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Abstract

This thesis describes a method of merging the contents of two VMware disk images
by merging the file systems therein. Thus, two initially disparate file systems are
joined to appear and behave as a single file system. The problem of file system
namespace unification is not a new one, with predecessors dating as far back as
1988 to present-day descendants such as UnionFS and union mounts. All deal with
the same major issues - merging directory contents of source branches and handling
any naming conflicts (namespace de-duplication), and allowing top-level edits of file
system unions in presence of read-only source branches (copy-on-write).

The previous solutions deal with exclusively with file systems themselves, and
most perform the bulk of the unification logic at runtime. This project is unique in
that both the sources and union are disk images that can be directly run as virtual
machines. This lets us exploit various features of the VMware disk image format,
eventually prompting us to move the unification logic to an entirely offline process.
This decision, however, carry a variety of unique implications and side effects, which
we shall also discuss in the paper.
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Chapter 1

Motivation and Requirements

1.1 Introduction and Motivation

Consider the IT team of an enterprise, tasked with providing personal workspaces

and computing resources to all employees of the company. Traditionally, the team

maintains disk images of a standard workstation deployment, which includes a base

operating system installation and a few basic applications, such as Microsoft Office.

When a new computer arrives, the IT team must manually apply the image onto

the new machine. If an employee needed specific applications, such as an architect

requesting a CAD application, he would likely need to seek out the IT team, who

manages the licenses for all company software. An IT representative would then need

to install the application manually on the employee's personal workstation, applying

company-specific settings where necessary.

Much of this work is repeated for every enterprise workstation. Is such repetitive

manual work necessary? Imagine if the installation and configuration of each appli-

cation is only done once, and the image of its full configuration is stored centrally in

a software "bank." Users can then hand-pick their own pre-configured software suite

in a personal workspace, to which their subsequent changes are written.

Under the hood, this would require the ability to merge multiple disk images. The

source images are largely identical to each other except for the places where program

installations differ, so the merge tool must be able to remove and resolve duplicate



file names while combining any unique directory contents. In addition, the source

images must be read-only to normal users so that they cannot arbitrarily edit any

images in the software bank. On the other hand, the union image must be read-write

to be useful at all.

In this paper, we explore methods of merging read-only source disk images into

read-write union images.

1.2 Requirements

Given the vision detailed above, we now enumerate some of the requirements that

the final product must meet to realize our goals.

1.2.1 Merging is Done on Disk Image Level via VMware

.vmdk Images

Foremost, the systems must be merged on a disk image level. More specifically, we

loosen our restrictions to require that the sources be normal disk image files, but the

unioned result may be anything that looks and behaves as a disk image file to all

possible users of the image. From this, we should be able to mount or run the union

image directly.

We chose VMware's proprietary .vmdk for a couple of reasons. First, VMware

is by far the most widely adopted machine virtualization solution, especially among

corporate markets. Second, it has built-in snapshotting capabilities via series of

delta links (also known as redo logs) upon a base image. This snapshotting ability

also conveniently implements our copy-on-write requirement described in the next

section, though the delta entries only track block-level changes. Lastly, VMware

provides a high-level documentation of their .vmdk image format and an API for

basic disk maintenance operations, making this project feasible without much reverse-

engineering.



1.2.2 Source Images are Read-Only; Union Image is Read-

Write

From the description of the inspiration above, we see that the "master" copies must

remain read-only, as they must remain reusable after multiple deployments, and that

the "personal" copies must support read-write in order for them to be useful. In

terms of merging images, this means that the source images must remain untouched

while allowing read-write behavior for the resulting union image.

This implies that every union image must maintain its own read-write storage,

containing a user's personal changes to the file system. The easiest solution is to

make copies of both images, dumping entire directory trees and file contents, and

merging directory contents where the directory structures overlap. However, this is a

tremendous waste of storage, as a large part of a computer's storage may undergo very

few changes throughout its lifetime. This, compounded with the fact that many users

will be making copies of the same base images, results in huge amounts of redundant

storage in the end.

The other solution is to have the read-write space store the user's personal changes

to the file system only. Under this design, when the user attempts to access a file, the

user's read-write storage is consulted first, in case the user has already made changes

to the file; failing that, he must have not altered the file, and thus we can fall back to

the base images to look for this file. This type of behavior is called copy-on-write, and

allows us to store only relevant pieces of data without incurring too much needless

redundancy or extra storage.

1.2.3 Support for Merging Multiple Source Images

A useful user environment could hardly be built from two base images. Instead, users

should be able to select arbitrary combinations of base images to suit their own needs.

This essentially means that our utility must be able to merge any number of images.

It's important to point out here that although our final solution demonstrates a

merge of only two base images at a time, the same architecture can be extended to



handle an arbitrary number of source images within a single pass. Our solution is

merely a proof of concept with many rough edges, and not intended to be a proper

production-level utility.

1.2.4 Low Storage Overhead

This was covered previously, but the extra storage overhead for merging the two disks

should be as small as possible. Making copies of entire source disks results in too much

needless redundancy and is generally a complete waste of space. Copy-on-write is a

more acceptable alternative, though its storage efficiency ultimately depends on the

particular implementation itself. In any case, our solution lets VMware handle the

copy-on-write for us, so the amount of storage overhead is not under our control.

1.2.5 Performance

Lastly, performance considerations should not be overlooked. Again, since our utility

is a proof of concept, we cannot expect the final product to be completely streamlined.

That said, online performance should be at the very least acceptable, if not perfect.

Offline preprocessing, while much more forgiving performance-wise, still should not

take prohibitively or unrealistically long. As it turned out, our solution relies entirely

on offline preprocessing, so our merged file system is able to run at normal, pre-merge

speeds, without incurring any performance penalties.



Chapter 2

Previous Work

There has been much previous work in the area of combining mounted file systems.

This entire family of unioning file systems performs the merge on a live system,

performing lookups and other file system operations on-the-fly. The earliest ancestor

of modern unioning file systems, the Translucent File Service, dates back to 1988,

while work continues today in the form of UnionFS and union mounts[6]. However,

this is not an easy problem to solve, and to this day, every attempt at implementation

has been riddled with issues in correctness or complexity. Although unioning file

systems are indisputably a much-needed addition to Linux, no single implementation

has yet been deemed fit for inclusion in the mainline Linux kernel.

There is surprisingly little work done on merging entire disks or disk images.

Our implemention is unique in that it approaches the file system unification problem

from a disk-image angle. The ultimate vision is that the final union is not only

mountable as a part of a directory tree, but also bootable as an entire operating

system. This perspective also frees us from the need to adhere to file system operations

and conventions, and lets us attack the problem from a lower level.

In this chapter, we look at the history of unioning file systems, and how some of

the concepts and requirements have evolved over time.



2.1 Early Implementations: TFS and IFS

Perhaps the earliest ancestor of unioning file systems is the Translucent File Service,

developed by David Hendricks for SunOS in 1988. TFS merges a read-write front

layer, to which users' personal changes are written, and a read-only back layer. TFS

is so named because the front layer is mounted as the main source file system, while

allowing files unique to the back layer to "show through." This also implies that,

in the case where a single file name exists in both file systems, the version in the

front layer is prioritized. In other words, files in the front layer "mask out" those

in the back. This type of approach to unioning file systems, where front layers take

precedence over the layers behind them, is known as stacking.

TFS creates a type of file called backfiles in the front layer. This is basically

a lookup cache of files unique to the back layer. To handle lookups, TFS simply

looks through current directory entries, then scans the backfiles. The backfiles are

guaranteed to be consistent, as the back layer is read-only by definition.

Again, changes to either file system are written only to the front layer. Changes

to the front layer behave as a normal file system would handle them. When a user

makes a change to a file showing through from the back layer, this file is first copied

to the front layer, then modified and saved in place. In this way, TFS implements

copy-on-write behavior. Deletions from the back layer are handled using white-outs

written to the front layer, which are essentially entries to "mark" files as deleted.

During file lookups, these white-out entries in the front layer simply "mask out" the

directory entries in the back layer. Thus, deletions can be allowed in the unioned file

system while still maintaining the read-only constraint in the back layer.

In 1993, Werner Almesberger created the successor to TFS, the Inheriting File

System[3]. The author claims that it is very similar to TFS, with the main difference

being its support for an arbitrary number source file systems, whereas TFS only

allowed two. However, he made one key observation that set the precedent for years to

come. Both IFS and TFS, having been implemented entirely in-kernel, were becoming

much too complex. He suggested that future attempts should take a hybrid approach



that contains both the kernel- and userspace components.

2.2 Union Mounts

The Plan 9 Operating System has a primitive implementation of union mounts via

union directories[4]. As a non-UNIX operating system, it does not need to adhere

to UNIX standards. As a result, its implementation is comparatively trivial at the

expense of some interesting behavior. For example, it does not use white-outs, and

does not attempt to merge the namespaces of source directories - when two direc-

tory trees contain files with identical path names, the names simply appear twice in

directory listings.

