
MIT Open Access Articles

A Continuous Query System for Dynamic Route Planning

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Malviya, Nirmesh, Samuel Madden, and Arnab Bhattacharya. "A Continuous Query
System for Dynamic Route Planning" in Proceedings of the International Conference on Data
Engineering, ICDE 2011, April 11-16, Hannover, Germany.

As Published: http://www.icde2011.org/node/94

Publisher: International Conference on Data Engineering

Persistent URL: http://hdl.handle.net/1721.1/62815

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/62815
http://creativecommons.org/licenses/by-nc-sa/3.0/

A Continuous Query System for Dynamic Route
Planning

Nirmesh Malviya #1, Samuel Madden #2, Arnab Bhattacharya ∗3

#MIT CSAIL ∗CSE, IIT Kanpur
1nirmesh@csail.mit.edu 2madden@csail.mit.edu 3arnabb@cse.iitk.ac.in

Abstract—In this paper, we address the problem of answering
continuous route planning queries over a road network, in the
presence of updates to the delay (cost) estimates of links. A simple
approach to this problem would be to recompute the best path
for all queries on arrival of every delay update. However, such
a naive approach scales poorly when there are many users who
have requested routes in the system.

Instead, we propose two new classes of approximate techniques
– K-paths and proximity measures to substantially speed up
processing of the set of designated routes specified by continuous
route planning queries in the face of incoming traffic delay
updates. Our techniques work through a combination of pre-
computation of likely good paths and by avoiding complete
recalculations on every delay update, instead only sending the
user new routes when delays change significantly. Based on an
experimental evaluation with 7,000 drives from real taxi cabs,
we found that the routes delivered by our techniques are within
5% of the best shortest path and have run times an order of
magnitude or less compared to a naive approach.

I. INTRODUCTION

This paper considers the problem of building a traffic
aware route planning service. The idea is that users register
continuous routing queries, specifying a set of <startpoint,
endpoint> tuples. In response, the system monitors delays
and sends query results as updates to users (e.g., via email
or SMS) if the fastest route between any of these designated
start-end pairs changes, based on real-time updates to traffic
delays (in our evaluation, we use real-time delays from a
traffic monitoring deployment we have done on a network
of 30 taxis in the Boston area). Like existing route planning
services (e.g., Google Maps), our system uses a graph of
road segments, and applies shortest-path planning algorithms
to that graph to recommend routes to users. Unlike existing
systems, however, our system maintains a large number of
routes for pre-designated <source, target> pairs and updates
those routes as traffic delays on road segments change. Our
system additionally allows users to specify day and time slots
along with the start and end points if they do not desire
continuous monitoring (registration tuples in this case are of
the form <startpoint, endpoint, day, time>). In this paper, we
focus on the harder problem where all user queries require
continuous monitoring.

Because small variations in delay won’t significantly affect
a user’s travel time, we are not concerned with always finding
the exact optimal route for any <start, end>pair but in de-
tecting if a previously reported route has become substantially
non-optimal in the face of updates and in providing a new
route that is near-optimal and much better (but not necessarily

the exact optimal). By suggesting alternate time-saving routes
before the user begins to drive, we believe our service could
prove extremely useful to commuters who tend to get stuck
in peak hour traffic congestions. Our system is practically
motivated: we have an iPhone application, iCarTel (available
on the app store) that we are extending with the methods in
this paper.

While adding support for ad-hoc traffic aware routing
queries is intuitively simple, it is not immediately clear how
a service could practically maintain the large number of
designated routes it would need to continuously keep updated.
Road network graphs contain millions of vertices and edges;
even a sub-graph corresponding to a city and its surrounding
suburbs can contain tens of thousands of segments – for
instance, the subgraph corresponding to Boston’s road network
has nearly 40,000 links [1]. A naive recalculation of the
optimal route on arrival of every update (or a set of updates)
using a single source shortest-path algorithm such as Dijkstra’s
algorithm (or A* search) for all registered continuous routing
queries could turn out to be a major computational overhead
given that real time traffic updates usually affect only a small
part of the network. Though such an approach might work
if the number of registered continuous routing queries is
relatively small, it is unlikely to scale as the number of queries
go up. Algorithms that are able to update shortest paths in
the presence of link changes do exist (e.g., [2]), but they
typically have a higher space or computation overhead than
is acceptable for our setting (see Section II for a discussion).

In this paper, we discuss several new techniques for main-
tenance of a large number of routes (specified as part of
continuous planning queries) in the face of real time traffic
delays. These involve a mix of precomputation and on-the-fly
route calculation. Our algorithms are approximate, as they only
report changes when delays change significantly (governed by
threshold fraction ε and factor γ, both tunable). The methods
we describe fall into two broad classes. One pre-computes a set
of candidate routes and dynamically selects the best candidate
as delays change. The other is proximity based, recomputing
optimal routes when delays change in a “region of influence”
around the source and destination routes. To the best of our
knowledge, no prior work has addressed this problem at a
scale larger than for graphs with several hundred nodes and
few thousand edges. To summarize, our contributions in this
paper are as follows:

1) We briefly survey several existing dynamic shortest path
algorithms and discuss their limited applicability to our

problem.
2) We describe various techniques for efficient online

maintenance of registered routes and test how well they
perform in practice using several thousand hours of
delay data from a network of taxis in the Boston area.

3) Through intensive experiments on real data, we see that
the proximity based approach has a run time cost an
order of magnitude smaller than for a complete recalcu-
lation approach while the candidate routes technique is
two orders of magnitude faster. The suggested routes
for both the approaches are within about 5% of the
optimal in terms of cost, while a naive scheme which
is purely precomputation-based produces routes that are
more than 20% worse than optimal.

As a caveat, we note that in this paper we focus on the case
where the origin and destination nodes are in the same urban
area (about 50 miles between each source-destination pair).
For traffic-aware commuting, we believe this is a reasonable
assumption as the vast majority of commutes are within the
same urban area. This closeness constraint keeps the running
time of our pre-computation methods to a minimum; we
believe it should be possible to extend our techniques to work
with the many algorithms for scalable long-distance planning
(see Section II) but chose not to focus on this problem initially.

The rest of this paper is organized as follows. We discuss re-
lated work in Section II, our system architecture in Section III,
and our techniques in Section IV and V. We experimentally
evaluate our system in Section VI and conclude in Section VII.

II. RELATED WORK

Dijkstra’s algorithm has traditionally been used [3] for
route planning in road networks. Though extremely efficient
implementations of Dijkstra’s algorithm exist [4], even the
tens of milliseconds of computation time they take per route
translates into an untenable solution for our problem given
that our ultimate aim is to be able to scale our system
to potentially hundreds of thousands of users (leading to
hundreds of thousands of standing routing queries). For the
same reason, hill climbing algorithms such as A* search [5]
which employ heuristics for search pruning do not serve our
purpose if they are merely used for complete recomputations
on every update. Dynamic variants of A* search such as
dynamic anytime A* [6] and life long planning A* [7] also
do not help us due to scalability issues in using them at run
time for a large set of registered routes.

