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Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation
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We show through theory and numerics that when few-cycle femtosecond solitons are generated through
cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov
radiation in the form of linear dispersive waves located in the red part of the spectrum. The beating between the
dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of
a simple short-wave pass Þlter after the crystal can restore a clean soliton. On the other hand, bandpass Þltering
around the dispersive wave peak results in near-transform-limited ultrashort mid-IR pulses with pulse durations
much shorter than the input near-IR pulse. The Cherenkov radiation for the crystal considered (� -barium borate)
is found for pump wavelengths in the range� = 0.95Ð1.45 µm, and is located in the regime� = 1.5Ð3.5 µm. For
shorter pump wavelengths, the phase-matching point is located in the absorption region of the crystal, effectively
absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency
conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will Þlter
away the dispersive wave. Finally, an investigation of recent experimental results uncovers a four-wave-mixing
phenomenon related to Cherenkov radiation that is an additional generation mechanism of long-wavelength
radiation that can occur during soliton compression. We discuss the conditions that lead to this alternative
dynamics rather than generation of Cherenkov radiation.

DOI: 10.1103/PhysRevA.82.063806 PACS number(s): 42.65.Tg, 42.65.Re, 42.65.Ky, 42.65.Sf

I. INTRODUCTION

One of the most celebrated and investigated nonlinear
processes is second-harmonic generation (SHG) [1]. Despite
this fact, there are today still new aspects to discover, in
particular when ultrafast pulses in the femtosecond regime
interact. We here discuss optical Cherenkov radiation through
radiation of linear dispersive waves [2] when ultrashort few-
cycle solitons are generated through cascaded SHG.

Cascaded SHG occurs when the nonlinear conversion
process over the propagation lengthL is strongly phase mis-
matched|�kL | � 1: up-conversion to the second harmonic
(SH) is followed by the reverse process of down-conversion
to the fundamental wave (FW) after half a coherence length
�/ 2|�k |. On continued propagation, the SH is therefore cycli-
cally generated and back-converted (the cascade of nonlinear
effects). In this cascaded nonlinear interaction the FW expe-
riences a nonlinear phase shift due to the difference in phase
velocities, and the magnitude and sign of the phase shift are de-
termined by the phase-mismatch parameter�k [3]. This prop-
erty is useful for many applications (see Ref. [4] for a review).

One particular application is pulse compression of energetic
femtosecond pulses toward the few-cycle regime with cas-
caded quadratic nonlinearities [5,6]. In this particular example
a strong negative nonlinear phase shift is generated on the FW
by the cascaded nonlinearity, which means that, unlike in many
other media, solitons may now be excited even in regimes with
normal dispersion (where blue components travel more slowly
than red components). An important regime is the visible
and near-IR, in which soliton compression of femtosecond
pulses is possible even to few-cycle duration [7]. Furthermore,

* moba@fotonik.dtu.dk

the cascaded nonlinearity can be understood as a Kerr-like
self-phase-modulation (SPM) action, and the negative sign
of this effective nonlinearity means that it is self-defocusing.
Thus, catastrophic collapse due to self-focusing effects may
be avoided provided that the self-focusing material Kerr
nonlinearities can be overcome [8], and it is therefore possible
to compress multiple millijoule femtosecond pulses with this
method. Therefore this method is a compact and efÞcient
alternative to existing compression methods, such as, e.g.,
pulse compression in hollow Þbers combined with dispersive
elements [9], for generating energetic few-cycle pulses.

Recently we investigated how close to the ultimate limit
(single-cycle durationT = 2�/� ) this soliton compression
system can get [10]. In this connection we noted that higher-
order dispersion (HOD) in the numerics revealed surprising
features of the compressed soliton, namely, a peak in the
nonsolitonic part of the spectrum, and we suggested that it
could be optical Cherenkov radiation. This peak disappeared
when only up to third-order dispersion was used. We will here
investigate this phenomenon in detail.

The Þrst prediction of resonant dispersive waves came from
Wai et al., who showed that when perturbing the nonlinear
Schr¬odinger equation (NLSE) with HOD, e.g., third-order
dispersion, the otherwise stable soliton will start to radiate
energy into a dispersive wave [2,11]. This was later coined
optical ÒCherenkovÓ radiation, since the soliton propagates
through the medium emitting radiation with a slower group
velocity [12]. The Þrst experimental observation of optical
Cherenkov radiation came shortly after in a mode-locked dye
laser generating solitonlike pulses [13] and in a single-mode
Þber [14]; both systems are well described by the NLSE. A
similar effect called Kelly sidebands [15] can be observed
in soliton Þber lasers, where periodical gain may induce
nonsolitonic radiation in the sidebands of the laser spectrum.

1050-2947/2010/82(6)/063806(14) 063806-1 ©2010 The American Physical Society
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The dispersive wave is linear in nature and feeds off the
generated solitons in the system, and its spectral location
is a result of a phase-matching condition to the soliton
[12]. Dispersive waves are often found in supercontinuum
generation outside the soliton regions [16,17], where solitons
are no longer supported because the group-velocity dispersion
(GVD) changes sign (see [18] for a review). Currently there
is also focus on use of dispersive waves for ultrashort pulse
synthesis [19] and broadband frequency combs [20].