BSD union mounts are more advanced than the Plan 9 version and are relatively in

line with traditional UNIX semantics. A new directory tree can be mounted above or

below an existing union mount as long as the topmost tree is writable. As with TFS

and IFS, the topmost tree is given highest priority in namespace resolution and de-

duplication. When a directory is first accessed, it is always copied to the top writable

layer, a process commonly called copy-up. The same copy-up procedure is called when

a file is opened in write mode only. White-out entries have their own directory entry

type, DHWHT, and are written to the top layer either whenever a directory is removed,

or only when there is another directory entry with the same name in a lower branch,

depending on user configuration. New directories that replace whited-out directories

are created by marking them as opaque so that lookups will not attempt to skip them.

Linux union mounts are similar in many ways to BSD union mounts. They handle

white-outs and opaque entries in much the same way, and file and directory copy-

ups behave similarly. File systems are mounted as union mounts by setting the MS_

UNION flag, and must be mounted either as read-only, or writable with white-out

support. Each Linux union mount creates its own union-mount structure, which

contains pointers to the next layer below (for normal lookups), and to the layer

above (for reverse lookups). The differences are in the details of implementation, but

architecturally. Linux union mounts borrow much from BSD union mounts.



2.3 UnionFS and AUFS

UnionFS[11] is probably the most well-known of the unioning file systems. Develop-

ment began in 2003 at SUNY Stony Brook, and continues to this day. A new version,

version 2.x, has been proposed, and is the fork under current development.

One improvement that UnionFS offers over previous iterations is its ability to

support arbitrary combinations of read-only and read-write mounts. Rather than

using a stacking approach as in previous implementations, UnionFS accesses each

source file system directly in a "fan-out" manner. Therefore, each source file system

is viewed as a branch, rather than as a layer - however, users must still specify a

precedence for each branch to resolve naming conflicts. Given files with identical path

names, the one in the highest-priority branch always takes precedence, ignoring those

in lower-priority branches. In other words, file lookups start at the highest branches

and proceed downwards. On the other hand, when a user requests a write(o to a

read-only branch, UnionFS searches upwards for a writable branch, creates a new file,

and copies up file contents and metadata. File deletes (unlinks) are executed over

all writable branches; if the delete occurs on a read-only branch, a whiteout entry

named .wh.<f ilename> is created in the next writable branch above.

UnionFS adheres to VFS specifications (detailed in next chapter), essentially look-

ing like any other file system to the kernel. This also means that it defines its own

VFS superblocks, inodes, directory entries, and so forth. Each VFS structure provides

pointers to private data for file-system-specific use. For UnionFS, this area contains

pointers to the objects that a UnionFS file corresponds to in the lower branches.

For example, a UnionFS dentry for /f oo/bar/ contains UnionFS-specific unionfs_

dentry-inf o, which in turn contains a lower-paths array. Each item in this array

points to the underlying VFS /f oo/bar/ directory entry in a particular branch, as

well as to mount structures of the branch. Thus, a file system call to a UnionFS path

first passes through VFS, which delegates the call to UnionFS, which in turn calls

VFS again for the appropriate underlying file system type.

AUFS (Another UnionFS) is a complete rewrite of UnionFS by Junjiro Okajima,



starting in 2006[5]. Design-wise, it borrows much from UnionFS. It touts numerous

features and improvements over UnionFS, such as writable branch balancing (i.e.,

write o always choosing the branch with the most free space). However, the main

problem with AUFS is that it is extremely complex, consisting of almost twice as

much code as UnionFS 1.x, hardly any of which is documented. AUFS as a whole

has been deemed unmaintainable.

2.4 LatticeFS

Yang Su's Master of Engineering project, LatticeFS[10], re-examined the problem

of unifying directory trees on a filesystem level. For reasons explained later in this

paper, we eventually decided not to use his work, but to start anew at a lower level.

Still, we explain his work to provide some background for our discussion of design

decisions later on.

LatticeFS combines multiple source directory trees by adhering to configurable

conflict resolution rules. The rules are modular, such that users could substitute

their own rule by extending a base Policy class. In this way, LatticeFS differs from

previous solutions, which all had different, but hard-coded conflict resolution schemes.

Another unique feature to LatticeFS is that it does not modify any source file system

trees; rather, any changes to the combined file system is written copy-on-write to a

user's personal storage area on top of the source branches. Like previous variants, file

deletions from source trees are handled via white-out files in the writable personal

storage area.

A typical LatticeFS deployment requires each source directory tree to be mounted,

as well as an extra mount point for the unified file system. LatticeFS is built upon

fuse (Filesystem in User SpacE) - described more in detail later - to facilitate gluing

all of the components together. The main motivation behind fuse is to let developers

implement file system operations via userspace programs, rather than having to deal

with writing loadable kernel modules. LatticeFS uses fuse to run on top of the source

file system layer. A typical file access operation involves checking for white-out and



looking for a private version in the personal layer; failing that, it looks through each

of the source file systems in turn, obeying any conflict resolution rules.

Two versions of LatticeFS were written, one to focus on performance, and the

other to prioritize simplicity and flexibility. The simpler version - called the "runtime"

version - resolves conflicts on-the-fly, whereas the "compile-time" version precomputes

all conflict resolutions before the union file system is mounted and deployed. However,

despite these performance optimizations, LatticeFS ran significantly slower than its

constituent source file systems when mounted on their own. At best, it was twice

as slow; more commonly, it was around 20 times slower in the performance-centric

"compile-time" version and 60 times slower in the "runtime" version. Possible reasons

included the python and fuse overhead, but perhaps more importantly, each file access

in LatticeFS actually required multiple file lookups - first in personal copy-on-write

and white-out area, and then in each of the source branches. Still, it was a very

worthwhile and useful proof-of-concept, and highlighted some of the issues and pitfalls

to be aware of in our own work.

In any case, whenever there is any online component to run, performance becomes

an issue. Programming becomes trickier, and careful considerations must be made

in the interest of efficiency. We emphasize this issue now because later we discuss

a different approach, in which the merging takes place completely offline, thereby

avoiding all of this runtime overhead.



Chapter 3

The VMware Disk Merge Utility

Before we delve into under-the-hood implementation details, we present a high-level

description of how our solution to this problem operates. We will also state some of

the requirements and properties here, but leave their justifications for the rest of the

paper.

At the most basic level. the disk merge utility works by taking in two source

VMware disk image (.vmdk) files and outputting another image file that contains the

union of the two sources. Unlike many of the previous unioning file system solutions,

our entire process takes place offline. The utility starts by concatenating the disks

themselves together into a single disk. Then, it delves into each disk, examines the

contents, and merges them in place.

In the first stage, the virtual disks themselves are joined together. To begin, the

utility creates two sets of snapshots for each source disk. Then, it "stitches" one

set of snapshots together by concatenating a few lines in a configuration file. Since

the snapshotting process invalidates the original source image files, the other set is

reserved for acting as the new interface for the source disks.

Now that the union disk appears as one large disk, we can start working with the

contents of the disks themselves. First, the source directory trees are copied to the

union, creating all the regular files without writing any data to them. The purpose

of this step is to merge the directory contents of any directories that are common to

both sources, and remove duplicates when two files have identical names and paths.



Now, since we simply concatenated the virtual disks together, most of the data blocks

should still be intact from the original disks. At this point, the union disk and the

source disks should be almost identical, except for areas overwritten by directory

entries or file system data structures. The final step is to use the source snapshots

to tell us how to associate the orphaned data blocks back with files. We will also

describe a workaround for the overwritten parts of the disk in Chapter 5.

3.1 Input Requirements

There are a few requirements that all source disks must satisfy. They are a result

of the simplifications we have made, and it is certainly very feasible to extend our

utility to encompass these cases and eliminate the requirements. The rationale for

most of these requirements can be found in Chapter 7, where we explain some of the

limitations and shortcomings of our disk merge tool.

Currently, the utility can handle only two source images. They must be supplied

in the form of VMware disk image (VMDK) files whose descriptor files are separate

from actual disk data. The disk images are allowed to contain snapshots, but they

must possess the same number of snapshots across all sources. Each disk must be

partitioned using f disk or cf disk default values with an MS-DOS-style partition

table (63-sector offset, partitions ending on cylinder boundaries). Each file system

that is to be merged must reside in the first primary partition of a disk.

We currently only support the ext2 file system format. The desired union block

size must be equal to the block size of every source file system. There should be at

most one hard link to any file or directory (not including links from . or . .), else

post-merge operation of the file system can fail catastrophically.

3.2 Output Characteristics

The resulting disk image, which constitutes the union of the two source disks, is

nothing more than a standard VMDK file. In the interest of storage efficiency, the



utility creates a sparse disk, meaning that it does not allocate the size of the entire

virtual disk upon creation, but rather lets the image file grow as the on-disk storage

grows. Additionally, due to the way VMware snapshots work, the original source

images become inaccessible after the merge. Thus, to preserve access to the source

disk data, two new snapshots of the source disks are created. Any future requests for

the disks should use these new snapshots instead.

