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We derive accurate semianalytic formulas for the power spectra from two-field inflation assuming an

arbitrary potential and arbitrary noncanonical kinetic terms, and we use them both to build phenomeno-

logical intuition and to constrain classes of two-field models using WMAP data. Using covariant

formalism, we first develop a framework for understanding the background field kinematics and introduce

a ‘‘slow-turn’’ approximation. Next, we find covariant expressions for the evolution of the adiabatic/

curvature and entropy/isocurvature modes, and we discuss how the evolution of modes can be inferred

mostly from the background kinematics and the geometry of the field manifold. From these expressions,

we derive semianalytic formulas for the curvature, isocurvature, and cross spectra, and the standard

spectral observables, all to second order in the slow-roll and slow-turn approximations. In tandem, we

show how our covariant formalism provides useful intuition into how the general features of the

inflationary Lagrangian translate into distinct features in the observable power spectra. In particular,

we find that key features of the power spectra can be directly read off from the nature of the roll path, the

curve the field vector rolls along with respect to the two-dimensional field manifold. For example, models

whose roll path makes a sharp turn around 60 e-foldings before the end of inflation tend to be ruled out

because they produce stronger departures from scale invariance than are allowed by the latest CMB

observations. Finally, we apply our formalism to confront four classes of two-field models with WMAP

data, including doubly quadratic and quartic potentials and nonstandard kinetic terms, showing how

whether a model is ruled out or not depends not only on certain features of the inflationary Lagrangian, but

also on the initial conditions. Ultimately, for a two-field model to be consistent with observations, we

show that it must possess the right balance of certain kinematical and dynamical behaviors, which we

reduce to a set of functions that represent the main characteristics of any two-field model of inflation.

DOI: 10.1103/PhysRevD.83.023522 PACS numbers: 98.80.Cq

I. INTRODUCTION

Cosmic inflation is currently the leading model for gen-
erating the primordial density perturbations that seeded
structure formation. According to the inflationary para-
digm, our Universe experienced an early period of accel-
erated expansion, which solved the horizon, flatness, and
relic problems (see, e.g., [1–5]). The accelerated expansion
also stretched quantum fluctuations beyond the causal
horizon, freezing them in. Over time, these perturbations
were gravitationally amplified, eventually initiating the
formation of galaxies and large-scale structure [6–11].

In the simplest models, inflation is driven by a single,
slowly varying scalar field whose potential serves as an
effective cosmological constant. However, there are good
reasons to believe that inflation might have been driven by
more than one field. First, many theories beyond the stan-
dard model of particle physics—such as string theory,
grand unified theories, supersymmetry, and supergrav-
ity—involve multiple scalar fields. Second, introducing
one or more fields may provide attractive features. For
example, hybrid models of inflation involving two scalar
fields are able to achieve sufficient inflationary expansion
and match the observed power spectrum of density fluctu-
ations, while possessing more natural values for their

coupling constants and occurring at sub-Planckian field
values [12–14].
Despite the attractiveness of multifield inflationary mod-

els, the task of analyzing them and comparing them against
observations is considerably more complicated than the
single-field case. First of all, when there are two or more
fields, perturbations in the relative contributions to the
energy density (entropy/isocurvature perturbations) are
possible, in addition to perturbations in the total energy
density (adiabatic/curvature perturbations) [15,16]. These
isocurvature perturbations can source the curvature pertur-
bations, causing them to evolve on superhorizon scales
[15,17–19], which complicates the calculation of the den-
sity power spectrum. Moreover, the isocurvature perturba-
tions themselves give rise to their own power spectrum and
potentially also a correlated cross spectrum, as was first
recognized by [20]. Finally, multifield models are accom-
panied by an uncountable number of initial conditions.
Since initial conditions may affect the power spectra
(e.g., [21,22]), this complicates testing multifield models
against observational data.
It is therefore important to develop a complete frame-

work that takes these issues into account and that can be
used to test multifield models of inflation against observa-
tions. In this paper, we focus on developing a theoretical
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framework to intuitively understand and to test two-field
models of inflation with noncanonical kinetic terms.
Pioneering work enabling the calculation of the power
spectra for general multifield inflation was done in
[15,21,23–34].1 For two-field inflation, a myriad of specific
models have been investigated in the literature, e.g.,
[20,36–59]. For the general case of two-field inflation, an
approximate solution for the metric perturbations was
found to lowest order in the slow-roll approximation in
[60]. Later, evolution equations for the adiabatic and en-
tropy perturbations were found for models with canonical
kinetic terms [61] and for models with certain noncanon-
ical kinetic terms [62]. The complete set of curvature,
isocurvature, and cross spectra were first estimated for
canonical kinetic terms by [63] and for some particular
noncanonical kinetic terms by [64] (and was later extended
to include second-order terms by [65]). However, these
analytical results were all derived under the assumption
that the slow-roll parameters and the effective entropy
mass are approximately constant in the superhorizon limit.
In exploring double inflation, Tsujikawa et al. [66] ques-
tioned this assumption by numerically illustrating that this
assumption often did not hold for their specific inflationary
model. Indeed, Lalak et al. [65] reported similar problems
with inaccuracies when comparing these analytical esti-
mates to numerical integration of the full equations of
motion, which they used to follow the evolution of the
power spectra to high accuracy. Not using this assumption,
a general formalism for parametrizing the evolution of
adiabatic and entropy modes was developed in terms of a
transfer matrix by [67]. This formalism was used to esti-
mate the power spectra in the slow-roll limit in the case of
canonical kinetic terms to first order in slow roll in [68] and
to second order in [69]. Also of note, there have been more
in-depth investigations of the evolution of and the cross
correlations between curvature and isocurvature modes
around horizon crossing for general models with canonical
kinetic terms [70] and for models with extremely general
Lagrangians in which the entropy modes are not even
assumed to propagate at the speed of light [34,71].

In the first half of this paper (Sec. II), we build on these
past results by deriving covariant expressions valid to
second order in the slow-roll and slow-turn limits for the
unperturbed and perturbed fields; for the curvature, iso-
curvature, and cross spectra; and for the associated spectral
observables, in the case of an arbitrary inflationary poten-
tial with completely arbitrary noncanonical terms. In doing
so, we extend the work done by [62,64,65], which assumes
a particular form for the noncanonical kinetic terms, and
we improve substantially on analytic estimates that assume
that the slow-roll parameters and effective entropy mass

can be treated as approximately constant in the superhor-
izon limit [63–65]. We also provide new intuition into two-
field models, explaining in detail how the general features
of the evolution of modes and of the power spectra can
largely be inferred from the kinematics of the background
field vector and from the curvature of the field manifold.
And lastly, we reduce all two-field models to a set of just a
handful of parameters that determine all the inflationary
dynamics; these parameters provide a foundation for com-
paring the general features of all two-field models against
each other. In the second half of this paper (Sec. III), we
illustrate how to apply our theoretical framework by ana-
lyzing four different classes of inflationary models. For
each type of model, we test more than 10 000 different
combinations of the initial conditions and a characteristic
Lagrangian parameter in order to understand the power
spectra they produce. This paper provides the first thorough
investigation of the role of initial conditions in determining
two-field power spectra, and demonstrates how to rigor-
ously test and constrain two-field models of inflation, using
only minimal assumptions about the end of inflation and
reheating. Though our paper focuses on the two-field case,
many of our results are more widely applicable, as in many
multifield models, only two fields dominate during the last
several e-folds of inflation [30].
This paper is organized as follows. In Sec. II A, we

present exact and approximate expressions for the back-
ground equations of motion, develop a framework for
understanding the backgroundkinematics, andwe introduce
a new approximation that we call the ‘‘slow-turn’’ approxi-
mation. In Sec. II B, we derive evolution equations for the
perturbations in both the given and kinematical bases, and
we find superhorizon solutions for the adiabatic/curvature
and entropic/isocurvature modes. In tandem, we discuss
how the evolution of modes can be inferred mostly from
the background field kinematics and the field manifold. We
also explain why previous approaches based on assuming
the slow-roll parameters and effective entropy mass are
approximately constant in the superhorizon limit often
lead to substantial inaccuracies in estimating the power
spectra. Thereafter, we find simple expressions for the
power spectra, spectral indices, and other observables in
Sec. II C. We discuss how the general features and the
relative sizes of these spectra can be inferred from the
background field kinematics and the field manifold, and
we discuss when two-fieldmodels are effectively equivalent
to single-field models. In Sec. III, we apply our theoretical
framework to four general classes of inflationary models.
We vary both the initial conditions and a characteristic
parameter of the Lagrangian to understand what sorts of
kinematical behaviors, power spectra, and spectral observ-
ables each class ofmodels can produce.We use these results
to test these models against observations. We conclude this
paper by discussing the general implications for constrain-
ing two-field models using observational data.

1An interesting complementary approach, which avoids dis-
cussing an inflaton potential at all, is to treat inflation as an
effective field theory [35].
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II. THEORETICAL FRAMEWORK

A. Unperturbed equations

In Sec. II A 1, we present the background equations of
motion for an arbitrary two-field inflationary potential with
arbitrary noncanonical kinetic terms. To simplify the equa-
tions, we use covariant vector notation and use the number
of e-folds, N, as our time variable. In Sec. II A 2, we
present a framework for understanding the kinematics of
the background field vector. This framework is very power-
ful, as it will later allow us to formulate a measure of
multifield effects, to predict the behavior of the field per-
turbations, and to connect the power spectra to certain
features of the inflationary Lagrangian. In Sec. II A 3, we
use this kinematical framework to generalize the single-
field slow-roll approximation to two-field inflation,
dividing it into a slow-roll approximation and a separate
slow-turn approximation. This new distinction is important
because, as we show later, the ‘‘rolling’’ and ‘‘turning’’
behavior of the background field vector have different
effects on the field perturbations and hence the power
spectra. We conclude Sec. II A 3 by presenting covariant
first- and second-order approximations to the background
equations.

1. Background equations

We assume the background spacetime is a flat (3þ 1)-
dimensional homogeneous and isotropic spacetime and is
described by the familiar Robertson-Walker metric,

ds2 ¼ �dt2 þ aðtÞ2½dx2 þ dy2 þ dz2�; (1)

where aðtÞ is the scale factor.
We investigate inflationary scenarios driven by two sca-

lar fields, �i, where i ¼ 1, 2. We assume Einstein gravity
and that the nongravitational part of the inflationary action
is of the form

S ¼
Z �

� 1

2
g��Gij

@�i

@x�
@�j

@x�
� Vð�1; �2Þ

� ffiffiffiffiffiffiffi�g
p

d4x;

(2)

where Vð�1; �2Þ is the inflationary potential, g�� is the

spacetime metric, and Gij � Gijð�1; �2Þ determines the

form of the kinetic terms in the Lagrangian.2 We call Gij

the field metric, and it can be viewed as inducing a field
manifold. If the kinetic terms are canonical, then
Gij ¼ �ij, and the field manifold reduces to Euclidean

space. In this paper, we allow both the field metric and
the inflationary potential to be completely arbitrary. We
refer to any specific combination of a field metric and an
inflationary potential as the inflationary Lagrangian, or
equivalently, the inflationary model.

Before we present the background equations of motion,
we introduce some notation. Since we will be taking de-
rivatives with respect to both the spacetime coordinates
and the fields, we use Greek indices to represent quantities
related to the spacetimes coordinates, x�, and Latin indices
to represent quantities related to the fields, �i. To denote
the fields more compactly, we use boldface vector
notation, i.e.,

� � ð�1; �2Þ; (3)

and we call � the field vector for short. Note that despite
calling � the field vector, the fields themselves do not
transform as vectors, but rather they represent coordinates
on the field manifold. For true vectorial quantities lying in
the tangent and cotangent bundles of the field manifold, we
also use boldface vector notation. In addition, we use
standard inner product notation. The inner product of two
vectors A and B is

A yB � A � B � GijA
iBj; (4)

and the norm of a vector A is

jAj �
ffiffiffiffiffiffiffiffiffiffiffi
AyA

p
; (5)

where we use the symbol y on a naturally contravariant or

covariant vector to denote its dual, e.g., _�y � ðGij
_�jÞ and

ry � ðGijrjÞ. We use this set of vector notation both for

compactness and so that the background equations pre-
sented here can be applied to an arbitrary number of fields.
Now we summarize the key background equations

for multifield inflation with a nontrivial field metric
[21,25,28,30]. The background density and pressure are
found by varying the action in Eq. (2) with respect to the
spacetime metric, which gives

� ¼ 1
2j _�j2 þ V; P ¼ 1

2j _�j2 � V: (6)

The familiar Friedmann equation describing the evolution
of the scale factor is derived from the (0,0) component of
Einstein’s equations, which yields

H2 ¼ �

3
¼ 1

3

�
1

2
j _�j2 þ V

�
; (7)

where H � _a
a is the Hubble parameter and where the

reduced Planck mass, �m � mPlffiffiffiffiffi
8�

p , has been set equal to 1.

The equation of motion for the field vector is obtained by
imposing zeroth-order covariant conservation of energy,

_�þ 3Hð�þ PÞ ¼ 0: (8)

Substituting Eq. (6) into Eq. (8) gives

D _�

dt
þ 3H _�þ ryV ¼ 0; (9)

where D acting on a contravariant vector Xi means

2We assume that the noncanonical kinetic terms can be ex-
pressed in the form shown in Eq. (2). For an even more general
inflationary action, see Refs. [34,71], for example.
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DXi � rjX
id�j ¼ dXi þ �i

jkX
kd�j; (10)

where �i
jk and rj are the Levi-Civita connection and the

covariant derivative, respectively, associated with the field

metric. D _�
dt represents the covariant rate of change of the

field velocity vector with respect to the field manifold, but
we call it the acceleration of the field vector for short. In
this paper, we useD and the covariant derivativer to make
the equations of motion simpler and manifestly covariant
with respect to the field metric.

From here forward, we depart from the standard ap-
proach of working in terms of the comoving time, t.
Instead, we work in terms of the dimensionless parameter
N, which represents the logarithmic growth of the scale
factor and is related to t by

dN � d lna ¼ Hdt: (11)

Sasaki and Tanaka [26] were the first to repeatedly useN as
the time variable in their equations of motion and to
recognize its advantages. Our three primary reasons for
using N are as follows:

(1) Because N represents the number of e-foldings of
the scale factor, it is more directly linked to
observables.

(2) It simplifies both the background and perturbed
equations of motion.

(3) It makes the equations of motion dimensionless
(since� is expressed in units of �m) and hence makes
it easier to compare the relative sizes of various
terms and parameters in the theory.

These three advantages make it easier to extract physical
meaning from the equations of motion. In working in terms
of N, we use the shorthand notation

0 � d

dN
(12)

to represent differentiation with respect to N.
We now recast the set of background equations for

multifield inflation using the time variable N. Using
Eq. (11), the Friedmann equation (7) is written in our
notation as

H2 ¼ V

ð3� 1
2 j�0j2Þ : (13)

To recast Eq. (9) in terms of N, we change variables and
use Eq. (13), obtaining

D�0

dN
þ ð3þ ðlnHÞ0Þ�0 þ

�
3� 1

2
j�0j2

�
ry lnV ¼ 0:

(14)

To further simplify these two equations of motion, we
introduce the canonical slow-roll parameter �, defined as

� � � _H

H2
¼ �ðlnHÞ0; (15)

which represents how much the inflationary expansion
deviates from perfect exponential growth. Combining the
logarithmic derivative of Eq. (13) with Eq. (14) yields [26]

� ¼ 1
2j�0j2: (16)

Therefore, the parameter � can also be interpreted simply
in terms of the dimensionless speed of the field vector:

v � j�0j ¼ ffiffiffiffiffiffi
2�

p
: (17)

Substituting this result into Eq. (13), the Friedmann equa-
tion reduces to [28]

H2 ¼ V

ð3� �Þ : (18)

Similarly, Eq. (14) simplifies to

�

ð3� �Þ þ�0 þ ry lnV ¼ 0; (19)

where � represents the covariant acceleration of the field
vector and is defined as

� � D�0

dN
: (20)

We use the symbol � in analogy to Nibbelink and

van Tent’s [28] multifield slow-roll vector �ð2Þ �
½ðD _�=dtÞ=Hj _�j�, which was inspired by the standard
single-field slow-roll parameter � � ½ðd2V=d�2Þ=V� �
�½ð €�=H _�Þ � ��.
Note that in Eq. (19), the field metric appears both in the

first term through the Levi-Civita connection and in the
third term to raise the index of the covariant gradient
operator. Therefore, the two background fields in � can
be coupled through the field metric if it is nontrivial, as
well as through the gradient of lnV.
Equation (19) [along with Eq. (16)] governs the evolu-

tion of the fields. To solve this equation, the final ingredient
we need is a particular choice of initial conditions for �
and �0. In two-field inflation, each potential choice of
initial conditions corresponds to a different position and
roll direction in the two-dimensional field space. That is,
we can view the inflationary Lagrangian as specifying all
possible trajectories and the initial conditions as picking
one particular trajectory to follow.
The result of this extra field degree of freedom is that the

role of initial conditions in two-field inflation is more
complicated than in the single-field case. First, the land-
scape of inflationary dynamics that can arise from two
fields is potentially much richer and more complex.
Second, there is an uncountable number of initial condi-
tions and hence trajectories corresponding to each infla-
tionary Lagrangian. As a result, it is possible for two very
similar sets of initial conditions to give rise to very
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different inflationary dynamics. Fortunately, in some infla-
tionary models, attractor solutions may make the infla-
tionary dynamics essentially independent of the initial
conditions. However, in other models, we must be wary
that the inflationary dynamics—and hence observables like
the power spectra—may be very sensitive to the initial
conditions. Looking ahead, this means that it is often not
sufficient to test the viability of a two-field inflationary
model using only one or a handful of initial conditions. We
mention these complications now because it is important to
consider them when finding the background solution(s) to
the equations of motion. Later, in Sec. III of this paper, we
discuss the ramifications of these complications, and we
illustrate for the first time how to incorporate sufficient
consideration of initial conditions into constraining two-
field models of inflation.

Finally, the above equations and considerations apply to
finding the background solution for any two-field or indeed
any multifield model of inflation.

2. Background field kinematics

In this section, we present a framework for understand-
ing the background field kinematics. Such a framework
will be useful for understanding and classifying the kine-
matics of a wide variety of two-field inflationary models. It
also helps to provide a direct link between the inflationary
Lagrangian and the inflationary dynamics. Moreover, there
are other important benefits of such a framework.

(1) It allows us to appreciate the separate impacts of
different kinematical quantities on key observables.
In the past, these quantities were lumped together
and assumed to be small under the standard two-
field slow-roll approximation, hence their separate
effects had not been fully explored.

(2) It allows us to infer how the field perturbations
evolve and to predict general features in the power
spectra, as we show later in this paper.

(3) It helps us to work backward to determine what
features an inflationary model needs to have in order
to be consistent with observational data.

In multifield inflation, we find that the three primary
kinematical vectors of interest are as follows:

(1) the field vector, �;
(2) the field velocity, �0; and
(3) the covariant field acceleration, � � D�0

dN , which

was defined through Eqs. (10) and (20).

This set of vectors has the intuitive appeal of being directly
analogous to the position, velocity, and acceleration vec-
tors in Newtonian mechanics. The main differences worth
emphasizing are (1) that here the fields are to be viewed as
the ‘‘position’’ coordinates on the field manifold that is
induced by the field metric, and (2) that the kinematical
vectors are manifestly covariant with respect to the field
manifold, which may have nontrivial geometry.