In this publication we investigate the presence of dispersive
waves in cascaded SHG of ultrafast femtosecond pulses. We
derive the nonlocal NLSE governing the FW, and show that in
the stationary regime and weakly nonlocal limit, a description
of the FW dynamics by a standard NLSE with HOD is well
justiÞed. We derive the phase-matching conditions for the dis-
persive wave as a function of the FW soliton wavelength, and
calculate speciÞcally the conditions for a standard nonlinear
crystal. These calculations show that a dispersive wave can
form on the red side of the spectrum (at longer wavelengths),
and it is clear that including only a few extra orders of
dispersion is often not enough to describe the dispersive wave
formation accurately as the dispersive wave may be strongly
redshifted from the soliton. Through numerical simulations
we investigate the formation of the dispersive waves in detail,
and show that the theoretical predictions are quite accurate.
We show how the dispersive wave can be removed after the
soliton is formed by using a simple short-wave pass Þlter
after the nonlinear crystal. On the other hand, the dispersive
wave radiation can also be isolated with a bandpass Þlter,
resulting in an ultrashort near-transform-limited mid-IR pulse.
We calculate the phase-matching curves for a broad range
of standard frequency conversion crystals, and point out that
in the more dispersive crystals the phase-matching condition
is often found inside the absorption region of the crystal.
Finally, we discuss some experimental results obtained by
some of us in connection with another study [21] in order to
understand whether the spectral peaks, which were observed in
the linear (anomalous) regime, are related to optical Cherenkov
radiation. This investigation helps us to differentiate between
two closely related mechanisms for the generation of long-
wavelength radiation that can occur during cascaded-quadratic
soliton compression.

II. THEORY

Consider the propagation equations for SHG in mks units.
In a type-I phase-matching conÞguration two degenerate FW
photons with frequency� 1 combine to give a SH photon� 2 =
2� 1 with orthogonal polarization with respect to the FW. In
the slowly-varying-envelope approximation and in absence of
diffraction the governing propagation equations for the electric
ÞeldsEj are [22,23]

�
i

�
�z

+ öD1

�
E1 +

� 1deff

cn1
E�

1E2ei�kz = 0, (1)

�
i

�
�z

Š id12
�
��

+ öD2

�
E2 +

� 1deff

cn2
E2

1eŠi�kz = 0, (2)

where deff is the effective� (2) nonlinearity. Later in the
numerical simulations we will extend these equations to the
slowly-evolving-wave approximation [7,23] and include also

competing Kerr nonlinearities and self-steepening effects. The
equations have been transformed to the frame of reference
traveling with the FW group velocityvg,1 = 1/k (1)

1 by the
retarded time coordinate� = t Š z/v g,1, which gives rise to
the group-velocity mismatch (GVM) termd12 = k(1)

1 Š k(1)
2 .

The phase mismatch is�k = k2 Š 2k1, and the equations are
generalized to include dispersion up to ordermd through the
operatorsöDj =

� md
m= 2

i m

m! k
(m)
j

� m

�� m , andk(m)
j � dmkj /d� m|� = � j

are the dispersion coefÞcients,kj = nj �/c the wave numbers,
andnj the linear refractive indices, whose chromatic disper-
sion is modeled by the Sellmeier equations [24].

A. NLSE describing cascaded SHG

We consider strongly phase-mismatched (cascaded) SHG,
in which the FW can be approximately described by a NLSE
[22]. More precisely, we recently showed [10,25] that in the
cascading limit|�k |z � 1, the ansatzE2(z,� ) = 	 (� )eŠi�kz

when inserted in Eq. (2) and Fourier transformed, yields the
solution in the frequency domain

÷E2(z,
 ) = Š eŠi�kz
�

2�
� 1deff

cn2�k
÷R(
 )F

�
E2

1(z,� )
�
, (3)

where F [·] denotes the forward Fourier transform. The
nonlocal response function in the frequency domain,÷R, is

÷R(
 ) =
1

�
2�

�k
öD2(
 ) Š d12
 + �k

, (4)

where öD2(
 ) =
� md

m= 2 m!Š1k(m)
2 
 m is the SH dispersion

operator in the Fourier domain. Using the convolution theo-
remE2(z,� ) = Š eŠi�kz � 1deff

cn2�k

� �
Š� dsR(s)E2

1(z,� Š s), where
R(� ) = F Š1[ ÷R] is the inverse Fourier transform of the re-
sponse function. Inserting this into Eq. (1) and normalizing the
variables, we see that the FW obeys a dimensionless nonlocal
NLSE,

�
i

�
� �

+ öD�
1

�
U1 + N 2

KerrU1|U1|2

Š sgn(�k )N 2
SHGU�

1

� �

Š�
dsR�(s)U2

1 (�,� � Š s) = 0. (5)

Here� � = �/T in, whereTin is the FW input pulse duration,� =
z/L D,1, whereL D,1 = T 2

in/ |k(2)
1 | is the FW dispersion length,

and ÞnallyU1 = E1/ Ein with Ein being the peak amplitude
of the electric input Þeld. The dimensionless dispersion is
öD�

j =
� md

m= 2 i m� (m)
j

� m

�� �m and� (m)
j � k(m)

j (T mŠ2
in |k(2)

1 |m!)Š1.
The dimensionless nonlocal response functionR�(� �) =

TinR(� ) determines the nature of the cascaded SHG interaction,
and in most cases (see also below) it results in an instantaneous
and a delayed Kerr-like SPM term. This part is controlled by
the cascaded soliton order

N 2
SHG = L D,1E2

in
� 2

1d2
eff

c2n1n2|�k |
. (6)

In Eq. (5) we have also included Kerr SPM in the material (but
we neglect for simplicity cross-phase-modulation effects as
they remain weak because the SH is inefÞciently converted).
The Kerr soliton order isN 2

Kerr = L D,1
� 1
c I innI

Kerr, where the

Kerr nonlinear refractive index isnI
Kerr = 3Re(� (3)

eff )
4
 0n2

1c
, with I in as
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the FW peak input intensity and� (3)
eff the appropriate cubic

nonlinear tensor component of the interaction (see Ref. [26]
for more details).