The entire merging process takes place offline. The new disk is usable immediately

with no need to run any background daemons or other online components. The

advantage to this is performance; as a plain disk image file with no runtime logic, it

run as fast as any other VMDK image. The main disadvantage inherent to offline

processing is that the union disk can only represent a frozen snapshot of the sources

at the time of merge. Any future updates to source disks will not be reflected in the

union disk.

The current implementation is strictly a merge of on-disk file systems. The union

disk may contain OS configuration that is no longer applicable or correct, so it is

highly probable that that the union disk will not boot properly. Another inconve-

nience is that the merge process can introduce file fragmentation to a small fraction

of the files. The most serious weakness, however, is the lack of proper support for

hard links. All of these issues can reasonably be resolved in future improvements.
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Chapter 4

Design Decisions

The different approaches to the problem essentially boils down to the layer at which

the merging and copy-on-write is done. Inspired by LatticeFS, the file-system-level

approach looks at and compares files as a whole, combining the images above the

directory trees. The other idea involves merging at the disk sector level, examining

discrete chunks of data on disk. The file-system-level solution requires an online

component, while our sector-level design performs the merging offline, with no online

components. In this chapter, we examine various pathways and what they entail. All

have their advantages and disadvantages, which we shall discuss, and we will provide

reasons why we ultimately chose the latter route.

4.1 Strawman Approach

One naive approach is simply to dump file system contents of all source images into

the union image, i.e., make copies of all files and directories in each source image.

Although this approach is the simplest and by far easiest to implement, it performs

poorly at many of our aforementioned requirements. Therefore, a straight file system

dump is nowhere near an acceptable solution for our needs.



4.2 A File System-Level Approach

The file-system-level approach mounts both images, then merges the two directory

trees above them. It is very similar to LatticeFS, and in fact, the major benefit to

this method is that it derives heavily from previous LatticeFS work. However, in

doing so, there are many details that must resolved, not all of which are trivial - or

even feasible - due to the proprietary nature of VMware products.

4.2.1 VFS and fuse

UNIX is capable of supporting so many different file system types largely thanks to

VFS and fuse. They provide clean interfaces that abstract away much of the lower-

level differences and details while providing vast flexibility and extensibility to the

levels above. It is no surprise, then, that they are major players in our file-system-level

approach to the problem.

The VFS[9] (Virtual File System or Virtual Filesystem Switch) layer sits on top

of the individual file system implementations. It provides a uniform interface for

file system calls that hides the implementation-level differences between disparate file

systems. VFS does this by enforcing a common file model to which all file system

implementations must adhere. For example, VFS provides a table of function pointers

of generic file system operations (such as openO, readdirO, stat(), etc.) that

specific implementations must fill in. In other words, to borrow an analogy from

object-oriented programming, VFS essentially defines the "interface" or "abstract

base class" that specific file system drivers must "implement." Thus, VFS is a "switch"

in the sense that it decides which file system driver to delegate the call to, analogous

to polymorphism in the object-oriented world.

As previously mentioned, fuse[1] (Filesystem in User SpacE) allows for developers

to implement file system capabilities in userspace programs, instead of having to deal

with the stringent requirements of writing loadable kernel modules. This helps confine

bugs to userspace programs; bugs in a kernel module can potentially lock up the entire

kernel. Fuse essentially trades a minimal performance hit for robustness and isolation,



completely justifiable for non-low-level, non-performance-critical operations.

Fuse works by providing two components, a kernel module that sits below VFS

at the same level as other file system drivers, and a library that sits in userspace

to communicate with the userspace file system utilities. When a user accesses a file

within a fuse mount, the corresponding requests are passed to VFS to delegate to the

appropriate file system driver. VFS then invokes the fuse kernel module, which in

turn interacts with the userspace file system program via the fuse library. Figure 4-1

demonstrates this call flow graphically.

examnp ehello /tmp f e

glilw goel

kemecl
FUSE

VFS

Ext-I

Figure 4-1: The logic flow to a file within a fuse-mounted file system[1].

4.2.2 vmware-mount

Many VMware products, including VMware Server and Workstation, include a command-

line utility called vmware-mount. This utility allows mounting partitions inside VMware

images onto the "host"' system without having to run any full-scale VM emulation.

Essentially, vmware-mount provides a translation layer between VMDK and raw disk

image formats. Thus, unlike normal operation, under which the image is mounted



and accessed under the guest OS, vmware-mount requires that the "host" OS know

how to deal with the raw disk image. In other words, given a disk image, the "host"

OS must have the appropriate file system drivers, and be able to read and write the

file systems contained therein.

As a side note, newer versions of Linux vmware-mount also employ fuse to create

a loop device that is then mountable as a normal file system. In contrast, older

versions used a messy combination of abusing network sockets and loop mounting.

This is just one of many examples where fuse helped create a much cleaner, less buggy

implementation of the same functionality.

4.2.3 The File-System-Level Design

At the bottommost layer, vmware-mount abstracts away details of the proprietary

VMDK format and lets us only worry about file system contents, reducing our problem

to simply merging source directory trees. At the next layer above, we must present

a single file system that reflects the user's changes on top of combined contents of

source trees.

To do this, we would use fuse to help present a file-system-like interface to the

OS. However, under the hood, our userspace program would redefine file system

operations to handle the file system merging, conflict resolution, and personal copy-

on-write. These changes would include, for example, simulating unlink() operations

via adding white-outs, or re-routing write(o to write changes to a separate personal

read-write space rather than overwriting the original file. Most notably, file lookup

operations would need to be overhauled to perform a series of lookups in the following

order: (1) consult the white-out list, (2) look up the file name in the user's read-write

space, (3) fall back to the read-only source trees, in the order specified by the conflict

resolution scheme.

The file-system-level merge via fuse is exactly Yang Su's project described earlier,

so that part is already done. The next step would be to package the unified file system

as a disk image and convert it back to a VMDK format - or at least a format that

looks like a VMDK file to the VMware application. Since the file system merge also



takes place on-the-fly, the VMware disk image conversion must also be calculated at

runtime. One way to accomplish this is via hooking into read() and write 0 system

calls between VMware and the host OS - meaning that we would also need to write

a host-OS daemon that communicates with the guest OS.1

In addition to this complexity, the actual runtime conversion from a file system

tree to a disk image might simply be infeasible. During a file access, LatticeFS only

looks at very specific slivers in the directory trees corresponding to the file's path.

It is extremely difficult to estimate the position of such a sliver with respect to an

entire disk without a real-time picture of the entire file system's disk usage. This is a

key problem to overcome, as VMware expects a sequential model of a disk, and needs

to query specific offsets into the disk. Furthermore, even had we solved the online

file-system-to-image conversion problem, the VMDK format is still proprietary and

documented only at a very high level. It would require much reverse-engineering to

convert a raw disk image format back to VMDK on-the-fly alone.

Figure 4-2 summarizes the steps described above for the file-system-level design.

The bottleneck is near the bottom of the chain, which unfortunately appears to be

prohibitively infeasible.

4.3 A Disk-Sector-Level Approach

The sector-level approach handles the copy-on-write in the raw data sectors rather

than as a layer on top of the file systems. This approach requires dissecting source file

systems down to their raw data blocks, then reshuffling these blocks to reconstruct

and merge the final file system.

As this level deals with fine-grain disk sectors, we will start by introducing the

VMware's VMDK (Virtual Machine DisK) format and introduce a few VMDK-related

concepts.

For clarity, as these terms are often interchangeable in practice, from here on block

'Or one that communicates with LatticeFS running on top of vmware-mount, if the disks are
accessed using vmware-mount rather than through a running VM.



user app libfuse LatticeFS, etc

"read file" userspace

kernel space

VFS

"read file"

FS 1 FS2 . . . fuse

"read block" guest OS

VMware map union FS to vmdk

userspace

"read merged jmgvm dk" kernelape

"intercept read()/write() syscalls from VWware" s casdaemon

host OS kemnel

FS-level design components

Figure 4-2: The file-system-level design, as compared to normal call flow. The flow
on the left describes the path for a standard VMware file access call. The path down
the right (through fuse) describes the file-system-level design.

will refer to the basic unit of storage in a file system, whose size depends on format-

time configuration settings. The physical hard drive units will be called sectors, which

are almost always 512 bytes in size.2 In most sane file systems, file system block sizes

are multiples of hard drive sector sizes.

4.3.1 VMware Image (VMDK) File Format

A normal image file simply contain the raw data within a disk. VMware provides

enhancements of its own, and as a result developed their own disk image format: the

VMDK (Virtual Machine DisK) format[2}. These enhancements include support for

snapshotting, growing the image file size as the virtual disk storage grows (rather

than allocating the entire disk at once), and handling arbitrarily large virtual disks

on host systems that limits file sizes to 2 GB. Consequently, as more features were

2Although newer disks may use larger sector sizes, almost all provide a 512-byte-sector emulation
mode for compatibility.



added, the image format became increasingly complex. We will first introduce some

basic VMware concepts and terminology, then move on to a basic description of the

file format itself.

