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Abstract

This thesis presents a unified solution to visual recognition and learning in the context
of visual information retrieval. Realizing that the design of an effective recognition ar-
chitecture requires careful consideration of the interplay between feature selection, feature
representation, and similarity function, we start by searching for a performance criteria
that can simultaneously guide the design of all three components. A natural solution is to
formulate visual recognition as a decision theoretical problem, where the goal is to minimize
the probability of retrieval error. This leads to a Bayesian architecture that is shown to
generalize a significant number of previous recognition approaches, solving some of the most
challenging problems faced by these: joint modeling of color and texture, objective guide-
lines for controlling the trade-off between feature transformation and feature representation,
and unified support for local and global queries without requiring image segmentation. The
new architecture is shown to perform well on color, texture, and generic image databases,
providing a good trade-off between retrieval accuracy, invariance, perceptual relevance of
similarity judgments, and complexity.

Because all that is needed to perform optimal Bayesian decisions is the ability to eval-
uate beliefs on the different hypothesis under consideration, a Bayesian architecture is not
restricted to visual recognition. On the contrary, it establishes a universal recognition lan-
guage (the language of probabilities) that provides a computational basis for the integration
of information from multiple content sources and modalities. In result, it becomes possible
to build retrieval systems that can simultaneously account for text, audio, video, or any
other content modalities.

Since the ability to learn follows from the ability to integrate information over time,
this language is also conducive to the design of learning algorithms. We show that learning
is, indeed, an important asset for visual information retrieval by designing both short and
long-term learning mechanisms. Over short time scales (within a retrieval session), learning
is shown to assure faster convergence to the desired target images. Over long time scales
(between retrieval sessions), it allows the retrieval system to tailor itself to the preferences
of particular users. In both cases, all the necessary computations are carried out through
Bayesian belief propagation algorithms that, although optimal in a decision-theoretic sense,
are extremely simple, intuitive, and easy to implement.
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Chapter 1

Introduction

If there is a defining characteristic of the new digital communications media, that charac-

teristic is the potential for interactivity [116, 117]. In the digital world, communication is

synonymous with computation: fast processors are required at both ends of the pipe to

transform the massive amounts of audio, video, and textual information characteristic of

modern applications into a compact and error-resilient bitstream which can be transmitted

rapidly and reliably. Digital decoders are therefore intelligent, giving the user the ability to

actively search, browse through, or even publish information, instead of passively "tuning

in" to what is going on a broadcast channel.

Such a shift with regards to the control over the communications process unveils a new

universe of requirements and possibilities for representing audio-visual content. Because

digital media are characterized by ubiquitous networking, computation, storage capacity,

and absence of geographical barriers, the user has instantaneous access to a virtually un-

limited amount of information. But while the ability to tap into such an infinite source of

resources is exciting, it can also lead, in the absence of appropriate indexing and navigation

mechanisms, to a significant degree of frustration and helplessness.

A significant challenge is, therefore, to design representations that can support not only

efficient transmission and storage of information but also filtering, sorting, classification, re-

trieval, summarization, browsing, and manipulation of content. The challenge is particularly

strong when the content to represent does not lend itself to unambiguous textual descrip-



tions. Today, we simply cannot understand the structure contained in a sound recording or

an image, and this limits our ability in various areas.

The issues of image understanding and representation are central to this thesis, where

we address the problem of how to design systems for retrieving information from large image

repositories. While text can be a powerful aid, experience reveals that traditional text-based

search engines fall short of fulfilling all the requirements of visual retrieval. The problem is

that images can have multiple interpretations and text annotations usually say more about

the interpretation of the person that created them than the one that may be relevant for

someone else's search. The alternative that we pursue here is to design content-based image

retrieval (CBIR) systems, i.e. systems that allow users to express their queries directly in

terms of visual attributes.

While, ideally, we would like CBIR systems to understand natural language scene de-

scriptions, e.g. "show me all the pictures of a tiger running in the wild," we simply do

not yet understand images well enough for this to be feasible. The only viable alterna-

tive, in the short-term, is to request less from the machine and more from the users. An

increasingly popular solution [129, 43, 118, 32, 7, 164] is to build systems that can make

judgments of visual similarity and place on the user the burden of guiding the search. This

is accomplished through an iterative process where the user provides examples, the machine

suggests matches and, from those, the user selects the next round of examples. The obvious

advantage is that the CBIR system is now much simpler to design. The main drawback is

that, because visual similarity is not the same as semantic similarity, the matches returned

by the machine will not always be what the user is looking for. Since this increases the risk

of user frustration, the next step is to give retrieval systems the ability to react intelligently

to the user feedback, i.e. to learn from the user interaction [132].

There are, therefore, two fundamental problems to be addressed. First, the design of

the visual recognition architecture itself and, second, the design of learning mechanisms to

facilitate the user interaction. Obviously, the two problems cannot be solved in isolation

since the careless selection of the recognition architecture will make learning more difficult

and vice-versa.



1.1 Contributions of the thesis

This thesis presents a unified solution to visual recognition and learning by formulating

recognition as a decision theoretical problem, where the goal is to minimize the probability

of retrieval error. Besides providing an objective performance criteria for the design and

evaluation of retrieval systems, the new formulation also leads to solutions that are optimal

in a well-defined sense, and can be derived from the well understood principles of Bayesian

inference. The resulting Bayesian recognition architecture has several attractives. First, it

is based on a universal recognition language (the language of probabilities) that provides

a computational basis for the integration of information from multiple content sources and

modalities. In result, it becomes possible to build systems that simultaneously account

for text, audio, video, or any other modalities. Second, because learning is a consequence

of the ability to integrate information over time, this language also provides a basis for

designing learning algorithms. It therefore becomes possible to design retrieval systems that

can rely on user-feedback both to retrieve images faster and to adapt themselves to their

users' preferences. Third, all the integration can be performed through belief propagation

algorithms that, although optimal in the decision-theoretic sense, are extremely simple,

intuitive, and easy to implement. Finally, as an architecture for visual recognition, it

generalizes current retrieval solutions, solving some of the most challenging problems faced

by these: joint modeling of color and texture, objective guidelines for controlling the trade-

off between feature transformation and feature representation, and unified support for local

and global queries without requiring image segmentation.

1.1.1 An architecture for visual recognition

An architecture for visual information retrieval is composed by three fundamental building

blocks: 1) a transformation from the image pixel space into a feature space that provides

sufficient discrimination between the image classes in the database, 2) a feature represen-

tation that describes how each image populates the feature space, and 3) a retrieval metric

that relies on this feature representation to infer similarities between images. Even though

significant attention has been recently devoted to each of these individual components, there

have been significantly fewer attempts to investigate the interrelationships among them and



how these relationships may affect the performance of retrieval systems.

In fact, current retrieval solutions can be grouped into two major disjoint sets: on

one hand, a set of representations that evolved from texture analysis and are tailored for

texture and, on the other hand, a set that grew out of object recognition and is tailored

for color. We refer to the former as texture-based retrieval and to the latter as color-

based retrieval. Retrieval approaches in these two classes vary widely with respect to the

emphasis placed on the design of the individual retrieval components. For example, because

most texture databases consist of homogeneous images, it is reasonable to assume that the

associated features will be Gaussian distributed. The Gaussian density is thus commonly

used for feature representation (although usually in implicit form), and simple metrics such

as the Euclidean or the Mahalanobis distance serve as a basis to evaluate similarity. Given

these feature representation and similarity function, the main goal of texture analysis is to

find the set of features that allow best discrimination between the texture classes in the

database. This goal can be made explicit in the formulation of the problem [176, 183, 40]

or implicit [134, 94, 104, 96, 102, 109].

Unlike texture-based retrieval, feature selection has not been a critical issue for color-

based retrieval, where the features are usually the pixel colors themselves. Instead a signif-

icant amount of work has been devoted to the issue of feature representation, where several

approaches have been proposed. The majority of these are variations on the color histogram

initially proposed for object recognition [172], e.g. the color coherence vector [126], the color

correlogram [66), color moments [167], etc. While each feature representation may require

a specific similarity function, the most commonly used are IP distance norms in feature

representation space. Among these, the L1 distance between color histograms, also known

as histogram intersection [172], has become quite popular.

While they have worked well in their specific domains, these representations break down

when applied to databases of generic imagery. The main problem for texture-based solutions

is that, since generic images are not homogeneous, their features cannot be accurately

modeled as Gaussian and simple similarity metrics are no longer sufficient. On the other

hand, color-based solutions are plagued by the exponential complexity of the histogram on

the dimension of the feature space, and are applicable only to low-dimensional features (e.g.



pixel colors). Hence, they are unable to capture the spatial dependencies that are crucial

for texture characterization.

In the absence of solutions that can account for both color and texture, retrieval systems

must resort to different features, representations, and similarity functions to deal with the

two image attributes [43, 118, 164, 44, 175], making it difficult to perform joint inferences

with respect to both. The standard solution is to evaluate similarity according to each of

the attributes and obtain an overall measure by weighting linearly the individual distances.

This opens up the question of how to weigh different representations on different feature

spaces, a problem that has no easy solution.

Ideally, one would like to avoid these problems altogether by designing a retrieval archi-

tecture capable of accounting for both color and texture. An obvious, but often overlooked,

statement is that carefully designing any of the individual retrieval modules is not sufficient

to achieve a good overall solution. Instead, the design must start from an unambiguous

performance criteria, and all modules designed with the goal of optimizing the overall per-

formance. In this context, we start by posing the retrieval problem as one of optimal

decision-making. Given a set of database image classes and a set of query features, the goal

is to find the map from the latter to the former that minimizes the probability of retrieval

error.

This is shown to be interesting in two ways. First, it leads to a Bayesian formulation of

retrieval and a probabilistic retrieval criteria that either generalizes or improves upon the

most commonly used similarity functions (Mahalanobis distance, LP norms, and minimum

discrimination information, among others). Second, it provides objective guidelines for the

selection of both the feature transformation and representation. The first of these guidelines

is that the most restrictive constraints on the retrieval architecture are actually imposed

on the feature transformation. In fact, optimal performance can only be achieved under a

restricted set of invertible transformations that leaves small margin for feature optimization.

The second guideline is that performance quality is directly related to the quality of density

estimates, which is in turn determined by the feature representation.

A corollary, of great practical relevance, of these guidelines is that there is less to be

gained from the feature transformation than from accurate density estimation. This, and



the fact that the difficulty of the latter increases with the dimensionality of the space, moti-

vates us to restrict the role of the former to that of dimensionality reduction; i.e. we seek the

feature transformation that achieves the optimal trade-off between invertability and dimen-

sionality reduction. This leads to the well known principal component analysis which is, in

turn, well approximated by perceptually more justifiable multi-resolution transformations

that are common in the compression literature, e.g. the discrete cosine transform (DCT).

On the other hand, we devote significant attention to the issue of feature representa-

tion. We notice that a good representation should be 1) expressive enough to capture the

details of multi-modal densities that characterize generic imagery, and 2) compact enough

to be tractable in high-dimensional spaces. Viewing the standard Gaussian and histogram

representations as particular cases of the generic family of mixture models reveals that

insufficient number of basis functions, poor kernel selection, and inappropriate partition-

ing of the space are the major reasons behind their inability to meet these requirements.

The Gaussian mixture then emerges as a unifying feature representation for both color and

texture, eliminating the problems associated with the standard approaches. Further obser-

vation that a mixture model defines a family of embedded densities leads to the concept

of embedded multi-resolution mixtures (EMM). These are a family of embedded densities

ranging over multiple image scales that allow explicit control of the trade-off between spatial

support and invariance.

Overall, the retrieval architecture composed by the Bayesian similarity criteria, the DCT

feature transformation, and the embedded mixture representation provides a good trade-off

between retrieval accuracy, invariance, perceptual relevance of similarity judgments, and

complexity. We illustrate all these properties with an extensive experimental evaluation on

three different databases that stress different aspects of the retrieval problem': the Brodatz

texture database, the Columbia object database, and the Corel database of stock photogra-

phy. In all cases, the new approach outperforms the previous best retrieval solutions both

in terms of objective (precision/recall) and subjective (perceptual) evaluation.

'The experimental set up is discussed in detail in Appendix A.



1.1.2 Learning from user interaction

While a sophisticated architecture for evaluating image similarity is a necessary condition

for the design of successful retrieval systems, it is by no means sufficient. The fact is that

the current understanding of the image analysis problem is too shallow to guarantee that

any retrieval system (no matter how sophisticated) will always find the desired images in

response to a user query. In result, retrieval is usually an interactive process where 1) the

user guides the search by rating the systems suggestions, and 2) the system refines the

search according to those ratings. Conceptually, a retrieval system is nothing more than

an interface between an intelligent high-level system (the user's brain) that can perform

amazing feats in terms of visual interpretation but is limited in speed, and a low-level system

(the computer) that has very limited visual abilities but can perform low-level operations

very efficiently. Therefore, the more successful retrieval systems will be those that make

the user-machine interaction easier.

The goal is to exploit as much as possible the strengths of the two players: the user can

provide detailed feedback to guide the search when presented with a small set of meaningful

images, the machine can rely on that feedback to quickly find the next best set of such

images. To enable convergence to the desired target image, the low-level system cannot

be completely dumb, but must know how to integrate all the information provided by the

user over the entire course of interaction. If this were not the case, it would simply keep

oscillating between the image sets that best satisfied the latest indication from the user,

and convergence to the right solution would be difficult.

This ability to learn by integrating information must occur over various time scales.

Some components maybe hard-coded into the system from the start, e.g. the system may

contain a specialized face-recognition module. However, hard-coding leaves small room

for personalization. Not all users are interested in the same visual concepts and retrieval

systems should be able to respond to the individual user requirements. Therefore, most

components should, instead, be learned over time. Since users tend to search often for the

concepts that are of greatest interest to them, examples of these concepts will be available.

Hence, it is in principle possible for the system to build internal concept representations

and become progressively more apt at recognizing specific concepts as time progresses. We



refer to such mechanisms as long-term learning or learning between retrieval sessions, i.e.

learning that does not have to occur on-line, or even in the presence of the user.

Information must also be integrated over short-time scales, e.g. during a particular

retrieval session. In the absence of short-term or in-session learning, the user would have

to keep repeating the information provided to the retrieval system from iteration to iter-

ation. This would be cumbersome and extremely inefficient since a significant portion of

the computation performed by the latter would simply replicate what had been done in

previous iterations. Unlike long-term learning, short-term learning must happen on-line

and therefore has to be fast.

In this thesis, we show that the Bayesian formulation of the retrieval problem leads to

very natural procedures for inference and learning. This is not surprising since probabilistic

representations are the soundest computational tool available to deal with uncertainty and

the laws of probability the only principled mechanism for making inferences in its pres-

ence. We illustrate this point by designing both short- and long-term learning mechanisms

that can account for both positive and negative user-feedback and presenting experimental

evidence that illustrates the clear benefits of learning for CBIR.

1.2 Organization of the thesis

The standard thesis format asks for an introduction chapter, a chapter of literature review,

and then a sequence of chapters describing the contributions, experimental validation, and

conclusions. In this document, we deviate from this standard format in at least two ways.

First, because one of the points of the thesis is to demonstrate that a significant part

of what has been proposed in the retrieval literature are sub-optimal special cases of the

Bayesian formulation now introduced, we do not include a standard review chapter. Instead,

we establish connections to previous work as we discuss Bayesian retrieval. We believe that

this will be easier for the reader than simply including a large review section and referring

to it in the chapters ahead. Since the organization of the thesis follows the fundamental

structure of a retrieval system, a reader interested in reviewing particular sub-topics (e.g.

feature sets commonly used to characterize texture) can simply skip ahead to the corre-



sponding chapter. Second, instead of having a chapter entirely devoted to experimental

validation, we include experimental results as we go along. This allows us to build on the

experimental results of the earlier chapters to motivate the ideas introduced in subsequent

ones.

The organization of the thesis is as follows. In Chapter 2, we introduce the Bayesian

retrieval criteria and show that it generalizes or outperforms most of the similarity measures

in common use in the retrieval literature. In Chapter 3, we discuss how Bayesian similarity

provides guidelines for feature selection and representation and discuss previous retrieval

strategies in light of these guidelines. We conclude that the two most prevalent strategies

have strong limitations for retrieval from generic image databases and devise an alternative

strategy. This strategy is then implemented in Chapters 4 and 5 where we present solutions

for feature transformation and representation.

The issue of local vs. global similarity is addressed on Chapter 6, where we show that

Bayesian retrieval provides a natural solution to local queries. However, we also point out

that for global queries the straightforward implementation of the Bayesian criteria is usually

too expensive. To correct this problem, we devise efficient approximations that are shown to

achieve similar performance to that of the exact Bayesian inferences. The ability to account

for local queries is a requirement for learning, which is then discussed in Chapters 7 and 8.

In Chapter 7, we present a short-term learning algorithm that can exploit both positive and

negative user feedback to achieve faster convergence to the target images. In Chapter 8,

we present a long-term learning algorithm that gives retrieval systems the ability to, over

time, tailor themselves to the interests of their users.

Finally, in Chapter 9 we describe the practical implementation of all the ideas in the

"Retrieval as Bayesian Inference" (RaBI) image retrieval system, and we present conclusions

and directions for future work in Chapter 10. A discussion of the experimental set up used

to evaluate retrieval performance is presented in Appendix A.



Chapter 2

Retrieval as statistical inference

The central component of an architecture for content-based image retrieval (CBIR) is a

criteria for evaluating image similarity. Typically, this is achieved by defining a similarity

function that maps the space of image classes that compose a database into the space of pos-

sible orderings for those classes. In this chapter, we argue that a natural goal for a retrieval

system is to minimize the probability of retrieval error1 . This leads to a new formulation

of the retrieval problem, derived from Bayesian decision theory, and a probabilistic criteria

for the evaluation of image similarity.

In addition to minimizing retrieval error the Bayesian solution unifies a large body of

similarity functions in current use. In particular, it is shown that most of these functions can

be derived from Bayesian retrieval by 1) making assumptions with respect to the densities

of the image classes or 2) approximating the quantities involved in Bayesian inference.

This suggests that, even if minimizing probability of error is not the desired goal for the

retrieval system, there is no apparent reason to prefer those functions to the Bayesian

counterpart. The theoretical claims are validated through retrieval experiments that confirm

the superiority of Bayesian similarity.

A more generic performance criteria is the Bayes risk [10] where different types of errors are assigned

different costs. Because we currently do not have good strategies to define such costs, we simply assign a

unitary cost to all errors (and zero cost to all correct decisions), in which case Bayes risk is equivalent to the

probability of error. It would, however, be straightforward to extend the retrieval formulation presented in

the thesis to the minimization of Bayes risk, if more detailed costs were available.



2.1 Terms and notation

We start by defining some terms and notation. An image I is a map from a two-dimensional

pixel lattice of size P x Q

L = {1, ... , P} x {1, ... , Q} (2.1)

into the space A of all P x Q arrays of pixel colors

I: L -+ A.

The color of pixel (i, j) E L is denoted by Iij and can be a scalar (for gray-scale images)

or a 3-D vector (for color images). In the former case, the pixel color is also referred to as

intensity. The number of color channels in an image is denoted by c.

We define two indicator functions. For any set E, the set indicator function is

XE (X)= 1 if x E (2.2)
0, otherwise.

For any two integers i and j, the Kronecker delta function is defined by

i, , ifij, (2.3)
0, otherwise.

A partition of a set E is a collection of subsets (also known as partition cells or regions)

{E 1,..., ER} that are disjoint and cover E, i.e.

Ui_ 1 Ei = E and Ei n E= 0, Vi =j. (2.4)

An image database D is a collection of images

D = {I1, ... , Is}



where S is the database size. Within a database, images are organized into M image classes

D = {D1, ... DM}

where the Di are a partition for D.