In the so-called stationary regime, where the cascaded
nonlinear effects dominate GVM effects, the denominator of
Eq. (4) has only complex roots in
 , making the nonlocal
response function|R| � eŠ| � |/� s. In the stationary regime the
weakly nonlocal approximation is often satisÞed [10], in which
the response function is much narrower than the pulse width
� s � Tin, and the NLSE can be approximated as [10,25]

�
i

�
� �

+ öD�
1

�
U1 Š

�
sgn(�k )N 2

SHG Š N 2
Kerr

�
U1|U1|2

= sgn
�
�kd 12k

(2)
2

	
iN 2

SHG� R,SHG|U1|2
�U 1

��
. (7)

From this equation the left-hand side tells us that in the cas-
cading limit the FW experiences an overall cubic nonlinearity.
For �k > 0 the cascaded SHG contribution is negative, i.e.,
self-defocusing, and we may in this case introduce an effective
soliton orderN 2

eff = N 2
SHG Š N 2

Kerr to describe the effective
nonlinear strength. In the normal dispersion regime� (2)

j > 0, a
FW soliton may then be induced by the cascaded SHG if�k >
0. This ensures an overall effective self-defocusing cubic
nonlinearity. We can also interpret the effective cubic nonlin-
earity through an intensity-dependent change in the refractive
index n = n1 + I 1nI

cubic, wherenI
cubic = nI

SHG + nI
Kerr. From

our analysis the contribution from the cascaded quadratic non-
linearities isnI

SHG = Š 2� 1d2
eff

c2
 0n2
1n2�k

, consistent with Ref. [3], and

we have in the self-defocusing caseN 2
eff = L D,1

� 1
c I in|nI

cubic| =
L D,1

� 1
c I in(|nI

SHG| Š nI
Kerr). The requirement of an overall ef-

fective self-defocusing cubic nonlinearity then comes down to
having|nI

SHG| > n I
Kerr.

The right-hand side of Eq. (7) represents the weakly
nonlocal contribution of the cascaded nonlinearity. It is a self-
steepening-like term that, in combination with the nonlinear
phase shifts from the stationary component of the nonlinear
polarization, produces a Raman-like frequency shift that tends
to blueshift the soliton for sgn(�kd 12k

(2)
2 ) < 0 (as is the

case with normal dispersion and self-defocusing effective
nonlinearity). It is governed by a characteristic dimensionless
time parameter� R,SHG = 2|d12/T in�k |. Thus, the blueshift is
small for long input pulses and forNSHG small. Evidently a
strong GVM in the interaction will also affect this term, as will
a reduced phase mismatch�k . However, when we stay in the
stationary regime the characteristic time� R,SHG remains small
and the blueshift remains insigniÞcant. This is further justiÞed
if NSHG is not too large since the nonlocal self-steepening-like
term is proportional toN 2

SHG; see Eq. (7). The stationary
regime is the parameter space for which�k > �k sr, where
�k sr = d2

12/ 2k(2)
2 is the phase-mismatch parameter, at which

the roots of the denominator in Eq. (4) change from being
complex to being real formd = 2 [25]. If �k < �k sr (the
nonstationary regime), GVM effects become very strong, and
the interaction can no longer be described as simply as the
right-hand side of Eq. (7); see Ref. [10] for more details. The
blueshift is described in more detail in Ref. [27]; note that this
study operated with a low�k (and was thereby conducted

in the nonstationary regime) where the blue-shift is much
stronger since� R,SHG increases.

In the rest of this section we therefore base our calculations
on the following NLSE:

�
i

�
� �

+ öD�
1

�
U1 Š N 2

effU1|U1|2 = 0. (8)

We will now proceed to calculate the phase-matching condi-
tions for optical Cherenkov radiation.

B. Optical Cherenkov radiation

When only second-order dispersion (GVD) is considered
we get the standard NLSE

�
i

�
� �

Š � (2)
1

� 2

�� 2

�
u1 Š u1|u1|2 = 0, (9)

where� (2)
1 = sgn(k(2)

1 )/ 2 = 1/ 2 in the case of normal disper-
sion, and whereu1 = U1Neff . It has the following soliton
solution [12]:

u0
1,sol = A sech(A� )eiq�

sol� , (10)

whereA is the peak amplitude of the soliton and insertion of
Eq. (10) into Eq. (9) yields the dimensionless soliton wave
numberq�

sol = Š A2/ 2. The negative sign is due to the fact that
we are dealing with self-defocusing nonlinearities.

In order to observe optical Cherenkov radiation, it is not
enough to consider the NLSE with only GVD (9); we must
include some perturbation in the form of HOD. Basically
HOD tends to destabilize the stable soliton solution (10):
the soliton can become phase matched to a linear wave,
which extracts energy from the soliton. We can Þnd this
phase-matching point by requiring that the phase of the
soliton be that of the dispersive wave	 sol = 	 dw. The phase
accumulated by the soliton at a propagation distanceL
is 	 sol = L [n1(� sol)� sol/c + qsol Š � sol/v g,sol], wherevg,sol =
1/k (1)

1 (� sol) is the group velocity at the soliton frequency.
Using the result from before and converting to physical
units we getqsol = Š N 2

eff I sol/ (2L D,1I in) = Š| nI
cubic|I sol� 1/ 2c,

whereI sol is the peak intensity of the soliton.
This is identical with the expression in Ref. [16] except for

the sign of the nonlinear term. The dispersive wave must in
order to be efÞciently generated move in the same reference
frame as the pump, but since it is a linear wave it will not
contain any nonlinear phase shift. Its phase is therefore simply
	 dw = L [n1(� dw)� dw/c Š � dw/v g,sol]. Phase-matching	 sol =
	 dw therefore implies
n1(� dw)� dw Š n1(� sol)� sol

c
Š

� dw Š � sol

vg,sol
Š qsol = 0. (11)

At this point one could simply just start Þnding the frequency
� dw that fulÞlls this requirement for a given� sol. However,
in the stationary reference frame we may equivalently state
the following identity for the soliton wave number including
nonlinear corrections [28]:

ksol(� ) = k1(� sol) + (� Š � sol)k
(1)
1 (� sol) + qsol. (12)

The solitonic (nondispersive) nature is evident through
the linear dependence on� of the soliton wave num-
ber. The phase-matching condition can now be written as
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k1(� dw) Š ksol(� dw) = 0, i.e., at the dispersive wave frequency
the soliton and the linear dispersive wave have the same wave
number. Expanding the wave number of the linear radiation
k1(� dw) around� sol, this condition may be expressed as

md


m= 2

(� dw Š � sol)m

m!
k(m)

1 (� sol) Š qsol = 0 (13)

with md = � . The sum is now recognized as the FW
dispersion operator expanded around the soliton frequency,
evaluated at the frequency� dw, and taking into account all
orders of dispersion. Clearly, this phase-matching condition is
sensitive to how many orders of dispersion are included in the
analysis. Obviously, this is especially the case if the soliton is
far from the zero-dispersion point.

