
Developing a Paradigm for Visualizing Architecture using Computational Methods:
an Analysis of the Havana Project by Lebbeus Woods

by

Gregory E. Anderson

S.B. Art and Design
Massachusetts Institute of Technology, 1994

Submitted to the Department of Architecture in partial fulfillment of
the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1996

copyright 1996 Gregory E. Anderson. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic

copies of this thesis document in whole or in part.

Signature of Author:

)5 epartment of Architecture
May 10, 1996

Certified by:
r V

William J. Mitchell
Dean, School of Architecture and Planning

Thesis Supervisor

Accepted by:
Roy Strickland

OF TECHNOLOG Y

JUL 191996

Chairman, Departmental Committee on Graduate Students

1

LIBRAFIiES

Thesis Readers: Lebbeus Woods
Adjunct Professor of Architecture, Cooper Union

Developing a Paradigm for Visualizing Architecture using Computational Methods:
an Analysis of the Havana Project by Lebbeus Woods

by

Gregory E. Anderson

Submitted to the Department of Architecture
on May 10, 1996 in Partial Fulfillment of the

Requirements for the Degree of Master of Science

ABSTRACT

This thesis is concerned with developing a more detailed and efficient process for
visualizing architectural forms with computational tools. The thesis will examine
the origins of computer visualization and its current implementation to ascertain its
inherent deficiencies. A case study, in which a conceptual project by Lebbeus
Woods will be represented using this process, will serve as a means for examining
these deficiencies and proposing possible solutions. A series of studies will be con-
ducted to test the viability of such solutions and the results will inform the develop-
ment of a more structured model for applying computer visualization.

Thesis Supervisor: William J. Mitchell
Title: Dean, School of Architecture and Planning

Acknowledgments

I would like to extend my sincerest thanks to my Advisor, Bill Mitchell. Your

unwavering faith in me during the most difficult times has been truly inspirational.

To my family (Mom, Dad, Melanie and Dot) - Without you all, I would not have

made it through the many obstacles that were placed before me. Your uncondi-

tional love and sacrifices have made this possible.

To Dean Isaac Colbert - Your wisdom and guidance has been greatly appreciated

and will shape my character for years to come.

To Larry Sass - We both know that I could not have finished this without you.

Thank you for being a true friend and mentor.

To Lebbeus Woods - It was truly an honor working with you. Thank you for giv-

ing me the opportunity to learn from you.

To the Brothers of Kappa Alpha Psi - Thank you for helping me keep my sanity.

Last and definitely not least, my warmest thanks to Diane Holmes. I will never

forget your undying support and love that carried me through this all.

Table of Contents

Abstract

Acknowledgments

Chapter 1 Introduction

1.1 Introduction

Chapter 2 Background

2.1 Origins of Computer Visualization

2.2 Applications of Computer Visualization in Architecture

2.3 Visualization Issues

Chapter 3 Methodology

3.1 Intent

3.2 Modeling

3.3 Lighting

3.4 Rendering

3.5 Animating

3.6 Justification of Technical Experiments

3.7 The Case Study

3.8 The Architect

Chapter 4 Analysis

4.1 Analytical Intention

4.2 Purpose of Computer Visualization

4.3 Strategy

Technical Constraints

Design Analysis

Modeling

Lighting

Rendering

Animating

Chapter 5 Conclusion

5.1 Objective

5.2 Results: Design Analysis

5.3 Results: Modeling

5.4 Results: Lighting

5.5 Results: Rendering

5.6 Results: Animation

5.7 Justification of Methods

5.8 Computational Issues

5.9 Significance and Future Direction

Bibliography

4.4

4.5

4.6

4.7

4.8

4.9

Chapter 1

Introduction

1.1 Introduction

The thesis is concerned with examining and

developing the method of representing archi-

tecture using computer visualization. This

process combines computer-aided design

with physical-based simulation to produce

imagery for visualizing architectural spaces

and forms. While similar in purpose to more

traditional, hand-rendering techniques, com-

puter visualization involves a particular

methodology that differs in its execution.

This difference becomes significant for

determining how and when this method is

used. Since computer visualization for archi-

tecture is still in its infancy, an examination

of the process will help discern not only

proper techniques for clarifying spatial con-

cepts, but also better understand the

strengths and weaknesses of this medium.

The origins of computer visualization (CV)

will serve as a background for understanding

current and future uses. Computer visualiza-

tion, as a technology and a technique, was

initially developed nearly thirty years ago,

but has only evolved into a mere drafting

tool for many architectural practices. While

its ability to represent complex physical

environments is beginning to be explored by

a minority of architects, its true potential

remains to be discovered.

Visualization becomes of particular impor-

tance for understanding and developing

architectural concepts which can not or will

not be realized in any physical manifestation.

Herein, the thesis will use a project by Leb-

beus Woods as a case study for delineating a

methodology. Entirely conceptual in design,

such a project is uniquely suited for repre-

sentation in an environment not constrained

by physical limitations.

Computer visualization is a complex process

involving multiple layers of planning and

implementation. Traditional methods of

visual representation group many tasks into

broader and simpler steps. For instance, in

hand-rendering, light and textures can be

delineated simultaneously through the inten-

sity of pencil strokes. However, to achieve

similar effects using computational tools,

these qualities must be adjusted separately

then combined many times in the generation

of one computer image. Modeling, lighting,

rendering and animation are each separate

processes, inextricably linked to form an

entire visualization process. The thesis seeks

to examine all of these processes and their

relationships. In accomplishing this. the the-

sis seeks to illuminate the planning essential

to generating computer imagery and how it

is useful.

Fig. 2.1 - One of the first
sophisticated computer graphics
images. (CalComp, 1968)

Chapter 2

Background

2.1 Origins of Computer Visualization

Before discussing issues of CAD applica-

tions to architecture, it is necessary to relay

the origins of computer graphics, as a tech-

nology in itself. In the early 1960s, the con-

struction of computers was entering its

second generation. Transistors had replaced

vacuum tubes as internal relays and contrib-

uted to both an increase in speed of computa-

tion and a decrease in overall size of

machinery. These attributes allowed more

commands to be executed in a shorter

amount of time. This was essential to the

development of computer graphics. In 1963,

Ivan Sutherland, a Ph.D. student at Massa-

chusetts Institute of Technology, pioneered

the launch of computer graphics with the

development of Sketchpad (Lewell 1985).

This program initially used a pen pointer and

monitor to draw lines and shapes on the

screen. However, the true significance of this

software lied in its data structure, which was

based on object topology. Essentially, within

an object's data structure were descriptions

of relationships of the individual compo-

nents of an object. For instance, it could dis-

tinguish the fact that while an edge of an

object may be hidden from view, it still

existed and would be visible if the object

were transformed(scaled,translated or

rotated) in some manner. In this way, a clear

distinction was made between the data struc-

ture and the visible image on-screen (Lewell

1985). By recording the components of an

object and determining their positions in

relation to each other, this system foreshad-

owed computer-aided design and computer

visualization.

This breakthrough research sparked extreme

interest from industry and academia alike.