In general, a classification of the images in the database is available. If that is not the

case, two alternatives can be pursued. The first is to assume that each image defines a class

by its own. This solution reflects the absence of any prior knowledge about the database

content and leads to as many classes as the cardinality of the database. We denote this

type of structure as a flat database. The second is to try to generate the classification

either automatically or manually. Since individual images can always be seen as subclasses

inside the classes Di we call this organization a hierarchical database. Of course, there

can be multiple levels in the hierarchical organization of a database. In all the theoretical

derivations of the thesis we assume that the images are already classified. For experiments

we always rely on a flat database structure. The issue of automatically grouping the images

in the database, or indexing, is not addressed.

Associated with an image database there is a space Z C R" of image observations. An

image observation z = {zi, . . . zn} is a vector containing n pixel colors extracted from an

image. The region of support of observation z is the set of pixels in L whose colors are

represented in z. It can be a single pixel (n = c) or any number b of them (n = cb). When

b > 1, the regions of support of different observations can overlap and, consequently, there

can be as many observations as there are pixels in the image. A feature transformation is

a map

T : Z -+ X

from the space of image observations into some other space X deemed more appropriate to

the retrieval operation. We call X the feature space, and x = T(z) a feature vector. Features

are the elements of a feature vector and feature vectors inherit the region of support of the

observations from which they are derived. If the feature transformation is the identity, then

Z and X are the same.

A feature representation is a probabilistic model for how each of the image classes



populates the feature space X. We introduce a class indicator variable Y E {1,... , M} and

denote the class-conditional probability density function (pdf) or class-conditional likelihood

associated with class i by PX|y(X = x|Y = i). This can be any non-negative function

integrating to one. Throughout the thesis, we use upper case for random variables and

lower case for particular values, e.g. X = x denotes that the random variable X takes the

value x. When the meaning is clear from context, we usually omit one of the symbols. For

example, Px|y(xli) is commonly used instead of PXjy(X = x|Y = i). Boldface type is used

to represent vectors.

One density that we will encounter frequently is the Gaussian, defined by a mean vector

p and a positive-definite covariance matrix E according to

1 A1 1X II2
G~,p E) = e 2(2.5)G/(27r)IE 1

where

|ix - p||E = (x - p) E-1 (x - (2.6)

is the quadratic norm defined by E-1. The Euclidean norm is the particular case in which

E = I. When E = uI and a- -+ 0 the Gaussian converges to the Dirac function [123] defined

by

6(x - xo)f (x)dx = f (xo), (2.7)

for all continuous functions f (x).

Together, a feature transformation and a feature representation determine an image

representation. An image representation and a similarity function define a retrieval system.

This is a system that accepts queries from a user and searches a database for images that

best match those queries. A visual query x is a collection of N feature vectors {x_}

extracted from a query image. If the the union of the regions of support of these feature

vectors covers the entire lattice C the query is denoted as global. Otherwise, it is denoted

as local. Local queries can be assembled through a graphical interface, by allowing a user

to select a region or collection of regions from the query image. Throughout the thesis we

rely on the following independence assumptions.

Assumption 1 The feature vectors {xj}f 1 included in a visual query are independent and



identically distributed (iid)

N

EX1,...,XN(X1,-, XN) 1 PX (Xj)-
j=1

Assumption 2 Given the knowledge of the true image class the query feature vectors

{xj}y 1 are independent

PXjlY,X1 ...Xj1,Xj+1...,XN (XI, X1 .. . Xj_1,Xj,+l ... ,XN) = PX|Y(Xjli)

By application of the chain rule of probability, Assumption 2 is equivalent to

(2.8)PX1...XNIy(Xl ... XN H XIY (Xj i)
j=1

Given these definitions, we are now ready to address the questions posed by the design

of a retrieval system. We start by considering the question of image similarity.

2.2 A Bayesian criteria for image similarity

In the image retrieval context, image similarity is naturally formulated as a problem of

statistical classification. Given the feature space X, a retrieval system is simply a map

g: X -+ {1,..., M}

X + y

from X to the index set of the M classes in the database. It is relatively common, in

the vision and retrieval literatures, to define this map up-front without a clear underlying

justification. For example, the most popular retrieval solution is to minimize the distance



between color histograms2 [172, 72, 49, 96, 2, 121, 193, 168, 149, 126, 43, 167, 163]. It is

not clear that when confronted with the question "what would you like a retrieval system

to do?" a naive user would reply "minimize histogram distance." In this work we define a

more intuitive goal, the minimization of probability of retrieval error; i.e. we design systems

that strive to be wrong as rarely as possible.

Definition 1 A retrieval system is a map

g : X -+ {1,..., M}

that minimizes

Px,y(g(X) # Y)

i.e. the system that has the minimum probability of returning images from a class g(x)

different than that to which the query x belongs.

Formulating the problem in this way has various advantages. First, the desired goal is

stated explicitly, making clear what the retrieval operation is trying to achieve. Second,

the criteria is objective leading to concrete metrics for evaluating the retrieval performance.

Finally, it allows us to build on a relatively good theoretical understanding of the properties

of various types of solutions (e.g. if their performance converges or not to that of the optimal

solution and how quickly it does so) that are already in place for similar problems. In fact,

once the problem is formulated in this way, the optimal solution is well known [38, 39, 48].

Theorem 1 Given a feature space X and a query x, the similarity function that minimizes

the probability of retrieval error is the Bayes or maximum a posteriori (MAP) classifier

g*(x) = argmaxPyix(ix). (2.9)

Furthermore, the probability of error is lower bounded by the Bayes error

L = 1 - Ex[maxPy1x(ilx)], (2.10)

2We will give a precise definition of the term color histogram later on.



where E. means expectation with respect to PX(x).

Proof: The proof can be found in various textbooks (see [38, 48] among many others). We

include it here because 1) it is simple, and 2) provides insights for some later results.

The probability of error associated with the decision rule g(x) is

PX,y(g(X) / Y) - J Pyx(Y f g(x)|x)Px(x)dx = Ex[Pyx(Y / g(x)|x)], (2.11)

where

PyiX(Y $ g(x)|x) = ZP(Y f g(X)jX = x,Y = i)Py1x(ilx)

i= (1 - og(x),i)PyX(iIX)

= 1Z i tg(x),iPyx(ilx)

and 6i,j is the Kronecker delta function defined in (2.3). It follows that

(2.12)

Pyjx(Y = g(x)|x) ;> 1 - max Pylx(ijx)

1 - Pyix(Y = g*(x)|x)

PYix(Y 4 g*(x)|x)

and, consequently

Ex[Pyix(Y # g(x)|x)] ;> Ex[Pylx(Y # 9*(x)|x)]-

I.e., any other decision rule will have a larger probability of error than the Bayes classifier.

Since, from (2.11),

Pxy(g*(X) # Y) = 1 - Ex[Pyx(Y = g*(x)|x)] = 1 - Ex[maxPyix(ijx)] = L*

the probability of error can never be smaller than the Bayes error. E

The posterior probabilities Pylx(ilx) are in general not easy to compute, making the

direct implementation of this theorem difficult. To cope with this difficulty, several alter-



native approaches to the classification problem have been proposed in the now extensive

classification literature. At the coarsest level, one can divide them into two major categories:

discriminant classifiers and classifiers based on generative models.

Discriminant classifiers strive to find the surfaces in X that better separate the regions

associated with the different classes in the sense of Theorem 1, classifying each point accord-

ing to its position relative to those surfaces. Examples in this set are linear discriminant

classifiers [39], neural networks [13], decision trees [18], and support vector machines [184],

among others. From the retrieval point of view, discriminant classifiers have very limited

interest because they must be retrained every time an image class is added to or deleted

from the database. This is a strong restriction in the retrieval scenario, where databases

can change daily or at an even faster pace.

Instead of dealing directly with (2.9), classifiers based on generative models take the

alternative route provided by Bayes rule,

Pxiy (xji)Py (i)
Pyix(i1x) = , (2.13)

which leads to

g*(x) = arg max Pxiy (xli)Py (i)

When the query feature vectors {xj} are iid, from (2.8)

N

g*(x) = argmaxflPx1y(xji)Py(y=i)
j=1

N

= arg max slog Px|y(xj li) + log Py(i), (2.14)
j=1

where Pxiy(xli) is the class-conditional likelihood for the ith class and Py(i) a prior prob-

ability for this class.

In the recent past, this similarity function has become prevalent for the evaluation of

speech similarity and achieved significant success in tasks such as speech recognition and

speaker identification [140, 145]. This is interesting because, if we can show that it also has

good properties for visual similarity, we will have a common framework for dealing with



images and sound. Also, because the individual likelihood functions Pxiy(xli) are learned

for each image class independently, these classifiers can adapt easily to class additions and

deletions. We denote (2.14) by Bayesian retrieval criteria and will refer to image retrieval

based on it as Bayesian retrieval, probabilistic retrieval, or retrieval based on Bayesian

similarity.

In practice, the probability of error of Bayesian retrieval is usually larger than the Bayes

error. This is due to the fact that we do not know the true likelihood function or prior for

each classes, and these have to be estimated from 1) images available in the database and 2)

prior knowledge about the retrieval problem. We will return to this point in Chapter 3. For

now, we analyze the relationships between Bayesian similarity and the similarity functions

that are commonly used for image retrieval.

2.3 A unified view of image similarity

Figure 2.1 illustrates how various similarity functions commonly used for image retrieval

are special cases of the Bayesian retrieval. While these functions do not exhaust the set

of decisions rules that can be derived from or shown to be sub-optimal when compared to

the Bayesian criteria (see chapter 3 of [38] for several others), we concentrate on them for

two reasons: 1) they have been proposed as similarity functions, and 2) when available,

derivations of their relationships to Bayesian similarity are scattered around the literature.

The figure illustrates that, if an upper bound on the Bayes error of a collection of two-

way classification problems is minimized instead of the probability of error of the original

problem, the Bayesian criteria reduces to the Bhattacharyya distance (BD). On the other

hand, if the original criteria is minimized, but the different image classes are assumed to

be equally likely a priori, we have the maximum likelihood (ML) retrieval criteria. As the

number of query vectors grows to infinity the ML criteria tends to the minimum discrimina-

tion information (MDI), which in turn can be approximated by the X2 test by performing a

simple first order Taylor series expansion. Alternatively, MDI can be simplified by assuming

that the underlying probability densities belong to a pre-defined family. For auto-regressive

sources it reduces to the Itakura-Saito distance that has received significant attention in



the speech literature. In the Gaussian case, further assumption of orthonormal covariance

matrices leads to the quadratic distance (QD) frequently found in the compression litera-

ture. The next possible simplification is to assume that all classes share the same covariance

matrix, leading to the Mahalanobis distance (MD). Finally, assuming identity covariances

results in the square of the Euclidean distance (ED). We next derive in more detail all these

relationships.

Bayes

2-way bound Equal priors

Bhattacharyya ML

Large N

MDI

Linearization Auto-regressive

o d rthonormal aroc s .

2udai Itakura -
QuadaticSaito

qi

Mahalanobis

Euclidean

Figure 2.1: Relations between different image similarity functions.

2.3.1 Bhattacharyya distance

If there are only two classes in the classification problem, (2.10) can be written as [48]

L* = Ex[min(Pyjx(Ox),Py|X(1jx)))



f PX(x) min[Pyx(O|x), Py|x(1lx)]dx

= min[Px 1y(xj0)Py(0), Px y(x|l)Py (1)]dx

< VPy(0)Py (1) J Xy(xl0)PX|y(x|1)dx,

where we have used the bound min[a, b] Va-b. The last integral is usually known as the

Bhattacharyya distance between Pxiy(x|O) and Pxiy(x|l) and has been proposed (e.g. [111,

30]) for image retrieval where, for a query density Px(x), it takes the form

g(x) = arg min Px(x)Pxiy(xi)dx. (2.15)

The resulting classifier can thus be seen as the one which finds the lowest upper-bound on

the Bayes error for the collection of two-class problems involving the query and each of the

database classes.

Whenever it is possible to solve the minimization of the error probability on the multi-

class retrieval problem it makes small sense to replace it by the search for the two class

problem with the smallest error bound. Consequently, the above interpretation of the BD

makes it clear that, in general, there is small justification to prefer it to Bayesian retrieval.

2.3.2 Maximum likelihood

It is straightforward to see that when all image classes are equally likely a priori, Py(i)

1/M, (2.14) reduces to

1N
g(x) = arg max 1E log Pxiy (x 1i). (2.16)

j=1

This decision rule is usually referred to as the maximum likelihood classifier. While, as

we will see after Chapter 6, class priors Py(i) provide a useful mechanism to 1) account

for the context in which the retrieval operation takes place, 2) integrate information from

multiple content modalities that may be available in the database, and 3) design learning

algorithms, in Chapters 2-6 we assume that there is no a priori reason to prefer any given

image over the rest. In this case, Bayesian and maximum likelihood retrieval are equivalent



and we will use the two terms indiscriminately.

2.3.3 Minimum discrimination information

If Hi, i = 1, 2, are the hypotheses that x is drawn from the statistical population with

density P(x), the Kullback-Leibler divergence (KLD) or relative entropy [83, 31]

f P2(X
KL[P2(x)IIP1(x)] = P2(x) log dx (2.17)

measures the mean information per observation from P2 (x) for discrimination in favor of H2

against H1. Because it measures the difficulty of discriminating between the two popula-

tions, and is always non-negative and equal to zero only when P1 (x) = P2 (x) [83], the KLD

has been proposed as a measure of similarity for various compression and signal processing

problems [59, 42, 86, 41].

Given a density Pi(x) and a family of densities M the minimum discrimination infor-

mation criteria [83] seeks the density in M that is the "nearest neighbor" of PI(x) in the

KLD sense

P2*(x)=arg min KL[P2(x)||P1(x)].
P 2 (x)EM

If M is a large family, containing Pi (x), this problem has the trivial solution P2 (x) = Pi (x),

which is not always the most interesting. In other cases, a sample from P2 (x) is available but

the explicit form of the distribution is not known. In these situations it may be more useful

to seek for the distribution that minimizes the KLD subject to a stricter set of constraints.

Kullback suggested the problem

P2*(x) = arg min KL[P2 (x)IIP(x)]
P2 (x)EM

subject to

T(x)P 2 (x) = 0

where T(x) is a measurable statistic (e.g. the mean when T(x) = x) and 0 can be computed



from a sample (e.g. the sample mean). He showed that the minimum is 1) achieved by

P2*(x) = 1e-AT(x)P1(x)
Z

where Z is a normalizing constant, Z = f e-AT(x)P1(x)dx, and A a Lagrange multiplier [11]

that weighs the importance of the constraint; and 2) equal to

KL[P2*(x)IIP1(x)] = -AO - log Z.

Gray and his colleagues have studied extensively the case in which P1 (x) belongs to the

family of auto-regressive moving average (ARMA) processes [59, 42] and showed, among

other things, that in this case the optimal solution is a variation of the Itakura-Saito distance

commonly used in speech analysis and compression. Kupperman [84, 83] has shown that

when all densities are members of the exponential family (a family that includes many of

the common distributions of interest such as the Gaussian, Poisson, binomial, Rayleigh and

exponential among others [39]), the constrained version of MDI is equivalent to maximum

likelihood.

The KLD has only been recently considered in the retrieval literature [192, 189, 70, 139,

16], where attention has focused on the unconstrained MDI problem

g(x) = arg min KL[P(x)|PXjy(xji)], (2.18)

where PX(x) is the density of the query and Px|y(xli) that of the ith image class. Similarly

to the constrained case, it is possible to derive a connection between unconstrained MDI

and maximum likelihood. However, the connection is much stronger in the unconstrained

case since there is no need to make any assumptions regarding the type of densities involved.

In particular, by simple application of the law of large numbers to (2.16),

g(x) = argmaxEx[logPX|y(xji)] asN-+oo

= arg max PX(x) log PX|y(xli)dx

argmin/PX(x) log Px(x)dx - JPx(x) log Pxiy(x i)dx



PX (X)= arg minJPX(x) log dx
i fPX X) ogPXiy x~i)

= arg min KL[P(x)||PXY(XI)],

where Ex is the expectation with respect to the query density PX(x). This means that,

independently of the type of densities, MDI is simply the asymptotic limit of the ML

criteria as the cardinality of the query tends to infinity3. This relationship is important

for various reasons. First, it confirms that the Bayesian criteria converges to a meaningful

global similarity function as the cardinality of the query grows. Second, it makes it clear

that while ML and MDI perform equally well for global queries, the Bayesian criteria has

the added advantage of also enabling local queries. Third, while the Bayesian criteria

has complexity O(N), as we will see in Chapter 6, for most densities of practical interest

MDI either has a much reduced complexity or can be approximated by functions with that

property. In practice, by switching to MDI when the size of the query exceeds a given

threshold, this allows the complexity of Bayesian retrieval to always remain manageable.

Finally, it establishes a connection between the Bayesian criteria and several similarity

functions that can be derived from MDI.

2.3.4 X2 test

The first of such similarity functions is the X2 statistic. Using a first order Taylor series

approximation for the logarithmic function about x = 1, log(x) ~ x - 1, we obtain4

/ P1(x)
KL[P(x)||P2 (x)] Pi(x)log P2(X)dx

j P1(x) 2 _ P1(x)P2(x)
P2(x) dx

/ (P(x)2 _P(x)P2(x) - P(x) + P2(x)) dx

(P1(x) - P2(X))2 dx,
P2(x)

3Notice that this result only holds when the true distribution is that of the query. The alternative version

of the divergence, where the distribution of the database image class is assumed to be true, does not have

an interpretation as the asymptotic limit of a local metric of similarity.
4This result is stated without proof in [31].



where we have used the fact that f P(x)dx = 1, i = 1, 2. In the retrieval context, this

means that MDI can be approximated by

/(Px(x) - PX|Y(xli)) 2

g (X) ~_ arg min dx. (2.19)in Pxiy(xli)

The integral on the right is known as the X2 statistic and the resulting criteria a X2 test [124].

It has been proposed as a metric for image similarity in [157, 16, 139]. Since it results from

the linearization of the KLD, it can be seen as an approximation to the asymptotic limit of

the ML criteria. Obviously, this linearization can discard a significant amount of information

and there is, in general, no reason to believe that it should perform better than Bayesian

retrieval.

2.3.5 The Gaussian case

Several similarity functions of practical interest can be derived from the Bayesian retrieval

criteria when the class likelihoods are assumed to be Gaussian. We now analyze the rela-

tionships for three such functions: the quadratic, Mahalanobis, and Euclidean distances.

Given the asymptotic convergence of ML to MDI, these results could also been derived

from the expression for the KLD between two Gaussians [83], by replacing expectations

with respect to the query distribution by sample means.

Quadratic distance

When the image features are Gaussian distributed, (2.16) becomes

g(x) = argminlog|Eil + IZ (xn - p )T (xn -i)
n

= arg min log |Ei| +t, (2.20)

where

Li N (xn - )TE Xn



is the quadratic distance (QD) commonly found in the perceptually weighted compression

literature [53, 89, 119, 92]. As a retrieval metric, the QD can thus be seen as the result of

imposing two stringent restrictions on the generic ML criteria. First, that all image sources

are Gaussian and, second, that their covariance matrices are orthonormal (Il = 1, Vi).

Mahalanobis distance

Furthermore, because

1

S (x -pi)rEi -ce

(xn - +R i p)T Ei (xn - x +

(x -: i)TE-1x -i 2(i -p

trae[E 1 (xn -k)(xn -)T] + (

= trace[E 1 tx] + (i - p1 )T E 1(5- /

= trace[Eli 'x] + M,

)k - Pi)

J)E- 11(xn - R) + (k -p)ll -p)T

N -pOT ) I (: - MIL
n

R - P)T i 1(R _-,

r

(2.21)

where
N

n=1

is the sample mean of x.

tx= NE(xn - )(xn -)T
n=1

the sample covariance and

M4 = (j - I)TE1( - MT

the Mahalanobis distance, we see that the MD results from complementing Gaussianity

with the assumption that all classes have the same covariance (Ex =Ej = E, Vi).