In order to evaluate the phase-matching condition we need
to know the soliton peak intensityI sol, and a valid estimate
can be found by using the scaling laws for cascaded SHG
[23]. SpeciÞcally, the peak soliton intensity at the optimal
compression point can be estimated byI sol = f cQcI in, where
the compression factor isf c = 4.7(Neff Š 0.86) and the com-
pressed pulse quality isQc = [1 + 0.24(Neff Š 1)1.11]Š1. It is
at this point convenient for our case to use this result to write
the soliton wave number asqsol = Š N 2

eff f cQc/ 2L D,1, giving

qsol = Š

�
�k(2)

1

�
�N 2

eff4.7(Neff Š 0.86)

2T 2
in[1 + 0.24(Neff Š 1)1.11]

. (14)

For a ÞxedNeff and input pulse durationTin the only
wavelength-dependent term is the GVD coefÞcientk(2)

1 .
These analytical results will now be tested against numeri-

cal simulations presented in the next section.

III. NUMERICAL SIMULATIONS

In our recent work [10] we observed an unexpected spectral
peak in the mid-IR when simulating cascaded SHG pulse
compression in� Ðbarium borate (BBO) for type-I phase-
matching pumping with� 1 = 1.064µm and including all
orders of dispersion. However, when only up to third-order
dispersion (md = 3) was included, the peak disappeared. We
argued that this peak was a dispersive wave phase matched to
the soliton, and in order to investigate this further, we have
here carried out simulations at other wavelengths.1

Before showing the numerical results, it is instructive to
mention the rather peculiar dispersion conditions we operate
with. Dispersive waves have mainly been studied in Kerr
systems with a self-focusing nonlinearity where solitons

1The simulations are based on the full coupled SHG propagation
equations in the slowly-evolving-wave approximation [21] (see [23]
for more details), and they include exact dispersion (md = � ),
self-steepening, and Kerr effects. We do not model a noninstantaneous
Kerr (Raman) response because the ultrafast Raman response function
for BBO is to our knowledge not known. For more details, see
Ref. [23], but note that we have in the present publication used a larger
Kerr nonlinearity,nI

Kerr = 5.9 × 10Š20 m2/ W, based on observations
made in Ref. [21], and the IR-corrected Sellmeier equations [24].
We use MillerÕs rule to determine the chromatic dispersion of the
nonlinear coefÞcients (see [26] for more details).

FIG. 1. (Color online) The wavelength dependence of (a) the FW
group indexng,1 = c/v g,1; (b) FW GVD k(2)

1 (black) and FW TOD
k(3)

1 (red, dashed) for BBO.

are generated in the anomalous dispersion regime. In our
system the effective nonlinearity is, as mentioned before,
self-defocusing, and solitons therefore reside in the normal
dispersion regime. The FW group index, GVD, and third-order
dispersion (TOD) coefÞcients for BBO are shown in Fig.1.The
normal dispersion regime is for� < � ZD 	 1.49 µm, and the
dispersion slope is positive.

The numerical results are summarized in Fig.2, and the
main simulation parameters are listed in TableI. Generally,
dispersive waves are observed for a range of soliton wave-
lengths spanning the zero-dispersion wavelength� ZD down to
around� 1 = 0.95 µm. Below this wavelength the dispersive
wave becomes phase matched in the mid-IR absorption band of
BBO (� > 3.5 µm) and can therefore no longer be observed.
In the Þgure we also present the results of the theory:2 the
dashed thin black line is the phase-matching condition Eq. (13)
taking into account the nonlinear correction to the soliton phase
via Eq. (14), while the solid thick black line neglects this
contribution (i.e., takesqsol = 0). We deliberately used a short
pulse [50 fs full width at half maximum (FWHM)] and a mod-
erate effective soliton order3 (Neff = 2.0) in order to simplify
the temporal and spectral dynamics; due to the rather short
input pulse duration, for higher soliton orders the compressed
solitons became more distorted, making it harder to determine
precisely the location of the dispersive wave. Another justiÞ-
cation for keeping low soliton orders is that the simple NLSE
(8) is also more accurate for small values of the soliton order
NSHG. By keeping a low effective soliton order, the nonlinear
correction to the phase-matching condition is kept small; there
is a clear but small deviation only close to� ZD.

Commenting brießy on our result from Ref. [10], we
observed that there a dispersive wave when pumping with� 1 =
1.064µm and using exact dispersion, while it disappeared
with only TOD. In Fig.2 it is clear from the phase-matching
curve for TOD (md = 3, red dotted curve) that around

2In order to calculate the phase-matching curves we used the
Sellmeier equations for BBO with IR corrections [24]: these should
be valid all the way up to� 	 3.2 µm. This is important in order
to calculate the dispersion correctly. See also the discussion later in
connection with Fig.6.

3Note that an effective soliton order of 2.0 may seem quite low,
but the input pulse being as short as 50 fs FWHM the scaling
laws for the cascaded soliton compression [23] predict a sub-10 fs
FWHM compressed soliton, which for the wavelengths considered
here corresponds to as little as two or three optical cycles.
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FIG. 2. (Color online) Summary of numerical simulations of
cascaded pulse compression in BBO cut for type-I (oo 
 e) phase
matching at various FW wavelengths. The Þlled black circles show
the numerically observed Cherenkov radiation wavelength peak at the
propagation distance where the FW soliton is compressed to its short-
est duration (z = zopt). The data are plotted as a function of the soliton
wavelength� sol as determined by a cross-correlation frequency-
resolved optical gating spectrogram (see, e.g., Fig.4 later). The the-
oretical phase-matching curves are calculated from Eq. (13), and the
thick curves are takingqsol = 0 and usingmd = 3 (red, dotted),md =
5 (blue, dashed) or exact dispersion (black), while the thin dashed
black curve is for exact dispersion andksol from Eq. (14). This curve
is possible to calculate sinceNeff = 2.0 andTin = 28.4 fs are held
Þxed. All simulations are done with exact dispersion except for one
using only TOD (red, open circle). For other parameters, see TableI.