For two-field models of inflation, the above set of three
vectors constitutes a set of six scalar quantities, with
three scalars for each of the two given fields. Along with
these three kinematical vectors, we can associate a field
basis, where the e1 basis vector points in the direction of
the first field, �1, while the e2 basis vector points in the
direction of the second field, �2.
Although we could consider the field kinematics in the

given field basis, there is a second basis in which it is more
useful to consider the background kinematics. This second
basis is motivated by the fact that the field perturbations
can be decomposed into perturbations parallel and perpen-
dicular to the field trajectory, and that the former constitute
bona fide density perturbations, while the latter do not. In
this basis, the ek basis vector points in the direction of the

field velocity, while the e? basis vector points orthogonal

to the field trajectory, in the direction of ðI� eke
y
k Þ�,

where I is the 2� 2 identity matrix. Because this basis
is induced by the inflaton vector kinematics, we call it the
kinematical basis. This basis has been used before in two-
field inflation, initially by [61], and was extended to multi-
field inflation by [28,30]. To denote the components of a
general vector A in this basis, we use the notation

Ak � ek �A; A? � e? �A; (21)

and to denote a particular component of a general matrix
M, we use the notation

Mk? � eykMe?; etc: (22)

Let us consider our original kinematical vectors, but in
the kinematical basis. First, the field vector, �, decom-
poses into components �k and �?. In this paper, we will

not need to use this decomposition of the field vector, so we
do not consider it further.3 Second, in this basis, the field
velocity points along the ek basis vector. Its components in

this basis are�0 ¼ ðv; 0Þ, where we defined v earlier as the
field speed. Lastly, there is the field acceleration, which
decomposes into a component parallel to the field trajec-
tory, �k, and a component perpendicular to the field tra-

jectory, �?.
We now collect the results of this decomposition into a

set of three scalar quantities to represent the main field
kinematics in any two-field model of inflation. The first
quantity in this trio is the field speed, v, which typically
appears in the equations of motion via the quantity
� ¼ 1

2v
2; we use v and � interchangeably as our first

kinematical scalar quantity. For the second quantity, we
choose the term

�k
v ¼ ðlnvÞ0 because �k often appears in

3The decomposition of the background field vector into com-
ponents �k and �? can indeed be useful. For example,
Nibbelink and van Tent [30] calculated the adiabatic part of
gravitational potential spectrum for multifield quadratic poten-
tials in the conventional slow-roll limit and found that the
particular solution depends on �?.
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the equations of motion in the combination
�k
v . The quan-

tity
�k
v has a physical meaning: it measures the logarithmic

rate of change of the field speed, v, and for this reason, we
call it the speed up rate. The third quantity we include in
our trio is �?

v , as �? often appears in the equations of

motion in the combination �?
v . The quantity �?

v measures

how fast the field velocity is changing direction with
respect to the field manifold. We can see this by consider-
ing the rate of change of the basis vectors:

Dek
dN

¼ �?
v

e?;
De?
dN

¼ ��?
v

ek: (23)

Since ek also represents the direction of the field trajectory,
this means that the quantity��������Dek

dN

��������¼ �?
v

(24)

tells us how quickly the field trajectory is changing direc-
tion along the field manifold. We therefore call �?

v the turn

rate. Note that unlike the speed up rate, which can be either
positive or negative depending on whether the field speed
is increasing or decreasing, the turn rate is always positive.
One can therefore think of our three kinematical scalars as
simply representing the field speed (v) and the rate of
change of the magnitude (

�k
v ) and direction ( �?

v ) of the

field velocity. Our three kinematical quantities in the kine-
matical basis can be concisely written as v and the vector
�
v , and they are summarized in Table I.

Of our three kinematical scalars, the first two—the field
speed and the speed up rate—also characterize single-field
models of inflation. But the third kinematical scalar, the
turn rate, is necessarily zero in single-field inflation since
the field trajectory has no ability to turn in a one-
dimensional field space. Therefore, it is the turn rate that
distinguishes between single-field and multifield models of
inflation. Indeed, other authors have recognized that the
turning of the field trajectory is the true marker of multi-
field behavior (e.g., [3,28,30,61]). Here, we are building on
this work by formalizing the idea of a quantity that pre-
cisely describes how quickly the background field trajec-
tory is changing direction, and we do so in a completely
covariant manner that can be applied to any arbitrary
inflationary Lagrangian, including those with noncanonical
kinetic terms.

Taking this idea one step further, we introduce a new
way of understanding the background kinematics. We
propose viewing the first two kinematical scalars—the field
speed and the speed up rate—as characterizing the ‘‘single-
field type’’ behavior of any inflationary model. We propose
using the third kinematical scalar, the turn rate, to
characterize the degree of multifield behavior in any infla-
tionary model. This provides an intuitive way to parse and
analyze the kinematical behavior of any model of inflation
into parts shared in common with single-field models of
inflation and parts unique to multifield inflation. Moreover,
with this understanding, we introduce a new idea: the ratio
of the speed up rate to the turn rate, �?

v =
�k
v , can be used to

indicate the relative ‘‘proportion’’ of multifield to single-
field behavior in any inflationary scenario. That is, when
�?
v � �k

v , the background trajectory has very little curva-

ture and hence resembles a single-field trajectory, whereas
when �?

v *
�k
v , the trajectory has substantial curvature with

respect to the field manifold, indicating significant multi-
field behavior. We will later show that this same ratio,
�?
v =

�k
v , also indicates how much the evolution of adiabatic

density modes is affected by mode sourcing. Hence, the
ratio of the turn rate to speed up rate can be used to signify
the relative importance of multifield effects for both the
unperturbed and perturbed solutions.
The full power of this kinematical framework will be-

come apparent later, when we show how it can provide
important insight into the evolution of field perturbations
and into the power spectra, and how it can help us connect
features of the inflationary Lagrangian to the spectral
observables.

3. Slow-roll and slow-turn approximations

In this section, we consider approximations to the back-
ground equations of motion. Using the above kinematical
framework, we generalize the single-field slow-roll ap-
proximation to two-field inflation and introduce a new
approximation: the slow-turn approximation. At the end
of this section, we use these approximations to derive
approximate expressions for the background equations.
Our natural starting point is the single-field slow-roll

approximation, which consists of two simplifying assump-
tions: (1) the potential dominates the energy density

(V � _�2), and (2) the field acceleration is small enough

to be neglected ( €� � 3H _�) in the equation of motion for
the field vector (9). When both conditions are met, the field
is slowly changing or ‘‘slow rolling’’ with respect to the
Hubble time. And therefore, by Eqs. (7) and (9), the
potential must change slowly, too. Together, these two
conditions ensure that the potential serves as an effective
cosmological constant, driving nearly exponential growth
of the scale factor. Nearly exponential expansion in turn
guarantees a nearly scale-invariant spectrum of adiabatic
density fluctuations, in good agreement with observational
data.

TABLE I. Covariant field vector kinematics.

Main kinematical vectors

Field vector Field velocity Field acceleration

� �0 � � D�0
dN

Main kinematical scalars

Field speed Speed up rate Turn rate

v
�k
v ¼ ðlnvÞ0 �?

v ¼ j Dek
dN j
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To generalize the slow-roll approximation to two-field
inflation, we follow a common approach in generalizing
the first slow-roll condition, but not in generalizing the
second condition. We generalize the first slow-roll condi-
tion as the inflationary expansion is nearly exponential,
which can be mathematically expressed as

� � �ðlnHÞ0 ¼ 1
2v

2 � 1: (25)

Equation (25) shows that the field speed, our first kine-
matical scalar, must be small for the inflationary expansion
to be nearly exponential. Just like its single-field counter-
part, when the first slow-roll condition in Eq. (25) is
satisfied, the potential does indeed dominate the energy
density, which is clear from Eq. (18).

In generalizing the second slow-roll condition, however,
we depart from the common approach of individually
constraining each of the matrix components of the
Hessian of V (e.g., [60,63,64,68,69]), i.e.,��������rirjV

V

��������� 1: (26)

We also do not follow the other common approach (e.g.,
[26,28,30]), which is to generalize the second slow-roll
condition as ��������D

_�

dt

��������� 3Hj _�j: (27)

In our formalism, Eq. (27) would be equivalent to the
condition �������� �

3� �

��������� v: (28)

The reason why we depart from these two standard ap-
proaches as represented by Eqs. (26) and (28) is because
they are more stringent than the minimum condition
needed to ensure that the potential is slowly changing.
Also, they lump together and simultaneously constrain
two different aspects of the background kinematics—the
speed up rate and the turn rate. These two rates have very
different impacts on the inflationary dynamics. Moreover,
the two rates may not necessarily be small at the same time,
and different approximations can be made depending on
whether one or both of the two rates are small. So departing
from convention, we treat the turn rate as distinct from the
speed up rate to embrace the facts that not only the indi-
vidual sizes of the two rates matter but also their relative
sizes to each other matter.

Instead, we redefine the second slow-roll condition more
narrowly as the deviation from exponential expansion is
slowly changing. Using Eqs. (15) and (16), it can be shown
that this is equivalent to requiring the speed up rate, our
second kinematical scalar, to be small,���������k

v

��������� 1: (29)

This less restrictive version of the second slow-roll condi-
tion in Eq. (29) along with Eq. (25) is sufficient to guar-
antee that the potential is slowly changing, which can be
seen from Eq. (18).
As for the turn rate, our third kinematical scalar, we

instead endow it with its own separate condition and set of
approximations. If the turn rate is sufficiently small such
that

�?
v

� 1; (30)

then the field trajectory changes direction slowly, and we
say that the field velocity is slowly turning or is exhibiting
slow-turn behavior.
These distinctions between slow-roll and slow-turn be-

havior are more important than they might initially appear.
As we argued earlier, the field speed and speed up rate
represent single-field type behavior, while the turn rate
represents the degree of multifield behavior. Therefore,
the importance of our alternative framework is that we
have separated the limits on single-field-type behavior
(our slow-roll conditions) from the limits on multifield
behavior (our slow-turn condition). We later illustrate the
full benefits of this disaggregation by showing that these
two limiting cases of behavior have different implications
for the evolution of perturbations and the power spectra.
Table II summarizes our conditions for slow-roll and

slow-turn behavior. Since two-field models often exhibit
both slow-roll and slow-turn behavior at the same time, we
call the combined slow-roll and slow-turn limits the SRST
limit for short.
Now armed with our slow-roll and slow-turn conditions,

we return to the background equations to see how they
simplify in the slow-roll and slow-turn limits. We denote
the lowest-order approximation to a function f by the

notation fð1Þ and the next-to-lowest-order approximation

by fð2Þ, where fð2Þ includes both the lowest and next-to-
lowest-order terms. The Friedmann equation (18) depends
only on � and not on the speed up or turn rates. To lowest
order in the slow-roll limit, it reduces to

ðHð1ÞÞ2 ¼ 1
3V: (31)

The background field equation (19) can be rearranged as

� 0 þ ry lnV ¼ � �

ð3� �Þ : (32)

Given the slow-roll and slow-turn conditions in Eqs. (29)
and (30), the right-hand side of Eq. (32) therefore repre-
sents deviations from the SRST limit: in the slow-roll limit,

TABLE II. Kinematical limits.

Slow-roll conditions Slow-turn condition

(1) � ¼ 1
2v

2 � 1 �?
v � 1

(2) j �k
v j � 1
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�k can be neglected, while in the slow-turn limit, �? can

be neglected. In the full SRST limit, Eq. (32) reduces to

� 0ð1Þ ¼ �ry lnV: (33)

When the field vector is in the SRST limit, we can find
approximations for each of our three key kinematical
quantities directly in terms of the potential. Starting with
Eq. (33), we find that to first order in the SRST limit, the
field speed is

vð1Þ ¼ jr lnVj; (34)

and hence

�ð1Þ ¼ 1
2jr lnVj2: (35)

Differentiating Eq. (33) gives

� ð1Þ ¼ �M�0ð1Þ ¼ Mry lnV; (36)

where we define the mass matrix, M, as

M � ryr lnV: (37)

(As an aside, we define the mass matrix differently from
Nibbelink and van Tent [28], who defined a mass matrix for
general multifield inflation asM2 � ryrV, because when
using N as the time variable, it is more natural to define the
mass matrix as a dimensionless quantity.) From Eq. (36), to
first order in the SRST limit, the speed up rate is�

�k
v

�ð1Þ ¼ �Mð1Þ
kk ; (38)

where

Mð1Þ
kk � ðeð1Þk ÞyMeð1Þk (39)

and

e ð1Þ
k ¼ �ry lnV

jr lnVj : (40)

Similarly, the turn rate can be approximated by�
�?
v

�ð1Þ ¼ �Mð1Þ
k?; (41)

where Mð1Þ
k? is defined in analogy to Mð1Þ

kk and where eð1Þ? is

orthogonal to eð1Þk , in the direction that makes the turn rate

positive. These coefficients of our mass matrix are related
to quantities originally defined and used by [61,68] for
two-field inflation with canonical kinetic terms and by
[28] for multifield inflation with noncanonical kinetic
terms. These authors first thought to project the Hessian
of V onto the kinematical basis vectors, as these quantities
appear naturally in the equations of motion for the field
perturbations when working in the kinematical basis.
Nibbelink and van Tent [28] also effectively related their
mass matrix back to their kinematical parameters to first

order in the SRST limit, similarly to what we have done
above.
Let us step back and consider the full importance of

Eqs. (34), (38), and (41). These equations show that the
gradient and the covariant Hessian of lnV provide insight
into the background field kinematics: the norm of the
gradient approximates the field speed, while the ðk; kÞ
and ðk;?Þ components of the mass matrix approximate
the speed up rate and turn rate, respectively. That is, from
only the inflationary Lagrangian and the field coordinates,
we can estimate the background field kinematics without
solving the equations of motion. We will later show that
this very important bridge between the background kine-
matics and the inflationary Lagrangian allows one to con-
nect certain features of the Lagrangian to certain features
in the power spectra.
When more accuracy is desired, it is useful to have next-

to-lowest-order approximations for the various kinematical
quantities. The second-order expressions for the field ve-
locity and acceleration can be obtained by applying the
operator ½I� 1

ð3��Þ
D
dN� � ½Iþ 1

3ry lnVr� to the corre-

sponding first-order expressions. This gives the compact
expressions

�0ð2Þ ¼ �½Iþ 1
3M�ry lnV;

�ð2Þ ¼ �½Mþ 1
3M

2 þ 1
3ry lnVrM��0ð2Þ;

¼ ½Mþ 2
3M

2 þ 1
3ry lnVrM�ry lnV:

(42)

Therefore, the second-order expressions for our kinemati-
cal quantities are

vð2Þ ¼ jr lnVj
�
1þ 1

3
Mkk

�
;

�ð2Þ � 1

2
jr lnVj2

�
1þ 2

3
Mkk

�
;�

�k
v

�ð2Þ ¼ �Mkk � 1

3
ðMkkÞ2 � 1

3
ðMk?Þ2

� 1

3
ðry lnVrMÞkk;�

�?
v

�ð2Þ ¼ �Mk? � 1

3
MkkMk? � 1

3
Mk?M??

� 1

3
ðry lnVrMÞ?k;

(43)

where it is implied that the matrix components are with
respect to the second-order expressions for the kinematical
basis vectors. Lastly, using Eq. (43), the Friedmann equa-
tion to next lowest order in slow roll is

ðHð2ÞÞ2 ¼ V

3

�
1þ 1

6
jr lnVj2

�
: (44)

Finally, we emphasize that although we have introduced
approximations for the slow-roll and slow-turn limits, we
will not restrict ourselves to the small subset of inflationary
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models that exhibit strictly SRST behavior up until close to
the end of inflation. Indeed, some common types of two-
field models can temporarily violate the slow-roll and/or
slow-turn conditions for a handful of e-folds, only to
satisfy the conditions again thereafter. Fortunately, it turns
out that we can use the slow-roll and slow-turn approx-
imations at first or second order even when the field vector
velocity is moderately large or is changing moderately fast
in magnitude or direction, as shown in Fig. 1. Therefore,
we can apply either the first- or second-order slow-roll and
slow-turn approximations to a wide range of two-field
inflationary scenarios.

B. Perturbed equations

We now turn our attention to the field perturbations.
Using our formalism and working in terms of gauge-
invariant quantities defined in Sec. II B 1, we simplify the
standard equation for the evolution of the field perturba-
tions in Sec. II B 2. We show that the evolution of modes is
determined by the mass matrix, M, plus typically small
corrections. Thereafter, in Secs. II B 3 and II B 4, we de-
compose the field perturbations into adiabatic and entropy
modes, and then build on the work of [61,62] to derive
covariant equations for the evolution of both mode types in
the case of a completely arbitrary field metric. We show

FIG. 1 (color online). The exact (colored lines) and approximate (black dashed lines) solutions are depicted for both the (a) first-
order and (b) second-order SRST approximations. Shown are the field trajectory and the three kinematical scalars (with � used in place
of v) for six different values of the mass ratio m2

m1
for the double quadratic potential V ¼ 1

2m
2
1�

2
1 þ 1

2m
2
2�

2
2 with canonical kinetic terms.

The same initial conditions were assumed 60 e-folds before the end of inflation, and the x axis for plots (ii)—(iv) represents the number
of e-folds before inflation ends. Only the trajectory corresponding to m2

m1
¼ 8 violates the slow-roll and slow-turn conditions and only

for less than 2 e-folds. Overall, the SRST approximation is a good approximation as long as the gradient of lnV is not too large and is
not changing rapidly in magnitude or direction.
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how the evolution of these two modes and the relative
degree of mode sourcing (the multifield effects) can be
inferred mostly from the background field kinematics and
the curvature of the field manifold. In addition, for the
superhorizon limit, we present a simple exact equation of
motion for the adiabatic modes and two semianalytic ap-
proximations for the amplitude of entropy modes. We also
explain why previous analytic estimates which assume that
the effective entropy mass and kinematical quantities are
approximately constant in the superhorizon limit [63–65]
generally produce large errors in estimating the power
spectra and hence why a semianalytic approach is needed.
Finally, in Sec. II B 5, we use these results to derive ex-
pressions for the superhorizon evolution of the related
curvature and isocurvature modes.

1. Metric perturbations

Since the primordial density perturbations are small, we
work to linear order in both the spacetime metric and the
scalar field perturbations. At linear order, the scalar field
perturbations decouple from the vector and tensor metric
perturbations, so we only need to consider the coupling
between the scalar field and metric perturbations [18,72].
Considering only scalar perturbations to the metric, the
most general metric for a perturbed (3þ 1)-dimensional
Friedmann-Robertson-Walker spacetime can be written as
[15,18,73]

ds2 ¼ �ð1þ 2AÞdt2 þ 2aðtÞ@iBdxidt
þ a2ðtÞ½ð1� 2c Þ�ij þ 2@i@jE�dxidxj; (45)

where the functions A, B, c , and E completely parametrize
the set of all possible scalar metric perturbations (and
where here only the scripts i and j refer to the spatial
spacetime coordinates, not the fields).

To avoid the complications of working in a particular
gauge, we work instead in terms of so-called gauge-
invariant quantities. Such an approach also has the benefit
of ensuring that we work only in terms of physical quan-
tities. Considering the four scalar metric perturbations, two
linear combinations of them represent gauge modes, and a
third is linearly related to the others since scalar field
theories produce no anisotropic stress to linear order
[73]. That leaves us needing to choose a single gauge-
invariant quantity to represent the scalar metric perturba-
tions. The gauge-invariant quantity we use is the Bardeen
variable � [18,73], defined as

� � c þ ðaHÞ½ðaHÞE0 � B�; (46)

which equals the metric perturbation in the longitudinal
gauge.

To represent the field perturbations in gauge-invariant
form, we work in terms of the multifield version of the
Mukhanov-Sasaki variable [74,75],

��f � ��þ c�0; (47)

which equals the field vector perturbation in the flat gauge.
This choice has a very important benefit: it decouples the
field perturbations from the metric perturbation (but not
vice versa), eliminating the need to solve a coupled set of
field and metric perturbation equations. Because of this and
the fact that we will work in terms of the power spectra of
the scalar field perturbations rather than of the metric
perturbations, we will not have to consider � any further.
Therefore, in the remainder of this section, we consider
only the field perturbations.

2. The field perturbation equation

For multifield inflation, the evolution equation for the
field perturbations can be found by perturbing the equation
of motion for the background fields (see, e.g., [25]). The
standard result in Fourier space [25] is expanded as

D2��f

dt2
þ 3H

D��f

dt
þ
�
k

a

�
2
��f

¼ �
�
ryrV �

�
3� _H

H2

�
_� _�y � 1

H

D _�

dt
_�y

� 1

H
_�
D _�y

dt
�Rð _�; _�Þ

�
��f; (48)

where k is the comoving wave number and the matrix

Rð _�; _�Þ is defined as [28]

Ra
dð _�; _�Þ � Ra

bcd
_�b _�c; (49)

where Ra
bcd is the Riemann curvature tensor associated

with the field metric. To simplify Eq. (48), we change
variables using Eq. (11), use Eq. (15), and substitute
Eq. (19) for each instance of �0. Also, we simplify the

matrix Rð _�; _�Þ using the Bianchi identities, which for a
general two-dimensional metric yield

Rabcd ¼ 1
2RðGacGbd �GadGbcÞ; (50)

where R is the Ricci scalar, which equals twice the
Gaussian curvature, or equivalently, the product of the
two principle curvatures of the field manifold. Sub-
stituting Eq. (50) into Eq. (49) and using Eq. (16) gives

R ð _�; _�Þ ¼ 1
2H

2Rð�0�0y � 2�IÞ ¼ ��H2Re?e
y
?; (51)

where in the last step, we used the completeness relation
for our kinematical basis vectors. Finally, after substituting
Eq. (51) into Eq. (48) and using Eq. (18), we find
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1

ð3� �Þ
D2��f

dN2
þD��f

dN
þ
�
k2

a2V

�
��f

¼ �
�
~Mþ ��y

ð3� �Þ2
�
��f; (52)

where the effective mass matrix,4 ~M, is defined as

~M � Mþ 1

ð3� �Þ �Re?e
y
?: (53)

The beauty of this more compact version of the field
perturbation equation is that it reveals the mode evolution
is determined primarily by the mass matrix, plus correc-
tions arising from the curvature of the field manifold5 and
usually negligible corrections from the field acceleration.