The performance of 1:n dynamic shortest path algorithms
that update routes from a given source node in response
to changes in the weights of one or more edges varies in
practice depending upon the frequency of updates as well
as the size of the underlying graph [2]. In general, they
process edge cost updates much faster in comparison to from-
scratch recomputations of their static counterparts. However,
they have other limitations that make them unusable in our
setting. For example, Ramalingam’s incremental algorithm [8]
for the dynamic single-source shortest (DSSS) path requires
in-memory storage of a pre-calculated shortest-path-tree from

every source node. In the setting we consider, this translates
to a prohibitive space overhead – thousands of distinct nodes
are routinely registered as source nodes. In contrast, our
approaches require monitoring just one or a few paths for each
registered query, amounting to approximately 2500 bytes of
storage per routing request when multiple paths are monitored.
Though the similar DynamicSWSF-FP algorithm [8] does
not require pre-calculation of any input, its running time is
governed by the number of affected nodes which can be large
as we need to maintain shortest paths from many source nodes.
Frigioni’s DSSS algorithm [9] also requires a prohibitive
shortest path tree computation.

Dynamic all-pairs-shortest-path algorithms have a space
and time overheads(per delay update) of at least O(n2) and
O(n2 log n)[2], making their use impractical for large road
networks and given the high number and frequency of updates
we need to process. For instance, King’s dynamic all-pairs
shortest path (APSP) algorithm [10] supports approximate
shortest path queries in an efficient O(n2 log2 n/ log log n)
amortized time but is applicable only when all edge weights
are integers bounded above by a small constant. We would
need to set this bounding constant to a large value to take
the variability in traffic conditions into account, making
the solution unattractive. Demetrescu and Italiano’s dynamic
APSP approach [11] uses combinatorial properties of graphs
to guarantee O(n2 log3 n) amortized time per update but the
O(mn) space requirement makes their solution unattractive
(here m is the number of edges in the graph). In contrast, our
K-candidate-routes algorithm runs in O(Kr +u) time, where
r is the total number of continuous routing queries registered
with the system, and our proximity approach runs in worst
case O(r(u + (m + n log n)) for a batch of delay updates of
size u.

Work on adaptive fastest path computation by Gonzalez [12]
uses historical data to mine traffic patterns at different points of
time in an attempt to take non-concrete parameters about dif-
ferent road segments into account. Only historical information
is used in their algorithm with no real time traffic monitoring.
Kanoulas et al [13] use historical data to get a different average
speed for each hour of the day and uses that to compute the
best route for a given day and time. Again, real-time traffic
conditions are not taken into account.

A precomputation based solution to APSP problem has a
significant space overhead but this can be reduced by using
approaches based on hierarchical decomposition [14] of the
road network, such as precomputation of paths from all source
nodes only up to a certain distance or breaking the underlying
graph into a set of several fragmented graphs and a boundary
graph. Materialization strategies [15] for hierarchical routing
algorithms also offer a balance between increased space usage
and reduced query time and are considered to be important in
querying large spatial network databases [16]. But as discussed
earlier, any scheme which merely returns precomputed results
(without taking into account dynamic edge costs) defeats the
purpose of our system.

The current application of shortest path algorithms to

Route
Planner

Continuous
Query Engine

Map
Matcher

Delay
Estimator

Delay
DB

MapsRaw GPS data
from cabs

Routes

Continuous Queries

Route Updates

Fig. 1. The architecture of our system.

transportation planning systems is largely based on graph
preprocessing under the assumption of static conditions to
speed up query response times [17]. Reach based routing [18]
improves query performance by adding shortcut edges to
reduce nodes’s reaches during preprocessing and though useful
for routing in large road networks, it overlooks real time
delays and is thus not applicable to our problem. Landmark
Indexing [19] and Transit Routing [20] speed up run time
query performance by using precomputed distances between
certain set of landmarks (or transit nodes) chosen according
to sophisticated algorithms. As with hierarchical schemes,
distance between all landmark pairs is precomputed and is
subsequently used unchanged, and so real time traffic delays
cannot easily be taken into account.

There have been a number of recent studies in the area
of pre-computation based shortest path calculation in the
presence of edge weight changes. An adaptation of landmark-
based routing to dynamic scenarios [21] yields good query
times but requires that a link’s cost not drop below its initial
value. A dynamic variant [22] of highway-node routing gives
fast response times but can handle only a small number of edge
weight changes. A bidirectional ALT algorithm for dynamic
time-dependent graphs [23] is fast but can again handle edge
weight increases only (they focus on handling traffic jams in
road networks). Our algorithms do not have these limitations.

Other related but orthogonal work on spatial databases and
route planning in the database and algorithms communities
include probabilistic path queries [24], dynamic k-NN [25],
path indexing [26], path oracles and efficient storage [27]
and trip planning [28]. Though some of these ideas, like path
indexing, may be useful in our system when maintaining a very
large number of paths between a single source and destination
pair, none of them address the problem of building a scalable
routing service which handles continuous routing queries from
potentially hundreds of thousands of users and updates them
on the fly as traffic updates stream in.

III. ARCHITECTURE

The basic architecture of our system is shown in Figure 1.
Raw data in the form of GPS readings arrives from a

fleet of about 30 taxi cabs we have deployed in the Boston

area as a part of the the CarTel project [29]. This raw data
is processed by a map-matching algorithm to identify the
road segments that are traversed; a delay estimation algorithm
computes average statistics about the expected time to traverse
each segment by combining historical and real time delays.
Delay estimates are stored in a delay database. We currently
have about 20 million delay estimates (<time, segmentid>
pairs) for about 90,000 road segments collected over the past
6 months. Our system uses underlying map (road connectivity)
data from NAVTEQ [1] and OpenStreetMap.org. As our cars
travel mainly in Boston, we largely focus on this part of the
graph which has about 40,000 segments and 30,000 nodes.
We have also tested our algorithms on the entire US network,
consisting of about 83 million segments and 77 million nodes.

The route planner is responsible for finding the minimum
cost route between two points on the road network based on
current traffic delays. We use historical delay data for precom-
putation of candidate routes for continuous queries registered
with system (this method is detailed in Section V-A). It is
also used when the user fires an ad-hoc query (as opposed
to registering a continuous routing query with the system)
between a start and destination for <day, time> pair other than
the current time. For example, an ad-hoc routing query for a
Monday afternoon time would be answered using aggregated
delay statistics for that Monday afternoon time from the
system’s accumulated history.

Currently our backend is used by the iCartel application
for route planning on the continental US road network. Users
can submit route planning requests by running the iPhone
application and asking for a path from their current location to
some destination. Our system reads new traffic delay data and
updates the road delays every t units of time – the frequency
of updates we use in the paper is 15 minutes, but as more and
more users adopt the system, we expect the updates to be many
more in number and their processing much more frequent.

Our goal in this paper is to describe the algorithms and
design of the continuous query engine, which takes standing
queries from users specifying the start point and the destination
of their travel, and sends new routes to users whenever the
delay on the best route for their query changes substantially,
which our system captures using factors ε and γ.

IV. PRELIMINARIES

In this section, we overview the A* search algorithm [5]
used for finding the shortest path between two vertices in a
graph, and Yen’s algorithm [30] which finds the K shortest
loopless paths between two given nodes in a network. We use
both these algorithms as a basis for the techniques we discuss
in the next section.

A. A* search

The idea underlying A* search is the same as Dijkstra’s
algorithm but it uses a distance-plus-cost heuristic function
f(x) = g(x)+h(x) to determine the order in which the search
visits the graph nodes. Here g(x) is the path-cost function
which is the cost from the starting node to the current node

and h(x) is an admissible “heuristic estimate” of the distance
to the goal,i.e. it must not overestimate the distance to the
goal.

For route planning in road networks, we use the “as-the-
crow-flies” distance at a maximum speed limit on a road
segment to compute h(x). We have found that this heuristic
is very effective in practice; on our Boston subgraph, most
A* route planning queries complete in about 100 ms. Our
choice of A* as a search tool is because of its effectiveness
and simplicity. Our ultimate aim is to show the scalability
and effectiveness of our techniques regardless of the specific
search algorithm used at the lowest layer.