VMware Image Concepts

VMware supports incremental snapshots through what are essentially redo logs, in

which each log entry is called a link (or delta link). All disk changes are written

to the topmost (latest) link. Once a child link is created, all earlier links become

unwritable and must remain completely intact. Initially, disks start off with a base

image, or base link. When a snapshot is taken, the topmost link is frozen in place,

then a new link is created above it to receive all subsequent disk writes. The frozen

link represents the state of the disk at the time of the snapshot. A VMDK image is

essentially a series of delta links atop a base image, all of which are read-only except

for the topmost read-write link.

Each link consists of one or more extents. A VMware extent represents a region of

storage on virtual disk, which usually correlates to a single .vmdk file on the host. Disk

data that is stored in exactly one file is described as monolithic. Each link contains

delta extents that correspond to extents in the parent link. Figure 4-3 demonstrates

the horizontal and vertical organization of the VMDK format. In this way, extents

operate completely independently of one another; changes in one extent have no effect

on contents of another extent.

Extents can also be flat or sparse, among other types. Flat extents are simplest,

and are essentially flat arrays of disk sectors. The downside is that the entire storage

space for the disk image must be pre-allocated upon creation. Therefore, creating a

20 GB virtual disk result in a 20 GB image file on the host system, even if most of the

virtual disk is empty. For this reason, we forgo flat extents in favor of sparse extents,

which address this very issue - image sizes start small, but grow as more content is

written to the virtual disk. This feature, however, comes at the price of complexity,

as directories and tables must be maintained to keep track of newly allocated disk

sectors. This is one of the reasons converting raw to VMDK images is non-trivial,
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Figure 4-3: The VMware disk image architecture. A horizontal row represents a single
snapshot of an entire disk, while a vertical column represents the snapshot (delta)
chain of a single extent within a disk.

especially as it must be done on-the-fly.

Descriptions of snapshot delta links and extents can be found in a text-based

configuration section known as the descriptor file. Essentially, the descriptor file

specifies disk settings (such as disk type and disk geometry) and acts as the glue to

hold delta links and extents together. The descriptor file can be a text file separate

from the disk image data or embedded within an image file; both types of files carry

a .vmdk extension. For sake of simplicity, our implementation assumes that the

descriptor file is separate, although it is certainly not difficult to add support for

embedded descriptor files. The next section describes the contents of descriptor files

in more detail.

VMDK Descriptor File

A VMDK descriptor file corresponds to a single link along a VMDK image chain.

Paths to the link's constituent extents, as well as the location of its parent's descriptor

file, are listed here. It is essentially a configuration file for a single VMware snapshot.

The descriptor file is divided into three sections. The first section contains disk

image settings. such as the disk type (flat vs. sparse, monolithic vs. split, etc.) or the



parent link file name. The second section is simply a list of extent file names, listed

in the order as they appear on disk. The last section provides information about the

virtual disk's geometry.

Of particular note, in addition to disk type and parent file name, the first section

also contains two mandatory fields, CID and parentCID. This CID value is used by

subsequent child links to fill in their parentCID fields. Recall that any changes to a

disk after taking a new snapshot is written to the newest link only, and any writes

to older links invalidates the entire disk. A new CID value is assigned to the link

whenever the link is opened and modified for the first time. Thus, the CID and

parentCID fields ensure that the parent link has not been tampered with after a

child is attached. The parentCIDs of base links simply use the value CIDNOPARENT

- OxO by default.

The second section is simply a list filenames of the link's extent data. They are

listed in order as they appear on disk in the following format:

RW 4192256 SPARSE "test-s001.vmdk"

The first column specifies access parameters - RW, RDONLY, or NOACCESS. The second

column denotes the size of the disk, in physical (512-byte) sectors. The third desig-

nates the extent type - SPARSE, FLAT, ZERO, and so forth. The fourth column contains

the path to the extent data file, relative to the descriptor file. There may be a fifth

column for certain extent or disk types, such as flat extents or virtual disks hosted on

devices. As we are only dealing with sparse extents, this last column does not apply.

The final section mostly deals with disk geometry, such as CHS (cylinder-head-

sector) values that the virtual disk emulates. Assuming the numbers of heads and

sectors per cylinder are identical across all source disks (which is likely the case, as

users generally use the VMware default values for these), the only pertinent field for

us is the number of cylinders. Since the goal is to "concatenate" all the disks together,

the number of cylinders in the union disk is roughly equal to the sum of cylinders

across all source disks.



4.3.2 The Disk-Sector-Level Design

From the above description of VMDK formats and features, there are two elements

of note that are immensely convenient for our needs. First, note that VMware's

snapshotting mechanism requires that older links be kept untouched and intact, and

instead directs all changes to the topmost, newest link. This exactly describes copy-

on-write behavior. Second, the main goal of the project is to combine several disk

images. With the descriptor file format outlined above, "concatenating" two disks

together is as simple as concatenating a few lines of text. Of course, the union disk

would need to be repartitioned for the new size and subsequently reformatted, but a

large number of file data sectors on disk should still remain intact.

The problem with both of these "convenient" features, however, is that both the

disk concatenation and the copy-on-write are done at a disk sector level - VMware

deals with raw disks, after all. Our goal is to merge entire files and file paths, not

sectors. Consequently, with copy-on-write and rough merge capabilities already built-

in, the sector-level approach shifts the complexity to reconstructing sectors back into

sensible files and directory structures.

To do this, file-to-block-numbers mappings for source disks must be interpreted,

then translated into mappings for the union disk. Fortunately, since the union disk

was formed by concatenating source disks back-to-back, the translations simply in-

volve adding offsets to source block numbers. The offset is also easy enough to

calculate - they are nothing more than the sum of the number of blocks for all source

disks preceeding the disk in question. Then, the corresponding file on the union disk

can re-associate the translated block number back into its block list.

There is one other detail that has been glossed over so far. As stated before,

VMware does not allow access to a previous delta link in the chain. This means that

if we create child links of source images and naively concatenate them,3 the source

snapshots still become inaccessible and useless. However, with the aid of the VixDisk

library, we can create two side-by-side sibling snapshots for the same parent image.

30r worse, if we directly concatenate the source images - which means any user changes would
directly modify the sources!



One of the children can then be used to preserve access to the source image, while

the other is used for the actual disk merge.

From all this, we construct the following series of steps for the sector-level ap-

proach:

1. Create two sibling delta links for each source disk -- one to maintain the original

images, and one to be used in the union disk.

2. "Concatenate" source disks by concatenating source extent entries in the de-

scriptor file. Recursively do this for every parent descriptor file until the base

link is reached.

3. Expand the first disk's partition to occupy the entire combined disk. Format

this new, expanded partition.

4. Mount each source directory trees as read-only (via the appropriate child snap-

shot from the first step above). Mount the expanded partition from the last

step as read-write.

5. Copy each source directory tree in turn to the new partition. Do not copy

normal (non-directory) file contents, but do copy file names. The new directory

tree should look like a union of all source disks, but with zero-length files only.

6. For every file in every source disk, look up its data block numbers on its source

disk. Translate each block number with respect to the union disk. If this new

block number on the union disk is free, associate it with the respective file on

the union disk.

7. If, however, the translated block number is not free, (overwritten by file system

metadata, directory structure, allocated by another file, etc.), allocate a new

block on the union disk. Copy all the data from the respective block on the

source disk into the newly allocated block on the union disk.

One huge advantage to the sector-level approach is that the entire merging process

is done offline. There are no online components, which means that performance



requirements can be lower and much more forgiving, a problem that plagued LatticeFS

and thus would continue to beleaguer the file-system-level approach. In the sector-

level solution, the finished version is just nothing more than a plain VMDK image, so

there should be absolutely no extra overhead for VMware. The one major downside

to an offline merge, however, is that post-merge changes to source images will not be

reflected in union images without another explicit offline merge.

4.4 Advantages and Disadvantages

Here we review some of the pros and cons mentioned above.

At first glance, the file-system-level approach seems attractive as there is much

previous work to build upon. Previous file system merging utilities such as UnionFS or

Yang Su's LatticeFS already solve the conflict resolution and copy-on-write problems

for us. Additionally, tackling the issue at the file system level simply makes sense,

as the problem itself - merging source directory trees - is a file-system-level one. It

handles files as-is, without the need to break them apart, manipulate the files at a

block level, and reassemble them. It also allows for independence of source file system

formats as long as the host can read them, because the approach operates at the layer

above file system internals.

The file-system-level approach works mostly online, rather than offline. This de-

sign choice has both its advantages and disadvantages. The main disadvantage is

performance - care must be taken to keep the lookup translation overhead minimal.

Indeed, LatticeFS's performance was many times worse than that of normal ext3. In

offline merges, such as with the sector-level approach, none of the translations are

carried out in real time, so performance constraints are much more forgiving. The

main advantage to file-system-level solutions is that the source images can be modi-

fied post-merge, where changes can readily propagate to the union disk. This can be

invaluable in practice where, going back to our original example, a system adminis-

trator could constantly update the software image library, so that users always had

the most up-to-date software. Offline merges cannot offer this feature, as they are



single-shot, frozen captures of the sources. Furthermore, VMware by convention does

not allow modifying parent links with attached child links, and will refuse to read

such images.

