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Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation
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We show through theory and numerics that when few-cycle femtosecond solitons are generated through
cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov
radiation in the form of linear dispersive waves located in the red part of the spectrum. The beating between the
dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of
a simple short-wave pass Plter after the crystal can restore a clean soliton. On the other hand, bandpass Ppltering
around the dispersive wave peak results in near-transform-limited ultrashort mid-IR pulses with pulse durations
much shorter than the input near-IR pulse. The Cherenkov radiation for the crystal considbedi(n borate)
is found for pump wavelengths in the range 0.95D145 um, and is located in the regime= 1.5D35 um. For
shorter pump wavelengths, the phase-matching point is located in the absorption region of the crystal, effectively
absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency
conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will biter
away the dispersive wave. Finally, an investigation of recent experimental results uncovers a four-wave-mixing
phenomenon related to Cherenkov radiation that is an additional generation mechanism of long-wavelength
radiation that can occur during soliton compression. We discuss the conditions that lead to this alternative
dynamics rather than generation of Cherenkov radiation.

DOI: 10.1103/PhysRevA.82.063806 PACS number(s): 4B5.Tg, 4265.Re, 4265.Ky, 42.65.Sf

I. INTRODUCTION the cascaded nonlinearity can be understood as a Kerr-like
self-phase-modulation (SPM) action, and the negative sign

r 0(222522 itshie?c?rfé-ﬁglr?nborz}sd e?}l?ai?gss(té%éegegoagnea(Bf this effective nonlinearity means that it is self-defocusing.
P 9 P Thus, catastrophic collapse due to self-focusing effects may

this fact, there are today still new aspects to discover, "be avoided provided that the self-focusing material Kerr

ﬁ]atlggélta(,v\g?]z?eu;rsacfji gu:;scea;? (I:nhé?sn{(eorctr(;sdei;ggr? t[ﬁg'l:ne onlinearities can be overcon® [and it is therefore possible
radiatioﬁ of linear dis ersiv?a waveg] [when ultrashort few- o compress multiple milljoule femtosecond pulses with this
b method. Therefore this method is a compact and efpbcient

cycle solitons are generated through cascad_ed SHG. ._alternative to existing compression methods, such as, e.g.,
Cascaded SHG occurs when the nonlinear conversion

process over the propagation lengttis strongly phase mis- pulse compression in hollow bPbers combined with dispersive
matched| kL |  1: up-conversion to the second harmonic elements 9], for generating energetic few-cycle pulses.

(SH) is followed by the reverse process of down-conversior’i Recently we investigated how close to the ultimate limit

single-cycle durationT = 2/ ) this soliton compression
to the fundamental wave (FW) after half a coherence lengt ystem can getll]. In this connection we noted that higher-

e e grir dispersio (HOD) i e ruercs reveled s
effects). In this cascaded nonlinear interaction the FW expe- atures O.f the compressed soliton, namely, a peak in th_e
riences.a nonlinear phase shift due to the difference in phasr?eOnSOIItonIC part of the spectrum, and we suggested that it

» . ) . could be optical Cherenkov radiation. This peak disappeared
velocities, and the magnitude and sign of the phase shift are de-

; . ; When only up to third-order dispersion was used. We will here
term'lned by the phase-mlsmatph paramétef3]. This prop- investigag/e tﬁis phenomenon ir? detail.
ertyis “Sef‘?' for many appllcgtlons (see Ré]fpr_ areview). . The brst prediction of resonant dispersive waves came from
One particular application is pulse compression ofenergeuQNai et al, who showed that when perturbing the nonlinear
femtosecond pulses toward the few-cycle regime with CaS'Schedinger equation (NLSE) with HOD, e.g., third-order
caded quadratic nonlinearities §]. In this particular example Y

a strong negative nonlinear phase shift is generated on the FWspersion, the otherwise stable soliton will start to radiate
gneg P 9 energy into a dispersive wave,11]. This was later coined

bythe casgaded_nonlmeanty, which m.eansthatz unllk_eln ma.n}ﬁptical OCherenkovO radiation, since the soliton propagates
other meg:ha, sqlltons may now be excited even in regimes Wltrt]hrough the medium emitting radiation with a slower group
normal dispersion (where blu_e components “a"?' more SIQWI)(/eIocity [12). The brst experimental observation of optical
than red com_poner_lts). A_n important regime 1s the visible herenkov radiation came shortly after in a mode-locked dye
and near-IR, in which soliton compression of femtosecond, o, generating solitonlike pulseB3] and in a single-mode
pulses is possible even to few-cycle duratidh Furthermore, bber 14]; both systems are well described by the NLSE. A

similar effect called Kelly sidebandd % can be observed

in soliton Pber lasers, where periodical gain may induce

“moba@fotonik.dtu.dk nonsolitonic radiation in the sidebands of the laser spectrum.
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The dispersive wave is linear in nature and feeds off theeompeting Kerr nonlinearities and self-steepening effects. The
generated solitons in the system, and its spectral locatioaquations have been transformed to the frame of reference
is a result of a phase-matching condition to the solitontraveling with the FW group velocityg 1 = 1/k§1) by the
[12). Dispersive waves are often found in supercontinuunvetarded time coordinate = t S z/v4 1, which gives rise to
generation outside the soliton regiod$f7], where_sollf[ons _the group-velocity mismatch (GVM) terr, = kgl) 3 k;l)_

are no longer supported because the group-velocity dispersiofe phase mismatch iE = k» S 2ky, and the equations are

(GVD) changes sign (sed | for a review). Currently there  generalized to include dispersion up to ordey through the
is also focus on use of dispersive waves for ultrashort pUISSperators@- = Mg imm)_mm) d™k/d M| -