B. Yen’s Algorithm

If P is the set of all possible paths between the start node s
and the target node t and the cost of a path p is given by c(p),
the K-shortest path problem is to determine a set of paths
PK = {p1, . . . , pK} ⊆ P such that:
• ∀ k ∈ {1, . . . ,K − 1}, c(pk) ≤ c(pk+1),
• For all simple paths p ∈ P − PK, c(pK) ≤ c(p),
• For any k ∈ {1, . . . ,K − 1}, pk is determined before

pk+1

The most efficient solution for this problem is Eppstein’s
algorithm [31], but it can return paths with cycles which
do not make sense in a road network. The significantly
harder K-shortest loopless paths problem has the additional
restriction that ∀ k ∈ {1, . . . ,K}, pk must be simple (should
not contains any cycles). Yen’s algorithm [30] solves this
problem in O(Kn(m+n log n)) time. Although more efficient
techniques [32] exist, they do not work for all directed graphs
and as Yen’s bound is the best known for the general case,
we use it in our work. Before describing the algorithm, we
introduce some terminology as discussed in [33].

Yen’s algorithm works as follows. Supposed we have
already determined the k-th shortest loopless path pk =
< vk

1 (= s), vk
2 , . . . , vk

lk
(= t) >. To compute pk+1, candidate

shortest loopless paths which deviate from pk in vk
i are

computed for every node vk
i to be analyzed. The loopless

property of paths is ensured by temporarily removing nodes
on the subpath subpk

(s, vk
i−1) before the shortest loopless path

from vk
i to t is determined. The outgoing edge from vk

i to
vk

i+1 is also temporarily removed prior to this computation
to avoid generation of a duplicate candidate path. Thus, in
the worst case, the algorithm performs O(n) A* shortest path
computations for each of the K output paths.

V. EFFICIENTLY ANSWERING CONTINUOUS ROUTE
PLANNING QUERIES

In this section, we describe our techniques for online main-
tenance of near-optimal routes for <src,dst> pairs requested
by a set of continuous queries. We explore two different classes
of algorithms:
• Approaches which involve a mix of precomputation of

K candidate paths and on-the-fly cost recalculation
• A proximity based approach which computes an ellipse

surrounding the previously reported optimal route

We describe these two approaches in more detail in sub-
sections to follow; a comparison of the practical performance
of the two algorithms along with conditions in which either
should be selected over the other appears in Section VI-C. First
we assume that our system has a total of r standing route
planning queries (specifying <origin, destination> tuples)
which it must continuously answer.

A. K Candidate paths

The motivating idea behind this approach is to find K
different routes between a <src,dst> pair such that at least
one of them is always good in the sense that change in traffic
delays do not adversely affect all K routes simultaneously.
Note that we do not store K candidate paths for each pair
of nodes in the road network but only for the src-dst pairs
registered as a part of some continuous routing query. Thus,
the storage overhead per query of the K-candidate-paths
approach is O(K), with the hidden constant accounting for
the space required to store the segments/nodes on each path.

As the queries registered by most users require continuous
monitoring, we use overall historical delay statistics to com-
pute and store K paths for each such continuous routing query.
When registering a continuous routing query, the user is asked
to specify only the < origin, dst > pair for the query (if the
user also specifies a day and time range of travel along with
the query, we store an array with a set of K paths per requested
time slot), the different alternate paths are computed and stored
internally by the system without any user intervention.

We aim to avoid run time shortest route recalculation by first
precomputing these K candidate routes for all r pairs and then
doing a simple re-rank among them on arrival of traffic delay
updates. Re-ranking involves simply summing the delays along
each segment of all precomputed paths and finding the route
with least overall delay.

We do not re-rank candidate routes for a <src, dst> pair on
arrival of every delay update. The decision to do so is based
on both the number and degree of cost changes; we rerank as
soon as one of the following events occurs:

1) More than a fraction ε of segments on any of these K
paths has updated delays. This is because even small
delay updates per edge could change the overall delay
of the route substantially if there are a large number of
edges with updated weights.

2) At least one of the edges has a real time delay more than
γ times the previous delay (or if the previously reported
delay is γ times greater than the delay on any of the
K-candidate paths). If an edge has not had a real-time
update recently, we compare the new cost to its historical
delay. Real-world scenarios such as traffic jams and
sudden blocking of streets (and their subsequent clearing
up) can be modeled by high values of γ, irrespective of
whether it is an increase or a decrease.

After a re-rank, we check to see if the current best path is
different from the previously reported best path for each query
and pro-actively inform the user if that is the case.

A simple route recomputation strategy is to use historical
delay statistics to find the K least cost loopless paths by
employing Yen’s algorithm. However our experiments indicate
that for road networks, the K paths returned by Yen’s
algorithm have overwhelmingly large number of segments in
common, with just 1-2% of the segments differing from each
other. Thus a potential traffic congestion is likely to affect all
K paths whereas we desire that the set of candidate routes be
more robust to real time changes in traffic delays.

Known effective methods for finding spatially dissimilar
paths between two nodes in a transportation network include
the Minimax method [34] and p-dispersion [35] but these
heuristics suffer from a high computation cost which is
undesirable for our setting where precomputation overhead for
generating the K candidate routes must be kept small so that
the system is able to register new continuous routing queries
quickly.

Below we describe three practically fast techniques we have
devised for computing a good set of K paths between two
nodes. We remark that the real-time travel costs on these paths
are not guaranteed to be the best-possible (optimal or near
optimal) because the link costs change as traffic delays change
in real time, thus the various K-candidate-routes algorithms
we propose are approximate. We however experimentally show
the near-optimality of these approaches and the proximity
based technique in Section VI-B3.

1) K-AS-VARIANCE : Perturbing the edge costs: The first
idea for computing K different paths is to iteratively run
the A* search algorithm on the underlying graph, each time
starting from the source until we find the destination node – but
with graph edges having slightly different weights in different
iterations. Our idea is to maintain a Gaussian distribution
(mean µ and variance σ2) for the historical delay observed for
each edge during each time slot, and to sample the delay from
this distribution. We call this technique K-AS-VARIANCE.

We perform edge cost computation on-the-fly i.e. if a
segment is encountered while computing the shortest route,
we re-sample the cost. This idea avoids wasting time in setting
all edge costs to a new value at the beginning of an iteration.
Note that it is possible that despite different edge costs, two
iterations still return the same shortest path between the start
and end nodes under consideration. To address this issue, we
run the algorithm until K distinct paths are found.

We observe that this technique fares better when segments
have high historical delay variances, as otherwise successive
iterations will return nearly identical paths. Although a large
number of iterations may eventually return K different paths,
they are likely to differ only in a few segments and unlikely to
be a large improvement over Yen’s algorithm. For this reason,
we terminate the algorithm after a fixed number of iterations
even if it has not found K distinct paths yet. However,
experimentally we observe that for K = 5, such a forced
termination happens only for a small fraction of src-dst pairs.