Fig. 2.2 - Image of 2D CAD
drawing

The development of computer-aided design,

which is simply the industrial use of com-

puter graphics for designing objects, soon

followed. While the simplification of CAD

into specific categories is hotly contested by

experts, the two areas that relate specifically

to use within an architectural framework are

drafting and geometric modeling. Drafting,

the least sophisticated technique of the two,

is the representation of 2-dimensional

mechanical drawings in plan or elevation, as

it were. Geometric modeling takes advantage

of the types of data structures mentioned ear-

lier and allows for the representation of 3-

dimensional objects. The definition of

objects can then be recorded by its edges,

surfaces or volumes, with an increasing

amount of data necessary for each method of

recognition.

Despite an abundance of breakthroughs in

CV, it did not begin to make a mark on the

architectural profession until the 1980s, and

even then, it was relegated to only the largest

firms, due to the prohibitively expensive

hardware. As the purpose of computers was

thought to be the enhancement of productiv-

ity during the document drawing process,

early CAD tools were only utilized for their

ability to compute repetitive functions. By

allowing the computer to handle the monoto-

nous tasks during this stage of the design

process, they were able to decrease the

amount of time needed for generating docu-

ments, thereby increasing their efficiency

and productivity. Hence, CAD existed pri-

marily as a drafting tool. geometric modeling

was hardly ever utilized. While this may

seem counterintuitive in the design of 3-

dimensional physical structures, there were

fundamental reasons for this occurrence.

First, the tools were not specifically designed

for use within the architectural design pro-

cess. Computation is inherently linear in its

execution. A series of commands must be

initiated, in a particular order, for a desired

result to be achieved. This method is con-

trary to many established practices architects

use to design structures. However, architects

also contributed to the inefficiency of CAD

for broader use, by not specifying their needs

to CAD developers. Architects, generally,

could not see how a computer, which ulti-

mately simplifies all decisions to true/false,

on/off or 1/0, could contribute in any mean-

ingful way to a process dependent upon

quantitative and qualitative decision making.

The fundamental flaw in this rationale,

which still pervades architecture today, is

that computational tools and methods can

not and should not be adapted to the stan-

dards of traditional ones.

2.2 Applications of CV in Architecture

Computer visualization in an academic set-

ting takes a completely different form than

CV in the profession. One primary reason for

this disparity is the structure of the academic

environment. First, many academic institu-

tions can provide greater access to computer

resources per person than firms. Many insti-

tutions are committed to providing students

with the best equipment currently available.

This results in students having access to the

latest technology, whether its hardware

(computers, peripherals, etc.) or software

(CAD programs, etc.). Additionally, a

sophisticated support system comprised of

manuals and expert help is normally avail-

able to maintain equipment and assist in the

use of software. This factor confines equip-

ment problems to those skilled in trouble-

shooting and removes this burden from the

user, in many cases. Also, particularly with

software, professors, teaching assistants, and

lab assistants can serve as resident experts on

the use of a specific computation tool.

The types of CV tools available in academia

differ significantly from those employed by

firms. Typically, the structure and implemen-

tation of CV tools reflects the variance of the

processes undertaken by architects and stu-

dents. Software used in academia is less spe-

cific to the necessities of architectural

practice. This flexibility permits the software

to be manipulated in a variety a ways which

may be unconventional or impractical for

practice; like rendering multiple frames for a

photorealistic computer animation which can

take hours or days of processing time. More-

over, there are usually a greater number of

tools with differing functions available. Spe-

cific programs exist for simulation of light-

ing effects, modeling, animation and a host

of other CV techniques which give students

the freedom to explore visualization across

multiple platforms. These advantages afford

students the increased flexibility they need

for expanding their academic pursuits.

Implementation of CV is carried out through

design studios and related coursework.

Design studios may vary in their requirement

for use of CV techniques. Depending on the

format of the studio and the project, compu-

tational tools may not be used at all. Others

will mandate a heavy use of them. The com-

mon thread that makes either situation better

for experimentation than that of a firm's

environment, is that both require the concep-

tualizing of forms and spaces that probably

will never be constructed in any physical

form other than small models. This liberty

from the practical constraints of building

construction allows for greater expansion of

theories and concepts which exist beyond the

scope of current architectural building tech-

nology. However, concepts of this nature

demand a high degree of development and

representation. Traditionally, this takes the

form of sketches, drawings and models, as

visualization is key to understanding spatial

and formal components of design ideas.

But, students, typically, are given the option

of choosing their own method of visualiza-

tion on most projects. For this reason, great

potential exists for advancing CV as a sup-

plementary means of representation along

with other traditional ones.

Other coursework which supports the experi-

mental nature of the academic environment

for supporting CV are actual visualization

courses. These classes specialize in depicting

architecture-related imagery. Normally, they

involve a series of small projects and one

final project, which make use of the tech-

niques taught during the course of the semes-

ter. Students are given a choice of buildings

that interest them, and then must manipulate

a particular building along specific guide-

lines. For example, a two-dimensional plan

drawing may be the first step, followed by a

three-dimensional model. From there, they

may be responsible for applying textures and

rendering the final building. The objective of

these types of classes differ with their focus

and complexity. While lower-level classes

may center on the process outlined above,

more advanced classes focus on explicit

techniques and theories related to visualiza-

tion.

2.3 Visualization Issues

Despite the use and potential of CV in the

academic environment, there still remains a

great deal of lost or untapped potential.

When dealing with CV, the focus centers too

heavily on the production of polished, final

images. These images are then scrutinized on

their clarity, composition, and usefulness to

evoking the ideas of the project. While those

issues are of importance, they do not com-

prise the total significance of CV because

final imagery does not relate the difficulties

involved with the translation process from

conventional media to computer media. In

other words, to represent images of physical

forms and spaces, drawings, models, and

photographs must be used as a basis to create

a computational model of the architecture.

That process is not straightforward and

encompasses a specific type of abstraction

with its own set of unique problems. Addi-

tionally, due to advances in CV technology,

photorealistic images can be generated rela-

tively quickly. Considering the short amount

of time required for the technology to reach

this level of refinement, it's evident that

future explorations in computer graphics will

have to focus in areas beyond photorealism.

The process for creating images, however, is

unexplored at best. By examining the intrica-

cies of this translation process, new and

clearer methods can be created which add a

different dimension to representing architec-

ture.

Chapter 3

Methodology

3.1 Intent

The primary purpose of this thesis is to ana-

lyze and develop the process of applying

computer visualization tools for the repre-

sentation of architectural forms. To examine

this process, a case project, an architectural

landscape designed by Lebbeus Woods, will

be translated into a digital model and further

developed through a series of lighting, ren-

dering and animation studies. The case was

selected because it possesses specific quali-

ties that are suited for representation in a vir-

tual environment. First, the project is unbuilt

and will not be carried through any construc-

tion-related phases. Second, the design is

entirely conceptual in its intention and scope.

No measured drawings will be used at any

time. Third, the project is delineated only as

a series of sketches and small-scale models.

These qualities allow the latitude necessary

to explore unconventional methods of repre-

sentation without the constraints of design

and construction issues. A sequence of

experiments will test the viability of said

methods and their use in representing the

physical characteristics of the landscape.

