical Polyelectrolyte Brushes from

Poly(styrene sulfonate). Macromolecules 2007, 40 (7), 2486-2502.

34. Benoit, D. S. W.; Schwartz, M. P.; Durney, A. R.; Anseth, K. S., Small functional groups

for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat.

Mater. 2008, 7 (10), 816-823.

35. Alberts, B., Johnson, A., Lewis, J., Raff, R., Roberst, K., Walter, P., Molecular Biology

of the Cell. Garland Science: New York, NY, 2002.

36. Taubes, G., The Bacteria Fight Back. Science 2008, 321 (5887), 356-361.

37. Gabriel, G. J.; Som, A.; Madkour, A. E.; Eren, T.; Tew, G. N., Infectious disease:

Connecting innate immunity to biocidal polymers. Materials Science and Engineering: R:

Reports 2007, 57 (1-6), 28-64.

38. Choi, S.; Isaacs, A.; Clements, D.; Liu, D. H.; Kim, H.; Scott, R. W.; Winkler, J. D.;

DeGrado, W. F., De novo design and in vivo activity of conformationally restrained

antimicrobial arylamide foldamers. Proceedings of the National Academy of Sciences of the

United States ofAmerica 2009, 106 (17), 6968-6973.

39. Zhou, C.; Qi, X.; Li, P.; Chen, W. N.; Mouad, L.; Chang, M. W.; Leong, S. S. J.; Chan-

Park, M. B., High Potency and Broad-Spectrum Antimicrobial Peptides Synthesized via Ring-

Opening Polymerization of y-Aminoacid-N-carboxyanhydrides. Biomacromolecules 2009, 11

(1), 60-67.



40. Duncan, R., The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003, 2

(5), 347-360.

41. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H., Exploiting the enhanced permeability and

retention effect for tumor targeting. Drug Discovery Today 2006, 11 (17-18), 812-818.

42. Tian, L.; Yam, L.; Wang, J. Z.; Tat, H.; Uhrich, K. E., Core crosslinkable polymeric

micelles from PEG-lipid amphiphiles as drug carriers. Journal of Materials Chemistry 2004, 14

(14), 2317-2324.

43. Nguyen, P. M.; Hammond, P. T., Amphiphilic linear-dendritic triblock copolymers

composed of poly(amidoamine) and poly(propylene oxide) and their micellar-phase and

encapsulation properties. Langmuir 2006, 22 (18), 7825-7832.

44. Kwon, G.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K., Micelles

Based on Ab Block Copolymers of Poly(Ethylene Oxide) and Poly(Beta-Benzyl L-Aspartate).

Langmuir 1993, 9 (4), 945-949.

45. Kumar, N.; Ravikumar, M. N. V.; Domb, A. J., Biodegradable block copolymers.

Advanced Drug Delivery Reviews 2001, 53 (1), 23-44.

46. Reddy, J. A.; Low, P. S., Folate-mediated targeting of therapeutic and imaging agents to

cancers. Critical Reviews in Therapeutic Drug Carrier Systems 1998, 15, 578-627.

47. Patel, H. M., Serum Opsonins and Liposomes - Their Interaction and

Opsonophagocytosis. Critical Reviews in Therapeutic Drug Carrier Systems 1992, 9 (1), 39-90.

48. De Jesus, 0. L. P.; Ihre, H. R.; Gagne, L.; Frechet, J. M. J.; Szoka, F. C., Polyester

dendritic systems for drug delivery applications: In vitro and in vivo evaluation. Bioconjugate

Chem. 2002, 13 (3), 453-461.

49. Beezer, A. E.; King, A. S. H.; Martin, I. K.; Mitchell, J. C.; Twyman, L. J.; Wain, C. F.,

Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble

PAMAM derivatives. Tetrahedron 2003, 59 (22), 3873-3880.



50. Kojima, C.; Kono, K.; Maruyama, K.; Takagishi, T., Synthesis of polyamidoamine

dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs.

Bioconjugate Chem. 2000, 11 (6), 910-917.

51. Allen, T. M.; Hansen, C.; Martin, F.; Redemann, C.; Yauyoung, A., Liposomes

Containing Synthetic Lipid Derivatives of Poly(Ethylene Glycol) Show Prolonged Circulation

Half-Lives Invivo. Biochimica Et Biophysica Acta 1991, 1066 (1), 29-36.

52. Kataoka, K.; Harada, A.; Nagasaki, Y., Block copolymer micelles for drug delivery:

design, characterization and biological significance. Advanced Drug Delivery Reviews 2001, 47

(1), 113-131.

53. Li, Y. P.; Pei, Y. Y.; Zhang, X. Y.; Gu, Z. H.; Zhou, Z. H.; Yuan, W. F.; Zhou, J. J.; Zhu,

J. H.; Gao, X. J., PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and

biodistribution in rats. Journal of Controlled Release 2001, 71 (2), 203-211.

54. Adams, M. L.; Lavasanifar, A.; Kwon, G. S., Amphiphilic block copolymers for drug

delivery. Journal ofPharmaceutical Sciences 2003, 92 (7), 1343-1355.

55. Harada, A.; Cammas, S.; Kataoka, K., Stabilized alpha-helix structure of poly(L-lysine)-

block-poly(ethylene glycol) in aqueous medium through supramolecular assembly.

Macromolecules 1996, 29 (19), 6183-6188.

56. Katayose, S.; Kataoka, K., PEG-poly(lysine) block copolymer as a novel type of

synthetic gene vector with supramolecular structure. Advanced Biomaterials in Biomedical

Engineering and Drug Delivery Systems 1996, 319-320.

57. Itaka, K.; Ishii, T.; Hasegawa, Y.; Kataoka, K., Biodegradable polyamino acid-based

polycations as safe and effective gene carrier minimizing cumulative toxicity. Biomaterials

2010, 31(13), 3707-3714.

58. Masago, K.; Itaka, K.; Nishiyama, N.; Chung, U. I.; Kataoka, K., Gene delivery with

biocompatible cationic polymer: Pharmacogenomic analysis on cell bioactivity. Biomaterials

2007, 28 (34), 5169-5175.



59. Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood-Flow, Oxygen and Nutrient Supply, and

Metabolic Microenvironment of Human-Tumors - a Review. Cancer Research 1989, 49 (23),

6449-6465.

60. Mellman, I., The Importance of Being Acid-The Role of Acidification in Intracellular

Membrane Traffic. J. Exp. Biol. 1992, 172, 39-45.

61. Sonawane, N. D.; Szoka, F. C.; Verkman, A. S., Chloride accumulation and swelling in

endosomes enhances DNA transfer by polyamine-DNA polyplexes. Journal of Biological

Chemistry 2003, 278 (45), 44826-4483 1.

62. Boeckle, S.; von Gersdorff, K.; van der Piepen, S.; Culmsee, C.; Wagner, E.; Ogris, M.,

Purification of polyethylenimine polyplexes highlights the role of free polycations in gene

transfer. Journal of Gene Medicine 2004, 6 (10), 1102-1111.

63. Boussif, 0.; Lezoualch, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.;

Behr, J. P., A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and

in-Vivo - Polyethylenimine. Proceedings of the National Academy of Sciences of the United

States of America 1995, 92 (16), 7297-7301.



2 Detailed Synthetic and Experimental Protocols

A full description of the chemical structures and synthetic routes can be found in

Chapters 3-5. The detailed synthetic protocols for the monomer, polymers, and side chain

"click" groups can be found below. 'H-NMR analysis is included with each protocol. 'H-NMR

spectrum for each functionalized polymer is included for completeness in Sections 2.8.2 and

2.8.3. For polymer backbones, GPC analysis of the sample polymer is included with the

protocol and GPC traces are included in Sections 2.9.1 and 2.9.2. Many of the "click" groups

synthesized are not mentioned in later chapters but are included here to provide a record for

future researchers using the PPLG polymer system. Azide safety is also discussed here because

organic azides can be explosive. The safe handling and storage of these materials is very

important. General experimental protocols are also included in this chapter to avoid repetition

throughout this thesis. For some protocols, additional notes are included to explain why certain

experimental conditions were selected.

2.1 Materials for synthesis of PPLG and PEG-b-PPLG

L-(+)-glutamic acid, 99% minimum was purchased from EMD Chemicals. Do not use

the L-glutamic acid purchased from Sigma-Aldrich. It contains an impurity (unidentified) that

interferes with the formation of y-propargyl L-glutamate hydrochloride. Anhydrous 99.8%

dimethylformamide (DMF), purchased from Sigma Aldrich was used for polymerization. New

bottles or bottles open less than month old were used for polymerizations to ensure the highest

purity DMF, free of residual amines. PEG-NH 2 was purchase from NOF Corporation. All

chemicals were used as received.



2.2 Monomer synthesis

Synthesis of y-propargyl L-glutamate hydrochloride. y-propargyl L-glutamate hydrochloride

was synthesized following the procedure presented by Belshaw et al.' L-glutamic acid (15 g,

102 mmol) was suspended in propargyl alcohol (550 mL) under argon. Chlorotrimethylsilane

(28.5 mL, 224 mmol) was added dropwise to the suspension over 1 hour. The resulting solution

was stirred at room temperature for two days until there was no undissolved L-glutamic acid.

The final reaction solution looked like a dark tea. The reaction solution was filtered to ensure

any residual L-glutamic acid was removed and precipitated into diethyl ether giving a white

solid. The crude product was removed by filtration, dissolved in boiling isopropanol, and

precipitated into diethyl ether. The product was filtered, washed with diethyl ether, and dried

under vacuum to yield 19.13 g (84.5%). 'H-NMR (400MHz, D2 0) 6 (ppm) = 4.69 (d, 2H,

CH2CO), 4.05 (t, 1H, CH), 2.86 (t, 1H, C-CH), 2.63 (dt, 2H, CH-CO), 2.20 (in, 2H, CH 2).

Synthesis of N-carboxyanhydride of y-propargyl L-glutamate (PLG-NCA). The N-

carboxyanhydride of y-propargyl L-glutamate was synthesized following the procedure

presented by Poche et al.2 y-propargyl L-glutamate hydrochloride (6 g, 27 mmol) was suspended

in dry ethyl acetate (190 mL). The solution was heated to reflux and triphosgene (2.67 g, 9

mmol) was added. The reaction solution was refluxed for 6 hours under nitrogen. The reaction

solution was cooled to room temperature and any unreacted y-propargyl L-glutamate

hydrochloride was removed by filtration. The reaction solution was then cooled to 5'C and

washed with 190 mL of water, 190 mL of saturated sodium bicarbonate, and 190 mL of brine all

at 5'C. The solution was then dried with magnesium sulfate, filtered, and concentrated down to

viscous oil (4.53 g, 79.2% yield). 1H-NMR (400MHz, CDCl 3) 6 (ppm) = 6.5 (s, 1H, NH), 4.68



(d, 2H, CH2CO), 4.39 (t, 1H, CH), 2.58 (t, 2H, CH-CO), 2.49 (t, 1H, C=CH), 2.20 (dm, 2H,

CH2). HRMS m/z (ESI, M + NA t) calculated 212.0553, found 212.0563.

2.3 Homopolymer (PPLG) and Diblock copolymer (PEG-b-PPLG) synthesis

Synthesis of Poly(y-propargyl L-glutamate) initiated by heptylamine. A typical procedure

for the polymerization is as follows. To a flame dried Schlenk flask, heptylamine (14.5 ptL,

0.0980 mmol) and DMF (8 mL) were combined under Ar. In a separate vial, PLG-NCA (1.552

g, 7.35 mmol) was dissolved in DMF (8 mL) and added to the reaction flask. The reaction

mixture was stirred for three days at room temperature. The polymer was precipitated into

diethyl ether and removed by centrifugation (0.823 g, 67.0% recovered, by 'H-NMR n=75, by

DMF GPC with PMMA standards Mw=14,100, PDI=1.09).H-NMR (400MHz, DMF-d 7) 6

(ppm) = 8.5 (m, 1H, NH), 4.76 (m, 2H, CH2CO), 4.09 (m, 1H, CH), 3.38 (m, 1H, C=CH), 2.55

(dm, 2H, CH-CO), 2.28 (dm, 2H, CH 2). The integration here is per polymer repeat unit (RU).

Synthesis of Poly(ethylene glycol)-b-Poly(y-propargyl L-glutamate). A typical procedure for

the polymerization is as follows. A round bottom flask was rinsed with acetone and oven dried.

In a glove box, PEG-NH2 (0.900 g, 0.180 mmol) was dissolved in DMF (9 mL) in a round

bottom flask. PLG-NCA (0.950 g, 4.50 mmol) was dissolved in dry DMF (9 mL) added to the

reaction flask. The reaction mixture was stirred for three days at room temperature. The

reaction solution was rotovaped and dried under high vacuum to remove the DMF. To remove

and residual PLG-NCA and DMF, the polymer was redissolved in dichloromethane precipitated

into diethyl ether and removed by centrifugation (1.45 g, 87.9% recovered, by IH-NMR n = 23,

by GPC MwPEG-NH22= 11500, PDI = 1.14, MwPEG-b-PPLG= 15800, PDI= 1.08).



'H-NMR (400MHz, [D6] DMF) 6 (ppm) = 8.5 (in, 1H, PPLG RU, NH), 4.76 (m, 2H, PPLG RU,

CH 2CO), 4.09 (in, 1H, PPLG RU, CH), 3.59 (s, 4H, PEG RU, CH 2CH 20), 3.38 (m, 1H, PPLG

RU, C-CH), 2.55 (dm, 2H, PPLG RU, CH-CO), 2.28 (dm, 2H, PPLG, CH2 ).

2.4 "Click" group synthesis

2.4.1 Azide Safety: AZIDES CAN BE EXPLOSIVE 3

Organic azides can be EXPLOSIVE! There are several things to consider when making

and storing these compounds. Sodium azide itself is relatively safe; however it can be acidified

to HN 3, a volatile and highly TOXIC gas. In general, when working with azides, keep in mind

the "rule of six." Six carbons to every azide (N3) provide enough dilution to render the

compound relatively safe. Decomposition of organic azides can be catalyzed by certain

transition metals, strong acids, and heat. Azides are very sensitive to heat. When heating azides,

a bulk solution should not be heated above 50'C (personal experience, the solution will start to

boil and a large amount of heat is generated, resulting in a violent reaction) and a dilute solution

should not be heated above 80"C. Do NOT distill azides. If you absolutely need to distill an

azide, use vacuum distillation and carefully watch temperature. If leaving a reaction solution

overnight, please label everything as explosive and leave detailed instructions as to how to

handle your reaction if there is an emergency in the laboratory (fire, power loss, etc). If running

a reaction in bulk rather than in solution, use small volumes to prevent injury or serious damage

if there is a violent reaction. You can store azides in bulk but please use common sense. I store

my azides in 20 mL vials in a fridge rated to hold organics. Please keep in mind that some azide

containing compounds are volatile.



2.4.2 Synthesis of azido-terminated PEG (PEG-N3)

PEG-N3 was synthesized following the protocol present by Gao and Matyjaszewski.4

Briefly, PEG-OH with M, ~ 750 g/mol (13.7 g, 18.3 mmol) was dissolved in 100 mL

dichloromethane (dried with MgSO 4) and placed in a clean, dry round bottom flask. The

solution was cooled in an ice bath and triethylamine (12.5 mL, 91.3 mmol) and methane sulfonyl

chloride (7 mL, 91.3 mmol) were added sequentially. The reaction was allowed to stir at room

temperature for two days. The solution turned a slight yellow color and white precipitant formed

(triethylamine salt). The precipitant was filtered and the reaction solution was washed

sequentially with 300 mL IM HCl, 300 mL IM NaOH, and 300 mL brine (saturated NaCl

solution). The organic layer was dried over MgSO 4 and the product was isolated by removing

the solvent by rotovap and high vacuum, yielding a yellow viscous liquid (PEG 750, 8.7839 g,

64% recovered) (for low MW PEG) or a yellow/white solid (for high MW PEG). 13C-NMR

(400MHz, CDCl 3) 6 (ppm) = 70.4 (s, CH 2CH 20), 58.9 (s, CH 30), 37.6 (s, OSO 2CH3). The

PEG-OSO 2CH 3 (8.7839 g, 10.6 mmol) was dissolved in 40 mL DMF and heated to 500 C in a

round bottom flask. Sodium azide (1.4818 g, 21.2 mmol) and tetrabutyl ammonium iodide (0.16

g) were added sequentially. The reaction mixture was stirred at 500 C for 24 hours. The DMF

was removed by rotovap and the remaining solid was dissolved in dichloromethane. The cloudy

organic solution was washed with water twice and then dried over MgSO4. The dichloromethane

was removed by rotovap and the remaining solid was dried under high vacuum yielding PEG-N 3

(5 g, 63% recovered). The structure was verified by 13 C-NMR (400MHz, CDCl 3) 6 (ppm) = 70.4

(s, CH 2CH 2 0), 58.9 (s, CH30), 50 (s, CH 2N3). PEG-N 3 with Mw = 1000, 2000, 5000 g/mol were

synthesized following the same protocol.



2.4.3 Synthesis of amino azides

Synthesis of 2-bromo-N-methylethanamine hydrobromide (precursor to 2-azido-N-

methylethanamine). 2-bromo-N-methylethanamine hydrobromide was synthesized following

the protocol presented by Shutte et al.5 Briefly, in a round bottom flask, 48% w/w HBr (30mL)

was cooled in an ice bath to 4'C and 2-(methylamino)ethanol (10 mL, 125 mmol) was added

dropwise. H20 and HBr were distilled off and the crude product solution was cooled to 60'C.

The solution was slowly added to a solution of cold acetone, where it precipitated out to form a

white solid. The precipitant was removed, washed with cold acetone, and dried under high

vacuum (16.46 g, 60.4% yield). 'H-NMR (400MHz, D20) 6 (ppm) = 3.69 (t, 2H), 3.50 (t, 2H),

2.75 (s, 3H).

General synthesis of amino azides (10, 20, 3"). Amino azides were synthesized using the

protocol presented by Carboni et al. 6  A representative example, 3-dimethylamino-1-

propylchloride hydrochloride (10 g, 63 mmol) and sodium azide (8.22 g, 126 mmol) were

dissolved in water (1 mL/mmol) and heated at 75'C for 15 h. The reaction mixture was cooled

in an ice bath and NaOH (4 g) was added. The solution phase separated and the organic phase

was removed. The aqueous phase was extracted with diethyl ether twice. The organic layers

were combined, dried with MgSO 4, and concentrated down to an oil using a rotovap. Residual

diethyl ether was removed by allowing the ether to evaporate off in the hood, leaving a pure

product (6.60 g, 80.8% yield). Some of the amino azides are volatile so do not dry them under

high vacuum. Dimethylpropanamine (3-azido-N,N-dimethylpropan-1-amine) 'H-NMR

(400MHz, CDCl 3) 6 (ppm) = 3.30 (t, 2H, N3CH2CH 2CH 2N(CH 3)2), 2.30 (t, 2H,

N3CH 2CH2CH2N(CH 3)2), 2.17 (s, 6H, N3CH 2CH 2CH2N(CH3)2), 1.71 (in, 2H,

N3CH2CH2CH 2N(CH 3)2). Primary amine (2-azidoethanamine) 'H-NMR (400MHz, CDCl 3) 6



(ppm) = 3.32 (t, 2H, N3CH2CH2NH 2), 2.83 (t, 2H, N3CH2CH2NH 2), 1.45 (s, 2H,

N3CH 2CH2NH2). Secondary amine (2-azido-N-methylethanamine) 'H-NMR (400MHz, CDCl 3)

6 (ppm) = 3.45 (t, 2H, N3CH2CH2NHCH 3), 2.72 (t, 2H, N3CH2CH2NHCH 3), 2.39 (s, 3H,

N3CH2CH2NHCH3), 1.28 (s, 1H, N 3CH2CH 2NHCH 3). Dimethylethanamine (2-azido-N,N-

dimethylethanamine) 'H-NMR (400MHz, CDCl 3) 6 (ppm) = 3.32 (t, 2H, N3CH2CH 2N(CH 3)2),

2.47 (t, 2H, N3CH2CH2N(CH 3)2), 2.24 (s, 6H, N3CH 2CH2N(CH 3) 2). Diethylamine (2-azido-N,N-

diethylethanamine) IH-NMR (400MHz, CDCl 3) 6 (ppm) 3.25 (t, 2H,

N3CH2CH2N(CH2CH3)2), 2.62 (t, 2H, N3CH 2CH2N(CH 2CH3)2), 2.52 (q, 2.54,

N3CH 2CH2N(CH2CH3)2), 1.00 (s, 6H, N3CH2CH2N(CH 2CH3)2). Diisopropylamine (N-(2-

azidoethyl)-N-isopropylpropan-2-amine) 'H-NMR (400MHz, CDC13) 6 (ppm) = 3.01 (t, 2H,

N3CH2CH 2N(CH 2(CH 3) 2)2), 2.98 (m, 2H, N3CH2CH 2N(CH2(CH 3) 2)2), 2.62 (t, 2.54,

N3CH 2 CH2N(CH 2(CH 3)2)2), 0.99 (d, 12H, N3 CH2CH 2N(CH 2(CH3 ) 2)2).