This approach requires Ω(K) A* searches to find the K
candidate routes; we bound the number of searches above
by O(K2) (more details on the precomputation time of this

Fig. 2. K = 5 different paths
between MIT and Harvard computed
by our aggressive strategy

Fig. 3. The computed ellipse for
the shown route between MIT and
Harvard

approach in Section VI-B5).
2) K-AS-AGGRESSIVE : Nearly Disjoint paths: The simi-

larity of paths returned by Yen’s algorithm as well as by our
K-AS-VARIANCE technique when variances in link costs are
low motivated us to develop a technique which is guaranteed
to return a set of K paths which substantially differ from each
other. In particular, our goal is to find paths that have minimal
(or zero) overlapping edges so that the paths are nearly
disjoint. We observe that such a K path set represents K
alternate ways of reaching one’s destination starting from the
source and this makes it likely that despite traffic congestions
in parts of a city, some of these K paths will be uncongested
and easily navigable.

We achieve near-disjointness by aggressively deleting all
edges on a shortest path found in any previous iteration
from the graph (such deletions are temporary and the edges
are restored after the algorithm’s run). This ensures that the
(l + 1)th shortest path pl+1 from source to the destination
has different edges from those on paths {p1, . . . , pl}. Finding
K completely disjoint paths however may be impossible, it
could be that the degree of either node is smaller than K or
that fewer than K bridges connect s and t in the graph. For
this reason, we relax our disjointness condition by allowing
up to nd edges near the start and end nodes to be repeated
between all the K paths. Observe that the algorithm does at
most K A* searches. The time spent in deleting the edges
from the previous iteration’s output path can be subsumed
within the time required for the A* search, so that the overall
precomputation time is still of the order of K A* searches.

Note that the sole purpose of having the parameter nd(> 0)
is to allow for edges very close to the start and end nodes to be
shared between different candidate paths so that K different
nearly disjoint paths can actually be found. We empirically set
nd = min(K, 5). Because nd is small compared to the typical
number of segments on a route, its selection is not critical to
finding the best possible disjoint paths. We’ve found that small
variations in its value do not alter the returned routes.

In Figure 2, we show K = 5 different paths returned by K-
AS-Aggressive when the origin node is MIT, Cambridge and
the destination is Harvard University. Note that three paths
are shown in red overlays and the other two in green. Though
the red colored path to the right seems convoluted, our delay
statistics show that its cost is not significantly higher compared
to the other paths.

3) Variants of Yen’s Algorithm: Although the aggressive
strategy usually identifies a good set of K paths, there are
two motivating reasons to explore other possible techniques:
(1) complete disjointness of paths might exclude many routes
which are otherwise attractive, e.g., a route with a quick detour
from somewhere close to the middle of a returned “aggressive
path”; (2) real users often prefer routes which appear less
convoluted when seen on a map. In particular, we believe
drivers may shy away from such convoluted routes even if
the estimated travel times are low (our system does include
turn penalties to prefer routes with fewer turns, but such
routes can still arise on very congested paths.). To address
this concern, we explored several variants of Yen’s algorithm
that return a set of good set of K-paths without resorting
to the extreme disjointedness of the K-AS-AGGRESSIVE
algorithm. Both the techniques described below have a worst
case computational complexity of O(Kn(m+n log n)), being
derivatives of Yen’s algorithm. However, we found their
performance to be much faster in practice (see Section VI-B5
for average precomputation times).

We call our first variant Y-MODERATE. In Yen’s algorithm,
when candidate paths for pl+1 are being generated from the l-
th shortest route pl, Y-MODERATE does not permit candidates
with more than a fraction 1/f of common prefix nodes with pl.
Thus, if len(pk)+1 is the number of nodes on the path pl, no
candidate generated in the lth iteration is allowed to share more
than 1

f (len(pl)+1) prefix nodes with pl. We set f = 2 for our
implementation. It may appear that setting f to large values
simulates K-AS-AGGRESSIVE since for large f , 1/f ≈ 0.
However this is not necessarily true because Yen’s algorithm
does not guarantee disjoint paths beyond the deviation nodes,
so we may end up with K paths which have many nodes
common close to the destination node. Our experiments show
that the moderate variant of Yen’s algorithm is better than a
direct application of Yen’s algorithm, but that the K routes it
returns still tend to be similar.

Thus, Y-MODERATE has a few problems similar to what
motivated us to define the K-AS-AGGRESSIVE algorithm in
the first place. To achieve our goal of identifying K-path sets
which are robust to real time traffic delay changes, we define
the Y-STATISTICAL strategy which is a combination of the
ideas of the K-AS-AGGRESSIVE technique ideas with the K
loopless paths computation of Yen’s algorithm. The idea is
to remove some, but not all edges of the path found in the
previous iteration. Suppose l-th shortest path pl has already
been found. Then, before generating new paths for pl+1, we
pick each segment on pl and temporarily delete it from the
graph with a certain probability. We experimented with several
ways to choose this probability of deletion, including deleting
edges that occur in a large fraction of routes, or deleting edges
that are traversed more frequently with a higher probability.
We found, however, that randomly deleting an edge with a
fixed probability Pr (Pr = 1/2 in our experiments) worked as
well as the above heuristics for K = 5, so we use that strategy
in our reported results.

Similar to the K-AS-Aggressive algorithm, Y-Statistical

computes K paths that are significantly different from each
other but with a smaller fraction of ‘weird’ routes.

B. Proximity Measures

Unlike the algorithms in the previous section which seek
a good set of precomputed paths, our proximity-based ap-
proach attempts to devise a proximity measure that triggers
a recomputation of the shortest route at run time only when
there are “sufficiently large” number of segments with new
delays that are geographically near to the previously reported
fastest route (which is initially the precomputed historically
fastest route). By using a region-of-influence based heuristic
technique, we maintain only one fastest route between every
source-destination pair at all times.

Intuitively a region of influence around an object is a closed
curve like a circle or an ellipse. Different shapes could work
better for certain situations. However, computing arbitrary
shapes is much more complex, testing whether a segment
falls within an arbitrary (not necessarily convex) shape is also
computationally expensive. Furthermore, arbitrary curves need
more parameters to define them, resulting in a variable as well
as higher storage space per route. If we assume the region of
influence of any path p between s and t to be an ellipse that
encloses the entire path, we require five parameters (details
below). A simpler shape such as a rotated rectangle would
also require the same number of parameters. The advantage
of using an ellipse is that it restricts the number of segments
that need to be considered while processing updates that we
might otherwise consider unnecessarily.

The more the number of segments with updated delays
within the path’s enclosing ellipse, the higher the chance that
the previously reported shortest route is no longer optimal –
thereby requiring a recomputation at run time. Our technique
differs from similar ideas in [36] in several ways: (1) we use
the proximity region to evaluate whether or not the best route
needs to be recomputed as opposed to using it to constraint
the shortest path search space; (2) our region of influence is an
ellipse instead of a MBR of an ellipse; and (3) the algorithm
for computing the enclosing ellipse is completely different
(detailed in the following section).

We remark that a recomputation of the optimal route is
triggered only when the number of segments inside the ellipse
with updated delays exceeds a fraction ε of the ellipse’s area
times the average number of segments found in a unit area of
the road network.

1) Computing the enclosing ellipse: Finding an ellipse
which encloses a set of points in two dimensional space (every
path can be seen as an ordered list of latitude-longitude pairs)
is a computational geometry problem. Known solutions [37]
are designed to compute approximate hyper-ellipsoids for
arbitrarily high dimensional Euclidean spaces and thus despite
being linear in the number of input points, they have a high
computational cost in practice.

Instead we have developed a simple but fast technique
for approximate computation of the enclosing ellipse, which

requires just two linear scans of the input set. The pseudocode
appears in Algorithm 1.

Algorithm 1 Pseudocode for finding the enclosing ellipse of
a path p.