3.2 Visualization Phase: Modeling

During this stage of development, I will doc-

ument the steps taken to translate the ideas

portrayed in the architects' sketches and

models into a digital model. The intent is to

define how one merges design information

from two distinct, conventional mediums

into a computational environment. This will

be accomplished through analysis of the

landscape and the software . Technical con-

straints will play a significant role in the

abstraction of design elements to the compu-

tation environment.

Modeling experiments will also be con-

ducted to determine the benefits of particular

modeling techniques and their effect on files

sizes and image rendering.

3.3 Visualization Phase: Lighting

After construction of the initial digital

model, the author will conduct a series of

lighting studies to simulate various natural

and artificial lighting effects. All applied tex-

tures will be rendered as flat, mid-grey and

mid-brown tones, used strictly for examining

modeling details. They will also be

employed for introductory lighting studies

with software designed to determine sun

location and shadow position. Experiments

will be carried out that simulate the interac-

tion of natural light with the landscape,

based on the site's global coordinates, sea-

son, and time of day. These studies will

influence future lighting schemes, to be

designed in the original modeling environ-

ment, by providing qualitative and quantita-

tive data on the behavior of natural light. It is

anticipated that significant changes in the

digital model's design will take place during

the course of these lighting trials. Due to the

interdependence of the modeling and light-

ing, adjustments will be necessary to each, as

unpredicted information is received. The

complex relationship of planning, modeling,

and lighting will be explored and docu-

mented as encountered.

3.4 Visualization Phase: Rendering

During this stage, various images will be

rendered of the digital model using the mod-

eling, lighting and texture data. Due to the

complexity of the actual technical process of

generating imagery, only the factors which

are directly relevant to the completion of this

research will be studied and documented.

These factors affect image quality, rendering

speed, resolution and ray-tracing method. To

examine rendering methods, a series of tests

will be executed to compare each method's

performance and resultant image quality.

Additionally, one model will be rendered

with two separate rendering techniques to

determine the benefits of render speed vs.

image quality. Last, images of one model

will be rendered and timed using various

camera positions. This will assist the selec-

tion of particular final camera views based

on not just their aesthetic composition, but

their render performance as well.

3.5 Visualization Phase: Animation

The last phase will entail developing the ani-

mation of the digital model. Animation

involves creating a sequence of images in

which motion is simulated through an envi-

ronment, either through camera movement,

object movement or any other change in the

environment over time. While this technique

lends itself to a great deal of creative expres-

sion, the thesis will focus on the technical

details of how an animation is created. The

process of storyboarding, its description and

design, will be reviewed. The thesis will also

explore potential new methods of storyboard

development that are unique to computer

animation. Various methods of animation

will be analyzed and discussed, comparing

the processes of camera and object anima-

tion, detailing their uses and inherent quali-

ties.

3.6 Justification of Technical Experiments

Technical studies which gauge render times,

file size, and memory constraints are of great

significance in planning the size and scope of

a project that requires CV techniques. The

thesis will attempt to show the importance of

recognizing as many technical limitations as

possible, by examining how the software

interprets designl information from the user.

By documenting these "real-world" prob-

lems, the author can better understand and

therefore, anticipate, future obstacles, their

reason for existence, and methods for avoid-

ing them through technical and creative solu-

tions.

3.7 The Case Study

The case study being used is the Havana sea

wall project by Lebbeus Woods. In its con-

ception, the sea wall exists along a six mile

stretch of the Havana coastline and obstructs

the ocean during high tides of storm season.

The wall is comprised of independent wall

sections which rotate up to face the ocean

during high tide and rotate down to a hori-

zontal position, once the tide subsides. In its

horizontal position, it becomes an habitable

landscape between the boardwalk and the

ocean.

Fig. 3.1 - Plan view of sea wall

This project was chosen because it provides

an excellent opportunity to represent an

unbuilt, and arguably unbuildable, architec-

tural concept. The large, moving structures,

which would be impossible to represent

physically, lend themselves to depiction

through digital means which are better suited

for simulation. Additionally, since the

project is still under conceptualization, feed-

Fig. 3.2 - Design by Lebbeus
Woods (ANARCHITECTURE:
Architecture as a Political Act)

Fig. 3.3 - Design by Lebbeus
Woods (ibid.)

back from the architect is possible and will

enhance the discussion of CV for conceptual

projects.

3.8 The Architect

The author chose a design by Lebbeus

Woods because his work focuses on abstract

concepts within architecture. Measured

drawings and built structures are not neces-

sary for the discussion of his ideas. His work

relies heavily on its representation, most of

which is in the form of elaborate two-dimen-

sional drawings. Many of the structures he

has envisioned are dynamic, large scale

moving pieces of architecture, which seem to

defy real-world limitations. The interactions

between these structures can not be simu-

lated in any tangible way, other than small

models. However, CV provides a means of

simulating these interactions without the

physical constraints, thereby representing

them in an ideal form, analogous to the man-

ner in which they were originally conceptu-

PE

alized. Furthermore, his illustrations of these

environments possess certain cinematic

qualities that contribute greatly to under-

standing his design theories and lends itself

to interpretation through CV techniques.

Chapter 4

Analysis
4.1 Strategy

The analysis will examine the process of

visualizing architectural spatial and formal

components in a computational environment.

This will entail translating these components

from traditional sketches and models to a

digital model, in addition to analyzing other

computational methods for representation,

such as rendering and animation. By study-

ing this process through a case example, a

conceptual project by Lebbeus Woods, I

intend to document some of the inherent

inefficiencies of this medium and generate

possible solutions. Ideally, these efforts will

assist the development of a better paradigm

for understanding and using this process.

4.2 Purpose of Computer Visualization

Computer visualization exists as a means of

Fig. 4.1 - Havana Sea Wall by
Lebbeus Woods

clarification through abstraction. Abstraction

is defined as the quality of a thing that has

been separated from the thing itself (Perron

and Miller, 1993). Hence, through computa-

tional abstraction of a landscape, in this case,

a conceptual structure, integral elements are

extracted and idealized to form the basis of a

new virtual landscape. This provides for a

clearer understanding of the original because

the computational model illuminates the

relationships and patterns of the most funda-

mental aspects that define the landscape,

which would otherwise be obscured by the

complexities of the physical environment

(Perron and Miller, 1993).

In the case described here, a conceptual land-

scape is being represented. It exists only in

the form of drawings and models, as origi-

nally delineated by the architect (see Fig.

4.2) . Thus, it is already in an abstracted

form. However, due to the limitations of

conventional visualization techniques, I

argue that there remains a great deal of infor-

mation to be discovered through computa-

tional means. Since the virtual environments

created in the computer are not bound by the

conventions and laws of the physical world,

computer visualization seems uniquely

suited to represent an unreal, and arguably

already "virtual" landscape of this nature.

Fig. 4.2 - sketch of Sea Wall by

Lebbeus Woods

4.3 Strategy

Computer visualization (CV) involves a

series of individual processes with complex

interdependencies. While CV may seem to

progress in a linear fashion, (see Fig. 4.3) I

have found that it is more cyclical in nature (

see Fig. 4.4). For example, it is obvious that

Rendering and Animation depend on and are

informed by discrete Modeling information.