; ] m=2 m m =
synthesis 19] and broadband frequency comti)]. . are the dispersion coefbcierits,= n; /c the wave numbers,
wai/ne;h:i ‘;gzlgg&n ;": én\é$53;32;§;??e?rzf§§:§§n%f g:jgg?“@nd n; the linear refractive indices, whose chromatic disper-
derive the nonlocal NLSE governing the FW, and show that in onis modeled by the Sellmeier equatioé|{
the stationary regime and weakly nonlocal limit, a description o
of the FW dynamics by a standard NLSE with HOD is well A. NLSE describing cascaded SHG
justibed. We derive the phase-matching conditions for the dis- We consider strongly phase-mismatched (cascaded) SHG,
persive wave as a function of the FW soliton wavelength, andn which the FW can be approximately described by a NLSE
calculate specibcally the conditions for a standard nonlinegi22]. More precisely, we recently showedi(25] that in the
crystal. These calculations show that a dispersive wave carascading limif k |z 1, the ansatE,(z, )= ( )e'k?
form on the red side of the spectrum (at longer wavelengths)when inserted in Eq.2) and Fourier transformed, yields the
and it is clear that including only a few extra orders of solution in the frequency domain
dispersion is often not enough to describe the dispersive wave . _
formation accurately as the dispersive wave may be strongly Ex(z, )=S ek 2 l—erfl‘-("( F E?z, ), (3
redshifted from the soliton. Through numerical simulations cnp K
we investigate the formation of the dispersive waves in detailwhere F[-] denotes the forward Fourier transform. The
and show that the theoretical predictions are quite accurat@onlocal response function in the frequency dom&inis

We show how the dispersive wave can be removed after the 1 K

soliton is formed by using a simple short-wave pass Plter R( )= — = - . 4)
after the nonlinear crystal. On the other hand, the dispersive 2 Dy )Sdi + Kk

wave radiation can also be isolated with a bandpass Pltejyhere [§,( ) = M miSk{™ m s the SH dispersion

resulting in an ultrashort near-transform-limited mid-IR pulse.qperator in the Fourier domain. Using the convolution theo-
We calculate the phase-matching curves for a broad rang@me,(z, )= § eSikz it s dSRES)EXz, $s), where

of standard frequency conversion crystals, and point out th cnek

— £31@ i i )
in the more dispersive crystals the phase-matching conditiors1 (021;e If:unc[tﬁz]nlslr:ggrtliﬂviﬁg irft% ulrzlg)r é;%nr?g::glgnth?h;e
is often found inside the absorption region of the crystal. P ' 9 9

: ) . : variables, we see that the FW obeys a dimensionless nonlocal
Finally, we discuss some experimental results obtained b

some of us in connection with another stu@][in order to K”‘SE’

understand whether the spectral peaks, which were observedini_ + B, Up+ N2 Ui Uyf?

the linear (anomalous) regime, are related to optical Cherenkov 1 =17 ke =1=1

radiation. This investigation helps us to differentiate between

two closely related mechanisms for the generation of long- S sgn(k )N§HGU1 ) dsR(s)UZ(, Ss)=0. (5

wavelength radiation that can occur during cascaded-quadratic 5

soliton compression. Here = /T iy, whereTy, isthe FW input pulse duration,=

z/[L p1, WwhereLp; = Ti§/|k§2)| is the FW dispersion length,

and pnallyU; = Ei/ B, with B, being the peak amplitude
Consider the propagation equations for SHG in mks unitsof the electric input Peld. The dimensionless dispersion is

In a type-I phase-matching conbguration two degenerate FV, = [, i™ j(m)—mm and j(m) k‘-(m)(Tiﬂ“SZ|k§2)|m!)51.

photons with frequency; combine to give a SH photor, = The dimensionless nonlocal response functiof ) =

2 1 with orthogonal polarization with respect to the FW. In T;,R( ) determines the nature of the cascaded SHG interaction,

the slowly-varying-envelope approximation and in absence ofind in most cases (see also below) it results in an instantaneous

diffraction the governing propagation equations for the electricand a delayed Kerr-like SPM term. This part is controlled by

Il. THEORY

PeldsE; are 22,23 the cascaded soliton order
i+ B B+ MM Edke =g @) N2 = Lo o 6)
z chy T eZning| k|
Lo - d & i i i
i Sidp— + B, E,+ 10eff Efes'kz -0 (2 In Eqg. ) we have_ alsp |_ncluded Kerr SPM mthe_matenal (but
z cny we neglect for simplicity cross-phase-modulation effects as

. N ) , _ they remain weak because the SH is inefbciently converted).
where derr is the effective ' nonlinearity. Later in the g kerr soliton order N2, = L1l inNke,, Where the
numerical simulations we will extend these equations to the | 3Re( )

- eff

slowly-evolving-wave approximatior7[23] and include also  Kerr nonlinear refractive index isy,, = = onc with li, as
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the FW peak input intensity ande(j}) the appropriate cubic in the nor_lstationary regime) where the blue-shift is much
nonlinear tensor component of the interaction (see R, [ SrONger SiNCer,sHg INCreases.
for more details). In the rest of this section we therefore base our calculations
In the so-called stationary regime, where the cascadefin the following NLSE:
nonlinear effects dominate GVM effects, the denominator of B .
EqQ. @) has only complex roots in , making the nonlocal i—+ B, U S NZUi|Uy* = 0. (8)
response functiofR| e V s. In the stationary regime the
weakly nonlocal approximation is often satisb#@ [inwhich ~ We will now proceed to calculate the phase-matching condi-
the response function is much narrower than the pulse widtkions for optical Cherenkov radiation.
s Tin, and the NLSE can be approximated 48,25]
B. Optical Cherenkov radiation

i—+ 0, US sgn(k )NZcS NZ, Ui|Uy|? When only second-order dispersion (GVD) is considered
we get the standard NLSE

. U 2
= sgn kd 1k N3, r shalUi>—. @) i—S P— uwSululP=0 9)

From this equation the left-hand side tells us that in the caswhere ® = sgn!®)/2= 1/2 in the case of normal disper-
cading limit the FW experiences an overall cubic nonlinearity.sion, and whereu; = UiNgg. It has the following soliton