Euclidean distance

Finally, if this covariance is the identity (E = I), we obtain the square of the Euclidean

distance (ED) or mean squared error

Si = (k - p)T(k - i). (2.22)

The MD, the ED, and variations on both, have been widely used in the retrieval litera-

ture [163, 24, 96, 43, 166, 153, 118, 158, 134, 102, 193, 129, 65, 15, 160, 139, 72, 195, 175,

150, 96, 7].

Some intuition for the advantages of Bayesian retrieval

The Gaussian case is a good example of why, even if minimization of error probability is

not considered to be the right goal for an image retrieval system, there seems to be little

justification to rely on any criteria for image similarity other than the Bayesian. Recall

that, under Bayesian retrieval, the similarity function is

QD

g(x) = argminlog |Ei| + trace[ ]+ .- - (23)

MD

and all three other criteria are approximations that arbitrarily discard covariance informa-

tion.

As illustrated by Figure 2.2, this information is important for the detection of subtle

variations such as rotation and scaling in feature space. In a) and b), we show the distance,

under both QD and MD between a Gaussian and a replica rotated by 6 E [0, 7r]. Plot

b) clearly illustrates that while the MD has no ability to distinguish between the rotated

Gaussians, the inclusion of the trace[E lix] term leads to a much more intuitive measure

of similarity: minimum when both Gaussians are aligned and maximum when they are

rotated by r/2.

As illustrated by c) and d), further inclusion of the term log|Ei| (full ML retrieval)

penalizes mismatches in scaling. In plot c), we show two Gaussians, with covariances
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Figure 2.2: a) A Gaussian with mean (0, 0)T and covariance diag(4,0.25) and its replica

rotated by 0. b) Distance between the Gaussian and its rotated replicas as a function of

0/7r under both the QD and the MD. c) Two Gaussians with different scales. d) Distance

between them as a function of log o2 under ML, QD, and MD.
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Ex = I and Ei = a2 I, centered on zero. In this example, MD is always zero, while

trace[E- 1Ex] oc 1/0,2 penalizes small a and log |Ej oc log a 2 penalizes large a. The total

distance is shown as a function of log a2 in plot d) where, once again, we observe an intuitive

behavior: the penalty is minimal when both Gaussians have the same scale (log a 2 = 0),

increasing monotonically with the amount of scale mismatch. Notice that if the log I I
term is not included, large changes in scale may not be penalized at all.

2.3.6 L? norms

Despite all the nice properties discussed above, probabilistic retrieval has received small at-

tention in the context of CBIR. An overwhelmingly more popular metric of global similarity

is the LP norm of the difference between densities

g(X) = arg min ( Px(x) - Pxiy(xli)|Pdx) . (2.24)

These norms are particularly common in the color-based retrieval literature as metrics of

similarity between color histograms.

The histogram of a collection of feature vectors X is a vector f = {fi, ... , fR} associated

with a partition of the feature space X into R regions {x1,... , XR}, where fr is the number

of vectors in X landing on cell X,. Assuming a feature space of dimension n and rectangular

cells of size hi x.. .x ha, the histogram provides an estimate of the feature probability density

of the form

P(X) = K(x - Ck), (2.25)
kF

where ck is the central point of the kth cell, F the total number of feature vectors, and K(x)

a pdf such that

h1 h
KC(x) > 0, if |x1|I < ,i . .,xal < h,

2 2

K(x) = 0, otherwise,

J K(x)dx = 1.

Defining q to be the histogram of Q query vectors, p' the histogram of P vectors from



the 4th image class, and substituting (2.25) into (2.24)

1

g (X) =arg min -rP~ K (X - cr)|JPdx

= a g m n - KP r d

=arg min - K- -Q cr)dx

= arg min r z (2.26)i Q PiA

where we have used the fact that the cells Xr are disjoint and KC(x) integrates to one. As

shown in [172], assuming that the histograms are normalized (Er qr/Q = Er pir/P' = 1, Vi),

the minimization of the L1 distance is equivalent to the maximization of the histogram

intersection (HI)
E_' min (qr,pr,-g(X) = arg max , (2.27)

Q

a similarity function that has become the de-facto standard for color-based retrieval [172,

139, 149, 96, 72, 150, 163, 164, 125, 68, 44, 167, 43, 168, 17].

It is clear that, while (2.16) minimizes the classification error, (2.24) implies that mini-

mizing pointwise similarity between density estimates should be the ultimate retrieval cri-

teria. Clearly, for any of the two criteria to work, it is necessary that the estimates be close

to the true densities. However, it is known (e.g. see Theorem 6.5 of [38]) that the prob-

ability of error of rules of the type of (2.16) tends to the Bayes error orders of magnitude

faster than the associated density estimates tend to the right distributions. This implies

that accurate density estimates are not required everywhere for the classification criteria to

work.

In fact, accuracy is required only in the regions near the boundaries between the different

classes, because these are the only regions that matter for the classification decisions. On the

other hand, the criteria of (2.24) is clearly dependent on the quality of the density estimates

all over X. It, therefore, places a much more stringent requirement on the quality of these

estimates and, since density estimation is know to be a difficult problem [184, 162], there

seems to be no reason to believe that it is a better retrieval criteria than (2.16). We next

- - . - , . - - -- 1-1_1 - .11- -1-."-- - I - 1 11 -



validate these theoretical claims through retrieval experiments on real image databases.

2.4 Experimental evaluation

A series of retrieval experiments was conducted to evaluate the performance of the ML crite-

ria as a global similarity function. Since implementing all the similarity functions discussed

above was an extensive amount of work, we selected the two most popular representatives:

the Mahalanobis distance for texture-based and the histogram intersection for color-based

retrieval. In order to isolate the contribution of the similarity function from those of the

features and the feature representation, the comparison was performed with the feature

sets and representations that are commonly used for each of the domains: color-based re-

trieval was implemented by combining the color histogram with (2.16) and texture-based

retrieval by the combination of the features derived from the multi-resolution simultaneous

auto-regressive (MRSAR) model 5 [104] with (2.23).

The MRSAR features were computed using a window of size 21 x 21 sliding over the

image with increments of two pixels in both the horizontal and vertical dimensions. Each

feature vector consists of 4 SAR parameters plus the error of the fit achieved by the SAR

model at three resolutions, in a total of 15 dimensions. This is a standard implementation of

this model [104, 94, 102]. For color histogramming, the 3D YBR color space was quantized

by finding the bounding box for all the points in the query and retrieval databases and

then dividing each axis in b bins. This leads to b3 cells. Experiments were performed with

different values of b.

Figure 2.3 presents precision/recall curves for the Brodatz and Columbia databases. As

expected, texture-based retrieval (MRSAR/MD) performs better on Brodatz while color-

based retrieval (color histogramming) does better on Columbia. Furthermore, due to their

lack of spatial support, histograms do poorly on Brodatz while, being a model specific for

texture, MRSAR does poorly on Columbia6

5See the appendix for a more detailed justification for the use of the MRSAR features as a benchmark.
6Notice that this would not be evident if we were only looking at classification accuracy, i.e. the percentage

of retrievals for which the first match is from the correct class.
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Figure 2.3: Precision/recall curves for Brodatz (left) and Columbia (right). In the legend,

MRSAR means MRSAR features, H color histograms, ML maximum likelihood, MD Maha-

lanobis distance, and I intersection. The total number of bins in each histogram is indicated

after the H.

More informative is the fact that, when the correct features and representation are used

for the specific database, the ML criteria always leads to a clear improvement in retrieval

performance. In particular, for the texture database, combining ML with the MRSAR

features and the Gaussian representation leads to an improvement in precision from 5 to

10% (depending on the level of recall) over that achievable with the Mahalanobis distance.

Similarly, on Columbia, replacing histogram intersection by the ML criteria leads to an

improvement that can be as high as 20%7.

The latter observation validates the arguments of section 2.3.6, where we saw that, while

the ML criteria only depends on the class boundaries, HI measures pointwise distances

between densities. This means that whenever there is a change in the imaging parameters

(lighting, shadows, object rotation, etc) and the densities change slightly, the impact on HI

will be higher than on ML. An example is given in Figure 2.4 where we present the results

of the same query under the two similarity criteria. Notice that as the object is rotated,

the relative percentages of the different colors in the image change. HI changes accordingly

7Notice that, for these databases, 100% recall means retrieving the 8 or 9 images in the same class as the

query, and it is important to achieve high precision at this level. This may not be the case for databases

with hundreds of images in each class, since it is unlikely that users may want to look at that many images.



Figure 2.4: Results for the same query under HI (left) and ML (right). In both images, the

query is shown in the top left corner, and the returned images in raster-scan order (left to

right, top to bottom) according to their similarity rank. The numbers displayed above the

retrieved images indicate the class to which they belong.

and, when the degree of rotation is significant, views of other objects are preferred. On

the other hand, because the color of each individual pixel is always better explained by the

density of the rotated object than by those of other objects, ML achieves a perfect retrieval.

This increased invariance to changes in imaging conditions explains why, for large recall,

the precision of ML is consistently and significantly higher than that of HI.



Chapter 3

Image representations for retrieval

Numerous image representations have been proposed for image compression [74, 56, 128,

63, 73], object recognition [180, 62], texture analysis [144, 178, 152, 62, 61, 21] and, more

recently, content-based retrieval [149, 2, 133, 132, 131]. Because we are interested in generic

imagery (i.e. we want to make as few assumptions as possible regarding the content of the

images under analysis) and it is still too difficult to segment such images in a semantically

meaningful way, we will not consider here any representations that require segmentation

either implicitly or explicitly. This includes many representations that are common in

vision [115, 179, 77, 130, 194] and most of the ones used for shape-based retrieval [149].

In order to simplify the understanding of the remaining representations, it is useful to

further decompose them into the two main components discussed in section 2.1: a feature

transformation and a feature representation. In this chapter, we show that minimization

of the probability of error, and the resulting Bayesian solution to the retrieval problem,

provide us with concrete guidelines for the selection of feature spaces and representations.

Interpretation of the strategies in current use according to these guidelines leads to insights

about their major limitations and lays the ground for a better solution, that we will pursue

in subsequent chapters.



3.1 Bayesian guidelines for image representation

In Chapter 2, we saw that one of the interesting properties of Bayesian retrieval is that it

is optimal with respect to the minimization of error probability. In practice, however, good

results can only be guaranteed if it is possible to achieve a probability of error close to the

Bayes error. In this section, we look for theoretical guidelines that can help us achieve this

goal.

3.1.1 Feature transformation

We start by analyzing the impact of a feature transformation on the overall probability of

error.

Theorem 2 Given a retrieval system with observation space Z and a feature transforma-

tion

T : Z -+ X,

the Bayes error on X can never be smaller than that on Z. Le.,

L* > L*

where L* and L* are, respectively, the Bayes errors on Z and X. Furthermore, equality is

achieved if and only if T is an invertible transformation.

Proof: The following proof is a straightforward extension to multiple classes of the one given

in [38] for the two-class problem. From (2.10),

L*= 1 - Ex[max PyIx(ix)],

-1 - ET(z)[max Pyjx(iT(z))],

= 1 - ET(z) [max PyIz,x(ilz, T(z))PzIx(zIT(z))dz],

= 1 - ET(z) [max Priz(ilz)Pzlx(z|T(z))dz],

= 1- ET(z)[maxEzlX[Py|Z(ilz)IX = T(z)]],



> 1 - ET(z)[EzIXmax[Pylz(ilz)IX =T(z)]],

= 1 - Ez[max Pyjz(ilz)] =L*,
z

where we have used Jensen's inequality [31], and equality is achieved if and only if T is an

invertible map.E0

This theorem tells us that the choice of feature transformation is very relevant for the

performance of a retrieval system. In particular, 1) any transformation can only increase

or, at best, maintain the Bayes error achievable in the space of image observations, and 2)

the only transformations that maintain the Bayes error are the invertible ones.

3.1.2 Feature representation

While a necessary condition, low Bayes error is not sufficient for accurate retrieval since

the actual error may be much larger than the lower bound. The next theorem provides an

upper bound for this difference.

Theorem 3 Given a retrieval system with a feature space X, unknown class probabilities

Py(i) and class conditional likelihood functions Pxly(xji), and a decision function

g(x) = arg maxfXIy (xIi)py (i), (3.1)

the actual probability of error is upper bounded by

P(g(X) # Y) < LX + Z |PXiy (xli)Py(i) - 3Xly(x~i)Py (i)|dx. (3.2)

Proof: From (2.11),

Pxy(g(X) # Y) - = [PyIX(Y $ g(x)|x) - Pyix(Y g*(x)Ix)]PX(x)dx (3.3)



and since, Vx E X such that g(x) = g*(x), we have

Pyix(Y f g(x)|x) = PYix(Y # g*(x)|x),

this is equivalent to

Px,y(g(X) $ Y) - L= yIx(Y g(x)|x) - Pyix(Y = g*(x)Ix)]Px(x)dx,

where

E = {xlx E X,Px(x) > Og(x) $ g*(x)}.

Letting

A(x) = Pylx(Y f g(x)|x) - Pyx(Y $ g*(x)|x)

and defining the sets

El = {xlx E E, g*(x) = i}

Ej = {xlx C E, g(x) =

it follows from (2.12) that, Vx C E l nEj,

A(x) = Pyix(ilx) - Pyix(j Ix).

Since, from (2.9),

Pyix(ilx) - Pyix(jlx) > 0 Vx E Ei,Vj $ Z

from (3.1) and the fact that Px(x) > OVx C E,

fxiy(xlj)py (j)
Px(x)

Px y(xli)Y (i) > 0 Vx
Px(x) -

E EjVi # j,

defining

we have, Vx E El* n E

A(x)

PYI~ix)= P1xly (xli)3y (i)

= PyIx(ilx) - PYlX(jx)

< PyIx(ilx) - PyIX(jIx) +py x(jlx) - Pylx(ilx)

(3.4)



- IPYIx(ilX) - PYlX(iX) + Pyjx(iX) - PYX (iX)I

py|x(ilx)-5yjX(i~x)I- + jPYX(jlx) -jNyx(jjx)I

and

JE nEj A(x)PX (x)dx < JERElj IPXIy(xli)Py (i) ~xly(x|i)py(i)X dx

+ lPxay(xj)Pyt) -ixy(xlj)y(j)dx.

Using the fact that both collections of sets EZ* and Ej partition E, we obtain

J A(x)Px(x)dxE
=-)7 fIfEj A(x)Px(x)dx

< E, Px|Y (xli)Py (i) - PxY (xli)y (i)Idx +

JEj IPX|Y(XIj)PY(j) -PX|Y(X1  Y(j)yIdx

[f Px|y(xli)Py(i) -Nxly(x|i)Py(i)Xdx

± J~i IPX|Y(XIi)Py(i) - PXjY (Xyi)Py(i) dx]

< z JPx y(xli)Py (i) - Pxly(xli)py(i)|dx

where we have also used the fact that E l nEi = 0. O1

This theorem states that, if the Bayes error is small, accurate density estimation is a

sufficient condition for high retrieval accuracy. In particular, good density estimation will

suffice to guarantee optimal performance when the feature transformation is the identity.

3.2 Strategies for image representation

Together the two theorems are a convenient tool to analyze the balance between feature

transformation and representation achieved by any retrieval strategy. We now proceed to

do so for the two predominant strategies in the literature.



3.2.1 The color strategy

The theorems suggest that all that really matters for accurate retrieval is good density es-

timation. Since no feature transformation can reduce the Bayes error, there seems to be no

advantage in using one. This is the rationale behind Strategy 1 (S1): avoid feature trans-

formations altogether and do all the estimation directly in Z. As Figure 3.1 illustrates, the

main problem with this strategy is that density estimation can be difficult in Z. Significant

emphasis must therefore be given to the feature representation which is required to rely on

a sophisticated density model. One possible solution, that has indeed become a de-facto

standard for color-based retrieval [172, 139, 149, 96, 72, 150, 163, 164, 125, 68, 44, 167, 43,

168, 17], is the histogram. This solution is illustrated in Figure 3.1 b).

a) b)

Figure 3.1: Example of a retrieval problem with four image classes. a) In the space of image

observations, the class densities can have complicated shapes. b) Strategy 1 is to simply

model the class densities as accurately as possible.

3.2.2 The texture strategy

Since accurate density estimation is usually a difficult problem [184, 162, 39], a feature

transformation can be helpful if it makes estimation significantly easier in X than what it

is in Z. The rationale behind Strategy 2 (S2) is to exploit this as much as possible: find a

feature transformation that clearly separates the image classes in X, rendering estimation

trivial. Ideally, in X, each class should be characterized by a simple parametric density,

such as the Gaussians in Figure 3.2, and a simple classifier should be able to guarantee

performance close to the Bayes error.
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Figure 3.2: Example retrieval problem with four image classes. Strategy 2 is to find a

feature transformation such that density estimation is much easier in X than in Z.

Strategy S2 has become prevalent in the texture literature, where numerous feature

transformations have been proposed to achieve good discrimination between different tex-

ture classes [163, 24, 96, 134, 102, 137, 40, 104, 178, 144, 174, 21, 176]. These transformations

are then combined with simple similarity functions, like the Mahalanobis and Euclidean dis-

tances or variations of these, that assume Gaussianity in X. More recently it has also been

embraced by many retrieval systems [15, 118, 175, 150, 139, 153, 163, 96, 129, 7].

3.2.3 A critical analysis

Overall, none of the two strategies is consistently better than the other. While S1 has

worked better for object recognition and color-based retrieval, S2 has proven more effective

for the databases used by the texture community. Unfortunately, none of the two strategies

is viable when the goal is to jointly model color and texture in the context of generic image

databases.

Limitations of strategy S1

While it works reasonably well when Z is a low-dimensional space, e.g. the 3-D space of

pixel colors, Sl is of very limited use in high dimensions. This is a consequence of the well

known curse of dimensionality: in higher dimensions, modeling requires more parameters

and more data is required to achieve accurate estimation. Typically these relationships are

non-linear. For example, the number of elements in the covariance matrix of a Gaussian is



quadratic in the dimension of the space, and the number of cells in the histogram model

increases exponentially with it'.

In particular, for c color channels and observations with b pixels, the dimension of Z

is n = cb. Hence, the complexity is at least linear and, in the case of the histogram

exponential, in the size of the region of support of the observations. Consequently, accurate

joint density estimates can only be obtained over very small spatial neighborhoods and the

resulting representations cannot capture the spatial dependencies that are crucial for fine

image discrimination. This is illustrated by Figure 3.3 where we present two images that,

although visually very dissimilar, are characterized by the same histogram [shown in c)].

In order to distinguish between these images, the representation must capture the fact that

while on b) the white pixels cluster spatially, the same does not happen on a). This is

anrimpossible task if the measurements do not have spatial support, e.g. the pixel colors

commonly used under Si.

a) b) c)

Figure 3.3: a) An homogeneous and b) a non-homogeneous image that are visually dissimilar

but have the same color histogram, shown in c).

Of course, there is no law stating that histograms cannot be computed in high dimen-

sions, but in practice it is impossible to guarantee that the upper bound of Theorem 3

remains close to the Bayes error.

'Assuming that the number of divisions in each coordinate axis is held constant.



Limitations of strategy S2

For strategy S2, the main problem is the assumption that it is always possible to find a

transformation that maps a collection of complicated densities in Z into a collection of

simple densities in X, without compromising Bayes error. The following theorem shows

that, for multi-modal class-conditional densities, this is not possible with a generic feature

transformation.