Generally, rendering is executed much faster

when proper modeling techniques are used,

which in turn, allows for faster generation of

animations. However, Rendering also

informs Modeling by illustrating model dis-

Fig. 4.3 - Linear model of
CV process

Fig. 4.4 - Cyclical model of
CV process

crepancies like gaps and overlapping sur-

faces (Kerlow 1995). Thus, it becomes

evident that a strategy must be developed

which anticipates this back and forth com-

munication and expedites it as much as pos-

sible. By observing the technical constraints

of the software and the design requirements

of the landscape, I can better determine how

to undertake each process, thereby minimiz-

ing this cyclical communication.

4.4 Technical Constraints

The primary software environment, Alias

Studio ver.6, serves as a multi-functional

platform capable of supporting much of the

visualization demands. It's fairly intuitive

GUI (Graphical User Interface) offers seam-

less integration of multiple viewing windows

for observing models in perspective, plan or

elevation. In addition, Alias possesses com-

prehensive functionality for manipulating

modeled objects. It has an extensive data-

base of functions to control construction of

various modeling elements. This flexibility

frees the user to create nearly any form

imaginable, which is essential for architec-

tural abstractions which employ complex

formal and spatial components.

Fig. 4.6 - NURBS curve

However, despite these advantages, Alias

does bear a few limitations. It's modeler

relies on NURBS (Non-Uniform, Rational

B-Splines) to create surfaces (see Fig. 4.6).

NURBS are defined, and ultimately con-

fined, by mathematical formulae which

determine the shape of a surface based on

weighted control vertices (Foley 1994).

While this feature can be a powerful tool, it

does constrain the alteration of surfaces to

mathematical functions, which can slow the

rendering of a model considerably by

increasing computation time (Kerlow 1995

). Other constraints involve lighting of mod-

els. Alias does not offer a means of comput-

ing accurate day-lighting simulations. These

are useful in architectural visualization by

Fig. 4.7 - Radiance image

Fig. 4.8 - Radiance Image

predicting how natural light interacts with

architectural forms (see Fig. 4.7 and 4.8).

While Alias provides a high degree of con-

trol over artificial light sources, the lack of

attention to natural lighting mandates the use

of Radiance ver. 2.5, an architectural lighting

package.

Radiance is a ray-tracing program which

allows for a high degree of control over

many of the variables essential to calculating

the behavior of natural light. Because it sim-

ulates the physics of light within a user-

defined environment, the user can achieve

precise, predictable lighting effects. By plac-

ing a model within this environment, sun

position and shadow qualities can be

obtained according to the model's positions

in global coordinates, date and time of day.

But, Radiance requires particular file formats

to translate model data, which Alias can not

provide. So, a conversion program was nec-

essary to transfer files from Alias to Radi-

wire
Alias

dxf

dwg

rad

oct

pic

Autocad

Radiance

Fig. 4.9 - File Conversion process
from Alias to Radiance

ance.

Autocad release 12 was used to accomplish

this task. Autocad can interpret DXF files

from Alias and , ultimately, convert them to

the files that Radiance needs to generate

imagery (see Fig. 4.9).

By examining the intricacies of the technical

constraints of the software, I was better pre-

pared to analyze the design components of

the case project. I could anticipate and push

the limits of the software, without sacrificing

modeling efficiency or time spent trouble-

shooting.

4.5 Design Analysis

Through analysis of the conceptual land-

scape, based on experience in the use of CV

and knowledge of the specific technical con-

straints of the software, critical elements can

be separated for abstraction to a computa-

tional environment. While the selection of

some elements may be software-specific,

depending on the software's power and limi-

tations, abstraction with these criteria can be

quite practical and revealing. As an example

of this, I examined a particular design com-

ponent of the case project.

Fig. 4.10 - Sketch of sea wall

Fig. 4.11 -Magnified sketch

The sea wall forms an intricate, undulating

tiled landscape with shade-giving outcrop-

pings that project from the surface (see Fig.

4.10). By magnifying the area that forms the

connection between the surface and outcrop-

pings, an even more complex tiled surface

becomes evident (see Fig. 4.11). Two sepa-

rate factors can help ascertain whether these

details should be considered and represented

literally in the computational model. First,

other imagery from a different medium (

physical models) can be examined. From

this data, for reasons not specified by the

designer, this tiling is not present (see Fig.

4.12). Also, an attempt to model these types

of details using NURBS would be extremely

/

Fig. 4.12 - Image of physical sea
wall model.

difficult and time-consuming. Thus, it can

be concluded that those details are not inte-

gral to representing and understanding this

landscape with respect to the software and

imagery in use. Perron and Miller support

this assumption in stating:

The physical environment is a complex
entity and therefore, it's not possible to
explore all aspects involved in its composi-
tion. Essential abstraction should deal with
the representation of aspects integral to the
physical world to extend our understanding
of reality.

While this landscape is only conceptual in

nature, it does present much of the layered

complexity of a physical environment, thus,

allowing it to stand as such, for the scope of

this thesis.

Computer visualization, ideally, enhances

the understanding of a landscape. For this to

happen, the landscape must be simplified, in

order to be converted to a language that the

software can interpret. Formal components

must be idealized to their underlying ele-

ments, (platonic solids, NURBS, etc.)

before being manipulated into more complex

geometries. Thus, necessity mandates the

inclusion of this design analysis step as part

of an ideal model for executing the CV pro-

cess.

Fig. 4.13 - Wireframe model

Fig. 4.14 - Hidden line wireframe
model

4.6 Modeling

The most critical step in CV is, by far, mod-

eling. Not only does it directly influence

image creation, the process is a powerful

visualization tool in and of itself. From a

wire-frame model, a user can glean a wealth

of information by rotating and manipulating

it in real-time(see Figs. 4.13 and 4.14). In

this way, modeling possesses the dual

attributes of drawing and physical modeling.

Gianni states:

In creating a computer model, then, one is
acutely aware of interacting with something
3-dimensional, yet, in the absence of a tactile
experience of the model, one's experience is
still limited to a 2-dimensional projected
views. Thus the computer model always
exists for the viewer somewhere between the
second and third dimension.

During construction of the computational

model, much can be learned about the land-

scape being represented. In the case exam-

ple, fundamental issues are addressed in the

beginning steps. Before the actual modeling

process can continue, the landscape's scale

must be established. This becomes espe-

cially important with a conceptual project of

this nature because no measured drawings

were completed for its realization. Scale,

then, becomes a basic component of analy-

sis. Without this, there is no way to deter-

mine the human relationship to the

landscape. Perron and Miller support this by

saying:

The physical world is composed of various
layers of reality dependent upon scale for its
perception and understanding. Spatial cog-
nition exists relative to the scale of the envi-
ronment at which the participant interacts.

Thus, a landscape without scale relationships

becomes impossible to inhabit, thereby con-

founding the unique capabilities of this

medium to assist visualization.