General synthesis of amino azides (40). The quaternary amines were prepared following the

protocol presented by Vial et al.7 Briefly, in a typical experiment, 3-azido-N,N-dimethylpropan-

1-amine (0.5 g, 3.9 mmol) was dissolved in methanol (5 mL) and added to the haloalkane

(bromododecane 0.88 g, 3.54 g) dissolved in methanol (5 mL). The reaction mixture was

refluxed for 20 hours and then cooled to room temperature. The methanol and any unreacted 3-

azido-N, N-dimethylpropan-1-amine was removed under high vacuum. QC12 IH-NMR

(400MHz, CDCl 3) 6 (ppm) = 3.71 (in, 2H, CH 2N), 3.56 (t, 2H, N3CH2), 3.46 (in, 2H, NCH 2),

3.40 (s, 6H, CH 3), 2.04 (m, 2H, CH2 ), 1.70 (m, 2H, CH 2), 1.33 (m, 2H, CH 2), 1.23 (m, 18H,

(CH 2)9), 0.85 (t, 3H, CH 3). QC1 I'H-NMR (400MHz, CDCl 3) 6 (ppm) = 3.64 (m, 2H, CH 2 N),

3.53 (t, 2H, N3CH2), 3.46 (m, 2H, NCH2 ), 3.34 (s, 6H, CH 3 ), 1.99 (m, 2H, CH 2), 1.66 (m, 211,

CH 2), 1.28 (m, 4H, (CH 2)2 , 1.18 (m, 10H, (CH 2 )5), 0.80 (t, 3H, CH 3). QC8 'H-NMR (400MHz,



CDC13) 6 (ppm) =3.66 (in, 2H, CH 2N), 3.54 (t, 2H, N3CH 2), 3.43 (in, 2H, NCH2), 3.36 (s, 6H,

CH 3 ), 2.01 (m, 2H, CH2), 1.68 (in, 2H, CH2 ), 1.31 (in, 4H, CH 2 CH 2), 1.23 (m, 6H, (CH 2)3), 0.82

(in, 3H, CH3). QC6 'H-NMR (400MHz, CDC13) 6 (ppm) =3.62 (in, 2H, CH 2 N), 3.52 (t, 2H,

N3CH2), 3.45 (in, 2H, NCH2), 3.42 (s, 6H, CH3 ), 1.97 (in, 2H, CH 2), 1.65 (m, 2H, CH2 ), 1.23 (in,

6H, (CH 2)3 ), 0.79 (in, 3H, CH 3). QC4 1H-NMR 6 (ppm) =3.66 (in, 2H, CH 2N), 3.55 (t, 2H,

N3CH 2), 3.49 (in, 2H, NCH2 ), 3.33 (s, 6H, CH3 ), 2.01 (m, 2H, CH2 ), 1.66 (in, 2H, CH 2), 1.37 (in,

2H, CH2 ), 0.94 (in, 3H, CH 3) (400MHz, CDCl 3). QC1 I'H-NMR (400MHz, D20) 6=3.50 (t, 2H,

N3CH 2), 3.45 (in, 2H, NCH2), 3.15 (s, 9H, CH 3), 2.10 (in, 2H, CH 2).

2.4.4 Synthesis of alkyl azides

Alkyl azides were synthesized using the protocol presented by Boyer and Hamer. 8 A

representative example, dodecylbromide (10 g, 40 mmol), sodium azide (2.9 g, 45 mmol), and

methanol (80 mL) were combined in a round bottom flask. The solution was refluxed overnight.

The methanol was removed by rotovap and dichloromethane was added. A white precipitant

was formed which was removed by filtration. The dichloromethane was removed by rotovap,

yielding the final product as an oil. 1-azidododecane 'H-NMR (400MHz, CDCl 3) 6 (ppm) =

3.23 (t, 2H, N3 CH 2), 1.55 (in, 2H, N3CH 2CH2 ), 1.22 (in, 18H, CH2), 0.85 (t, 3H, CH 3). 1-

azidobutane 'H-NMR (400MHz, CDCl 3) 6 (ppm) = 3.23, 1.55 (in, 2H, N3CH 2CH 2), 1.33 (in, 2H,

CH 2), 0.90 (t, 3H, CH 3). (Azidomethyl) benzene 'H-NMR (400MHz, CDCl 3) 6 = 7.30 (m, 5H,

C6H5), 4.48 (s, 2H, CH2 ).

2.4.5 Synthesis of azido alcohols

A representative example, 2-bromoethanol (10 mL, 141 mmol), sodium azide (22.9 g,

352 mmol), tetrabutyl ammonium hydrogen sulfate (0.48 g, 1.4 mmol), and water (40 mL) were



combined in a round bottom flask and heated at 30'C for 1 hour. The reaction solution

temperature was raised to 75'C and let react for 2 or 3 days (checked crude by NMR). The

reaction solution was cooled to room temperature and extracted with dichloromethane or diethyl

ether four times. The combined organic phase was dried with MgSO 4 and rotovaped to an oil.

2-azidoethanol 'H-NMR (400MHz, CDCl 3) 6 (ppm) = 3.75 (t, 2H, CH2OH), 3.41 (t, 2H,

CH 2N3). 3-azidopropan-1-ol 1H-NMR (400MHz, CDCl 3) 6 (ppm) = 3.72 (t, 2H, CH 2OH), 3.42

(t, 2H, CH 2N3), 1.80 (in, 2H, CH 2).

2.4.6 Synthesis of carboxylic acid, ester, and amide click groups

Synthesis of azidoacetic acid.9 Sodium azide (1.979 g, 30.5 mmol) was dissolved in DMSO (20

mL). Bromoacetic acid (2 g, 14.5 mmol) was dissolved in (20 mL) and added dropwise to the

sodium azide solution. After 12 hours, the reaction solution was diluted with water (30 mL) and

acidified with HCl to protonate the carboxylic acid. The solution was extracted with ethyl

acetate three times. The organic layers were combined, washed with brine, dried with MgSO 4,

and concentrated to an oil. 'H-NMR (400MHz, CDCl 3) 6 (ppm) = 3.9 (s, 2H, CH 2).

Synthesis of methyl azidoacetate.' 0 Methylbromoacetate (8 mL, 84.5 mmol), sodium azide

(5.85g, 89.6 mmol), and DMF (20 mL) were stirred in a round bottom flask for 2.5 hours and a

white solid formed. Water (20 mL) was added and the mixture was extracted with diethyl ether

three times. The organic layer was washed six times with water and then dried with MgSO 4.

The solvent was removed by rotovap yielding an oil. 'H-NMR (400MHz, CDCl 3) 6 (ppm)

3.85 (s, 2H, CH2 ), 3.76 (s, 3H, CH 3).

Synthesis of azido isopropylacetamide. N-isopropyl-2-chloroacetamide (2 g, 14.7 mmol) and

sodium azide (1.92 g, 29.5 mmol) were dissolved in DMSO (10 mL). The reaction solution was

heated at 75*C for 18 hours. The reaction solution was diluted with water and the product was



extracted with diethyl ether three times. The organic phases were combined, dried with MgSO 4,

and rotovaped down to an oil. 1H-NMR (400MHz, CDCl 3) 6 (ppm) = 6.18 (s, 1H, NH), 4.04 (m,

1H, CH), 3.87 (s, 2H, CH 2), 1.1 (s, 6H, CH 3).

2.4.7 Preparation of azido disulfide

Synthesis of tosylated bis(hydroxyethyl)disulfide. The bisalcohol (4 g, 25.9 mmol) and

pyridine (10 mL) were combined and cooled in an ice bath. 4-toluene sulfonyl chloride (10.9 g,

57.0 mmol) and pyridine (10 mL) and was added dropwise to bisalcohol solution. The reaction

was left for 2 hours and then diluted with water. The reaction mixture was extracted three times

with dichloromethane. The organic layers were combined, washed three times with 2 M HCl

and one time with brine, dried with MgSO 4, and rotovaped down to a solid. The solid was dried

overnight under high vacuum. 'H-NMR (400MHz, CDCl 3) 6 (ppm) = 7.77 (d, 4H, (-

SCH2CH2SO2PhCH3)2), 7.23 (d, 4H, (-SCH 2CH2SO2PhCH3)2), 4.19 (t, 4H, (-SCH 2 CH2 SO-

2PhCH3 )2 ), 2.81 (t, 4H, (-SCH2CH2SO2PhCH3)2), 2.43 (s, 6H, (-SCH 2CH2SO2PhCH3)2).

Synthesis of Bis-(azidoethyl) disulfide. Tosylated bis(hydroxyethyl)disulfide (2.13 g, 4.61

mmol), sodium azide (1.20 g, 18.4 mmol), and tetrabutyl ammonium iodide (0.035 g, 0.095

mmol) were dissolved in dioxane (20 mL). The reaction mixture was stirred at 75 "C overnight.

Most of the dioxane was removed by rotovap and the reaction solution was redissolved in

dichloromethane. The organic solution was washed twice with water, followed by sodium

bicarbonate and brine. The organic phase was dried with MgSO 4 and concentrated down by

rotovap to an oil. 'H-NMR (400MHz, CDCl 3) 6 (ppm) = 3.57 (d, 4H, (-SCH 2CH2N3)2) and 2.84

(d, 4H, (-SCH2CH 2N 3)2).



2.5 Functionalization of PPLG and PEG-b-PPLG

Synthesis of PEG functionalized PPLG. A typical procedure started with a feed ratio of

alkyne/azide/CuBr/N,N,N',N',N"-pentamethyldiethylenetriamine (PMDETA) equal to

1/2/0.33/0.33 unless otherwise directly stated. PPLG, PEG-N 3, and PMDETA were all dissolved

in DMF (3 mL, the minimum amount for adequate degassing) and placed in a Schlenk tube (25

mL). After the solution was degassed with Ar, the CuBr catalyst (0.0043 g, 0.0299 mmol) was

added and the reaction solution was stirred at room temperature. Once the reaction was

complete, the reaction solution was passed through a short aluminum oxide column and purified

by dialysis against water for days to remove excess side chain. The dialysis solution was freeze

dried, yielding a white solid. The polymer structure was verified by 'H-NMR and the molecular

weight increase was verified by GPC. See Section 3.2.3 for 'H-NMR spectra of representative

PEG functionalized polymers.

Synthesis of amino functionalized PPLG and PEG-b-PPLG. A typical procedure started with

a feed ratio of alkyne/azide/CuBr/PMDETA equal to 1/1.2/0.1/0.1 for primary, secondary,

tertiary, and QC1 amines and a feed ratio of 1/1.1/0.1/0.1 for QC4-QC12. PPLG (0.050, 0.299

mmol alkyne repeat units), amino azide (0.124 g, 0.329 mmol QC12 azide), and PMDETA (6.25

pL, 0.0299 mmol) were all dissolved in DMF (3 mL). After the solution was degassed, the CuBr

catalyst (0.0043 g, 0.0299 mmol) was added and the reaction solution was stirred at room

temperature. Once the reaction was complete, the reaction solution was purified by dialysis

against water acidified by HCl (pH < 4) for 2-3 days to remove excess amino azide and copper

catalyst and freeze dried, yielding a white powder. The polymer structure was verified by 'H-

NMR. See Section 2.8.2 and 2.8.3 for 'H-NMR spectra of representative amine functionalized

polymers.



Synthesis of functionalized PPLG and PEG-b-PPLG with other click groups. A typical

procedure started with a feed ratio of alkyne/azide/CuBr/PMDETA equal to 1/1.1-1.5/0.1/0.1.

PPLG, azide, and PMDETA were all dissolved in DMF (at least 3 mL). After the solution was

degassed, the CuBr catalyst was added and the reaction solution was stirred at room temperature.

Purification varied depending on the water solubility of the polymer. If the polymer was

completely water soluble, the product was purified by dialysis against acidified water and freeze

dried, yielding a white powder. If the polymer was not soluble, the reaction solution was passed

through an aluminum oxide column to remove the copper catalyst and then precipitated into

diethyl ether. Polymer structures were verified by IH-NMR.

Synthesis of functionalized PPLG and PEG-b-PPLG with multiple click groups. A typical

procedure started with a feed ratio of alkyne/azide 1/CuBr/PMDETA equal to 1/desired

substitution/0. 1/0.1. PPLG, azide 1, and PMDETA were all dissolved in DMF (at least 3 mL)

and the reaction solution was degassed in a Schlenk tube. A separate vial with 1 mL DMF and

azide 2, at a ratio making the Azide/Alkyne total ratio 1.2-1.5/1, was degassed. CuBr was added

to the Schlenk tube and the reaction solution was reacted for several hours before the azide 2

solution was added. Once the reaction was complete, the product was purified by dialysis

against acidified water and freeze dried, yielding a white solid. Polymer structures were verified

by 'H-NMR (see Section 2.8.2).

2.6 Polymer Characterization Methods

Outlined below are the experimental methods for polymer characterization. The facility

where each piece of equipment is located is also mentioned to aid future researchers.



2.6.1 Nuclear magnetic resonance (NMR)

H-NMR and 13C NMR were recorded on Bruker 400 MHz spectrometers. COSY NMR

was recorded on a Varian 500 MHz spectrometer by Dr. Jeff Simpson at the Department of

Chemistry Instrumentation Facility.

Facility: Department of Chemistry Instrumentation Facility

2.6.2 Fourier transform infrared (FTIR)

FTIR spectra were recorded on a Thermo Nicolet NEXUS 870 series spectrophotometer.

For liquid phase FTIR, PPLG was dissolved in DMF (52 mg/mL) and placed in a zinc selenide

cell with a pathlength of 0.015 mm. For monitoring the polymerization and determining solvent

cast polymer secondary structure, the solution was solvent cast onto a KBr plate. For obtaining

backbone conformation, samples were solvent cast onto KBr or solvents were examined in their

bulk state using ATR-FTIR.

Facility: Center for Materials Science and Engineering and Institute for Soldier Nanotechnology

2.6.3 Gel permeation chromatograph (GPC).

GPC measurements were carried out using a Water Breeze 1525 HPLC system equipped

with two Polypore columns operated at 75'C, series 2414 refractive index detector, series 1525

binary HPLC pump, and 717 plus autosampler. Waters' Breeze Chromatography Software

Version 3.30 was used for data collection as well as data processing. DMF with 0.01 M LiBr

was used as eluent for analysis and as solvent for sample preparation. The average molecular

weight of the sample was calibrated against narrow molecular weight poly(methyl methacrylate)

standards.



Facility: Institute for Soldier Nanotechnologies

2.6.4 Circular dichroism (CD)

Circular dichroism (CD) spectroscopy of polymer solution was carried out by using an

Aviv model 202 CD spectrometer. Measurements were performed at 25 + 0.1 C, sampling every

1 nm with a 3-5 s averaging time over the range of 190-260 nm (bandwidth = 1.0 nm). The

averaging time was extended to reduce measurement noise if the curves were not smooth.

Measurements were taken using a cell with a 1 mm path length.

Facility: Biophysical Instrumentation Facility

2.6.5 Discussion of determination of sample concentration for CD

To determine the correct sample concentration for CD, different concentrations of PPLG-

g-PEG750 were prepared, as shown in Figure 2-1. If the sample concentration was too high, the

CD dynode increased significantly causing the readings to be unreliable in the region between

190 nm and 215 nm, as indicated by the large error bars. When sample concentration was too

high, the a-helix minimum at 208 nm did not show up and the sample reading merged to zero.

When the concentration was decreased from 10 mg/mL to 2.5 mg/mL, stable CD spectra were

obtained and both minima were observed.
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Figure 2-1. A) CD of PPLG-g-PEG at varied concentrations B) Dynode from CD for each
concentration

2.6.6 Discussion of absorbance of triazole ring for CD studies

UV/Vis was also performed on the 2.5 mg/mL to determine if the triazole ring was UV

active in the region of interest for CD. As shown in Figure 2-2, there are no absorbance peaks

caused by the triazole ring in the region of interest. The absorbance does increase at lower



wavelengths but does not interfere with the CD measurement. The absorbance is relatively

constant in the region where the a-helix minimums occur.
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Figure 2-2. UV/Vis of PPLG-g-PEG in water at 2.5 mg/mL

2.6.7 Atomic force microscopy (AFM)

Tapping-mode atomic force microscopy measurements were conducted in air with a

Dimension 3100 system (Digital Instruments, Santa Barbara, CA) operated under ambient

conditions. The samples were prepared for AFM analysis by spin coating a silicon wafer with a

polymer solution at a concentration of 1 mg/mL in Milli-Q water with the pH adjusted using

0.1M NaOH.

Facility: Institute for Soldier Nanotechnologies

2.6.8 Critical micelle concentration (CMC) measurements

Critical micelle concentration measurements of the diblock polymers in aqueous

solutions at different pH values were performed by fluorescence spectroscopy using a pyrene
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probe. Pyrene undergoes a shift in excitation from 373 to 393 nm in the emissions spectrum

when the polarity of its microenvironment is changed. Pyrene is sparingly soluble in water and

preferentially partitions into the hydrophobic micelle core when micelles are present.

Fluorescence peak intensity emissions ratios (373 nm/ 393 nm) were plotted against the

logarithm of polymer concentrations to determine CMC as the onset of micellization.

Fluorescence spectroscopy was carried out on a Horiba FluoroLog@-3 spectrofluorometer at

25'C. A stock solution of pyrene at 5.00 x 10-7 M in water was prepared. Polymer samples were

dissolved in the stock pyrene solution and diluted to specific concentrations.

Facility: Institute for Soldier Nanotechnologies

2.6.9 UV/Visible Spectrophotometry

UV/Visible measurements were carried out on an Agilent Technologies G3172A

spectrometer. UV/Vis was used to determine the UV activity of the triazole ring and to monitor

solution turbidity.

Facility: Institute for Soldier Nanotechnologies

2.6.10 Acid-base titrations on amine functionalized PPLG

Acid-base titrations were performed on all amine functionalized PPLG. 3 mL of 10 mM

amine in 125 mM NaCl was adjusted to a pH of 3 using 1 M HCl. The solution was titrated with

10 ptL aliquots of 0.1 M NaOH, measuring the pH with each addition. For polymers where

precipitation was observed, UV/Vis measurements were obtained at 550 nm to monitor the

solution turbidity.



2.6.11 Ester hydrolysis on amine functionalized PPLG

Ester hydrolysis samples were prepared by dissolving polymer in a stock solution at 10

mg/mL for homopolymer and 20 mg/mL for diblock copolymer. The stock solutions were then

diluted with pH buffer to a concentration of 0.5 mg/mL for homopolymer and 1 mg/mL for

diblock copolymer. At various time points, samples were analyzed by CD. Samples were also

freeze dried, reconcentrated to 2.5 mg/mL for homopolymers and 3.75 mg/mL for diblock

copolymers, acidified to stop hydrolysis, and analyzed by 'H-NMR.

2.7 Biological Characterization Methods

2.7.1 Materials

siRNA was purchased from Dharmacon RNAi Technologies and QuantiT Ribogreen

RNA Reagent was purchased from Invitrogen. Dual-Glo Luciferase Assay System was

purchased from Promega. Staphylococcus aureus 25923 (S. aureus) and Escherichia coli K-12

(E. coli) was obtained from ATCC (Manassas, VA) and the E. coli Genetic Stock Center (New

Haven, CT), respectively. Cation-adjusted Mueller Hinton Broth (CaMHB), LB-Miller Broth

(LB), Bacto agar, and trypticase soy agar plates (w/ 5% sheep blood) were obtained from BD

Biosciences (San Jose, CA). Bovine RBCs were obtained from Innovative Research (Novi, MI).