For k > 0 the cascaded SHG contribution is negative, i.e.solution [L2]:
self-defocusing, and we may in this case introduce an effective 0o _ iq
soliton orderNZ = N2,,.S N2, to describe the effective Upsol = A SEChR et , (10)

nonlinear strength. In the normal dispersion regifie> 0,a  whereA is the peak amplitude of the soliton and insertion of
FW soliton may then be induced by the cascadecfSHGﬁf Eqg. 10) into ng. ©) yields the dimensionless soliton wave
0. This ensures an overall effective self-defocusing cubidumber, = S A% 2. The negative sign is due to the fact that
nonlinearity. We can also interpret the effective cubic nonlin-we are dealing with self-defocusing nonlinearities.

earity through an intensity-dependent change in the refractive In order to observe optical Cherenkov radiation, it is not
indexn= n; + |1nlcubic, where n'Cubic = ”'SHG+ n'Kerr, From enough to consider the NLSE with only GVDB)( we must

our analysis the contribution from the cascaded quadratic norinclude some perturbation in the form of HOD. Basically
linearities isn, ;= S sznlciéﬁk , consistent with Refd], and  HOD tends to destabilize the stable soliton solutidf){

] omnz the soliton can become phase matched to a linear wave,
we have in the self-defocusing casg = Lo.1Zlinlneund = which extracts energy from the soliton. We can bnd this
Lo12lin(Insycl S Niker)- The requirement of an overall ef- phase-matching point by requiring that the phase of the
fective self-defocusing cubic nonlinearity then comes down tasoliton be that of the dispersive waveg, = gw. The phase
having|ng,gl > Nier- accumulated by the soliton at a propagation distahce

The nght-h.ano! side of EQ.7) represgnts t_he vyeakly is so= L[N1( so) solC + Osai S sollV g soll, Wherevg s =
nonlocal_ con_trlbutlon of the_ cascad_ed nonllngarlty. Itlsa_self-ﬂkgl)( «)) is the group velocity at the soliton frequency.
steepenln_g-llke term that,lln combination with the nonllnearUSing the result from before and converting to physical
phase shifts from the stationary component of the nonlineayits we getiso = S N2 lsof (2L p.alin) = S| L1l 1/ 26,

polarization, produces a Raman-like frequency shift that tend§nere| ., is the peak ?;fltensity of the soliton(.:UbiC

to blueshift the soliton for sgrfd 12k{’) < 0 (as is the This is identical with the expression in Retf] except for
case with normal dispersion and self-defocusing effectivehe sign of the nonlinear term. The dispersive wave must in
nonlinearity). It is governed by a characteristic dimensionlesgyder to be efpciently generated move in the same reference
time parameterg sig = 2|tho/Tin k |. Thus, the blueshiftis  frame as the pump, but since it is a linear wave it will not

small for long input pulses and fddsnc small. Evidently a  contain any nonlinear phase shift. Its phase is therefore simply
strong GVM in the interaction will also affect thisterm, aswill = | [n;( qu) aw/C S awlV g.so] Phase-matchingse =

a reduced phase mismatéh . However, when we stay inthe ,  therefore implies
stationary regime the characteristic tingesn remains small
and the blueshift remains insignibcant. This is further justibed
if Nspg is not too large since the nonlocal self-steepening-like
term is proportional toN§,; see Eq. 7). The stationary At this point one could simply just start Pnding the frequency
regime is the parameter space for whig> k g, where 4w that fulblls this requirement for a givens,. However,

K o= d2/ 2k§2) is the phase-mismatch parameter, at whichin the stationary reference frame we may equivalently state
the roots of the denominator in Eqd)(change from being the following identity for the soliton wave number including
complex to being real fomyg = 2 [25). If k< k & (the nonlinear correction<2g]:

nonstationary regime), GVM effects become very strong, and _ & @

the interaction can no longer be described as simply as the ksol( ) = Ka( so) + (S sadky™( sol) + Gsor (12)
right-hand side of Eq.7); see Ref. 10] for more details. The The solitonic (nondispersive) nature is evident through
blueshift is described in more detail in Re27]; note that this  the linear dependence on of the soliton wave num-
study operated with a lonk (and was thereby conducted ber. The phase-matching condition can now be written as

N1( aw) dw S N1( sol) sol g aw S sol S Osot= 0. (11)
c Vg,sol
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500 T T T T T

Ki( aw) S ksol( aw) = 0, i.e., at the dispersive wave frequency 1.0
the soliton and the linear dispersive wave have the same wave 0 -
number. Expanding the wave number of the linear radiation 75 El
. e £ -5004 B
ki( qw) @around g, this condition may be expressed as - o
¢ E-1000 E
Mg - m 1.70 s
Lo Dy Squ=0  (13) B '
m=2 ' 165 drermprrerperrepreerpereey 2000 e
with mg= . The sum is now recognized as the FW bt l‘i [2:;3‘5 032 010 lf[ﬁﬁlf‘s 2033
dispersion operator expanded around the soliton frequency,
evaluated at the frequencyg,, and taking into account all FIG. 1. (Color online) The wavelength dependence of (a) the FW

orders of dispersion. Clearly, this phase-matching condition i§foup indexng.1 = cvg1; (b) FW GVD k¥ (black) and FW TOD
sensitive to how many orders of dispersion are included in thé:™ (red, dashed) for BBO.

analysis. Obviously, this is especially the case if the soliton is : . : .
far from the zero-dispersion point. are generated in the anomalous dispersion regime. In our

In order to evaluate the phase-matching condition we neegyStem the effective nonlinearity is, as mentioned before,
to know the soliton peak intensity,, and a valid estimate self-defocusing, and solitons therefore reside in the normal

. - [ i ime. The FW group index, GVD, and third-order
can be found by using the scaling laws for cascaded SH ISpersionregime : ' A
[23]. Specibcally, the peak soliton intensity at the optimal ispersion (TOD) coefbcients for BBO are shown in Bighe

compression point can be estimatediy = f .Qclin, Where normal dispersion regime is fox  zp  1.49um, and the