Fig. 4.15 - Plan and sections of
sea wall with human figure.

With the sea wall, the architect sketched

architectural plan and section views in rela-

tion to human figures (see Fig. 4.15). The

relationship between the wall and the figure

helps to calculate the relative size of the

wall, if the height of the figure is approxi-

mated and compared to the height/length of

the wall section. This knowledge allows an

equivalent computation unit of measure to be

determined. But, exact measurements aren't

really necessary. In a computational envi-

ronment, the user controls the views on the

screen by adjusting the camera's position

and lens. An object that is 1 foot in length

can, theoretically, appear to be 100 feet, by

placing the camera closer to the object and

adjusting the focal length, which is directly

proportional to the magnification of a scene (

Kerlow 1994). Therefore, true measure-

ments are inapplicable and of little use.

Fig. 4.16 - Polygon form of sea
wall section

according to the sketches. In analyzing the

section, the form of the wall can be idealized

to three distinct polygons (see 4.16). By

extruding these polygons along a straight

path, an idealized 3-dimensional wall section

is constructed (see Fig. 4.17). This relates

back to the previously discussed necessity of

establishing the integral, simplified qualities

of a landscape and constructing those first in

a computational environment. Details can be

developed later in the process.

Fig. 4.17 - Ideal wall section

Fig. 4.18 - Wall section with
grid

After construction of the tiled surface, which

was simply an irregular grid whose intersec-

tions were manipulated in 3d space (see Fig.

4.18) overlaid on the original wall section,

the edge conditions of the wall sections

could be addressed. The irregular edges evi-

dent in the sketches and models (see Figs.

4.19 and 4.20), while idiosyncratic in their

representation, were deemed essential to the

conceptual understanding of the landscape.

Multiple methods could be used to delineate

Fig. 4.19 - Sketch of wall edges

Fig. 4.20 - Model of wall edges

Fig. 4.21 - Model using trimmed
surfaces

these conditions. To determine which

method would be the most efficient and com-

patible with the constraints of the software, I

conducted an experiment with two separate

modeling trials. The goal of these trials was

to measure file sizes and rendering times for

one wall section that had been modeled

nearly identically with two separate, distinct

modeling processes.

Trial 1: Trimmed Surfaces

The first method of construction involved

trimming, a logical operation used to create

models by [conceptually] subtracting shapes

from [other] shapes (Kerlow 1993). By trim-

ming away a section shaped like the edge

condition from the original wall, a carved

edge on the original wall section was

achieved (see Fig. 4.21). This proved to be

relatively straight-forward and fast to

accomplish.

Trial 2: Patched surfaces

Fig. 4.22 - Model using patched
surfaces

The second method used entailed patching, a

process that connects 3d lines and curves (

splines) with gridded surfaces. I constructed

the second model by "tracing" over the

edges of the first model with splines and con-

necting these splines with patches. This

method was slightly more time-consuming

in its execution, but did represent nearly an

identical replica of the first model(see Fig.

4.22).

Results

Upon rendering both models, the differences

between the two process became readily

apparent. The differences were due to the

way in which the software interprets the

model based on the modeling function used.

The trimming process is not truly subtractive

in nature. Once the user specifies the area to

be trimmed away, the software does not

eliminate the model data, it simply hides it

from the view of the user. No data has been

removed. Because the patched surface was

Simple Complex

wire 189 KB 267 KB

29%

sdl 335 KB 390 KB

14%

render
time 4:03 mins 5:18 mins

23.5%
% savings

Fig. 4.23 - Diagram of file size,
render time, and % savings.

constructed without the data from the origi-

nal wall that was trimmed away, the model

file contained much less model data. Hence,

when both model files were examined and

rendered, the patched model provided signif-

icant savings in file size and render time (see

Fig. 4.23). These findings are advocated by

Kerlow:

In general, models that were built properly
render quicker than models that were built
clumsily... it is not uncommon to have to
return to the modeling stage, fix the model-
ing problems and then return to the rendering
stage with a proper model file.

Additionally, it was noticed that interaction

with the trimmed model within the software

interface slowed considerably, due in part to

increased file size. In conclusion, these

results confirm that while trimming may be

faster in it's execution, it can slow down ren-

dering substantially and increase file sizes,

both of which are undesirable for manipula-

tion and rendering of the model. This rein-

forces the importance of design analysis and

software constraint assessment, prior to

Fig. 4.24 - Sketch of sea wall
shading element

engaging in visualizing a landscape with

computational methods.

Construction of the wall shading elements

and the remaining wall sections was possible

after the previous experiment. As discussed

in the design analysis, the shading elements

were found to be highly idiosyncratic in their

depiction and varied greatly not just between

the models and the sketches, but also

between individual wall sections (see Fig.

4.24). The wall sections were found to pos-

sess these same qualities. However, by the

examining the sea wall as a whole, it was

found that while each wall section was

highly individual in its design, an overriding

archetype for the design of the elements was

discernible (see Fig. 4.25). Using this

archetype, I constructed a series of elements

which would serve as a basis for building the

wall in its entirety (see Fig. 4.26).

Computational tools provide an easy method
Fig. 4.25 - Sketch of entire sea
wall

Fig. 4.26 - Image of individual
shading element

for replication and transformation (transla-

tion, rotation, and scaling) of modeled

objects. For this case, with a small set of ele-

ments, through this method I was able to

generate a much larger set of elements that

were sufficiently dissimilar, without sacrific-

ing the great deal of time needed to construct

each one individually. Some argue that this

approach to using computational tools is det-

rimental to advancing the potential of the

medium. Smulevich states:

Those who are seriously incorporating CAD
into their design processes are generally
doing so by translating traditional architec-
tural compositional strategies into CAD
based operational terms ... notions such as

generating 3d components that define
"design kits" for repetitive, industrial like
assemblies only perpetuate a methodology ...
that predates our acquisition of alternate
design environments. We must question their
validity...

In my research, I have found that because

computational tools do, indeed excel at

repetitive tasks, then these functions should

be included when analyzing the tools' poten-

tial uses. In this case, it proved to be highly

47

Fig. 4.27 - Modeled entire sea
wall

efficient to make mass alterations of ele-

ments quickly. How these elements were

incorporated into the design scheme was the

task that could not be assigned to the soft-

ware. The results of this use of computation

are scarcely recognizable when the land-

scape is viewed in its entirety (see Figs. 4.27

and 4.28). For this reason, the work pre-

sented here disputes the validity of Smu-

levich's argument.

4.7 Lighting

Lighting is the crucial supplement to model-

ing, because, quite simply, without it, output

imagery would not be visible. Lighting

exists as an excellent resource for analysis of

landscapes by illuminating its modeled intri-

cacies, contrasts, and position in virtual

space. Computation provides multiple

methods for simulating natural, artificial and

non-existant lighting schemes. Each process

is vastly different in its effect nd execution.

For a forthcoming book by Steven Oles and
Fig. 4.28 - Modeled entire sea
wall

Fig. 4.29 - Photo of a kitchen

Fig. 4.30 - Radiance rendering
of the kitchen

William Mitchell, a photo rendition of an

architectural space was needed for compari-

son to an existing space (see Fig. 4.29).