Theorem 4 Consider a retrieval system with observation space Z. If there exists a feature

transformation T

T:Z-+X

that preserves the Bayes error

L*z = L*y (3.5)

and maps a multi-modal density Pz|y(zli) on Z into a unimodal density Px y(xli) on X

then 1) T is non-linear, and 2) T depends on Pz|y(zli).

Proof: From Theorem 2, (3.5) only holds if T is invertible, in which case [114]

det [J(z)] # 0 Vz

where J(z) the Jacobian of T evaluated at z

OT-
Ji,j(z) = [DzT(z)]i,j = (z) (3.6)

and DzT(z) the vector derivative2 of T(z) with respect to z. It follows, from the change of

variables theorem [124], that the densities in Z and X are related by

PX|y(T(z)Ii) = det [J-1(z)] Pz y(zi). (3.7)

2Several definitions have been proposed for the vector derivative. The one adopted here, equation (3.6),

is that used in [1141.



If T is linear T(z) = Az then J(z) = A and, up to a scale factor, the two densities are

equal

Pz|y(T(z)Ii) = det [A-i] Pzjy(zli).

Hence, if Pzly(zli) is multi-modal then so is PXjy(T(z)|i). This proves the first part of the

theorem. If T is non-linear, by taking derivatives on both sides of (3.7)

Dz [det[J-1(z)]Pzly(zli)] = DzPxly(T(z)|i)

= DxPxly(xli) xT(z)

and

DxPxly(xji) xT(z) = Dz [det[J-'(z)]Pzly(zi)] J~ (z), (3.8)

from which DxPXjy(xi)1x=T(z) = 0 if and only if Dz [det[J1(z)]Pzly (zli)] is in the null

space of J- 1(z). Since J(z) has full rank,

DxPxiy(xli) ox=(z) = 0 <> Dz [det[J-(z)]Pziy(zi)] = 0.

It follows that, if x = T(z) is the maximum of Pxly(xli), then

Dz(det[J-1 (z)])Pzir (zli) + det[J 1 (z)]DzPziy (zti) = 0,

1 Dz(det[J-1 (z)]) = - 1 DzPziy(zli),
det[Jd1 (z)] PzJy(zzi)

Dz log dtJz]= 0.
Pzly(zli)

Since the log is a monotonic function, this means that de[J(z)] has a critical point at
Pzl-(zli)

T- 1(x). For most parametric densities, Pxjy(xli) only has one critical point, implying that

this will be the only critical point of zet[J(z. In any case, it follows that T depends on

Pzjy(zji). O

The theorem explains why most texture retrieval approaches work well on databases

of homogeneous images (like that of Figure 3.3 a)), but clearly fail when this is not the

case. Since the pixel colors of non-homogeneous images (like that of Figure 3.3 b)) have

different statistics according to their spatial location, the associated densities are inherently



multi-modal. It is therefore impossible to find a generic transformation mapping them into

a set of unimodal densities without compromising the Bayes error.

Yet, the vast majority of texture retrieval methods are based on a feature transforma-

tions that does not depend on the class conditional pdfs and the Gaussian representation

(implicit in quadratic metrics like the Mahalanobis distance) [137, 21, 144, 178, 163, 96, 134,

102, 104, 174]. It is therefore not surprising that they cannot guarantee low Bayes error in

X. While data-dependent transformations have been proposed in the literature [40, 176],

these usually imply finding a set of discriminant features that can only be computed by con-

sidering all the image classes simultaneously. This is impossible in the CBIR context since

1) there may be too many classes, and 2) the feature transformation has to be recomputed

every time the database changes.

Putting it plainly, the theorem states that there is no such thing as a "free lunch". If

we want to rely on simple models for density estimation, we will necessarily have to rely

on a complicated feature transformation. And, in the end, the complexity of finding such

a transformation may very well be orders of magnitude greater than that required by more

sophisticated density estimation. Why then has the texture community been so focused on

the question of finding good features for texture characterization? One possible explanation

is that this is an historical consequence of the assumption that different textures can always

be cleanly segmented and a texture classifier will operate on homogeneous texture patches3

T

Z X

Figure 3.4: When the classes are Gaussian in Z, a feature transformation can help by

reducing their overlap in X.

3Most of the databases used to evaluate texture recognition are indeed composed of homogeneous images.



Since, by definition, homogeneous images have similar statistics everywhere, the densi-

ties of their observations are close to unimodal and any sensible feature transformation will

generate unimodal densities in X. For example, any linear transformation will generate a

collection of Gaussians in X if the class-conditional pdfs are already Gaussian in Z. In this

case, as illustrated by Figure 3.4, a feature transformation can allow significant improve-

ments in classification accuracy by making the classes in X more clearly separated than

they are in Z.

In practice, however, it is arguable that the segmentation problem can be cleanly solved

before recognition. In fact, it it may never be possible to guarantee that the classifier will

process samples from unimodal distributions. In this case, Theorem 4 shows that strategy

S2 is hopeless as long as one insists on preserving the Bayes error. Unfortunately, unless

this is the case, there is no guarantee that good performance in X will imply good accuracy

in Z, the ultimate goal of the retrieval system.

3.3 An alternative strategy

In the context of minimizing probability of error, the two standard strategies can be seen

as two ends of a continuum: while strategy S1 is intransigent with respect to any loss

in Bayes error and therefore asks too much from the feature representation; strategy S2

constrains the representation to trivial models, expecting the feature transformation to do

the impossible.

It seems that a wiser position would be to stand somewhere in between the two extrema.

Since the overall probability of error is upper bounded by the sum of the Bayes and estima-

tion errors, we need to consider the two simultaneously. While the crucial requirement for

low Bayes error is invertability of the feature transformation, the crucial requirement for low

estimation error is low-dimensionality in X. Since we want Z to be high-dimensional, the

two requirements are conflicting and a trade-off between invertability and dimensionality

is required. This means that both the feature transformation and representation have an

important role in the overall representation.

On one hand, the feature transformation should provide the dimensionality reduction



necessary for density estimation to be feasible (but no more). On the other hand, the feature

representation should be expressive enough to allow accurate estimates without requiring

the dimension of X to be too low, therefore allowing the transformation to be close to

invertible. This is the main idea behind our strategy.

Like strategy S2, we rely on a feature transformation. However, we limit its role to

enabling dimensionality reduction; i.e. if we define a feature transformation to be of dimen-

sionality reduction level n - k when

T : R" -+ Rk, k < n,

then the the optimal feature transformation is the one that, for a given level of dimen-

sionality reduction, is as close to invertible as possible. The idea of close to invertible

transformation is intimately related to the idea of semantics-preserving compression advo-

cated in the design of the Photobook system [129]. Here, we replace the idea of preserving

semantics with the simpler and more generic goal of preserving information. It is very

difficult to define semantics-preserving transformations without restricting databases to a

specific domain or assuming the existence of a perfect segmentation algorithm.

Like strategy S1, we also place strong emphasis on the feature representation. Here, the

goal is to guarantee that we will be operating as close to the Bayes error as possible for all

levels of dimensionality reduction. In particular, as illustrated by Figure 3.5, we look for

the representation that simultaneously satisfies the following requirements:

" like the Gaussian, is computationally tractable in high dimensions;

e like the histogram, can capture the details of multi-modal densities.

In the next chapter, we study the issue of dimensionality reduction. Feature represen-

tation is addressed in Chapter 5.
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Figure 3.5: The space of feature representations. The histogram can account for multi-

modal distributions, but is infeasible to compute in high dimensional feature spaces. The

Gaussian is unimodal, but can be computed in high dimensions. The shaded area represents

the region of the space where new feature representations are needed for the implementation

of generic retrieval systems.



Chapter 4

Feature transformation

In addition to making estimation easier, there are a few reasons why dimensionality re-

duction is a good idea in the context of evaluating image similarity. While, as seen in

section 3.2.3, it is important to allow Z to be high-dimensional, it is also common for the

interesting image structure to lie on a lower dimensional manifold [115, 179, 161]. The

role of a feature transformation is to expose this manifold, allowing everything else to be

discarded. If done right, this can be helpful in various ways.

First, if there is noise associated with the image capture process and the noise is uncor-

related with the image, the signal-to-noise ratio of the representation is usually improved.

This happens because most of the noise energy tends to be in the dimensions that are elim-

inated, while most of the signal energy is in those that are retained. Second, the invariance

of the representation to image transformations tends to improve since large regions of the

original space are mapped into the same point in the manifold. Finally, because all points

in the manifold provide a valid interpretation of the underlying scene, the low-dimensional

projection can lead to judgments of similarity that are perceptually more relevant (i.e.

intuitive for humans) than what is possible in the high-dimensional space.

For these reasons, most of the feature spaces used for image retrieval involve some form

of dimensionality reduction. The interesting question is how to discard dimensions in a

way that compromises as little as possible the achievable Bayes error. In this chapter, we

argue that multi-resolution feature transformations that are prevalent in the compression



literature also have very good properties for retrieval.

4.1 Terms and notation

A linear transform is a map

A : R" -> R"

z i-+ Az

where A C Rnxn. In the context of this thesis, z E Z C R". The row vectors ai of A are

known as the basis functions of the transform. Since

n
xi = aiz = aij z, i = 1,...,n,

j=1
(4.1)

the components of the transformed vector x (known as the transform coefficients) are

nothing more than the projections of z into these basis functions. When the basis vectors

satisfy

aTa= (4.2)

where 6j is the Kronecker delta function (2.3), the transform is said to be orthonormal.

Orthonormality is a desirable property because the inverse of an orthonormal transformation

is very simple to compute. This follows directly from (4.2), since

AAT = I,

where I is the identity, and thus

A~1 = AT,

i.e. a unitary matrix. The linear projection of R" into Rk, for k < n, is the map

?Wk : R" n Rk

X " IlkX (4.3)



where I 1 k = [Ik Onk], Ik is the k x k identity matrix and On-k a k x (n - k) matrix of zeros.

The embedding of Rk into R' is the map

Pk: Rk k R"

X _ ]I x. (4.4)

4.2 Previous approaches

A popular strategy in the retrieval literature for selecting a feature transformation is to

simply decide what image properties are important (e.g. textureness, color, edginess, shape,

etc.) and define an arbitrary set of features to capture these properties [118, 32, 125, 72,

164, 65, 153, 173, 195, 43, 80]. Other times, the features are selected in a more principled

way but predominantly on the basis of a few of the above requirements, e.g. invariance [158,

156, 103, 49] or perceptual relevance [174, 94, 102, 175, 15, 57, 7]. Finally, many times the

transformation is selected to provide good discrimination on a specific domain, e.g. texture,

object, or faces databases [176, 19, 104, 179, 115, 129, 112].

All these strategies have flaws that are relevant in the context of CBIR. In the first case,

it is difficult to know how important is the information that was left out and why other

features would not perform better than the ones selected. The answer to this question

can only be obtained through extensive experimental evaluation, but so far few exhaustive

studies have been conducted [134, 96]. In the second case, it is usually unclear how the

selected features perform under the requirements that were not considered for their selection.

For example, a representation that has good invariance properties for the smooth surfaces

that characterize most object databases may be discarding information that is crucial to

characterize texture. Or a representation that captures perceptually relevant attributes

for the characterization of texture may be discarding information that is crucial for the

perception of faces. In the third case, the resulting features do not even make sense outside

the domains for which they were developed.

One solution to these problems is to assemble different feature sets optimized for dif-

ferent criteria and different domains, and build a "society of models" [131, 110, 150]. The



combination of multiple models has indeed become prevalent for the design of retrieval sys-

tems that can account for both color and texture [43, 118, 44, 164, 153, 175, 32, 101, 72].

However, it has serious drawbacks. First, it implies a significant increase in retrieval com-

plexity since similarity has to be evaluated according to all the models. Second, it is usually

not clear how to combine the different representations in order to achieve global inferences.

In practice, it frequently requires users to specify weights for the different image attributes,

a process that can be extremely non-intuitive. We take the alternate route of modeling

the joint density of the image observations over a spatial neighborhood exactly because it

avoids these problems.

4.3 Minimizing the reconstruction error

We have already seen that such modeling requires a feature transformation that, for a given

level of dimensionality reduction, is as close to invertible as possible. This, in turn, requires

a precise definition of "as close to invertible as possible." Following a long tradition in

image compression [74, 56, 29], we rely on linear transformations and use the minimization

of the mean squared reconstruction error as a fidelity criterion.

Definition 2 A feature transformation Tk provides dimensionality reduction of level n - k

if Tk is a map

Tk: R" -+ Rk

defined by

Tk - Wk o A, (4.5)

where A is an invertible linear transform.

Definition 3 The mean squared reconstruction error for a feature transformation Tk de-

fined by (4.5) is

Sk(z) = E [||z - (A-- o Pk o Tk(z))2 , (4.6)

where ||z|| is the Euclidean norm of z.
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It is well known that this error is minimized by principal component analysis (PCA),

also known as the Karhunen-Loeve transform (KLT), a dimensionality reduction technique

that has found wide application in the vision and compression literatures [179, 115, 170, 129,

74, 29, 185]. It consists of finding the eigenvectors ei and the eigenvalues Ai, i = 1,... n,

of the sample covariance of z, i.e. the solution to

Ezei = Aiei, Z= 1,. -,n (4.7)

where
N

$z = E(Zi - Az)(zi -pz)T,

i=1

N

Az = E zi
i=1

and {z}J a sample of observations from z, projecting z onto the eigenvalue basis and

discarding the dimensions associated with the smallest eigenvalues. If the eigenvalues are

sorted in decreasing order

Al > ..-. > An,

this leads to

T*(z) = 7rk (Sz) (4.8)

where S = [ei, . . . , en]T and T* is the optimal feature transformation for a dimensionality

reduction of level n - k.

In addition to providing optimal dimensionality reduction, PCA has the advantage of

generating decorrelated coefficients. Notice that, if xi = Szi, then

1 N

Ax = - Exi = SiAz, (4.9)

1 N
Nx = N E S(z, - pz)(zi - pz)TST = StzST, (4.10)

and, from (4.7), Ex = diag(A1,..., An). In practice, this means a reduction in the com-

plexity of the subsequent density estimation that is larger than the simple dimensionality

reduction from n to k. If, for example, a Gaussian model is used, decorrelation is equivalent



to diagonal instead of full covariance matrices. This means that there will be k covariance

parameters to estimate in X, as opposed to n 2 parameters in Z.

4.4 Discrete Cosine Transform

For simple statistical image models commonly used to evaluate the decorrelating abilities of

a feature transformation, such as the first-order Gauss-Markov model, PCA is well approx-

imated by an alternative transformation of lower implementation complexity: the discrete

cosine transform (DCT). This approximation is particularly good for signals that, like most

of the images that we are interested in, exhibit strong pixel correlations [74, 73, 1, 71].

Several definitions of the DCT have been presented in the literature. In this thesis, we

will use the one given in [74].

Definition 4 The 1-D DCT is an orthonormal transform

T : R" -4 R"

described by
n-1 (2i + 1)kir[T(z)lk = -- ze cos , kk=O,...,n-1, (4.11)
in O 2n

where

1, if k # 0.

By writing (4.11) in matrix form, it can easily be seen that the basis functions of the

DCT are
2 (2i + 1)k7r

tk -ocos ,i=0,.. ., N- 1. (4.13)
N 2N

It is clear that the DCT performs a decomposition of the input signal into a sum of cosines

of increasing frequency. In particular, the value of coefficient To(z) is the mean or DC value

of the input vector and commonly known as the DC coefficient. The remaining coefficients,

associated with basis vectors of zero-mean, are known as A C coefficients. The extension of

the 1-D DCT to the 2-D DCT is straightforward: the 2-D DCT is obtained by the separable



application of the 1-D DCT to the rows and to the columns of the input image. In this

case, the n basis vectors (4.13) are extended to a set of n2 2-D basis functions that can be

obtained by performing the outer products between all the 1-D basis vectors [29]. Figure 4.1

presents these basis functions for n = 8.

Eli

Figure 4.1: Basis Functions of the 2-D DCT of dimension 8.

4.5 Perceptual relevance

Few universal results are known, at this point, about the mechanisms used by the human

brain to evaluate image similarity. Ever since the seminal work of Hubel and Wiesel [67],

it has been established that 1) processing is local, and 2) different groups in primary visual

cortex (i.e. area V1) are tuned for detecting different types of stimulus (e.g. bars, edges, and



so on). This indicates that, at the lowest level, the architecture of the human visual system

can be well approximated by a multi-resolution representation localized in space and time,

and several "biologically plausible" models of early vision are based on this principle [152,

98, 8, 46, 171, 9]. All these models share a basic common structure consisting of three

layers: a space/space-frequency decomposition at the bottom, a middle stage introducing a

non-linearity, and a final stage pooling the responses from several non-linear units.

A space/space-frequency representation is obtained by convolving the image with a col-

lection of elementary filters of reduced spatial support and tuned to different spatial frequen-

cies and orientations. Several elementary filters have been proposed, including differences

of Gaussians [98], Gabor functions [137, 46], and differences of offset Gaussians [98]. While

Gabor functions seem to provide a better match to actual measurements from the visual

cortex [35], the Gabor representation is also the most complex to design [34]. However,

there seems to be some agreement in that the exact shape of the filters is not crucial, as

long as the representation is localized in space and frequency.

With respect to the non-linearity, at least three different types have been proposed. De-

noting by channel the output of each filter, these involve intra-channel processing only. If

g(x) is the nonlinearity, possible functions are energy (g(x) = x2) [9, 46], full-wave rectifca-

tion (g(x) = Ix|) [8, 171, 46], and half-wave rectification (g(x) = (max(x, 0), - min(x, 0))) [98].

Finally, there is small agreement on the implementation of the final stage other than that

it should involve pooling from the individual channel responses.

While biological plausibility is not a constraint for our representation, it is important

that it can capture the fundamental characteristics of human visual processing since this

is likely to lead to perceptually more relevant similarity judgments. The use of the DCT

as feature transformation satisfies these requirements because, as illustrated by Figure 4.1,

the DCT is localized in both space and frequency. The linear projection to achieve dimen-

sionality reduction is even biologically plausible, since it simply consists of eliminating the

filters associated with the frequency/orientation channels to be disregarded.

On the other hand, under the goal of preserving Bayes error, it makes little sense to

include a non-invertible linearity, like energy or full-wave rectification, in the model. Ma-

lik and Perona have shown that such non-linearities are also not likely to be implemented



by the human visual system (by constructing examples of texture pairs where the sign

of filter responses is the only property that allows their discrimination by humans) [98].

They suggest half-wave rectification which, being invertible, presents no evidence against

our principles. In this case, the need for a non-linearity is simply a consequence of the

implementation constraints of neural hardware. This point is important because several

authors have argued for the use of the average channel energy as a feature for texture re-

trieval [102, 163, 40, 24, 137, 15]. Both the Bayesian principles and psychophysical evidence

indicate that this is a bad idea. Finally, a third stage of pooling different channels may be

consistent with a representation based on density estimates of the feature measurements.

Not enough is known at this point to argue for or against this position.

A few perceptually based models of higher level have also been proposed in the litera-

ture [94, 174, 15, 155]. These, however, tend to be restricted to specific domains such as

texture or color perception. Since there are no universal strategies for the experimental

validation of the predictions made by these models, it is difficult to reach definitive conclu-

sions about their strengths and weaknesses. In any case, these models tend to emphasize a

decomposition into properties like randomness, periodicity, scale, and orientation that are

all easily extracted from a representation localized in space and frequency.

More concrete evidence for the benefits of multi-resolution representations is that pro-

vided by decades of experience in image compression, where frequency decompositions are

universally accepted as a good pre-processing stage to compression [74, 128, 63, 29]. The

observation that discontinuities in the low-frequency components of an image (blocking

artifacts) are much more noticeable than similar discontinuities in their high frequency

counterparts indicates that low frequency information is perceptually more relevant than

that in the high-frequencies. The facts that PCA is well approximated by the DCT for

many natural images and the DCT is better matched to human perception are indeed the

fundamental reasons for the widespread use of the DCT in image compression.