Trizma hydrochloride buffer and ultrapure distilled water were obtained from Sigma-Aldrich (St.

Louis, MO) and Invitrogen (Carlsbad, CA), respectively. Triton-X 100 was purchased from

Electron Microscopy Sciences (Hatfield, PA).

2.7.2 Ribogreen assay to determine siRNA complexation efficiency

Ribogreen assays (QuantiT Ribogreen RNA Quantification Reagent, Invitrogen) were

performed to determine the complexation efficiency of the polymers with siRNA. 25 pL of
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siRNA at 0.006 ptg/mL was aliquoted into wells of a 96 well plate and the appropriate amount of

polymer was added to attain the desired polymer:siRNA ratio (w/w) in a total volume of 50 gL.

After allowing 10 minutes for complexation, 20 pL of the complex solution was added to a

black, flat-bottomed, polypropylene 96-well plate containing 100 gL of Ribogreen (diluted 1:200

pL per manufacturer instructions). The fluorescence of each well was measured on a Perkin

Elmer Plate 1420 Multilabel Counter plate reader and the fraction of uncomplexed siRNA was

determined by comparing the fluorescence of the polymer complexes with the fluorescence of an

siRNA control. For the heparin destabilization titrations, heparin (167 IU/mg) was dissolved in a

stock solution at 0.5 IU/mL and added to polyplex/picogreen solutions.

2.7.3 Cell transfection studies

Transfection studies were performed in quadruplicate. HeLa cells were grown in 96-well

plates at an initial seeding density of 2000 cells/well with cell growth media comprised of

Dulbecco's Modified Eagle Media (DMEM) supplemented with 10% fetal bovine serum (FBS)

and 1% Penicillin-Streptomycin. Cells were allowed to attach and proliferate for 24 hours in a

humidified incubator at 37'C and 5% CO2. 25 pL of siRNA at 6 pg/mL in 25mM sodium

acetate buffer was aliquoted into wells of a 96 well plate and the appropriate amount of polymer

was added to attain the desired polymer:siRNA ratio (w/w) in a total volume of 50 pL/well.

After mixing the polymer/siRNA solutions, the polyplexes were allowed to sit 10 minutes for

complexation. 30 pL aliquots of the polyplex solution was then added to each well of a 96-well

plate containing 200 pL/well Opti-Mem and the solution was mixed. Growth media was

removed from the cells and 150 pL/well of complex/Opti-Mem solution was added.

Lipofectamine at a 4:1 ratio was used as a positive control. Naked siRNA was used as a negative

control and as an internal standard. In all cases, the each well contained 50 ng siRNA. The cells



were incubated for 4 hours, the media was removed and replaced with 10% serum-containing

growth medium. A Luciferase assay was performed as using the Dual-Glo Luciferase Assay

System (Promega, Madison, WI).

2.7.4 Cell viability assay

HeLa cells were seeded in a 96-well clear, flat-bottomed plate and transfected according

to the above protocol. After 24 hrs, cell metabolic activity was assayed using the MTT cell

proliferation assay (ATCC, Manassas, VA).

2.7.5 Polyplex uptake studies

Block copolymers and PEI were labeled with fluorescein isothiocyante (FITC) at a molar

ratio of 4:1 (dye:polymer). Using the labeled polymers, polyplexes were formed and cells treated

as described in the above section. At the time indicated, cells were removed from the incubator

and analyzed using flow cytometery. Flow cytometry was performed in U-bottom 96-well plates

using a HTS LSR II Flow cytometer (Becton-Dickinson, Mountain View, CA). To prepare

samples, media was removed from cells and replaced with 25 pL trypsin for 5 minutes. 50 pL of

PBS supplemented with 2% FBS was then added to each well, mixed, and the entire 75 pL cell

suspension transferred into a U-bottom 96-well plate.

2.7.6 High-throughput endosomal escape

Complexes were assembled and transfection was conducted as described above, except

that 25 mM Calcein was added to the Opti-MEM and cells were seeded in black, clear-bottom

96-well plates. 4 hours after transfection, 5 gL of a solution of Hoechst 33342 diluted to 1:30 in

PBS was added. After 20 min of staining, complexes and free dye were removed, and the cells

were washed 3 times with PBS. 150 pL of phenol-free Opti-MEM with 10% serum was added to
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each well before the plate was covered with an opaque sticker, foiled, and analyzed. Imaging was

done using a Cellomics ArrayScan VTI HCS Reader (Thermo Fisher, Waltham, MA) and

analysis was done using the included software.

2.7.7 Confocal images

8-well Lab-Tek chamber slides (Thermo Fisher, Waltham, MA) were treated for 20 min

with human fibronectin in PBS at 0.1 mg/mL. The fibronectin was removed and HeLa cells were

trypsinized and seeded in each well at a concentration at 1000 cells/well 24 h before transfection.

Polymers were fluorescently labeled with azide-modified FITC. Polyplexes between labeled

siRNA (siGLO) and labeled polymers were formed in NaAc buffer as described earlier. 40 pL of

complexes were added to 160 uL phenol-free Opti-MEM and added to each well. Complexes

were removed after 4 h and replaced with growth media. At 1h or 24 h, cells were fixed with

3.7% formaldehyde in PBS, stained with Hoechst 33342, and were washed 3 times with PBS.

Imaging was done on a PerkinElmer Ultraview spinning disc confocal (PerkinElmer, Waltham,

MA).

2.7.8 Bacterial growth inhibition

Bacterial growth inhibition was examined to determine MIC values for the polypeptides.

Bacterial growth inhibition for primary, secondary, tertiary, and QC1 polypeptides was

monitored using a modified microdilution assay, as previously reported." To summarize,

polypeptide samples were serially diluted in a 96 well clear bottom plate in DI-water upon sterile

filtration (20 ptm pore size); the range of concentrations tested spanned from 70 - 4500 ptg/mL.

QCn (n > 4) polypeptides were dissolved and diluted in methanol. The methanol was allowed to

evaporate, leaving a polymer coating on the surface; the range of concentrations tested spanned



from 20 - 2500 ptg/mL (corresponding to a surface density of average mass of polymer per unit

area of 6.1 - 780 gg/cm 2). This method of sample preparation was selected to mirror the

attachment assay sample preparation outlined below. Bacteria (S. aureus or E. coli) were added

to these wells in their exponential growth phase at a final concentration of 105 CFU/mL.

Positive controls with no polypeptide and only bacteria treatment and negative controls with no

bacteria (containing only CaMHB or LB) were included on each plate. Plates were incubated at

37 "C for 16-18 hours with constant shaking. Following incubation, the absorbance of each well

was read at 600 nm for S. aureus and 540 nm for E. coli. Normalized bacteria density was

calculated as follows:

Normalized Bacteria Density = (Sample Abs - Negative Control Abs)
(Positive Control Abs - Negative Control Abs)

2.7.9 Bacterial attachment inhibition

Inhibition of bacterial attachment to QCn (n > 4) polypeptide coatings was assessed as

previously described." Briefly, solvent cast polypeptide substrates were prepared by dissolving

these polymers in methanol and evenly coating round glass cover slips (VWR, West Chester,

PA) at a final polypeptide coverage of 330 pg/cm 2 . These samples were incubated at 370 C in

either S. aureus or E. coli suspensions at a concentration of 106 CFU/mL for 2 hours. Controls

of uncoated substrates were also incubated in these bacteria suspensions. Following incubation,

substrates and controls were removed and rinsed briefly in three separate sterile water baths and

placed immediately on trypticase soy agar plates (w/ 5% sheep blood). These agar plates were

incubated at 37"C for 16-18 hours. The presence of colonies upon incubation was monitored via

digital imaging.



2.7.10 Polymer biocompatibility

Bovine RBC hemolysis was monitored as a measure of polypeptide biocompatibility

adapted from previously reported protocols.12, 13 Polypeptide samples were prepared for testing

by dissolving in tris buffer (10 mM tris hydrochloride, 150 mM sodium chloride) for primary,

secondary, tertiary, and QC1 polymers and methanol for QCn (n > 4) polymers. Samples were

added in triplicate to a 96 well clear bottom plate and serial diluted (100 gL final volume in each

well), with a concentration range of 39 to 5000 pg/mL. For methanol soluble polymers,

solutions were allowed to evaporate, leaving a thin polymer coating on each well with surface

coverage ranging from 12.2 - 1560 ptg/cm2 . Negative controls of untreated wells and positive

controls of 1% triton-X solution were added to control wells in each plate. Upon evaporation of

methanol for QCn (n > 4) polypeptides, tris buffer (100 gL) was added to each well. Bovine

RBCs (5% in tris buffer) were added to each sample and control wells (100 pL). These plates

were subsequently incubated with agitation at 37"C. Following incubation, plates were

centrifuged at 1000 RPM for 5 minutes. Samples (75 pL) were transferred to a fresh 96 well

clear bottom plate and the absorbance of each well at 540 nm was determined. Final normalized

hemolysis was calculated as follows:

Normalized Hemolysis = (sample Abs 54 0 -Negative Control Abs 54 0 )

(Positive Control Abs 5 4 0 -Negative Control Abs 5 4 0 )



2.8 Sample 'H-NMRs

2.8.1 Monomer analysis
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2.8.2 PPLG and functionalized PPLG IH-NMR analysis
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Figure 2-7. 'H-NMR of PPLG75 functionalized with primary amine (2-azidoethanamine) in D2 0
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Figure 2-8. IH-NMR of PPLG75 functionalized with secondary amine (2-azido-N-
methylethanamine) in D2 0
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Figure 2-9. 1H-NMR of PPLG75 functionalized with dimethylethanamine (2-azido-N,N-
dimethylethanamine) in D2 0
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Figure 2-10. 'H-NMR of PPLG75 functionalized with dimethylpropanamine (2-azido-N,N-
dimethylpropanamine) in D2 0
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Figure 2-11. IH-NMR of PPLG75 functionalized with diethylamine (2-azido-N,N-
diethylethanamine) in D20
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Figure 2-12. 'H-NMR of PPLG75 functionalized with diisopropylamine (N-(2-azidoethyl)-N-
isopropylpropan-2-amine) in D20
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Figure 2-13. 'H-NMR of PPLG75 functionalized with QC1 (3-azido-N,N,N-trimethylpropan-1-
aminium chloride) in D20
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Figure 2-14. IH-NMR of PPLG75  functionalized with QC4 (N-(3-azidopropyl)-N,N-
dimethylbutan- 1 -aminium chloride) in D20
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Figure 2-15. 'H-NMR of PPLG75  functionalized with QC6 (N-(3-azidopropyl)-N,N-
dimethylhexan- 1 -aminium chloride) in MeOD
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Figure 2-16. 'H-NMR of PPLG75  functionalized with QC8 (N-(3-azidopropyl)-N,N-
dimethyloctan- 1 -aminium chloride) in MeOD



0

e NH2
H 77

d

0 0

N,,N 
k

N m
n

q p

N-r r

n
c, p, d, s

q t

k

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.C
ft (ppm)

Figure 2-17. 1H-NMR of PPLG75  functionalized with QC1O (N-(3-azidopropyl)-N,N-
dimethyldecan- 1 -aminium chloride) in MeOD
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Figure 2-18. 'H-NMR of PPLG75 functionalized with QC12 (N-(3-azidopropyl)-N,N-
dimethyldodecan-1-aminium chloride) in DMF-d 7. DMF is not the best solvent for QC12.
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Figure 2-19. 'H-NMR of PPLG75 functionalized with 2-azido-N-isopropylacetamide in CDCl3

I ' I ' I ' I ' I . . I I . I . I|

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5
ft (ppm)

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.(

Figure 2-20. 'H-NMR of PPLG1 4O functionalized with a 1:1 ratio of primary
azidoethanamine) and diethylamine (2-azido-N,N-diethylethanamine)in D20.
primary:diisopropyl ratio was planned and obtained as can be seen by comparing the
at 3.5 and 3.7 or by looking at the two distinct triazole peaks.
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Figure 2-21. 1 H-NMR of PPLG 140 functionalized with a 1:1 ratio of diethylamine (2-azido-N,N-
diethylethanamine) and (N-(2-azidoethyl)-N-isopropylpropan-2-amine) in D2 0. A 1:1
primary:diisopropyl ratio was planned and can be determined by the peak integration at 1.15
ppm. If there is a 1:1 ratio, one would expect three contributing protons from the diethyl group
and 6 contributing protons from the diispropyl group making a total of 9 contributing protons as
observed in the 1H-NMR.



2.8.3 PEG-b-PPLG and functionalized PEG-b-PPLG polymers IH-NMR analysis
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Figure 2-22. H-NMR of PEG-b-PPLG in DMF-d 7
g O

O0 N e NH2
g 113H 23

d

0 0

NN k

N m HOno

r N
r

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5
ft (ppm)

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.(

Figure 2-23. 'H-NMR of PEG-b-PPLG functionalized with diethylamine (2-azido-N,N-
diethylethanamine) in D20
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Figure 2-24. 1H-NMR of PEG-b-PPLG functionalized with diisopropylamine (N-(2-azidoethyl)-
N-isopropylpropan-2-amine) in D20

2.9 DMF-GPC polymer analysis

2.9.1 PPLG homopolymer DMF-GPC traces

Although not a complete list of every PPLG homopolymer synthesized, the list below

provides a summary of many different batches synthesized and analyzed by both 'H-NMR and

GPC. The labels ACE-X-Y refers to Amanda C. Engler (ACE), notebook number X, and page

number Y. The degree of polymerization for each polymer was determined using two different

NMR peaks from the heptylamine initiator, one containing eight protons and the other containing

three protons on the last methyl group. The stoichiometry column refers to the feed ratio of

initiator to monomer. The GPC traces of all the polymers are shown in Figure 2-25. Figure 2-26

shows a calibration-like curve for looking at the molecular weight predicted by 'H-NMR



compared to the molecular weight obtained for the DMF-GPC using PMMA standards. From

Figure 2-26, it appears that using only three protons could result in an over prediction of degree

of polymerization if the polymer length is too long. The 8H peak was used to determine degree

of polymerization in this thesis.

Table 2-1. Summary of polymers synthesized using a heptylamine initiator. Mn, Mw, Mp, and
polydispersity were determined by DMF GPC. The stoichiometry refers to the feed ratio of
initiator to monomer and the "by NMR" columns refer to the degree of polymerization
determined by 'H-NMR. The 8H peak appears around 1.3 ppm and the 3H peak appears at 0.8
ppm (ACE-5-28 is shown in Figure 2-5).

Mn Mw Mp Polydispersity Stoichiometry by NMR 8H by NMR 3H
ACE-4-68 15617 17348 17643 1.11 75 69 80
ACE-5-7 9896 11141 11096 1.13 40 38 41
ACE-5-10 17929 20054 19754 1.12 75 72 78
ACE-5-26 6127 7644 8593 1.25 25 30 31
ACE-5-27 12666 14094 14714 1.11 50 56 58
ACE-5-28 17869 19426 19788 1.09 75 75 75
ACE-5-35 6898 8709 9590 1.26 40 41 42
ACE-5-58 42872 49968 53102 1.17 150 140 165
ACE-5-66 26247 29968 31082 1.14 100 98 107
ACE-5-67 16618 19270 18172 1.16 75 70 72
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Figure 2-25. GPC traces of PPLG homopolymers
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2.9.2 PEG-b-PPLG DMF-GPC analysis

Table 2-2 summarizes the molecular weights obtained from the vendor, 'H-NMR, and

GPC. The GPC trace shown in Figure 2-27 is representative of those obtained for all diblock

polymers.

Table 2-2. Molecular weight summary for PEG and PEG-b-PPLG system.
From Vendor NMR GPC

Mp Mn Mn Mw Mp PDI
PEG (MW 5000) 5229 8627 9297 9759 1.08
PEG -b-PPLG 10500 19800 21983 22260 1.11

- PEG-b-P

- - -PEG
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II
II
II
Ii
I I

10 12 14 16 18 20 22 24 26 28 30
Evolution Volume (mL)

Figure 2-27. GPC traces for PEGI 14 -b-PPLG26.6. The GPC trace of PEG-b-PPLG is the crude
reaction solution before purification.
residual monomer.

The peak at 24 is toluene and the small peak at 17.5 is
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3 An Introduction to Poly(y-Propargyl-L-Glutamate): Highly Efficient

"Grafting onto" a Polypeptide Backbone

3.1 Introduction

A cell's extracellular matrix consists of macromolecules (such as glycoproteins,

proteoglycans, and collagen) that control both the mechanical structure and the

microenvironment.' These properties provide physical cues that are necessary to induce various

cell functions and morphologies. An important goal of tissue engineering is to mimic the

environment of the extracellular matrix on several levels: mechanically, chemically, and

architecturally.2 To accomplish this goal, new synthetic methods are necessary in order to mimic

the structure of these complex macromolecules. We have developed a synthetic method to form

highly functionalized grafted polypeptides that can be made to mimic complex

biomacromolecules such as glycoproteins and proteoglycans. Although these new synthetic

polypeptides are much simpler than natural peptides, they still adapt the a-helical conformation

of natural polypeptides; various chemical moieties can be attached to mimic the

microenvironment of the extracellular matrix. These polymers have several features that make

them very attractive for biological applications including low toxicity, biodegradability, tunable

structures, and well-controlled dimensions.

These synthetic homopolymers of polypeptides have been synthesized using a well-

studied N-carboxyanhydride (NCA) ring-opening polymerization (ROP) which can

accommodate a wide variety of monomers containing various functional groups.3- 6 In particular,

the carboxylic acid moiety (e.g. glutamate and aspartate) and amino (e.g. lysine) moiety of the

amino acids have been used to add chemical complexities such as pharmaceutical drugs and
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molecules that dictate hydrophobicity or pH responsiveness. 5,7, 8 However, functionalization of

polypeptides synthesized by NCA ROP has several limitations. Because of the nature of the

polymerization, the type of monomer that can be used is limited to NCAs with alkyl end groups

or NCAs where the functional group is protected. When creating polypeptides with functional

carboxylic acid or amino groups, a three step process is often required: (1) polymerization with

the protected functional group, (2) the deprotection of the functional group, and (3) the

functionalization. If a high degree of functionalization is required, the added chemical moieties

are limited to small molecules and low molecular-weight oligomers. The addition of polymeric

side chains at a high grafting density using a "grafting onto" method has not yet been achieved.

Li et al. reported a grafting efficiency of 36% for poly(y-benzyl-l-glutamate)-g-poly(ethylene

glycol) (PEG) with a PEG MW=350Da 9 and Feuz et al. reported a grafting efficiency of 48% for

poly(L-lysine-g-PEG) with PEG MW=1, 2, and 5kDa. 10

To overcome the limitations of NCA ROP, we have synthesized a new NCA monomer

incorporating an alkyne group that is available for click chemistry. Click reactions, which were

first described by Sharpless et al., refer to a series of highly efficient reactions that include the

1,3-dipolar cycloaddition reaction between an alkyne and an azide to form a triazole." These

reactions have received a significant amount of attention because of their high reaction

efficiency, mild reaction conditions, functional group tolerance, and few byproducts." In recent

years, click chemistry has been used in a wide variety of polymer applications including

functionalization of polymers with small molecules, formation of diblock polymers, formation of

new dendrimers, formation of macromonomers, crosslinking of micelles, and the "grafting onto"

method for the formation of molecular brushes. 12-20 In this chapter, the synthesis of poly(y-

propargyl-L-glutamate) (PPLG) and the attachment of different lengths of azide-terminated



polyethylene glycol (PEG) is reported. This model system, depicted in Figure 3-1, demonstrates

the high efficiency of "grafting onto" polymer side chains, while maintaining the a-helical

conformation of the polypeptide backbone.

Click

Figure 3-1. Schematic of grafting PEG side chains onto a PPLG backbone.