� 1 = 1.06 µm the phase-matching point� dw for md = 3 is
far into the mid-IR absorption band, and thus the dispersive
wave will be absorbed; we were therefore not able to observe it
in our study in Ref. [10]. This is also the case when including

TABLE I. Parameters of the simulations used in Fig.2. The phase
mismatch is continuously changed to satisfy�k > �k sr, and at the
same time low enough to achieve|nI

SHG| > n I
Kerr. The characteristic

time parameter of the nonlocal self-steepening-like term in Eq. (7)
is kept roughly constant,� R,SHG 	 0.11Ð0.16, for all simulations.
Input parameters:Neff = 2.0, sech-shaped pulse withT FWHM

in = 50 fs
(Tin = 28.4 fs), which ideally should generate a sub-10 fs FWHM
compressed soliton [23]. The dispersion is calculated from the
Sellmeier equations in Ref. [24].

� 1 �k �k sr I in � dw zopt

(µm) (mmŠ1) (mmŠ1) (GW/ cm2) NSHG NKerr (µm) (mm)

0.950 80 79 1319 8.7 8.5 3.212 29

1.000 70 61 474 5.6 5.2 3.011 25

1.030 60 52 229 4.2 3.7 2.888 17

1.064 55 43 176 3.8 3.3 2.769 17

1.100 45 36 101 3.2 2.5 2.624 17

1.200 30 19 43 2.7 1.8 2.273 22

1.260 30 15 40 2.8 1.9 2.108 28

1.300 20 10 19 2.4 1.4 1.998 32

1.400 20 5.1 11 2.5 1.5 1.736 66

1.450 10 2.2 2.2 2.2 0.94 1.631 152

up to Þfth-order dispersion (blue dashed curve). Only with
higher-order dispersion (in this case exact, or all orders, of
dispersion) is the dispersive wave accurately described. This
is because the pump wavelength is so far away from the zero-
GVD point. When pumping with a longer wavelength close to
the zero-GVD point, the TOD case can show a dispersive wave,
and we conÞrmed this with a simulation for� 1 = 1.300µm
(red open circle), which matches the theory quite well.

The dispersive wave is seen to form to the red side of
the spectrum, because the nonsolitonic regime due to the
effective self-defocusing nonlinearity resides in the anomalous
dispersion region. In contrast, in silica Þbers dispersive waves
are typically observed in the blue part of the spectrum.
This is because the nonlinearity in Þbers is self-focusing,
implying that solitons require anomalous GVD to exist,
and the linear regime (normal dispersion) is located to the
blue side. On the other hand, redshifted dispersive waves
have also been observed with self-focusing nonlinearities: it
was initially suggested [29] and subsequently experimentally
demonstrated [30] that redshifted dispersive waves may extend
the continuum further into the infrared. This was achieved
by using photonic crystal Þbers with very small cores that
made it possible to get two zero-dispersion points, one to the
blue and one to the red side of the soliton. Such a dispersion
proÞle has been used to study, e.g., soliton self-frequency shift
cancellation [31] and to generate broadband IR radiation using
a near-IR pump [32].

While the phase-matching condition might allow a dis-
persive wave to form independently on the soliton spectral
bandwidth, it is only when there is a spectral overlap between
the soliton spectrum and the Cherenkov resonance that it grows
to a substantial level [33]. Therefore Cherenkov radiation is
usually observed when the soliton is formed close to� ZD.
However, in the case we have considered here the solitons
were compressed to few-cycle duration through the cascaded
interaction, and their spectra were therefore ultrabroadband.
This is the reason why we could observe Cherenkov radiation
very far away from the soliton wavelength.

The detailed dynamics in the creation of the ultrashort
FW soliton and subsequently the dispersive wave can be
appreciated in Fig.3, which shows a simulation at� 1 =
1.300µm with exact dispersion. In the simulation the 50 fs
input pulse is after around 32 mm of propagation compressed
to a 12 fs FWHM (sub-three-cycle) soliton; see Fig.3(a).
This compression occurs due to the cascaded SHG; the SHG
coherence length for the chosen phase-mismatch parameter
�k = 20 mmŠ1 is very short,L coh = �/ |�k | = 0.16 mm, and
thus hundreds of cascaded conversion cycles have occurred
at the optimal compression point. At the compression point
the FW soliton shows trailing oscillations, and subsequently
radiation is emitted at a slower group velocity than the soliton:
this is optical Cherenkov radiation. Eventually the soliton
detaches from the uncompressed pedestal, which at the end
of the simulation (z = 100 mm) is located on the leading side
around� = Š 20 fs.

In the FW spectrum, Fig.3(c), the soliton is blueshifted
due to the nonlocal terms that induce a Raman-like frequency
shift. A careful investigation shows that the soliton at the
compression point is located around� = 1.25 µm, and at
this propagation stage resonant Cherenkov radiation appears,
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FIG. 3. (Color online) The simulation for� 1 = 1.300µm with
exact dispersion: The FW time trace (a) shows a soliton that
compresses to 12 fs FWHM atz = zopt = 32 mm (optimal com-
pression point, dashed line). At this point the FW spectrum (c)
shows resonant Cherenkov radiation emitted with a spectral peak
at 
 dw 	 Š 0.5 PHz. The SH time plot (b) and spectrum (d) show
similar dynamics due to the harmonic locking of the SH Þeld in the
cascading limit.

located to the red side of the spectrum. No Cherenkov radiation
is observed before this point because the soliton is not formed
yet. At the observed soliton wavelength the theory predicts a
dispersive wave located at� = 2.12 µm (
 = Š 0.56 PHz),
which slightly overestimates the dispersive wave peak
position in the spectrum located around� dw = 2.00 µm
(
 dw = Š 0.51 PHz). This trend seems quite general for most
of the simulations, as summarized in Fig.2.