; _ & dispersion slope is positive.
the compression factor fg = 4.7(Ne# S 0.86) and the com- ' . .
pressedppulse quality @:‘c: [1 +(0.82ﬁ4(Neff é)l)l_ll]gl_ tis The numerical results are summarized in Figand the

at this point convenient for our case to use this result to writd 13N S|_mulat|on parameters are listed in Tablé;en_erally,
the soliton wave number @go = § N2,f cQc/ 2L o1, giving dispersive waves are observed for a range of soliton wave-
e ,4

lengths spanning the zero-dispersion wavelenggdown to
. kf) NZ2:4.7(Nes S 0.86) around 1 = 0.95um. Below this wavelength the dispersive
Osol = S 2TZ[1+ 0.24Ngs S 111 (14)  wave becomes phase matched in the mid-IR absorption band of
n ' eff BBO ( > 3.5um) and can therefore no longer be observed.
For a PxedNer and input pulse duratiori, the only  In the Pgure we also present the results of the thédhe

wavelength-dependent term is the GVD coefbcleﬁ’]t dashed thin black line is the phase-matching condition E3). (
These analytical results will now be tested against numeritaking into account the nonlinear correction to the soliton phase
cal simulations presented in the next section. via Eq. (L4), while the solid thick black line neglects this
contribution (i.e., takegso = 0). We deliberately used a short
IIl. NUMERICAL SIMULATIONS pulse [50 fs full width at half maximum (FWHM)] and a mod-

erate effective soliton ord&(Neg = 2.0) in order to simplify

Inour recent work10] we observed an unexpected spectralthe temporal and spectral dynamics; due to the rather short
peak in the mid-IR when simulating cascaded SHG pulsgnpyt pulse duration, for higher soliton orders the compressed
compression in Bbarium borate (BBO) for type-I phase- spjitons became more distorted, making it harder to determine
matching pumping with ; = 1.064pm and including all  precisely the location of the dispersive wave. Another justib-
orders of dispersion. However, when only up to third-ordercation for keeping low soliton orders is that the simple NLSE
dispersionify = 3) was included, the peak disappeared. We(g) js also more accurate for small values of the soliton order
argued that this peak was a dispersive wave phase matchedn,, By keeping a low effective soliton order, the nonlinear
the soliton, and in order to investigate this further, we have;orrection to the phase-matching condition is kept small; there
here carried out simulations at other wavelengths. is a clear but small deviation only close tgp.

Before showing the numerical results, it is instructive to Commenting brieRy on our result from Refl(], we
mention the rather peculiar dispersion conditions we operatgpserved that there a dispersive wave when pumping with
systems with a self-focusing nonlinearity where solitonsyitn only TOD. In Fig.2 it is clear from the phase-matching

curve for TOD (g = 3, red dotted curve) that around

1The simulations are based on the full coupled SHG propagation
equations in the slowly-evolving-wave approximati@i][(see R3] 2In order to calculate the phase-matching curves we used the
for more details), and they include exact dispersiomy £ ), Sellmeier equations for BBO with IR correctior®]: these should
self-steepening, and Kerr effects. We do not model a noninstantaneobe valid all the way up to 3.2 um. This is important in order
Kerr (Raman) response because the ultrafast Raman response functioncalculate the dispersion correctly. See also the discussion later in
for BBO is to our knowledge not known. For more details, seeconnection with Fig6.
Ref. [23], but note that we have in the present publication used a larger 3Note that an effective soliton order of 2.0 may seem quite low,
Kerr nonlinearityni,, = 5.9 x 10°2° m?/ W, based on observations but the input pulse being as short as 50 fs FWHM the scaling

made in Ref. 21], and the IR-corrected Sellmeier equatio2][ laws for the cascaded soliton compressigf] [predict a sub-10 fs
We use MillerOs rule to determine the chromatic dispersion of thEWHM compressed soliton, which for the wavelengths considered
nonlinear coefbcients (se2€] for more details). here corresponds to as little as two or three optical cycles.
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4.0 . up to bfth-order dispersion (blue dashed curve). Only with
35 BBO mid-IR cutoff higher-order dispersion (in this case exact, or all orders, of
30 Exact ] dispersion) is the dispersive wave accurately described. This
I N m=s is because the pump wavelength is so far away from the zero-
g 2.5 ’;’fi . ] GVD point. When pumping with a longer wavelength close to
= 207 e e S the zero-GVD point, the TOD case can show a dispersive wave,
<5 E and we conbrmed this with a simulation fof = 1.300um
T (red open circle), which matches the theory quite well.
1.0 e ] The dispersive wave is seen to form to the red side of
0.5 ol dispersion =1 anomalous ispersion the spectrum, because the nonsolitonic regime due to the

T T T
08 101214 16 1820 22 effective self-defocusing nonlinearity resides in the anomalous

b gy [nm] dispersion region. In contrast, in silica Pbers dispersive waves
are typically observed in the blue part of the spectrum.
FIG. 2. (Color online) Summary of numerical simulations of This is because the nonlinearity in Pbers is self-focusing,
cascaded pulse compression in BBO cut for typed ( €) phase implying that solitons require anomalous GVD to exist,
matching at various FW wavelengths. The blled black circles shovand the linear regime (normal dispersion) is located to the
the numerically observed Cherenkov radiation wavelength peak atthiglue side. On the other hand, redshifted dispersive waves
propagation distance where the FW soliton is compressed to its shofrave also been observed with self-focusing nonlinearities: it
estdurationf = z). The data are plotted as a function of the soliton was initially suggested?®] and subsequently experimentally
wavelength s, as determined by a cross-correlation frequency-demonstratedj0] that redshifted dispersive waves may extend
resolved optical gating spectrogram (see, e.g., #lgter). The the-  the continuum further into the infrared. This was achieved
or_etical phase-matc_:hing curves are.calculated from B}, &nd the by using photonic crystal Pbers with very small cores that
thick curves are takingso = 0 and usingng = 3 (red, dotted)s = ya4e it possible to get two zero-dispersion points, one to the
5 (blue, dashed) or exact dispersion (black), while the thin dashefl) o and one to the red side of the soliton. Such a dispersion
black curve is for exact dispersion akg from Eq. (L4). This curve - 1510 hag heen used to study, e.g., soliton self-frequency shift