We can show that these corrections are typically small
by working in the kinematical basis. First, note that con-
tracting ek with the first and third terms in brackets on the

right-hand side of Eq. (52) and using the lowest-order
SRST approximation in Eq. (36) for the uncontracted
vector � yields�

Mþ ��y

ð3� �Þ2
�
ek �

�
1� 2�ð1Þ

9

�
�k
v

��
Með1Þk � Með1Þk ;

(54)

where in the final step, we ignored the second term in
brackets because it is suppressed by two SRST terms: �
times the speed up rate.

Second, consider the ð?;?Þ components of the same
terms in brackets on the right-hand side of Eq. (52). The
term involving the field acceleration will be much smaller
than M?? as long as the background field trajectory is not
turning rapidly. Rewriting this term as�

�?
3� �

�
2 ¼ M??

�
1

ð3� �Þ2
�

2�

M??

��
�?
v

�
2
�
; (55)

we can see that if � is no more than an order of magnitude
greater thanM??,

6 then this term can be neglected as long
as the field vector is not turning very rapidly. But this result
also holds even in those cases whereM?? � � � 1, as in
such two-field scenarios, this means that the second field
has a negligible effect on the background field dynamics
and hence the turn rate is minuscule, i.e., �?

v ��1. A more

direct argument follows from the fact that in the conven-

tional slow-roll approximation, M?? � ðr lnVe?Þ2 ¼
ð �?
3��Þ2, where the last equality follows from projecting

Eq. (19) onto e?.
Combining these observations, we can conclude that the

term ��y
ð3��Þ2 is effectively suppressed by two SRST parame-

ters relative to ~M. Therefore, in the SRST limit, the per-
turbed equation of motion can be approximated by

1

ð3��Þ
D2��f

dN2
þD��f

dN
þ
�
k2

a2V

�
��f�� ~M��f; (56)

where either the first-order SRST approximation

~M ð1Þ � Mþ 1
3�

ð1ÞReð1Þ? ðeð1Þ? Þy; (57)

or the second-order SRST approximation

~M ð2Þ � Mþ 1
3½�ð2Þ þ 1

3ð�ð1ÞÞ2�Reð2Þ? ðeð2Þ? Þy (58)

can be used in place of ~M, as desired [and where it is
understood that the factor 1

ð3��Þ on the left-hand side of Eq.

(56) is to be expanded to the same order for consistency]. If
the kinetic terms are canonical, then the effective mass
matrix simply reduces to the mass matrix, M, to either
order in the SRST limit.
We conclude this section by considering the perturbed

equation of motion for modes with wavelengths signifi-
cantly larger than the causal horizon. In this limit, the mode
wavelengths satisfy k

aH � 1, and the equation of motion

(56) reduces even further. First, the subhorizon term,

ð k2

a2V
Þ��f, can be neglected since k2

a2V
	 ð k

aHÞ2 � 1.

Second, for modes significantly outside the horizon, the
acceleration of the field perturbation vector can be ne-
glected whenever the background field vector is in the
SRST limit [30,76]. The reason why is that according to
the separate universe formalism (see [76,77], in particular),
the combination of the background fields and the field
perturbations is indistinguishable from the background
outside the horizon. Thus, it can be shown that for super-
horizon modes, if the background field vector is in the
SRST limit, so is the perturbed field vector [30,76].
Therefore, the superhorizon evolution of the field pertur-
bations can be approximated to first order by

D��f

dN
� � ~Mð1Þ��f; (59)

where the first-order approximation for the effective mass
matrix is given by Eq. (57).
Interestingly, Eq. (59) is similar in form to Eq. (36).

Indeed, to first order in the SRST limit, the superhorizon
evolution of both ��f and �0 is determined by the

effective mass matrix, ~Mð1Þ. This can be seen by rewriting
Eq. (36) as

� ð1Þ ¼ � ~Mð1Þ�0ð1Þ; (60)

where we have used that ~M�0 ¼ M�0. This means that
in the superhorizon SRST limit, we simply need to

4For comparison, Nibbelink and van Tent defined an effective
mass matrix as ~M2 � ryrV �Rð _�; _�Þ [30].

5We make the typical assumption that the curvature of the field
manifold is not too large. More specifically, we assume jRj & 1
and therefore that �jRj � 1 in the slow-roll limit.

6In [30], it was effectively assumed thatM?? is the same order
as �, but we find that in scenarios where both fields are impor-
tant, more typically M?? tends to be within an order of magni-
tude of �.
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understand the matrix coefficients of ~M in order to under-
stand the behavior of both the unperturbed and perturbed
fields. It is this very important commonality that allows us
to predict most of the superhorizon behavior of the field
perturbations from the field kinematics. And, as we will

later see, it is the three unique coefficients of ~M (or
equivalently, the speed up rate, the turn rate, and the
effective entropy mass), along with H and �, that fully
represent all the main features of a two-field inflationary
model.

3. Adiabatic modes

We now examine the evolution of the field perturbations
in greater detail, but in the kinematical basis. In rotating to
the kinematical basis, the modes naturally separate into
adiabatic modes and entropy modes. Adiabatic modes
are field perturbations along the trajectory, and we use
the notation ��k � ek � ��f to represent them, dropping

the subscript f for simplicity. They correspond to pertur-
bations in the total energy density, or equivalently, in the
curvature of constant time hypersurfaces (curvature per-
turbations). The second type of modes in this basis, the
entropy modes, are orthogonal to the field trajectory, and
we denote them as ��? � e? � ��f. In contrast to adia-

batic modes, entropy modes do not represent bona fide
density perturbations, but rather correspond to relative
fluctuations in the two different fields that leave the density
or curvature unperturbed (isocurvature perturbations). We
will discuss the relationships between adiabatic and en-
tropy modes and the curvature (density) and isocurvature
perturbations in more detail in Sec. II B 5.

Evolution equations for both adiabatic and entropy
modes have been derived for two-field inflationary models
under the assumption of canonical kinetic terms [61] and

for the noncanonical field metric G ¼ diagð1; ebð�1ÞÞ [62],
which can be used to describe scalar-tensor theories in the
Einstein frame.7 Here, we build upon this work by

(1) deriving evolution equations for a completely arbi-
trary field metric and doing so in covariant form;

(2) discussing how the evolution of adiabatic and en-
tropy modes can be inferred mostly from the back-
ground kinematics and the curvature of the field
manifold;

(3) deriving an exact expression for the evolution of
adiabatic modes and two approximate semianalytic
solutions for the entropy modes in the superhorizon
limit; and

(4) explaining why the common assumption that a pa-
rameter called the effective entropy mass is approxi-
mately constant is generally not accurate for
estimating the amplitude of entropy modes and
hence for estimating the power spectra.

We start by deriving a covariant evolution equation for
the adiabatic modes. In contrast to other approaches, we
derive the evolution equation exclusively in terms of our
kinematical quantities. This alternative approach is worth-
while because it allows us to directly see how the back-
ground kinematics affect the evolution of adiabatic modes.
To derive such an expression starting from Eq. (52), we

need to find an expression relating the coefficients of ~M in
the kinematical basis to our kinematical quantities, defined
in Sec. II A 2. We can find expressions for the matrix
coefficients ~Mkk and ~Mk? by differentiating the back-

ground field equation (19) and then projecting the resulting
equation onto our two kinematical basis vectors. Using the
results of these projections, Eq. (52), and the covariant
derivatives of the kinematical basis vectors in Eq. (23),
the evolution equation for the adiabatic perturbations can
be written as

1

ð3� �Þ��
00
k þ ��0

k þ
��

k2

a2V

�
�
�
�k
v

��
1

ð3� �Þ
�
ln
�k
v

�0
þ 1þ 1

ð3� �Þ
�
�k
v

���
��k

¼ 2

�
�?
v

��
1

ð3� �Þ��
0
? þ

�
1

ð3� �Þ
�
ln
�?
v

�0
þ 1þ 1

ð3� �Þ
�
�k
v

��
��?

�
: (61)

Equation (61) shows that the subhorizon term, the speed
up rate, and the turn rate primarily control the evolution of
the adiabatic modes. Notice that when the turn rate is
nonzero, the entropy modes source the adiabatic modes.
But when the turn rate is zero, the adiabatic modes de-
couple from the entropy modes, and we recover the equa-
tion of motion for the single-field case. This shows that the
turn rate is not only the marker of multifield behavior for
the unperturbed fields, but also is the marker of multifield
behavior for the perturbed fields. Here, we are defining
multifield behavior for the perturbed fields to mean sourc-
ing of the adiabatic modes by the entropy modes (though
we recognize that the multifield case is additionally dis-
tinguished from the single-field case by the presence of
entropy modes).
Now focusing on the superhorizon limit, k

aH � 1, we can

derive a particularly elegant and simple expression for the
growing adiabatic modes. Neglecting the subhorizon term
in Eq. (61) and regrouping the remaining terms, we can
write the superhorizon equation of motion as

7More recently, evolution equations for noncanonical kinetic
terms that cannot be expressed as g��Gij@��

i@��
j have been

found [34], which allows for scenarios in which the entropy
modes propagate at an effective speed of sound that is less than
the speed of light. But we adhere to models where the non-
canonical kinetic terms can be expressed as g��Gij@��

i@��
j

and hence where both the adiabatic and entropy modes propagate
at the speed of light.
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�
1

ð3� �Þ
d

dN
þ 1þ 2

ð3� �Þ
�
�k
v

���
��k
v

�0
¼
�

1

ð3� �Þ
d

dN
þ 1þ 2

ð3� �Þ
�
�k
v

���
2
�?
v

��?
v

�
:

(62)

Setting the right-hand side of Eq. (62) to zero and solving
the resulting homogeneous equation yields the homoge-
neous solutions for the growing and decaying modes. The
latter will be strongly suppressed by the quasiexponential
expansion, and hence generally does not contribute much
to the adiabatic density power spectrum at the end of
inflation. As it turns out, the evolution equation for the
growing adiabatic modes—both the complementary and
particular parts of the solution—can be picked off of
Eq. (62) by recognizing that the two terms in brackets on
the left- and right-hand sides of Eq. (62) are identical.
From this recognition, we can conclude that the growing
superhorizon adiabatic modes are described by�

��k
v

�0 ¼ 2
�?
v

�
��?
v

�
; (63)

or equivalently, using ðlnvÞ0 ¼ �k
v , by

��0
k ¼

�
�k
v

�
��k þ 2

�
�?
v

�
��?: (64)

We emphasize that Eqs. (63) and (64) describing the
growing adiabatic modes are exact in the superhorizon
limit. If additionally the fields are in the SRST limit, the
speed up and turn rates in Eq. (64) can be replaced by
the approximations in Eqs. (38) and (41), respectively,
yielding

��0
k � �Mð1Þ

kk ��k � 2Mð1Þ
k?��?: (65)

The same SRSTexpression can also be obtained by starting
from Eq. (59) and using Eqs. (23), (38), and (41).

Equation (64) shows that in the superhorizon limit, the
evolution of the growing adiabatic modes is controlled
simply by the speed up rate and the turn rate. The first
term on the right-hand side of the equation implies that the
larger the speed up rate, the faster the ‘‘intrinsic’’ evolution
of the modes. The second term, which involves both the
turn rate and the amplitude of the entropy modes, repre-
sents the sourcing of adiabatic modes by the entropy
modes. The faster the turn rate, the more the entropy modes
source the adiabatic modes. When both kinematical rates
are small—that is, when the background fields are in the

SRST limit—the adiabatic modes evolve slowly. However,
when either rate is large, the adiabatic modes evolve
significantly.
But it is not just the absolute sizes of the speed up and

turn rates that determine the evolution of adiabatic modes;
the relative sizes of the two rates to each other also matter.
In fact, the ratio of these two kinematical scalars—in
conjunction with the ratio of the two mode amplitudes—
determines the relative contribution of the entropy mode
sourcing to the total growth of adiabatic modes. We can
therefore categorize the inflationary dynamics in a region
of spacetime into three kinds of physical behavior, depend-
ing on the strength of the entropy mode sourcing. First,
when

�k
v ��k � �?

v ��?, the sourcing of adiabatic modes

by entropy modes is negligible. In this limit, the solution to
Eq. (64) is

��k / v; (66)

and hence the adiabatic modes evolve essentially indepen-
dently. Since Eq. (66) becomes exact in the single-field
case, anytime the evolution of the growing adiabatic modes
can be well approximated by Eq. (66), we say that the
inflationary dynamics for the adiabatic modes are effec-
tively single field. The second case is when

�k
v ��k 	

�?
v ��?. In this regime, sourcing must be taken into

account, and we say that the scenario is inherently multi-
field since the evolution of adiabatic modes cannot be
approximated by the single-field equation of motion.
Finally, when

�k
v ��k � �?

v ��?, the sourcing effects are

the dominant driving force behind the growth of adiabatic
modes. In this limit, we say that the multifield effects are
strong. Again, this shows how critical the ratio �?

v =
�k
v is in

determining the relative contribution of the multifield
effects—in other words, the importance of the mode sourc-
ing. We summarize these three cases in Table III.
Thus, we have shown how the background kinematics

control the evolution of adiabatic modes. This is a prime
example of the usefulness of viewing the speed up and turn
rates as distinct quantities that serve as markers of very
different physical behavior.

4. Entropy modes

In this section, we derive a covariant equation of motion
for the entropy modes, as well as approximate semianalytic
expressions that are valid in the superhorizon slow-turn
limit. In tandem, we discuss how the evolution of entropy

TABLE III. Superhorizon growth of adiabatic modes.

Condition Physical behavior

�k
v ��k � �?

v ��? Entropy mode sourcing is negligible. The evolution is effectively single field: ��k / v.
�k
v ��k 	 �?

v ��? Entropy mode sourcing is appreciable. Multifield effects must be taken into account.
�k
v ��k � �?

v ��? Entropy mode sourcing predominates. Multifield effects are strong.
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modes can be inferred mostly from the background kine-
matics and the curvature of the field manifold.

We start from Eq. (52) and use both Eq. (23) and the
projections of the derivative of Eq. (19) onto both ek and

e?. After some algebra, the equation of motion for the
entropy modes becomes

1

ð3� �Þ��
00
? þ ��0

? þ
��

k2

a2V

�
þM?? þ �R

ð3� �Þ
� 3ð1� �Þ

ð3� �Þ2
�
�?
v

�
2
�
��?

¼ � 2

ð3� �Þ
�
�?
v

��
��0

k �
�
�k
v

�
��k

�
: (67)

In contrast to the equation of motion for adiabatic modes
(61), the evolution of entropy modes is controlled by six
quantities: the subhorizon term, M??, �, R, the turn rate,
and the speed up rate. So the curvature of the field mani-
fold, R, does affect the evolution of entropy modes, but not
the evolution of adiabatic modes. Interestingly, � rather
weakly affects the evolution of entropy modes but with one
exception: it strongly modulates the effect of the curvature
of the field manifold on the entropy modes. In addition,
notice that again the turn rate controls the sourcing of one
mode type by the other.

Nowwe consider Eq. (67) in the superhorizon limit, both
with and without making assumptions about the back-
ground kinematics. In the general superhorizon limit, the
subhorizon term vanishes, and we can substitute Eq. (64)
for the term in brackets on the right-hand side of Eq. (67) to
obtain

��00
?

ð3� �Þ þ ��0
? ¼ ��?��?; (68)

where �? is the effective entropy mass and is defined as

�? � M?? þ �R

ð3� �Þ þ
9� �

ð3� �Þ2
�
�?
v

�
2
: (69)

Equation (68) shows that the entropy modes evolve inde-
pendently in the superhorizon limit, even in the presence of
an arbitrary noncanonical field metric. This is a very
important result: because the entropy modes evolve inde-
pendently in this limit, we can find their amplitude and also
determine the evolution of adiabatic modes without solv-
ing a set of fully coupled equations.

Equation (68) also reveals that the evolution of entropy
modes is determined by a quantity called the effective
entropy mass. The concept of an effective entropy mass
for a general two-field potential was first introduced in [61]
and was also used in [63,64,66], for example. We are
building upon this work by (1) redefining the effective
entropy mass so that it is dimensionless and can be more
directly compared against our kinematical and other pa-
rameters in the theory, and by (2) deriving a covariant
expression for it in the case of an arbitrary two-field

potential with a completely arbitrary field metric.
Moreover, in the remainder of this section, we will extend
this work on the effective entropy mass by
(1) Exploring the absolute and relative sizes of the

terms in the effective entropy mass in greater detail
than has been done before, and clarifying which
terms in �? can be neglected depending on the
background kinematics and the curvature of the field
manifold.

(2) Showing that assuming the effective entropy mass is
constant generally produces large errors in estimat-
ing the amplitude of entropy modes and hence in
estimating the power spectra.

(3) Deriving semianalytic approximations for the am-
plitude of entropy modes, which are based on ap-
proximations to the effective entropy mass.

First, we examine each of the three terms in the effective
entropy mass. The first term in Eq. (69) is the ð?;?Þ
coefficient of the mass matrix (the covariant Hessian of
lnV) and hence is an indication of the local curvature of the
surface fð�1; �2Þ ¼ lnVð�1; �2Þ along the entropic direc-
tion. When the ð?;?Þ coefficient of the mass matrix is
positive, as is most typical, this term will suppress the
amplitude of entropy modes after horizon exit. However,
when M?? is negative, this term will fuel the growth of
entropy modes.
The second term in Eq. (69) involves the Ricci scalar, R,

of the field manifold. When R is positive—which occurs
when the field manifold is locally elliptical—the field
curvature helps to suppress the entropy modes. However,
when R is negative—which occurs when the surface is
locally hyperbolic—the field curvature fuels the growth
of entropy modes. An example of a noncanonical field
metric that always produces a negative field curvature is

G ¼ diagð1; ebð�1ÞÞ, which describes scalar-tensor theories
in the Einstein frame.8

The third term in the effective entropy mass is equal to
the turn rate squared times a numerical factor between 1
and 2 that depends on the value of �. Because of the sign in
front of this term, it always damps the entropy modes. In
the limit of slow turning, this term has a negligible effect.
In the limit of fast turning ( �?

v * 1), it causes a rapid

suppression of the entropy modes. Interestingly, a large
turn rate is frequently accompanied by a boost in the
magnitude of M??, due to the rapid rotation of basis
vectors projecting out different combinations of the mass
matrix’s coefficients.
Now we consider the relative sizes of the three terms in

the effective entropy mass. The size of the Ricci scalar
term, �R

ð3��Þ , relative toM?? depends on the field metric and

8This does not mean that the net result of having this non-
canonical field metric is an increase in the posthorizon amplitude
of entropy modes, as the field metric also affects the value of the
other two terms in the effective entropy mass.
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the potential, so we cannot make any universal statements
about their relative sizes. However, if the kinetic terms are
canonical, then the Ricci scalar term vanishes. Also, we
note that it is common for some of the most popular field
metrics to produce field curvature terms that are at least an
order of magnitude less than M?? when the fields are in
the SRST limit, but this is not true for all field metrics.
Interestingly, the Ricci scalar is multiplied by a factor of �,
so its effect on the entropy modes is strongly controlled by
the field speed; when all else is equal, this curvature term
becomes much more important near the end of inflation
and whenever else � is large. Hence we expect the curva-
ture term to typically be more important when the slow-roll
conditions are violated. As for the relative size of the third
term in �?, this term at leading order is ð�?

v Þ2, so based on
the arguments we made in Sec. II B 2, it is 1 order higher in
the SRST expansion thanM??. This term can therefore be
ignored whenever the field velocity is slowly turning.

Next, since the superhorizon equation of motion for the
entropy modes (68) is homogeneous, we can consider
finding solutions to it. As there are no exact analytical
solutions to Eq. (68), we explore approximations. In what
follows, we assume that the curvature term is the same
order of magnitude as M??, though depending on the
model, the curvature term may be negligible and hence
may be dropped from various order approximations; we
leave it to the reader to determine when this is possible.
Now the most obvious approximation to invoke is the
SRST approximation applied to both the unperturbed and
perturbed fields. Under this approximation, the third term
in the effective entropy mass can be neglected, as well
as the acceleration of the amplitude of entropy modes,9

yielding

��0
? � � ~Mð1Þ

??��?; (70)

where recall that ~M?? ¼ M?? þ �R
ð3��Þ and where we have

used eð1Þ? to find the ð?;?Þ component of ~Mð1Þ. But the
above equation actually holds more generally, as long as
the background field is slowly turning and �R � 1; slow
roll is not needed for this approximation to be valid. So in
the slow-turn limit and assuming �R � 1, the term which
controls the evolution of entropy modes is just the first-
order slow-turn approximation to the effective entropy

mass, �ð1Þ
? ¼ ~Mð1Þ

??. Hence, Eq. (70) gives us a simple

metric, ~Mð1Þ
??, that we can use to find and compare the

evolution of entropy modes across widely different infla-
tionary scenarios.