After the optimal compression point, the dispersive wave
remains stable at the same wavelength. However, it was
recently shown that in the NLSE radiation trapping of the
soliton and the dispersive wave can under certain circum-
stances continuously shift the dispersive wave away from
the zero-GVD point [34,35]. In our case this would mean a
continuous shift of the dispersive wave peak toward longer
wavelengths, and this does not happen. The explanation is as
follows: The main dispersive radiation occurs when the soliton
is compressed to its minimum duration because here the soliton
has its highest peak intensity and its broadest spectrum. As the
soliton and dispersive wave propagate further the dispersive
wave peak in the FW spectrum, Fig.3(c), remains Þxed. This
is because the dispersive wave is emitted at a wavelength
having a much slower group velocity than the soliton (see
Fig.1). This group-velocity mismatch between the soliton and
the dispersive wave is also quite evident in the time trace in
Fig.3(a). The soliton is temporally delayed due to the blueshift
induced by the cascaded nonlocal nonlinearity, pushing the
soliton toward lower wavelengths and thereby lower group
velocity (see again Fig.1). However, it never becomes slow
enough to catch up with the dispersive wave, and therefore
collision and subsequent trapping as described by Refs. [34,35]
cannot occur.

In supercontinuum generation with anomalous dispersion,
the Raman effect redshifts the soliton and thereby slows it
down. This is in fact the driving force behind much of the
dynamics involved in the generation of the broad spectrum, in
particular of the spectral part generated by trapping the soliton
and the dispersive wave through a Raman-mediated slowing
down of the soliton. In our results presented here we have
neglected the effect of a Raman-delayed Kerr nonlinearity
in the simulations, since the Raman response of the crystal
we simulated, BBO, is not well known. If we were to take
Kerr Raman effects into account in the simulations, then
this would not lead to radiation trapping either: the Raman
effect would redshift the soliton, but because we operate in
the normal dispersion regime this would actually speed up
the soliton, making the group-velocity mismatch between the
soliton and the dispersive wave even greater. On the other
hand, a Raman-like frequency shift is intrinsic in the cascaded
SHG interaction [25,27], and it would be very interesting
to study the competition and dynamics between these two
similar nonlinear processes. This would require detailed and
accurate measurements of the SHG nonlinear crystals in order
to determine the instantaneous material Kerr nonlinearity and
the delayed ultrafast Raman response, such as the technique
used in Ref. [36].

The SH also shows some interesting features. In particular
the spectrum Fig.3(d)has what appears to be a dispersive wave
around
 = Š 1.0 PHz. However, this spectral component is
actually just the FW dispersive wave picked up at twice the
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FIG. 4. (Color online)
XFROG spectrograms of the FW
(a), (c) and SH pulse (b), (d),
taken at the optimal compression
point z = zopt = 32 mm (left
column) and at z = 100 mm
(right column) for the simulation
with � 1 = 1.300µm and full
dispersion. The dashed line
� dw indicates the Cherenkov
phase-matching point with the
soliton at � sol = 1.25 µm. In the
SH plots the lines� dw,2 indicate
the wavelength beating with
twice the predicted Cherenkov
phase-matching frequency (see
text). A sech-shaped gating pulse
of 20 fs FWHM was used.

beat frequency 2
 dw. This happens because in the cascading
limit the SH spectrum islocked to the FW; cf. Eq. (3).
This connection is modulated only by the nonlocal response
function ÷R(
 ). In the stationary regime�k > �k sr, where the
simulations are carried out, and in the weakly nonlocal limit
÷E2(z,
 ) 	 [ ÷R(
 = 0) + 
 d ÷R

d
 |
 = 0]F [E2
1(z,� )] [10]; thus the

SH contains many of the same spectral components as the
FW, and since it is locked toF [E2

1(z,� )] it will contain
frequency components at twice the frequency observed in the
FW spectrum.

This locked ÒCherenkov radiationÓ is also observable in
the temporal trace of the SH; see Fig.3(b). Note that it is
traveling with the same group velocity as the FW dispersive
wave, despite the fact that the SH group velocity at that
wavelength (� 	 1.0 µm) is substantially lower. The GVM
walk-off component of the SH is also observable: it appears in
the beginning of the propagation as a rapidly disappearing term
(due to a slower SH group velocity giving a substantial GVM
parameterd12 = Š 45 fs/ mm). Finally, the nonlocal locking
of the SH to the FW also implies that the FW soliton and
pedestal are ÒcopiedÓ in the SH time trace as locked harmonic
radiation trapped in the frame of reference traveling with the
FW group velocity. In another presentation we will investigate
this phenomenon more closely [37].

While the harmonic locking effect evidently leaves distinct
traces in the SH that are reminiscent of solitonic behavior,
there is no proof that the locked SH radiation is actually a
soliton. Therefore we do not believe that the locked radiation
can generate resonant optical Cherenkov radiation. On the
other hand, if we could observe Cherenkov radiation emitted
by the SH, it would indicate that the SH was indeed a soliton,

but the phase-matching point would be too far away in the
spectrum to be observable.