Using Radiance (described previously), one

final still image was created with subtle, nat-

ural lighting effects (see Fig. 4.30). To

achieve this level of quality, many parame-

ters that control various lighting phenomena

were adjusted to near their maximum limits.

The end result was an image that took 216

hours to render. For the scope of that partic-

ular project, that amount of time for one

image was allowable. However, in lighting

the case example being analyzed here, much

shorter render times would be necessary and

the resultant imagery would serve a different

purpose.

Until this stage, in all previous renderings, a

basic spotlight was used to highlight model-

ing details. The placement of this light was

not based on any previously gathered data

and was not influential in any particular way.

Fig. 4.31 - Jun. 20, 7am. image

Fig. 4.32 - Jun. 20, 12pm. image

Because the site conditions are important to

the understanding of the landscape, I chose

to rely on Radiance for gathering site-related

lighting data.

The proposed sea wall landscape would be

sited along the northern coast of Havana,

Cuba. By inputting the latitude (23.07o)

and longitude (82.25o) into Radiance, ren-

derings were generated that possessed accu-

rate lighting data relative to those global

coordinates. In addition, the landscape was

rendered over various dates and times with

constant atmospheric conditions (see Figs.

4.31 - 4.36). This allowed for a clearer

description of the quality of light and

shadow within the landscape. With careful

observation, subtle differences in the inten-

sity of light, as it occurs in the physical

world can be seen. This level of accuracy

and complexity was useful for designing an

analogous scenario within Alias.

Fig. 4.33 - Jun 20, 5pm. image

Fig. 4.34 - Dec. 20, 7am. image

Fig. 4.35 - Dec. 20, 12pm. image

Fig. 4.36 - Dec. 20, 5pm. image

Alias provides an versatile interface for cre-

ation of artificial light sources with control

over such qualities as intensity, color and fal-

loff, but offers very little control over the

physics of natural light, found in Radiance.

For instance, within Alias, the user is given

no control over a factor called ambient

bounce. Within an enclosed, physical envi-

ronment a ray of light will reflect off all the

surfaces in the space and will continue to do

so to infinity. With each bounce, the ray will

decrease in intensity as some percentage of

the ray is absorbed by the material that

reflected it. While the computer obviously

can not handle infinite calculations, Radi-

ance gives you control over the number of

bounces a ray of light will take, thereby

allowing a finer degree of control over the

quality of light in a space. Without this level

of control, other methods must be used to

compensate. The challenge in this case, was

to develop a means of natural light with arti-

ficial sources. Using information gathered

Fig. 4.37 - Image with 1 direct-
ional light source

Fig. 4.38 - Image with multiple
light sources

from Radiance, I was able to approximate

the computational "sun"'s direction and

intensity using a directional light source,

which in Alias emulates very distant point

sources, like the real sun. However, in a

physical environment, light is scattered

through the atmosphere, thus complicating

the phenomenon. WIthout this scattering in

Alias, shadowed areas in scenes were very

dark(see Fig. 4.37). To compensate for this,

other ambient and non-shadow casting point

sources were included (see Fig. 4.38). The

results of this study were that while Alias

offers a high degree of control over artificial

sources, it is woefully inadequate for simu-

lating physical lighting. In contrast, Radi-

ance was well-suited for this task, but could

not handle the many other complex compu-

tational functions like modeling or animation

without a great amount of time and difficulty.

Therefore, careful planning and evaluation

of the types of imagery needed is required

before undertaking CV tasks involving light-

ing.

4.8 Rendering

Rendering is the process by which images

are created. It involves calculating a projec-

tion (perspective) of the model, according

to camera position and focal length. Visible

surfaces within the newly formed scene are

determined and finally shaded (Mitchell

1995). The shading entails some type of

light casting algorithm. Alias supports two

algorithms for generating final imagery: ray-

tracing and ray-casting.

Ray-tracing determines the visibility of sur-

faces by tracing rays of light backwards from

the camera, through the scene and back to its

original source. This tracing occurs for each

pixel in an image (Foley 1994). Ray-cast-

ing uses the same general algorithm with one

major difference. Ray-traced light, upon

striking a surface, is divided into numerous

component light rays (reflection, refraction,

Fig. 4.39 - Ray-cast image
Camera 1

Fig. 4.40 - Ray-cast Image
Camera 2

Fig. 4.41 - Ray-cast image
Camera 3

shadow, and transmitted) which are, in turn,

followed along their respective paths until

their termination. Ray-casting does not do

this, so it can not handle reflective or refrac-

tive surfaces and generally does not provide

the shadow quality of ray-tracing. In an

effort to ascertain the relative benefits of

both methods, I conducted a series of trial

renderings. One model was rendered with

both methods using multiple camera views (

see Figs. 4.39 - 4.44). The intent of these tri-

als was to compare image quality vs. image

render speed in an effort to determine the

trade-offs. A secondary goal was to deter-

mine how camera position affects render

speed.

The results of these trials showed that ray-

tracing provides crisper shadows and greater

illumination of details at the cost of

increased rendering times. Ray-casting pro-

vided less exact shadows and less detail, but

faster rendering times. Depending on the

Fig. 4.42 - Ray-traced image
Camera 1

Fig. 4.43 - Ray-traced image
Camera 2

Fig. 4.44 - Ray-traced image
Camera 3

type of imagery to be created, use of either of

these methods will vary. If accuracy is

essential, then ray-tracing is necessary. If

scenes don't require such functions as reflec-

tion or refraction or accurate shadows, then

ray-casting could be sufficient. It should be

noted that both algorithms took much longer

to render scenes with more geometry visible,

i.e. long and wide angle shots have more sur-

faces visible to the camera. This type of

study benefits the development of a CV para-

digm by providing knowledge of various

methods and outcomes, which allow for

more predictability, and thus, more control

over the appearance of images.

4.9 Animation

The final, yet optional, stage of CV is anima-

tion. While animation is not necessary for all

uses of CV, it can provide invaluable insight

in visualizing an architectural space. Anima-

tion involves a simulation of movement or

some change in environment over a period of

I

Fig. 4.45 - Animation motion
path

time. It is commonly used to visualize spaces

in a continuous manner analogous to how

people visually perceive real physical

spaces. This is achieved through two distinct

methods: camera animation and object ani-

mation.

Camera animation is most often utilized in

the development of architectural walk-

throughs. A motion path, which governs the

movement of the camera through a space, is

created within the environment to be ani-

mated. The camera then follows this path

from its start to the end, viewing the archi-

tectural space around the path (see Fig. 4.45

). Each subtle movement of the camera is

characterized with an individual frame, just

as in film or traditional animation. When

these individual frames are viewed at high

speed (24 frames per second for film and 30

frames per second for video), the illusion of

movement is created. This type of animation

is often called a walk-through or fly-by

Fig. 4.46 - Middle Passage
Project animation still

Fig. 4.47 - Middle Passage
Project animation still

because it simulates an experience of a

human moving through the modeled envi-

ronment.