IS possnble_to cal_culate Sindée; = 2.0 andTi.” = 284 fs are held cancellation 1] and to generate broadband IR radiation using
bxed. All simulations are done with exact dispersion except for one

: . a near-IR pump32].
using only TOD (red, open circle). For other parameters, see Table While the phase-matching condition might allow a dis-

persive wave to form independently on the soliton spectral
bandwidth, it is only when there is a spectral overlap between
%he soliton spectrum and the Cherenkov resonance thatit grows
fb a substantial level3B]. Therefore Cherenkov radiation is
usually observed when the soliton is formed close 1g.
However, in the case we have considered here the solitons
TABLE I. Parameters of the simulations used in FAgThe phase were co_mpressed tc_’ few-cycle duration through the cascaded
mismatch is continuously changed to satisfp k , and at the ~ interaction, and their spectra were therefore ultrabroad_ba_nd.
same time low enough to achielfgy,,o| > n k... The characteristic ~ 1NiS is the reason why we could observe Cherenkov radiation
time parameter of the nonlocal self-steepening-like term in By. ( Very far away from the soliton wavelength.
is kept roughly constant,r sy 0.11D016, for all simulations. The detailed dynamics in the creation of the ultrashort
Input parameterdiles = 2.0, sech-shaped pulse wiliWt™ = 50fs ~ FW soliton and subsequently the dispersive wave can be
(Tin = 284 fs), which ideally should generate a sub-10 fs FWHM appreciated in Fig3, which shows a simulation at; =
compressed soliton2B]. The dispersion is calculated from the 1.300um with exact dispersion. In the simulation the 50 fs

1 = 1.06 um the phase-matching pointy, for my = 3 is
far into the mid-IR absorption band, and thus the dispersiv
wave will be absorbed; we were therefore not able to observe
in our study in Ref. 10]. This is also the case when including

Sellmeier equations in Ref24)]. input pulse is after around 32 mm of propagation compressed
to a 12 fs FWHM (sub-three-cycle) soliton; see F8{a)
1 k K o lin dw  Zopt This compression occurs due to the cascaded SHG; the SHG

(um) (mnPY) (mmPl) (GW/cn?) Nswe Nker (M) (mm)  coherence length for the chosen phase-mismatch parameter
k = 20 mnelisveryshortlcon= / |k | = 0.16 mm,and

0.950 80 79 1319 87 85 3212 29 .

thus hundreds of cascaded conversion cycles have occurred
1.000 70 61 474 56 52 3.011 25 4t the optimal compression point. At the compression point
1.030 60 52 229 42 37 2888 17 the FW soliton shows trailing oscillations, and subsequently
1064 55 43 176 38 33 2769 17 ra_dia_tion is_ emitted at a slower group velocity than the soli_ton:

this is optical Cherenkov radiation. Eventually the soliton
1.100 45 36 101 3.2 25 2624 17 (etaches from the uncompressed pedestal, which at the end
1.200 30 19 43 27 1.8 2273 22 ofthesimulationZ= 100 mm) s located on the leading side
1260 30 15 40 28 19 2108 28 around =S20fs. _ o _

In the FW spectrum, Fig3(c), the soliton is blueshifted

1300 20 10 19 24 14 1998 32 {610 the nonlocal terms that induce a Raman-like frequency
1.400 20 5.1 11 25 15 1736 66 shift. A careful investigation shows that the soliton at the
1450 10 292 2 22 094 1631 152 compression point is located around= 1.25um, and at

this propagation stage resonant Cherenkov radiation appears,
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U, [dB] located to the red side of the spectrum. No Cherenkov radiation
100 : : : : : 5n is observed before this point because the soliton is not formed
yet. At the observed soliton wavelength the theory predicts a
80 r 0 dispersive wave located at= 2.12um ( =S 0.56 PHz),
5 which slightly overestimates the dispersive wave peak
= 80] I position in the spectrum located aroung, = 2.00um
% -10 ( aw =S 0.51 PHz). This trend seems quite general for most
40 i of the simulations, as summarized in F2y.
20 7'15 After the optimal compression point, the dispersive wave
20 remains stable at the same wavelength. However, it was
0 i recently shown that in the NLSE radiation trapping of the
200 100 0 100 200 300 soliton and the dispersive wave can under certain circum-
T [fs] , stances continuously shift the dispersive wave away from
1UI" [0B] the zero-GVD point 34,35]. In our case this would mean a
100 ‘ : ‘ : ‘ -10(] continuous shift of the dispersive wave peak toward longer
20 wavelengths, and this does not happen. The explanation is as
801 i follows: The main dispersive radiation occurs when the soliton
-30 is compressed to its minimum duration because here the soliton
g 601 ’_40 has its highest peak intensity and its broadest spectrum. As the
N 401 7 soliton and dispersive wave propagate further the dispersive
-50 wave peak in the FW spectrum, FB(c), remains bxed. This
201 i is because the dispersive wave is emitted at a wavelength
-60 having a much slower group velocity than the soliton (see
0 ‘ , ‘ , ‘ 70l Fig. 1). This group-velocity mismatch between the soliton and
-100 0 100 200 300 the dispersive wave is also quite evident in the time trace in
Z”ﬂ] ] Fig.3(a). The soliton is temporally delayed due to the blueshift
30 20 15 9?3 10 U, 1" [dB] induced by the cascaded nonlocal nonlinearity, pushing the
100 0f] soliton toward lower wavelengths and thereby lower group
velocity (see again Figl). However, it never becomes slow
801 enough to catch up with the dispersive wave, and therefore
6ol 20 collision and subsequent trapping as described by R&85]
£ cannot occur.
N 0] [ 40 In supercontinuum generation with anomalous dispersion,
the Raman effect redshifts the soliton and thereby slows it
20 i down. This is in fact the driving force behind much of the
Q0 -60 dynamics involved in the generation of the broad spectrum, in
0l ‘ , : : i particular of the spectral part generated by trapping the soliton
-1.0 05 0.0 0.5 1.0 and the dispersive wave through a Raman-mediated slowing
Q:“’;"[’L‘m[]']DHZ] U, [dB] down of the soliton. In our results presented here we have
10 09 o8 07 06 05 ‘2 neglected the effect of a Raman-delayed Kerr nonlinearity
100 -20]] in the simulations, since the Raman response of the crystal
801 i we simulated, BBO, is not well known. If we were to take
-30 Kerr Raman effects into account in the simulations, then
— 601 i this would not lead to radiation trapping either: the Raman
E -40 effect would redshift the soliton, but because we operate in
N 401 5o the normal dispersion regime this would actually speed up
the soliton, making the group-velocity mismatch between the
20 L 60 soliton and the dispersive wave even greater. On the other
hand, a Raman-like frequency shift is intrinsic in the cascaded
0l ; . . —L-700 SHG interaction 25,27], and it would be very interesting
-1.0 0.5 szg)-z"[PHz] 0.5 1.0 to study the competition and dynamics between these two