Now in using Eq. (70) to derive an analytical approxi-
mation for the entropy mode amplitude, the effective

entropy mass has often been treated as constant [63–66],
which yields the following approximation:

��? � ½��?�
e��

?ðN�N
Þ; (71)

where we use 
 to denote that a quantity is to be evaluated
at horizon exit. The rationale behind this approximation is
that as long as the background field vector is in the SRST
limit, the effective entropy mass can be treated as roughly
constant after horizon exit, because like the standard slow-
roll parameters, the effective entropy mass is slowly chang-
ing. But this assumption is tantamount to assuming that the
standard slow-roll parameters continue to remain roughly
constant over many e-folds, which is often problematic.
(See [28] for a short discussion of this general issue.)
Indeed, with some exceptions, we find that the effective
entropy mass changes significantly between horizon exit
and the end of inflation, and often well before the SRST
approximation breaks down. Tsujikawa et al. [66] noticed
this problem in exploring double inflation scenarios. Lalak
et al. [65] also acknowledged similar limitations, and
hence their numerical analysis used the full equations of
motion in order to accurately follow the evolution of the
power spectra. As to the origin of the typically significant
increase in the effective entropy mass during inflation, we
find that much of this increase can often be attributed to the
inevitable large drop in the potential energy density and
also in many cases to the rotation of the kinematical basis
vectors over many e-folds of inflation. The former phe-
nomenon is due to the fact that as � � 1

2 jr lnVj2 increases,
the potential decreases more quickly, and hence M??
significantly increases in magnitude.
These findings have important implications. In most

cases, the entropy modes will be damped more strongly
than previous analytic estimates would predict [63,64]. For
some two-field scenarios, this leads to rather modest in-
accuracies in estimating the curvature (density) power
spectrum, while for others, it leads to unusably large errors.
The size of these inaccuracies often depends significantly
on the initial conditions, so it is even less common that this
assumption can be used to estimate the density power
spectrum for all possible initial conditions for a given
inflationary Lagrangian. More problematically, it leads to
even larger inaccuracies in estimating the isocurvature and
cross spectra, which obviously depend sensitively on the
amplitude of entropy modes at the end of inflation.
In particular, this assumption often overestimates the iso-
curvature and cross spectra by 1 to several orders of
magnitude.
Therefore, we do not assume the effective entropy mass

is constant. Instead, we integrate over the effective entropy
mass to estimate the superhorizon amplitude of entropy
modes, obtaining the approximation

��? � ½��?�
e�
R

N

N

~Mð1Þ
??ð ~NÞd ~N

: (72)

9By ignoring the acceleration of the amplitude of entropy
modes, we have effectively ignored the decaying modes, which
are usually rapidly suppressed in this limit.
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Equation (72) provides a good approximation whenever
the background field trajectory is slowly turning, regard-
less of the values of � and of the speed up rate.

When more accuracy is desired or the turn rate is mod-
erately large, then the following second-order approxima-

tion can be used. Assuming that ð�?
v Þ2 � ðMð1Þ

k?Þ2 is

significant relative to but still significantly less than
M??, the equation

��0
? � ��ð2Þ

? ��?; (73)

where �ð2Þ
? is equal to

�ð2Þ
? � ~M?? þ 1

3ð ~Mk?Þ2 þ 1
3ð ~M??Þ2 þ 1

3ðry lnVr ~MÞ??;
(74)

is the second-order approximation to the equation of mo-
tion (68). That is, differentiating this expression to find
��00

? yields Eq. (68) when Eq. (68) itself is expanded to

second order in the SRST limit. In Eq. (74), the second-
order SRST approximations for the background fields and
the kinematical basis vectors are to be used, so that both the
unperturbed and perturbed fields are calculated to the same
order in the SRST expansion. Solving Eq. (73) yields the
same integral expression as in Eq. (72) after making the

replacement ~Mð1Þ
?? ! �ð2Þ

? . Based on the definition of �ð2Þ
?

in Eq. (74), technically �ð2Þ
? is not the second-order SRST

approximation for the effective entropy mass; however, we
still denote the quantity on the right-hand side of Eq. (74)

with the symbol �ð2Þ
? to avoid introducing too many new

symbols and terms. Our results are equivalent to those in
[69] for the case of canonical kinetic terms and to those in

[62] for the noncanonical field metric G ¼ diagð1; ebð�1ÞÞ.
From the above discussion and approximations, we can

therefore predict the behavior of the entropy modes mostly
from the background kinematics and the geometry of the
field manifold. When the turn rate is small, the amplitude
of entropy modes will be determined by M??, and we
expect the entropy modes to be gradually suppressed (or
enhanced). Conversely, when the turn rate is large, then the
entropy modes will be rapidly suppressed. If the Ricci
scalar term is significant relative toM??, it will also either
suppress or enhance the modes, depending on its sign. In
the slow-roll limit, the Ricci scalar term is small, but when
� is large, then usually the Ricci scalar term and the term
M?? will be larger in magnitude, so the entropy modes
will be more quickly suppressed (or enhanced).

Lastly, we illustrate the accuracy of the constant entropy
mass and our first-order and second-order semianalytic
approximations for the superhorizon amplitude of entropy
modes. Figure 2 shows the accuracy of these approxima-
tions for six related inflationary scenarios with different
speed up and turn rate profiles. Figure 2(f) shows that
assuming the effective entropy mass is constant after hori-
zon exit significantly overestimates the amplitude of

entropy modes for all six trajectories by the end of infla-
tion, and most often, much sooner. The second approxima-
tion, the first-order slow-turn approximation, provides an
excellent approximation for the damping of entropy modes
when the field velocity is slowly turning. Its accuracy is
insensitive to � and to the speed up rate, as is clear from its
equally good accuracy near the end of inflation for models
with small turn rates. However, when the field trajectory is
moderately to rapidly turning, it does not estimate the
amplitude of entropy modes as well. We will later show
that the curvature power spectrum is most sensitive to the
amplitude of entropy modes when the background field
trajectory is rapidly turning, so this second approximation
is not sufficiently accurate to estimate the power spectra in
the case of moderately fast turning. Finally, the best ap-
proximation for the damping of entropy modes is given by
the second-order SRST approximation, which produces
more accurate estimates of the damping when the trajec-
tory is turning moderately fast.

5. Curvature and isocurvature perturbations

Before we proceed to calculate the power spectra, we
need to relate our field perturbations to the quantities
whose power spectra we want to calculate. The power
spectrum of greatest interest is usually the spectrum of
density perturbations. As a proxy for the density power
spectrum, often the power spectrum of a quantity called the
comoving curvature perturbation is calculated instead,
since the curvature power spectrum is easy to calculate
and the two power spectra are identical up to numerical
factors after inflation ends. We use this common strategy
and work in terms of the comoving curvature perturbations
and the associated isocurvature perturbations. In this sec-
tion, we define curvature and isocurvature perturbations,
relate them to the adiabatic and entropy modes, and find
equations of motion for both perturbation types.
The curvature perturbation is defined as the perturbation

in the curvature of constant time hypersurfaces. The cur-
vature perturbation in the comoving gauge, R, was intro-
duced by [15,18,78,79], and it represents a gauge-invariant
quantity. During inflation, it can be shown that the comov-
ing perturbation equals [26]

R ¼ ��k
v

; (75)

where recall that ��k represents the gauge-invariant quan-
tity ek � ��f. By contrast, isocurvature perturbations rep-

resent relative fluctuations in the two different fields that
leave the total curvature unperturbed and hence they are
related to entropy perturbations. As in [68], we define the
isocurvature perturbations as

S � ��?
v

; (76)
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FIG. 2 (color online). The accuracy of three different approximations for the superhorizon evolution of entropy modes for six
different values of the mass ratio m2

m1
for the double quadratic potential V ¼ 1

2m
2
1�

2
1 þ 1

2m
2
2�

2
2 with canonical kinetic terms. The same

initial conditions were assumed 60 e-folds before the end of inflation, and the x axis for plots (b)–(f) represents the number of e-folds
before inflation ends. In (a)–(d), the exact solutions (thick colored lines) and the second-order SRST approximation (dashed black
lines) are shown for (a) the field vector trajectory, (b) �, (c) the speed up rate, and (d) the turn rate. In (e), the exact solutions (thick
colored lines) and the second-order SRST approximation (dashed black lines) are shown for the amplitude of entropy modes that exit
the horizon N
 ¼ 10, 20, 30, 40, 50, 60, and 70 e-folds before the end of inflation. The dimensionless effective entropy mass (thin
brown line) is overlaid for comparison. In (f), the exact solution (thick colored lines) and three different approximations (dashed lines)
for the posthorizon damping of the entropy mode that exits the horizon N
 ¼ 60 e-folds before the end of inflation is shown for four of
the six different trajectories. The three approximations are the assumption that the effective entropy mass is constant after horizon exit
(dotted green line); the first-order slow-turn approximation for both the background and the perturbed field vectors (dashed blue line);
and the second-order SRST approximation for both the background and the perturbed field vectors (longer dashed purple line). Here,
by the end of inflation, and often much sooner, the assumption that the effective entropy mass can be treated as constant greatly
overestimates the amplitude of entropy modes.

TESTING TWO-FIELD INFLATION PHYSICAL REVIEW D 83, 023522 (2011)

023522-17



so that the curvature and isocurvature power spectra have
similar power at horizon exit.

To find the spectra of these two quantities at the end of
inflation from their spectra at horizon exit, we need to find
evolution equations for the curvature and isocurvative
perturbations in the superhorizon limit. We start by finding
an evolution equation for the curvature perturbations in the
superhorizon limit. Recall that we already found an ex-

pression for the superhorizon evolution of
��k
v in Eq. (63).

Substituting Eqs. (75) and (76) into Eq. (63), we find

R 0 ¼ 2

�
�?
v

�
S: (77)

Equation (77) is exact in the superhorizon limit, as we did
not invoke any slow-roll or slow-turn approximations in
deriving Eq. (63). According to Eq. (77), the superhorizon
evolution of the curvature perturbation depends only on the
covariant turn rate of the background trajectory relative to
the field manifold and on the amplitude of the isocurvature
perturbations; it is insensitive to � and the speed up rate.
This matches previous results that the curvature perturba-
tion evolves when the background trajectory is curved
(e.g., [3,28,30,61]). When all else is equal, the greater the
turn rate, the more the comoving curvature perturbation
evolves. Conversely, whenever the field trajectory is not
changing direction, the comoving curvature perturbation is
conserved in the superhorizon limit, just like in single-field
inflation. All of this again proves that the turning of the
background field trajectory is the true marker of multifield
effects (e.g., [3,28,30,61]). Integrating Eq. (77) gives

R ¼ R
 þ
Z N

N

2

�
�?
v

�
Sd ~N: (78)

Next, we derive a superhorizon evolution equation
for the isocurvature perturbations. Using Eq. (76) and
ðlnvÞ0 ¼ �k

v , we find

S 0 ¼ 1

v
ðvSÞ0 � �k

v
S ¼ 1

v

�
��0

? � �k
v

��?
�
: (79)

Thus, an expression for S can be found using the equation
of motion for the entropy modes (68) and the speed up rate.
If an exact solution for ��? is known analytically or can
be found from Eq. (68), then an exact solution for the
isocurvature modes can be found using Eq. (76) directly.
Otherwise, the approach of Wands et al. [68] can be used,
which involves parametrizing the superhorizon evolution
of isocurvature modes as

S 0 ¼ 	S: (80)

The above expression also holds in general on large scales
[80]. We can use the above expression by finding approx-
imations for 	 in the SRST limit. From the first-order
expressions for the evolution of entropy modes (70) and
the speed up rate (38), we find that to first order

	ð1Þ ¼ ~Mð1Þ
kk � ~Mð1Þ

??: (81)

Similarly, to second order, 	 is approximated by

	ð2Þ ¼ �
�
�k
v

�ð2Þ ��ð2Þ
? ;

¼ ~Mkk þ 1

3
ð ~MkkÞ2 þ 1

3
ðry lnVr ~MÞkk � ~M??

� 1

3
ð ~M??Þ2 � 1

3
ðry lnVr ~MÞ??;

(82)

which follows from Eqs. (43) and (74). In Eqs. (81) and
(82), the same order SRST approximations for the back-
ground fields and basis vectors are to be used. As an aside,
note the degree of symmetry in the terms in the second and
third lines of Eq. (82): the terms on the third line can be
obtained from the terms on the second line by the sub-
stitution ek ! ie?. Finally, to find a solution for the am-

plitude of isocurvature modes, we integrate Eq. (80) to get

S ¼ S
e
R

N

N

	d ~N

; (83)

where one of the two approximations for 	 is to be used,
depending on the accuracy required.
Equation (83) and the approximations for 	 show that

the amplitude of isocurvature perturbations depends on the
integral of negative the sum of the effective entropy mass
and the speed up rate. Through the effective entropy mass,
whenever the integral of M?? or �R is large and positive
(negative), the isocurvature modes typically will be sup-
pressed (amplified). Also, since the effective entropy mass
depends on the turn rate at second order in the SRST
approximation, whenever the turn rate becomes substan-
tial, the isocurvature modes typically will be damped. As
for the speed up rate, it affects the isocurvature modes
simply because the isocurvature modes are related to the
entropy modes by a factor of 1

v . So when the integral of the

speed up rate is large and positive—that is, when the field
speed has grown substantially—the isocurvature modes are
much smaller. Conversely, when the speed up rate is large
and negative—for example, due to a sudden drop in the
field speed—the isocurvature modes will increase.
Alternatively, we can interpret the meaning of Eq. (83)
from a more geometrical perspective: the amplitude of
isocurvature modes depends at lowest order on the integral
of the difference of an effective measure of the curvatures
of the surface fð�1; �2Þ ¼ lnVð�1; �2Þ along the adia-

batic and entropic directions and on 1
3 �

ð1Þ times the curva-

ture of the field manifold.
Now we use these results for the isocurvature modes to

find an equation of motion for the curvature modes.
Plugging Eq. (83) into Eq. (78), we finally arrive at an
expression for the superhorizon amplitude of curvature
modes:

COURTNEY M. PETERSON AND MAX TEGMARK PHYSICAL REVIEW D 83, 023522 (2011)

023522-18



R ¼ R
 þ S

Z N

N

2

�
�?
v

�
e

R ~N

N

	d~~N

d ~N: (84)

To understand Eqs. (78) and (84), it is straightforward to
carry over most of our separate observations about how the
kinematics and the curvature of the field manifold affect
the evolution of curvature and isocurvature modes.
However, there is one more complicated scenario that
merits further discussion: the competing tendencies of
the turn rate and the amplitude of isocurvature modes
when the turn rate is large. When the turn rate is large,
the isocurvature modes will strongly source the curvature
modes, but eventually the large turn rate will strongly
suppress the isocurvature modes, thereby quenching fur-
ther sourcing. The net effect is that the curvature modes
will increase dramatically but then level off very soon after.
Interestingly, because the amplitude of isocurvature modes
tends to decrease after horizon exit, these sourcing effects
have the potential to be even more dramatic if the large turn
rate happens soon after horizon exit or whenever else the
amplitude of isocurvature modes is large.

Now in order to solve Eq. (84) analytically, some authors
[63–65] have assumed that both the turn rate and 	 can be
taken to be approximately constant. We have already
discussed the problems with assuming that the effective
entropy mass is constant. The same problems arise in
assuming that the speed up rate, turn rate, and other
slow-roll parameters are approximately constant over sev-
eral e-folds. So like the constant entropy mass approxima-
tion, assuming that these parameters can be approximated
as constant has limited utility, as it frequently introduces
large errors into estimates of the power spectra at the end of
inflation.

However, we can derive two semianalytic approxima-
tions to the full expression in Eq. (84). To first order in the
SRST limit, Eq. (84) can be approximated completely in
terms of the coefficients of the effective mass matrix as

R � R
 þ S

Z N

N

ð�2 ~Mð1Þ

k?Þe
�
R ~N

N

ð ~Mð1Þ

??� ~Mð1Þ
kk Þd~~Nd ~N: (85)

And for more accuracy, the second-order SRST approxi-
mations for the turn rate [Eq. (43)] and for 	 [Eq. (82)] can
be used instead, as we will do in Secs. II C and III.

Since it will serve as helpful shorthand later, an espe-
cially useful parametrization of the general relationship
between curvature and isocurvature modes was introduced
by [67] and extended by [68] and is expressed as

R
S

� �
¼ 1 TRS

0 TSS

� �
R

S


� �
; (86)

where the transfer functions are defined as

TRSðt
; tÞ �
Z t

t


ð~tÞTSSðt
;~tÞHð~tÞd~t;

TSSðt
; tÞ � e

R
t

t

	ð~tÞHð~tÞd~t

:

(87)

Comparing Eqs. (83) and (84) to the above two equations,
we can see that Wands et al.’s [68] function 
 equals twice
the covariant turn rate and the function 	 is as we defined
earlier in Eq. (80), with first- and second-order SRST
approximations given by Eqs. (81) and (82), respectively.
In the SRST limit and assuming canonical kinetic terms,
our results agree with those in [68] to first order and to
those in [69] to second order. In Secs. II C and III, we use
this convenient framework as shorthand in our equations
for the power spectra at the end of inflation. However, we
note that the above parametrization (86) of the relationship
between curvature and isocurvature modes in the super-
horizon limit continues to hold even after inflation ends.

C. The power spectra

We now use our results to calculate and interpret the
power spectra at the end of inflation. We build on previous
results for simpler kinetic terms in [63–65,69] by treating
the general case of completely arbitrary kinetic terms and
doing so in a covariant manner. We start by treating the
field perturbation equation over its entire domain of valid-
ity in Sec. II C 1, and we find solutions for the modes
during the subhorizon, horizon-crossing, and superhorizon
regimes. In Sec. II C 2, we use these results and perform a
rotation of basis in order to calculate the power spectra at
horizon exit. This rotation of basis gives rise to correlations
between the curvature and isocurvature modes and hence a
correlated cross spectrum. In Sec. II C 3, we use our results
for the evolution of curvature and isocurvature modes to
find compact expressions for the power spectra at the end
of inflation. We discuss how these results reflect the back-
ground kinematics and the field manifold, and we discuss
when multifield effects are significant and when a two-field
inflationary model can be dimensionally reduced to a
single-field model. We also use these results to argue that
all two-field inflationary models can be reduced to just a
handful of characteristic functions, representing all the
kinematics and dynamics of the model. Finally, we con-
clude by presenting simple expressions and a consistency
condition for the canonical power spectrum observables in
Sec. II C 4.

1. Solving the field perturbation equation

In Sec. II B, we presented equations of motion for the
field perturbations both in the given basis and in the
kinematical basis, and we focused on how these equations
simplify in the superhorizon limit. In this section, we
quantize the fields, solve the equation of motion over its
entire domain, and use a rotation of basis to match the
solutions across the boundaries.
To solve Eq. (52), we follow an approach similar to [25].

We start by recasting Eq. (52) using the vector q, where

q � a��f; (88)
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and using the conformal time, �, which is defined as

d� � dt

a
¼ 1

aH
dN: (89)

After some algebra, we obtain

D2q

d�2
þk2q¼ðaHÞ2

�
ð2��ÞI�ð3��Þ

�
~Mþ ��y

ð3��Þ2
��
q:

(90)

While there is no exact solution to Eq. (90) that is valid for
all values of �, we can find separate solutions in the three
standard regimes of interest and match the separate solu-
tions on the boundaries.

The first regime of interest is the subhorizon limit, when
the modes are well inside the horizon, which is defined by
k
aH � 1 (or equivalently, by �k� ! 1). In this limit, the

right-hand side of Eq. (90) is negligibly small, and Eq. (90)
reduces to the Klein-Gordon equation. The vector q thus
describes a pair of decoupled simple harmonic oscillators,
so the subhorizon result from single-field inflation can
simply be applied to each field. The subhorizon solution
to Eq. (90) can thus be written as

q ¼ 1ffiffiffiffiffi
2k

p ½aðkÞe�ik� þ ayð�kÞeik��; (91)

where we have gone ahead and quantized the fields, in-

troducing ai and ayi as the particle annihilation and crea-
tion operators, respectively, for field i. The annihiliation
and creation operators for the two fields satisfy the canoni-
cal commutation relations,

½aiðkÞ; ayj ðk0Þ� ¼ �ij�
3ðk� k0Þ; (92)

and the relation

aiðkÞj0i ¼ 0; (93)

where we have assumed the usual Bunch-Davies
vacuum [81].