The Middle Passage Project, produced by

Larry Sass and the author, is an example of

the use and effectiveness of this method of

animation. An unbuilt monument was

designed by Donald Stull and the animation

was created to give the experience of people

visiting the monument after construction (

see Figs. 4.46 - 4.47). The production team

applied Radiance software to generate the

imagery and used a specially written pro-

gram to control camera motion. This method

was ideal and efficient for this type of task,

since the architecture did not include any

other moving objects or special effects, like

changing atmospheric conditions or moving

water. To represent these kinds of effects,

object animation is better suited and serves

as an excellent complement to camera ani-

mation, particularly for studying the case

project presented here.

Fig. 4.48 - Animation image
Frame 1

Fig. 4.49 - Animation Image
Frame 75

Fig. 4.50 - Animation Image
Frame 150

An animation was created that metaphori-

cally represented the initial formation of the

landscape out of the pre-existing forms (see

Figs. 4.48 - 4.50). To accomplish this

involves setting what are called key frames,

special frames during the course of an ani-

mation that govern important positions of an

object at a specific time, like the starting and

ending position of a moving object. Once the

keyframes are established, the computer

interpolates the anticipated position of the

object between the key frames. For example,

a key frame was set before the landscape's

formation. This would be frame 1. At frame

150, the wall has risen completely from the

water, so another key frame is set at this

point. The software then calculates the posi-

tion of the wall at each frame between the

two keyframes. When the animation is then

viewed, the wall seems to rise from the water

in the span of 150 frames, or 5 seconds.

This method varies from the one used to cre-

ate the Middle Passage Project. Because the

software written to support animation within

Radiance did not include object animation,

key frames on the nature discussed previ-

ously could not be used. However, start/end

points of the motion path for the camera

could be specified, in addition to changes in

camera views. So, the software did conduct

a frame interpolation, but it was just

restricted to the motion of the camera. In

essence, the processes are similar but the

results are different. With Alias, it is possible

to combine camera and object animation

techniques together, to create a more visually

complex animation. This ability satisfies

dual requirements of simulating a person

moving through the space and the object

interacting with the environment or person.

To begin computer animation, as with tradi-

tional cel animation, a storyboard is first

developed. This documents key aspects of

Fig. 4.51 - Storyboard image

the animation in a still form through a series

of typically hand drawn pictures, with text

describing important parts of the scene, such

as lighting, camera changes, movement,

mood, etc. (see Fig. 4.51). Any changes in

the scene throughout the course of the ani-

mation process are depicted in the story-

board. This allows entire scenes to be pre-

visualized and planned which saves valuable

time in completing the final animation by

providing a framework of stills to the build

from. For this case, a mixture of hand drawn

and computer rendered images were used to

develop a storyboard. Additionally, the use

of computer rendered images provided

another unanticipated benefit. As discussed

previously, rendered scenes with wide angle

camera lens and long views of the environ-

ment took substantially more time to render

than scenes with tighter camera views, due to

the amount of geometry visible by the cam-

era. By comparing these two types of scenes

for the storyboard, the author could deter-

mine how often to use wide angle shots by

letting the render times limit the frequency

of use (see Fig. 4.52). In other words,

because rendering animations is already a

time consuming and labor intensive process

for the computer, using the storyboard in this

Fig. 4.52 - Computer image from method prevented rendering too many
storyboard

scenes that were time inefficient and exces-

sive. After the scene is storyboarded, most

CV tools allow the user to render test anima-

tions. Typically, these tests are low-quality,

small scale (one quarter to one half the size

of the final images) animations that provide

valuable information on the specific qualities

of the animation while being much faster to

render. These miniature animations can be

assembled to form movies (see Fig. 4.53)of

various formats (Quicktime, JPEG, etc.)

which can be examined repeatedly to ascer-

tain an element's actual appearance in rela-

tion to the desired appearance. If they do not

coincide, changes can be made in the CV

Fig. 4.53 - Animated "storyboard" tool's environment and the animation can be
SGI Moviemaker

quickly re-rendered until the desired effect is

achieved. This method of animating, review-

ing, and re-animating is another, more

advanced method of storyboarding. It is

unique to CV because of the high speed of

the entire process. For example, in this case,

the author experimented with animating the

effect of water being affected by wind. The

scene was test-rendered 8 separate times in a

3 hour time span, until the exact effect was

obtained. If the scene had not been test-ren-

dered, the entire process of rendering the

final scene would have taken the computer

40 hours. Savings such as this are key to

developing not only high quality, informa-

tive animations but essential to conserving

time and resources, both constant concerns

when using CV.

Chapter 5

Conclusion

5.1 Objective

The intention of this research was to exam-

ine and refine the intricacies of the computer

visualization process in an effort to develop a

better model for its implementation. By

advancing a conceptual landscape from con-

ventional forms of representation to a com-

putational form, my intent was to document

the abstraction process and resolve some the

common problems associated with it. The

focus was intentionally shifted away from

the analysis of photorealistic imagery to the

process, where I believe the most potential

for exploration remains.

5.2 Results: Design Analysis

Critical analysis of the landscapes to be

abstracted to a computational environment is

a necessary and often overlooked process.

Due to the complexity of the physical envi-

ronment, it is impossible to represent each

layer and all the physical relationships

present. For this reason, simplification of the

landscape to its integral components

becomes essential. In this case, which

already existed as an abstraction of a physi-

cal environment, clarification of minute

details, while considering the software's con-

straints, allowed me to develop a quick and

easy method for representing the primary

design issues without getting mired in the

intricate functions of the software.

5.3 Results: Modeling

In the modeling analysis, different modeling

methods for representing architectural land-

scapes were examined for their efficiency

and utility. Two methods for constructing

surface forms were studied: trimming and

patching. It was found that trimming, while

intuitively analogous to sculpting an object

into a particular form, was actually quite

Fig. 5.2 - Image of trimmed
surface

Fig. 5.3 - Image of patched
surface

costly for the software to handle. Trimming

increased the size of model files; thereby

slowing the manipulation of the model in the

software environment and substantially

increasing rendering times. The second

method, patching, the equivalent of connect-

ing a surface between two edges, was slower

in its initial execution than trimming, but it

more than compensated for this by providing

significant savings in file sizes and rendering

times. Although both models constructed

were nearly visually identical (see Figs. 5.2

and 5.3), this study proved that while there

are many methods for modeling, some are

innately more efficient and should be used

more than others.

5.4 Results: Lighting

During the lighting design, studies were con-

ducted to simulate the effects of natural

lighting within a computational environ-

ment. It was realized that while Alias (the

primary working environment) was profi-

cient at simulating artificial light, special-

Fig. 5.4 - Radiance image

Fig. 5.5 - Alias Image

ized tools, like Radiance, were needed for

natural lighting (see Fig. 5.4). This was

proven by generating multiple lighting sce-

narios within Radiance that accounted for

global position, date and time and attempting

to duplicate the subtle lighting effects within

Alias, which could not be accomplished in

any reasonable time frame (see Fig. 5.5).

However, by using the Radiance results as a

reference, other lighting effects could be

effectively designed within Alias. This com-

plementary relationship was found to highly

useful for the creation of lighting environ-

ments by combining the accuracy of Radi-

ance and the flexibility of Alias.