3.2 Results and Discussion

3.2.1 Synthesis of PPLG and PPLG-g-PEG

The synthetic strategy employed in our study is shown in Scheme 3-1. The alkyne

containing monomer, y-propargyl L-glutamate N-carboxyanhydride (2), was synthesized by a

two-step process. y-Propargyl L-glutamate hydrochloride (1) was prepared by the reaction of

propargyl alcohol with glutamic acid, mediated by chlorotrimethylsilane. 2 1 1 was then reacted

with triphosgene in ethyl acetate to form the NCA monomer (2).22 PPLG (3) was prepared by

ROP of 2 initiated with heptylamine initiator in dimethylformamide (DMF). The polymerization

was monitored by observing the disappearance of the NCA characteristic peaks (1790 and 1850

cm-1) using an FTIR spectrometer.7 After 2-3 days, the peaks disappeared and the polymer was

purified by precipitation out of solution into diethyl ether. The resulting PPLG had a degree of

polymerization of n = 40 (by GPC (DMF), Mn = 8513, PDI = 1.449, Figure 3-4A). The

relatively broad molecular weight distribution is typical of a primary amine initiated NCA ROP.

There are several strategies presented in the literature to minimize the side reactions associated
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with this type of polymerization.3, 23-28 The Deming group uses a nickel catalyst to achieve a

living polymerization3, 23 ; however low-valent nickel catalysts may cause alkynes to cyclize

forming functionalized benzyl rings. Lu and Cheng use a silane mediated controlled

polymerization.28 Other strategies for obtaining a pseudo-living polymerization initiated with a

primary amine include running the reaction under vacuum 26 and avoiding DMF by using very

pure THF or dimethylacetamide (DMAC).2 7 PPLG is completely soluble in dimethylacetamide

but has limited solubility in THF. To best eliminate side reactions of the PPLG polymerization,

we found using high purity components and running the reaction under dry, inert conditions

significantly decreases side reactions.

Scheme 3-1. Synthesis of PPLG and side chain coupling via click chemistry
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To synthesize PPLG-g-PEG, PPLG was coupled with PEG-N 3 using CuBr/ N,N,N,N',N'-

Pentamethyldiethylenetriamine (PMDETA) as catalyst in DMF, with a molar ratio of

alkyne/azide/CuBr/PMDETA equal to 1/2/0.33/0.33 for all molecular weights of PEG-N3 used,

and at various ratios for PEG1000-N 3 to further characterize the side chain grafting. After the

reaction was complete, the reaction solution was passed through a short alumina oxide column to

remove the catalyst. The functionalized polymers were purified by dialysis and characterized by

'H-NMR, FTIR spectrometry, GPC, and circular dichroism (CD).

3.2.2 Kinetics of PEG Grafting

The kinetics of the PEG-N 3 coupling reaction were determined using a PEG1000-N 3 side

chain and a reaction molar ratio of alkyne/azide/CuBr/PMDETA equal to 1/1/0.1/0.1, using

GPC. The molar ratios were lowered to slow down the kinetics such that they could be observed

by GPC. Samples were taken from the reaction mixture (40ptL) at various time points and GPC

samples were prepared by dilution with 750pL DMF and addition of 5pL of a toluene standard.

Conversion of the PEG-N3 was determined by comparing the peak area of the PEG-N 3 curve to

the toluene peak. Figure 3-2 shows the GPC traces (DMF) and conversion as a function of

reaction time. As indicated by the overlap of the 125 min trace and the 35 minute trace, the

reaction was complete after 35 minutes. The conversion of PEG-N 3 by GPC at 35 minutes was

95.8%.
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Figure 3-2. Evolution of GPC (DMF) traces as a function of reaction time

3.2.3 PPLG-g-PEG Characterization

We also used 'H-NMR spectroscopy to monitor side chain grafting. Figure 3-3 shows

the 'H-NMR spectrum of PPLG, PPLG-g-PEG1000 at 50% functionalization, and PPLG-g-PEG

at nearly complete functionalization. It can be seen from a comparison of Figure 3-3A to Figure

3-3B that the ester peak b has decreased and a new ester peak k has appeared; furthermore, the

peak m representing the methyl group next to the nitrogen of the triazole group appears. The

alkyne peak a is not observed because it overlaps with the PEG-N 3 peaks. In Figure 3-3B and

Figure 3-3C, no peaks from the original backbone present that can be used to determine a

grafting efficiency. Therefore, to determine the grafting efficiency, a small sample of the crude

reaction solution was concentrated down to a solid, dissolved in DMF-d7 , and an 1H-NMR

spectrum was obtained. The conversion of the PEG-N3 was determined by comparing the area

under peaks m and f.29 Based on the conversion of the azide to triazole (for PPLG-g-PEG1000,

yconversion= 49.6%) and the initial feed ratio of PEG-N 3 to PPLG (1/2.01), the grafting efficiency

was determined (ygrat = 99.6%). These results are consistent with those observed by GPC
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(DMF) for the PPLG-g-PEG1000 system. Similar NMR spectra were observed for PPLG-g-

PEG with PEG MW 1000, 2000, and 5000 g/mol. As shown in Table 3-1, the grafting efficiency

(for a feed ratio of PPLG-alkyne/PEG-N 3 of '2) is close to 100% in each case.

PPM 8.0 7.0 6.0 S.0 4.0 3.0 2.

B

PM 8.0 7.0 6.0 s.0 4.0 3.0 2.

C r

q

PPM 8.0 7.0 6.0

0

00

b

a

0

N 12
H Y

N

0

I 
4sAo 4.0 3.0 2.

Figure 3-3. 'H-NMR spectrum of (A) PPLG in DMF-d7 (B) PPLG-g-PEG 1000 with a feed
ratio PPLG-alkyne/PEG-N 3 of 1/0.5 in DMF-d7 (C) PPLG-g-PEG 1000 with a feed ratio PPLG-
alkyne/PEG-N 3 of 1/2 in DMF-d7

Figure 3-4A shows the GPC (DMF) traces of different molecular weight PPLG-g-PEG

polymers prepared with a PPLG-alkyne/PEG ratio of 1/2. All of the grafted copolymers show an

increase in molecular weight while maintaining a narrow molecular weight distribution. This

molecular weight increase also indicates that the grafting method does not degrade the peptide



backbone. In Figure 3-4B, the PPLG-g-PEG molecular weight scales linearly with increasing

side chain length, which indicates that the grafting efficiency remains consistent for different

molecular weight side chains.

Table 3-1. Summary of GPC (DMF) results and grafting efficiency determined by NMR
Polymer Mn (g/mol) Mp (g/mol) PDI ygraft

PPLG 7043 6870 1.38 --

PPLG-g-PEG 750 14134 18080 1.42 98.9± 1.3%
PPLG-g-PEG 1000 14999 22223 1.40 96.3± 2.2%
PPLG-g-PEG 2000 34443 41884 1.22 Not Tested
PPLG-g-PEG 5000 97082 99058 1.19 97.4± 2.8%

The observed grafting efficiencies are higher than those of similar systems utilizing graft-

onto approaches found in the literature, including those involving click chemistry. Gao and

Matyjaszewski synthesized a similar system of PHEMA-g-PEG and the highest PEG-N 3

(MW=750) grafting efficiency obtained was 88.4% at an alkyne/azide ratio of 1/8.5.29 They

suggest that the grafting efficiency is lower than 100% as a result of steric congestion. Parrish

and Emrick reported PEG-grafted aliphatic polyester systems with PEG molecular weights up to

1100 molecular weight and grafting efficiencies between 70-80%.30 Parrish, Breitenkamp, and

Emrick reported a Poly(a-Propargyl-6-valerolactone)-g-PEG system where the PEG-N3 1100

grafting efficiency obtained was 43%.31
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Figure 3-4. (A) GPC (DMF) traces for PPLG-g-PEG (B) PPLG-g-PEG molecular weight as a
function of grafted PEG-N3 molecular weight

We hypothesize that the high grafting efficiency achieved with PPLG (nearly 100%) is a

result of the rigid a-helical structure of the polymer backbone. Synthetic peptides, in particular

substituted poly(L-glutamates) form stable a-helix when in various organic solvents and when

solvent cast from volatile organic solvents. 32, 33 This stable a-helical structure causes the

alkyne-terminated side chains to protrude outward from each repeat unit thereby increasing their
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availability for coupling. The a-helical structure is present throughout the reaction, initially from

the PPLG backbone. Once the reaction reaches a high grafting density, the steric repulsion

between the grafted PEG chains causes the graft polymer to develop the shape of a symmetrical

brush polymer with the most favorable backbone conformation of an a-helix.' 0

3.3 Confirmation of a-Helical Structure of PPLG and PEG-b-PPLG

To confirm the hypothesis that PPLG adopts an a-helical structure, liquid phase FTIR

was performed on PPLG in DMF. The a-helical conformation was identified by the strong C=O

amide I absorption at 1658 cm' and the N-H amide II absorption at 1549 cm', as shown in

Figure 3-5. Furthermore, circular CD was performed in water (DMF is not a suitable solvent for

CD) to confirm the presence of an a-helical structure in PPLG and PPLG-g-PEG at different

grafting densities and with different molecular weight side chains. To obtain a CD spectra of

PPLG, a block copolymer (PEGI 14-b-PPLG26.6) was synthesized and analyzed by CD (Figure

3-6). In all cases, the characteristic negative ellipticity of an a-helix was observed at 208 nm and

222 nm. 34, 35 As shown in Figure 3-7A, at 50% substitution and near 100% substitution the

backbone has an a-helical conformation. The less pronounced minima at 209 nm and 222 nm

are a result of an increased presence of PEG side chains, which decrease the concentration of a-

helix backbone. In Figure 3-7B, the characteristic a-helix minimums were observed for all

molecular weights of the PEG side chains. Thus, the characteristic a-helix peaks observed in

FTIR and CD indicate that the polymer backbone does have an a-helix structure. The rotating

helical arrangement of these groups increases their availability along the backbone for coupling

with the PEG-N3 side chains.
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3.3.1 Particle Sizing of PPLG-g-PEG

Dynamic light scattering was also used to observe the size of the molecular brushes

obtained when different molecular weight side chains were grafted onto the PPLG.

Measurements were taken at a 15' and 90' and similar distributions were observed for both

angles. A representative size distribution for PPLG-g-PEG (MW1000) is shown in Figure 3-8A.



Narrow size distributions were obtained for all graft systems and particle size increases as a

function of molecular weight, as shown in Figure 3-8B.

3.4 Conclusion

In summary, we have described a new synthetic method to form highly functionalized

grafted polypeptides. A new NCA monomer, propargyl-L-glutamate, and a new polymer, PPLG,

have been synthesized. This new polymer provides a means of attaching a wide variety of

molecules, which vary in both size and hydrophobicity, to a polypeptide using a single step click

reaction. The combination of NCA ROP and click chemistry provides a versatile synthetic

approach to develop molecules which mimic the complex architecture of natural peptides. We

have shown that PEG chains with varying molecular weight from 750 g moli' to 5000 g mol-1

can be attached to the PPLG backbone at nearly perfect grafting densities. A grafting density of

95.8% was obtained at an alkyne/azide reaction ratio of 1/1 and a grafting density of 96.3-98.9%

was obtained at reaction ratios of alkyne/azide of 1/2. These grafting efficiencies are higher than

similar PEG grafting systems reported in the literature.29 3 1 The extremely high efficiency

achieved with PPLG is a result of the rigid a-helical structure of the polymer backbone, which

causes the alkyne terminated side chains to protrude outward from each repeat unit, thus

increasing their availability for coupling.
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4 The Synthetic Tuning of Clickable pH Responsive Cationic Polypeptides

and Block Copolypeptides

4.1 Introduction

Synthetic polypeptides have received attention because of their unique structural

properties and biocompatibility.'~4 Like their naturally occurring analogs, these molecules have a

poly(amino acid) backbone and possess the ability to fold into stable secondary structures.

Helical structures, in particular, allow for proteins to optimally display surface moieties that

dictate cell signaling and molecular docking.5 This property gives synthetic polypeptides an

advantage over other synthetic polymers that can only adopt a random coil structure. A

considerable amount of research has been performed on synthetic polypeptides to better

understand the complex features of proteins and to gain insight into their secondary structures.6-10

Synthetic polypeptides can be synthesized on a large scale by the ring opening polymerization

(ROP) of N-carboxyanhydrides (NCA) formed from naturally occurring amino acids. These

simple homopolypeptides are able to arrange into or change their secondary structure based on

solution conditions. 7-10 Although these macromolecules' secondary structure can be controlled

to some extent, we are limited by the given side chain, which dictates polymer function,

structure, and responsive behavior to temperature or pH among many other properties.

By employing our PPLG platform, described in Chapter 3, for the click chemistry of

amino-functional groups, we have developed several new pH responsive macromolecules. A

unique aspect of these new amine-functionalized polypeptides is the ability to buffer and, in

some cases, undergo a solubility phase transition with degree of ionization while adopting an a-

helical structure over biologically relevant pHs. These polymers include both poly(y-propargyl



L-glutamate) (PPLG) based homopolymers and poly(ethylene glycol-b-y-propargyl L-glutamate)

(PEG-b-PPLG) block copolymers substituted with various amine moieties that range in pKa and

hydrophobicity, providing the basis for a library of new synthetic structures that can be tuned for

specific interactions and responsive behaviors.

The new PPLG based cationic polypeptides have the potential to be used for many

different applications. Polypeptides have been investigated as smart molecules in lipid

membranes,' liquid crystals used in optical storage and display devices,4 drug delivery,3' 14, 1s

gene delivery,3, 16-21 anti-fouling coatings,22 tissue engineering, biosensors, and synthetic mimics

of naturally occurring molecules. 1, 3,23-26 We have characterized the pH responsive behavior of

the new polypeptides, the pH-dependent hydrolysis rate of the ester containing amine side

chains, and have performed preliminary experiments that demonstrate the potential use of these

new materials for systemic drug and gene delivery. More specifically, for pH responsive drug

delivery, one could design a micellar system that forms stable micelle drug carriers in the blood

stream and normal tissue at extracellular conditions (pH 7.00-7.45)27 but destabilizes in the

endosome (early endosome pH 5.5-6.3 and late endosome pH < 5.5 )28 or in hypoxic regions of

tumors (pH approaching 6.0)27, to release the drug. To achieve this behavior, a pH responsive

polypeptide is needed that is fully soluble at endosomal or tumor pH and insoluble at

extracellular pH. We have determined the solubility behavior of the amine functionalized PPLG

and the self-assembly behavior of the amine functionalized PEG-b-PPLG as a function of pH.

For gene delivery, it is critical that the polymers complex with siRNA or DNA to form protective

polymer-gene complexes (polyplexes); these polyplexes must escape the endosomal

compartments into which they are initially trafficked upon internalization. 29, 30 One such mode

of endosomal escape is through the so-called "proton effect" in which the basic polymer buffers



the endosome during acidification leading to osmotic swelling and rupture.29, 31 The buffering

capacity of the new polypeptides has been explored using titrations to determine the pH range at

which these polymers buffer. In addition, siRNA complexation studies have been performed to

determine if these polymers complex with siRNA to form polyplexes. Preliminary cell uptake

studies, endosomal buffering studies, and transfection studies have also been performed on the

polyplexes.

A unique aspect of these new polypeptides is that there is an ester linkage between the

amine and the polymer backbone. These ester side chains can be hydrolyzed, leaving behind a

carboxylic acid moiety, thus creating a charge shifting polymer (shifting with hydrolysis from

positive to negative net charge). We have examined the rate of hydrolysis of the ester side chain

at various pH conditions and the role the shift in overall polymer charge plays on disrupting the

secondary structure. This hydrolysis and overall shift in charge from positive to negative could

play a role in improving the safety and biodegradability of these substituted poly(7-glutamic

acid) based polymers32 34 , and may also aid in the delivery and subsequent unpackaging and

release of nucleic acid based cargos that are delivered using these systems.

4.2 Results and Discussion

4.2.1 Polymer Synthesis

The PPLG polymers were prepared as previously described in Chapter 1.35 Briefly, y-

propargyl L-glutamate was reacted with triphosgene to form the NCA. PPLG and PEG-b-PPLG

were prepared by ring opening polymerization in dimethylformamide (DMF) at room

temperature by initiation with heptylamine and PEG-NH2 (MW=5000), respectively. Table 5-1

summarizes the stoichiometric feed ratio of each polymerization, the degree of polymerization



characterized by 'H-NMR, and the molecular weight and molecular weight distribution

characterized by gel permeation chromatography (GPC) with DMF as the carrier solvent. The

narrow polydispersities (1.09-1.25) and reaction feed ratio compared to the degree of

polymerization by IH-NMR indicate that the polymerization is well controlled. Furthermore,

this polymerization route allows for high molecular weight polymers with a degree of

polymerization as high as 140. As indicated by Poche et al., a high degree of polymerization can

be obtained if the NCA monomer purity is high; the washing strategy employed in this NCA

monomer preparation does significantly improve the monomer purity by removing residual

HCl.36

Table 4-1. Summary of polymerization feed NCA-monomer/initiator, degree of polymerization
by IH-NMR, molecular weight and polydispersity determined by DMF GPC with PMMA
standards.

DMF GPC with PMMA Standards
Polymer Feed ratio DP by NMR Mn Mw Polydispersity
PPLG 25 30 6100 7600 1.25
PPLG 50 56 12700 14100 1.11
PPLG 75 75 17900 19400 1.09
PPLG 150 140 42900 50000 1.17
PEG-NH 2  -- -- 10000 11500 1.14
PEG-b-PPLG 25 23 14600 15800 1.08

Six different amine moieties ranging in pKa (1P, 2', and 3' amines) and hydrophobicity

(dimethylethanamine, dimethylpropanamine, diethylamine, and diisopropylamine) were attached

to four different molecular weight PPLG backbones and a PEG-b-PPLG diblock copolymer

through the copper-mediated 1,3 cycloaddition between the alkynes on the PPLG backbone and

the azide bearing amine groups, shown in Scheme 4-1. The PPLG was coupled with azido

amines using CuBr/PMDETA as a catalyst in DMF with a molar ratio of

alkyne/azide/CuBr/PMDETA equal to 1/1.2/0.1/0.1. After the reaction was complete, the
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polymer was purified by dialysis against water acidified with HCl (pH < 4) to remove any

unreacted amino azides and the copper catalyst. The polymer structures were confirmed using

IH-NMR. Representative 'H-NMR of the diethylamine and diisopropylamine substituted PPLG

compared to the 'H-NMR of PPLG are shown in Figure 4-1. For all amine groups, the coupling

efficiency was near quantitative as indicated by the disappearance of the PPLG alkyne peak (a,

3.4ppm) and ester peak (b, 4.7ppm) and the appearance of a new ester peak (k, 5.2ppm) and the

triazole ring peak (in, 8.15ppm). Furthermore, the peak integration for all samples tested were as

expected for near quantitative substitution without hydrolysis of the ester group on the polymer

side chains. Representative 'H-NMR for the remaining amine functionalized PPLG and PEG-

b-PPLG can be found in the supporting information.

Scheme 4-1. Functionalization of PPLG
groups.

0 "Click" 0
R--N NH2  R N NH2

H Y R'-N 3  H Y

0 0 0 0
N

N /R=(CH 2)6CH3  N
PEG (MW=5000) R'

by the Click reaction and the pH responsive side

N3 ' NH2

Primary

N3 N
H

Secondary

N3 N

Dimethylethanamine

N

Dimethylpropanamine

N3 N

Diethylamine

N3 N

Diisopropylamine



A 0
~N 7NH2

f d 5

O0

b

DMF

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
f1 (ppm)

B 0

N e NH2

d c

0 0

N k

N m
S 

t

N u

I H20

c d

i~~~~~- ' I ' 

' I 
' 

I10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.(
fl (ppm)

C

"5N e NH25H
d c

0 0
N k

N m
n

N
/qr c d

0 s0

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
fl (ppm)

Figure 4-1. A) PPLG in DMF-d 7, B) PPLG functionalized with diethylamine in D20, and C) 'H-
NMR of PPLG functionalized with diispropylamine in D20. The PPLG backbone has a degree
of polymerization of 75.
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4.2.2 Investigation of Polymer Buffering and Solubility.

To investigate pH responsiveness and the buffering behavior of these polypeptide

systems, titrations were performed on all polymers. Polymers were dissolved in 125 mM NaCl

at 10 mM polypeptide-amine (molarity based on repeat unit), titrated with increasing pH to pH of

10-10.5 using 0.1 M NaOH, and subsequently titrated with decreasing pH using 0.1 M HCl.