1: procedure FAST-ENCLOSING-ELLIPSE(xs, ys, xe, ye, p,
fr)

2: (xo, yo)← ((xs + xe)/2, (ys + ye)/2);
3: a← fr∗crowDistance(xs, ys, xe, ye)/2;
4: . Compute equation of L1 and L2

5: . Compute maximum perpendicular distance dmax to L1

6: b← dmax;
7: for all vertices v on p do
8: if (v is not inside ellipse) then
9: . Assume v to be on the ellipse and use the ellipse’s equation

to compute the new value of b
10: end if
11: end for
12: if (b < a) then
13: a =

√
b2 + a2;

14: Lmajor = L1

15: else
16: Lmajor = L2

17: end if
return {xo, yo, a, b, slope(Lmajor)};

18: end procedure

An ellipse is characterized by two parameters: the semi-
major axis length a and the semi-minor axis length b. The
two foci of the ellipse lie on the major axis, with their position
determined by a, b, the orientation (or slope) of the major axis
Lmajor and the position of the ellipse’s center on the major
axis. The line Lminor containing the minor axis is always
perpendicular to Lmajor.

Our algorithm proceeds as follows: we first assume the
center (xo, yo) of the ellipse to be the midpoint of the two node
coordinates (xs, ys) and (xe, ye) and compute the equation of
line L1 joining them and also of the line L2 perpendicular to
L1 and passing through (xo, yo). We assume L1 to be Lmajor

and set the parameter a to fr
ds,t

2 . Here ds,t is the “as-the-crow-
flies-distance” between (xs, ys) and (xe, ye) and fr(> 1) is a
small relaxation factor to ensure that nodes do not lie beyond
either end of the axis along L1. Note that this may not turn
out to be the length of the semi-major axis as we adjust a in
later steps.

We initially set b (half the length of the other axis) to the
maximum among the shortest distances of all nodes on the
precomputed path from L1. We iteratively refine the value of
b by processing all vertices on the shortest path in increasing
order of their distances from (xs, ys) and (xe, ye) along L1.
If a vertex v does not lie inside the ellipse determined by the
current value of a and b, we assume that v lies on the ellipse
and compute the new (larger) value of b using the equation of
the ellipse (we have already set a to a temporary value). This
particular order of processing these nodes reduces the number
of recomputations of b by ensuring that outlier nodes far from
the center (along L1) are encountered early in the algorithm’s
run so that after the first few iterations, the ellipse already has
most of the points to be processed in the remaining iterations.

Finally, if it turns out that b > a at the end of the computation,
we let L2 be the major axis instead and b be the semi-major
axis length. Otherwise, L1 still remains the major axis and
the value of a is increased to reflect that the initial value of a
captured half the distance between the two foci, so that now:
afinal =

√
b2 + a2

init. We can now identify our enclosing
ellipse uniquely using four parameters which we have already
computed: center of the ellipse, a, b, slope of the major axis
(Lmajor).

An example ellipse for the shortest route between MIT
and Harvard appears in Figure 3. As our algorithm is a
fast heuristic, it has some shortcomings; in particular, our
assumption that the line joining the two nodes is one of the
axes may sometimes result in the ellipse becoming larger than
it needs to be. However, we experimentally observe that with
appropriate choice of parameters, the approach is still quite
efficient.

2) Precomputation Complexity: The per query storage
complexity of the proximity approach is O(1) because we
simply need to store the best path per query, and the enclosing
ellipse can be stored by simply storing five parameters
described in the pseudocode: {xo, yo, a, b, slope(Lmajor)}
(see Algorithm 1).

The proximity approach requires only one A* search to
precompute the optimal route between a src-dst pair and time
taken to compute the ellipse is of the order of the number of
edges on the best route, which is far below the time an A*
search takes, so that the overall time complexity in terms of
the number of A* searches is O(1).

3) Processing real time delay updates: On arrival of a batch
of delay updates, we check if the number of segments with
delay updates that lie inside the pre-computed ellipse for a
routing query exceeds ε times the average number of segments
lying inside an ellipse of this area. If so, we re-run A* search
and return a real-time optimal path to the end user. At the
same time, we also recompute and store the bounding ellipse
corresponding to the new path.

For r registered queries and a batch update size of u, the
worst case processing time of our algorithm is O(r(u+(m+
n log n))). In practice, the A* search is re-run only for a small
fraction of queries and the algorithm runs much faster.

VI. EVALUATION

In this section, we experimentally evaluate the techniques
we described in Section V. In addition to the methods above,
we also consider a brute force method that re-runs a complete
A* search any time a batch of delay updates arrive (in
our system delays arrive every 15 minutes). Specifically our
goals were to (1) gauge how well our techniques perform in
comparison to the naive brute-force strategy for recalculation
of the optimal route (using A* search) in terms of both the time
taken and the number of updates sent to the user, (2) quantify
(using expected travel times) how much worse the routes our
system suggests turn out to be in comparison to the brute
force method, and (3) see how the choice of ε and γ affect
performance. We found that all of our algorithms outperform

brute-force on metric 1 and are about 5–7% worse on metric
2. We also observed that our algorithms scale well with the
number of registered routes, suggesting that our algorithm is
practical.

A. Dataset and Experimental Setup

We evaluate our system using a database of actual com-
mutes, gathered from our network of 30+ taxi cabs in Boston.
We chose the set of designated routes to be monitored by
randomly picking 7000 <start, end> pairs from our CarTel
log containing approximately 150,000 real drives. For our
experiments, we used the actual real time traffic delays on
road segments – computed by the match matching and delay
estimation components (see Figure 1).

All of our experiments were run on a 2.66 GHz 8-core
Intel Xeon workstation with a memory of 16 GB and running
Fedora Linux 10. The underlying NAVTEQ map data and
the set of designated source-destination pairs were stored in
a MySQL database on a separate Intel Core 2 Duo 2.66
GHz machine with 4 GB of RAM. We used [38] as a base
implementation of the actual Yen’s algorithm and modified
it substantially to suit the requirements of our work (and to
interface with other parts of our code). The entire road network
as well as queries and cached routes fit into memory. We report
on the total state required to store precomputed routes later in
this section.

We ran our system by initializing it with a number of
continuous routing queries (up to 7000). We then simulated
updates to the real-time delays on the road network by
replaying data from two months of our traffic delay database,
with delay updates arriving in 15 minute batches.

B. Results

Below we present results for the two classes of tech-
niques we have proposed: the proximity approach and the K-
candidate-paths approach for K = 5. We found that higher
values of K simply increased pre-computation overhead with
little added benefit in route quality. In all experiments below,
we set epsilon to ε = 0.25 and γ = 1.75; we evaluated the
benefit of variable values of ε and γ in separate experiments.

1) Experiment 1: Runtime Performance: As real time traffic
delays stream in, each K-path technique checks if more than
a fraction ε of the segments on any of the K-paths for
a designated pair have new delay values or if there is a
segment of the current best path with more than a factor
of γ increase/decrease in its cost and re-computes the best
path (“re-ranks”) for each such pair. Similarly, the proximity
measure recomputes the best path if the number of segments
with new delay updates lying inside a pair’s ellipse (of area A)
exceeds ε times the average number of segments in an ellipse
of area A or if there is a segment on the current optimal route
with a greater than γ increase/decrease in link cost.

Figure 4 shows the runtime performance of our methods
vs. the number of registered routes. Note that the y-axis is
log-scale. Here, our K-path techniques beat the brute force
strategy by up to two orders of magnitude and the proximity

approach is at least an order of magnitude faster. The higher
runtime cost of the proximity approach is due to its use of A*
path computations when an update is required. In contrast, the
K-best-paths approaches have low runtime cost because they
simply compare the costs of the K paths.