For all its perceived advantages, however, the file-system-level approach is not

viable due to a single roadblock. The problem is that the result of the union must

look like a VMDK file to VMware, which queries parts of the image file depending

on the sectors requested. It is nigh-impossible to convert a location on a union file

system and possibly one that is constantly being changed and updated - to a

physical location on the disk image, much less to do so on-the-fly. There is also the

additional problem of converting raw images back into VMDK files, whose format is

proprietary and, at best, inadequately documented.

Taking these issues into consideration, we chose to pursue the sector-level imple-

mentation. After all, an impasse is still an impasse. For the most part, the major

requirements - copy on writes and disk merges - were conveniently already built

into the VMware design. As a result, the sector-level implementation is still mostly

quite simple in design, with some moderate complexity occurring only in the file and

directory tree reconstruction stage.

4.5 ext2 File System

Since we have chosen the sector-level approach, the implementation is now fully de-

pendent on underlying the file system type of the source disks. Thus, we were forced

to choose a file system format to demonstrate our proof of concept. We wished to

choose something simple in implementation, but nonetheless widely used in practice,

so the choices were narrowed down to FAT of DOS/Windows and ext2 of Linux. 4 Ul-

timately, ext2 won, with the advantage that it is open-source, and optionally includes

open-source utilities such as the e2f sprogs package. Of particular use is the debugf s

4In recent years, ext3 has surpassed ext2 in popularity (although slowly moving to ext4). Nev-
ertheless, ext3 is fully compatible with ext2; in fact, ext3 is mostly identical to ext2, only with
journaling capabilities. (Ext4, however, is completely different and not fully backwards compatible
with ext2 and ext3.)



utility, a userspace ext2/ext3-specific debugger that gives users direct access to many

under-the-hood file system operations. Thus, debugf s provides a good blueprint on

how the ext2 library (libext2fs) is used to perform common file system operations.

4.5.1 Basic ext2 Concepts

The basic data structure in the ext2 file system [9} is the inode, which contains

the metadata for a single file. The inode specifies the data blocks in which the file

contents reside, and also provides information such as owner and group IDs and

creation, access, and modification times. Inodes are referenced by an inode number,

which acts as an offset into a table of inodes. The inode table will be covered later

as we describe the on-disk layout of the file system.

Recall that UNIX treats every object as a file - normal files, directories, de-

vices, and so forth. Each directory is no more than a file that contains mappings

between human-readable file names (including subdirectories and special files) and

inode numbers. These directory entries are also the only mechanism through which

inode numbers are linked to paths and file names.

Multiple paths can correspond to the same inode. Each of these mappings con-

stitute a hard link between the file name and the inode. The inode contains a field

that keeps track of the number of hard links to it, which is incremented every time

a new name is mapped to it and decremented every time unlinko is called on one

of its associated file names. When the link count reaches 0, the inode is marked as

unallocated. Hard links should not be confused with symbolic links (or symlinks),

which are files whose contents contain a path. When a symlink is accessed, the OS

simply replaces the path with the target path, and restarts path resolution on this

new path. Symlinks do not refer to actual inodes, and therefore can point to objects

that do not yet exist (such as an NFS file).



4.5.2 Inodes and the i-block Array

One of the key functions of an inode is to specify where the file's contents can be found.

This information is located in the i-block array, which contains block numbers of

the file's data blocks. The first 12 entries are direct blocks, which directly point to

the data blocks themselves. The 13th entry points to an indirect block - a block

that contains an array of pointers to actual data blocks. The 14th entry points to

a doubly-indirect block, which points to a table of indirect block numbers. The 15th

and last entry points to a triply-indirect block, which as its name suggests, contains

an array of doubly-indirect pointers. Figure 4-4 illustrates this set of data structures

much more clearly.
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Figure 4-4: The i-block array, with indirect block pointers[8).

4.5.3 The ext2 File System Layout

Looking at the partition as a whole, the very first 1024 bytes are reserved for the

partition's boot record[7]. The next 1024 bytes are occupied by the superblock, which

contains basic parameters for the file system, such as block size, blocks and inodes

per block group (see the following paragraphs), total number of blocks and inodes,



and so forth. Immediately after the superblock is the block group descriptor table,

which defines parameters for all block groups, such as locations of the block and

inode bitmaps or the location of the inode table. As the superblock and block group

descriptor tables are vital to the operation of the file system, both are replicated at

the beginning of select block groups throughout the disk. The first block group then

begins past this, after the block group descriptor table.

The entire disk is divided into block groups of s-blocks-per-group blocks each,

as defined by the superblock. Therefore, the s-blocks-per-group parameter governs

the number of block groups in the partition. Each block group contains its own block

bitmap and inode bitmap. These bitmaps are each a single block in size, and keep track

of used blocks and inodes, respectively, for its own group. Past the bitmaps resides

the inode table, an array of the actual inodes themselves. This table consists of s_

inodes-per-group total entries, a parameter also defined in the superblock. Finally,

the actual data blocks comprise the remainder of the block group.

Figure 4-5 summarizes the general layout of an ext2 partition and the block groups

therein.
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Figure 4-5: The general on-disk layout of an ext2-formatted file system[9).



Chapter 5

Implementation Details

Python was chosen for this project for its ease of development, interactive interpreter

(making it quick and easy to experiment with new libraries), and vast array of built-in

libraries. As the VMware Virtual Disk library and libext2fs (along with debugfs) are

both written for C, we use ctypes to create Python bindings for the libraries. To help

programmers work more closely with C libraries, ctypes also provides a framework for

specifying function prototypes, declaring structures and unions, and emulating point-

ers and pointer dereferencing. We use a utility (found in etypeslib) called codegen to

generate these ctypes-styled declarations from the C header and object files.

The VMware Virtual Disk library (VixDiskLib) is provided by VMware to let

developers programmatically perform administrative tasks on VMware disk images.

The library supports disk operations such as reading and writing, managing snapshots

(i.e., creating children), shrinking and expanding, and editing disk image metadata.

Of interest to us are VixDiskLib-CreateChild() and VixDiskLibttacho, used

to fork our source images into two.

As mentioned before, debugfs offers a blueprint on how libext2fs functions can be

used. libext2fs supports almost every basic ext2fs operation at every layer of abstrac-

tion, from reading and writing entire files, to manipulating inodes and block bitmaps

directly. We will use this library extensively to handle file system reconstruction after

the disk concatenation.

Here, we revisit the steps listed in the Disk-Sector-Level Design section in more



detail. For simplicity and as a proof of concept, we only demonstrate merging two

disks. This two-disk design can be analogously extended to support multiple disks,

with little change in overall design. We also exclusively use sparse extents to conserve

storage in our workspace; dealing with other extent types simply requires changing a

few flags to VixDiskLib calls, and does not change our implementation very drastically

at all.

5.1 Forking Source Images

Before any images can be accessed, VixDiskLib-Init 0 and VixDiskLibConnect (

must be called. These are required for VMware's enterprise products, when the VMs

reside remotely on large corporate networks, but for our purposes, their arguments

should be NULL or 0. Then, each source disk is opened read-only via VixDiskLib.

Open() with the VIXDISKLIB-FLAGOPENREAD-ONLY flag, which allows their child links

to be created.

Recall that a VMware disk image is composed of a base disk image and a series

of delta links corresponding to a timeline of incremental snapshots. Changes to disk

are always written to the most recent link. To create a new snapshot (i.e., child

link), VixDiskLib provides VixDiskLibCreateChild(. In addition, recall that two

child links from each source image are required - one to be used for the union disk,

and one to maintain that the source images are still accessible. Thus, VixDiskLib_

CreateChild() is called twice for each source disk, with the VIXDISKLIB-DISKSPLIT.

SPARSE flag to create sparse extents. From here on, the term "source" would refer to

contents of the second type of link above.

To open the source disks read-only, we call VixDiskLibOpen() with the VIXDISKLIB_

FLAGOPENREADONLY flag. However, opening these links locks their parent links as

well, which are shared with the links destined for disk union. To work around this,

we first open the merge links as standalone links by using the VIXDISKLIBFLAG_

OPENSINGLELINK flag. Then we can manually attach them to the parent using

VixDiskLib-Attach(.



5.2 Combining Disks via Descriptor Files

The VMware image format is convenient for our purposes in that it allows us to attach

disks to one another simply by concatenating lines of a configuration file together.

Since descriptor files also reference their parent links, we must generate merged de-

scriptor files for every parent snapshot until the base image, else VMware will refuse

to open the disk. This also imposes the restriction that that all source link chains

must be equal in depth. This is currently a limitation in our application, but can eas-

ily be remedied in future versions by padding child links to be as keep as the deepest

chain.

In the first section of the descriptor file, the only pertinent field of note is parent-

FileNameHint, whose value should be the path to its parent's descriptor file. This

parent file does not yet exist, and will be generated after the current file is processed.