After titrations were complete, representative samples were freeze dried, dissolved in D20, and

analyzed using 'H-NMR. From the 'H-NMR, the spectra were nearly identical to those obtained

before titrations, indicating that hydrolysis did not occur during the 2-3 hour titration process

(see supporting information, Figure 4-22). Representative titrations with increasing pH are

shown in Figure 4-2, where Figure 4-2A consists of the dimethylethanamine polymers at varying

degrees of polymerization, and Figure 4-2B consists of titrations of each polymer side functional

group with a degree of polymerization of NCA backbone of 75 (titrations of additional polymers

can be found in supporting information, Figure 4-21). All polymers appear to have strong

buffering capacity in the pH range of 5-7.35, which scales with the pH range of typical

27, 28extracellular tissue to late endosomal pH. The diisopropylamine polypeptide exhibits the

sharpest buffering transition at pH 5.25; the diethylamine polymer also buffers in this range, but

with a broader transition that has a midpoint at the slightly higher pH of approximately 6.5. The

primary and secondary amine functional polymers interestingly exhibit similar broad buffering

behavior beginning at pH 5.5 with a midpoint at 7.25. One would typically expect buffering at

higher pH for primary and secondary amines (pKa approximately 9-11),37' 38 although some

buffering is observed in these polymers from pH 8 to 10. Polyelectrolytes typically exhibit broad

buffering behavior and shifted pKa values due to segmental charge repulsion. For the dimethyl

substituted amines, the dimethylethanamine exhibits buffering behavior starting at the same pH
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as the primary and secondary amines with a midpoint falling between 6.5 to 7.0. These values

are consistent with the series of polymers with ethylene linker groups to the triazole ring while

the dimethylpropanamine polymer exhibits buffering at higher pHs. The additional carbon

between the amine group and the triazole ring results in a higher pKa for the

dimethylpropanamine. This shift in pKa could be the result of the amine group being further

removed from the electron withdrawing triazole ring or from the decreased crowding

experienced by the amine group. All of the polymers exhibit a small amount of buffering at the

start of the titration curve, at pH 3-4; the buffering in this region could be a result of the triazole

ring generated during the click reaction; triazoles exhibit pKa's of less than 3.0.37, 39 The

polymer buffering appears to have little dependence on polymer molecular weight, as indicated

in Figure 4-2A.

A 0.0 .-- DP=30 B 0.14 - Primary
0.01 DP=56 0.012 - Secondary

-DP=75 0.01 Dimethyleth
0.008 -DP=140 - - - Dimethylprop

. 0.008 - Diethyl0.006 -/-
OX0.006 - Diisopropyl

0.004
0.004

0.002 0.002 ,

0. 0
0 2 4 6 8 10 12 0 2 4 6 8 10

pH pH

Figure 4-2. Titrations of polymers at a concentration of 10mM using 0.1M sodium hydroxide.
A) PPLG polymers functionalized with dimethylethanamine with varying degrees of
polymerization, and B) PPLG polymers with a degree of polymerization of 75.

The primary, secondary, and dimethyl polypeptides remain water soluble over the entire

pH range; however as the cationic diethylamine and diisopropylamine functionalized

polypeptides are titrated from acidic to basic conditions, the amines become deprotonated. The
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resulting uncharged polypeptide is no longer soluble in water, leading to precipitation of the

polypeptide from aqueous solution. For the diethylamine and diisopropylamine functionalized

PPLG, polymer precipitation was observed at various pH values depending on polymer

molecular weight. To determine the pH where precipitation occurs, turbidity measurements were

performed on the diethylamine and diisopropylamine functionalized PPLGs by monitoring

polymer solution transmission at 550nm, shown in Figure 4-3. When the polymers begin to

precipitate out of solution, there is a sharp drop in transmission. For the diethylamine

functionalized PPLG (Figure 4-3, solid lines), precipitation occurred between 6.80 and 7.45

depending on the degree of polymerization and for the diisopropylamine functionalized PPLG

(Figure 4-3, dashed lines), precipitation occurred between 5.23 and 5.59. These values are

consistent with the titration data shown in Figure 4-2 and in the supporting information section

4.4. In general we see the anticipated trend that increased molecular weight leads to

precipitation at lower pH values and higher degrees of ionization of the polymer functional

group. It is notable that the diethylamine series is more sensitive to molecular weight than the

diisopropylamine series, which seems to approach a limiting minimum pH value for

precipitation. This result may be due to the greater hydrophobicity of the diisopropylamine

group as opposed to the diethylamine, which would lead to a lower degree of solubility of the

amine side chain and a decreased dependence on molecular weight.

The pH transition observed for both the diisopropylamine and diethylamine

functionalized polymers can be utilized for the design of a pH responsive drug carrier in which

the responsive PPLG block would be the interior, pH responsive block of a micellar system. To

determine if the precipitation pH could be tuned, a 50:50 mixture of diethylamine and

diisopropylamine side groups was attached to PPLG (DP = 140) to generate a random
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Table 4-2. CMC values for PEG-b-PPLG in water and amine functionalized PEG-b-PPLG in pH
5 and pH 9 buffer

Solvent CMC (mg/mL) CMC (M)

PEG-b-PPLG Milli-Q water 3.75x10-4 3.74x108

Diethylamine pH 9 buffer l.01x10 2 7.41x10-'

pH 5.5 buffer -- --

Diisopropylamine pH 9 buffer 3.93x10-3 2.77xl0 '

pH 5.5 buffer -- --

4.2.4 Secondary Structure.

Circular dichroism (CD) was used to probe the secondary structure of the various

polymers as a function of pH. Polymer dissolved at 1 mg/mL was brought down to a pH of 3,

titrated to a pH higher than 10, and then immediately titrated -back to a pH of 3. A sample CD

titration of a secondary amine polypeptide with DP = 75 is shown in Figure 4-6. When initially

brought down to a pH of 3, the sample adopts a mixture of a-helix and random coil

conformations, as indicated by the minimum at 222 nm, which is characteristic of an a-helix and

the second, more negative minimum at 204 nm, which is indicative of a combination of a-helix

and random coil. As the sample pH is increased, the sample adopts an all a-helical structure at

high pH values (pH > 6.36), as indicated by the minimums at 208 nm and 222 nmi.4 When the

pH is decreased stepwise back down to acidic pH, this a-helical structure transitions back to a

mixture of a-helix and random coil. The a-helix to random coil transition correlates well with

the pKa observed in the polymer titrations. In summary, the a-helix structure appears to

correlate with the uncharged polymer backbone; as the backbone becomes charged, the helical

structure becomes reversibly disrupted and exhibits some random coil structure.

107



copolymer. As shown in Figure 4-3, the copolymer precipitation pH (dotted-gray line) falls

between the precipitation pH values observed for the diethylamine and diisopropylamine

substituted PPLG (DP = 140), indicating that the pH responsiveness of the amine substitute

PPLG block can be fine tuned by changing the ratio of side groups. One could also envision

using this strategy to incorporated side groups that will improve the loading of a specific drug or

increase polymer-gene complexation efficiency.

1.2' - DE-30
-- DE-56

DE-75....... ... .. ........ ... DE-140
-- DI-30

o 0.8 - DI-56
- DI-75

- 0.6 - DI-140
U) .----- 50:50-140

0.4 - |

0.2 -

0 -

5 6 7 8 9
pH

Figure 4-3. Transmission as a function of pH for all diethylamine and diisopropylamine
functionalized polymers. Diethylamine is abbreviated DE and diisopropylamine is abbreviated

DI.

The buffering and the precipitation behavior was found to be fully reversible, as indicated

by reverse titrations that were performed on all polymers (reverse titrations can be found in the

supporting information, Figure 4-23). For the completely water soluble primary, secondary, and

dimethyl polymers, the reverse titration curve has the same shape as the original titration with no

signs of hysteresis. For tertiary amine polymers that precipitated out of solution, hysteresis was

often observed for the larger degrees of polymerization, such that the pH value for which the
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polymers re-dissolved was often lower than the value observed for precipitation. For the shortest

degree of polymerization (DP = 30), the polymers returned to solution at nearly the same pH as

when the precipitation was initially observed (Figure 4-4).

1.2

I --- Diethyl
increasing

0.8 - - - - Diethyl
0 Decreasing

20. 6-0--- Diisopropyl

~0.4 Increasing
- - - Diisopropyl

0.2 Decreasing

0 -........-

S 6 7 8 9 1
-0.2

pH

Figure 4-4. Transmission as a
diisopropylamine with DP = 30.

function of increasing and decreasing pH for diethylamine and

4.2.3 Functionalized PEG-b-PPLG Self-Assembly.

The self assembly of PEG-b-PPLG functionalized with diethylamine and

diisopropylamine was studied as a function of pH. The critical micelle concentration (CMC)

was determined for PEG-b-PPLG in water and amine functionalized PEG-b-PPLG in buffer

solutions at pH 9 and pH 5.5. The CMC was determined by fluorometry using a pyrene probe.

A representative example of the diisopropylamine functionalized PEG-b-PPLG is show in Figure

5 (diethylamine substituted PEG-b-PPLG can be found in the supporting information, Figure

4-24). As shown in Figure 5A, there is a clear break in the emission ratio indicating a CMC for

the amine functionalized PEG-b-PPLG in pH 9 buffer. In pH 5.5 buffer, no break in emission
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ratio was observed for the functionalized polymer indicating that these macromolecules do not

self-assemble at all at this acidic pH but remain completely soluble in water. The observed

CMC values for all diblock polymers tested (Table 5-1) are of the same order of magnitude of

15 4
PEG-b-PBLA and are several orders of magnitude lower than Pluronic micelle CMC values.

To further verify that the self-assembled structures were micelles, AFM was performed on

diethylamine and diisopropylamine substituted PEG-b-PPLG cast from a water solution adjusted

with 0.1M NaOH to pH-9. Spherical micelles were observed for the amine substituted PEG-b-

PPLG; Figure 5B shows an AFM image of the diisopropylamine functionalized diblock

copolymer. The micelles are thus able to form at moderate to high pH but become completely

destabilized at low pH, making them of interest for drug release in which a pH triggered rapid

disassembly of drug carrier can be designed to take place within acidic compartments to release a

drug.

A 1

0.96

0

E 0.88
E * pH 9 buffer

A pH 5.5 buffer
0.84

1.E-09 1.E-07 1.E-05 1.E-03 I.E-01
Concentration (mg/mL)

Figure 4-5. CMC determination by fluorometry using a pyrene probe for A) diisopropylamine

substituted PEG-b-PPLG in pH 5.5 and 9 buffer and B) AFM image of diisopropylamine

substituted PEG-b-PPLG at pH 8.88. The AFM images are 2 by 2 ptm with a height range from

-30 gm to 30 pm.
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Figure 4-6. A) Increasing pH CD titrations and B) decreasing pH CD titrations for secondary
amine, DP = 75

4.2.5 Impact of pH on Side Chain Hydrolysis.

The functional groups introduced along the PPLG backbone are esters that can undergo

hydrolysis under basic conditions, yielding the loss of the amino side group and the introduction

of the carboxylate anion, thus introducing negative charge to the polyelectrolyte backbone. Slow

or moderate changes in the polypeptide backbone may be of interest for drug delivery, gene

delivery, tissue engineering, and coating applications. 2 2, 34, 42, 43 Specifically, for systemic use,

positively charged polymers such as poly(L-lysine) and poly(ethylene imine) often exhibit

cytotoxicity. 33 The introduction of a mechanism that eliminates the multivalent positive charge

and transforms the polymer into the natural poly(y-glutamic acid), which is biodegradable,

enhances the long-term biocompatibility of these polymers. 32, 33 To determine the side chain

ester hydrolysis rate and the change in polymer secondary structure, 'H-NMR and CD

measurements were taken at various time points and pH conditions.

For 'H-NMR, polymer samples (PPLG DP = 75 with secondary amine and PEG-b-PPLG

with diethylamine and diisopropylamine), were dissolved in various pH buffers to a
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concentration of 0.5-1 mg/mL and left to hydrolyze at room temperature. At various time points,

samples were freeze dried, concentrated in D20, acidified with trifluoroacetic acid to stop any

additional hydrolysis from occurring, and analyzed by 'H-NMR. The amount of ester

hydrolyzed was determined by observing the reduction in the triazole peak from the ester side

chain (8.15 ppm) and the appearance of new triazole peak from the alcohol side chain byproduct

(8.07 ppm). A sample 'H-NMR for PEG-b-PPLG functionalized with diethylamine hydrolyzed

at pH 9 is shown in Figure 4-7. The peak integration for the triazole ring was used to calculate

the percentage of hydrolysis of the ester side chain; representative ester hydrolysis plots are

shown in Figure 4-8. For all polymers, the rate of ester hydrolysis was highest at pH 11 and was

increasingly slower as the pH was decreased. For example, in all cases complete hydrolysis was

observed at pH 11 (at 2 days for the secondary amine and diethylamine and 11 days for the

diisopropylamine), but at pH 5.5 after 15 days, all samples were less than 2% hydrolyzed. The

rate of hydrolysis at pH 7.4, 9, and 11 was fastest for PPLG functionalized with secondary amine

and slowest for PEG-b-PPLG functionalized with diisopropylamine. For the diblock polymers,

the polypeptide is encapsulated as the inner core of a micelle, and is partially protected from

hydrolysis, thus greatly slowing the rate of hydrolysis. The slower hydrolysis of the

diisopropylamine is a likely result of the increased hydrophobicity of the diisopropylamine,

slowing the rate of hydrolysis.
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Figure 4-7. 'H-NMR for PEG-b-PPLG functionalized with diethylamine hydrolyzed at pH 9 at
various time points

110



A120% pH 5.5 B120% -- pH 5.5

100% ,-pH 7.4 100% ,r-pH 7.4

80% pH 1 80% -- pH 9
S PH 1--*-PH11

60% - 60%

40% . 40%

20% 20%

0% . 0% L

0 5 10 15 20 0 5 10 15 20
Time (Days) Time (Days)

C 1 20% -UpH 5.5

100% -- pH 7.4

80% 
- -pH 9

60%

40%

20%

0% . ...17 . . 3.
0 5 10 15 20

Time (Days)

Figure 4-8. A) Percentage of ester side chains hydrolyzed as a function of time for PPLG (DP =
75) functionalized with secondary amine, B) PEG-b-PPLG functionalized with diethylamine, and
C) PEG-b-PPLG functionalized with diisopropylamine.

When the polyamide backbone, which maintains an a-helical structure when at

equilibrium at all pH conditions investigated (pH 7.4, 9, and 11), undergoes hydrolysis, a

glutamic acid residue is generated. Poly(y-glutamic acid), like poly(L-lysine), maintains an a-

helix in the uncharged state, and is a random coil in the charged state;44 thus as hydrolysis occurs

at more basic conditions we observe the loss of the a-helical polymer structure (Figure 4-9A).

CD was used to observe the change in polymer secondary structure at pH 7.4, 9, and 11 as a

function of time and hydrolysis of the ester side chains. In Figure 4-9, the value observed at 222

nm is plotted for various pH values as a function of time for PPLG (DP = 75) functionalized with
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a secondary amine and PEG-b-PPLG functionalized with diethylamine and diisopropylamine.

At 222 nm, a shift from a strong negative value towards a small positive value is indicative of a

secondary structure shift, in this case, a shift from an a-helix to a random coil (representative full

spectra and plots for PPLG functionalized with secondary amine at pH 7.4 and pH 9 can be

found in the supporting information, Figure 4-25). For PPLG (DP = 75) functionalized with

secondary amine (Figure 4-9B), the polymer adopts a random coil after 1 day (24 hours) in pH

11 buffer solution, at pH 9, the polymer gradually adopts a random coil over several days, and at

pH 7.4 the polymer primarily maintains an a-helical structure for multiple days. When

compared to the 'H-NMR data, at pH 11, the ester side chains have completely hydrolyzed in

two days, leaving poly(y-glutamic acid) which is in a random coil conformation. For pH 9, at

day 4, the polymer is 50% hydrolyzed, and the polymer structure is nearly all random coil. This

observation indicates that not all the ester side chains need to be hydrolyzed for the a-helix to be

disrupted. Similar CD trends were observed for PPLG (DP = 75) functionalized with a primary

amine and dimethylpropanamine (Supporting Information Figure 4-26, dimethylethanamine was

not tested). As shown in Figure 4-9B, the block copolymer PEG-b-PPLG functionalized with a

diethylamine follows a very similar trend, only at a slower rate due to the decreased rate of ester

hydrolysis. For PPLG functionalized with diisopropylamine, minimal hydrolysis and therefore

minimal change in structure was observed at pH 7.4 and pH 9. At pH 11, a conformational

change is observed, but is much slower than that of the homopolymers and the diethylamine

functionalized diblock copolymer because of the slower rate of ester hydrolysis. In summary, as

more glutamic residues are generated on the polymer backbone, the secondary structure changes

from a-helix to random coil.
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Figure 4-9. A) Schematic of polypeptide backbone conformational change as the ester side
chains are hydrolyzed B) Value observed at 222 nm at various pH values as a function of time
for (DP = 75) functionalized with secondary amine, C) value observed at 222 nm at various pH
values as a function of time for PEG-b-PPLG functionalized with diethylamine, and D) value
observed at 222 nm at various pH values as a function of time for PEG-b-PPLG functionalized
with diisopropylamine. The error bars are not visible because they overlap with the points.

4.2.6 siRNA complexation studies

Studies have been performed to determine if the amine functionalized homopolymers

complex siRNA into protective polyplexes. Polymers were mixed with siRNA at various PPLG

polymer to siRNA charge ratios (N/P) ranging from 1:1 to 25:1 in either sodium acetate buffer

(pH 5.5) or PBS (pH 7.4). Ribogreen was used to determine the complexation efficiency of each

polymer at the various ratios, shown in Figure 4-10. As shown in Figure 4-1 OA and C, all amine
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functionalized PPLG homopolymers prevent dye access to more than 90% of siRNA at charge

ratios above 4:1 in sodium acetate. Additionally PPLGs with primary amine substituents are able

to completely complex siRNA at a charge ratio that is two-fold lower, indicating the strength of

primary amines for complexation. At the higher pH of PBS (7.4), fewer amines are charged,

particularly in the case of the dimethylethanamine, diethylamine, and diisopropylamine

substituents, leading to looser complexes and greater dye access. This manifest itself both at low

polymer:siRNA ratios for all of the polymers, and most noticeably for the dimethylethanamine,

diethylamine, and diisopropylamine PPLGs (see Figure 4-10B and D). While these tertiary

amine substituents may be useful for stimulating endosomal escape, the copolymers with

primary and secondary amines are more likely to exhibit properties that enable full encapsulation

of siRNA and buffering effects in vivo. AFM was used to image the polyplexes. Representative

AFM images for PPLG (DP = 75 and DP = 140) substituted with dimethylethanamine are shown

in Figure 4-11. The particles range in size from 75 nm to 150 nm in diameter. Similar results

were observed for the diblock polymers when complexed in sodium acetate buffer, as shown in

Figure 4-12 (only select diblock polymers were tested).
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Figure 4-10. Percentage of uncomplexed siRNA as a function of siRNA:Polymer (w/w) ratio for
each amine substituted PPLG for degree of polymerization 140 (A,B) and 75 (C,D). Polyplexes
were formed in either sodium acetate buffer (A,C) or PBS (B,D). The DP140 diisopropylamine
sample was insoluble in PBS.

A B

Figure 4-11. Amplitude AFM images (2 ptm by 2 ptm with a z scale of 1.5 nm) of polyplexes
formed with dimethylethanamine PPLG with degree of polymerization of A) 75 and B) 140.
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Figure 4-12. Percentage of uncomplexed siRNA as a function of siRNA:Amine Polymer (w/w)
ratio for each amine substituted PEG-b-PPLG

Polyplexes can be disrupted by the addition of a competing polyanion, such as heparin. In

Figure 4-13A, PPLGs (DP =140) with primary amine substituents were complexed at low (5: 1)

and high (25:1) polymer: siRNA ratios (NIP) in either sodium acetate or PBS, along with PEI

and Lipofectamine 2000 as controls. As anticipated, relatively low levels of heparin were

required to dissociate PPLG complexes formed at 5:1 as compared with those complexes formed

at the 25:1 N/P ratio. PPLG complexes formed in PBS were more easily disrupted than those

formed at low pH, most likely because those formed at low pH contained more highly charged

amines, and were thus more tightly complexed. Figure 4-13B demonstrates this concept with

different amine substituents. In the DP75 polymers (red), the tertiary amine in the

dimethylpropanamine group forms a looser polyplex and is disrupted more readily than the

secondary and primary amines. However, for DPl4O, the dimethylpropanamine polyplexes

begin to dissociate with the same amount of added heparin as the primary and secondary

polyplexes, indicating that molecular weight is also a factor in polyplex stability. In summary,
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the siRNA complexation behavior of these systems is tunable, and can be altered through the

introduction of different buffering amine functionalities, molecular weight and pH conditions of

complexation.