A key observation from this plot is that the K-paths scale
very well with the number of registered routes. This suggests
that our algorithms are well suited to our continuous route
planning scenario.

2) Experiment 2: Fraction of routes updated: In this sec-
tion, we measure the fraction of updated routes for our
different techniques, as ε and γ vary.

Figure 5 shows the average fraction of routes updated by
each of our methods for ε = 0.25 and γ = 1.75 when a
new batch of delay estimates arrives (each batch consists of
3000 real time updated segments on average). The fraction
of updated routes grows with increasing value of r (the
total number of continuous routing queries registered with
the system), which is expected because an increased size
and more diverse set of designated <src, dst> pairs means
that the probability of delay updates affecting at least one
such pair is now higher. We see that compared to a brute
force method, all of our strategies except K-AS-Aggressive
update only about 15-30% routes, a substantial reduction. The
performance of K-AS-Aggressive technique is also good, with
20-40% updates required. The aggressive technique requires
more updates because its precomputed routes are more diverse,
so updates have a higher probability of affecting at least one of
a set of K nearly disjoint paths. We note that for the K-best-
paths approaches, the time to perform a re-ranking is much
less than the time to perform a full A* search (as described
above), and that overall the runtime of K-AS-Aggressive is not
substantially worse than the other K-best-paths approaches.

The number of updates issued is clearly a function of the
value of ε. This is because as we vary ε from a little over
zero to higher values (close to 1), fewer queries have a high
fraction (≥ ε) of segments on one of their K-paths updated
(or a high number of segments with updated delays inside
their best path’s enclosing ellipse for the proximity approach).
Figure 6 confirms this intuition, showing that both strategies
see a drop in the fraction of updated routes with increasing ε.
The proximity measure results in a higher number of updates;
this is because the enclosing ellipse for a route encloses many
more road segments than the total segments on the K paths
and is thus more sensitive to traffic delay updates. We disable
route updates resulting due to new link delays greater than the
factor γ for Figure 6 so as to avoid route updates due to both
ε and γ from masking the effect of change in ε on the number
of routes updated.

Figure 7 shows the fraction of route updates for increasing
values of γ with no re-ranks due to fraction ε (to independently
observe the dependence of route updates on γ). As expected,
we see a rapid fall in route updates as γ varies from slightly
over 1 till 5. Invariably, there are a number segments with
delay updates within 5-10% of the previous real time cost (or
the historical link cost in absence of updates in the recent

 1

 10

 100

 1000

 10000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

-
lo

g
 s

c
a
le

Number of designated routes

Brute-force
Y-Moderate
Y-Statistical

K-AS-Aggressive
K-AS-Variance

Proximity-measure

Fig. 4. Runtime processing cost (log scale) vs the number of paths

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1000 2000 3000 4000 5000 6000 7000

F
ra

c
ti
o
n
 o

f
d
e
s
ig

n
a
te

d
 r

o
u
te

s
 r

e
ra

n
k
e
d

Number of designated routes

Y-Moderate
Y-Statistical

K-AS-Aggressive
K-AS-Variance

Proximity-measure

Fig. 5. Fraction of routes updated vs the total number of routes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

c
ti
o
n
 o

f
d
e
s
ig

n
a
te

d
 r

o
u
te

s
 u

p
d
a
te

d

Epsilon

K-Paths
Proximity-measure

Fig. 6. Number of routes updated vs. ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

c
ti
o
n
 o

f
d
e
s
ig

n
a
te

d
 r

o
u
te

s
 u

p
d
a
te

d

gamma

K-Paths
Proximity-measure

Fig. 7. Number of routes updated vs. γ

past), leading to a huge number of reranks for γ = 1.05
Few segments tend to have real time cost changes by a factor
greater than γ values and even fewer lie on one of the pre-
calculated routes for each query, explaining the rapid fall in
number of route updates with increasing γ. This time the
proximity approach does fewer updates, because only a drastic
update on only one path (the previously reported route) can
lead to updation of the best route for a query whereas for the
K-Paths techniques, there are K such paths. Note that even
for road segments with routine congestion during peak traffic
hours, cost update factors greater than γ are few for one of two
reasons: (1) a segment’s historical delay value for a given day
and time already captures that the route is routinely congested,
(2) we measure change with respect to the most recent real-
time delay (if available) and the update reflecting the congested
value was processed in the previous batch of updates.

3) Experiment 3: Optimality: In addition to speed and
scalability, the practical utility of our system depends on routes
being “reasonably accurate”, i.e. their cost should be close to
the optimal value such that end users are not misled. We
measure optimality as follows: suppose copt is the true cost
(as returned by a brute force A? search) and the cost of the
route returned by our system is c. We define the optimality
ratio OR =

c− copt

copt
to be the quality of our routes. Note

that c ≥ copt, meaning the cost estimate can never be an
underestimate as copt is (by definition) the least cost path.
Figure 8 shows how OR changes vs. ε for our different
techniques (with no pruning based on γ). In this experiment,
we measure optimality only when our system recomputes a
new best route.

The proximity approach recomputes the best shortest path
every time it issues an update and therefore is always optimal
in its suggested cost. We see that for all ε (ranging from 0.05 to
1), the costs reported by all our K-path techniques are always
within 10% of the optimal cost (e.g., on a 30 minute route, the
travel time of the reported route is within 30 to 33 minutes).
As ε grows larger, the suggested routes have costs closer to the
true cost. This is because for small ε, when a recomputation
does happen, our algorithms – especially those that find very
different paths are likely to return the same route since changes
in the delays of a few segments are unlikely to affect the
overall best path. For larger values of ε, more segments will
have changed and our algorithms are more likely to return a
different path, which would be closer to the true optimal. This
also explains why Y-Moderate and K-AS-Variance fare better
as both of them have a set of K paths which is similar and
so are more responsive to small changes in delays of a few
segments.

There are many routes for which the K-path and proximity

approaches do not report an update because neither at least
ε fraction of segments are updated, nor there is any segment
on the best path with a substantially different link cost (as
measured by γ). In such a case, the user must assume that
the previously reported (or precomputed) shortest route is still
the best. Let cact be the cost of this previous route with new
delays for some <src,dst> pair. In this case, we define the
optimality ratio as OR =

cact − copt

copt
. We show the variation

of OR with ε for such non-updated pairs in Figure 9. The
optimality gap falls for larger values of ε because routes are
now re-ranked for a smaller fraction of queries, and re-ranked
routes naturally have overall delay values closer to the optimal
(with OR → 0 as ε → 1). Here the optimality gap for the
proximity measure is the highest around 10% for all ε, which
suggests that using the average number of segments for an
ellipse of a given area does not accurately capture the actual
probability of the optimal route changing. The curves for K-
path techniques are more promising. They show that for low ε
values, the routes we report are relatively close to the optimal,
with errors less than 5% for ε values up to 0.2.

Figures 8 and 9 show opposite trends for the K-candidate-
paths methods; for that reason, ε values in the range 0.2-0.5
appear to be the best choice, offering errors of 3–7% from
the optimal for both updated as well as non-updated routes.
We see that a smaller value of ε = 0.25 is better for K-AS-
Variance and Y-Moderate and ε = 0.5 is a more prudent choice
if K-AS-Aggressive or Y-Statistical strategies are being used.