A more detailed insight into optical Cherenkov radiation
formation is obtained in Fig.4, where the numerical results
at � 1 = 1.300 µm are presented at the optimal compression
point through cross-correlation frequency-resolved optical
gating (XFROG) spectrograms, calculated asSj (
,T ) =
�
�� �

Š� d� �ei
� �
Uj (� �)Ugate(� � Š T)

�
�2

, whereUgate is a suitably
chosen gating pulse. The FW in Fig.4(a) has compressed to
12 fs FWHM and during compression it has been blueshifted
to � sol = 1.25 µm. In the spectral trace as well as in the
spectrogram the dispersive wave is quite evident: its position
at � = 2.00 µm lies slightly below the wavelength predicted
by the theory� dw = 2.12 µm for the observed soliton wave-
length. On the logarithmic FW time trace on the top of Fig.4(a)
the trailing oscillations mentioned before are noticeable. These
trailing oscillations have been studied analytically in detail
in the NLSE including third-order dispersion [38]. From the
spectrogram we can now explain them as a result of beatings
between the linear dispersive wave and the soliton: in fact
the temporal period (around 12 fs) is exactly the beat period
2�/ |
 sol Š 
 dw|. As the pulse propagates further through the
crystal, the main part of the dispersive wave is delayed due to
having a lower group velocity than the soliton [38], but at the
same time new energy is fed into the dispersive wave. This
position will now shift toward lower wavelengths after the
optimal compression point; this is caused by a slight redshift
toward a Þxed Þnal value of the soliton after the compression.
This soliton redshift might be some kind of spectral recoil
from losing energy to the dispersive wave, and eventually the
saturation point could be due to a balance between the blueshift
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induced by the nonlocal cascaded nonlinearity and the spectral
recoil. A similar effect was observed in silica photonic crystal
Þbers with a negative dispersion slope in Ref. [31], where the
Raman self-frequency shift is balanced by the blue recoil of
the soliton losing energy to the dispersive wave.

In the spectrogram we also observe that upon propagation
the amount of radiation shed into the dispersive wave region
will diminish, mainly because soliton Þssion will occur,
reducing the soliton intensity [39]. Another factor is that the
dispersive wave strength is proportional to the spectral overlap
of the soliton [33]. Thus, when the soliton is the shortest
the radiation into the dispersive wave is strongest, and this
occurs at the optimal compression point. Note that the total
spectral intensity of the dispersive peak will instead grow upon
propagation. This is because what is observed there is the sum
of all the temporal slices of radiation shed by the soliton(s).

It is also worth noting that in Fig.3(a) it seems that
dispersive waves are emitted only at the optimal compression
point, but actually weaker radiation is emitted subsequently
by the soliton in the later relaxation stage, which is below the
minimum level of the chosen color scale of that time trace.
Instead in Fig.4(c) it is evident that dispersive waves are
continuously radiated by the soliton upon further propagation.

The SH spectrogram in Fig.4(b) has two components:
one locked to the FW pulse due to the cascaded interaction
[cf. Eq. (3)], and one being the usual GVM walk-off component
located aroundT = + 1300 fs due to the lower group velocity.
The beating of these two components causes the ripples
in the SH spectrum around the degenerate SH wavelength
� = 0.650µm. The SH component created by the nonlocal
locking to the FW at twice the dispersive wave frequency is
quite obvious, indicated with� dw,2 = 2�c/ (� 2 + 2
 dw). In
the time trace ripples similar to those of the FW are observed
in the trailing part, but they oscillate faster as the beating
frequency is twice that of the FW. Note also that the SH spectral
cut actually has a hole where the FW dispersive wave resides.

We have also in Figs.4(c) and 4(d) included the spec-
trograms taken upon further propagation (z = 100 mm). The
FW now has a more ÒraggedÓ dispersive wave spectral
cut, extending over a larger bandwidth than in the previous
spectrum in Fig.4(a). This is because, as mentioned above, the
soliton after the compression point starts to redshift slightly,
ending up at a wavelength slightly to the blue side of the
original pump wavelength, and thus the phase-matching point
shifts toward shorter wavelengths as the soliton propagates,
giving a broader spectral peak.

In the SH spectrogram of Fig.4(d) we observe the same
features as at the previous propagation point: the locked
harmonic travels with the FW group velocity and ÒcopiesÓ
the FW radiation, while the FW dispersive wave components
also leave signs in the SH spectrogram around� dw,2. In this
spectrogram the SH GVM walk-off component is no longer
inside the window shown (it appears atT 	 + 4 ps).

In a soliton compression context, the trailing temporal
oscillations induced by optical Cherenkov radiation may not be
desirable when striving for clean few-cycle pulses. However,
they can easily be Þltered away; see Figs.5(a)and5(b). This
simulation is done for similar conditions as those used in the
recent experiment by some of us [7]. From a 110 fs input pulse,
a 9 fs FWHM compressed soliton is formed after 38 mm of

FIG. 5. (Color online) (a) shows the FW spectrum at the optimal
compression point (z = 38 mm) for a simulation using the same
parameters as the experiment in Ref. [7]: � 1 = 1.26 µm, T FWHM

in =
110 fs, I in = 35 GW/ cm2, and Neff = 4.1. A dispersive wave is
evident at
 	 Š 0.6 PHz (� = 2.11 µm). When a short-wave pass
Þlter is applied (dashed), the trailing oscillations on the FW time trace
can be Þltered away; see (b). Instead when a bandpass Þlter is applied
(dotted) centered at the dispersive wave peak, a clean 50 fs FWHM
pulse with� = 2.11 µm results; see (c). The Þltered radiation has for
clarity been ampliÞed 100 times; the peak intensity of this pulse is
around 20 dB below the input peak intensity.

propagation. The temporal trace is shown in Fig.5(b) and
the trailing oscillations due to the formation of Cherenkov
radiation are quite pronounced (full black line). The dispersive
wave is now Þltered away by applying a short-wave pass Þlter
centered slightly to the blue of the dispersive wave peak. The
Þltered soliton (dashed red line) has now a very clean shape
without trailing oscillations and keeps a very short duration
(11 fs FWHM). Thus, from a practical viewpoint this should
not affect the generation of clean compressed solitons as long
as the dispersive wave is generated substantially far away from
the soliton wavelength.