We arbitrarily name parent descriptor files by appending _p to its base name. For

instance, the parent link and grandparent links of foo. vmdk would be named foo-

p . vmdk and f oopp. vmdk, respectively. All other fields in this section should just be

direct copies of the first source disk's descriptor fields.

The parentCID and CID fields, although relevant, do not need any special pro-

cessing, as they are directly copied over from the first source disk's descriptor and its

parent's descriptor, respectively. Therefore, the union descriptor's parent CID checks

should be consistent if and only if the first disk's checks were consistent to begin with.

The second section is where the meat of the idea resides. This section lists each

extent in order that they should appear on the disk. To "attach" the source disks to-

gether end-to-end, we simply concatenate the extent entries from each of the sources.

Furthermore, we add the sector counts for all extent entries together and keep track

of this sum. This value indicates the total size of the union disk, and will be used in

the next section.

The third section simply consists of disk geometry settings. Everything in here

should be copied as with the first section, except that the number of cylinders

(ddb. geometry. cylinders) should reflect the size of the new, larger disk. We obtain



the size in sectors of the union disk from the extent listings. From this, the value of

ddb.geometry. cylinders is calculated to be total-sectors / (head * sect-per_

cyl).

Once again, the above must be repeated for all ancestor links of the source images

down to the very base images.

5.3 Resizing and Formatting Partitions

At this point, although the two source disks has been joined as one, the partition

table, located in the first sector of a disk, still contains the partitioning configuration

of the first source disk. Thus, we must resize the partition to make use of the entire

virtual disk.

To do this, we draw inspiration from a blog post by user "sudarsan" from VMware

Communities.1 First, we obtain a flat-file (raw) image of the union disk by calling

vmware-mount with the -f flag. Next, we invoke losetup to bind a loop device to

the raw image file. We then use f disk on this loop device to redefine the partition.

To access the new partition, we must first compensate for the 63-sector offset at the

beginning of the disk (see next chapter). This can be done by releasing the loop

device (losetup -d) and rebinding it with a 32256-byte offset into the raw image

file. Finally, mke2f s is ready to be called on this device. Remember to release the

device with losetup -d and unmount the flat-file image with vmware-mount -d.

5.4 Mounting Source and Union Partitions

In this step, the source and union images are mounted so that the source file sys-

tems can be read and replicated onto the union file system. For each mount, a

simple vmware-mount <disk image> <mount point> would suffice. vmware-mount

associates a VMware disk image with a block loop device, which is in turn mounted

at the specified mount point. To find the loop device backing a certain mount, we

lhttp: //communities .vmware . com/blogs/sudarsan/2008/12/12/
short-script-to-create-a-formatted-vmdk



simply look in /etc/mtab for the path to the mount point. In the following steps, we

will both be using the loop devices directly and referring to paths within the mounted

file systems.

5.4.1 Write Buffering and Remounting

One of the problems that we encountered was block device buffering. Linux generally

does not expect multiple writers and readers to the same device, and problems may

arise from manipulating a mounted file system (the reader/writer), quickly followed

by operating on the device itself. In our case, we experienced this issue between steps

5 and 6 (Sections 5.5 and 5.6), in which the rebuild script could not find many of the

files and directories created by the tree copy. There are several ways to force a buffer

flush and avoid this altogether, but the easiest is probably to unmount and remount

the file system. We can accomplish this by executing vmware-mount -d followed by

vmware-mount.

The issues do not end here, however. Both VMware and vmware-mount prevent

simultaneous accesses to a disk image by creating lock files upon opening it. How-

ever, sometimes vmware-mount -d may return before all the locks are fully released,

causing the remount to throw an error. For this reason, we always insert an artificial

1-second time. sleep 0 between the unmounts and remounts.

To be on the safe side, we always remount the union file system after every pro-

cedure that modifies the disk.

5.5 Copying Directory Trees

The source file systems are now ready to be copied to the union file system. All

directories and symbolic links are directly copied, whereas files are given placeholders

and left at zero length, with no data blocks allocated to or associated with them.

Python provides an os.walko method in its os module that we use to traverse

source trees. The path names are split into two substrings, the "source root" (i.e.,

source mount point), and the "suffix" (rest of the path name). Then, the destination



path name is simply the concatenation of the "destination root" (union image mount

point) and the "suffix".

If the file name in question is a directory, we simply call os .mkdir() on the

destination path. If it is a normal file, we call open() on the destination path in

read/write mode, then close () immediately. In Python, this simply opens then

closes the file if it already exists; otherwise, it creates a zero-length file by updating

directory entries for the file, allocating an inode, and assigning an inode number.

However, this will not allocate any data blocks, as desired. In the case of a symlink,

the link destination is read with os.readlink() and copied using os.symlinko.

It is possible to encounter relative symlinks that point above the destination root;

however, if this were the case, the symlink would have pointed above the source root

originally as well, so it was probably a broken link regardless. Devices and other

special files in the source trees are ignored and not copied.

To flush any pending write buffers, we remount the entire union file system after

each directory tree copy.

5.6 Translating Block Numbers

The idea behind the sector-level merge is to rebuild the file system and directory

trees, but to preserve file data blocks. When the union disk was reformatted in step

3 (Section 5.3) above, the data blocks were still mostly there and intact (i.e., intact

except for those overwritten by file system or directory metadata), but they were no

longer attached to any files. To re-associate files with unattached blocks, we can rely

on source file system metadata to provide hints for their data block locations on the

union disk.

Because the union disk was created by concatenating source disks back-to-back,

the data block numbers do not change with respect to the beginning of each source

disk. Furthermore, the block number offset for each source disk with respect to the

union disk would simply be the sum of the number of blocks in each previous disk. In

other words. the union disk block number be, given block number b on source disk



n, is given by:

b n-1 - b + size in bytes of disk iSe=b number of blocks in disk i = b- blcszbn + blocksize
i=1 i=1

From the previous step (Section 5.5), the union file system now contains the full

directory tree structures of both source trees. To reattach data blocks to files, we

look through each source directory tree to tell us which files to work on, then we

look up the same name in the union tree to find the corresponding inode to write

to. We do this by calling ext2fs-dir-iterate 0, starting from the root inode of

the source tree. This function takes a directory's inode number and a user-defined

callback function as arguments, and executes the callback function on each directory

entry therein. Additionally, ext2fs-dir-iterate() takes a void *private argu-

ment that gets passed along to the callback, allowing programmers to supply their

own additional arguments. In our case, we set this field to point to the inode number

of the corresponding directory in the union tree. In this way, the callback function

knows about its own place in both the source and union file systems.

For each source directory entry, the callback function first looks at the entry's name

field to determine the file to look up in the union file system. Next, to determine its

associated inode number, it calls ext2f snamei 0 on the name with respect to the

current working directory in the union (as supplied through the private argument

above). If the directory entry denotes a subdirectory, it recursively calls ext2fs_

dir-iterate o to continue crawling through subdirectories within the source tree.

Otherwise, if the entry specifies a file, it calls ext2fs-read-inode 0 on the union

inode to determine the file's size on the union file system. If the file length is nonzero,

then the file has been previously copied, so it is simply skipped. (In other words,

in the case of naming conflicts between file systems, earlier disks took precedence.)

Otherwise, we follow these steps:

1. For the file in the union file system, its inode number should have been previ-

ously provided by ext2fs-nameiO. For the same file in the source file system,

its inode number can be found in dirent->inode. Read the contents of both



inodes into memory with ext2f s-read-inode (). Copy the relevant metadata

fields - including the i-block array - from the source inode to the union inode,

and write the union inode back using ext2fs-write-inode ().

2. Iterate through the blocks of the file using ext2fs-block-iterate2 (). This

function takes a programmer-defined callback function as an argument, and

executes the callback on every block entry associated with the file, including in-

direct entries. Note that indirect blocks are neither yet active nor processed; the

instructions here will also correctly address these issue. The callback function

must do the following:

(a) Translate the block number into the union file system block number using

the formula above.

(b) Call ext2f s-test-block-bitmap() to query the union disk's block bitmap

and check whether the block number has already been allocated. If so, see

next section, and perform the steps therein before continuing. Other-

wise, use ext2f s-mark-block-bitmap() to mark the union block number

as allocated. Make sure to decrement the block group's free blocks count,

and to mark the block bitmap and superblock dirty with ext2fs-mark-bb_

dirty() and ext2fs-mark-super-dirty(.

(c) Update the block number entry by reassigning the new value to *blocknr.

blocknr is the pointer to the block number entry, supplied as an argument

to the callback by ext2fs-block-iterate2().

(d) Return BLOCKCHANGED from the callback to force the new block number

to be written to disk.

Be sure to flush the write buffer after each pass by remounting the union file

system.