Figure 10 shows variation of OR of updated pairs with
change in γ (route updates due to ε are not considered in
this plot). The routes suggested by the proximity approach
are always optimal, so OR= 0 for all updated pairs. For the
K-candidates approach, the OR grows worse on average as γ
increases which is expected because sudden drastic changes
in link cost may not always be captured by the precomputed
K-paths. For non-updated pairs, the OR values remain nearly
constant around 10% as γ varies (plot omitted due to lack of
space). Thus, for all techniques, errors from the optimal are
within 10% for γ values in the range 1− 2. Keeping Figure 7
in mind, we see that a γ value in the range 1.5–2 is however
a more prudent choice.

Route updates when done using both ε and γ for appropriate
choice of these parameters as discussed above ensures that
we are within 5% of the optimal cost for the K-candidates
approaches, and within 10% of the optimal cost for the
proximity approach.

One concern with the above results might be that any route
would provide relatively low OR values. To invalidate this
hypothesis, we computed the best route recommended by each
of our approaches at the beginning of our simulation (when the
delays in the road network were computed only from historical
averages), and measured the average OR of that route after
the simulation had completed. We found that the average OR
value was over 20% in all cases, and often as high as 80%,
suggesting that the OR values of 3–7% from our system are
quite good.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

O
p
ti
m

a
lit

y
 R

a
ti
o

gamma

Y-Moderate
Y-Statistical

K-AS-Aggressive
K-AS-Variance

Proximity-measure

Fig. 10. Variation of optimality ratio OR with γ for suggested routes

4) Experiment 4: Day and Slot Pruning: Continuous mon-
itoring of all routes has the advantage that the user is always
aware of the best route. However, if the user is interested
in only updates for specific times on chosen days (“slots”),
our system allows explicit specification of the day and time
of travel while registering the continuous routing query. We
take advantage of this by checking if the slot the user has
asked the system to monitor will be affected by newly arriving
delay updates. The system can simply provide continuous
monitoring for a few hours prior to the specified slot (we used
a value of 1 hour in our experiments).

We measured the effect of this and found that this pruning
is very effective in the sense that if all registered continuous
queries contain <day, time> details, the system’s load reduces
by at least an order of magnitude (a factor of 20 when each
routing request is for a randomly selected hour of the day on
all days of the week).

5) Experiment 5: Pre-Computation Cost: Both the K-best-
paths and proximity techniques employ precomputation (as
described in section V). Though the overhead incurred in
doing so is offline, it is nevertheless important to make sure
that this cost is reasonably small so that the precomputation
for all designated routes is practical. Aggregated historical
delays are likely to change over time (even if not very
significantly), necessitating a periodic re-computation of pre-
computed routes to keep them updated with the current traffic
delays.

Table 11 shows the average cost incurred per designated
<start, end> pair for our different techniques (in seconds).
For any designated pair, the proximity measure requires one
A* search to compute the shortest route and a single run of
the linear time enclosing ellipse algorithm. We thus expect it
to be extremely fast, as shown. Similarly, one would expect
that as the K-AS-aggressive strategy requires just K(=5) A*
computations, its precomputation cost should be about K
times slower than the proximity approach. Surprisingly, the
experimentally observed value is much higher. This is due to
the fact that for some src-dst pairs, deletion of the edges on the
previous best paths leads to a rather expensive A* search to
find the next best route. The extremely high variance for K-AS-

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
p
ti
m

a
lit

y
 R

a
ti
o

epsilon

Y-Moderate
Y-Statistical

K-AS-Aggressive
K-AS-Variance

Proximity-measure

Fig. 8. Variation of optimality ratio OR with ε for suggested routes

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
p
ti
m

a
lit

y
 R

a
ti
o

epsilon

Y-Moderate
Y-Statistical

K-AS-Aggressive
K-AS-Variance

Proximity-measure

Fig. 9. Optimality ratio vs ε for non-updated pairs

aggressive supports our argument that expensive A* searches
for select <src,dst> pairs pull the overall average up. For the
K-AS-Variance technique, we expect that the time required to
find all the K-paths could be much higher than than for K
iterations as several iterations in the technique’s run return the
same best path (which must be checked against all existing
paths to be certain there’s no exact match). We experimentally
observed that on an average K2 iterations are required for this.

For the techniques based on Yen’s algorithm, we require a
total Kn iterations in the worst case (as discussed in section
IV), which can be very expensive owing to large n(= |V |) for
a road network. However, A* search’s pruning ensures that the
number of such iterations is small in practice and is confirmed
by the observed average running times. Y-statistical is slow for
the same reason as the K-AS-Aggressive technique. Overall,
however, the Yen’s algorithm-based techniques are practical
despite their theoretically unimpressive bound of O(Kn(m +
n log n)).

6) Space Overhead due to Precomputation: A summary of
the space costs of the precomputed routes for the different
approaches per continuous query appear in Table 12 (values
reported are for K = 5).

Because the proximity approach stores only the best path
and the parameters of the ellipse associated with it, its storage
overhead is the smallest. The K-candidates routes approaches
store K routes for each registered query - so as expected, they
have approximately K times larger storage cost. The K-AS-
Aggressive and Y-Statistical approaches have a relatively high
storage overhead compared to K-AS-Variance and Y-Moderate
because they store a more varied set of routes for each query,
so that some of the K candidate routes computed by them
contain a larger number of edges in comparison to their other
approaches’ counterpart routes which are more similar to the
most optimal historical route and thus are likely to contain
fewer edges. We note, however, that in all cases the overhead
is small enough to store a million or more registered routes in
RAM.

C. Discussion

Our experiments show that both K-candidate-paths and
proximity approach are efficient in their run time processing

of traffic delays and are able to maintain routes with near-
optimal costs. Figure 4 shows that the K-candidate-paths
techniques are more scalable than the proximity approach.
Additionally, their run times are an order of magnitude faster
than the proximity approach. Furthermore, the optimality gaps
of the K-candidate-paths strategies are about a factor of two
better than that of the proximity technique. In particular, K-
AS-Variance and Y-Moderate give better cost guarantees for
small ε values on reported updates, while the K-AS-Aggressive
and Y-Statistical strategies do a better job of reporting a route
which stays close to optimal for small ε values when no route
updates are performed. For this reason, we prefer the use
of K-candidate-paths approaches in general, with the K-AS-
Variance and Y-Moderate approaches slightly preferred due to
their lower precomputation times.

The main advantage of the proximity approach is its
extremely low precomputation overhead (see Table 11), which
could be important in settings where new users register routes
very frequently. The K-candidate-path approaches also have
a K times higher space overhead, which could be an issue in
which memory is constrained.

VII. CONCLUSIONS

In this paper, we described scalable techniques for contin-
uous route planning queries on a road network. We explored
two classes of algorithms: a proximity-based algorithm that
recomputes the optimal route when more than some fraction of
road delays change within a bounding ellipse, and several K-
candidate-paths algorithms that compute a set of K possible
routes and periodically re-evaluate the best route as road delays
change. Our results on 7,000 drives from a network of taxi cabs
show that these algorithms are one-to-two orders of magnitude
faster than a naive scheme which recomputes routes using A*
search whenever a new set of delays arrive, and only 5–7%
worse in terms of travel time of the returned route. We also
showed that our algorithms scale sub-linearly with the number
of registered routes, suggesting their suitability for a large
scale deployment. Finally, we have integrated these algorithms
into a complete route planning system that processes data in
real time and anticipate their inclusion in our iCarTel iPhone
application.