The second regime centers around the time when the
modes exit the causal horizon, which is defined by k

aH 	 1.

Around horizon crossing, the behavior of q changes rap-
idly, and the oscillatory behavior of the two modes starts to
diminish. In this regime, both the subhorizon term k2q and
the terms on the right-hand side of Eq. (90) have to be
taken into account. To find a solution during horizon cross-
ing, we change variables to z � �k�. Using Eq. (89), to
first order in slow roll,

z ¼ �
Z k

aH
dN � ð1þ �Þ k

aH
; (94)

where we used integration by parts and then neglected
higher-order terms. After using this change of variables
and Eq. (94), and keeping terms to the two lowest orders in
the SRST expansion, we obtain

D2q

dz2
þ q ¼ 1

z2
½2Iþ 3ð�I� ~Mð1ÞÞ�q: (95)

To solve Eq. (95), we assume that during horizon cross-
ing, the time variation of the term in brackets on the right-
hand side of the equation can be neglected. Using this
assumption, we can decouple the two modes by rotating
to the basis that diagonalizes the effective mass matrix at
horizon exit. Here, we follow an approach similar to those
used in Refs. [63,69,70]. We write the rotation matrix that
diagonalizes the effective mass matrix as

U ¼ cos~� � sin~�
sin~� cos~�

 !
: (96)

Using the rotation matrix, the effective mass matrix can be
diagonalized as

U y ~Mð1ÞU ¼ mþ 0
0 m�

� �
; (97)

where the eigenvalues of the effective mass matrix are

m� ¼ 1
2½Trð ~Mð1ÞÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Trð ~Mð1ÞÞ�2 � 4Detð ~Mð1ÞÞ

q
�
: (98)

Using Eq. (98), we find the rotation angle for the rotation
matrix to be

tan2~� ¼ 2 ~Mð1Þ
12

~Mð1Þ
11 � ~Mð1Þ

22

: (99)

Now we use Eqs. (95) and (97) to find an equation of
motion for the modes in the rotated basis, ~q � ð~qþ; ~q�Þ ¼
Uyq. We find

D2~q�
dz2

þ
�
1� 1

z2

�
�2� � 1

4

��
~q� ¼ 0; (100)

where

�� � 3
2 þ ��m� (101)

and where we made the conventional assumption that the
time variation of U along the field trajectory can be ne-
glected for the couple of e-folds on either side of horizon
exit, which is a valid assumption in the SRST limit (see,
e.g., [25,30,63]). Now that we have decoupled the modes,
the solution for the modes can be written in terms of
Hankel functions as

~q� ¼
ffiffiffiffiffi
�

4k

r ffiffiffi
z

p ½eið�=2Þð2þ��m�ÞHð1Þ
��ðzÞ~a�ðkÞ

þ e�ið�=2Þð2þ��m�ÞHð2Þ
��ðzÞ~ay�ð�kÞ�; (102)

where ~a � Uya and where the overall normalization was
determined from matching to the subhorizon solution in
Eq. (91).
Once the modes have passed significantly outside the

horizon, the oscillatory behavior of the fields dies away and
the fields are free to grow, decay, and/or to couple to each
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other. After horizon exit but not too late that the SRST
parameters have significantly evolved, the growing mode
solution can be found from the leading order term in the
asymptotic expansion of the horizon-crossing solution in
Eq. (102). The leading order term in this expansion is

~q� ! iffiffiffiffiffi
2k

p ½1þ Cð��m�Þ�z�1�ð��m�Þb�ðkÞ; (103)

where

C ¼ 2� ln2�  � 0:7296; (104)

 � 0:5772 is the Euler-Mascheroni constant, and

b�ðkÞ ¼ ei�ð��m�Þ=2~a�ðkÞ � e�i�ð��m�Þ=2~ay�ð�kÞ:
(105)

Note that Eq. (105) implies that the perturbations become
classical soon after passing outside the horizon, since now
~q and its conjugate momenta commute [25].
Finally, since the SRST parameters will inevitably

evolve some time after the modes exit the horizon, we
will need to perform a second rotation in field space to
the kinematical basis in order to determine the late-time
behavior of the modes. After performing the rotation, we
will be able to use our second-order SRST semianalytic
approximations for the curvature and isocurvature modes
that we derived for the superhorizon limit. In Sec. II C 3,
we illustrate this last series of steps using the transfer
matrix formalism as shorthand.

2. Power spectra at horizon exit

Armed with these results, we now calculate the curva-
ture and isocurvature power spectra and their correlated
cross spectrum at horizon exit.

We define the power spectrum, PX , of a quantity X as

P X�3ðk� ~kÞ � k3

2�2
hXðkÞXyð~kÞi; (106)

and the cross spectrum, CXY , of the quantitiesX and Y as

C XY�
3ðk� ~kÞ � k3

2�2
hXðkÞYyð~kÞi: (107)

To calculate the spectra of curvature and isocurvature
perturbations at horizon exit, we need to relate the pertur-
bations in the decoupled basis to the curvature and iso-
curvature perturbations. To relate the modes in the two
bases, we follow a procedure similar to that used by
[63,69,70]. The curvature and isocurvature modes are re-
lated to the modes in the original given basis by a rotation

matrix with rotation angle �, where tan� � �0
2

�0
1
. In turn, the

modes in the given basis are related to the decoupled
modes by the rotation matrix U defined in Eq. (96).
Therefore, the curvature and isocurvature modes can be
related to the decoupled modes by the combined trans-
formation

a��k
a��?

� �
¼ cosð~�� �Þ � sinð~�� �Þ

sinð~�� �Þ cosð~�� �Þ
 !

~qþ
~q�

� �
; (108)

where the angle of the combined rotations can be
expressed as

tan2ð~�� �Þ ¼ 2 ~Mð1Þ
k?

~Mð1Þ
kk � ~Mð1Þ

??
: (109)

Notice that the same two terms that determine the evolu-
tion of the curvature perturbations to first order in the

SRST expansion in Eq. (85)—2 ~Mð1Þ
k? and the combination

~Mð1Þ
kk � ~Mð1Þ

??—also determine the net rotation angle be-

tween the kinematical and the decoupled bases.
Now we find the power spectra at horizon exit. Using the

combined rotation angle to relate the modes in the two
bases, the spectra of adiabatic and entropy modes are
related to the spectra of decoupled modes by

h��k��
y
k i ¼

1

2a2
½ð1þ cos2ð~�� �ÞÞh~q2þi

þ ð1� cos2ð~�� �ÞÞh~q2�i�;
h��k��

y
?i ¼

1

2a2
sin2ð~�� �ÞÞðh~q2þi � h~q2�iÞ;

h��?��
y
?i ¼

1

2a2
½ð1� cos2ð~�� �ÞÞh~q2þi

þ ð1þ cos2ð~�� �ÞÞh~q2�i�:

(110)

After substituting Eq. (103) and the expectation values

hbiðkÞbyj ð~kÞi ¼ Gij�
3ðk� ~kÞ (111)

into Eq. (110), the power spectra are given by

PR
 ¼
�
H

2�

�
2 1

2�

½1þ 2ðC� 1Þ�� 2C ~Mkk�
;

CRS
 ¼
�
H

2�

�
2 1

2�

½�2C ~Mk?�
;

PS
 ¼
�
H

2�

�
2 1

2�

½1þ 2ðC� 1Þ�� 2C ~M??�
;

(112)

where it is implied that the terms are to be calculated to
second order in the SRST expansion; we have dropped the
superscripts and chosen not to expand terms in order to
declutter the expressions.
Equation (112) shows that at horizon exit, the curvature

and isocurvature spectra have similar power, while the
correlated cross spectrum is down by a factor of approxi-

mately 2C times the turn rate ( �?
v � � ~Mð1Þ

k?). Thus, to
lowest order, the turn rate alone determines the size of
the cross spectrum relative to the curvature and isocurva-
ture spectra at horizon exit. This makes sense as we found
earlier that the turn rate determines the strength of sourcing
of one mode by the other. If the turn rate vanishes when the
modes exit the horizon, then those particular curvature and
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isocurvature modes will not be correlated at horizon exit,
as in this case, the decoupled basis coincides with the
kinematical basis.

Finally, we introduce the tensor power spectrum, P T ,
which represents the spectrum of gravitational waves. We
introduce the tensor power spectrum in order to calculate
the tensor-to-scalar ratio, an important spectral observable.
The tensor spectrum is independent of the number of scalar
fields, and to next-to-lowest order in the slow-roll expan-
sion, it is calculated to be [82]

P T
 ¼ 8

�
H

2�

�
2½1þ 2ðC� 1Þ��
: (113)

It is conserved for modes outside the horizon.

3. Power spectra at the end of inflation

We now calculate the three scalar spectra at the end of
inflation.

We can calculate the spectra at the end of inflation from
the corresponding spectra at horizon exit. To do so, we
simply need to account for the further growth or decay of
the modes after they exit the horizon. To account for the
mode evolution, we can use the semianalytic expressions
we found in Sec. II B 5. But rather than write out these
expressions in full, we will use the transfer matrix formal-
ism in Eqs. (86) and (87) as shorthand. Using the transfer
matrix formalism [67,68], the modes at the end of inflation
are related to the modes at horizon exit by

R
S

� �
¼ 1 TRS

0 TSS

� �
R

S


� �
; (114)

where it is implied that the transfer functions are evaluated
at the end of inflation. Hence, the spectra at the end of
inflation are related to the spectra at horizon exit by [69]

PR ¼ PR
 þ 2TRSCRS
 þ T2
RSPS
 ;

CRS ¼ TSSCRS
 þ TRSTSSPS
 ;

PS ¼ T2
SSPS
 :

(115)

Substituing in Eq. (112) and keeping only the lowest-
order terms in the SRSTexpansion, the power spectra at the
end of inflation are

PR ¼
�
H

2�

�
2 1

2�

ð1þ T2

RSÞ;

CRS ¼
�
H

2�

�
2 1

2�

TRSTSS;

PS ¼
�
H

2�

�
2 1

2�

T2
SS :

(116)

In Eq. (116), all terms are calculated to lowest order in the
SRST expansion, including the transfer functions. The
single-field power spectra can be recovered from Eq. (116)
by setting TSS to zero, which also forces TRS ¼ 0.

Next, we find the power spectra to second order in the
SRST approximation. But first, we introduce two new
quantities that will allow us to write the expressions for
the spectra and spectral observables more compactly. We
start by introducing a quantity called the correlation angle,
which we define as

sin�N � TRSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

RS

q ; (117)

where we add the subscript N to make it clear that �
represents the correlation angle, not the spectra them-
selves.10 We chose the subscript N because the correlation
angle represents the angle between e
k and the gradient of

the number of e-folds, r
N—that is,

e 

k � r
N / cos�N: (118)

We can see this by considering the following facts. For any
multifield model, the curvature spectrum equals [21]

PR ¼
�
H

2�

�
2jr
Nj2; (119)

to lowest order. Since

� 0 � rN ¼ 1; (120)

then comparing Eqs. (116), (119), and (120), it follows that
for two-field inflation

r y
N ¼ 1ffiffiffiffiffiffiffiffi
2�


p ½e
k þ TRSe


?�: (121)

Therefore, the correlation angle is indeed the angle be-
tween r
N and e
k. Also, it is useful to define a unit vector,
eN , that points in the direction of ry
N, where based on the
above expressions, eN is related to the kinematical basis
vectors by

e N ¼ cos�Ne


k þ sin�Ne



?: (122)

Now combining Eqs. (112) and (115), and using our two
new quantities (117) and (122), the second-order power
spectra can be written as

10Our correlation angle is inspired by the correlation angle

introduced by Wands et al. [68], which was defined as cos� �
ðCRS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRPS

p Þ � ðTRS=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

RS

q
Þ. But we have chosen to

modify the definition of this quantity for two reasons. First,
Bartolo et al. [63] had already assigned the symbol rC to the
quantity CRS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRPS

p
, to reflect the fact that it is similar in form

to the tensor-to-scalar ratio, rT . Second, we needed a quantity to
represent the angle between ê
k and r
N, so making this modi-

fication seemed to be the best compromise.
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PR¼
�
H

2�

�
2 1

2�

ð1þT2

RSÞ½1þ2ðC�1Þ��2CeyN ~MeN�
;

CRS ¼
�
H

2�

�
2 1

2�

TRSTSS½1þ2ðC�1Þ�

�2CeyN ~Me?sin�1�N�
;
PS ¼

�
H

2�

�
2 1

2�

T2
SS½1þ2ðC�1Þ��2Cey? ~Me?�
:

(123)

For consistency, all terms are calculated to second order in
the SRST approximation, with the understanding that here
we are using the second-order SRST approximations for
the turn rate [Eq. (43)] and for 	 [Eq. (82)] to calculate the
transfer functions. We can also write the power spectra a bit
more compactly using Eq. (113):

PR ¼ P T

16�

ð1þ T2

RSÞ½1� 2CeyN ~MeN�
;

CRS ¼ P T

16�

TRSTSS½1� 2CeyN ~Me?sin�1�N�
;

PS ¼ P T

16�

T2
SS½1� 2Cey? ~Me?�
:

(124)

Note the high degree of symmetry among the second-order
terms in Eq. (124): each instance of the curvature pertur-
bation in the spectra is accompanied by the unit vector eN ,
while each instance of the isocurvature perturbation is
accompanied by the unit vector e?.

Now we analyze the power spectra at the end of infla-
tion. At lowest order, the power spectra are determined by
just four quantities: H
, �
, TSS , and TRS . Equation (116)
shows that all three spectra are modulated by the factor

ðH

2�Þ2 1

2�

. The differences among the spectra lie in the

transfer functions, with the ratio TSS
TRS

effectively controlling

the relative sizes of the three spectra. In fact, this ratio
directly controls the relative sizes of the isocurvature and
cross spectra: if TRS � TSS , then CRS � PS , otherwise
CRS < PS . Also, since TSS < 1 is usually true, we expect
the curvature spectrum to be the largest of the three spectra.
Indeed, the smaller TSS is, the smaller the cross spectrum
(CRS / TSS) and the isocurvature spectrum (PS / T2

SS).

In turn, the two transfer functions depend on the kine-
matical profiles of the speed up rate, the turn rate, and the
effective entropy mass, as we explained in detail in
Sec. II B 5. Typically, TSS � 1 by the end of inflation,
since the speed up rate usually must be large and positive
to end inflation, or equivalently, since the amplitude of

isocurvature modes depends inversely on v ¼ ffiffiffiffiffiffi
2�

p
. For

inflationary scenarios with large turn rates, typically
TRS * a few and TSS ��1—for reasons we discussed
earlier—resulting in PR��CRS��PS . For these scenar-
ios, we expect that the cross and isocurvature spectra will
be hard to measure, if not undetectable, and that
PR��P T . On the opposite extreme, if the turn rate is
very small and satisfies �?

v � �k
v during inflation, then we

usually will find TRS to be significantly less than 1 and TSS
to be larger than in the previous case but still smaller than
1. In this limit, the curvature spectrum can be approxi-
mated by the corresponding single-field result, and the
isocurvature and cross spectra will be smaller, with their

relative sizes depending on the ratio of TSS
TRS

. However,

unlike in the case of a large turn rate, the isocurvature
and cross spectra will still be appreciable and hence poten-
tially measurable, as long as the isocurvature modes are not
destroyed during the reheating process following inflation.
And if the turn rate vanishes exactly for all scales of
interest, then we recover the exact single-field expression
for the curvature spectrum, and the cross spectrum is
exactly zero. In this case, the isocurvature spectrum is still
usually significantly smaller than the curvature spectrum.
Taking these dependences together, this means that we

can trace the behavior of the power spectra back to just five
kinematical functions: H and �, which set the overall scale
of the spectra; and

�k
v , �?

v , and �?, which determine the

behavior of the transfer functions. Or, being even more

succinct, since � ¼ �ðlnHÞ0 and �k
v ¼ ðlnHÞ00

2ðlnHÞ0 , we can pare

these functions down to a set of just three functions with
their scale dependences: H, �?

v , and �?, where the second
two functions are unique to two-field inflation. To lowest
order in the SRST limit, these quantities represent the value

of V, jr lnVj, and the three unique coefficients of ~M. In
other words, we can think of these quantities as represent-
ing vital information about the value, the gradient, and the
Hessian of lnV, along with corrections from any nontrivial
geometry of the field manifold. It is precisely these
relationships among the kinematical functions, the
Lagrangian, and the spectra that allow us to connect fea-
tures in the spectra directly back to features in the infla-
tionary Lagrangian. We summarize these kinematical
functions in Table IV, where we also indicate how they
can be reconstructed from observational data.
Finally, we discuss when a two-field model effectively

looks like a single-field model—that is, when CRS and PS
are vanishingly small and when PR is identical to the
single-field result. Of course, after inflation ends the modes
could be processed further, particularly during the reheat-
ing process. However, because such postinflationary pro-
cessing is model dependent, we do not consider it here, and
leave the reader to append any postinflationary processing
to our calculations here. If there is no postinflationary
processing of modes, a two-field model will look like a
single-field model only if TRS � 1 and TSS ��1. The
former holds when �?

v ���k
v whenever TSS 6�1. The latter

can be achieved only if the integral of the sum ofM?? and
of � times the Ricci scalar of the field manifold is large and
positive, due to tight constraints on the turn rate. So given
that the turn rate can be approximated by � ~Mk?, we

require � ~Mk? ��1 usually over all measured scales (but

at a minimum, for at least shortly after horizon exit) and
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~M?? � 1 to hold for at least a couple of e-folds before the
end of inflation.

4. Spectral observables and consistency condition

From the expressions for the power spectra, we find the
spectral indices, the running of the spectral indices, the
tensor-to-scalar ratio, and the cross-correlation ratio, and
then derive a consistency condition among these quantities.
In this section, it is implied that all quantities are evaluated
at horizon exit, so we drop the subscript 
. As before, our
equations here do not include any model-dependent post-
inflationary processing of the modes.

First, we find the spectral indices and the running of the
spectral indices. We define the spectral index of a spec-
trum, PX , as

nX � d lnPX

d lnk
: (125)

For comparison, our definition of the curvature spectral
index is related to the more commonly used scalar spectral
index, ns, by

ns ¼ 1þ nR ¼ 1þ d lnPR

d lnk
: (126)

We have chosen, however, to depart from convention and
to use Eq. (125) to define all four spectral indices so that
they can be more readily compared.

There are a few expressions that come in handy in
finding the spectral indices. The derivative with respect
to k is related to the derivative with respect to N by d

d lnk �
ð1þ �Þ d

dN . To find the running of the transfer functions,

the following expressions are helpful:

T0
SS ¼ �	TSS; T0

RS ¼ �2
�?
v

� 	TRS : (127)

We can use the above equations to derive another result:

�
ln

�
1þ T2

RS

2�

��0 ¼ 2ðlnjrNjÞ0;

¼ �2
�k
v

cos2�N � 4
�?
v

sin�N cos�N

þ 2�?sin2�N;

� 2eyNMeN; (128)

where M is defined as

M �
�
�
�k
v

�ð2Þ �
�
�?
v

�ð2Þ
�
�
�?
v

�ð2Þ
�ð2Þ

?

0
BB@

1
CCA: (129)

Since to first order in the SRST limit, M ¼ ~Mð1Þ, M
can be viewed as the second-order extension of the effec-
tive mass matrix. Equation (128) shows that the scale
dependence of jrNj is determined by the (eN , eN) compo-
nent of M.
Using the above relations, we find the power spectra to

first order in the SRST limit:

nT ¼ �2�; nR ¼ nT þ 2eyN ~MeN;

nC ¼ nT þ 2eyN ~Me?sin�1�N; nS ¼ nT þ 2ey? ~Me?:
(130)

Equation (130) shows that the deviations from scale in-
variance are determined by � and the various coefficients

of ~M. In fact, the last three spectral indices in Eq. (130) are
virtually identical up to the unit vectors used to project out
particular components of the effective mass matrix. The
spectral index nT depends on �, while nS depends on � and
~M?? (� �?). But the dependence of the other two spec-

tral indices on the various coefficients of ~M is more
complicated, as eN depends strongly on TRS , a double
integral expression involving the speed up rate, turn rate,
and effective entropy mass. For example, if multifield
effects are small (TRS � 1), then eN will point mostly
in the direction of ek and hence nR will depend mostly on

TABLE IV. This table lists the five quantities that represent the main features of any two-field model of inflation: H, �,
�k
v , �?

v , and

�?. Alternatively, since � ¼ �ðlnHÞ0 and
�k
v ¼ ðlnHÞ00

2ðlnHÞ0 , we can reduce them further to a set of three functions and their scale

dependences: H, �?
v , and �?, where the latter two are unique to two-field inflation. All other quantities are derived from these

fundamental quantities. The second column shows that to lowest order in the SRST limit, these quantities represent the values of V,
jr lnVj, and ~M, where ~M ¼ ryr lnV þ �R

ð3��Þ and R is the Ricci scalar of the field manifold. The third column shows how these

quantities relate to the spectral observables, to lowest order in the SRST limit.