5.5 Results: Rendering

During the rendering analysis, different ray-

tracing methods were compared for their

speed and image quality. A set of identical

scenes were rendered with two similar but

distinct rendering methods: ray-casting and

ray-tracing (see Figs. 5.6 and 5.7). While

Fig. 5.6 - Ray-cast image

Fig. 5.7 - Ray-traced image

ray-casting, a simpler form of ray-tracing

that does not handle reflections or refrac-

tions, is the faster method, the image quality

was noticeably lower. Ray-tracing gives

much crisper shadows and lighting details at

a cost of slower rendering. Another result of

these render trials that was not as obvious,

was that scenes composed of wide or long

angle shots, took a dramatically longer

amount of time to render. Upon further

inspection, this is logical because in those

scenes, more geometry is visible to the cam-

era, so there is more information to render.

Selection of rendering method was still

found to be highly user-dependent based on

project demands of quality vs. speed.

5.6 Results: Animation

For the animation phase, the development of

test animation as storyboard proved to be

useful in pre-visualizing animated sequences

. While static storyboards were created as a

basic framework, the animated storyboards,

which consisted of miniaturized, low-quality

animations, assisted greatly by allowing me

to see the motion being simulated as it would

appear in final animations, without the cost

of timely and CPU intensive rendering of

full-size, high-quality images. By offering

this ability, CV distinguishes itself as a

unique medium by giving the user a high

degree of flexibility and power to better

understand the uses of animation to visualize

architecture.

5.7 Justification of methods

These experiments were important to under-

standing not only how the individual pro-

cesses work, but also how they are linked to

each other. For instance, the results from the

modeling study, greatly affect how effi-

ciently an image is rendered, which in turn,

would also affect how fast an animation is

rendered. This cyclical relationship also

works in reverse. Rendering can illuminate

discrepancies or mistakes present in a model,

thereby alerting the user to return to the

Fig. 5.8 - Diagram of cyclical
nature of CV process

model to adjust or rebuild it. These relation-

ships between individual processes forms a

web of planning and execution that can over-

lap and repeat many times before a user

completes the entire CV process (see Fig.

5.9). The importance of this occurrence to

the user is that individual processes can not

be completed in a vacuum. For instance, it is

not possible to complete all of the modeling

tasks, without lighting and rendering the

model during its construction. Likewise, a

model can not be rendered efficiently with-

out understanding the nature of the construc-

tion of the model and the inherent

advantages and disadvantages. This complex

inter-relationship stresses the importance of

planning before undertaking a CV project.

By fully understanding the techniques and

the capabilities of the tools being used as

well as tools' ability to represent the particu-

lar architectural project, a plan can be devel-

oped which maximizes the potential of the

tools while minimizing the time required for

execution. This understanding adds predict-

ability to the entire CV process by reducing

the amount of time the user spends trouble-

shooting unanticipated problems, which

often arise when novice users employ CV

tools, and increasing the time spent on using

the process to understand the architecture,

which is the primary purpose of CV.

5.8 Computation Issues

The analysis of the CV process also shed

light on many of the problems with current

tools. First, a major problem exists in the

necessity of multiple platforms to complete

certain tasks, like lighting. Constantly

switching back and forth between platforms

proved to be time consuming. In addition,

for users not well versed in the use of differ-

ent software packages, the transition

between adapting and learning multiple

interfaces can deter the use of CV com-

pletely. A related problem to the issue of

multiple platforms is the transferral of data

Autocad

wire
Alias

dxf

dwg

rad

oct

pic

Radiance

Fig. 5.10 - Diagram of file
translation process

between them. The author had a great deal of

difficulty in figuring out how to transfer

model data from one program to another (

see Fig. 5.10). While supposedly "standard"

file formats exist for such transferral, the

author found that the method in which each

program interpreted these file formats was

very different. Thus, in this case, Autocad

was needed as an intermediate platform to

transfer files from Alias to Radiance. If not

for the need of this file translation, Autocad

would not have been necessary at all during

the entire CV process. The final major prob-

lem in this process is the manipulation of the

tools themselves. Some programs like Radi-

ance, while imminently useful, have no user

interface worthy of mention. With this soft-

ware, all commands are type-driven and rely

heavily on the keyboard for manipulation of

data, models and imagery. This limitation

severely hampers visualizing a model in any

intuitive or natural manner. While Alias'

interface was much more user-friendly, I still

found that its flexibility is also its largest

obstacle. There are simply too many com-

mands, nested within other commands,

which are, in turn, nested within text menus.

Even after finding the command I thought

might be of use, determining what that com-

mand did upon execution involved constant

referrals to the 1500+ page manual. Before

this tool can really be used for understanding

architecture, the interface would need to be

completely rebuilt to rely on intuitive visual

data, like icons, as opposed to nested text

menus.

5.9 Significance and Future Directions

The importance of this work lies in the clari-

fication of many issues users have with CV

technology. I feel that this medium has the

potential to revolutionize the way architects

visualize spaces, not unlike the impact that

drawing made on architecture during The

Renaissance. Until now, efforts have not

been made to understand the process in rela-

tion to the specific tools nor develop a useful

model for its implementation that take into

account the tools' constraints. The increas-

ing demand for the use of CV will inevitably

necessitate its further exploration beyond

current interests which center on generation

of presentational imagery.

Despite the problems of the medium, which

will inevitably be addressed as the technol-

ogy advances, CV is poised to make a con-

siderable impact in the realm of representing

architecture. It combines the clarity of 2-

dimensional drawing with the utility of 3-

dimensional modeling. In addition, it offers

the user the ability to intuitively abstract and

manipulate forms in a much quicker manner

than most traditional methods. Further,

through simulation of materials and anima-

tion, CV allows the user to perceive and

comprehend computational landscapes in a

visual manner that is closest to the way our

eyes and brain understand physical forms. If

seen as the process for understanding, CV

will eventually become an established

method, alongside the other conventional

methods of sketching and modeling, for

depicting and understanding architecture.

Bibliography

(Foley 1994) Foley, J., van Dam, A., Feiner,
S., Hughes, J., Phillips, R., Introduction to
Computer Graphics, Addison-Wesley, 1994

(Gianni 1991) Gianni, B., "Building, See-
ing, Thinking: The Use of the Computer in
the investigation of Visual Logic", Reality
and Virtual Reality. ACADIA 1991

(Kerlow 1996) Kerlow, I., The Art of 3-D
Computer Animation and Imaging, Van Nos-
trand Reinhold, 1996

(Lewell 1985) Lewell, J. Computer Graph-
ics, Orbis Publishing, 1985

(Mitchell 1995) Mitchell, W., Digital
Design Media, Van Nostrand Reinhold, 1995

(Perron and Miller 1991) Perron, R., Miller,
D., "Landscape of the Mind", Reality and
Virtual Reality. ACADIA 1991

(Smulevich 1993) Smulevich, G., "CAD in
the Design Studio: The Discovery of Inhabi-
tation", Education and Practice: The critical
interface, ACADIA 1993