U

U

=
S

DP 140 Primary 5:1 NaAc
DP 140 Primary 5:1 PBS
DP140 Primary 25:1 NaAc
DP140 Primary 25:1 PBS
PEI NaAc
PEI PBS
Lipofectamine NaAc
Lipofectamine PBS

D-

D

0. 0 0.1 0.2 0.3 0.4 0.5 1.5 2.5

DP 140 Primary
DP140 Secondary
DP 140 Dimethylprop
DP 75 Primary
DP 75 Secondary
DP 75 Dimethylprop
PEI
Lipofectaime

Heparin (IU/ug siRNA)

Figure 4-13. Percentage of uncomplexed siRNA as a function of added heparin for various
complexation conditions. A) Complexes were formed in pH 5.5 Sodium Acetate buffer (squares)
or PBS (circles) at two different polymer:siRNA ratios (w/w). B) PPLGs with primary (circle),
secondary (square), or dimethylpropanamine (triangle) substitutions were complexed in sodium
acetate buffer prior to dissociation with heparin.

4.2.7 Toxicity of polyplexes

As a measure of biocompatibility, we determined the viability of HeLa cells when

exposed to the polyplexes at the concentrations used for transfection studies using an MTT

assay. The MTT assay measures the effect of the polyplexes on cell metabolism and growth, and
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it is a common measure of toxicity. As shown in Figure 4-14, all polyplexes formed were

relatively non cytotoxic at an siRNA dose of 50 ng/well, indicating that these polyplexes are safe

at the dosing concentration.

A

.a

(U

(U

150 M Primary
M Secondary
M Direthypropyl
M Diethyl

100. - Diisopropyl

50.

0

PolysiRNA Ratio (w/w)

B 15  M Seconda
M Dimethy-

propyl
- Diethyl

100- M Diiso-
propyl

(U

S 50-

0.

Poly:siRNA Ratio (w/w)

Figure 4-14. MTT assay for cellular toxicity of homopolymers (A) and diblock polymers (B) on
HeLa cells at an siRNA concentration of 50 ng/well siRNA.

4.2.8 Transfection

Knockdown studies were performed using a Dual-Glo Luciferase Assay on

homopolymers and diblock polymers to determine if the siRNA delivered to cell resulted in

transfection. As shown in Figure 4-15, the lipofectamine control is reducing Luciferase
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expression, indicating that the assay is viable. In both the diblock and homopolymers,

Luciferase expression is still at around 100% indicating that the polyplexes are not transfecting.

To determine the rate limiting step in transfection of these polyplexes, additional studies were

performed to determine if the polyplexes were being taken up by the cells and escaping the

endosome.
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Figure 4-15. Transfection studies at 50 ng/well (A,C) and 150 ng/well
(A,B) and diblock polymers (C,D)
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(B,C) for homopolymers
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4.2.9 Cell Uptake

Cellular uptake studies were performed on amine functionalized PPLG (DP = 75) and

PEG-b-PPLG functionalized with diethylamine. Labeled siRNA was complexed with the

polymers at N/P ratios of 5:1 and 25:1 and flow cytometry was used to determine if cells were

taking up the polyplexes (Figure 4-16). When comparing the mean fluorescence intensity of the

homopolymers at a 5:1 ratio to the Lipofectamine control and the naked siRNA, the intensity

falls between the two indicating that the additional polymer is aiding in enhancing uptake. At a

ratio of 25:1, all the homopolymers except the diisopropylamine have greater uptake than the

Lipofectamine control. For the diblock polymer, uptake is not significantly enhanced because of

the protective PEG layer. Fluorescent microscope images (Figure 4-17) and confocal

microscope images (Figure 4-18) were obtained of the diethylamine polymer. Figure 4-17A is

an image of uncomplexed red labeled siRNA uptake in HeLa cells and Figure 4-17B is an image

of the uptake of PPLG with diethylamine complexed red labeled siRNA. The increase in red

fluorescence (shown in bright spots in the cells near the cell nucleus (blue)) in Figure 4-17B in

comparison to Figure 4-17A indicates that the polyplexes enhance cellular uptake of the siRNA.

In the confocal image, at 0 hours (Figure 4-18A), the polyplexes (bright yellow-green because

the polymer was labeled in green and the siRNA was labeled in red) are seen along the outer cell

membrane. At 24 hours (Figure 4-18B), the polyplexes are trafficked into the cells into

compartments close to the nucleus (blue), as indicated by the bright green spots. These bright

punctated spots indicate that the polyplexes may not be escaping the endosome.
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Figure 4-16. Polyplex uptake studies with siRNA:polyplex N/P ratios of 5:1 and 25:1.

Figure 4-17. Fluorescent microscope images of cell uptake of fluorescently labeled siRNA with
A) uncomplexed siRNA and B) complexed siRNA with diethylamine PPLG (DP = 75).
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A

Figure 4-18. Confocal images of red labeled siRNA complexed with green labeled diethylamine
PPLG (DP = 75) at A) 1 hour and B) 24 hours.

4.2.10 Endosomal escape

A high throughput endosomal escape assay was conducted on PPLG (DP = 75) with

diethylamine to determine the amount of polymer necessary to trigger endosomal escape. From

Figure 4-19, at 15 pg/well pure polymer exhibits 70% escape but when the polymer is

complexed at a 5:1 ratio, less than 20% of the polymer is escaping the endosome. This result

indicates that having free tertiary amine is required for endosomal escape. Furthermore, the free

amine required for endosomal escape is significantly larger than the dose typically given to cells.

When compared to PEI, the charge density per molecular weight of the polymer is 4 times less

than that of the PEI. In order for this system to work, large doses of free polymer are necessary

for endosomal escape or the dose size must be significantly increased. Another strategy could be

to mix different side groups. Some that are specifically designed to complex the genetic material

and others that are specifically designed for endosomal buffering and escape.
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Figure 4-19. Endosomal escape of PPLG (DP 75) naked polymer and siRNA at a 5:1 N/P ratio

4.2.11 Mixing primary amine and diethylamine click groups

The flexibility of this system allows for easy mixing of side group functionality. We

mixed the primary amine side group, which complexes well with siRNA and diethylamine amine

side group, which has strong buffering, at a 50:50 ratio to see if combining the two groups

decreases Luciferase expression. The polyplexes were formed in either PBS or sodium acetate

buffer to determine if the pH of polyplex formation at different N/P ratios effects transfection.

Similar to what was observed for the homopolymers, knockdown of Luciferase expression was

not observed, as shown in Figure 4-20. This result is most likely a result of the limited amount

of charge on the cationic polymer. The amount of tertiary amine could be increased on the

backbone and that could possibly improve endosomal buffering. See Chapter 6 for more

discussion on this topic.
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Figure 4-20. Transfection studies at 50 ng/well for PPLG (DP =140) funtctionalized with 50:50

primary amine:diethylamine. Complexes were formed in PBS and sodium acetate buffer.

4.3 Conclusion

We have developed a new library of pH responsive polypeptides based on the

combination of NCA polymerization and click chemistry. PPLG homopolymers and PEG-b-

PPLG block copolymers were substituted with various amine moieties that range in pKa and

hydrophobicity and can be tuned for specific interactions and responsive behaviors. We have

demonstrated that these new amine-functionalized polypeptides change solubility, or self

assemble into micelles for the case of diblock polymers, with degree of ionization and adopt an

a-helical structure at biologically relevant pHs. The impact of side chain hydrolysis was also

explored to determine the hydrolysis rate as a function of pH and the impact of hydrolysis on

polymer side chain conformation. These properties are of interest for a number of applications,

here we have performed preliminary experiments that demonstrate that these polymers are strong

candidates for drug and gene delivery.
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4.4 Supporting information
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Figure 4-21. Titrations with increasing pH A) primary amine, B) secondary amine, C)
dimethylethanamine, D) diethylamine, and E) diisopropylamine.
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Figure 4-22. PPLG (DP = 75) functionalized with diethylamine in D20 after titration
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Figure 4-24. A) CMC determination by fluorometry using a pyrene probe for diethylamine

substituted PEG-b-PPLG in pH 5.5 and 9 buffer and B) AFM image of diethylamine substituted

PEG-b-PPLG at pH 9.21 and The AFM image is 1.8 by 1.8 pm.
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functionalized with secondary amine taken at

128

-0 Days
-1 Day
-2 Days
-- 3 Days
-- 5 Days
-9 Days
- 26 Days

1 255

................



A 10  B 10

0 0 . .
E 10 20 D 10 3

- -10 -o -0 10

-20 0 -20

-30 -30

-40 ,-pH 7.4 -40 A pH 7.4

--- 50 ->+- pH 9A
.50 -0- pH11 -5 -e- pH11

-60 Time (Days) -60 Time (Days)

Figure 4-26. A) Value observed at 222 nm at various pH values as a function of time for (DP
75) functionalized with primary amine and B) Value observed at 222 nm at various pH values as
a function of time for (DP = 75) functionalized with dimethylpropanamine.

4.5 References

1. Deming, T. J., Synthetic polypeptides for biomedical applications. Prog. Polym. Sci.

2007, 32 (8-9), 858-875.

2. Deming, T. J., Polypeptide and polypeptide hybrid copolymer synthesis via NCA

polymerization. Peptide Hybrid Polymers 2006, 202, 1-18.

3. Osada, K.; Kataoka, K., Drug and gene delivery based on supramolecular assembly of

PEG-polypeptide hybrid block copolymers. In Peptide Hybrid Polymers, SPRINGER-VERLAG

BERLIN: Berlin, 2006; Vol. 202, pp 113-153.

4. Daly, W. H.; Poche, D.; Negulescu, I. I., Poly(Gamma-Alkyl-Alpha, L-Glutamate)s

Derived from Long-Chain Paraffinic Alcohols. Prog. Polym. Sci. 1994, 19 (1), 79-135.

5. Bromley, E. H. C.; Channon, K.; Moutevelis, E.; Woolfson, D. N., Peptide and Protein

Building Blocks for Synthetic Biology: From Programming Biomolecules to Self-Organized

Biomolecular Systems. A CS Chemical Biology 2008, 3 (1), 3 8-50.

6. Conn, P. M., Progress in Molecular Biology and Translational Science. Elsevier Inc.:

London, 2008; Vol. 83, Part 1.

129

I ... .......... ... A- - - ... .. - - " . I ...........



7. Harada, A.; Cammas, S.; Kataoka, K., Stabilized alpha-helix structure of poly(L-lysine)-

block-poly(ethylene glycol) in aqueous medium through supramolecular assembly.

Macromolecules 1996, 29 (19), 6183-6188.

8. Appel, P.; Yang, J. T., Helix-Coil Transition of Poly-L-Glutamic Acid and Poly-L-Lysine

in D20. Biochemistry 1965, 4 (7), 1244-1249.

9. Ciferri, A.; Puett, D.; Rajagh, L., Potentiometric Titrations and Helix-Coil Transition of

Poly(L-Glutamic Acid) and Poly-L-Lysine in Aqueous Salt Solutions. Biopolymers 1968, 6 (8),

1019-1036.

10. Zimm, B. H.; Bragg, J. K., Theory of the Phase Transition between Helix and Random

Coil in Polypeptide Chains. Journal of Chemical Physics 1959, 31 (2), 526-535.

11. Reshetnyak, Y. K.; Andreev, 0. A.; Segala, M.; Markin, V. S.; Engelman, D. M.,

Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane.

Proceedings of the National Academy of Sciences of the United States of America 2008, 105

(40), 15340-15345.

12. Zoonens, M.; Reshetnyak, Y. K.; Engelman, D. M., Bilayer interactions of pHLIP, a

peptide that can deliver drugs and target tumors. Biophysical Journal 2008, 95 (1), 225-235.

13. Reshetnyak, Y. K.; Andreev, 0. A.; Lehnert, U.; Engelman, D. M., Translocation of

molecules into cells by pH-dependent insertion of a transmembrane helix. Proceedings of the

National Academy of Sciences of the United States of America 2006, 103 (17), 6460-6465.

14. Yokoyama, M.; Kwon, G. S.; Okano, T.; Sakurai, Y.; Seto, T.; Kataoka, K., Preparation

of micelle-forming polymer-drug conjugates. Bioconjugate Chem. 1992, 3 (4), 295-301.

15. Kwon, G.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K., Micelles

Based on Ab Block Copolymers of Poly(Ethylene Oxide) and Poly(Beta-Benzyl L-Aspartate).

Langmuir 1993, 9 (4), 945-949.

130



16. Katayose, S.; Kataoka, K., PEG-poly(lysine) block copolymer as a novel type of

synthetic gene vector with supramolecular structure. Advanced Biomaterials in Biomedical

Engineering and Drug Delivery Systems 1996, 319-320.

17. Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka, K.; Yamasaki, Y.;

Koyama, H.; Kataoka, K., PEG-detachable polyplex micelles based on disulfide-linked block

catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc. 2008, 130 (18), 6001-6009.

18. Miyata, K.; Fukushima, S.; Nishiyama, N.; Yamasaki, Y.; Kataoka, K., PEG-based block

catiomers possessing DNA anchoring and endosomal escaping functions to form polyplex

micelles with improved stability and high transfection efficacy. J. Control. Release 2007, 122

(3), 252-260.

19. Masago, K.; Itaka, K.; Nishiyama, N.; Chung, U. I.; Kataoka, K., Gene delivery with

biocompatible cationic polymer: Pharmacogenomic analysis on cell bioactivity. Biomaterials

2007, 28 (34), 5169-5175.

20. Opanasopit, P.; Yokoyama, M.; Watanabe, M.; Kawano, K.; Maitani, Y.; Okano, T.,

Block copolymer design for camptothecin incorporation into polymeric micelles for passive

tumor targeting. Pharmaceutical Research 2004, 21 (11), 2001-2008.

21. Itaka, K.; Ishii, T.; Hasegawa, Y.; Kataoka, K., Biodegradable polyamino acid-based

polycations as safe and effective gene carrier minimizing cumulative toxicity. Biomaterials

2010, 31 (13), 3707-3714.

22. Chen, S. F.; Cao, Z. Q.; Jiang, S. Y., Ultra-low fouling peptide surfaces derived from

natural amino acids. Biomaterials 2009, 30 (29), 5892-5896.

23. Wan, Q.; Chen, J.; Chen, G.; Danishefsky, S. J., A Potentially Valuable Advance in the

Synthesis of Carbohydrate-Based Anticancer Vaccines through Extended Cycloaddition

Chemistry. The Journal of Organic Chemistry 2006, 71 (21), 8244-8249.

24. Yang, C. Y.; Song, B. B.; Ao, Y.; Nowak, A. P.; Abelowitz, R. B.; Korsak, R. A.;

Havton, L. A.; Deming, T. J.; Sofroniew, M. V., Biocompatibility of amphiphilic diblock

copolypeptide hydrogels in the central nervous system. Biomaterials 2009, 30 (15), 2881-2898.

131



25. Pochan, D. J.; Pakstis, L.; Ozbas, B.; Nowak, A. P.; Deming, T. J., SANS and Cryo-TEM

study of self-assembled diblock copolypeptide hydrogels with rich nano- through microscale

morphology. Macromolecules 2002, 35 (14), 5358-5360.

26. Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T.

J., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide

amphiphiles. Nature 2002, 417 (6887), 424-428.

27. Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood-Flow, Oxygen and Nutrient Supply, and

Metabolic Microenvironment of Human-Tumors - a Review. Cancer Research 1989, 49 (23),

6449-6465.

28. Mellman, I., The Importance of Being Acid-The Role of Acidification in Intracellular

Membrane Traffic. J Exp. Biol. 1992, 172, 3 9-45.

29. Sonawane, N. D.; Szoka, F. C.; Verkman, A. S., Chloride accumulation and swelling in

endosomes enhances DNA transfer by polyamine-DNA polyplexes. Journal of Biological

Chemistry 2003, 278 (45), 44826-4483 1.

30. Whitehead, K. A.; Langer, R.; Anderson, D. G., Knocking down barriers: advances in

siRNA delivery. Nat Rev Drug Discov 2009, 8 (2), 129-13 8.

31. Boeckle, S.; von Gersdorff, K.; van der Piepen, S.; Culmsee, C.; Wagner, E.; Ogris, M.,

Purification of polyethylenimine polyplexes highlights the role of free polycations in gene

transfer. Journal of Gene Medicine 2004, 6 (10), 1102-1111.

32. Adams, M. L.; Lavasanifar, A.; Kwon, G. S., Amphiphilic block copolymers for drug

delivery. Journal of Pharmaceutical Sciences 2003, 92 (7), 1343-1355.

33. Lynn, D. M.; Langer, R., Degradable poly(beta-amino esters): Synthesis,

characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 2000, 122 (44),

10761-10768.

132



34. Veron, L.; Ganee, A.; Charreyre, M. T.; Pichot, C.; Delair, T., New hydrolyzable pH-

responsive cationic polymers for gene delivery: A preliminary study. Macromolecular

Bioscience 2004, 4 (4), 431-444.

35. Engler, A. C.; Lee, H. I.; Hammond, P. T., Highly Efficient "Grafting onto" a

Polypeptide Backbone Using Click Chemistry. Angewandte Chemie-International Edition 2009,

48 (49), 9334-9338.

36. Poche, D. S.; Moore, M. J.; Bowles, J. L., An unconventional method for purifying the

N-carboxyanhydride derivatives of gamma-alkyl-L-glutamates. Synth. Commun. 1999, 29 (5),

843-854.

37. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P., Organic Chemistry. Oxford University

Press: Oxford, 2001; p 1508.

38. Bhatia, S. R.; Khattak, S. F.; Roberts, S. C., Polyelectrolytes for cell encapsulation.

Current Opinion in Colloid & Interface Science 2005, 10 (1-2), 45-5 1.

39. Eicher, T.; Hauptmann, S.; Speicher, A., The Chemistry of Heterocycles. 2nd ed.; Wiley-

VCH: Weinheim, 2003; p 221.

40. Alexandridis, P.; Holzwarth, J. F.; Hatton, T. A., Micellization of Poly(Ethylene Oxide)-

Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Aqueous-Solutions -

Thermodynamics of Copolymer Association. Macromolecules 1994, 27 (9), 2414-2425.

41. Johnson, W. C., Protein Secondary Structure and Circular-Dichroism - a Practical Guide.

Proteins-Structure Function and Genetics 1990, 7 (3), 205-214.

42. Liu, X. H.; Zhang, J. T.; Lynn, D. M., Ultrathin Multilayered Films that Promote the

Release of Two DNA Constructs with Separate and Distinct Release Profiles. Advanced

Materials 2008, 20 (21), 4148-4153.

43. Zhang, J. T.; Lynn, D. M., Ultrathin multilayered films assembled from "Charge-

Shifting" cationic polymers: Extended, long-term release of plasmid DNA from surfaces.

Advanced Materials 2007, 19 (23), 4218-4223.

133



44. Myer, Y. P., The pH-Induced Helix-Coil Transition of Poly-L-lysine and Poly-L-

glutamic Acid and the 238-mu Dichroic Band. Macromolecules 1969, 2 (6), 624-628.