Quantity Relation to the Lagrangian Relation to the spectral observables

Hubble rate, H
ffiffiffi
V
3

q
�

ffiffiffiffiffi
P T

2

q
Field speed, v ¼ ffiffiffiffiffiffi

2�
p jr lnVj ffiffiffiffiffiffiffiffiffiffi�nT

p

Speed up rate,
�k
v � ~Mkk

nT�nR
2 þ r2

C

1�r2
C

ð2nC�nR�nS
2 Þ or 
T

2nT

Turn rate, �?
v � ~Mk?

rCffiffiffiffiffiffiffiffiffi
1�r2

C

p ðnS�nC
2 Þ

Effective entropy mass, �? ~M??
nS�nT

2
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the matrix coefficient ~Mkk (� � �k
v ), just like in single-

field inflation. However, if multifield effects are suffi-
ciently large that TRS > 1—that is, if the sourcing of
curvature modes by isocurvature modes accounts for
more than half of the amplitude of curvatures modes at
the end of inflation—then nR will depend more on the
coefficients ~Mk? (� � �?

v ) and ~M?? (� �?) than on
~Mkk. Similarly, the exact dependence of nC on the coef-

ficients ~Mk? and ~M?? depends strongly on TRS .

Now we calculate the spectral indices to second order in
the SRST limit. In doing so, we arrive at the following
intermediate step:

nT ¼
�
1þ �þ ð1� CÞ d

dN

�
ð�2�Þ;

nR ¼ nT þ 2

�
1þ �� C

d

dN

�
eyNMeN;

nC ¼ nT þ 2

�
1þ �� C

d

dN

�
eyNMe?sin�1�N;

nS ¼ nT þ 2

�
1þ �� C

d

dN

�
ey?Me?:

(131)

To act the differentiation operator on the matrix product,
we use the first-order expressions D

dN � �ry lnVr and the

helpful result

DeN
dN

¼ ðeyNMe?N Þe?N ; (132)

where

e?
N ¼ � sin�Nek þ cos�Ne?: (133)

Using these expressions, the second-order spectral indices
can be written compactly as

nT ¼ ½1þ �þ ðC� 1ÞMkk�ð�2�Þ;
nR ¼ nT þ 2eyN½ð1þ �ÞM� 2CðMe?N ÞðMe?N Þy

þ Cry lnVrM�eN;
nC ¼ nT þ 2eyN½ð1þ �ÞM

þ 2CðMe?N ÞðMekÞysin�1�N

þ Cry lnVrM�e?sin�1�N;

nS ¼ nT þ 2ey?½ð1þ �ÞM� 2CðMekÞðMekÞy
þ Cry lnVrM�e?;

(134)

where all terms are to be calculated to second order and
terms of higher order are dropped.

The runnings of the spectral indices are defined as


X � dnX
d lnk

: (135)

We find them to first order in the SRST limit by differ-
entiating Eq. (130) and using Eqs. (23) and (132). The
results can be written compactly as


T ¼4� ~Mkk;


R¼
Tþ2eyN½2ð ~Me?N Þð ~Me?N Þy�ry lnVr ~M�eN;

C¼
Tþ2eyN½�2ð ~Me?N Þð ~MekÞysin�1�N

�ry lnVr ~M�e?sin�1�N;


S ¼
Tþ2ey?½2ð ~MekÞð ~MekÞy�ry lnVr ~M�e?:

(136)

Next, we find the spectral observables that are based on
ratios of the spectra: the tensor-to-scalar ratio and the
cross-correlation ratio. The tensor-to-scalar ratio, rT , is
defined as the ratio of the tensor power spectrum to the
scalar (curvature) power spectrum. From Eqs. (113) and
(124), we find that to first order in the SRST limit,

rT ¼ 16�cos2�N; (137)

while to second order,

rT ¼ 16�cos2�Nð1þ 2CeyN ~MeNÞ: (138)

Modulo the factor of cos2�N , Eq. (137) is identical to the
single-field result; that is, the single-field result provides
only an upper bound on the two-field tensor-to-scalar ratio.
This result agrees with the result in [69] for the case of
canonical kinetic terms.
In analogy to the tensor-to-scalar ratio, Bartolo et al.

[63] introduced the quantity

rC � CRSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRPS

p (139)

to represent the degree of cross correlation in a two-field
model. We call this quantity the cross-correlation ratio. To
lowest order, rC gives the correlation angle,

rC ¼ sin�N; (140)

while to second order,

rC ¼ sin�N½1þ Ccos2�Nð ~Mkk � ~M?? � 2 ~Mk? cot�NÞ�:
(141)

We have just found relations for the spectral indices,
running of the spectral indices, the tensor-to-scalar ratio,
and the cross-correlation ratio. These spectral observables
give us important information about the physics of inflation.
The amplitude of the tensor spectrum gives H, while com-
binations of the spectral observables nT , nR, nC, nS, rT , and
rC give us expressions for our four quantities that describe
the shape of the inflation potential: � � 1

2 jr lnVj2, ~Mkk,
~Mk?, and ~M??. First, the tensor spectral index determines

� via Eq. (130). Next, the lowest-order difference between
the isocurvature and tensor spectral indices yields

~M ?? ¼ nS � nT
2

; (142)

while the difference between the isocurvature and the cross
spectral indices yields
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~M k? ¼ rCffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2C

q �
nC � nS

2

�
: (143)

The third effective mass matrix coefficient is given by

~M kk ¼ nR � nT
2

þ r2C
1� r2C

�
nR þ nS � 2nC

2

�
; (144)

to lowest order. Together, this means that if we can measure
the above mentioned observables, we can put constraints on
certain features of the inflationary Lagrangian and hence
work backward to reconstruct the physics of inflation.
Table IV summarizes the key relationships among the kine-
matics, Lagrangian, and spectral observables. Table V sum-
marizes themeanings and interrelationships of all functions/
quantities that appear in two-field inflation.

Finally, we can combine these six spectral observables
into a consistency condition for general two-field inflation.
Bartolo et al. [63] and Wands et al. [68] were the first to
find consistency relations for two-field inflation with ca-
nonical kinetic terms. In terms of our parameters and
allowing for noncanonical kinetic terms, we find the lowest
order consistency condition to be

rT ¼ �8nTð1� r2CÞ; (145)

which agrees with their results for canonical kinetic terms.
To extend the above result to second order in the SRST

limit, we substitute Eqs. (130) and (141)–(144), into
Eq. (138) for rT to obtain

rT ¼ �8nTð1� r2CÞ
�
1� 1

2
nT þ nR

þ r2C
1þ r2C

ðnR þ nS � 2nCÞ
�
: (146)

The above consistency condition agrees with the second-
order result obtained by [69] for the case of canonical
kinetic terms. This consistency relation is a potentially
powerful tool for testing the validity of two-field models
of inflation.

III. APPLICATIONS

In this section, we illustrate how to use our theoretical
framework to understand and calculate the power spectra,
and we show how to test two-field models of inflation
against observational data.
We demonstrate this by exploring four different classes

of inflationary models. Together, these four classes of mod-
els cover a wide range of kinematical behaviors and include
an example with a noncanonical field metric. For each class
of models, we vary both the initial conditions and a char-
acteristic parameter of the inflationary Lagrangian to under-
stand the range of power spectra that can be generated. To
disentangle the separate contributions to the power spectra,

TABLE V. Summary of key quantities and how they affect the power spectra.

Quantity Importance

� Equals �ðlnHÞ0.
Is related to the field speed via � ¼ 1

2v
2.

�k
v Determines how quickly � grows.

Determines the intrinsic growth rate of adiabatic modes.

�?
v

Is the marker of multifield behavior for both the unperturbed and perturbed fields.

Determines the degree of sourcing of adiabatic/curvature modes by entropy/isocurvature modes.
�?
v
�k
v

Controls the relative contribution of entropy mode sourcing to the growth of adiabatic modes.

Can be viewed as indicating the relative importance of multifield effects at a given time (provided that the entropic

modes are not too large or too small relative to the adiabatic modes).

�? Determines the damping of entropy modes.

TSS
Derivative quantity that depends on an integral of ��? � �k

v .

Represents the total damping of isocurvature modes after horizon exit.

TRS
Derivative quantity that depends on an integral of �?

v and TSS .

Represents the total sourcing of curvature modes by isocurvature modes after horizon exit.

H2

�


Sets the overall scale of the three scalar spectra.

TSS
TRS

Determines the relative sizes of the three scalar spectra.

sin�N

Equals TRS=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

RS

q
.

Gives an indication of the amount of cross correlation.

Determines which linear combinations of the coefficients of the effective mass matrix appear in the power

spectra and the spectral observables.
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we present a series of plots showing the background tra-
jectories, our kinematical quantities, and the transfer func-
tions. Using these plots, we discuss how the transfer
functions and the power spectra can be inferred mostly
from the background kinematics and the field metric.
Thereafter, we allow both the initial conditions and the
characteristic Lagrangian parameter to vary, and we plot
the results for a set of six spectral observables. Finally, we
use these results to determine which inflationary scenar-
ios—that is, which combinations of the initial conditions
and the inflationary Lagrangian—are consistent with ob-
servational constraints. To our knowledge, this constitutes
the first thorough and rigorous approach to understanding
and constraining two-field models of inflation.

A. Methods

In this section, we provide an overview of our methods
and general approach.

We start the investigation of each class of models by first
varying the initial conditions, while holding the Lagrangian
parameter constant, and we determine the effects on the
power spectra. Because the initial conditions can affect the
inflationary dynamics and hence the power spectra, varying
the initial conditions is essential in order to test and con-
strain two-field inflationary models against observations.
With an uncountable number of initial conditions, this is
ostensibly a formidable task. Indeed, though there have
been a few attempts to consider initial conditions in
single-field inflation, particularly by [83,84], there have
not been many attempts to do so in two-field inflation,
though one notable exception in which the initial conditions
receive more consideration is [66]. Fortunately, most infla-
tionary models have attractor solutions and/or sampling a
collection of initial conditions is sufficient to extrapolate
the results to the set of all possible initial conditions. In our
analysis, we parametrize the initial conditions via a single
parameter, �, which is the polar angle for the field vector
60 e-folds before the end of inflation. When varying only
the initial conditions, the six initial conditions we test for
each model are � ¼ 0, �

10 ,
2�
10 ,

3�
10 ,

4�
10 , and

�
2 .

Next, we vary a characteristic parameter of the infla-
tionary Lagrangian, while holding the initial conditions
constant, and we find the resultant spectra. We choose six
representative values of that Lagrangian parameter to test.
We do this in order to understand how either the strength of
one of the interaction parameters in the potential or the size
of a parameter in the field metric impacts the spectra.
Varying a Lagrangian parameter also has the benefit of
extending our analysis to an entire class of similar models,
rather than just testing a single Lagrangian from that class
of models.

To conduct the above analyses, we perform all our
calculations to second order in the complete SRSTapproxi-
mation using our semianalytic formulas. However, we have
checked these results all against exact numerical solutions

and find good agreement for the scenarios tested. The one
exception is that the second-order calculations do not
reflect any oscillations of the �2 field about the �1 axis,
which occur in a very small subset of scenarios. The effect
of these oscillations is to introduce some tiny wiggles into
the power spectra, but the full treatment of these oscilla-
tions is beyond the scope of this paper. Also beyond the
scope of this paper is dealing with the small subset of
scenarios in which inflation will end before one of the
fields has a chance to roll down the potential—that is,
models that consist of two separate inflationary phases
separated by a noninflationary phase. For these scenarios,
we simply set the initial conditions relative to the end of the
first phase of inflation. We refer the interested reader to
[38] to see how these scenarios can be handled.
To complement the above mentioned analyses of the

power spectra, we also plot the background trajectories,
kinematics, and transfer functions. We do this in order to
disentangle the multiple factors that affect the power spec-
tra. We now describe this series of plots here to avoid
having to use plot captions and to repeat the same infor-
mation several times. For our plots of the background
trajectories and the kinematical parameters (�,

�k
v , �?

v ),

we show the results for six different sample scenarios for
the time period 70 e-folds before the end of inflation until
the end of inflation. The gray contour lines indicate the
number of e-folds left before inflation ends. To depict the
two transfer functions—TSS and TRS—we plot the func-
tions from horizon exit until the end of inflation, where the
x axis represents the number of e-folds before inflation
ends. We do this for seven sample mode wavelengths: for
the modes that exit the horizon 70, 60, 50, 40, 30, 20, and
10 e-folds before the end of inflation (colored lines). On the
same plots, we overlay the value of the transfer function at
the end of inflation (solid black lines). These lines indicate
the value of the transfer function at the end of inflation for
the modes that exited the horizon at the time shown on the
x axis. On the plots of TSS , we also overlay the value of the
effective entropy mass (dashed black lines) during infla-
tion. For our spectral plots, we plot PR at horizon exit and
PR, CRS , and PS at the end of inflation. We show the
spectra for the modes that exited the horizon between
70 e-folds before the end of inflation and the end of
inflation; that is, the x axis effectively represents the
mode wavelength. To calculate the spectra, we normalize
the amplitude of the curvature power spectrum at the end
of inflation to the 7-year WMAP + BAO + H0 result
PRðk0Þ � 2:44� 10�9, where k0 ¼ 0:002 Mpc�1 [85],
which we take to be 60 e-folds before the end of inflation.
This normalization in turn fixes the overall energy scale of
the potential separately for each combination of the initial
conditions and Lagrangian parameter, and hence also fixes
the amplitudes of the isocurvature and cross spectra.
After having separately varied the initial conditions and

the Lagrangian parameter, we end our exploration of each
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class of models by allowing both parameters to vary. The
mesh size we use when allowing both the initial conditions
and Lagrangian parameter to vary is 101 by 101, so we test
a total of 10 201 inflationary scenarios for each type of

model. For each of these 10 201 scenarios, we find the six
spectral observables rT , rC, the isocurvature fraction, nT ,
nR, and 
R, where we define the isocurvature fraction,
fiso, as

FIG. 3 (color online). Multiplicative double polynomial potentials, Vð�1; �2Þ ¼ M4�2
1j�2jp, with canonical kinetic terms and with

p ¼ 4.
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fiso � PS

PR
: (147)

We pick these particular observables because they are
among the ones that are most commonly considered and/
or that are most likely to be well constrained in the near
future. In calculating the spectral observables, we find
them numerically from the power spectra, rather than using
our semianalytic formulas. The numerical errors are usu-
ally negligible, except in some cases for the running of the
curvature spectral index, 
R. Lastly, we plot each of these
scenarios in the rT � ns plane, comparing them against the
95% confidence limits derived from observational data. To
complement this plot, we provide a second plot showing
exactly which of these scenarios are ruled out by these
observational constraints. The observational constraints we
use are the WMAP + BAO + H0 95% confidence limits in
[85] on the combination of ns ¼ 1þ nR and rT , which we
approximate by the ellipse

0:214n2s þ 0:00357r2T � 0:0450nsrT � 0:411ns

þ 0:0437rT þ 0:198  0: (148)

Finally, we note that for our aforementioned analyses,
we have computed the spectra and spectral observables at
the end of inflation and have therefore ignored any model-
dependent processing of the modes that may occur after
inflation ends. What exactly happens to the spectra there-
after is unknown: there are many uncertainties associated
with the end of inflation and with the reheating process
during its aftermath. Since the focus of the present paper is
rather orthogonal to these issues—on the impact of having
more than one inflaton field during inflation—our calcu-
lations do not take these issues into consideration. Of
course, some sort of assumptions are required in order to
test an inflationary model against observations, so we have
assumed that

(1) Inflation ends abruptly when the scale factor stops
accelerating, which is equivalent to the condition
� ¼ 1.11

(2) The curvature spectra are conserved across the infla-
tionary boundary.12

(3) The isocurvature modes are not completely de-
stroyed by the reheating process, and hence our

calculations of the isocurvature spectra and fractions
constitute upper limits.

Any additional assumptions about the nature of the end of
inflation and reheating can simply be appended onto our
calculations here, as desired.

B. Multiplicative double polynomial potential
with canonical kinetic terms

The first class of inflationary models we investigate is
the multiplicative double polynomial potential with ca-
nonical kinetic terms. We define multiplicative double
polynomial potential to mean all potentials of the form

V ¼ M4j�1jnj�2jp: (149)

This inflationary potential falls under the general category
of multiplicative or product potential models, V ¼Q

iVið�iÞ, where Við�iÞ means that Vi is a function only
of the ith field. Multiplicative models with canonical
kinetic terms have the feature that their effective mass
matrices are diagonal and hence the fields and field pertur-
bations evolve essentially independently. Here, we take the
adjustable Lagrangian parameter to be the power, p, to
which the�2 field is raised. We vary p, which we take to be
a continuous variable greater than or equal to 1, while
holding n fixed at n ¼ 2. Later, using the results in this
section, it will become evident that we can extrapolate
from the n ¼ 2 case to all values of n and hence consider
the entire class of multiplicative double polynomial
potentials.

1. Varying the initial conditions

For the first part of our analysis, we vary the initial
conditions while holding the power p fixed at p ¼ 4 and
investigate the background trajectories and kinematics, the
transfer functions, and the power spectra. For the � ¼ 0�
and � ¼ 90� initial conditions, the potential is nonsensical
if we set the corresponding field to zero, so instead we
simply ignore the zeroed field, and use the corresponding
single-field potential for the nonzero field.
We find that varying the initial conditions results in

trajectories with very little curvature that are very widely
separated in field space, as shown in Fig. 3(a). With the
exception of the field trajectory corresponding to � � 55�,
the other five trajectories depicted show that one field
evolves significantly during the course of inflation, ending
around the reduced Planck scale, while the other field only
slightly evolves during the course of inflation. Therefore,
for most initial conditions, one of the two fields will
dominate the background dynamics and primarily deter-
mine the kinematical parameters.
Plots of the three kinematical parameters show typical

slow-roll behavior up until the end of inflation. As shown
in Fig. 3(b), � is largest for those trajectories where both
fields dominate, and it is also a little larger for trajectories

11Specifically, when applying this criterion, we compute �
using the exact background equations.
12For a given two-field model, inflation does not end at a unique
value of V, or equivalently, H. If inflation does not end at a
unique energy density, the power spectra are not necessarily
conserved across the inflationary boundary (e.g., [86]). However,
in many cases of two-field inflation (including many of our
examples below), attractor solutions exist and/or the evolution
of the field vector at the end of inflation is essentially single field,
which diminishes any corrections to the power spectra. So we
make the usual assumption that any corrections to the power
spectra arising from the transition from inflation to the radiation-
dominated era are negligibly small [25].
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corresponding to �2 domination, reflecting the higher
power to which the �2 field is raised. There is little
variation in the speed up rate [Fig. 3(c)], and the turn
rate [Fig. 3(d)] is very small for these models, typically
about an order of magnitude less than the speed up rate.
Therefore, the scenarios produced by these models satisfy
�k
v � �?

v , and we expect the multifield effects to be small.

These kinematics can also be gleaned by analyzing the
lowest-order effective mass matrix. This analysis (not

shown) reveals that ~Mð1Þ
kk , which approximates the speed

up rate, will always be the largest magnitude matrix coef-
ficient and that the other matrix coefficients will virtually
always be within an order of magnitude of each other,
except near the very end of inflation or in the small subset
of models in which the fields codominate.

Now we consider the transfer functions. Since ~M?? < 0
for these models, they provide an example of scenarios
in which the entropy modes actually grow in the
superhorizon SRST limit. However, since the speed up
rate is positive and larger in magnitude than the effective
entropy mass, the isocurvature modes will nevertheless be
increasingly damped by the transfer function TSS after they
exit the horizon [Fig. 3(e)]. The isocurvature modes are
damped fairly steadily in the superhorizon limit, but the
damping increases toward the end of inflation when both
the effective entropy mass and speed up rate increase. Also,
the isocurvature modes are more damped in those scenarios
in which the �2 field dominates, and less damped in
scenarios where the two fields codominate due to the
smaller difference between the effective entropy mass
and speed up rate in these scenarios. Note that by the end
of inflation, the isocurvature modes are still appreciable in
all cases, as expected when the turn rate is so small and the
effective entropy mass is negative. (Except, of course, the
isocurvature modes do not exist when � ¼ 0� or � ¼ 90�.)

The second transfer function, TRS , is shown in Fig. 3(f).
For the trajectories where one field dominates, TRS in-
creases steadily until the end of inflation, and it is larger as
the initial angle increases. For the trajectory where the
fields codominate (� � 55�), TRS starts off significantly
smaller, but increases much more rapidly at the very end of
inflation. Interestingly, the more the subdominant field
contributes to the inflationary dynamics, the more scale
invariant TRS is. In all cases, however, TRS remains less
than about 1, reflecting the fact that the turn rate is so small
for these models and hence the total sourcing of curvature
modes by isocurvature modes is modest.