similar nonlinear processes. This would require detailed and
FIG. 3. (Color online) The simulation for; = 1.300pum with ~ &ccurate measurements of the SHG nonlinear crystals in order
exact dispersion: The FW time trace (a) shows a soliton thaf® determine the instantaneous material Kerr nonlinearity a.nd
compresses to 12 fs FWHM at= z, = 32 mm (optimal com- the dglayed ultrafast Raman response, such as the technique
pression point, dashed line). At this point the FW spectrum (c)used in Ref. 36].
shows resonant Cherenkov radiation emitted with a spectral peak The SH also shows some interesting features. In particular
at 4 S 0.5PHz. The SH time plot (b) and spectrum (d) show the spectrum Fig3(d)has what appears to be a dispersive wave
similar dynamics due to the harmonic locking of the SH beld in thearound =S 1.0 PHz. However, this spectral component is
cascading limit. actually just the FW dispersive wave picked up at twice the
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E E 07 E
g -204 E 5 -20 £

S -409 3 S 409 E

= 0] Fo(a) s @8 =% F (¢) s [dB]

3.01 20 3.0 i 20 FIG. 4. (Color online)

25] 251 b XFROG spectrograms of the FW
€ €t
g wl & 1N | 40 (@), (c) and SH pulse (b), (ql),
= 204 = 204 F taken at the optimal compression

] g ] i point z= zZyy= 32 mm (left
15 -60 15 ) -60 column) and atz= 100 mm
1.01 [ -80 1.04 [ -80 (right column) for the simulation

0 500 1000 1500%%2 7 0 500 1000 1500%%2%:22 7 with 2 =1.300um and ful
U/ (@)F [<B] IU(@)F 8] dispersion. The dashed line
Tfs] Tfs] O
w0 . 204 ) 4av indicates the Cherenkov

%:Ao/}\ /\ @40//\/\ E phase-matching point with the

= 0] : s 60 ] soliton at s = 1.25pum. In the

= o0 : : : - (b) S (08 = Tl /-\ = (@ s SH plots the lines 4y, indicate

1.2 f -20 1.2 f i the wavelength beating with

twice the predicted Cherenkov
-40 -40 -

1.0 1.0 phase-matching frequency (see
= = text). A sech-shaped gating pulse
Z g 60| = 5g1 -60 of 20 fs FWHM was used.
= = 0.8

- -80

0.6 80 061

: : U ‘ ‘ ‘ ‘ e r100 L
0 500 1000 1500 |u8° 6%{3%?” 0 500 1000 1500 98020
T [fs] T [fs]

beat frequency 24,. This happens because in the cascadindut the phase-matching point would be too far away in the
limit the SH spectrum idockedto the FW; cf. Eq. 8).  spectrum to be observable.
This connection is modulated only by the nonlocal response A more detailed insight into optical Cherenkov radiation
functionR( ). In the stationary regimé& > k ¢, wherethe formation is obtained in Figd, where the numerical results
simulations are carried out, and in the weakly nonlocal limitat ; = 1.300 um are presented at the optimal compression
Ex(z, ) [R( =0)+ dR| -olF [E2(z, )][10]; thus the point through cross-correlation frequency-resolved optical
SH contains many of the same spectral components as tigating (XFROG) spectrograms calculated &g ,T )=
FW, and since it is locked t(F[EZ(z )] it will contain s d e Uj ( )Ugatd S T) , WhereUgaee is @ suitably
frequency components at twice the frequency observed in théhosen gating pulse. The FW in Fig(a) has compressed to
FW spectrum. 12 fs FWHM and during compression it has been blueshifted
This locked OCherenkov radiationO is also observable ig so = 1.25um. In the spectral trace as well as in the
the temporal trace of the SH; see Fi(b). Note that it is spectrogram the dispersive wave is quite evident: its position
traveling with the same group velocity as the FW dispersiveat = 2.00 um lies slightly below the wavelength predicted
wave, despite the fact that the SH group velocity at thaby the theory g, = 2.12 um for the observed soliton wave-
wavelength (1.0 um) is substantially lower. The GVM |ength. On the logarithmic FW time trace on the top of Bi@)
walk-off component of the SH is also observable: it appears inhe trailing oscillations mentioned before are noticeable. These
the beginning of the propagation as a rapidly disappearing termailing oscillations have been studied analytically in detail
(due to a slower SH group velocity giving a substantial GVMin the NLSE including third-order dispersioBg]. From the
parameterd;, = S 45 fg mm). Finally, the nonlocal locking spectrogram we can now explain them as a result of beatings
of the SH to the FW also implies that the FW soliton andbetween the linear dispersive wave and the soliton: in fact
pedestal are OcopiedO in the SH time trace as locked harmottie temporal period (around 12 fs) is exactly the beat period
radiation trapped in the frame of reference traveling with the2 / | s4S 4u|. As the pulse propagates further through the
FW group velocity. In another presentation we will investigatecrystal, the main part of the dispersive wave is delayed due to
this phenomenon more closelyq. having a lower group velocity than the solita3g], but at the
While the harmonic locking effect evidently leaves distinct same time new energy is fed into the dispersive wave. This
traces in the SH that are reminiscent of solitonic behaviorposition will now shift toward lower wavelengths after the
there is no proof that the locked SH radiation is actually aoptimal compression point; this is caused by a slight redshift
soliton. Therefore we do not believe that the locked radiatiortoward a Pxed Pnal value of the soliton after the compression.
can generate resonant optical Cherenkov radiation. On th€his soliton redshift might be some kind of spectral recoll
other hand, if we could observe Cherenkov radiation emittedrom losing energy to the dispersive wave, and eventually the
by the SH, it would indicate that the SH was indeed a solitonsaturation point could be due to a balance between the blueshift
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induced by the nonlocal cascaded nonlinearity and the spectral @ OTomeme T
recoil. A similar effect was observed in silica photonic crystal o SO () shortave pass e
Pbers with a negative dispersion slope in Rei][where the 104 , ]
Raman self-frequency shift is balanced by the blue recoil of 2 0] S ]
the soliton losing energy to the dispersive wave. o0l N _ ]
In the spectrogram we also observe that upon propagation 2 40l I/ [ ]
the amount of radiation shed into the dispersive wave region 1K input pulse P Original
will diminish, mainly because soliton bssion will occur, 507 [ iiﬂiiiﬂii’}
reducing the soliton intensity3p]. Another factor is that the '60_0 8 " 06 04 02 '0'0" 02 04 06
dispersive wave strength is proportional to the spectral overlap S Q'[PH'Z] I
of the soliton B3]. Thus, when the soliton is the shortest 2.0t , ——————
the radiation into the dispersive wave is strongest, and this (b) ™ I Original | ]
occurs at the optimal compression point. Note that the total 1.5 Short-wave ,1 k ]