5.7 Handling Overwritten Data Blocks

This step should only be conducted when a translated block is found to be already

allocated (see previous step, Section 5.6). To do this, we simply allocate a new block

in the union disk and copy the contents from the conflicting block on the source disk

to the newly allocated block:

1. Allocate a new block on the union disk with ext2f s-new-block(). ext2f s-new-

block() also takes a goal parameter that specifies where to start searching for

free blocks, which in our case should the end of the original partition boundary

of the first source file system. We can easily determine the location of this

boundary by looking at the s-blocks-count parameter in its superblock. See

the justification below.

2. The location of the corresponding source block is simply the pre-translation

block number. Read the contents of this source block with io-channel-read-

blk() from the source file system.

3. Copy the contents to the newly allocated block on the union disk with io_

channel-write-blko.

Block conflicts can occur if the block has been overwritten with file system meta-

data (e.g., bitmaps or inode tables), directory data from the rebuilt directory tree

(from step 5, Section 5.5), or file data belonging to an earlier overwritten block. The

first two cases are unavoidable, but the last case should be prevented as much as pos-

sible. Moving a conflicting block to a location that will cause future conflicts simply

perpetuates the problem. Therefore, each time we allocate a new block on the union

disk and copy the corresponding source content over, we must choose a block number

to which future blocks are unlikely to translate.

Most disks today retain the cylinder-head-sector interface for compatibility, even

though the values have little correlation to the actual physical geometry of the disk.

For this reason, many disks today do not actually end on cylinder boundaries. Since

most modern disk partitioning utilities still adhere to the old DOS convention of



aligning partitions to cylinder boundaries, there is often unpartitioned space at the

end of a disk. When multiple disk images are concatenated together to form the

union image, the partition therein is expanded to include this unused space. Thus,

this space is writable in the union disk but had been inaccessible in the source disk,

so there is no chance of future conflict. For this reason, we always look there for new

blocks to allocate.



Chapter 6

Performance Evaluation

6.1 Benchmark Test Setup

Here, we seek to validate two of our earlier claims. First, we wish to show that, because

the merge output is a normal VMware image file, there is negligible difference in file

access times between pre- and post-merge images. Second, we would like to ensure

that the offline merge process itself does not take prohibitively long to complete.

We created two 6 GB VMware disk images to demonstrate the functionality of our

merge utility. Both were initially manually partitioned using f disk, creating a single

large partition that takes up the entirety of each disk. No space was allocated for

swap partitions, nor any other data partitions. We formatted both partitions as ext2

with the default 4096-byte block size, and installed Linux Mint 9 32-bit onto both

using identical settings. To simulate the idea of an application bank, we installed

Chromium web browser onto one disk image and VLC media player onto the other.

Each setup used about 2.5 GB out of an entire 6 GB disk. All subsequent I/O tests

are performed on these images.

We created another set of smaller images for the offline merge tests only. These

were 4 GB in total available disk space, only < 100 MB of which were used. They

contained no operating system installs, and were instead composed of two simple

directory trees of a few test files. These images were made purely as a basis for

comparison against the above Linux images.



The offline merge was timed using Python's built-in cProf ile module, which mea-

sures the CPU time spent in each Python function. This gave us a useful breakdown

on the individual running times of each step of the process. This test was carried out

twice, once on each of the two setups above.

File access times were analyzed using an I/O benchmark script by Antoine Pitrou

from the Python 3 SVN repository.1 Test files were either 20 KB, 400 KB, or 10

MB in size - to represent small, medium, or large files - with two types of files for

each size, plaintext and binary. The script looked for these test files at the beginning

of each run and generated them if they were not found. Text files were produced

from hardcoded strings within the script itself, while binary files were generated from

calling os . urandom 0. Users can provide command-line options to specify which tests

to carry out. To reduce the amount of variation due to background disk usage, each

file I/O test was looped until at least 1.5 seconds had elapsed.

We ran each set of tests twice on the Linux install image, once using vmware-mount

on the host system, and once from within the guest OS of a running VMware image.

The script tested for a variety of benchmarks, but we will only show a subset of the

data. We will look at file reads on entire files at a time, using the aforementioned

sizes of 20 KB, 400 KB, and 10 MB of files. We will also compare file overwrites

and appends, written in chunks of 1, 20, or 4096 bytes at a time. For file reads, we

tested for what we called pre-merge reads, post-merge reads, and post-merge rereads.

Pre-merge reads are simply reads straight from a source file system, before any of the

merging process takes place. Post-merge reads are reads of the same file right after

a disk merge, before any changes have been written to it. (Recall that the script will

only generate new test files if they do not already exist.) Post-merge rereads, on the

other hand, denote reads that take place after post-merge writes to the test files. For

file writes, we tested for overwrites and appends, both pre-merge and post-merge.

Appends are simply writes to the file from wherever the file pointer is at the time,

while overwrites seek to the beginning of the file before writing. Pre-merge writes

'The script was written by Antoine Pitrou for a Python 3 development bug report, found here:
http: //bugs .python. org/issue4561. The script itself was pulled from http: //svn. python. org/
projects/sandbox/trunk/iobench/, revision #85128.



are analogous to pre-merge reads. Post-merge writes take place after all post-merge

reads have completed, but before the post-merge rereads.

All of the tests described here were conducted on a netbook with dual Intel Atom

N330 processors, 2 GB of RAM, and a 5400 rpm SATA hard drive, running the 64-bit

version of Linux Mint 9 Isadora. All virtual machines were launched through VMware

Workstation 7.1.2, emulating a single-core 32-bit processor with 1 GB of RAM and

a SATA hard drive. The VMs were all running Linux Mint 9 Isadora 32-bit. The

hardware specifications are fairly low-end, and we hope to prove that our merge utility

can run well even low-powered systems such as netbooks.

6.2 Offline Merge Results

Figure 6-1 shows the performance breakdowns of the the small (< 100 MB) test file

system, as generated by cProfile. Extraneous lines, such as primitive library calls,

have been omitted for legibility. The entire run completed in 64 seconds of CPU time.

This number may seem fairly worrisome for such a small file system, until we look

at the individual function breakdowns. Of the 64 seconds, 41 seconds were spent on

step 3 (Section 5.3), resizing and formatting partitions with f disk and mke2fs. The

time spent flushing buffer caches and unmounting VMware images (vmware-mount

-d) cannot be ignored, either - another 12.5 seconds total were spent purely on

unmounting in steps 5 through 7 alone (Sections 5.3, 5.6, and 5.7), including the

1 second sleepOs in between. This comes out to an average of about 3.1 seconds

per unmount operation! The actual tree copy (step 5) took only 0.17 seconds in

comparison, while the file system rebuild (steps 6 and 7) took just 1.9 seconds.

Contrast these to the run using Linux Mint images (about 2.5 GB of data), shown

in Figure 6-2. These results are likely more representative of practical use. The merge

process required 664 seconds of CPU time to complete, or just over 11 minutes. Of

this, 365 seconds were spent on steps 6 and 7, rebuilding the files from blocks. Another

201 seconds were spent on step 5 in recursively copying both directory trees. This

comes out to a total of 9.5 minutes spent reconstructing directory tree contents, not



Running Time Breakdown for Merge: 100 MB File System
23918 function calls (23588 primitive calls) in 64.263 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 64.263 64.263 runmerge.py:76(main)
1 0.001 0.001 41.128 41.128 fixpart.py:7(do_fixpart)
3 0.000 0.000 11.133 3.711 runmerge.py:71(remountdest)
2 0.000 0.000 1.906 0.953 rebuild.py:172(dorebuild)
2 0.003 0.002 0.170 0.085 copytree.py:42(do_copytree)

2/1 0.003 0.002 0.018 0.018 mergevmdk.py:36(domerge)
1 0.001 0.001 0.005 0.005 runmerge.py:13(getdevices)

Figure 6-1: cProfile results of merge operations on the small test file system. The
numbers in columns are in seconds of CPU time.

counting the 26 seconds spent simply remounting the union. With these disk images,

resizing and formatting partitions (step 3, from Section 5.3) only took 62 seconds in

comparison. This is consistent with the test file system run, as the total capacities of

these disks were 50% larger, so consequently, mke2fs had approximately 50% more

block groups and inodes to write.

Running Time Breakdown for Merge: Linux Mint Install
13720544 function calls (12558870 primitive calls) in 663.768 CPU seconds

ncalls tottime percall cumtime percall filename:Iineno(function)
1 0.001 0.001 663.768 663.768 runmerge.py:76(main)
2 0.000 0.000 364.623 182.312 rebuild.py:172(dorebuiId)
2 9.230 4.615 200.819 100.410 copytree.py:42(docopytree)
1 0.001 0.001 61.635 61.635 fixpart.py:7(do fixpart)
3 0.000 0.000 25.758 8.586 runmerge.py:71(remount-dest)

2/1 0.003 0.002 0.019 0.019 mergevmdk.py:36(do merge)
1 0.001 0.001 0.003 0.003 runmerge.py:13(getdevices)

Figure 6-2: cProfile results of merge operations on the small test file system. The
numbers in columns are in seconds of CPU time.