Finally, we plot the set of power spectra for these
scenarios. The curvature power spectra at horizon exit
[Fig. 3(g)] and at the end of inflation [Fig. 3(h)] show
some variations due to the initial conditions, being more
steeply sloped when the �2 field is a dominant contributor
to the background dynamics. But they are close to scale
invariant and lack any substantial scale-dependent fea-
tures. The correlated cross spectrum [Fig. 3(i)] and

isocurvature spectrum [Fig. 3(j)] are both smaller by
about 1–2 orders of magnitude and are also close to scale
invariant, which is as expected given that the isocurvature
modes are still appreciable at the end of inflation. The two
exceptions are the obvious absence of isocurvature and
cross spectra for the single-field scenarios corresponding
to � ¼ 0� and � ¼ 90�, and that the isocurvature and
cross spectra are virtually identical to the curvature spec-
tra for the trajectory corresponding to � � 55�, reflecting
the fact that the two fields are codominant in this scenario.
These results match what we would predict in light of our
analysis of the background kinematics and the transfer
functions.

2. Varying the Lagrangian parameter

Now we vary the power, p, to which �2 is raised, while
holding the initial condition fixed at � ¼ 45o.
Varying the Lagrangian parameter p also results in field

trajectories with very little curvature [Fig. 4(a)]. For the
particular initial condition � ¼ 45�, if p < 2, the �1 field
dominates the inflationary dynamics, whereas if p > 2,
then the �2 field dominates; around p � 2, both fields
contribute about equally. However, for this particular ini-
tial condition, the degree of domination of one field over
the other is not as dramatic as some of the scenarios we
investigated in the previous section. As before, these sce-
narios show typical single-field slow-roll behavior up until
the end of inflation, with � [Fig. 4(b)] increasing as p
increases but with little variation in the speed up rate
[Fig. 4(c)]. As before, the turn rate is very small for these
models [Fig. 4(d)] and smaller than the speed up rate. The
turn rate is smallest when both fields codominate, but is
greatest when one field dominates but then the second field
starts to pick up speed toward the end of inflation. As in the
previous section, an examination of the first-order effective
mass matrix agrees with this analysis.
Now we investigate the two transfer functions. The

isocurvature modes are increasingly damped by the trans-
fer function TSS after they exit the horizon [Fig. 4(e)], with
slightly more damping as p increases, with the exception
of no damping in the scenario where p ¼ 2, where the
fields exactly codominate. For the transfer function TRS,
its size mostly reflects the size of the corresponding turn
rate, since TSS depends more weakly on p than the turn
rate does [Fig. 4(f)]. So TRS is smallest for those scenarios
in which the fields codominate and is largest for those
scenarios in which the subdominant field starts to pick up
speed toward the end of inflation. The rest of our observa-
tions from the previous section on how the behaviors of
TSS and TRS reflect the dominance of the fields and the
field kinematics also applies here.
The set of power spectra for these scenarios shows sev-

eral similarities to those obtained when we varied the initial
conditions. The curvature spectra [Figs. 4(g) and 4(h)] all
are nearly scale invariant with similar amplitudes, but they
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are more steeply sloped as the power p increases, as ex-
pected. As before, the cross spectrum [Fig. 4(i)] and iso-
curvature spectrum [Fig. 4(j)] are both smaller by about 1–2
orders of magnitude than the curvature spectra, reflecting
the fact that the isocurvature modes are still significant

at the end of inflation. The one exception is for the
trajectory corresponding to p ¼ 2, which has a zero turn
rate and zero damping of isocurvature modes, so the
isocurvature spectrum is identical to the curvature spectrum
and the cross spectrum vanishes.

FIG. 4 (color online). Multiplicative double polynomial potentials, Vð�1; �2Þ ¼ M4�2
1j�2jp, with canonical kinetic terms and with

� ¼ 45�.
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3. Spectral observables

Now we let the initial conditions and the power to which
the �2 field is raised both vary at the same time. We
determine how these variations affect our set of power
spectrum observables, and we determine which scenarios
are consistent with observational constraints.

First, we consider the three quantities that depend on the
relative amplitudes of the power spectra: rT , rC, and fiso.

Figure 3(a) shows that except for the very small band of
trajectories in which both fields about equally contribute to
the inflationary dynamics, rT does not seem to depend on
the initial conditions, but only on the power to which the
dominant field is raised. As p increases, so does rT . By
comparison, Fig. 3(b) shows that the cross-correlation
ratio—which also serves as a measure of how much the
curvature modes are sourced by the isocurvature modes—

FIG. 5 (color online). Multiplicative double polynomial potentials, Vð�1; �2Þ ¼ M4�2
1j�2jp, with canonical kinetic terms.
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exhibits more variation, increasing the more the subdomi-
nant field contributes to the inflationary dynamics. The two
ridges coincide with the trajectories with the largest turn
rates, which correspond to scenarios in which the subdo-
minant field starts to pick up more speed as the dominant
field ends inflation. To the left of the first ridge, �2 domi-
nates the inflationary dynamics, while to the right of the
second ridge, �1 dominates. The deep and narrow gorge-
like feature between the two ridges corresponds to scenar-
ios in which the fields are essentially equally codominant
such that the turn rate is very small and hence the cross
correlation is tiny. Only for this small subset of scenarios
where the fields codominate is the isocurvature fraction
large, as shown in Fig. 3(c); otherwise, the isocurvature
fraction is small.

Next, we consider the derivative quantities associated
with the power spectra: the spectral indices nT and nR, and
the running of the curvature spectral index, 
R. The plots
for both �nT � 2� [Fig. 5(d)] and �nR [Fig. 5(e)] are
very similar in profile, since the speed up rate and loga-
rithmic running of TRS produce very small deviations from
scale invariance, which serve to slightly increase the value
of �nR relative to �nT . The values of these two spectral
indices are greatest for those scenarios in which �2 domi-
nates or codominates, and they increase as p increases.
Also, we note that the larger p is, the larger � must be for
the fields to be codominant. As nR itself does not have
much scale dependence, the running of the curvature spec-
tral index is very small and negative for these models, as
shown in Fig. 5(f).

Finally, we examine which inflationary scenarios pro-
duced by this type of model can be ruled out by the 95%
confidence limits on the combination of ns ¼ 1þ nR and
rT . According to these limits, the single-field potential
V / �4 is ruled out, but the single-field potential V / �2

is still a viable candidate for describing inflation [85].
Therefore, whenever the �1 field, which is raised to the
second power, dominates, the inflationary scenario is con-
sistent with observational data. This corresponds to higher
values for ns and lower values for rT , as shown in Fig. 5(g),
and this corresponds to the rightmost white region in
Fig. 5(h). However, when the �2 field dominates or codo-
minates, whether the scenario is viable depends on the
power to which the �2 field is raised. Scenarios in which
p * 3:2 and�2 dominates or codominates are ruled out by
observational constraints.

Taken together, these results suggest that multiplicative
double polynomial potentials with canonical kinetic terms
produce nearly scale-invariant power spectra that are de-
termined primarily by the field that dominates the infla-
tionary dynamics, or by both fields if they are codominant,
with corrections from the subdominant field. As a result,
the power to which the dominant field (or codominant
fields) is raised determines whether the scenario is ex-
cluded by current observational data. Also in these scenar-

ios, the isocurvature and cross spectra is typically smaller,
but possibly detectable, if unaffected by reheating and
other postinflationary processes. Therefore, we can view
the role of initial conditions in these models, in conjunction
with the powers the two fields are raised to, as being to
determine the dominant field (or whether the fields are
codominant) and to set the size of the corrections from
the subdominant field.

C. Double quadratic potential
with canonical kinetic terms

The second class of inflationary models we investigate is
the double quadratic potential with canonical kinetic terms.
We define double quadratic potential to mean all potentials
of the form

V ¼ 1
2m

2
1�

2
1 þ 1

2m
2
2�

2
2: (150)

This inflationary model falls under the general category of
additive or sum potential models, V ¼ P

iVið�iÞ, where Vi

is a function only of the ith field. Additive models with
canonical kinetic terms have the feature that the given
fields are noninteracting, so they interact only gravitation-
ally. Here, the adjustable Lagrangian parameter is the ratio
of the masses, m2

m1
, and we take m2

m1
� 1.

1. Varying the initial conditions

First, we vary the initial conditions while holding the
mass ratio m2

m1
fixed. We set m2

m1
¼ 5 since this mass ratio

produces trajectories with moderately fast-turning behavior.
The trajectories produced by this model [Fig. 6(a)] and

associated kinematical quantities [Figs. 6(b)–6(d)] depend
significantly on the initial conditions and roughly separate
into three subsets of behavior. The first subset of scenarios
starts sufficiently close to the�1 axis such that the�1 field
dominates the energy density during the last 60 e-folds of
inflation. For these trajectories, the field vector essentially
rolls down the �1 axis, producing typical slow-roll infla-
tion with at most a small turn rate.
The second and largest subset of trajectories consists of

those that experience �2 domination 60 e-folds before
inflation ends, but have an initial angle � & 80�. For these
trajectories, the more massive �2 field initially dominates
the energy density, driving the field vector toward the �1

axis. Eventually, once �2 becomes sufficiently small, �1

takes over as the dominant field, causing the trajectory to
turn significantly in field space, before rolling down the�1

axis and ending inflation.13 Since �2 dominates the

13We note that when using the exact equations of motion, the
trajectories with �	 70� will oscillate about the �1 axis around
the time that the field trajectory turns sharply in field space. As
mentioned earlier, we will not be addressing these oscillations
and any subsequent particle decays that arise, but rather simply
point out that these oscillations arise as a consequence of the
classical background dynamics for certain combinations of the
initial conditions and sufficiently large values of the mass ratio.
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dynamics before the turn, while�1 dominates the dynamics
after the turn, these inflationary scenarios can be considered
to have two distinct phases of inflation. Exploring the
kinematics of these scenarios in Figs. 6(b)–6(d), we find

that as the field vector approaches the �1 axis, � increases
substantially reflecting the fact that�2 picks up speed. But
then as�2 domination gives way to�1 domination, � drops
significantly, essentially resetting itself for a phase of �1

FIG. 6 (color online). Double quadratic potentials, Vð�1; �2Þ ¼ 1
2m

2
1�

2
1 þ 1

2m
2
2�

2
2, with canonical kinetic terms and with m2

m1
¼ 5.
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domination. During the transition between the phases, the
turn rate [Fig. 6(d)] dramatically and transiently increases,
and the trajectory turns significantly in field space; however,
this peak in the turn rate occurs slightly after the large
negative drop in the speed up rate. In general, we find that
the larger the initial angle � is, the larger the speed up and
turn rates arewhen they peak inmagnitude, the narrower the
peaks, and the closer these peaks occur to the end of
inflation. As this subset of scenarios represents the case in
which the speed up rates and turn rates are comparable
around similar times during inflation, we therefore expect
the multifield effects to be substantial.

The third subset of scenarios are also characterized by
initial �2 domination 60 e-folds before inflation ends but
have initial angles � * 80�. The difference is that for these
scenarios, the �2 field picks up enough speed for inflation
to end while the�2 field still dominates the energy density.
Eventually, a second phase of inflation driven by the �1

field will occur sometime later. As mentioned earlier, these
more complicated scenarios are beyond the scope of this
work, so for simplicity, we calculate the inflationary dy-
namics by treating these scenarios as if they consist of only
one phase of inflation, with typical slow-roll behavior and
at most a very small turn rate. We refer the interested reader
to [38] to see in detail how one might handle these more
complicated scenarios.

Now we consider the two transfer functions TSS
[Fig. 6(e)] and TRS [Fig. 6(f)]. For all three subsets of
scenarios, whenever the fields are in the superhorizon
SRST limit, TSS decays gradually. However, for the second
subset of scenarios, during the transition between infla-
tionary phases, TSS varies dramatically. Initially, the drop
in � (or equivalently, the large negative speed up rate)
strongly enhances the isocurvature modes, and then the
subsequent large turn rate strongly suppresses the modes.
After the turn, ~M?? remains high and the speed up rate
gradually increases again, so that TSS ��1 for all modes
that exit the horizon both before and after the turn. This is
exactly the behavior for TSS that we expect in inflationary
scenarios with large turn rates. The second transfer func-
tion, TRS , satisfies TRS � 1 for the first and third subsets
of scenarios, because of their small turn rates. But TRS
becomes larger than 1 by the end of inflation and exhibits
significant scale-dependent features for the second subset
of scenarios. For these scenarios, TRS starts off small, but
when the turn rate rises dramatically, so too does TRS. The
steepness of the increase in the turn rate is indeed reflected
in the steepness of the rise in TRS , and after the sharp turn,
TRS levels off. Also, the value of TRS at the end of
inflation is largest for those modes that exit the horizon
around the time the turn rate is large. For modes that exit
the horizon after the sharp turn, the value of TRS at the end
of inflation is negligibly small.

Lastly, we examine the resultant power spectra in
Figs. 6(g)–6(i). For the second subset of scenarios, the

curvature power spectrum is strongly scale dependent at
horizon exit, largely reflecting the transient rise and fall of
� during the transition between inflationary phases. Since
we are calculating the spectra to second order, the peaks
are much more dramatic than those that arise at first order
in the SRST approximation. Interestingly, despite the
strong scale dependence of the curvature spectrum at hori-
zon exit, this scale dependence is largely blunted by the
sourcing of curvature modes by isocurvature modes, so the
curvature spectrum has a much weaker scale dependence at
the end of inflation. The net result is that the two phases of
inflation are distinctly evident in the final power spectrum,
and appear roughly as if the equivalent single-field power
spectrum from the second phase was essentially appended
to the equivalent single-field power spectrum from the first
phase, modulo a small transition region. In all cases shown,
since the large turn rate produced TSS ��1, the cross and
isocurvature spectra are all vanishingly small, with ampli-
tudes on the order of 10�20 or even much less.

2. Varying the Lagrangian parameter

Now we vary the mass ratio while holding the initial
condition fixed at � ¼ 45�.
The trajectories produced [Fig. 7(a)] and the associated

kinematical quantities [Figs. 7(b)–7(d)] depend strongly on
the mass ratios of the fields. For our fixed initial condition
� ¼ 45�, trajectories with a mass ratio of around 1 are
approximately straight 45� lines in the flat field space,
representing the fact that the two fields about equally
contribute to the field dynamics. For mass ratios m2

m1
* 2,

the trajectories turn through roughly 90� in field space, but
the rate at which they complete this turn varies dramati-
cally. The greater the mass ratio, the sharper the turn is in
field space, as before the phase transition, the more mas-
sive�2 field initially decreases faster than the�1 field. For
mass ratios in the range of about 1 & m2

m1
& 3, both fields

significantly contribute to the energy density. These sce-
narios exhibit typical slow-roll behavior, with small but
still significant turn rates. For mass ratios m2

m1
* 3, the turn

in the trajectory is sharper and occurs largely within a
couple to several e-folds of inflation, reflecting the two
distinct phases of inflation we discussed earlier. The larger
the mass ratio, the sharper the turn and the larger and more
abrupt the increase and subsequent decrease in �. For very
large mass ratios (not shown), inflation ends while the
dynamics are still dominated by �2. Such scenarios are
similar to those that we classified as being under the third
subset of scenarios in the previous section.
The coefficients of the lowest-order effective mass ma-

trix support our claims in this and the previous sections
about the types of trajectories that can be produced by
double quadratic potentials with canonical kinetic terms
(analysis not shown). The matrix coefficients vary by a few
orders of magnitude over the region of field space shown,
and they depend strongly on the combination of the initial
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conditions and the mass ratio of the fields. For a large
fraction of the different possible combinations of the initial
conditions and mass ratio, the speed up rate (

�k
v � � ~Mkk)

will be larger than the turn rate ( �?
v � � ~Mk?), and the

speed up rate and turn rates are greatest near the axes.
However, for mass ratios typically greater than about 5, the
SRSTapproximation breaks down close to the�1 axis, and
both ~Mk? and ~M?? typically increase by a few orders of

FIG. 7 (color online). Double quadratic potentials, Vð�1; �2Þ ¼ 1
2m

2
1�

2
1 þ 1

2m
2
2�

2
2, with canonical kinetic terms and with � ¼ 45�.
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magnitude and reach their largest values near the �1 axis.
This corroborates both our earlier results and the results in
this section that trajectories with larger mass ratios that
approach close to the �1 axis will turn quickly and have
their isocurvature modes be rapidly suppressed thereafter.

Indeed, we find that the isocurvature modes [Fig. 7(e)]
are initially steadily damped in the six scenarios depicted,

but for those trajectories that later turn rapidly in field
space, their isocurvature modes experience a transient
boost from the drop in �, followed by a rapid suppression
from the subsequent larger turn rate. By the end of infla-
tion, all isocurvature modes have been strongly suppressed.
The net effect of the turn rate’s behavior and the suppres-
sion of isocurvature modes on TRS is shown in Fig. 7(f).

FIG. 8 (color online). Double quadratic potentials, Vð�1; �2Þ ¼ 1
2m

2
1�

2
1 þ 1

2m
2
2�

2
2, with canonical kinetic terms.
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For small values of the mass ratio, TRS is small and largely
scale independent. However, as the mass ratio increases,
TRS significantly increases in value and becomes more
scale dependent. As in the previous section, TRS increases
dramatically when the turn rate is large, and then levels off.
The value of TRS at the end of inflation increases as the
mass ratio increases and is largest for those modes that exit
the horizon around the transition from �2 to �1

domination.
The resultant curvature power spectra are shown in

Figs. 7(g) and 7(h). As in the previous section, the curva-
ture power spectrum exhibits strongly scale-dependent
features for those trajectories that correspond to two dis-
tinct phases of inflation, but is nearly scale invariant for
trajectories that exhibit very little turning in field space.
Also, as in the previous section, the scale dependence at
horizon exit is largely blunted by sourcing effects, so the
final curvature spectrum has a much weaker scale depen-
dence, and the two phases of inflation are distinctly evident
in the final power spectrum. Lastly, the cross spectrum
[Fig. 7(i)] is small and only marginally significant for those
trajectories with small but nonzero turn rates. Similarly, the
isocurvature spectrum [Fig. 6(j)] is only marginally sig-
nificant for the trajectories with zero or very small turn
rates, but still is a few orders of magnitude smaller than the
curvature spectrum; for all other trajectories, it is negligi-
bly small.

3. Spectral observables

Now we vary both the initial conditions and the mass
ratio, and we determine how these variations affect our
spectral observables. Using this information, we determine
which scenarios are consistent with observational
constraints.

First, we consider the three quantities that depend on the
relative amplitudes of the power spectra. The tensor-to-
scalar ratio is rT � 0:13, regardless of the initial conditions
and the mass ratio, as shown in Fig. 8(a). By comparison,
the cross-correlation ratio [Fig. 8(b)] varies dramatically
and can be large, particularly as � decreases and m2

m1
in-

creases, but is vanishingly small when one field dominates
the dynamics during the last 60 e-folds of inflation. When
the cross-correlation ratio is large, the isocurvature fraction
[Fig. 8(c)] is negligibly small, but when the cross-
correlation ratio is small, the isocurvature fraction be-
comes significant, reaching values of up to about 0.015.

As for the multiplicative double polynomial potentials,
the plots for both �nT [Fig. 8(a)] and �nR [Fig. 8(b)] are
quite similar to each other, illustrating that the main con-
tribution to the spectral indices is from �. Interestingly, the
deviations from scale invariance stemming from the speed
up and turn rates appear to largely cancel each other out.
Here, though, the spectral indices depend strongly on the
initial conditions and the Lagrangian parameter. This is
particularly true for mass ratios above m2

m1
� 3, for which

the greatest deviations from scale invariance occur for
small initial angles. This is because these trajectories cor-
respond to scenarios where the turn rate is large around the
pivot scale. The significant scale dependence of nR is
reflected in the large magnitude of 
R for certain combi-
nations of initial conditions and the mass ratio, as shown in
Fig. 8(d).
Finally, we examine which combinations of the initial

conditions and the mass ratios can be ruled out based on
observations. Single-field V / �2 models are viable under
constraints on the combination of rT and ns, so it is
interesting to investigate the effect of adding a second
inflaton. Figure 8(f) shows that adding a second inflaton
can indeed change the viability of the quadratic potential.
Scenarios with mass ratios roughly above 3 and initial
conditions � & 45� are ruled out by the 95% confidence
region in the ns � rT plane, largely due to the smaller
values of the scalar spectral index. Models with mass ratios
below about 2.5 are viable for all initial conditions.
Therefore, for this particular class of models, the power

spectra and associated observables are primarily deter-
mined by the mass ratio and whether one field dominates
the dynamics or not. Here, the role of the initial conditions
for mass ratios sufficiently larger than 1 is to determine
whether inflation consists of two separate phases, each
dominated by a different field, or consists of a single phase
where the two fields are codominant. When the field tra-
jectory corresponds to two distinct phases, these two
phases will be reflected in the resultant curvature spectrum,
which somewhat surprisingly is much less scale dependent
than the corresponding spectrum at horizon exit, due to the
fact that the scale dependences of the speed up and turn
rates largely cancel each other out. By contrast, for mass
ratios close to 1, the inflationary dynamics are much less
sensitive to the initial conditions and the curvature power
spectrum is close to scale invariant. In general, for these
models, the isocurvature and cross spectra are very small, if
not completely negligible, reflecting the larger turn rate
and effective entropy mass.