] pass filt |
spectral intensity of the dispersive peak will instead grow upon ] o H

propagation. This is because what is observed there is the sum 5101 input pulse ‘ ]
of all the temporal slices of radiation shed by the soliton(s). = ] PR RN ]
It is also worth noting that in Fig3(a) it seems that 0.5 N \M 3
dispersive waves are emitted only at the optimal compression ] Vo M’\‘m- ]
point, but actually weaker radiation is emitted subsequently 00 e
by the soliton in the later relaxation stage, which is below the -150°-100°-50 Of S0 100150
minimum level of the chosen color scale of that time trace. 6 L]
Instead in Fig.4(c) it is evident that dispersive waves are © T original N
continuously radiated by the soliton upon further propagation. 5 Band-pass filter ]
The SH spectrogram in Figl(b) has two components: 44 .
one locked to the FW pulse due to the cascaded interaction 5] i
[cf. Eq. (3)], and one being the usual GVM walk-off component 2
located around = + 1300 fs due to the lower group velocity. 27 ciout pulse ]
The beating of these two components causes the ripples 14 PPl T
in the SH spectrum around the degenerate SH wavelength (o e S A4 s\
= 0.650um. The SH component created by the nonlocal -150 -100 -50 0 50 100 150
locking to the FW at twice the dispersive wave frequency is © [fs]

quite obvious, indicated withgyw2 = 2 ¢/ ( 2+ 2 4w). In
the time trace ripples similar to those of the FW are observecg o
in the trailing part, but they oscillate faster as the beatin arameters as the experiment in R@l: [ 1 = 1.26 um, TEWHM =
frequency is twice that of the FW. Note also that the SH spectrgilo fs. I, = 35 GW cn?, and Neg = 4.1, A dispersi’vemwave is
cut actually has a hole where the FW dispersive wave residegyijent at $ 0.6 PHz ( = 2.11pm). When a short-wave pass

We have also in Figs4(c) and 4(d) included the spec- pjier s applied (dashed), the trailing oscillations on the FW time trace
trograms taken upon further propagatia=(100 mm). The  can be bltered away; see (b). Instead when a bandpass Plter is applied
FW now has a more OraggedO dispersive wave spect(abtted) centered at the dispersive wave peak, a clean 50 fs FWHM
cut, extending over a larger bandwidth than in the previougulse with = 2.11 pum results; see (c). The Pltered radiation has for
spectrum in Fig4(a). This is because, as mentioned above, the:larity been amplibed 100 times; the peak intensity of this pulse is
soliton after the compression point starts to redshift slightly.around 20 dB below the input peak intensity.
ending up at a wavelength slightly to the blue side of the
original pump wavelength, and thus the phase-matching point
shifts toward shorter wavelengths as the soliton propagatepropagation. The temporal trace is shown in F¢b) and
giving a broader spectral peak. the trailing oscillations due to the formation of Cherenkov

In the SH spectrogram of Figl(d) we observe the same radiation are quite pronounced (full black line). The dispersive
features as at the previous propagation point: the lockedvave is now bltered away by applying a short-wave pass blter
harmonic travels with the FW group velocity and Ocopies©entered slightly to the blue of the dispersive wave peak. The
the FW radiation, while the FW dispersive wave component$ltered soliton (dashed red line) has now a very clean shape
also leave signs in the SH spectrogram arouggl,. In this  without trailing oscillations and keeps a very short duration
spectrogram the SH GVM walk-off component is no longer(11 fs FWHM). Thus, from a practical viewpoint this should
inside the window shown (it appearsTat + 4 ps). not affect the generation of clean compressed solitons as long

In a soliton compression context, the trailing temporalas the dispersive wave is generated substantially far away from
oscillations induced by optical Cherenkov radiation may not beahe soliton wavelength.
desirable when striving for clean few-cycle pulses. However, On the other hand, the Cherenkov radiation may also act as
they can easily be bltered away; see Figfa)and5(b). This  a source of femtosecond IR radiation. In fact, if in the example
simulation is done for similar conditions as those used in thaliscussed above we instead apply a suitable bandpass blter
recent experiment by some of ig.[From a 110 fsinput pulse, centered around the peak of the dispersive wave we can recover
a 9 fs FWHM compressed soliton is formed after 38 mm ofa 2.11 pm pulse [see Figh(c)], which has 50 fs FWHM