Finally, there is a long history of machine vision problems where multi-resolution rep-

resentations are known to lead to the best solutions [20, 105, 22, 95, 4, 187] and some

striking recent advances in image synthesis, based on the statistical analysis of such rep-

resentations, reinforce the idea that they are central to perceptually meaningful image



modeling [64, 138, 135, 14, 151].

For all these reasons, multi-resolution spaces are natural candidates for CBIR from both

the perceptual and Bayes error points of view. While we rely on the DCT, it should be

pointed out that Bayesian retrieval is not tied to this particular transform. In fact, any other

multi-resolution feature transformation could be employed, including wavelets [99, 100],

Laplacian [20], or Gabor [137, 102] pyramids. Because most images are compressed using

the DCT [128, 63], the DCT has the practical advantages of compatibility with a wide

installed base of image processing hardware. This is the fundamental reason that motivated

us to select it.

4.6 Experimental evaluation

In this section we present experimental results on the performance of the DCT features.

Since the discussion on image representation will only be complete in the next chapter we

postpone a detailed evaluation until then. Here, we simply want to dispel the common belief

that the DCT coefficients are not a good feature set for texture recognition [96, 134, 163].

Figure 4.2 presents precision/recall curves, on the Brodatz database, for retrieval based on

both the DCT and the MRSAR features. The DCT features were obtained by sliding an 8 x 8

window by increments of two pixels over each image to be processed. The implementation

of MRSAR is that of [94]. Each feature transformation is combined with two similarity

functions: the Mahalanobis distance, which is the standard in the texture literature, and

the ML criteria, in a total of 4 image representations.

The figure confirms that, under MD, the performance of the DCT features is indeed

terrible: precision is never better than 25%. However, a very different result is obtained

when the similarity function is ML, in which case precision improves by up to 65% points!

Hence, while the DCT is significantly worse than MRSAR under MD - a difference in

precision that can be as high as 70% - it becomes competitive under ML - difference usually

below 5%. Notice that, when combined with ML, the DCT features even outperform the

standard MRSAR/MD combination.

Figure 4.3 provides an explanation for these observations. In the figure we present equi-
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Figure 4.2: Precision/recall curves for Brodatz. In the legend, MRSAR means MRSAR

features, DCT the DCT features, ML maximum likelihood, and MD the Mahalanobis dis-

tance.

probability contours for the best Gaussian fits to the features extracted from ten texture

classes in the Brodatz database. In both plots, we show the joint density of the first two

coefficients other than the pixel mean.

Since the DCT is an orthonormal transform, it preserves in X the shape of the densities

in Z. Hence, it is not surprising that there is a significant amount of overlap between the

densities of different classes. On the other hand, following strategy S2 of Chapter 3, MRSAR

tries to separate these densities as much as possible. Small overlap is a very important

requirement under the MD since, as discussed in section 2.3.5, this metric does not consider

the full query density, but only its mean. Consequently, because the DCT features have zero

mean for all classes, retrieval is very error-prone when they are combined with MD. On the

other hand, since ML can account for the entire query density, it has enough information

to distinguish the different classes, even when the DCT features are used. It is therefore

not surprising that the performance of the DCT improves so dramatically.

In summary, and contrary to prior beliefs, it is not the DCT coefficients that are a bad

feature set for texture retrieval. Instead, the problem relies on the use of the Mahalanobis
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Figure 4.3: Gaussian fits (contours where probability drops to 65% of the maximum) to the

features from ten texture classes from Brodatz. Only the first two components (other than

the mean coefficient) of the feature space are shown. Left: MRSAR, right: DCT.

distance as a similarity criteria. The significance of this result is that, because the DCT

features are generic, there is potential to design a unified representation for color and texture

capable of doing well on generic databases. This is not possible with transformations that

are highly specialized for texture, such as MRSAR.
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Chapter 5

Embedded multi-resolution

mixture models

Since, in practice, there is no way of rendering feature representation a trivial problem, it is

important to always rely on the most expressive density models available. In this chapter,

we review several models that have been proposed in the retrieval literature and show that

they are particular cases of a parametric family of densities know as mixture models. A

mixture model is in turn shown to define a collection of embedded probabilistic descriptions

over subspaces of the original feature space.

When combined with a multi-resolution feature transformation, this embedded repre-

sentation leads to an interesting extension of the color histogram that provides explicit

control over the trade-off between spatial support and invariance. We present experimental

evidence that the embedded multi-resolution mixture representation outperforms the stan-

dard methods for color- and texture-based retrieval, even on the specific domains for which

these techniques were designed. This confirms that the new representation can account for

both color and texture and should do well on generic image databases.



5.1 Spatially supported representations

The main challenge for a feature representation designed to account for both color and

texture is to combine tractability on high dimensions with expressive power to model com-

plicated densities. We have already established that the two most popular representations

in current use cannot fulfill this goal: the Gaussian assumption is too simplistic, the his-

togram model does not scale to high dimensional spaces. There have been, however, some

efforts to extend these representations into usable joint models of color and texture.

5.1.1 Extensions to the Gaussian model

The simplest among such solutions is to represent the class-conditional densities by finite

collections of their moments

yP = Ex1y[xP|Y = i] = xPPX|y(xli)dx,

where y7f is the pth-order moment of the density associated with image class i. This is an

extension of the Gaussian model that can only account for second-order moments.

While, theoretically, any density can be characterized by a collection of moments [124],

it may take a large number number of them for the characterization to be accurate. The

difficulty of determining how many moments are enough in any given situation may be the

reason why the approach has not been extensively pursued. While the use of more than two

moments has been advocated by some authors [167, 101], the total number is usually kept

small. It is therefore not clear that the resulting characterization will be expressive enough

to model complex densities, especially in high dimensions.

One answer to this problem is to arbitrarily divide the image into regions and compute

moments for each region [166]. If there are M regions, this is equivalent to the probabilistic

model

P(x() = Z PxIRy(xlr, i) (5.1)
r=1

where PXJR,Y(xlr, i) is the moment-based approximation to the density of the rih region of



the jth image class. Since the total number of moments is proportional to the number of

regions, the resulting representation is compact if and only if the segmentation is limited to

a small number of large regions. This usually leads to arbitrary image partitions that are

not tailored to the image statistics.

5.1.2 Extensions to the histogram model

It has been suggested that the solution to the limitations of color-based retrieval is to

rely on histograms of spatially supported features [156, 125]. This fails to realize that the

main limitation of color-based retrieval is the histogram itself. In result, feature spaces are

constrained to small dimensions and a significant amount of information is lost. We have

already shown that this is not a good idea.

A better extension to the histogram is to explicitly augment this model with spa-

tial information. This is the rationale behind representations like color coherence vectors

(CCVs) [126] and color correlograms [66]. CCVs divide the image pixels into two classes,

coherent and non-coherent (where the coherency of a pixel is a function of the number of

similar pixels that are spatially connected to it), and compute an histogram for each class.

They provide a probabilistic model of the form

1

PX1y(x1i) = Pxic(x),y(xjc, i)Pc(X) (c), (5.2)
c=O

where C(x) = 1 for coherent pixels, C(x) = 0 for non-coherent ones, and PXjc(X),y(xc,i)

are the color histograms for each case.

Correlograms are spatial extensions of the histogram, registering the relative frequencies

of occurrence of color-pairs on pixels separated by a pre-determined set of spatial distances.

They are a simplification the co-occurrence matrices that have been widely studied in the

texture literature during the seventies [62, 61, 178, 144]. Under the co-occurrence model a

texture is characterized by a collection of matrices {Md }K 1. Each matrix is associated

with a distance vector dk = (dk, Ok), of norm dk and angle 6k with the horizontal axis, and

contains color co-occurrence probabilities for pixels separated by that distance. If C,m is

the color of pixel (1, m), then the element (i, j) of Mdk contains the relative frequencies with



which two pixels separated by dk occur on the image, one with color i and the other with

color j

[Mdk]zj = P((l, m), (p, q)|C,m = i, C,,q = j, (l, m) = (p, q) + d).

The main limitation of co-occurrence matrices is the large number of probabilities that

have to be estimated, leading to significant computational complexity and poor estimates

(there may not even be any observations for a significant number of the matrix elements).

The color correlogram tries to avoid some of these difficulties by simply averaging co-

occurrence matrices with respect to 6. In practice, this is usually not enough to make the

implementation feasible and the correlogram is replaced by the auto-correlogram which only

consider pairs of pixels of the same color. The auto-correlogram is the collection of vectors

[Mdk]i = P((l, m), (p, q)ICl,m = Cp,q = i, p((l, m), (p, q)) = dk), (5.3)

where p is usually the L norm.

For both CCVs and auto-correlograms, retrieval is based on straightforward extensions

of the standard histogram similarity metrics. It has been shown experimentally that auto-

correlograms achieve the best performance in this class of representations, significantly

outperforming the histogram [66]. This is not surprising since the auto-correlogram accounts

for both color and texture.

5.1.3 Vector quantization

Since both the exponential dependence on dimensionality and sparseness of the histogram

are a consequence of the rigid rectangular partition of the feature space of (2.25), a final

solution is to adapt this partition to the particular characteristics of the image data. One

possible way to do this is to vector quantize [56, 91] the feature space. A vector quantizer

(VQ) is a map

Q: R" --+ C,

where C = {yi,... yc} is a finite set of reconstruction vectors, or codebook, and y, C R4.

This map defines a partition of R" into C regions {R1, .. . , REc}, associating a reconstruction



vector yi with each region
C

Q(x) = yi XJ,(x), (5.4)
i=1

where xjZj (x) are set indicator functions (2.2).

For a random variable x characterized by a density Px(x) and a distortion measure

d(x, Q(x)), the average distortion introduced by a VQ is

D = Jd(x, Q(x)) PX (x)dx.

It can be shown [56, 91] that, when the goal is to minimize this distortion, the optimal

partition for a fixed codebook must satisfy the nearest-neighbor condition

Ri = {x : d(x, yi) <; d(x, yj), Vj # i},

while the optimal codebook for a given partition must satisfy the generalized-centroid con-

dition

Q(x) = min{E[d(x, yi)Ix E Rj]}.
Yi

In practice, the distortion measure is usually one of the quadratic distances discussed in

Chapter 2. The mean squared error is a particularly popular choice leading to

Ri = {x: ||x - y 2  < 1 12, Vj # i}, (5.5)

and

yj = Q(x) = {E[xlx E Ri]}. (5.6)

Under this distance, given the codebook {y1,..., yc}, the feature vectors extracted from

each image are quantized by simply finding the reconstruction vectors that are closest to

them under the Euclidean norm. Each feature vector is therefore replaced by a scalar (the

index or label of the corresponding reconstruction vector) and, for retrieval, the entire image

can be represented by the histogram of the labels. Standard histogram metrics, such as LP

norms, can then be used to evaluate image similarity [70, 183, 68, 118, 109, 193, 163, 139].

While vector quantization reduces the sparseness and dimensionality problems, there are
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a few significant problems associated with label histograms. The first is the assumption that

it is possible to find a universal VQ that will be a good representation for all the images

in the database. It is not clear that this is the case or, even when it is, if the resulting

codebook will have a manageable size. Second, a learned VQ must typically be retrained

whenever new image classes are added to the database. These problems can be solved by

avoiding histogram similarity measures, and simply reverting back to the ML similarity

criteria of (2.16), using VQ-based density estimates. In other words, instead of learning a

universal VQ and evaluating similarity between label histograms (the quantization view), a

VQ is learned for each image class and similarity evaluated through the ML criteria, using

VQ-based density estimates (the probabilistic retrieval view) [136, 192, 190, 181]. For this,

we need a probabilistic, or generative, interpretation for vector quantization. We address

this issue in the next section, where we will consider a generic family of probability models

that encompasses, as special cases, the majority of the representations discussed so far.

5.2 Mixture models

A mixture density [177, 143, 13] has the formi

C
P(x) = ZP(xwc)P(Wc), (5.7)

c=1

where C is a number of feature classes, {P(xwc)}= 1 a sequence of feature class-conditional

densities or mixture components, and {P(wc)}= 1 a sequence of feature class probabilities.

Mixture densities model processes with hidden structure: one among the C feature classes

is first selected according to the {P(wc)}, and the observed data is then drawn according to

the respective feature class-conditional density. These densities can be any valid probability

density functions, i.e. any set of non-negative functions integrating to one.

Because the complexity of the mixture model is proportional to the complexity of the

'In this section, we drop the dependence on the image class Y = i which is always implicit and the

subscript from all densities since the random variables are clear from the context. For example, we write

P(xlwc) instead of PX1 0 (xlwc). We also use the words "feature class" for the different feature sub-classes

that may exist within each image class.



feature class-densities, if the latter are tractable in high dimensions, the former will also be.

This is indeed the case for most of the feature class-conditional densities in common use

and, in particular, the Gaussian. Furthermore, because it is, by definition, a multi-modal

model, the mixture density can easily capture the details of complex densities.

In particular, Li and Barron have recently shown [90, 88] that if C is the space of all

convex combinations2 of a density Pxie(xO) parameterized by 0 and Fk a k-component

mixture of Pxie(xO) then, for any density F,

c2
KL(FIIFk) <; KL(FIIF*) + F

k

where CF is a constant that depends on F, y depends on the family Pxle(x), and F* =

infGEc KL(FIIG). This bounds the difference between KL(FIIFk) and KL(FIIF*), which is

a measure of the distance between F and C. Obviously, if F C C then KL(FIIF*) = 0. For

Gaussian mixtures of covariance cI, y = O(n/o 2), i.e. the bound is linear on the dimension

of the space. Hence, by selecting k large enough, it is possible to make the bound arbitrarily

tight as long as a > 0. On the other hand, by making o -+ 0, it is always possible to make

KL(FIIF*) = 0. This result therefore suggests that, by selecting a small enough and then

k large enough, it is always possible to approximate F arbitrarily well.

In practice, densities can usually be well approximated by mixtures with a small number

of components. In this section, we show that most of the representations in current use for

image retrieval are particular cases of the mixture model.

5.2.1 Some obvious relationships

By simply making C = 1, it is obvious from (5.7) that any parametric density is a particular

case of the mixture model. Similarly, the representation of an image by a collection of global

moments is nothing more than an approximation to a one-component mixture model. If the

image is segmented and each region modeled by a different set of moments, we obtain the

approximation of (5.1), where each feature class corresponds to an image region. Finally, a

2This includes both finite and continuous mixtures models.



CCV is a 2-component mixture model, where the features are pixel colors, feature classes

are determined by the coherence of those colors, and feature class-conditional densities are

modeled by histograms.

5.2.2 Relationship to non-parametric models

It is also clear from (5.7) that, given a sample of observations X = {x 1, ... , xM}, by making

the number of feature classes equal to the number of observations IX, assuming each class

to be equally likely, and feature class conditional densities to be replicas of the same kernel

KA%(x) centered on the observations

I1X
P(x) = KE (x - xi) (5.8)

we obtain what are usually called Parzen or kernel density estimates [39, 162, 48]. These

models are traditionally referred to as non-parametric densities, even though they usually

require the specification of a scale (or bandwidth) parameter E. One popular choice for the

kernel K% (x) is the Gaussian distribution, in which case E is a covariance matrix.

The kernel model can be seen as the limit case of the region-based moments approach,

where a window is placed on top of each image pixel, a set of moments measured from the

features extracted from that window, and the kernel defined by those moments. Of course,

the mixture model supports any representation in between one single set of global moments

and a different set of moments for each pixel.

5.2.3 Relationship to vector quantization

Several authors have pointed out the existence of relationships between mixture models

and vector quantization [3, 192, 145, 136, 78, 13, 27]. However, this tends to be done by

comparing the standard algorithms for learning mixture models (the EM algorithm [36, 143,

13]) and vector quantizers (the generalized Lloyd or LBG algorithm [56, 91]), and showing

that the later is a special case of the former.

This is somewhat unsatisfying since the learning algorithm does not completely specify



the probabilistic model. In fact, various algorithms have been proposed both for vector

quantization [91, 82, 3, 197, 147] and mixture density estimation [36, 90, 143, 108]. The

comparison of algorithms therefore leads to different views on the relationship between the

underlying representations [3, 192, 136, 27]. Here, we seek an explicit relationship between

the probabilistic models.

For this, we start by noticing that, associated with any mixture model, there is a soft

partition of the feature space. In particular, given an observation x, it is possible to assign

that observation to each of the feature classes according to

P(Wi X) - P(xlwi)P(wi)
k=1 P(x|Wk)P(wk)

1+ "'k), if P(xlwi)P(wi) > 0
= koi P(xii)P(wi) (5.9)

0, otherwise.

The following theorem makes explicit the relationship between vector quantization and

mixture models.

Theorem 5 If x is a random vector distributed according to a Gaussian mixture

P(x) = P Pc)G(x, pc, Ec
C

with covariances

Ec(E) = eI, Vc,

then

lim P (wix) = 1 if lx till 1iX- [LkIIVk (5.10)
E-O 0, otherwise

and
C

lim Pe (x) = o(x -- p)P (wi). (5.11)

where 6(x) is the Dirac delta function (2.7).

Proof: Since a mixture model with C classes of which z have zero probability is the same

as a model with C - z classes of non-zero probability, we assume, without loss of generality,



that all the classes have non-zero probability, i.e.

P(wi) > 0, Vi.

For Gaussian feature class-conditional densities, (5.9) then becomes

1
P(wilx) = IIeti -logp(w,)

1+ Zkoi Irk I IIX-,1kjj2 
-109 P(wk)

e Z

and for Ei = EI, Vi,

PE(wilx) =1PF~ ~ +i IZk) P(wk)ei(jx-i 12- 1X-k 112)*
+Eo (Wi)

Hence

lim P(wiIx) = a, if 11X-I/ilI I1X-IAkIIVk (5.12)
E-*O 0, otherwise.,

where

P(wi)
P(W) + E{k:| IX-1IX-Ai} P(wk)

Since the set {x : IIx-pkI| = Ix-pi lI} has measure zero, (5.12) is equivalent to (5.10) almost

everywhere. Furthermore, because some arbitrary tie-breaking rule is always necessary to

vector quantize the points that lie on the boundaries between different cells, the same rule

can be applied to (5.12) and the two equations are equivalent. Equation (5.11) is a direct

consequence of the fact that the Gaussian density converges to the delta function as its

covariance tends to zero [123].D

Equations (5.10) and (5.11) are nothing more than a generative model for a VQ.

While (5.10) is simply the nearest neighbor condition (5.5), (5.11) is the probabilistic version

of (5.4) and (5.6): given a cell label, a vector quantizer draws a sample from the conditional

density associated with that cell. Since this density is the delta function centered on the

cell's centroid, this sampling operation is equivalent to the combination of (5.4) and (5.6).

It is, therefore, clear that a VQ is a particular case of the Gaussian mixture model.



5.2.4 Relationship to histograms

Equations (5.10) and (5.11) also provide an interpretation of a VQ as an histogram since

the vector H = [P(wi) ... P(oC)] T is estimated with normalized counts of the number of

samples that land on each of the quantization cells. Because this is also the definition of

histogramming, it is clear that histograms are a particular case of the mixture model. A

special case of interest occurs when the reconstruction vectors pi are constrained to lie on

a rectangular grid of size hi,... , h,. In this case, the quantization cells become rectangles

1 if x I,1 : ,..., -p,,|5 I
P(Wijx) ={ 12

0, otherwise,

and we obtain the standard histogram model of (2.25).

5.2.5 A unified view of feature representations

The relations between the various representations are depicted in Figure 5.1. Starting from

the generic mixture model and a sample X, if the number of classes C is set to the sample

size and the classes assumed to be equally likely, we obtain a non-parametric model. If, on

the other hand, C - 1 we have the parametric density defined by the particular kernel of

choice. For C in between these two extrema, selecting a Gaussian kernel of zero covariance,

leads to a vector quantizer and further restriction of the class centroids to lie on a rectangular

grid leads to the standard histogram.