134



5 A Library of Synthetic Antimicrobial Polypeptides for Various Biomedical

Applications

5.1 Introduction

Infectious disease is a potentially debilitating cause for concern in a variety of medical

conditions and procedures. The severity of these infections is augmented by two primary

factors: (1) biofilm formation and (2) drug-resistant bacteria.' Several methods for controlling

the formation and growth of biofilms have been proposed; however the use of appropriately

functionalized surfaces that prevent the critical step of bacteria attachment on an implant may be

the most effective method for preventing biofilm formation entirely. Along with chronic

infection due to biofilm formation, drug resistance in planktonic bacteria is a prominent factor

that is making treatment of infections increasingly more difficult. 2 The systemic overuse of

broad-spectrum antibiotics has led to a severe rise in multi-drug resistant bacteria over the last

several decades. Compounded by a lack of discovery and approval of new classes of antibiotics,

there is a pressing need for the development of novel antimicrobial agents.1, 2

The use of naturally occurring antimicrobial peptides (AmPs) for infection treatment is

starting to be explored as a new class of therapeutics. 3, 4 These cationic peptides are part of the

eukaryote immune system and are highly broad-spectrum, active against gram-positive, gram-

negative, and drug-resistant bacteria, as well as fungi and viruses. Several modes of AmP

activity have been proposed, all suggesting a low propensity for the development of resistance.5'6

Additionally, AmPs have been shown to act rapidly 7 and prevent biofilm formation. 4 Despite

the therapeutic potential for infection control, the practical applicability of AmPs is thus far

limited. AmP production methods are traditionally expensive and are implicated as the principal
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obstacle in preventing widespread AmP use.7 Additionally, significantly larger doses of AmPs

are required for activity comparable to conventional antibiotics; however at these large

concentrations, AmPs have been shown to induce toxicity in mammalian cells. 4'',,9, 10 The cost-

effective and efficient development of novel AmPs which yield comparable activity to natural

AmPs and have a high degree of biocompatibility, will ultimately allow for clinical translation of

these promising therapeutics.

Cationic polymers can be selectively designed to exhibit high levels of antimicrobial

activity, are relatively inexpensive to synthesize, and can be produced on a large scale.' To

design these antimicrobial polymers, typically a combination of cationic and hydrophobic groups

are dispersed along a polymer backbone,' - or hydrophobic long chain N-alkylated quaternary

ammonium groups are utilized. 16-20 It is hypothesized that the quaternary amine polymers

function by interacting with the bacterial membrane, leading to loss in membrane integrity and

cell death. Several polymers synthesized utilizing these strategies, including

polyethylenimines,16, 18, 19, 21 polymethacrylates,1, 20 polydiallyammonium salts, 17, 22

polyarylamides,12, 13 protonated polystyrenes, 2 3 and polynorbornenes,24 have shown a high

degree of antimicrobial activity; however these polymers are non-biodegradable and not

particularly biologically compatible, rendering them unsuitable for many biomedical

applications. Alternatively, it was recently demonstrated that synthetic antimicrobial

polypeptides can be synthesized by the ring opening polymerization (ROP) of the N-

carboxyanhydrides (NCA) of cationic (lysine) and hydrophobic (alanine, phenylalanine, or

leucine) amino acid residues, creating a biodegradable synthetic AmP mimic. These polymers

showed antimicrobial activity comparable to naturally occurring AmPs but have a high degree of

hemolytic activity,14 making them unsuitable for systemic administration.
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As a promising alternative to currently existing antimicrobial polymers, we have synthesized and

characterized a library of synthetic cationic homopolypeptides, utilizing the synthetic approach

described in Chapters 3 and 4 that mimic naturally occurring AmPs, shown in Scheme 5-1. The

new antimicrobial polypeptides range in length from 30 to 140 repeat units and they have varied

side group functionality, including primary, secondary, tertiary, and quaternary amines with

hydrocarbon side chains ranging from 1 to 12 carbons long. Table 5-1 summarizes the polymers

investigated and indicates whether they were tested for coating applications and/or solution

antimicrobial activity. We have denoted the quaternary amine polypeptides as QCn, where Q

indicates that the amine is quaternary and Cn indicates a carbon side chain of length n. The

effect of the side chain functionality and the polypeptide length was evaluated using a modified

microdilution assay to determine the minimum inhibitory concentration (MIC), or the lowest

point at which visible bacteria growth is inhibited, 25 against both gram-negative and gram-

positive bacteria. A bacteria attachment assay was also carried out on polypeptide coatings to

evaluate their potential efficacy for use as antimicrobial surface coatings. To determine their

level of biocompatibility, red blood cell (RBC) lysis was monitored in the presence of these

polypeptides.
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Scheme 5-1. Click functionalization of PPLG and various amine side groups. For the
quaternary amines abbreviation, the abbreviation Q indicates that the amine is quaternary and Cn
indicates a carbon chain length with n repeat units. For example, QC4 is a quaternary amine
with a hydrocarbon tail that is 4 carbons long.
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Table 5-1. Summary of polypeptides tested.a
Quaternary

DP Primary Secondary Tertiary QC1 QC4 QC6 QC8 QC1O QC12

30

56

75

137

Tested for MIC Tested for MIC and Not testedRENX coatings

a Here DP is the degree of polymerization of the polypeptide. Primary, secondary, tertiary, and
quaternary represent the degree of the amine functionalized side chains. In polypeptides defined
as QCn, Q = quaternary and Cn = carbon side chain length of n.

138



5.2 Results and discussion

5.2.1 Antimicrobial polypeptide synthesis

To design and synthesize a family of antimicrobial synthetic polypeptides that mimic

naturally occurring AmPs, we systematically varied the amino side chain functionality and

polymer chain length of PPLG to determine the optimal polymer composition for the growth

inhibition of both gram-negative and gram-positive bacteria as well as the prevention of biofilm

formation by these bacteria. PPLG at four different degrees of polymerization (DP) from 30 to

140 repeat units was synthesized as previously described.26 GPC traces of the PPLG backbone

indicate that these polymers have a narrow molecular weight distribution with polydispersities

(PDI) between 1.09 and 1.25, as shown in Figure 5-1. Figure 5-2A shows a representative 'H-

NMR spectrum of PPLG (DP = 140) which confirms the polymer structure. Various amine

functional groups were coupled to the PPLG using the copper catalyzed Huisgen click reaction,

shown in Scheme 5-1. 'H-NMR was used to confirm the coupling efficiency of the click

reaction. Representative 'H-NMR of QC1 and QC6 substituted PPLG (DP = 140) compared to

the 'H-NMR of PPLG (DP = 140) are shown in Figure 5-2. In all cases, the coupling efficiency

of the click reaction was near quantitative, as indicated by the disappearance of the PPLG alkyne

peak (a, 3.4 ppm) and ester peak (b, 4.7 ppm) in Figure 5-2A and the appearance of a new ester

peak (k, 5.2 ppm) in Figures lB and IC. Furthermore, the peak integration for all samples tested

was as expected for near quantitative substitution. For polymers analyzed in D20, the original

backbone peak (d, 2.0 ppm) did not overlap with the newly added side chains. This peak was

used to determine the percent conversion of alkyne to triazole ring. For example, in Figure 5-2B,

the integration of the backbone peak (d, 2.0 ppm) was compared to the integration of the triazole

peak (in, 8.1 ppm) giving a substitution of 99.3%. When comparing the integration to other
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peaks, the substitution rate ranged from 94.4-99.7%. For polymers analyzed in MeOD (QC6-

QC12), where the backbone peak (d, 2.0 ppm) did overlap with the newly added side chains, the

broader backbone peak (e, 4.0 ppm) was used to determine the conversion. For all polymers

analyzed in MeOD, the substitution rate was above 98% when comparing the original backbone

peak (e, 4.0 ppm) integration to the ester peak (k, 5.1 ppm) integration.

DP=30, PDI=1.25
-- - DP=56, PDI=1.11

DP=75, PDI=1.09
- - - DP=140, PDI=1.14

I j

1000 10000 100000 1000000
MW by GPC (Da)

Figure 5-1. Molecular weight distribution of PPLG obtained using a DMF GPC and calculated
using PMMA standards. The degree of polymerization was determined by 'H-NMR.
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Figure 5-2. A) 'H-NMR spectrum of PPLG (DP = 140) in d7 DMF, B) 'H-NMR spectrum of
PPLG (DP = 140) functionalized with QC1 in D20, and C) 'H-NMR spectrum of PPLG (DP
140) functionalized with QC6 in CD 30D.

141



Table 5-1 summarizes the polymers synthesized and how they were tested. To determine

how to best test these polymers, water solubility and substrate coating experiments were

performed. The water solubility of all polypeptides (except QC12 which is completely water

insoluble) was determined to be greater than 50 mg/mL which was assumed to exceed what is

necessary for MIC testing. Substrate coating experiments were performed to determine if these

polymers are candidates for anti-biofilm coatings. Although, they have high water solubility, the

QCn (n > 4) polymers also have surfactant like properties, causing them to readily adhere to

surfaces. Glass substrates were coated by solvent casting these polymers from a methanol

solution at a set concentration and dry film thicknesses were measured. Following exposure to

bacteria culture media, film thicknesses were measured again. A significant amount of smooth

polymer film remained on the substrate, which was estimated to be equivalent to at least 30

monolayers of packed polypeptide. A detailed discussion of this calculation as well as the

thickness measurements can be found in the supplementary information. Based on the solubility

and surface adsorption characteristics, the primary, secondary, tertiary, and QC1 polymers were

tested for bacteria growth inhibition using the microdilution assay, and QCn (n > 4) polymers

were tested for both bacteria growth inhibition and activity against bacteria attachment. Several

of these polymers have potential for use in systemic or localized antimicrobial delivery

applications; the QCn (n > 4) polymers may be suitable for semi-permanent antimicrobial

coatings on medical devices.

5.2.2 Bacterial growth inhibition

We quantified the activity of all polypeptides synthesized in this work against two classes

of bacteria that are commonly associated with infection. S. aureus and E. coli were chosen as

gram-positive and gram-negative bacteria, respectively. The effect of the polypeptides on the
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inhibition of bacterial growth was examined using a modified liquid microdilution assay for the

primary, secondary, tertiary, and QC 1 polypeptides as highlighted in Table 5-1. For the purposes

of this work, we have expressed MIC as a polypeptide concentration range over which bacteria

density normalized to a positive control of untreated bacteria and a negative control of growth

media is found to decrease from greater than or equal to 0.1 to less than or equal to 0.02 (where

1.0 indicates the positive control). Samples that did not exhibit a significant decrease over the

polypeptide concentration range of 70 - 4500 ptg/mL and maintained a normalized bacteria

density > 1.0 at the highest tested concentration were defined as inactive. Figures 3A and 3B

show the results of this assay for the primary amine functionalized polypeptides of varying

molecular weight for S. aureus and E. co/i, respectively. As seen in Figure 5-3A, there is a clear

molecular weight dependence on S. aureus growth inhibition, for which the lowest molecular

weight primary amine polypeptide (DP = 30) shows no S. aureus inhibition and the highest

molecular weight (DP = 140) is the most active, with a MIC between 70.3 - 140.6 [tg/mL. This

MIC for S. aureus is comparable and in some cases lower than many highly effective naturally

occurring antimicrobial peptides, including cecropin A and B, magainin 1 and 2, and defensin.13'

14

Table 5-2 summarizes the MIC for the primary, secondary, tertiary, and QC1

polypeptides tested against S. aureus as well as the normalized bacteria inhibition at the highest

polypeptide concentration tested, 4500 pg/mL. Along with the highest molecular weight

primary amine, the highest molecular weight secondary amine polypeptide also exhibits an MIC

for S. aureus that is comparable to natural AmPs, between 140.6 - 281.3 .g/mL. The tertiary

and quaternary (QC 1) amine samples do not show any significant S. aureus growth inhibition.
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Figure 5-3. Bacteria growth inhibition for primary amine functionalized polymers based on
normalized turbidity measurements. A.) S. aureus normalized bacteria density at varying
polymer concentrations. B.) E. coli normalized bacteria density at varying polymer
concentrations (*high turbidity was observed for DP = 140 polypeptides at concentrations of
4500 - 1125 pg/mL due to polypeptide precipitate forming; in these cases, however, complete
bacteria growth inhibition was observed based on clear solution surrounding the polypeptide
precipitate).

Table 5-2. Staphylococcus aureus growth inhibition properties
Primary Secondary Tertiary Quaternary (QC1)

DP MICa Normalized MICa Normalized MICa Normalized MICa Normalized
density, density, densityb densityb

30 NA 1.4 ±0.1 NA 1.6 ±0.2 NA 1.5 0.4 NA 1.1 ±0.2

56 1125- < 0.05 NA 1.2 ±0.1 NA 0.9 ±0.1 NA 1.3 ±0.05
2250

75 562.5- < 0.05 >4500 0.8 ± 0.2 NA 1.2 ± 0.3 NA 1.1 0.2
1125

140 70.3- < 0.05 140.6- < 0.05 NA 1.0 ± 0.2 >4500 0.6 ± 0.1
140.6 281.3

a MIC is in gg/mL. No activity (NA) was defined
concentration of 4500 pg/mL.
b

as normalized density > 1.0 at polypeptide

ArAA ~LT 1~WJ
Normalized densIL is own for UaCLenI expse LU'-.UU gIIL poiypepLlue.
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Examining the polypeptides against E. coli growth, the primary amine samples were

again found to be highly active against growth of this gram-negative bacteria. Figure 5-3B

shows the results of E. coli growth inhibition for the four primary amine functionalized

polypeptides. The molecular weight dependence is not as strongly visible with E. coli as with S.

aureus; here the MIC against E. coli is found to lie between 562.5 - 1125 ptg/mL for the three

highest molecular weight primary amine polypeptides (DP = 56, 75, and 140). What appears as

a bacteria density > 1.0 in Figure 5-3B (for DP = 140) was optically visible polypeptide

precipitate due to the test media conditions in a clear bacteria solution (signifying no bacteria

present). Even the lowest molecular weight primary amine (DP = 30) exhibited approximately

70% inhibition of E. coli bacteria growth upon exposure to the 4500 pg/mL polypeptide

concentration, although the same polymer was inactive at all concentrations for S. aureus. This

was an unexpected finding, as traditionally, treatment of gram-negative bacteria has been more

difficult than gram-positive strains due to the more complex membrane structure of these

bacteria. 2 Table 5-3 summarizes the MIC of the tested polypeptides against E. coli along with

the normalized bacteria density at the highest tested concentration of 4500 ptg/mL. The highest

molecular weight secondary amine shows activity against E. co/i, although the MIC is above

4500 pg/mL. Interestingly, unlike S. aureus the mid-range molecular weight secondary amines

show E. coli inhibition at the highest tested concentration (approximately 50% and 20% for DP =

56 and 75, respectively). Additionally, the DP = 140 tertiary amine and DP > 56 QC1

polypeptides exhibited E. coli growth inhibition as shown in Table 5-3 at the highest tested

concentration, which was not observed for S. aureus. Many of the polymers developed in this

work appear to be excellent candidates for infection prevention by delivery from drug-eluting

coatings, as has been previously examined for naturally occurring AmPs.
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Table 5-3. Escherichia coli
Primary

DP MICa Normalized
density,

growth inhibition properties
Secondary Tertiary

MICa Normalized MICa
densit yb

Normalized
densityb

Quaternary (QC 1)

MICa Normalized
densityb

146

30 >4500 0.3 ± 0.03 NA 1.0 ± 0.2 NA 1.0 ± 0.02 NA 0.8 0.2

56 562.5- <0.05 >4500 0.5 ± 0.04 NA 1.0 0.06 >4500 0.6 0.06
1125

75 562.5- <0.05 >4500 0.2 ± 0.006 NA 0.9 ± 0.2 >4500 0.2 0.006
1125

140 562.5- 1.6 ± 0.2c >4500 0.3 ± 0.02 >4500 0.4 ± 0.04 >4500 0.3 0.01
1125

a MIC is in pg/mL. No activity (NA) was defined as normalized density > 1.0 at polypeptide
concentration of 4500 pg/mL.
b Normalized bacteria density is shown for bacteria exposed to 4500 pg/mL polypeptide.

Polypeptide precipitate was optically visible in the clear bacteria solution, indicating growth
inhibition, but leading to a large optical density reading resulting in large normalized bacteria
density.

The quaternary amine functionalized polypeptides containing hydrophobic side chains

(QCn, n > 4), as highlighted in Table 5-1, were examined for bacterial growth inhibition from

surface coatings. Polypeptides dissolved in methanol were allowed to coat a well plate via

solvent evaporation to yield a polymer film, and these surfaces were subsequently exposed to

bacteria solution. Table 5-4 summarizes the MIC for each of the tested polypeptides for both S.

aureus and E. coli. Here, MIC again represents the polypeptide concentration range over which

the normalized bacteria density transitions from greater than or equal to 0.1 to less than or equal

to 0.02. Any polypeptides which exhibited a normalized bacteria density > 1.0 at the highest

tested surface concentration were defined as inactive. For S. aureus, bacteria growth inhibition

activity was not seen for the QC4 and QC6 polypeptides. At an increased polymer

hydrophobicity, QC8 was found to have a MIC between 156.3-312.5 pg/mL and 78.1-156.3



pg/mL for the DP = 75 and 140 polymers, respectively. The QC12 had the lowest MIC observed

for S. aureus between 39.1-78.1 pg/mL (corresponding to a surface coverage of 12.2-24.4

[tg/cm2 for this water insoluble polypeptide). QC1O also exhibited a low MIC between 312.5-

625 pg/mL against S. aureus. These results are consistent with what has been observed for

antimicrobial activity against S. aureus of similar alkylated quaternary polyethylenimines 16. We

found that the quaternary amine polypeptides were more active against E. coli than S. aureus for

QC6, had comparable activity for QC8, and were less active for QC1O and QC12 against E. coli

than S. aureus. Figure 4 shows the results of this polypeptide coating dose response assay for the

QC8 samples (DP = 75) for both S. aureus and E. coli. For E. coli, bacteria growth inhibition

increased with increasing hydrophobicity up to an alkyl chain length of 8 and decreased with

alkyl chain lengths of 10 and 12. The lowest MIC was observed for the QC8 samples with a

range of 156.3-312.5 gg/mL. This trend is similar to what has been observed with pendant

quaternary amine containing methacrylate polymers, where the carbon side chain lengths tested

were 12, 14, and 16. As the length of the carbon side chain increased, the methacrylate polymer

antimicrobial activity increased for S. aureus but decreased for E. coli.20 We hypothesize that

the difference in MIC trends observed for S. aureus and E. coli is a result of the different

membrane structure of these bacteria.
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Table 5-4. Bacteria response to QCn (n > 4) polypeptides."
Quaternary Quaternary Quaternary Quaternary Quaternary

Bacteria DP (QC4) MIC (QC6) MIC (QC8) MIC (QC 10) MIC (QC 12) MICb

S. aureus 75 NA NA 156.3-312.5 312.5-625 39.1-78.1

140 NA NA 78.1-156.3 312.5-625 39.1-78.1

E. coli 75 NA 312.5-625 156.3-312.5 1250-2500 1250-2500

140 NA 312.5-625 156.3-312.5 1250-2500 1250-2500
a MIC is in pig/mL. No activity (NA) was defined as normalized density > 1.0 at polypeptide
concentration of 2500 pg/mL.
b QC12 is completely water insoluble; the MIC values for DP = 75 and 140 correspond to a
surface coverage of 12.2-24.4 pg/cm 2 and 390-780 pg/cm 2 , for S.
respectively.

0 S. aureus
'0 1.0- E coli

.c
-o 0.5

S0.0I

aureus and E.

Polypeptide concentration (pg/mL)

Figure 5-4. Bacteria growth inhibition by QC8 (DP = 75) coating for both S. aureus and E. coli.

The exact mechanism of action of the QCn (n > 4) polypeptides is currently under

investigation. CD studies performed when the molecules were dissolved in methanol indicate

that the QCn (n > 4) polymers adopt an a-helical conformation in solution before they are

solvent cast, as indicated by the strong minimums at 208 nm and 222 nm (Figure 5-5).28 After
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solvent casting, FTIR was used to determine if the polymer backbone maintained a helical

structure. The strong amide I peak at 1653 nm is characteristic of an a-helical structure (Figure

5-6).29 As with other antimicrobial polycations, it is believed that these polymers function by

electrostatic association with the negatively charged bacteria cell surface and subsequent

disruption of the plasma membrane. 30 Due to the rigidity of the polypeptide backbone, these

polymers act by complexing with the exterior surface of the bacterial cell membrane, rather than

inserting fully across the membrane, as with more flexible polymers.31 One of the advantages of

applying a systematic approach to design synthetic antimicrobial polypeptides is that different

properties can be decoupled and explored. For the current system, we are using a rigid a-helical

backbone, but in the future, utilizing a mixture of D-L monomers, it is also possible to explore

the effect of polymer backbone rigidity on the antimicrobial activity and mechanism of

membrane disruption.
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Figure 5-5. Circular dichroism of QC8 functionalized polypeptide in methanol at 1.67 mg/mL
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Figure 5-6. FTIR or QC8 DP = 75 polypeptide solvent cast from methanol

5.2.3 Bacterial attachment inhibition

An increasingly common cause of medical device failure and the spread of infection is

the formation of biofilms on implants and dead tissue. 32 The first critical step necessary for

biofilm formation is the attachment of bacteria on a surface. Preventing this attachment step will

ultimately prevent biofilm formation and is a desirable characteristic of functionalized surfaces.