FIG. 5. (Color online) (a) shows the FW spectrum at the optimal
mpression pointz(= 38 mm) for a simulation using the same
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duration (around seven optical cycles and much shorter thaimside the absorption region of the crystal; the end of the
the near-IR pump) and 120 nm FWHM bandwidth. Thesemid-IR absorption region is marked with a star. In this case
values give a time-bandwidth product around 30% above thé is therefore not necessary to perform a postcompression
transform limit. The efbciency of generating the Cherenkowpltering to avoid beating between the soliton and the dispersive
radiation can be estimated by observing that the radiatiomvave; the plter is in a sense naturally built into the crystal. On
intensity lies around 20 dB below the input level. A more the other hand, if the aim is to generate dispersive waves
precise value is obtained by integrating over the pulses, whicthis diagram provides a quick overview of possible pump
reveals that around 1.5% of the input pulse energy Rux residesavelengths and crystal candidates.

in the dispersive wave. Considering that the 50 fs radiation is When pumped with Ti:sapphire laserswith 0.8 umall
generated with a longer near-IR input pulse (110 fs FWHM) the crystals shown in Fig.have phase-matching points inside
these numbers look quite favorable. A higher efbciency can btheir respective IR absorption regions. This explains why
achieved shortly after the optimal compression point, as, e.gdispersive waves have eluded observation despite the many
evidenced by Fig3(c), where clearly the Cherenkov peak experiments performed with this wavelength (e.c,6]).
grows in strength after the soliton has been formed. For thénother explanationis, of course, that while many experiments
case in Fig3(c)the efbciency is around 2% at the compressiorhave investigated cascaded SHG effects at this wavelength, the
point and shortly after it increases to over 3%, after which itmajority of these have been carried out far below the soliton

saturates. formation threshold. Thus, a dispersive wave cannot form.
Note that these curves are based on the Sellmeier equations,
V. CHERENKOV RADIATION PHASE-MATCHING which are usually qnly valid for a I|m|t_ed range; in particular,
CURVES the mid-IR behavior of the Sellmeier equations has only

recently been investigated for some crystals due to the current

In Fig. 6 we present the phase-matching curves (in absencaterest in mid-IR laser sources (BBQ4 and LN [42] are
of the nonlinear phase shift) for a broad range of nonlineaexamples). Thus, the long-wavelength range of the calculations
crystals previously used for cascaded quadratic interaction. Waight not be very accurate for all crystals. In fact, we recently
observe that the Olow-dispersionO crystals (KDP, LBO) miglitecame aware of a new IR study on BB, reporting on
generate near-IR dispersive waves when pumped at standambdibPed Sellmeier equations relative to those in R2dl; [
laser wavelengths for generating energetic femtosecond puls#ss curve has been included in F&.and it is evident that the
( = 0.8b13 um), while BBO and the more dispersive crys- two predictions do not always agree. The same is the case for
tals (LN, LT, KTP, KN, and KTA) when pumped with these KTA, where two completely different curves are obtained.
wavelengths will generate dispersive waves in the mid-IR.

In fact, the dispersive wave is in many cases phase matched V. EXPERIMENT

P N . . Recently, some of us investigated controllable self-
] éf;',;k"‘g\/\\*/”‘ypeo : st_eepening effects in cascaded SHA]][ In preparing for

3] ?2}431?[41] * N 1 this experiment a 25 mm BBO crystal cut with = 28

4] - RN gg?[;yﬁco ] was pumped at; = 1.420um, close to the zero-dispersion

point zp 1.49um. The pulses were generated with an
optical parametric ampliper and had a FWHM duration of
130 fs and 1QuJ energy. The input pulse spectrum was large
enough to support an 89 fs FWHM pulse, corresponding
to a dimensionless chirp parameter of around unity, and
—— the pump pulse was loosely focused in the BBO crystal to
L0 L5 20 25 generate an intensity in the tens of ¥ range. The loose
A, [um] focus (approximately 0.4 mm FWHM spot size) minimizes
) _ o _diffraction effects as the corresponding Rayleigh length is
FIG. 6. (Color online) Phase-matching curves similar to Rig. around ten times the crystal length.
for various popular quadratic nonlinear crystals as calculated from A substantial spectral component was found to reside inside
Eq. (13 with Gs = 0. The gray area denotes the regime With o |inaar region, i.e., beyondp: see Fig.7(a) where the
anomalous GVD for 1, where an effective self-focusing nonlinearity Jinear region (Witf,1 an(;malous dis,persion) is shaded gray. The

nl .. > O is needed to generate solitons. The O00 transmission edge_ ... . et
(through 1 cm of crystal) of the mid-IR absorption region is markedgosmon ofthe peak changed slightly when the phase-mismatch

with a star. The phase matching considered is type | e, except value was changed: fok = 2.4/ 'mlm it is located around
where denoted Otype 0,0 whee einteraction is considered. The = 1.65pm3 for k =40/ mm 't_'s_ located around =

KN and LN curves hold for both type-0 and type-I phase matchingl-95 MM, while for k = 5.8/ mm it is located around the

as they turn out to have almost identical phase-matching curve€ero-dispersion point. Note that the spectrum analyzer in the
The crystals are as follows (the Sellmeier equations are all taken &XPeriment was not able to measure beyord 1.7 pm. This
room temperature and are from Ref0], except where noted). KDP, Unpublished resultis now investigated further so as to ascertain
potassium dihydrogen phosphate; LBO, lithium triborate; BB®, Whether this is an observation of optical Cherenkov radiation.

L, [pm]

barium borate24,41]; KTP, potassium titanyl phosphate; LT, lithium Initially, we can say based on what we have presented so
tantalate; LN, 5% magnesium oxideDdoped lithium niob&2k KN, far in this paper that a dispersive wave should not change
potassium niobate; KTA, potassium titanyl arsena®44). its spectral position wherk is changed, but this is true
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