Independently of the number of classes C, the mixture model can always be approxi-

mated by storing a collection of moments instead of the complete class-conditional densities.

In particular, for C = 1 we obtain the approximation by a collection of global moments

and for C equal to a pre-defined number R of regions we obtain a region-based moment

approximation. Finally, if there are only two classes (determined by the coherence of pixel

colors) and each class-conditional density is represented by an histogram we obtain a CCV.

Since all these feature representations are particular cases of the mixture model, it

is expected that they will lead to suboptimal performance when applied to the retrieval

problem. We now analyze this issue in greater detail.

-'. -1 -1-11 ----- 1.1--__



Figure 5.1: Relations between different feature representations. C is the number of feature classes and P

the probability of each class.

We start by noticing that because non-parametric models have as many degrees of

freedom as the number of observations, these models are not compact. Consequently, the

evaluation of equation (5.8) is computationally expensive (complexity proportional to the

number of training features). On the other hand, there is no guarantee that the density

estimates will be better than those provided by the mixture model, and there is usually no

easy way to set the bandwidth parameter [162]. It is, therefore not clear that relying on a

non-parametric model will justify the increase in retrieval complexity.

Relying on moment approximations is usually also not a good idea. While global mo-

ments provide a very crude approximation to the underlying density; region-based moment

descriptions tend to be fairly arbitrary when the segmentation is not dictated by the image

itself, and automated segmentation is well known to be a very difficult problem. This crit-

icism is also valid for CCVs, where the classification into coherent and non-coherent pixels

is rather arbitrary.

While non-parametric models have too many degrees of freedom, parametric ones have

too few. Most parametric densities are unimodal and, as seen in the previous chapter, do

not have enough expressive power to capture the details of the densities associated with real



images. Standard histograms overcome this limitation but, given their intractability in high

dimensions, are ineffective for joint modeling of color and texture. On the other hand, by

adapting the partition of the space to the characteristics of the data, vector quantization can

outperform the standard histogram with lower complexity. While this enables estimation on

high-dimensional feature spaces, the fact that VQ-based estimates rely on a hard partition

of the space restricts their robustness to small image variations. In fact, as illustrated in

Figure 5.2, slight feature perturbations may lead to drastic changes in quantization and,

consequently, image similarity.

X X
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X X 000 0 0

00 00 0 000000
0 0 0 0 0

000 0 0000

0 0 0 0000
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a) b)

Figure 5.2: a) Partition of the feature space by a 3-cell VQ, a set of feature vectors, and the

corresponding label histogram. b) For a universal VQ, small perturbations of the feature

vectors can lead to entirely different label histograms.

Because mixture models rely on a soft partition of the feature space, they eliminate this

problem. Furthermore, by allowing arbitrary covariances for each of the feature classes,

Gaussian mixtures provide a much better approximation to the true density than the train

of delta functions inherent to a VQ. The difficulty of accounting for more than the first-

order moments of each cell is a well known problem for VQ-based density models [170, 3,

106, 145, 107, 26].

Despite the appealing properties of mixture modeling, very small attention has been

devoted to their application to CBIR. To the best of our knowledge only two retrieval

systems have used mixture density estimates. One is the Blob-world system [7] which relied

on Gaussian mixtures for image segmentation. These mixtures were not used, however,

for feature representation. Instead, image regions were characterized by a low-dimensional



feature vector and retrieval based on the Mahalanobis distance. The other is the Candid

system [80, 79] that does rely on Gaussian mixtures for feature representation but does

not apply them to high dimensional spaces of spatially supported features nor relies on a

probabilistic similarity function. In this situation, the mixture representation does not have

any significant advantage over the histogram.

5.3 Embedded multi-resolution mixture models

The discussion in the previous section suggests that there is no strong justification for

relying on any of the above feature representations instead of the mixture model. In this

section, we connect feature representation with feature transformation and show that, also

from this point of view, there are good reasons to rely on the Gaussian mixture. A property

of particular interest is that a projection of a high-dimensional Gaussian mixture into a

linear subspace is still a Gaussian mixture.

Lemma 1 Let X E R" be a random vector distributed according to the Gaussian mixture

density
C

Px1y(xji) = Z7reg(x, pc, Ec) (5.13)
C=1

and consider the projection map V = rk(X) = rkX defined in (4.3). Then

C

Pvly (vii) = Z 1cG(rkx, rkIc, rk Ec'T). (5.14)

Proof: Consider a Gaussian random vector x with

PXIY(xly = i) = Q(x, pX, EX),

and define V = 7rk(X). Since 7rk is a linear transformation, V is also Gaussian distributed.

Therefore, Py(v) is uniquely determined by its mean and covariance. Using the relation-

ships (4.9) and (4.10)

pv = Pk/Lx

Ev =k~JxL T

, , - -**- *AM*k1.Oft.- '- - _- - --- - ,, _ - - 1-1



it follows that

Pvjy(vli) = g(rkxrkX, rkpx ExrT).

Applying this result to each of the C components of (5.13) we obtain (5.14).DL

This lemma implies that the Gaussian mixture of (5.13) not only defines a probability

density on R", but also a family of Gaussian mixture densities {Pvy(r(x)|i)}'- on the

subspaces R 1, . .. , R4~ 1. We denote this collection as the family of embedded mixture models

associated with the original distribution.

When, as is the case of the DCT features, the underlying feature space results from

a multi-resolution decomposition this leads to an interesting interpretation of the mixture

density as a family of densities defined over multiple image scales, each adding higher

resolution information to the characterization provided by those before it. Disregarding

the dimensions associated with high-frequency basis functions is therefore equivalent to

modeling densities of low-pass filtered images. In the extreme case where only the first, or

DC, coefficient is considered the representation is equivalent to the histogram of a smoothed

version of the original image. This is illustrated in Figure 5.3.

The embedded multi-resolution mixture (EMM) model (embedded mixtures on a multi-

resolution feature space) can thus be seen as a generalization of the color histogram, where

the additional dimensions capture the spatial dependencies that are crucial for fine image

discrimination (as illustrated in Figure 3.3). One of the interesting consequences of this

generalization is that it enables fine control over the invariance properties of the image

representation.

5.3.1 Invariance

There are many ways to encode invariance into an image representation. While the features

can themselves be made invariant to common image transformations by reducing their spa-

tial support (e.g. color histograms), filtering out high-frequency information [156, 158, 103,

166], or application of arbitrary invariant transformations [104, 163, 66], invariance can also

be achieved at the level of similarity function [161, 187, 142, 159] or feature representation.

In the case of representations that are learned from data, the latter can be achieved by sim-
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Figure 5.3: An image from the Corel database (top left), its histogram (top center), and

projections of the corresponding 64-dimensional embedded mixture onto the DC subspace

(top right), the subspace of the two lower frequency coefficients (density on the bottom left,

contours where the likelihood drops to 60% on the bottom center), and the subspace of the

three lower frequency coefficients (contours shown on bottom right).

ply including a large number of (real or artificial) examples covering all types of variation

in the training set [148, 179, 115, 120, 166].

Explicitly modeling all the transformations in the similarity function usually implies

a significant complexity increase in the evaluation of similarity and is not recommended

in the context of CBIR. On the other hand, learning invariance does not affect retrieval

complexity and is the optimal solution from the Bayes error point of view (since no infor-

mation is discarded). However, the complexity of learning the individual models is usually

combinatorial in the number of degrees of freedom that must be accounted for, and it may

be impossible to rely on it uniquely. The best solution is, therefore, to combine learning

with explicit encoding of invariance in the features.

The EMM representation provides automatic support for this combination. On one

hand, by considering less or more of the subspaces, the features can be made more or less

invariant to image transformations. In particular, since the histogram is approximately



invariant to scaling, rotation, and translation, when only the DC subspace is considered

the representation is invariant to all these transformations. As high-frequency coefficients

are included, invariance is gradually sacrificed. On the other hand, invariance can always

be improved by including the proper examples in the training sample used to learn the

parameters of the model.

5.4 Experimental evaluation

In this section, we present results of experiments on the performance of ML retrieval with

EMM models. We start by showing that this approach can outperform the standard meth-

ods for texture and color-based retrieval even in the specific domains for which these meth-

ods were designed, i.e. texture (Brodatz) and color (Columbia) databases. Improvements

are shown in terms of both objective (precision/recall) and subjective evaluation. A de-

tailed analysis of the invariance properties of the embedded mixture representation is then

carried out both in terms of the trade-off between invariance and spatial support, and how

invariance can be encoded in the learning process.

5.4.1 Embedded mixtures

We start by comparing EMM/ML with MRSAR/ML and HI on the Brodatz and Columbia

databases. Once again, the DCT features were obtained with an 8 x 8 window sliding by

increments of two pixels. Mixtures of 8 Gaussians were used for the Brodatz database and 16

for Columbia. Only the first 16 subspaces (DCT coefficients) were considered for retrieval.

Because in the Columbia database objects are presented against a black background, we

restricted Columbia queries to the central square of 1/2 the image dimensions. Diagonal

covariances were used for all Gaussians, and all the mixture parameters were learned with

the EM algorithm [36]. The implementations of the other techniques were the same as in

the previous chapters.

Figure 5.4 presents precision/recall curves obtained on the two databases. It is clear

that the EMM/ML combination achieves equivalent performance or actually outperforms

the best of the two other approaches in each image domain (MRSAR for texture, HI for
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Figure 5.4: Precision/recall curves of EMM/ML, MRSAR/ML, and HI on Brodatz (left)

and Columbia (right).

color). This is a significant achievement because EMM is a generic representation, not

specifically tailored to any of these domains, and proves that EMM/ML can handle both

color and texture. The new representation should therefore do well across a large spectrum

of databases.

5.4.2 Perceptual relevance

The visual observation of all the retrieved images suggests that, also along the dimension of

perceptual relevance, EMM/ML clearly beats the MRSAR and histogram-based approaches.

In this subsection, we present retrieval examples that are representative of the three major

advantages of EMM/ML: 1) when it makes errors, these errors tend to be perceptually less

annoying than those originated by the other approaches, 2) when there are several visually

similar classes in the database, images from these classes tend to be retrieved together, and

3) even when the performance in terms of precision/recall is worse than that of the other

approaches, the results are frequently better from a perceptual point of view.

We start by presenting three retrieval examples from the Brodatz database. The three

images in the top row of Figure 5.5 present the results of queries performed under the

MRSAR/ML combination. The three images in the bottom row present the corresponding

results for queries based on EMM/ML. The two images on the left illustrate how the errors



Figure 5.5: Three queries from Brodatz. MRSAR/ML results are shown at the top,

EMM/ML results at the bottom. The number above each image indicates the class to

which it belongs.

of EMM/ML are usually less annoying than those of MRSAR/ML. Notice that even though

EMM/ML makes several errors, most of these would actually be hard to detect by a human

if the image class were not indicated on top of each retrieved image. On the other hand,

the errors of MRSAR/ML are very clear.

The two images on the center are an example of situations where both approaches

perform perfectly in terms of precision/recall, yet the perceptual retrieval quality is very

different. MRSAR/ML ranks all the images in the query class at the top, but produces

nonsensical matches after that. On the other hand, EMM/ML retrieves images that are

visually similar to the query after all the images in its class are exhausted. This obser-

vation is frequent and derives from the fact that the MRSAR features have no perceptual

justification.

Finally, the two images on the right are an example of how, even when better in terms of

precision/recall, the performance of MRSAR/MD can actually be worse from a perceptual

viewpoint. Notice how, even though it gets the first image wrong, EMM/ML produces

images that are visually similar to the query. On the other hand, MRSAR/ML has perfect

precision/recall but produces poor matches after all the images in the class of the query are



retrieved.

Figure 5.6: Three queries from Columbia. HI results are shown at the top, EMM/ML

results at the bottom.

The Columbia database leads to similar observations with respect to the perceptual

superiority of EMM/ML. Figure 5.6 presents examples comparing the performance of HI

(top row) with EMM/ML (bottom one). The images on the left depict a situation in which

EMM/ML is better under both the objective and the perceptual performance criteria. This

example illustrates well how color similarity is not enough for good recognition. Because

there are several objects with color distributions close to that of the query, variations due to

the simple rotation of the object are enough to originate poor retrieval results. In particular,

the histogram-based approach does not appear to lead to a perceptually consistent retrieval

strategy. Notice how light bulb sockets, vases, and coffee mugs are all returned before the

desired telephone images.

On the other hand, EMM/ML not only ranks all the telephones at the top, but also

consistently ranks a vase as the most similar object to the telephone query. While it is

difficult to say if a person would agree with this judgment (there are no more pictures

of telephones in the database), its consistency is a positive sign. The main reason why

EMM/ML does better is that, by relying on features with spatial support, it is able to

capture the local appearance of the object surface. It will thus tend to match surfaces

with the same shape, texture, and reflection properties. This is not possible with color



histograms.

The pictures on the center exemplify how capturing local appearance can lead to percep-

tually pleasing retrievals by EMM/ML, even when the precision/recall performance is only

mediocre. In this case, while HI retrieves several objects unrelated to the query, EMM/ML

only returns objects that, like the query, are made of wood blocks. Finally, the pictures

on the right illustrate how, even when it has higher precision/recall, HI frequently leads to

perceptually poorer results than EMM/ML. In this case, images of a pear and a duck are

retrieved by HI after the images in the right class ("Advil box"), even though there are

several boxes with colors similar to those of the query in the database. On the other hand,

EMM/ML only retrieves boxes, although not in the best possible order.

5.4.3 Invariance vs spatial support

As discussed in section 5.3.1, EMMs provide two ways to encode invariance into the retrieval

operation: learning and low-pass filtering (by discarding high-frequency subspaces). We now

carry out a quantitative analysis of these two mechanisms.
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Figure 5.7: Analysis of invariance on Brodatz. Left: surface spanned by precision/recall as

a function of the number of subspaces considered during retrieval. Right: precision/recall

as a function of block spacing (S) during learning when 16 and 64 subspaces are considered.

Figure 5.7 presents 1) the surface spanned by precision/recall as a function of the number

of subspaces considered during retrieval, and 2) the impact on precision/recall of the spatial



distance between adjacent features vectors used for learning. The precision/recall surface

clearly illustrates the trade-off between invariance and spatial support. When too few

subspaces are considered, the spatial support is not enough to capture the correlations

that characterize each texture class. Performance increases as the number of subspaces

grows, but starts to degrade as high frequencies are included. At this point, because the

representation is much more detailed, good recognition requires precise alignment between

the query and the database feature vectors. Hence, the recognition becomes very sensitive

to small spatial deformations between the textures.

The plot on the right confirms that increasing the number of examples in the training

set also improves the retrieval accuracy. When the image blocks are non-overlapping, the

representation is invariant only to translations by multiples of the block size. As the space

between samples decreases, invariance happens for smaller displacements and retrieval accu-

racy increases. Notice that, while this is true with both small and large number of subspaces,

the relative gain is much higher in the latter case. This was expected since invariance is a

bigger problem when high frequencies are included.
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Figure 5.8: Analysis of invariance on Columbia. Left: precision/recall surface. Right:

precision/recall as a function of block spacing (S) during learning when 16 and 192 subspaces

are considered.

Figure 5.8 presents similar plots for Columbia. While the general behavior is the same,

there are interesting differences in the details. In particular, precision/recall increases much

faster with the number of subspaces and remains approximately constant after that. This



indicates that the intrinsic dimensionality of the images in this database is significantly

smaller than the textures in Brodatz and explains why approaches based on low-dimensional

feature spaces can perform well for object recognition [172, 156, 103, 158]. This intrinsic low-

dimensionality is a consequence of a much smaller high-frequency content and responsible for

the flatness of the precision/recall surface: since there is no high-frequency energy, adding

or deleting high-frequency subspaces does not have a significant impact on the retrieval

accuracy.

On the other hand, as seen by the plot on the right, the spacing between training samples

still has a significant impact on the retrieval performance, independently of the number of

subspaces considered. We should note here that, while there is a significant amount of

variation in scale and rotation on the Columbia database, the results above were obtained

without explicit encoding of invariance to these transformations. This is encouraging since

one would expect the inclusion of rotated and scaled copies of the feature vectors in the

learning sample to further reduce the slope of the precision-recall curve. The main limitation

of this approach is the inherent increase in the computational complexity of the learning

and, for this reason, we have not conducted any experiments along these lines.

Overall, the results above lead to two main conclusions regarding invariance. First, there

seems to be a relatively large set of subspaces for which the representation achieves a good

trade-off between spatial support and invariance. In particular, any number between 16

and 32 subspaces per color channel seems to work well. This implies that a precise selection

of the number of subspaces is, in practice, not crucial for good performance. Second, while

the interval between consecutive samples in the training set clearly affects the performance,

there seems to be no need to consider all possible image positions. In fact, while it is

important to use a sampling grid where there is overlap between spatially neighboring

samples, a spacing of half the block size already achieves performance equivalent to the

best results.



5.5 Discussion

While we have shown that mixture models generalize most of the feature representations

that have been proposed in the retrieval literature, we do not claim that they are the

definitive answer to the problem of feature representation. The main limitation of the

EMM image representation is that it can only model short-term image dependencies. In

particular, it has no ability to model the dependencies that occur between DCT coefficients

of spatially adjacent image neighborhoods.

One obvious extension to account for these dependencies would be to rely on Markov

Random Fields (MRFs) [25]. These are models that define a probability measure over the

entire image lattice by imposing a Markov condition: given the observation of its neighbors,

each pixel is independent of the remainder of the image. The complexity of the MRF model

depends on the size of the neighborhood underlying this Markov condition and, in practice,

only very small neighborhoods are computationally feasible. This limits the ability of MRFs

to capture long range structure and the success of these models has been, for the most part,

limited to modeling random texture [33, 178, 37]. Since, in this case, correlation decreases

quickly with distance, it is not clear that an MRF would provide vast improvements over

EMM.

Recently, however, Zhu et al. [151] have shown that it is possible to design MRFs that

can account for long-range and periodic structures. Given a multi-resolution decomposition

of an image, they compute histograms on each of the frequency subbands and search for the

distribution whose marginal densities matches those histograms. This search is formulated

as a maximum entropy problem which leads to a MRF solution. While their results were

impressive, the technique is extraordinarily slow and infeasible in the context of image

databases. Nevertheless, it has prompted great interest on the question of modeling the

statistics of multi-resolution representations [135, 138, 14].

While it has not yet been shown that it is possible to derive a true probabilistic model, or

a suitable approximation, capable of accounting for long-range spatial dependencies between

frequency coefficients and having tractable complexity, the question of whether such a model

exists remains open for further debate.



Chapter 6

From local to global similarity

We have mentioned, in Chapter 2, that probabilistic retrieval establishes a common frame-

work for local and global queries. In this chapter, we analyze the issue of local queries in

greater detail. We start by discussing their importance and reviewing the most popular

approaches for their implementation. We then show why probabilistic retrieval provides a

natural solution to the problem and present experimental evidence of its robustness against

incomplete queries.

The major limitation of the straightforward implementation of probabilistic retrieval is

then shown to be the linear growth of retrieval complexity with the cardinality of the query.

When the goal is to evaluate global similarity, this makes such an implementation much more

expensive than standard methods, such as the histogram intersection or MRSAR techniques.

We derive an alternative implementation which is competitive with these techniques from a

complexity point of view, while achieving performance similar to that of the straightforward

implementation.

At the core of this implementation is the evaluation of the KL divergence between two

Gaussian mixtures. This is an interesting problem on its own, with applications that go

well beyond the CBIR problem. We show that this divergence can be computed exactly

when the mixture models are vector quantizers and introduce an asymptotic approximation

for generic Gaussian mixtures. This approximation significantly reduces the computational

complexity of the KL divergence without any significant impact on the resulting similarity



judgments.