Technique Avg (s) Var
Proximity (Ellipse) 0.10 0.09
K-AS-Aggressive 4.49 119.98
K-AS-Variance 2.58 11.34

Y-Statistical 5.69 142.25
Y-Moderate 2.15 25.18

Fig. 11. Average pre-computation times in seconds for a continuous routing
query (designated <src,dst> pair)

Technique Average space (bytes)
Proximity (Ellipse) 485
K-AS-Aggressive 3015
K-AS-Variance 2570

Y-Statistical 2830
Y-Moderate 2363

Fig. 12. Average storage overhead (due to precomputation) in bytes per
continuous routing query for different approaches (K = 5)

REFERENCES

[1] “NAVTEQ map data,” http://corporate.navteq.com/database.html.
[2] C. Demetrescu, S. Emiliozzi, and G. F. Italiano, “Experimental analysis

of dynamic all pairs shortest path algorithms,” in SODA, 2004, pp. 369–
378.

[3] U. Zwick, “Exact and approximate distances in graphs - a survey,” in 9th
Annual European Symposium on Algorithms. London, UK: Springer-
Verlag, 2001, pp. 33–48.

[4] A. V. Goldberg and C. Silverstein, “Implementations of dijkstra’s algo-
rithm based on multi-level buckets,” in Lecture Notes in Economics and
Mathematical Systems, Vol. 450, P. Pardalos, D. Hearn, and W. Hages,
Eds. Springer, 1997, pp. 292–327.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” Systems Science and
Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, February
2007. [Online]. Available: http://dx.doi.org/10.1109/TSSC.1968.300136

[6] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic A*: An anytime, replanning algorithm,” International
Conference on Automated Planning and Scheduling, 2005.

[7] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a*,” Artif.
Intell., vol. 155, no. 1-2, pp. 93–146, 2004.

[8] G. Ramalingam, Bounded Incremental Computation, J. v. Leeuwen,
J. Hartmanis, and G. Goos, Eds. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 1996.

[9] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, “Fully dynamic
algorithms for maintaining shortest paths trees,” J. Algorithms, vol. 34,
no. 2, pp. 251–281, 2000.

[10] V. King, “Fully dynamic algorithms for maintaining all-pairs shortest
paths and transitive closure in digraphs,” in FOCS, 1999.

[11] C. Demetrescu and G. F. Italiano, “A new approach to dynamic all pairs
shortest paths,” J. ACM, vol. 51, no. 6, pp. 968–992, 2004.

[12] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag,
“Adaptive fastest path computation on a road network: a traffic mining
approach,” in Proceedings of the 33rd international conference on
Very large data bases, ser. VLDB ’07. VLDB Endowment, 2007,
pp. 794–805. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1325851.1325942

[13] E. Kanoulas, Y. Du, T. Xia, and D. Zhang, “Finding fastest paths
on a road network with speed patterns,” in Proceedings of the
22nd International Conference on Data Engineering, ser. ICDE ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 10–.
[Online]. Available: http://dx.doi.org/10.1109/ICDE.2006.71

[14] N. Jing, Y.-W. Huang, and E. A. Rundensteiner, “Hierarchical optimiza-
tion of optimal path finding for transportation applications,” in CIKM,
1996, pp. 261–268.

[15] S. Shekhar, A. Fetterer, and B. Goyal, “Materialization trade-offs in
hierarchical shortest path algorithms,” in Symposium on Advances in
Spatial Databases, 1997.

[16] S. Shekhar and D.-R. Liu, “CCAM: A Connectivity-Clustered Access
Method for Networks and Network Computations,” TKDE, vol. 9, no. 1,
pp. 102–119, 1997.

[17] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest path
distance estimation in large networks,” Tech. Rep., August 2008.

[18] A. V. Goldberg, H. Kaplan, and R. F. Werneck3, “Reach for
a: Efficient point-to-point shortest path algorithms,” Tech. Rep.,
October 2005. [Online]. Available: http://www.avglab.com/andrew/pub/
msr-tr-2005-132.pdf

[19] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A
search meets graph theory,” in SODA ’05: Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2005, pp.
156–165.

[20] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, “In transit
to constant time shortest-path queries in road networks,” in ALENEX,
2007.

[21] D. Delling and D. Wagner, “Landmark-based routing in dynamic
graphs,” in WEA’07: Proceedings of the 6th international conference on
Experimental algorithms. Berlin, Heidelberg: Springer-Verlag, 2007,
pp. 52–65.

[22] D. Schultes and P. Sanders, “Dynamic highway-node routing,” in
WEA’07: Proceedings of the 6th international conference on Experimen-
tal algorithms. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 66–79.

[23] D. Delling and G. Nannicini, “Bidirectional core-based routing in
dynamic time-dependent road networks,” in ISAAC ’08: Proceedings
of the 19th International Symposium on Algorithms and Computation.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 812–823.

[24] M. Hua and J. Pei, “Probabilistic path queries in road networks:
traffic uncertainty aware path selection,” in Proceedings of the 13th
International Conference on Extending Database Technology, ser.
EDBT ’10. New York, NY, USA: ACM, 2010, pp. 347–358. [Online].
Available: http://doi.acm.org/10.1145/1739041.1739084

[25] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis, “Continuous
nearest neighbor monitoring in road networks,” in VLDB, 2006.

[26] Y. Xiao, W. Wu, J. Pei, W. Wang, and Z. He, “Efficiently indexing
shortest paths by exploiting symmetry in graphs,” in EDBT, 2009.

[27] J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path oracles for spatial
networks,” PVLDB, vol. 2, no. 1, pp. 1210–1221, 2009.

[28] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng, “On
trip planning queries in spatial databases,” in SSTD, 2005.

[29] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden, “Cartel: a distributed mobile
sensor computing system,” in SenSys, 2006.

[30] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
Management Science, vol. 17, no. 11, pp. 712–716, 1971. [Online].
Available: http://www.jstor.org/stable/2629312

[31] D. Eppstein, “Finding the k shortest paths,” SIAM J. Comput., vol. 28,
no. 2, pp. 652–673, 1999.

[32] J. Hershberger, M. Maxel, and S. Suri, “Finding the k shortest simple
paths: A new algorithm and its implementation,” ACM Trans. Algo-
rithms, vol. 3, no. 4, p. 45, 2007.

[33] V. Martins, M. Margarida, B. Pascoal, and E. Queir, “A new implemen-
tation of Yen’s ranking loopless paths algorithm,” 4OR: A Quarterly
Journal of Operations Research, vol. Volume 1, no. 2, pp. 121–133,
2003.

[34] M. Kuby and X. Zhogyi, “A minimax method for finding the k best
differentiated paths,” Geographical Analysis, vol. 29, no. 4, pp. 298–
313, 1997.

[35] V. Akgn, E. Erkut, and R. Batta, “On finding dissimilar paths,”
European Journal of Operational Research, vol. 121, no. 2, pp. 232 –
246, 2000. [Online]. Available: http://www.sciencedirect.com/science/
article/B6VCT-3Y51T2P-3/2/de56ccd7dc4e358bb102b3f92c144ccb

[36] B. Huang, Q. Wu, and F. B. Zhan, “A shortest path algorithm with novel
heuristics for dynamic transportation networks,” Int. J. Geogr. Inf. Sci.,
vol. 21, no. 6, pp. 625–644, 2007.

[37] P. Kumar and A. Yıldırım, “Computing minimum volume enclosing
axis-aligned ellipsoids.” Journal of Optimization Theory and Applica-
tions, vol. 136, no. 2, pp. 211–228, 2008.

[38] “Yen’s K-shortest-paths,” http://code.google.com/p/k-shortest-paths.