D. Double quartic potential with
canonical kinetic terms

A somewhat similar class of potentials to the double
quadratic potential is the double quartic potential, which
includes all potentials of the form

V ¼ 1
4�

4
1�

4
1 þ 1

4�
4
2�

4
2: (151)

Since the addition of a second field to single-field V / �2

models changes their viability in certain cases, it is inter-
esting to consider whether the addition of a second field to
the otherwise ruled out single-field V / �4 models makes
them viable for any particular combinations of the initial
conditions and the ratio of the coupling constants. Here, we
again take the kinetic terms to be canonical. We take the
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adjustable Lagrangian parameter to be the ratio of the

coupling constants, �2

�1
, where �2

�1
� 1.

As it turns out, the results for the double quartic potential
are similar in most ways to those for the double quadratic
potential, so we keep this discussion short. Separately
varying the initial conditions and the ratio of the coupling

constants, we find very similar results for the trajectories,
kinematics, transfer functions, and power spectra (plots not
shown) as for the double quadratic models. However, there
are a few important differences worth mentioning. For
those trajectories that turn significantly in field space,
they turn a bit farther out from the �1 axis, representing

FIG. 9 (color online). Double quartic potentials, Vð�1; �2Þ ¼ 1
4�

4
1�

4
1 þ 1

4�
4
2�

4
2, with canonical kinetic terms.
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the fact that the�2 field is still appreciably evolving during
the �1-dominated phase. As a result, the turn rate is a bit
smaller for these scenarios and the isocurvature modes are
less strongly damped in the second phase of inflation, and
so the isocurvature and cross spectra tend to be orders of
magnitude larger. Also for these trajectories, the speed up
rate tends to be a bit larger in magnitude, so � peaks at a
higher value before �1 domination begins in earnest. This
also results in a higher boost in the amplitude of isocurva-
ture modes during the transition between �2 and �1 domi-
nation. Lastly, the curvature power spectra produced by
double quartic potentials naturally have larger spectral
indices, just like the single-field quartic potential.

In Fig. 9, we illustrate the ranges of values that the
double quartic models can produce for the spectral observ-
ables. Since the kinematics are quite similar to those for the
double quadratic models, it is no surprise that these ob-
servables share many of the same features. The main
differences are that the tensor-to-scalar ratio is about twice
as large with a value of rT � 0:26; the spectral indices nT
and nR are larger in magnitude, with their peak values
being roughly 3 times higher and the differences between
the two being proportionally greater; and the amplitude of
the running of the curvature spectral index is significantly
larger. The net result of both rT and nR being larger in
magnitude (and hence ns being smaller) is that the double
quartic model does not produce any scenarios falling in the
allowed region in the ns � rT plane. Therefore, adding a
second inflaton does not make these models viable. In fact,
it makes things worse by decreasing the value of ns and
hence shifting the scenario farther away from the allowed
region in the ns � rT plane.

E. Double quadratic potential with
noncanonical kinetic terms

In the previous sections, we chose to investigate simple
inflationary models that represent the most common types
of kinematical behaviors. In this section, we consider the
addition of noncanonical kinetic terms, and in doing so, we
also investigate the remaining unexplored kinematical
limit: �?

v � �k
v .

The last class of models we consider is the double
quadratic potential in Eq. (150) but with the addition of
noncanonical kinetic terms in the form

G ¼ 1 0
0 e2b�1

� �
; (152)

where b is a constant. The form of the field metric in
Eq. (152) is the same as that which appears in Brans-
Dicke theories after transformation to the Einstein frame.
The Ricci scalar for this field metric is

R ¼ �2b2; (153)

so in keeping with our assumption that jRj & 1, we require
that jbj & 1ffiffi

2
p � 0:71. For these models, we vary the

Lagrangian parameter b, while holding the mass ratio fixed

at m2

m1
¼ 2. This will allow us to see whether the addition of

noncanonical kinetic terms to a model that is otherwise
allowed by observations can affect the model’s viability.

1. Varying the Lagrangian parameter

Since the dependence of the kinematics, transfer func-
tions, and power spectra on the initial conditions can be
inferred from Sec. III C 1, we skip directly to varying the
Lagrangian parameter, b, while holding the initial condi-
tion fixed at � ¼ 45�.
In Fig. 10(a), we plot the resultant trajectories relative to

the�1 ��2 coordinate plane, which we call the field space
for short, and we remind the reader that the field manifold
no longer coincides with field space when the kinetic terms
are nontrivial. For our fixed initial condition � ¼ 45�,
varying b leads to trajectories starting and ending in very
different regions of field space, and hence they correspond
to quite different starting and ending values for the
potential. Also, the trajectories produced have different
curvatures from each other, regardless of whether they are
considered with respect to field space or the field manifold.
When b ¼ 0, both the fields contribute to the inflationary
dynamics during most of the last 60 e-folds of inflation. For
negative values of b, the more negative b is, the more
strongly the field vector is initially driven toward the �1

axis, and the more inflation tends to consist of two distinct
phases, with the first phase dominated by�2 and the second
dominated by �1. Conversely, the more positive b is, the
more the field vector is initially driven toward the �2 axis.
If b is sufficiently large and positive, then two distinct
inflationary stages emerge: initially �1 evolves much
more than �2, but eventually �2 speeds up substantially.
But here, unlike in previous examples, the evolution of the
less massive field dominates the first inflationary stage, as if
the large positive value of b effectively increases the mass
of the �1 field. Also, unlike previously, although one field
initially evolves much faster than the other, both fields
significantly contribute to the potential energy density.
Depicted in Figs. 10(b)–10(d) are the associated infla-

tionary kinematics, which in many ways can be inferred
from our previous discussions, so we just make three
new points. First, the larger the magnitude of b, the
greater the maximum value of the turn rate tends to
be. Second, the two trajectories corresponding to large
negative values of b have similar kinematics to double
quadratic models with large mass ratios and canonical
kinetic terms; for this reason, we can think of negative
values of b as effectively increasing the mass of the �2

field. Third, we point out that the trajectory correspond-
ing to b ¼ 0:5 represents the interesting but less com-
mon case where �?

v � �k
v for many e-folds of inflation,

which corresponds to the sourcing effects dominating the
growth of adiabatic modes. This last special scenario
rounds out our coverage of the various possible kine-
matical behaviors.
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Figures 10(e) and 10(f) show the transfer functions
for these scenarios. Relative to the b ¼ 0 trajectory, the
larger b is in magnitude, the greater the damping of iso-

curvature modes. Sufficiently large and negative values of
b affect the transfer functions TSS and TRS in a similar
manner to large mass ratios. That is, the isocurvature

FIG. 10 (color online). Double quadratic potentials, Vð�1; �2Þ ¼ 1
2m

2
1�

2
1 þ 1

2m
2
2�

2
2, with the noncanonical field metric G ¼

diagð1; eb�1 Þ and with � ¼ 45�.
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modes are initially boosted by the drop in � during the
transition between phases and are then suppressed by the
subsequent larger turn rates and effective entropy masses.
Also, when the turn rates are large, the function TRS
increases dramatically in value but then levels off. At
the end of inflation, TRS is quite scale dependent for

these values of b, being largest for those modes that exit
the horizon while the turn rate is significant. For trajecto-
ries with positive values of b, the background kinematics
are less scale dependent, so the isocurvature modes are
suppressed more gradually and evenly, and the function
TRS is less scale dependent and smaller, with its value

FIG. 11 (color online). Double quadratic potentials, Vð�1; �2Þ ¼ 1
2m

2
1�

2
1 þ 1

2m
2
2�

2
2, with the noncanonical field metric G ¼

diagð1; eb�1 Þ.

COURTNEY M. PETERSON AND MAX TEGMARK PHYSICAL REVIEW D 83, 023522 (2011)

023522-42



reflecting the size of the turn rate. As before, an analysis of
the coefficients of the effective mass matrix is in agreement
with these findings, and also shows that the Ricci scalar
curvature term only slightly decreases the damping of
isocurvature modes.

Figures 10(g)–10(j) show the resultant power spectra.
Many of the same results as for the double quadratic
potential with canonical kinetic terms carry over here, in
that the transfer function TRS blunts much of the scale
dependence of the curvature spectrum at horizon exit.
Interestingly, positive values of b make the curvature
power spectrum at the end of inflation more scale invariant
than the corresponding spectrum at horizon exit and than
the final curvature spectrum for the b ¼ 0 scenario. Indeed,
the flatness of the curvature spectrum for the b ¼ 0:5
scenario is remarkable, suggesting that a significant and
sustained turn rate accompanied by a significantly smaller
speed up rate (an example of the limit �?

v � �k
v ) provides a

way of achieving a very highly scale-invariant curvature
spectrum. We also point out that the smaller b is, the larger
the cross and the isocurvature spectra tend to be, though
both are at least a few orders of magnitude smaller than the
curvature spectrum at the end of inflation. Interestingly,
the isocurvature spectrum for the b ¼ 0:5 scenario shows
significantly greater power on smaller scales.

2. Spectral observables

Now we vary both the initial conditions and the
Lagrangian parameter b to determine their effects on
the spectral observables. In Figs. 11(a)–11(e), we plot the
values of the parameter b in decreasing order so that more
of the two-dimensional surfaces representing these observ-
ables are visible.

Figure 11(a) shows that the parameter b can dramati-
cally affect the tensor-to-scalar ratio. When b ¼ 0, rT �
0:13 regardless of the initial conditions. Negative values of
b do not affect this result much. However, for positive
values of b, the larger initial angle, the smaller rT is,
reflecting the fact that the turn rate is larger, while � and
the speed up rate are still small. The cross-correlation
ratio, shown in Fig. 11(b), has a complex dependence on
the initial conditions and b. For b � 0, the correlation is
small. For negative values of b, the more negative b is, the
larger the correlation ratio is, and this is largely indepen-
dent of the initial conditions. For positive values of b, the
larger b is, the larger the correlation is for large angles, but
the smaller it is for small angles. These complicated de-
pendences largely mirror the turn rate profile. Interestingly,
the isocurvature fraction is minuscule for these scenarios,
peaking around fiso � 0:006 for b � �0:1 and � � 90�
[Fig. 11(c)].

Now we examine the key spectral indices. As for all the
other models we have considered, the profiles for �nT
[Fig. 11(d)] and �nR [Fig. 11(e)] are strikingly similar.
Here, the spectral indices are very small, except for more

negative values of b, for which the spectral indices are
moderately large for a significant fraction of initial angles.
The greatest differences between the two spectral indices
occur for models with large turn rates, and hence their
curvature spectral index gets a boost from the turn rate and
effective entropy mass. For the running of the curvature
spectral index [Fig. 11(f)], surprisingly, it is small in all
cases.
Finally, we examine which combinations of the initial

conditions and the Lagrangian parameter b can be ruled out
based on observations. The double quadratic model with a
mass ratio of m2

m1
¼ 2 and canonical kinetic terms is con-

sistent with observations. Adding the noncanonical kinetic
terms in Eq. (152) makes the landscape of kinematical
behaviors and spectral observables far richer and more
complex. Combinations of large negative or positive values
of b and moderate initial angles are ruled by the 95%
confidence region in the ns � rT plane. The former set
corresponds to large turn rates accompanied by large speed
up rates, with the result that this causes the curvature
spectrum to be too scale dependent to match observations.
The latter set corresponds to scenarios in which the kine-
matical behavior �?

v � �k
v causes the curvature spectrum to

be too scale independent, causing an inflationary model
that is otherwise consistent with observations to be ruled
out. Therefore, the addition of noncanonical kinetic terms
provides a powerful way to fine-tune a model, to achieve
the right amount of scale dependence in the density
spectrum, and to achieve a tensor-to-scalar ratio that is
consistent with observations.
Ultimately, this analysis, along with other analyses we

have performed in Sec. III, shows that having the right
balance of the field speed, the speed up rate, and the turn
rate (along with reasonable values for the effective entropy
mass) is critical for ensuring that the curvature power
spectrum is neither too scale dependent nor scale indepen-
dent and for achieving a tensor-to-scalar ratio that is con-
sistent with observations.

IV. CONCLUSION

A. Summary

In this paper, we have constructed a complete covariant
framework for understanding two-field models of inflation
with an arbitrary potential and with arbitrary noncanonical
kinetic terms. We have derived the power spectra to second
order in the combined slow-roll and slow-turn approxima-
tion, provided new insight into how the spectra can be
inferred mostly from the background kinematics and the
field manifold, and we have illustrated how to rigorously
test and constrain two-field models of inflation using ob-
servational data.
We started by considering the background dynamics in

Sec. II A. After simplifying the background equations of
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motion using covariant vector notation and the number of
e-folds as the time variable, we introduced a set of three
covariant quantities to understand the kinematics of the

background field vector: the field speed (v ¼ ffiffiffiffiffiffi
2�

p
), the

speed up rate (
�k
v ), and the turn rate ( �?

v ), where the third

quantity is unique to multifield inflation and hence can be
viewed as the marker of multifield effects. We used this
kinematical framework to generalize the standard slow-roll
approximation to two-field inflation, dividing it into two
separate parts: a slow-roll approximation to represent lim-
its on single-field-type behavior and a slow-turn approxi-
mation to represent limits on multifield behavior. We then
derived first- and second-order expressions for the back-
ground equations, and we introduced the mass matrix,
M ¼ ryr lnV, whose coefficients estimate the speed up
and turn rates.

In Sec. II B, we considered the perturbed equations of
motion. Working in terms of gauge-invariant quantities, we
simplified the equation of motion for the field perturbations
and showed that their evolution is determined primarily by

the effective mass matrix, ~M ¼ ryr lnV þ �R
ð3��Þ , where R

is the Ricci scalar of the field manifold induced by the field
metric. Thereafter, we rotated to the kinematical basis and
derived exact expressions for the evolution of adiabatic and
entropy modes. Working in the superhorizon limit, we
found a simple exact expression for the evolution of adia-
batic modes, revealing that the growth of adiabatic modes is
determined by the speed up and turn rates, with the turn rate
determining the degree of sourcing by the entropy modes.
Further, we found that the ratio �?

v =
�k
v , which controls the

relative contribution of mode sourcing to the growth of
adiabatic modes, can be viewed as indicating the relative
importance of multifield effects (provided that the entropic
modes are not too large or too small relative to the adiabatic
modes). This also has an aesthetic appeal, since the same
ratio provides a measure of the curvature of the background
trajectory at a given time. We also found approximate
expressions for the superhorizon evolution of entropy
modes, which is controlled by the effective entropy mass
(�?). From analyzing the behavior of the effective entropy
mass, we argued that assuming the effective entropy mass
and slow-roll parameters are constant [63–66] generally
leads to large inaccuracies in estimating the power spectra,
even in the SRST approximation. Finally, we used these
results to find semianalytic expressions for the superhor-
izon amplitude of the related curvature and isocurvature
perturbations, and we discussed how the general features of
their evolution can largely be inferred from the background
kinematics and the field manifold. For example, a large turn
rate produces strong sourcing of curvature modes by iso-
curvature modes, leading to a large boost in the amplitude
of curvature modes at the expense of a dramatic suppres-
sion of isocurvature modes.

Thereafter, in Sec. II B, we calculated and interpreted
the power spectra. To do so, we quantized the field pertur-

bations, solved the field perturbation equation in the three
standard regimes of interest, and matched the solutions
across the boundaries. After rotation to the kinematical
basis, we calculated the power spectra at horizon exit,
and then used the transfer matrix formalism [67,68] to
derive compact expressions for the curvature, isocurvature,
and cross spectra to second order in the SRST limit. We
found that to lowest order, the spectra depend on just four
functions (H, �, TSS , and TRS), which means that all
features of the power spectra can be traced back to five
fundamental kinematical parameters: H, �,

�k
v , �?

v , and

�?, which together are simply related to the value, gra-
dient, and Hessian of V, along with corrections from any
nontrivial geometry of the field manifold. We discussed
how exactly these background kinematics and the curva-
ture of the field manifold are reflected in the general
features and relative sizes of the spectra. For example,
for models with large turn rates, the curvature power
spectrum will be boosted and the cross and isocurvature
spectra typically will be several orders of magnitude
smaller, with profiles that reflect the scale dependence of
the turn rate, among other quantities. We also provided
conditions for when a two-field inflationary scenario be-
haves effectively like a single-field inflationary scenario.
Thereafter, we presented compact expressions for the
tensor-to-scalar ratio, spectral indices, and runnings of
the spectral indices, and a consistency relation among
them, and we showed how one can work backward to
reconstruct the background kinematics from these spectral
observables.
Finally, we illustrated for the first time how to rigorously

test two-field inflationary models against observational
data by incorporating initial conditions. We tested four
classes of inflationary models, varying both their initial
conditions and a characteristic Lagrangian parameter in
order to test tens of thousands of possible scenarios to
determine the types of kinematical behaviors and power
spectra they produce. The four classes of models we con-
sidered covered all three limits for the relative ratio of the
turn rate to the speed up rate, both distributed and abrupt
rolling and turning behavior, and noncanonical kinetic
terms. For our three classes of models with canonical
kinetic terms, we found that certain combinations of the
initial conditions and Lagrangian parameter for the multi-
plicative double polynomial and double quadratic poten-
tials are consistent with observational constraints on rT and
ns, but that double quartic models are completely ruled out,
as is the corresponding single-field potential. The multi-
plicative double polynomial models mostly produce sce-
narios in which one of the fields dominates the dynamics
and hence primarily determines the observables rT and ns,
so the power to which the dominant field is raised deter-
mines whether the scenario is consistent with observations.
The double quadratic and double quartic models produce
mostly scenarios in which either the fields codominate or
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one field dominates the dynamics, then followed by the
second field dominating. The latter scenarios possess large
turn rates around the transition between phases, so if the
transition occurs around the pivot scale, these scenarios
tend to be ruled out. The double quartic models, however,
are ruled out regardless of the initial conditions and cou-
pling constants, due to their larger values for rT and smaller
values for ns. Interestingly, the addition of noncanonical
kinetic terms to an otherwise viable double quadratic
model creates a far richer landscape of potential back-
ground kinematics and power spectra, resulting in a wide
range of values for the spectral observables, some of which
are consistent with observations and others are not. Of
note, certain choices of the field metric produce distributed
turning with �?

v � �k
v , making the curvature power spec-

trum more scale independent than in the equivalent case
with canonical kinetic terms. This means that the addition
of noncanonical kinetic terms may provide a mechanism
for fine-tuning models to match observations. Lastly, in the
vast majority of scenarios for all models tested, the iso-
curvature and cross spectra were at least an order of
magnitude or 2 smaller than the curvature spectrum.

B. Outlook

As mentioned in the Introduction, there are compelling
theoretical reasons to consider multifield inflation. This
paper provides a complete theoretical framework and set
of tools for parsing and analyzing two-field models of
inflation, making it easier to calculate the power spectra
and to understand what features a two-field model needs to
possess in order to be consistent with observational
constraints.

However, there are many outstanding issues that merit
further consideration. Particularly important is the issue
of initial conditions. How should we weigh the initial
conditions? Since many inflationary models have

attractorlike solutions, specifying initial conditions
60 e-folds before the end of inflation rather than at the
beginning of inflation may correspond to a radically
different measure on the space of trajectories and hence
predicted spectra. Also important are the natures of the
end of inflation and reheating. Some models predict
further postinflationary suppression of isocurvature per-
turbations, while others do not, complicating the use of
observational isocurvature bounds for constraining infla-
tionary models. It is therefore important to make further
progress in these areas in order to place tighter con-
straints on inflationary models.
As for the observational constraints themselves, we

have seen that the combination of scalar and tensor power
spectra alone have the potential to constrain or rule out
large classes of multifield inflation models. Since the
rapid progress in cosmic microwave background mea-
surement precision is likely to continue for some
time—with perhaps measurements such as the isocurva-
ture fraction or the correlation angle placing useful con-
straints on multifield models in the near future—it is
therefore timely to investigate multifield phenomenology
in greater detail.
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