6.1 Local similarity

In addition to evaluating holistic similarity between images, a good retrieval architecture

should also provide support for local queries, i.e. queries consisting of user-selected image

regions. The ability to satisfy such queries is of paramount importance for two fundamental

reasons. First, a retrieval architecture that supports local similarity will be much more

tolerant to incomplete queries than an architecture that can only evaluate global similarity.

In particular, it will be able to perform partial matches and therefore deal with events

involving occlusion, object deformation, and changes of camera parameters. This is likely

to improve retrieval accuracy even for global queries.

Figure 6.1: Example of a query image with multiple interpretations.

Second, local queries are much more revealing of the user's interests than global ones.

Consider a retrieval system faced with the query image of Figure 6.1. Given the entire

picture, the only possible inference is that the user may be looking for any combination

of the objects in the scene (fireplace, bookshelves, painting on the wall, flower baskets,

white table, sofas, carpet, rooms with light painted walls) and the query is too ambiguous.



By allowing the user to indicate the relevant regions of the image, the ambiguity can be

significantly reduced.

6.1.1 Previous solutions

The standard solution for handling local queries is to rely on image segmentation and then

perform retrieval on the individual segments, i.e. evaluate the similarity of each query

region against all the regions extracted from the images in the database. This approach

suffers from two fundamental problems: 1) segmentation is a difficult problem, and 2) there

is a combinatorial explosion of the number of similarity evaluations to be performed.

Despite the difficulty of automatic image segmentation, several retrieval systems have

relied on it for determining image regions [5, 7, 65, 164, 165]. While, theoretically, precise

image segmentation enables shape-based retrieval, in practice it is not uncommon for a

segmentation algorithm to break a single object into several regions or unify various ob-

jects into one region, making shape-based similarity close to hopeless. Hence, even when

automated segmentation is used, shape representations tend to be very crude. Therefore,

it is not clear that precise segmentation is an advantage for region-based queries. In fact,

the use of sophisticated segmentation can be more harmful than beneficial: for example,

in the context of "blob-world", Howe [65] reports significant improvements by replacing

the sophisticated segmentation algorithm used by Belongie et al. [7] with a much simpler

variation.

The only clear exceptions to this observation seem to be applications where it is possible

to manually pre-segment all the imagery because 1) there is an economic incentive to do

this, and 2) it is very clear what portions of each database image will be relevant to the

queries posed to the retrieval system. An example of such application domain is that of

medical imaging, in particular what concerns to lesion diagnostics [160]. On the contrary,

for generic databases there is usually too much imagery to allow manual processing and it

is rarely known what specific objects may be of interest to the users of such databases.

Since precise segmentations are difficult, several authors have adopted the simplifying

view of relying on arbitrary image partitions to obtain local information [5, 110, 111, 141,



153, 166, 175]. While this solves the problem of segmentation complexity without noticeable

degradation of performance (in fact it does not even seem clear at this point that segmen-

tation works better than arbitrary image partitioning), it still does not address the second

problem, i.e. the combinatorial explosion associated with matching all image segments.

In order to overcome this difficulty, several mechanisms have been proposed in the

literature. The simplest among these is to make the individual regions large enough and

their feature representation compact enough so that each image can still be represented

by a simple feature vector (concatenation of the individual region features) of manageable

dimensions [166, 175]. Such approaches are of limited use for local queries since 1) several

objects or visual concepts may fall on a single image region, 2) feature representations are

not expressive enough to finely characterize each region, and 3) it is hard to guarantee

invariance to image transformations when dealing with regions of large spatial support.

An alternative view is not to worry with compactness and simply deal with the com-

binatorics of region-based retrieval at the level of traditional database indexing [110, 111,

141, 164]. Minka and Picard [110] propose clustering of the individual image regions as a

database organization step that significantly reduces query time (since query regions are

matched against cluster representatives instead of all the members). The use of clustering as

an indexing tool has the major disadvantage that the entire database must be re-clustered

(an expensive operation) when images are included in or deleted from the database.

An alternative to clustering, proposed by Ravela et al. [141] and Smith and Chang [164],

is to rely on indexing mechanisms derived from those traditionally used with text databases.

The idea is to consider all the dimensions of the feature space independent, create one

dimensional indices (which can be searched quickly) for each of them, and then use stan-

dard database operations, such as joins, during retrieval. The main problem with these

approaches is that, for the high-dimensional spaces required for meaningful image charac-

terization, the indexing savings vanish as the database grows. The problem is, therefore,

particularly acute for databases of image regions.

In summary, the downside of approaches based on indexing is that region databases

complicate the indexing problem by orders of magnitude. Since, at this point, indexing is

still an open question (even for the simpler case of non-region based representations) this



can be a significant hurdle.

6.1.2 Probabilistic retrieval

One of the main attractives of probabilistic retrieval is that, conceptually, it makes local

queries straightforward. Recall, from Chapter 2, that for a query composed by a collection

of N vectors x = {x 1,... , XN}, the Bayesian retrieval criteria is

N

g* (x) = arg max [ log Pxiy (xj li) + log Py (i).
2 j=1

Notice that there is, under this criteria, no constraint for the query set to have the same

cardinality as the set used to estimate the class-conditional densities Pxiy (xj li). In fact, it

is completely irrelevant if x consists of one query vector, a collection of vectors extracted

from a region of a query image, or all the vectors that compose that query image. Hence,

there is no difference between local and global queries.

The ability of Bayesian similarity to explain individually each of the vectors that com-

pose the query is a major advantage over criteria based on measures of similarity between

entire densities, such as LP norms or the KL divergence, for two fundamental reasons.

First, it enables local similarity without requiring explicit segmentation of the images in

the database. The only segmentation information that is required are the image regions

which make up the query and which are provided by the user himself. The indexing com-

plexity is therefore not increased. Second, since probabilistic retrieval relies on a generative

model (a probability density) that is compact independently of the number of elemental

regions that compose each image, these can be made as small as desired, all the way down

to the single pixel size. Our choice of local 8 x 8 neighborhoods is motivated by concerns

that are not driven by the feasibility of the representation per se, but rather by the desire to

achieve a good trade-off between invariance, the ability to model local image dependencies,

and the ability to allow users to include regions of almost arbitrary size and shape in their

queries.



6.1.3 Experimental evaluation

We are now ready to evaluate the accuracy of Bayesian retrieval with region-based queries.

For this, we start by replicating the experiments of section 5.4.1 but now considering in-

complete queries, i.e. queries consisting only of a subset of the query image. All parameters

were set to the values that were previously used to evaluate global similarity and a series

of experiments conducted for query sets of different cardinalities. From a total of 256 non-

overlapping blocks, the number of vectors contained in the query varied from 1 (0.3% of the

image) to 256 (100%)1. Blocks were selected starting from the center in an outward spiral

fashion.
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Figure 6.2: Precision/recall curves of EMM/ML on Brodatz (left) and Columbia (right).

X QV means that only X feature vectors from the query image were actually included in

query.

Figure 6.2 presents precision/recall curves for these experiments. The figure clearly

shows that it only takes a small subset of the query feature vectors to achieve retrieval

performance identical to the best possible. In both cases, 64 query vectors, 0.4% of the

total number that could be extracted from the image and covering only 25% of its area,

are enough. In fact, for Columbia, performance is significantly worse when all 256 vectors

are considered than when only 64 are used. This is due to the fact that, in Columbia, all

1Notice that even 256 vectors are a very small percentage (1.5%) of the total number of blocks that could

be extracted from the query image if overlapping blocks were allowed.



objects appear over a common black background that can cover a substantial amount of the

image area. As Figure 6.3 illustrates, when there are large variations in scale among the

different views of the object used as query, the consequent large differences in uncovered

background can lead to retrieval errors. In particular, images of objects in a pose similar

to that of the query are preferred to images of the query object in very different poses.

Figure 6.3: Global similarity (left) can lead to worse precision/recall than local similarity

(right) on Columbia due to the large black background common to all objects.

Notice that these are two natural interpretations of similarity (prefer objects similar to

the query and presented in the same pose vs. prefer the query object in different poses)

and Bayesian retrieval seems to oscillate between the two. Under global similarity, the

more generic interpretation (pictures of box-shaped objects in a particular orientation) is

favored. When the attention of the retrieval system is focused explicitly on the query

object (local query), this object becomes preferred independently of its pose. Obviously,

precision/recall cannot account for these types of subtleties and the former interpretation is

heavily penalized. In any case, these experiments show that, on databases like Brodatz and

Columbia, Bayesian retrieval is very robust against missing data and can therefore handle

local queries very easily.

A more challenging situation is that in which all images are composed by multiple visual

stimulae, e.g. the mosaic databases presented in the appendix where each image is a mosaic

of four Columbia or Brodatz images. The goal here is to, given a query image containing

only one texture or object, to find all the images in the mosaic database that contain

that query image. Figure 6.4 presents precision/recall curves for this case. Once again,



retrieval is performed for query sets of various cardinalities. For comparison, we also show

the performance based on global similarity, i.e. where one image of the mosaic database

containing the texture or object of interest is used as query, and all feature vectors are

considered in the retrieval operation.
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Figure 6.4: Precision/recall curves of EMM/ML on Brodatz mosaics (left) and Columbia

mosaics (right). X QV means that only X feature vectors from the query image were

actually included in query. For comparison, the curves obtained with global similarity are

also shown.

The figure clearly shows that 1) retrieval based on local queries is significantly better

than that based on global similarity, and 2) a small sample of the texture or object of

interest (64 query vectors covering 25% of its area and containing 0.4% of the total number

of vectors that could be extracted from it) is sufficient to achieve performance similar to

the best. These results confirm the argument that Bayesian retrieval leads to effective

region-based queries even for imagery composed by multiple visual stimulae.

The overwhelming superiority of local over global queries is explained by Figure 6.5,

where we present the results of the two types of query for a particular object (yellow onion).

When global similarity is employed, the retrieval system returns mosaics that have objects

in common with the query with high probability. While this may be satisfactory in certain

contexts, typically the user is interested in only one of the objects. There is however no

way for the retrieval system to know this from the query alone. By selecting the region of

interest, the user reduces the ambiguity of the query, enabling significantly higher retrieval
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Figure 6.5: Examples of retrieval based on global (left) and local (right) similarity. In this

case, the user is looking for images containing yellow onions. The number on top of each

retrieved image is a flag indicating retrieval errors.

precision.

6.2 The complexity of global similarity

The results above show that, in addition to capturing both color and texture, the com-

bination of EMM models with Bayesian retrieval is an elegant solution to the problem of

local similarity. There is, however, one aspect in which this retrieval architecture is still not

competitive with standard solutions like MRSAR/MD and HI: the computational cost of

global similarity. We now investigate solutions to this problem.

6.2.1 Computational cost

The main limitation of (2.16) is that, because it evaluates the relevance of each query

vector individually, its complexity is linear in the cardinality of the query. While this is

not a significant problem for local queries since these consider only a small subset of the

query image, it may become a major problem for the evaluation of global similarity, where

all vectors must be taken into account. Ideally, one would like the complexity of global

Bayesian similarity to be equivalent to that of standard approaches like MRSAR/MD and
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Representation Similarity function Expression Complexity

1
JR j P\i

histogram LP norms R - O(R) = 0(k")
r=1

Gaussian Mahalanobis (x - (i)-nO2 )

log E I+ trace[27 1

Gaussian ML or MDI O(n2)

N C

EMM ML E log 7reg(xi, pc, Ec) O(NCn2)
i=1 c=1

Table 6.1: The complexity of various retrieval solutions. See Chapters 2 and 5 for the

meaning of all the symbols in the expressions of the third column. On the fourth column,

n is the dimension of the feature space, k the number of cells per coordinate axis of the

histogram, N the number of feature vectors on the Bayesian query, and C the number of

classes of the EMM.

Table 6.1 presents a comparison of the computational complexity of the various ap-

proaches discussed so far. While the complexity of the histogram is exponential in the

dimension n of the feature space, the complexity of the Gaussian model is only quadratic.

This is substantially less than the linear complexity of EMM/ML on the product of the

cardinality of the query with the number of classes in the EMM. In practice, a few tricks

can be used to reduce this gap.

6.2.2 Practical ways to reduce complexity

It is well known from speech research that, because the Gaussian components act together

to model the overall density, full covariance matrices are usually not required by a mixture

model even when the features are not independent [145, 169, 106, 107]. In fact, a combina-
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tion of Gaussians of diagonal covariance can model correlations between the elements of the

feature vector. Since the DCT coefficients are already approximately uncorrelated [29, 74],

this is particularly true in the case of EMMs.

The use of diagonal covariances has two important consequences: 1) it reduces com-

plexity from O(NCn2) to O(NCn), and 2) significantly reduces the number of parameters

to be estimated (and consequently the sample sizes required for estimation) and inherent

complexity of learning the database models [107]. We rely on diagonal covariances in our

implementation and all the results presented in the thesis were obtained in this way. Notice

that using full covariance matrices is significantly more important under the rigid single-

Gaussian model, where the diagonal covariance approximation can lead to a significant loss

in performance [107, 145].

The embedded nature of the representation also makes it suitable for the implementation

of filtering strategies, similar to those proposed in [60, 24], to minimize the computational

requirements of retrieval. These strategies start by finding the K 1 best matches considering

only the first DCT coefficient. Next, among these matches, the K 2 best matches are found

using the first two coefficients. The search can continue in this way until the best K"

matches are obtained at full resolution. The average complexity of the similarity evaluation

will then be O(NC(1 + 2K 1 /S + 3K 2 /S + ... +nK_ 1 /S)), where S is the database size.

If Ki << S, this complexity will only be marginally larger than O(NC). Since these type

of strategies can also be used for histograms and the standard Gaussian model, we do not

investigate this issue any further. Instead, our goal is to derive a global similarity function

of complexity competitive with that of the standard retrieval approaches.

For this, it is useful to compare the cost of the different solutions for typical values of

the parameters involved. For color histograming, the standard approach is to quantize the

luminance axis into 8 bins and the two color components into 16 each [172]. This leads

to a total of R = 2,048 cells. With respect to texture, the dimension of the feature space

depends strongly on the particular feature transformation employed. We use the 15 dimen-

sional vectors of the MRSAR transformation as a benchmark. In both cases, complexity

is significantly smaller than that of the direct implementation of Bayesian retrieval with

EMMs.
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In addition to using diagonal covariances, this complexity can be reduced by consid-

ering only a small number of feature classes (between 8 and 16) and embedded subspaces

(typically 16) in the EMMs. We saw in the previous chapter that this restriction does

not hurt the retrieval performance in any way. Nevertheless, the complexity per feature

vector of EMM/ML (128 < Cn < 256) is still equivalent to the total complexity of MR-

SAR (d2 = 256) and only a few orders of magnitude smaller than the total complexity

of the histogram methods (2,048). This means that if Costhist/LP, Costmrsar/md, and

COStemm/mi are, respectively, the total complexities for histogram/IP norms, MRSAR/MD

and EMM/ML, then

NCost<rsar/m < Costemm/mi < NCOStmrsar/md

and

Costemm/mi oc Costist/LP.

Since the number of feature vectors N can be as large as the number of pixels in the query

image, this is very problematic.

6.2.3 Asymptotic approximations for global similarity

In section 2.3.3, we saw that, as the cardinality of the query grows, Bayesian retrieval

converges asymptotically to the MDI criteria, i.e. the minimization of the KL divergence

between the densities of the query and retrieved image. This suggests an alternative to (2.16)

for the evaluation of global similarity: start by estimating the density of the query and

then evaluate the distance between that density and those in the database. If the density

estimates are based on a compact feature representation, this procedure will have much

smaller complexity than the direct application of (2.16). The main problem with this

strategy is that there is no easy way to evaluate the KL divergence between mixtures. We

next investigate when this is possible and devise approximations for when it is not.

Start by recalling (see section 2.3.3) that, when the cardinality of the query is large, the
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Bayesian criteria (2.16) converges to

g(x) = arg max P(x)logPxiy(xli)dx. (6.1)

To simplify the notation, we adopt the following conventions in the remainder of this chapter

C

Px(x) = P(x) = E P(xlwj)P(w) (6.2)
j=1

and
Ci

PxIy(xli) = P(x) = ZPi(xIw9)Pi(Wo)
j=1

(6.3)

where the subscript i refers to the image class and the wj to the feature classes within each

image class.

Given no constraints on the feature class-conditional densities P(xw3 ) and P(xjwj), it

is only possible to derive a generic expression for global similarity.

Lemma 2 For a retrieval problem with the query and database densities of (6.2) and (6.3),

I P(x) log Pi(x)dx =
= P(j) [log Pi(Wk) -f P(xlwj, xk(x) = 1) log dx f

j,k k Pi(kIk

(6.4)

P(xlwj)dx

where

if Pi(Wk X) P(wiIx) Vl k

otherwise,
(6.5)

Xk = (x: Xk(x) = 1-, and

P(xWj,Xk(X) = 1) =

P(xIW,)

fX k P(xlj)dx'
if x E Xk and fxk P(xlw3)dx > 0

otherwise.
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Proof: From (6.2) and (6.3),

P(x) log P(x)dx

Using Bayes rule

= P(wj) J P(xIw,) log 5 P (x Iw I)P(wi)dx

= P(j) EjP(xlw) log
k gxk

Pi(Wkx) = PiX~)iLk
LI P (xIW1)P(W )'

(6.6)

we have, Vk such that P(wkIx) # 0,

Pi(x I wi)Pi(w)dx Pi(Wk X)

Since Ek Pi(wk Ix) = 1, from the definition of Xk we obtain P (Wk Ix) > 0, Vx E Xk, and

I P(x) log Pi(x)dx =

=5
=3

P(w)) E P(xlw) log Pi(XlWk)Pi(wk) dx
k fxk Pi (wk I X)

P(w,) l [og Pi(Wk) JXk P(xlwj)dx +
Jxk P(xIw3 ) log Pi(x~k) dx]

P(w) log09 Pi(k) + P(xlwj, Xk(x) = 1) log dx
P~.j5~~k ~ I X k Pi (WklIX) IJfxk

Equation (6.4) reveals that there are two fundamental components to global similarity. The

first

SP(wj)9 log Pi(wk) P(xlw3 )dx
j,k xk

is a function of the feature class probabilities, the second

P(w) j
j,k X

P(xIwj, Xk(x) = 1) log x(k) dx

a function of the class-conditional densities. The overall similarity is strongly dependent on

the partition {XI, . .. , Xc. } of the feature space determined by P (x), the term

f P(xlwj)dx
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weighting the contribution of each cell according to the fraction of the query probability

that it contains. In particular, if S(wj) is the support set of P(xwj), then

fx, P(xlwj)dx = 0,

fx, P(xlwj)dx = 1,

fx, P(xlwj)dx E (0, 1),

and fx, P(xwj)dx can be seen as a measure of

determined by P(xlwk).

if S(w3 ) n Xk = 0

if S(wj) C Xk

otherwise,

overlap between P(xlwj) and the cell Xk

Histograms

When all image classes share the same feature class-conditional densities and the feature

space is divided into a collection of disjoint cells, the evaluation of global similarity is

straightforward. This is the case of the standard histogram model and VQ label histograms

for a fixed quantization of the feature space.

Lemma 3 If all mixture densities define the same hard partition

if P(w1 x) = Pi(wI x) = 6k,lVi

otherwise,

where 6k,I is the Kronecker delta function (2.3), then

P(x) log P(x)dx = P(wj) log P(wj) + P(wj)J P(xIwy ) log P(xIw )dx.

(6.7)

(6.8)

Proof: Using the same argument as in the proof of Theorem 5, we assume without loss of

generality that all the classes in all mixture models have non-zero probability, i.e.