To examine whether the QCn (n > 4) polypeptides have the potential to make anti-biofilm device

coatings for orthopedic implants or intraocular lenses for example, the ability of substrates

coated with these polypeptides to inhibit bacteria attachment was examined. Round glass

substrates were coated with quaternary amine functionalized polypeptide samples with varying

degrees of hydrophobicity at two different molecular weights (DP = 75 and 140) and allowed to

150



evaporate to evenly coat these substrates, yielding a final coating of 330 pig/cm 2. These

substrates were then tested for prevention of bacterial attachment for both S. aureus and E. coli.

Figure 5-7 and Figure 5-8 show the results for attachment inhibition of S. aureus and E. coli,

respectively, by these coated substrates. It was found that increasing hydrophobicity of

polypeptide functional groups leads to increased inhibition of bacterial attachment for S. aureus

and E. coli up to an alkyl chain length of 10. Beyond this point, increasing hydrophobicity (alkyl

chain length of 12) seems to decrease inhibition capability. Although the QC12 sample did have

a comparable MIC to the QC 10 in the polypeptide dose response liquid assay testing for bacteria

growth inhibition, its attachment inhibition activity is not comparable to QC10. Increased

hydrophobicity may assist penetration of the bacteria cell based on hydrophobic interactions with

the lipid bilayer membranes; however it is also possible that this behavior is no longer sustained

at greater alkyl chain lengths (i.e. QC12) in the case of E. coli due to changes in the

compatibility between the cationic hydrophobic side chain and the amphiphilic lipid membrane

of the cell. These changes may more significantly affect E. coli than S. aureus due to the more

complex membrane structure of gram-negative bacteria, which may explain why there is no

significant decrease in S. aureus attachment inhibition by the QC12 polypeptide compared to the

QC8 and QC10 polymers. These results agree with the results of bacteria growth inhibition,

where the QC12 has the lowest MIC for S. aureus and the, QC8 and QC10 are also quite active

against S. aureus growth. Additionally, both molecular weights tested displayed the same trends

in activity.
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Figure 5-7. S. aureus attachment
with varying hydrophobicity (QC4

QC4 QC6

QC12 control

inhibition by quaternary amine functionalized polypeptides
- QC12; control= uncoated substrate).

QC8 QCIO QC1i2 control

10

Figure 5-8. E. coli attachment inhibition by quaternary amine functionalized polypeptides with
varying hydrophobicity (QC4 - QC12; control = uncoated substrate).

5.2.4 Polypeptide biocompatibility

The biocompatibility of these polypeptides was quantified using a hemolysis test in

which RBC lysis in response to these polymers was examined by monitoring free hemoglobin

absorbance. Table 5-5 shows results for all polypeptides that displayed a normalized hemolysis

greater than 0.005 at the highest tested polypeptide concentration of 5000 pg/mL. All

polypeptides were found to be highly non-cytotoxic in comparison to many naturally occurring
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AmPs as well as several antimicrobial polymers that have recently been developed."' 14 In all

cases in which hemolysis above 0.5% was observed, the concentration at which this occurred far

exceeded the polypeptide MIC against S. aureus and E. coli. This is a necessary requirement for

antimicrobial polymers to attain utility in clinical applications. The largest level of hemolysis

was observed for the QC8 polypeptide, with a maximum of approximately 23% for the DP = 75

polypeptide at a 5000 pg/mL concentration. Figure 5-9 shows hemolysis in response to varying

QC8 polypeptide concentrations. This polymer was also found to exhibit high activity against

both gram-positive and gram-negative bacteria, and therefore was expected to have some degree

of hemolysis. However, the concentrations at which the QC8 polymer exhibits complete bacteria

growth inhibition were 78.1-156.3 pg/mL and 156.3-312.5 tg/mL for S. aureus E. coli

respectively, which are far lower than the concentration at which significant hemolysis is

observed (approximately less than 8%).

Table 5-5. Normalized red blood cell lysis.a
DP Primary Quaternary (QC8) Quaternary (QC 10) Quaternary (QC 12)

75 <0.005 0.23 ± 0.013 0.20 ± 0.024 0.085 ± 0.029

140 0.032 ± 0.003 0.11 ± 0.007 0.15 ± 0.008 0.052 ± 0.008
a Secondary, tertiary, and quaternary (QC1, QC4, QC6) amine samples showed less than 0.005

normalized red blood cell hemolysis at the highest tested concentration.
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Figure 5-9. Normalized hemolysis for QC8 polypeptide.

5.3 Conclusions

In this work, we created a library of synthetic antimicrobial polypeptides that mimic

naturally occurring AmPs. These polypeptides were designed by systematically varying the side

chain functionality (primary to quaternary amine) and alkyl side chain length of a PPLG

backbone of varying molecular weights. To assess the antimicrobial potential of these

polypeptides, they were tested based on the criteria of bacteria growth and attachment inhibition

for both gram-negative and gram-positive bacteria, as well as biocompatibility. With respect to

bacteria growth inhibition, several polymers were found to exhibit MIC values that rival

naturally existing AmPs. For the quaternary amine series, increasing side chain hydrophobicity

led to increased bacteria growth inhibition within a certain limit. In particular, QC12 was the

most potent polypeptide against S. aureus, while both QC6 and QC8 were most effective in

inhibiting E. coli growth. The QC8 and QC10 polypeptides were optimal in completely
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preventing bacteria attachment, and consequently biofilm formation, for both S. aureus and E.

coli. Finally, with regards to biocompatibility, all of the antimicrobial polypeptides were found

to be highly non-cytotoxic in comparison to many naturally occurring AmPs with extremely low

hemolytic activity. Overall, these polymers possess many of the positive qualities of naturally

occurring AmPs, including effective MIC values, broad-spectrum activity, and biofilm

prevention capabilities. At the same time, these synthetic polypeptides are efficiently produced,

cost-effective, and biocompatible. The antimicrobial polypeptides developed in this work are an

important step forward in the production of a new class of antimicrobial therapeutics which have

the potential for clinical translation in both systemic and local delivery applications as well as for

use in semi-permanent medical device coatings. The flexibility of this system allows for the

systematic variation of polymer properties, ranging from side chain functionality to backbone

rigidity, which will provide insight into the mechanism of action of antimicrobial agents and aid

in the rational design of future antimicrobial therapeutics.

5.4 Supporting Information

5.4.1 Calculation of Thickness Measurements

Thickness of solvent cast polymers was estimated by assuming that the polymer is a rigid

rod a-helical peptide, 33 as shown below (Equations 1-6). The following schematic gives the

polypeptide dimensions.
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RFE

Figure 5-10. Schematic of the polypeptide dimensions

The length of the polypeptide, i, was estimated by calculating how many turns each polymer has

(3.62 repeat units per turn) and multiplying it by the distance between turns on an a-helical

backbone (1.5 A per turn). The polymer radius, RFE, was estimated by assuming the polypeptide

side chains protruded out from the a-helical backbone in a fully extended chain conformation.

The surface area, App, covered by a single polypeptide was estimated by multiplying by 2 RFE

(the polymer diameter). The total area covered by polypeptides if they were packed as cylinders

in a single monolayer, Asc, was calculated by multiplying App by the concentration of polymer

solution, Cps, and the volume casted, Vps, as well as Avogadro's number, and dividing this by

the molecular weight of the polypeptide, MWpp. The number of polypeptide monolayers, L, was

estimated by dividing the disc area, AD, by Asc. The thickness, h, was estimated by multiplying

the number of polypeptide layers by 2 RFE.

nturns - 36 (1)

1 = 1.5Ax nT (2)

App = 1 x 2 RFE (3)
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Asc = AppxCpsxVpsxNA
MWpp

L = AD
Asc

h = L x 2 RFE

5.4.2 Substrate Coating Experiments

(4)

(5)

(6)

The following graph shows thicknesses following solvent casting of QC6, QC8, and

QC10 polypeptide films before and after bacteria culture media treatment (data shown here

corresponds to incubation in CaMHB). The predicted thickness values before treatment based on

the above model are also shown. The estimated polypeptide thickness was within 30% of the

measured film thickness.

E

4000

E

0,

( 0

CP>

estimated thickness before treatment
- before treatment M after treatment

Figure 5-11. Morphology of films before and after treatment is shown for the QC10 polypeptide
solvent cast substrates in the following atomic force microscopy images.
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Figure 5-12. QC1O solvent cast substrate morphology (10 pm x 10 pm). (A) Before media
treatment (maximum z-scale = 22.1 nm). (B) After media treatment (maximum z-scale = 1.7
nm).
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6 Thesis summary and future work

6.1 Summary

The main objective of the work in this thesis was to develop new synthetic polypeptide

systems that mimic naturally occurring proteins. An emphasis was placed on the initial design

and demonstration of the utility of the PPLG system. The PPLG system allows for control over

the polypeptide functionality as well as secondary structure giving it an advantage over

traditional random coiled polymer systems. Within this thesis, the utility of this system is

demonstrated in the areas of biomimetic materials, drug delivery, gene delivery, and

antimicrobial polymers. In Chapter 2, a summary of detailed experimental methods was

presented to aid future researchers working with this system. In Chapter 3, the synthesis is first

introduced and graft copolymers inspired by proteoglycans and glycoproteins were synthesized.

PEG chains with varying molecular weight from 750 g mol- to 5000 g mol- were grafted onto a

PPLG backbone at nearly perfect grafting densities. In Chapter 4, the PPLG system was utilized

to create an entire library of pH responsive polypeptides. We demonstrated that we can tune for

specific interactions and responsive behaviors. These polymers can adopt an a-helical structure

at biologically relevant pHs and change solubility over these pHs. These properties are of

interest for a number of applications; here we have performed preliminary experiments that

demonstrate that these polymers are strong candidates for drug and gene delivery. In Chapter 5,

the PPLG system was utilized to synthesize an entire library of antimicrobial polypeptides that

mimic naturally occurring AmPs. The flexibility of this system allows for the systematic

variation of polymer properties, ranging from side chain functionality to backbone rigidity,
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which will provide insight into the mechanism of action of antimicrobial agents and aid in the

rational design of future antimicrobial therapeutics.

6.2 Summary of clickable polypeptide systems published after PPLG

Since our initial report of PPLG in 20091, other research groups have extended this

platform methodology of combining NCA polymerization and click chemistry side chain

modification. Chen et al. used PPLG to click on several different azide functionalized

monosaccharides to form glycopolypeptides.2 Tang and Zhang reported the synthesis of poly(y-

azidopropyl-L-glutamate), which was functionalized with alkyne containing mannose moieties

via the Huisgen click reaction.3 Sun and Schlaad developed thiol-ene clickable polypeptides,

where they synthesized poly(D,L-allylglycine) and clicked on thiol functionalized sugars.4

Huang et al. synthesized poly(D,L-propargylglycine) and clicked on azide containing protected

galactose, using Huisgen click chemistry.5 Currently, the Hammond group is exploring new

clickable polypeptide systems that utilize the Huisgen click reaction and the thiol-ene reaction.

6.3 Future work

The materials and methodologies developed in thesis provide the foundation for the

development of a vast library of materials that have applications in many different aspects of

biomaterials. In this section, future research directions related to the study and improvement of

the brush polymer system, responsive polymers, and the antimicrobial system are discussed.

6.3.1 Extension of the polymer grafting system

The ultimate goal of the PPLG polymer grafting system is to develop molecules that

closely mimic natural brush like macromolecules. There are several relevant brush polymer

systems that should be explored. Through the use of living polymerization methods, well
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defined polymeric side chains with a wide variety of functionality can be synthesized and

attached to PPLG. Furthermore, the incorporation of naturally occurring polymer side chains

will more closely mimic natural brush like macromolecules.

* Introduction of nondegradable side groups. An ATRP initiator containing an azide

group has been synthesized. This initiator can be used to broaden the scope of

polymeric materials that can be clicked onto the PPLG backbone. 6 Scheme 6-1,

shows the synthesis of an acrylate polymer bearing oligo(ethylene oxide) (EO)n side

chains prepared by ATRP using an azide containing initiator. The introduction of

these side groups will increase the bulk of the side groups and will also introduce

thermal responsiveness.7' 8 A similar approach could be used to incorporate polymers

synthesized by RAFT polymerization. These large macromolecules can act as

'crowder' molecules that represent the crowded protein microenvironment of the cell

or sensing macromolecules.

Scheme 6-1. Synthesis of polymeric clickable side groups using an ATRP initiator
0 CuBr 0

N--- +DNbpy NmB
3 O Br O 0 MeOH 3 m

Anisole 0 0
0

0

Introduction of degradable side groups. ATRP and RAFT are convenient methods

to introduce side chains with a carbon backbone. The ring opening polymerization of

functionalized cyclic carbonates (Scheme 6-2) is one method for introducing

degradable polyester side chains. These monomers can be produced with a wide
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variety of monomer functionality.9 Biodegradable NCA polymers can also be

synthesized using an azido amine initiator.10

Scheme 6-2. Ring opening polymerization of carbonates initiated by an azido alcohol
0

N3f OH + - 0 N OIH

O R
O R

0 Introduction of biologically occurring molecules. The incorporation of

biologically occurring molecules is somewhat more challenging but will provide a

means of more closely mimicking proteoglycans and glycoproteins. Single sugars

2
have already been clicked onto the PPLG system. There are commercially available

disaccharide molecules that can be clicked onto the PPLG backbone. The direct

attachment of polysaccharides to the PPLG may be accomplished by functionalizing

the reducing end of the sugar molecule.

6.3.2 Extension of the responsive colloidal system for drug and gene delivery

An entire library of pH responsive polypeptides has been synthesized and the utility of

these molecules for drug and gene delivery has been demonstrated. From this system, we have

gained a considerable amount of information on how to better design colloidal responsive

systems.

6.3.2.1 Gene delivery

For gene delivery, one of the limiting factors is endosomal escape. Increasing the charge

density of these molecules will increase endosomal buffering and this increased buffering will

improve endosomal escape. There are protocols available for the synthesis of linear short azide

terminated polyamines," and other buffering groups such as arginine or pyridyl groups can be
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modified with an azide. The incorporation of these molecules will increase the side chain charge

density by as much as a factor of 3 and will significantly enhance endosomal buffering. An

alternative to increasing charge density could be the incorporation of endosomal escape peptides.

These peptides change conformation when taken up into the endosome causing the endosome to

rupture.12, 13

Another challenge associated with siRNA delivery is the release of the cargo once

delivery vehicle has escaped the endosome. One strategy that could be employed is the addition

of a disulfide bond between the triazole ring and the primary amine used to complex the siRNA.

When this linkage is broken apart in the presence of glutathione in the cell or other reducing

agents, the siRNA will be released from the polymer/siRNA complex. 14-17 The incorporation of

asymmetric disulfides is challenging but there are multiple strategies in the literature for

synthesizing these molecules.1 8-21

6.3.2.2 Drug delivery

The PEG-b-PPLG system substituted with diethyl and diisopropyl amine can assemble

and disassemble as a function of pH for pH responsive drug delivery. Several improvements can

be made to this system to successfully delivery drug cargo to desired cells. Although these

groups accomplish reversible micellization, they may not be the best groups for solubilizing

hydrophobic drugs. Incorporating groups that enhance hydrogen bonding will enhance drug

loading and reduce cargo leaking into the blood stream before it had reached its intended target.9

Mixing different hydrophobic groups has also been shown to increase the loading of drugs inside

the micelle core. 22 For releasing cargo, a different strategy could be introducing acid labile

groups that when the acid labile bonds are degraded, the interior block of the micelle goes from

hydrophobic to hydrophilic.23 An alternative to solubilizing the drugs into the hydrophobic core,
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drugs can be covalently attached to the polymer backbone utilizing labile linkers that break once

the cargo has reached its final destination.

6.3.2.3 Incorporation of other responsive groups

The incorporation of other responsive groups (e.g. thermal or UV responsive) could be

useful for modulating molecule secondary structure, self-assembly, and overall function of these

materials. The incorporation of short oligo(ethylene oxide) side chains can induce lower critical

solution temperature (LCST) behavior in polymers. Preliminary studies have shown that these

short side chains, when attached to PPLG can induce an LCST. Furthermore, when short

oligo(ethylene oxides) have been attached to similar poly(lysine), a high LCST was observed.26

The Hammond group has shown that temperature can be used to reversibly assemble micelles,

27
by using an LCST polymer as the interior block. UV responsive groups have also been

incorporated into polymers to make photoresponsive materials, for optical and electrical

switching, data recording, reversible solubility control of enzymes, light-actuated nanovalves,

and light responsive reversible micelle assembly.28 -30  In nature, photochromic molecules

represent the basic molecular trigger for photoreceptors for molecular signaling.31 For

polypeptides, the introduction of both spiropyran and azobenzene, have been shown to control

the secondary structure of polypeptides as well as the hydrophobicity of the polymers. 3 '

6.3.3 Extension of antimicrobial polymer work and the development of membrane

insertion peptides

The exact mechanism of the antimicrobial polypeptides is currently unknown. There are

several possible modes of action of these polypeptides and exploration of the mechanism of

action will provide insight into the design of more potent antimicrobial polymers. The review

article by Gabriel et al. provides an overview of experimental protocols for exploring the mode
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of action of antimicrobial polymers. 32  Once protocols are established for determining the

mechanism of action, new polymers should be synthesized that have different side chain

functionality as well as backbone rigidity. Ivankin et al. showed that backbone rigidity plays an

important role in the method of action of naturally occurring AmPs. 33 With the clickable

polypeptides, we are able to explore this complex aspect of AmPs which is not possible with

other polymeric systems that can only adopt a flexible backbone conformation.

The antimicrobial peptides synthesized in this work interact with the membrane of the

bacteria. These polymers could also be used to mimic membrane interacting proteins that

undergo reversible transmembrane insertion. Membrane proteins play an important role in many

cellular processes, including cell signaling, active transport, ion flow, and cell-cell interactions.

Short transmembrane peptide series are typically hydrophobic in nature, making them difficult to

study because oftentimes if they are placed in water, they will self assemble with themselves

rather than with a lipid bilayer. 34 A water soluble, short membrane insertion peptide, pHLIP,

which undergoes membrane insertion at low pH (< 7.0), has been recently reported. This peptide

is synthesized by solid-phase peptide synthesis using standard Fmoc chemistry. 34 A unique

aspect of this peptides is that it is fully, monomerically water soluble at biological pH (7.4),

making it convenient to study. It is typically present in one of three different states: (1)

completely water soluble, (2) bond to the surface of a lipid bilayer in a monomeric, unstructured

state, and (3) inserted into the membrane in a structured alpha helix (pH <7.0).34, 35 Studies have

been performed to determine the mechanism and energetics of insertion and to explore possible

applications of these membrane peptides in drug therapy, diagnostic imaging, genetic control, or

cell regulation.34 40 The pHLIP peptide has been used to deliver cargo molecules such as polar

molecules and cyclic peptides that are normally not permeable to cells across the cell membrane
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via attachment with a labile linker to the C terminus of the protein.38 The peptide has also been

demonstrated as an imaging diagnostic agent for hypoxic tumors. 41,42 Despite its great promise,

the cost of generating this relatively long peptide using solid-phase approaches is high and yields

only small quantities thus limiting the technology and the ability to utilize these systems for a

range of biomaterial or biological, environmental, and other engineering applications. With the

clickable PPLG system, we could use the various click groups to mimic the pH responsive

behavior of the pHLIP peptide and other membrane interacting peptides.

6.4 Concluding remarks

This thesis introduces and demonstrates the utility of a clickable polypeptide system. The

synthesis of PPLG and post functionalization with various molecules and macromolecules

provide a unique opportunity to create vast libraries of biomimetic materials. Libraries of pH

responsive polypeptides, antimicrobial polypeptides, and PEG brush polymers were synthesized

and characterized in this body of work. It is hoped that these systems provide the foundation for

better material systems and provide a unique opportunity to study complex macromolecule

systems that mimic naturally occurring macromolecules. Ultimately, this synthetic platform

could be used to develop new therapeutics, as well as develop a fundamental understanding of

how complex biological systems work.
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