6.3 File Operations Performance

Figures 6-3 and 6-4 show the results for the iobench.py benchmark test. Figure

6-3 shows the measurements from the host OS test, using vware-mount to access

disk image contents; Figure 6-4 shows results of the test conducted within the guest

OS of a running virtual machine. The series in red and orange represent pre-merge

values, whereas the series in blue and purple reflect post-merge data. Most of these

series overlap or come close, especially in the host OS tests, signifying that there is



no appreciable difference between pre- and post-merge I/O performance.

Since system resources must be diverted to running the VMware application, the

data from the guest OS tests might have been impacted by background hardware

activity. This is especially true given that the benchmarks were run on a low-powered

netbook, and the vast degradation in throughput numbers confirms this. It might

also explain the wide variation in the guest OS statistics compared to the relatively

consistent host OS test results.
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Figure 6-3: Pre- and post-merge performance comparisons (in average MB/s) for read
and write operations, as conducted on the host OS. The VMware images are mounted
using vmware-mount.
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Chapter 7

Issues and Limitations

As with any design, there are advantages and there are drawbacks. Some of the

limitations here were due to conventions or design decisions in components we were

depending on. Others were due to simplifications we had made for this "proof of

concept", so that viable but more complex solutions are attainable. Here we analyze

some of the issues and possible workarounds, if applicable.

7.1 Heavy Dependence on File System Configura-

tion

First, the merge utility currently has no support for file systems other than ext2. This

would otherwise be fine - ext2 was chosen as a proof of concept, after all - had the

file system reconstruction not been such a major part of the entire process. In other

words, support for other file systems is more than a mere "plug-in"; rather, it becomes

a significant part of the implementation. Furthermore, file system implementations

can be varied enough that it is difficult to formulate a design that lends itself to a plug-

in architecture. Still, this utility demonstrates that merging systems in a VMware

disk image level is still possible, albeit messy.

As mentioned before as a disadvantage of the sector-level approach., the current

design limits the union disk and all of the source disks to the same file system format.



At best, each combination of mixed formats would require a separate implementation

to deal with the differences. This may become a problem in a large network with

disparate systems, for example. Additionally, in the case of ext2, the implementation

also restricts source and union file systems to very specific block sizes - in our case,

requires both source and union file systems to utilize 4096-byte blocks.

7.2 Source Disk Requirements

Some limitations in the design impose requirements that the source disks must satisfy.

For example, in the step that merges VMDK descriptor files, the number of heads

and sectors per cylinder should be equal across all source virtual disks. It is possible

that these parameters could be adjusted without needing to tweak the data portions

of the disk images, but in any case, this problem is most likely irrelevant as disks are

usually created with VMware's default disk geometry values.

Recall that disks are merged simply by appending raw image data together. Since

we used a block size of 4096 bytes (i.e., 8 sectors), the number of sectors for each

source partition must be a multiple of 8 - else, data blocks on later source disks

cannot be read as block boundaries will be misaligned. However, this is seldom a

problem in practice, because the numbers of heads and sectors per cylinders are often

multiples of 8 themselves.

More significant limitations arise from an old DOS partition table convention,

which imposes an offset of at least 63 sectors in the first primary partition and every

logical partition, but does not require the offset for any other primary partitions on

the disk. This can be seen in the following example partition table in Figure 7-1

(notice the column labeled "Start Sector"):

Many partitioning utilities, such as f disk or cf disk, defaults to the minimum 63

sector offset when creating a new partition. As 63 is not a multiple of 8, care must

be taken once again to avoid block alignment issues. Merging partitions will not

be an issue as long as all partitions are multiples of 4096 bytes and whose pairwise



---Starting---- ----Ending----- Start Number of

# Flags Head Sect Cyl ID Head Sect Cyl Sector Sectors

1 Ox00 1 1 0 Ox83 254 63 11 63 192717

2 Ox80 0 1 12 0x07 254 63 4178 192780 66942855

3 Ox00 0 1 4179 0x83 254 63 5484 67135635 20980890

4 0x00 0 1 5485 0x05 254 63 19456 88116525 224460180

5 0x00 1 1 5485 Ox83 254 63 5877 63 6313482

6 Ox00 1 1 5878 Ox83 254 63 7836 63 31471272

7 0x00 1 1 7837 0x82 254 63 7968 63 2120517

8 Ox00 1 1 7969 0x07 254 63 19456 63 184554657

Figure 7-1: Sample partition table, showing the DOS-style 63-sector offsets.

differences between offsets are multiples 8.1 However, using the above disk as an

example, alignment problems will arise when merging the first primary partition with

another primary partition, as the first partition will exhibit a 63-sector offset while

the other partition will not.

Unfortunately, not all partitioning utilities default to 63-sector offsets. In our

implementation, we assume that source disks are formatted using f disk or cf disk,

and each disk contains a single primary partition that spans the entire disk. Future

implementations can sidestep this assumption by reading the partitioning table and

appropriately adjusting block number offsets before the rebuild stage.

7.3 Incorrect Support for Multiple Hard Links

Since the entire directory tree is blindly copied in step 5 (Section 5.5) without looking

at its contents, our utility does not properly handle hard links. Rather, it creates

several different inodes that point to the same data blocks, rather than using a single

inode and incrementing its link count. Thus, deleting one of the files will also free all

of its data blocks, which can be catastrophic as other inodes are still referencing the

same blocks!

Support for multiple hard links is also a problem in both BSD and Linux union

mounts, so this issue is not a unique one. However, their approaches fail more grace-

'Note that both disk and partition sizes tend to be multiples of 4096 bytes, so there usually are
extraneous unusable sectors at the beginning and end of both disks and partitions as a result of any
awkward offset sizes.



fully than our current implementation[4]. One way to improve hard link handling

is to build a reverse mapping of inodes to file names on the source file system prior

to the directory tree copy, so that the corresponding inodes on the union file system

can be mapped to the same files. This, of course, introduces extra complexity to the

program, but fixing this issue should be highest priority in any future work.

7.4 Minor Issues and Future Improvements

When remapping block numbers to a union disk, the method we used to handle

overwritten data blocks can lead to file fragmentation. In the current implementation,

these blocks are handled by searching for and allocating free blocks starting from the

end of the original partition where they are least likely to cause future conflicts,

then copying contents of the source data blocks to these locations. However, this

also scatters file fragments into non-contiguous parts of the disk. Defragmenting

the disk post-merge may help, but moving blocks around likely increases the sizes

of delta link files. A better solution may be a "two-pass" approach to the block

number translation phase. In the first pass, source block numbers are translated to

union block numbers as usual, except overwritten block numbers are only marked for

repair. The possibility of future conflicts is no longer an issue, as all non-conflicting

blocks have already been accounted for. Then, the second pass handles overwritten

blocks much the same way as now, except free blocks are allocated starting from the

same block group, rather than from the end of the original partition. By placing

fragments of files closer together, we can potentially reduce seek times.

As discussed in the previous chapter, a current limitation is that all source images

must contain the same number of snapshots. In other words, the delta link chains

across all source disk images must be identical in length. This limitation is a result of

the VMDK descriptor file format, which references both the parent descriptor file and

every delta extent of the current link. One simple method around this limitation is

to pad every source chain with repeated snapshots, until all are as long as the longest

source chain. With sparse extents, the storage overhead for these extra snapshots is



minimal.

Another problem is that a mere disk merge, as presented, cannot render the union

disk immediately usable in the manner envisioned in the introduction. The disk

image merge is only a step towards that goal. There are still many other outstand-

ing concerns that must be addressed. For instance, file metadata such as user and

group IDs may not be set up correctly, as the relevant entires may be missing from

/etc/passwd and /etc/group. In addition, VMware may regard the merged image

as a new hardware device, which can create problems when /etc/f stab refers to

disks by UUID and cannot find the old hard drive. Moreover, the disk image merge

makes no attempt to set up device and other special files correctly. Issues such as

these will have to be handled on the guest OS level, and is beyond the scope of this

project.
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Chapter 8

Conclusion

The idea of a unioning file system is not a new one. Various iterations have existed

for over 20 years. However, most solutions have had at least one major weakness or

flaw, and not one has yet been deemed sufficient for inclusion in the mainline Linux

kernel.

In this project, we attempted to explore a different version of the same problem.

We sought to merge discrete sets of files not just as mounted file system, but as entire

disk images. We also chose to use a completely offline merge rather than an online

solution, which is currently the prevailing trend. This has a number of implications

that sets it apart from the existing methods today. The most notable difference, for

example, is that our union disk reflects frozen snapshots of the sources. In other

words, any post-merge changes to a source disk will not be reflected in the new disk.

This is sufficient for applications such as static "software banks" (as envisioned in

Chapter 1) or LiveCD images. On the other hand, one of the major draws of real-

time file system merging is the ability to propagate source file system changes to

the union. This is useful when source file systems that are constantly updated, such

as database systems or web services. Thus, we envision our approach as serving a

different niche from the existing live file unioning implementations; it will be useful

to an entirely different domain of applications. As a result, we do not believe that it

will compete with UnionFS and union mounts, but rather co-exist alongside them.
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