On the other hand, the Cherenkov radiation may also act as
a source of femtosecond IR radiation. In fact, if in the example
discussed above we instead apply a suitable bandpass Þlter
centered around the peak of the dispersive wave we can recover
a � 	 2.11 µm pulse [see Fig.5(c)], which has 50 fs FWHM
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duration (around seven optical cycles and much shorter than
the near-IR pump) and 120 nm FWHM bandwidth. These
values give a time-bandwidth product around 30% above the
transform limit. The efÞciency of generating the Cherenkov
radiation can be estimated by observing that the radiation
intensity lies around 20 dB below the input level. A more
precise value is obtained by integrating over the pulses, which
reveals that around 1.5% of the input pulse energy ßux resides
in the dispersive wave. Considering that the 50 fs radiation is
generated with a longer near-IR input pulse (110 fs FWHM),
these numbers look quite favorable. A higher efÞciency can be
achieved shortly after the optimal compression point, as, e.g.,
evidenced by Fig.3(c), where clearly the Cherenkov peak
grows in strength after the soliton has been formed. For the
case in Fig.3(c)the efÞciency is around 2% at the compression
point and shortly after it increases to over 3%, after which it
saturates.

IV. CHERENKOV RADIATION PHASE-MATCHING
CURVES

In Fig.6 we present the phase-matching curves (in absence
of the nonlinear phase shift) for a broad range of nonlinear
crystals previously used for cascaded quadratic interaction. We
observe that the Òlow-dispersionÓ crystals (KDP, LBO) might
generate near-IR dispersive waves when pumped at standard
laser wavelengths for generating energetic femtosecond pulses
(� = 0.8Ð1.3 µm), while BBO and the more dispersive crys-
tals (LN, LT, KTP, KN, and KTA) when pumped with these
wavelengths will generate dispersive waves in the mid-IR.
In fact, the dispersive wave is in many cases phase matched

FIG. 6. (Color online) Phase-matching curves similar to Fig.2
for various popular quadratic nonlinear crystals as calculated from
Eq. (13) with qsol = 0. The gray area denotes the regime with
anomalous GVD for� 1, where an effective self-focusing nonlinearity
nI

cubic > 0 is needed to generate solitons. The Ò0Ó transmission edge
(through 1 cm of crystal) of the mid-IR absorption region is marked
with a star. The phase matching considered is type Ioo 
 e, except
where denoted Òtype 0,Ó whereee
 e interaction is considered. The
KN and LN curves hold for both type-0 and type-I phase matching
as they turn out to have almost identical phase-matching curves.
The crystals are as follows (the Sellmeier equations are all taken at
room temperature and are from Ref. [40], except where noted). KDP,
potassium dihydrogen phosphate; LBO, lithium triborate; BBO,� Ð
barium borate [24,41]; KTP, potassium titanyl phosphate; LT, lithium
tantalate; LN, 5% magnesium oxideÐdoped lithium niobate [42]; KN,
potassium niobate; KTA, potassium titanyl arsenate [43,44].

inside the absorption region of the crystal; the end of the
mid-IR absorption region is marked with a star. In this case
it is therefore not necessary to perform a postcompression
Þltering to avoid beating between the soliton and the dispersive
wave; the Þlter is in a sense naturally built into the crystal. On
the other hand, if the aim is to generate dispersive waves
this diagram provides a quick overview of possible pump
wavelengths and crystal candidates.

When pumped with Ti:sapphire lasers with� 1 	 0.8 µm all
the crystals shown in Fig.6 have phase-matching points inside
their respective IR absorption regions. This explains why
dispersive waves have eluded observation despite the many
experiments performed with this wavelength (e.g., [5,6]).
Another explanation is, of course, that while many experiments
have investigated cascaded SHG effects at this wavelength, the
majority of these have been carried out far below the soliton
formation threshold. Thus, a dispersive wave cannot form.

Note that these curves are based on the Sellmeier equations,
which are usually only valid for a limited range; in particular,
the mid-IR behavior of the Sellmeier equations has only
recently been investigated for some crystals due to the current
interest in mid-IR laser sources (BBO [24] and LN [42] are
examples). Thus, the long-wavelength range of the calculations
might not be very accurate for all crystals. In fact, we recently
became aware of a new IR study on BBO [41], reporting on
modiÞed Sellmeier equations relative to those in Ref. [24];
this curve has been included in Fig.6, and it is evident that the
two predictions do not always agree. The same is the case for
KTA, where two completely different curves are obtained.

V. EXPERIMENT

Recently, some of us investigated controllable self-
steepening effects in cascaded SHG [21]. In preparing for
this experiment a 25 mm BBO crystal cut with� c = 28�

was pumped at� 1 = 1.420µm, close to the zero-dispersion
point � ZD 	 1.49 µm. The pulses were generated with an
optical parametric ampliÞer and had a FWHM duration of
130 fs and 10µJ energy. The input pulse spectrum was large
enough to support an 89 fs FWHM pulse, corresponding
to a dimensionless chirp parameter of around unity, and
the pump pulse was loosely focused in the BBO crystal to
generate an intensity in the tens of GW/ cm2 range. The loose
focus (approximately 0.4 mm FWHM spot size) minimizes
diffraction effects as the corresponding Rayleigh length is
around ten times the crystal length.

A substantial spectral component was found to reside inside
the linear region, i.e., beyond� ZD; see Fig.7(a) where the
linear region (with anomalous dispersion) is shaded gray. The
position of the peak changed slightly when the phase-mismatch
value was changed: for�k = 2.4�/ mm it is located around
� = 1.65 µm, for �k = 4.0�/ mm it is located around� =
1.55 µm, while for �k = 5.8�/ mm it is located around the
zero-dispersion point. Note that the spectrum analyzer in the
experiment was not able to measure beyond� = 1.7 µm. This
unpublished result is now investigated further so as to ascertain
whether this is an observation of optical Cherenkov radiation.

Initially, we can say based on what we have presented so
far in this paper that a dispersive wave should not change
its spectral position when�k is changed, but this is true
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