P(wl) > 0 and P(w 1 ) > 0, Vl, i.
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It follows from (6.6) that P(wkIx) = 1 if and only if

SPi (xlwl)Pi (WI) = 0.
ltk

Since all the terms in the summation are non-negative, this implies

Pi(xlwi) = 0 Vl $ k.

I.e., for a hard partition such as (6.7), the support sets of P(xlwk) and Pi(xlwk) are contained

in Xk. Hence

j P(xlwj)dx = 6kj

and, since P(wk Ix) = 1, Vx E Xk, (6.8) follows from Lemma 2. 0

Because when all image classes share the same feature-class conditional densities, the

second term of (6.8) does not depend on i, this lemma implies that

argmax P(x)logPi(x)dx = argmax P(o)logPi(w) (6.9)

= arg min P(Wo) log P (w

Hence, if the feature space is first vector quantized and all image classes represented by label

histograms, Bayesian retrieval is equivalent to minimizing the KL divergence between those

label histograms. This is an interesting result from the computational point of view, since

the complexity of this operation is O(C), where C is the number of VQ cells, as opposed

to the O(NCn2) complexity inherent to the straightforward application of the Bayesian

criteria.

Gaussian mixtures

A much more challenging case occurs when we lift the restrictions of a common hard par-

tition and consider generic Gaussian mixtures. We now concentrate in this case, starting

with a preliminary result.
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Lemma 4 For any probability density P(x), x C R", a E R", B E R"x and set X, if

jx P(x)dx = 1,

then

P(x)(x - a)TB(x - a)dx = trace[Bix] + (-x - a)TB(Ax - a),

where

Ax = fP(x)x dx
x

tX =J XP(x)(x - )x- p) T dX.

Proof:

/ P(x)(x - a)TB(x - a)dx

= P(x)(x - -x +Ax - a)TB(x - Ax + Ax - a)dx

= P(x)(x - Ax)T B(x - Ax)dx + 2 P(x)(x - Ax) T B(px - a)dx + (Ax - a) T B(px - a)

= trace [B P(x)(x - Ax)(x - Ax)Tdx + 2(Ax - Ax) T B(Ax - a) + (Ax - a) T B(px - a)

= trace[Bix] + (Ax - a)TB(px - a).0

This lemma allows us to specialize (6.4) to Gaussian mixtures.

Lemma 5 For a retrieval problem with the query densities of (6.2) and Gaussian mixtures

for the database densities (6.3),

Ci
Pi(x) = g(x, pi,k, Ei,k)Pi(Wk),

k=1

where g(x, y, E) is as defined in (2.5),

P(x) log P(x)dx =

= P(wj) log Pi(wk) jP(xlw)dx +
,L.
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+ 7 P( 9 log (q,j,k , pi,k, Ei,k) - 2trace[E $q,, ] P(xjwj)dx
j,k Xk

- P(wJ) P(xlwi, Xk (x) = 1) log Pi(WkIx)dx P(xlwj)dx (6.10)
j,k Xk xk

where

[tq,j,k = Xk P(xlwj, Xk(x) = 1)x dx, (6-11)

$q,j,k = j P(xlwj, Xk(x) = 1)(x - Aq,j,k)(X - Aq,jk)Tdx, (6.12)

and Xk and P(X|Wj, Xk(x) = 1) are as defined in Lemma 2.

Proof: Since P(xlwk) = g (x, pi,k, Ei,k) and fxk P(xw, Xk (x) = 1)dx = 1, simple applica-

tion of the previous lemma results in

Xk P(x Xk(X) = 1) logPi(xjwk)dx=

= log ( P(xlw,,Xk(x) = 1)dx
V(27r)n |Eikl xk

P(xlwj, Xk(x) = 1)(x - pi,k) TE (X - pi,k)Tdx

= log 1 -trace[E- $,jk] -- Aq,j, - pi,) ik(Pq,jk - i,k)
(27r)n!|,Eil 2 2

1
= log g(4,j,,k i i,,I Ei,k) - trace[E $qjk].

The lemma follows by simple algebraic manipulation of (6.4). El

It is interesting to analyze each of the terms in (6.10). Consider the query feature class

wj and the database feature class Wk. The first term in the equation is simply a measure

of the similarity between the class probabilities P(w) and Pi(wk) weighted by measure of

overlap fXk P(xlwj)dx . This term is equivalent to that appearing in (6.9) but accounts

for the fact that the partitions defined by the query and image class densities are now not

aligned.

Comparing the term in square brackets with (2.23), it is straightforward to show that

this term is equivalent to the similarity, under Bayesian retrieval, between the Gaussian

Pi(xlwk) and a Gaussian with parameters Aq,j,k and Eg,j,k. From (6.11) and (6.12), these
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are simply the mean and covariance of x according to P(xlwj) given that x E Xk. Hence,

the second term is simply a measure of the similarity between the feature class conditional

densities inside the cell defined by P(xlwk). Once again, this measure is weighted by the

amount of overlap between the two densities.

Finally, the third term weights the different cells xk according to the ambiguity of their

ownership. Recall that, Vx E Xk, Pi(WkIx) > Pi(wllx), Vl $ k. If Pi(wklx) = 1, the cell is

uniquely assigned to Wk and this term will be zero. If, on the other hand, Pi(WkIx) < 1,

then the cell will also be assigned to other classes and the overall likelihood will increase.

While providing insight on the different factors involved in global similarity, (6.10) is

not very useful from a computational standpoint since the integrals that it involves do not

have a closed-form expression. There is, however, one particular case where a closed-form

solution is available: the case where all mixture models are vector quantizers.

Vector quantizers

Using Theorem 5, the VQ case can be analyzed by assuming Gaussian feature class-

conditional densities and investigating what happens when all covariances tend to zero.

This leads to the following result.

Lemma 6 For a retrieval problem with Gaussian mixtures for the query (6.2) and database

densities (6.3)
C

P(x) = L G(X, pgj, 1Eqj)P(Wj)
j=1

Ci
Pi(x) = L g(X, pi,k, CEi,k)Pi(Wk)

k=1

where 9(x, p, E) is defined in (2.5), when e -+ 0

P(x) log Pi(x)dx =

= P(wj) log Pi(w"(J)

+ ZP(wj)lim 109A~~,jiiaji~~~)-1 rc[ tqaj)I
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where Xk is as defined in Lemma 2, lq,j,a(j) and Eq,j,a(j) as defined in Lemma 5, and

a(j) = k such that I|pq,j - pi,k|I.k < iqj - jj Vl 4 k.

Proof: When E -+ 0,

g(x, pqj, E~q,j) -4 6(x - q,j)

and since, from the definition of the delta function,

f(x)J(x - p)dx =f (p),

it follows that

/ P(xlw 3)dx -+ Xk(pq,j).

On the other hand, from Theorem 5 and the definition of Xk, if e - 0 then

Pi(wkIx) + 1Vx E Xk,

and Xk(Pqj) = 1 if and only if

(Ipq,j - pi,k)E'(/Lq,j - pi,k) < ([Lq,j - pi,)E2,(i(p,j - pii,), Vl # k.

The lemma follows from the application of these results to (6.10). 0

We are now ready to derive a closed-form expression for global similarity under Bayesian

retrieval with VQ density estimates.

Theorem 6 For a retrieval problem with VQ density estimates for the query (6.2) and

database densities (6.3)
C

P(x) = E 6(
j=

1

Ci
P(x) = Z6(x

k=1

, pg,j)P(wj)

- pi,k) Pi(Wk),
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when evaluating global similarity the Bayesian retrieval criteria reduces to

arg max P(x) log P(x)dx =

= arg min lim P(i) logP(W) + A P ()||q,j - pia(j)I2 (6.13)
A-+oo yA P~au))

where

a(j) = k such that Ipq,j - pi,k||12 2 Iqj - i,11I 2, Vl : k.

Proof: From (6.11) and (6.12), when e -+ 0

A,j,a(j) -+ I#9,j

Eq,j,a(j) -4 11q,j-

Using Lemma 6,

arg max P(x)logPi(x)dx=

= arg maxi P(wj) log P (Wa(j)) + 3 P(wj) lim log g(pq,J, pia(j), EEi,a(j))

- EP() 1trace[E ) Eq,j]}.

Since, for a vector quantizer, Ei,k = Ej = I,Vk, j, the third term on the right-hand side

of the above equation does not depend on i, and setting A = 1/2e leads to

arg max P(x) log P(x)dx =

= argmax {ZP(w) log P(wa(j)) - lim AIPq,j - pi,a(j)| |1argaxEP(i)A-+oo0

= argmin lim E P(w) log P7  + A E P(wj)|I|Ipq,j - pi'a(3)12iA-oo ,. Pi (Wa ())

The theorem states that, for VQ-based density estimates, Bayesian retrieval is equivalent

to a constrained optimization problem [11]. Given a query VQ and a VQ associated with a

database image class, one starts by vector quantizing the codewords of the former according
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to the latter, i.e. each codeword of the query VQ is assigned to the cell of the database VQ

whose centroid is closest to it. The best database VQ is the one that minimizes a sum of two

terms resulting from this procedure: a term that accounts for the average distortion of the

quantization (EZ P(wj) I pgj - pi,a(j)|12) and the KL divergence between the feature-class

probability distributions. A is a Lagrange multiplier that weighs the contribution of the two

terms.

By making A -+ oo, all the emphasis is placed on the average quantization distortion.

This leads to two distinct situations of practical interest. The first is when the two quantizers

share the same codewords. In this case, the quantization distortion is null and the cost

function becomes that of (6.9), i.e. the KL divergence between label histograms. Since

equal quantizers with equal codewords define equal partitions of the feature space, this

situation is equivalent to that of histogramming and the result is, therefore, not surprising.

If the quantizers have different codewords (and consequently define different partitions),

the quantization distortion becomes predominant and the retrieval criteria becomes

argmax P(x) log Pi(x)dx = arg min P(o)||ej - Ii,a(j) 12

Computationally, this reduces the complexity of the retrieval operation from O(NCn) to

O(C 2n). Since C, the number of feature classes, is fixed and orders of magnitude smaller

than the cardinality of the query, N, the resulting savings are very significant. In fact, using

the typical values of section 6.2.2,

4Costmrsar/md < COStemm/mi < 1
6 Costmrsar/md,

COSthist/LP < Costemm/mi < 2 COSthist|LP,

rendering the complexity of Bayesian retrieval with EMM similar to that of the standard

approaches.
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The asymptotic likelihood approximation

Vector quantization is a case of particular interest not only because it has a closed-form

solution for global similarity, but also because the analysis performed for VQ provides

insight on how to approximate (6.10) for generic Gaussian mixtures. In particular, Lemma 6

suggests the following approximation.

Definition 5 Given a retrieval problem with Gaussian mixtures for the query (6.2) and

database densities (6.3)
C

P(x) = g(x, Lq,j, Eq,j)P(Wj)
j=1

Ci
Pi(x) = G g(x, pi,k, Ei,k)Pi(Wk),

k=1

the asymptotic likelihood approximation (ALA) is defined by

P(x) log Pi(x)dx

S P(j) log Pi(Wa(j))
3

+ ZP(w3 ) [log G(pqj, pi,a(j), Ei,a(j) - trace X Eg)

where

a(j) = k such that ||Ipq,j - pikI112 < g I iq,j - ii,,j112. 1, Vl # k.

A comparison of the ALA with the true likelihood of (6.10) reveals two assumptions

underlying this approximation.

Assumption 3 Each cell Xk of the partition determined by P (x) is assigned to one feature

class with probability one, i.e.

Pi(WkIx) = 1, Vx E Xk-
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Assumption 4 The support set of each feature class-conditional density of the query mix-

ture is entirely contained in a single cell xk of the partition determined by P (x). I.e.,

Vj 3k: S(wj) C Xk-

Under Assumption 3, the third term of (6.10) vanishes. Under Assumption 4, fx P(xw) =

3 k,a(j), /q,j,a(j) = pgj, and Eq,j,a(j) = Eq,j. Taken together, these equalities lead to the

ALA. While both assumptions are valid in the VQ case, the ALA does not necessarily im-

ply a VQ model. In particular, all feature class-conditional densities are allowed to have

non-zero covariances. However, Assumption 3 will only be reasonable if the feature class-

conditional densities of P (x) have reduced overlap. This implies that the distance between

each pair of pi,q should be larger than the spread of the associated Gaussians. A 1-D illustra-

tion of this effect is provided by Figure 6.6, where we show two Gaussians class-conditional

likelihoods and the posterior probability function P(wo0 x) for class 0. As the separation

between the Gaussians increases, the posterior probability changes more abruptly and the

partition becomes harder.

/

07/

0.4

Figure 6.6: Impact of the separation between two Gaussian

the partition of the feature space that they determine.

F7 ]

class conditional likelihoods on

Assumption 4 never really holds for Gaussian mixtures, since Gaussians have infinite

support. However, if Assumption 3 holds and, in addition, the spread of the Gaussians in
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P(x) is much smaller than the cells Xk, then

XU) P(xlwj)dx 
~ 1

with high probability.

In summary, the crucial assumption for the validity of the ALA is that the Gaussian

feature class-conditional densities within each model have reduced overlap. The plausibility

of this assumption grows with the dimension of the feature space, since high-dimensional

spaces are more sparsely populated than low-dimensional ones. This is already visible in

Figure 5.3, where it is clear that as the dimension of the space grows the Gaussians tend

to have smaller overlap. To validate this point with more concrete evidence, we performed

the following experiment

e a 10, 000 point sample was drawn from the mixture model of Figure 5.3;

" for each sample point xi, i = 1, .. . , 10, 000, we evaluated the maximum posterior

class-assignment probability maXkP(wkIxi);

" the maximum posterior probabilities were histogramed.

The experiment was repeated for several mixture models obtained by restricting the EMM

of Figure 5.3 to an increasing number of subspaces. Figure 6.7 presents the histograms of

the maximum posterior probability obtained with 2, 4, 8, 16, 32, and 64 subspaces. It is

clear that, in high-dimensional spaces, Assumption 3 is realistic.

6.2.4 Experimental evaluation

We are now ready to conclude the experimental evaluation of probabilistic retrieval with

EMMs. Since the Brodatz and Columbia databases contain only specific types of visual

concepts (textures and objects), are organized into relatively unambiguous classes, and

each of their images consists of only one concept, these databases provide a controlled

environment that enables important insights on the different retrieval solutions. However,

because realistic image retrieval rarely occurs under such controlled circumstances, it is
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I

Figure 6.7: Maximum class posterior

spaces of the EMM of Figure 5.3.

probability histograms for different numbers of sub-

important to validate the results obtained so far with evaluation on a generic database. In

particular, it is important to consider databases that require joint modeling of texture and

color. In this section, we consider one such database (Corel) and compare the performance of

probabilistic retrieval against that of the domain-specific approaches discussed so far (HI and

MRSAR/MD) and the two other approaches that, to the best of our knowledge, represent

the state of the art in the joint modeling of the two attributes: color autocorrelograms and

linear combinations of color and texture.

In these experiments, we used mixtures of 8 Gaussians and a spacing of four pixels

between consecutive training samples. The implementations of MRSAR and HI were as

discussed above, in the latter case we used a histogram with 512 bins. For color autocor-

relograms, we followed the implementation of Huang et al. [66]. One of the limitations of

the autocorrelogram is that, because each of its entries is a probability conditioned on a

different event, it cannot be combined with probabilistic retrieval criteria such as ML. We

therefore relied on the variation of the L' norm proposed in [66] as a similarity criteria. In

order to make a fair comparison, we restricted its region of support to be the 8 x 8 pixel

window also used by the embedded mixtures, i.e. the set of distances used for computing
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the autocorrelogram was D = 1, 2, 3. Overall, the autocorrelogram contained 2, 048 bins.

To combine linearly color and texture, we started by evaluating all the distances between

query and database entries according to both HI and MRSAR/MD. For each query, we then

normalized all distances by their mean and variance, clipped all values with magnitude

larger than three standard deviations, and mapped the resulting interval into [0, 1]. This is

a standard normalization to ensure that the distances relative to the two attributes are of

the same order of magnitude [72, 44, 150]. An overall distance was then computed for each

entry in the database, according to

d' = (1 -w)dc +wdt

where de and dt are, respectively, the normalized distances according to HI and MR-

SAR/MD, and w E [0,1] a pre-defined weight. These distances were then used to rank

all the entries and measure precision/recall.

EMM/ML -s- EMMMALA
-e- EMM/MALA --- H5121 (W=0)

CAC/w -4- MRSAR/MD (W.1)
-4- H51201.-.W 0

0 MRSAR/MD 0.9- ----

0 .8 -. -. ---....- - -- - - - - - - 0 .8 - -. . ... . ..
+. 

. .---...---..-.--.--.--- - .

0. -0.6-~;/~

0.4 0.51

0 5 10 1s 20 20 30 30 40 0 5 10 15 20 25 30 35 40
Recall Recall

Figure 6.8: Left: precision/recall on Corel for MRSAR/MD, HI, color autocorrelogram

(CAC), EMM/ML, and EMM/MALA. Right: comparison of precision /recall achieved with

EM/MALA and linear weighting of MRSAR/MD and HI for different weights.

The left plot on Figure 6.8 presents the precision/recall curves for the different retrieval

solutions. It is clear that the texture model alone performs very poorly, color histogramming

does significantly better, and the autocorrelogram further improves performance by about

5%. However, all these approaches are significantly less effective than either EMM/ML or
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EM/MALA (where we maximize the asymptotic likelihood approximation discussed in the

previous section). Furthermore, there is no significant difference between the two EMM

approaches. This confirms the argument that, for global queries, 1) ALA is a good approx-

imation to the true likelihood, and 2) EMM/MALA is the best overall solution when one

takes computational complexity into account.

Finally, the right plot on the figure compares the precision/recall curves of EMM/MALA

with those obtained by linear weighting of the color and texture distances. Several curves

are shown for values of w E [0, 1]. It is clear that the performance of the latter approach is

never better than that of EM/MALA. Given that, in a realistic retrieval scenario, the value

of the optimal weight is not known, there are no intuitive ways to determine it, and the

linear combination always requires an increase in complexity (distances have to be computed

according to the two representations), we see no reason to prefer these types of solutions to

probabilistic retrieval.

We conclude this chapter by giving some visual examples of the outcome of queries in

the Corel database. Figures 6.9 to 6.11 present typical results for queries with horses, cars,

diving scenes, gardens, and paintings. These pictures illustrate some of the nice properties

of the probabilistic retrieval formulation: robustness to changes in object position and

orientation, robustness against the presence of distracting objects in the background, good

performance even when there are large chunks of missing data in the query (notice that, in

the diving example, even though almost no sea is visible in the query, the retrieved images

are all from the right class and most contain large patches of blue), and perceptually intuitive

errors (in the painting example, two pictures of the sphinx - pyramids class - are returned

after all the paintings of human figures).
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Figure 6.9: Outcome of queries on Corel for horses and cars.
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Figure 6.10: Outcome of queries on Corel for diving scenes and paintings.
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Figure 6.11: Outcome of queries on Corel for gardens.
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Chapter 7

Short-term learning

There are various reasons to doubt that any retrieval system (no matter how sophisticated)

will always be able to find the desired images in response to the first query from a user. This

is due to 1) the difficulty of the image understanding problem and 2) the fact that users

themselves are not always sure of what they want to retrieve before browsing through the

database. In practice, it means that retrieval is always an interactive process, consisting of

the following sequence of events: 1) user provides a query, 2) system retrieves best matches,

3) user selects a new query, 4) process is iterated.

The interactive nature of the retrieval problem can be both a blessing and a curse for

retrieval systems. On one hand, feedback provided by the user can be exploited to guide

the search. This is a major departure from traditional vision problems and makes it feasible

to build effective systems without solving the complete artificial intelligence problem [132].

In this context, a retrieval system is nothing more than an interface between an intelligent

high-level system (the user's brain) that can perform amazing feats in terms of visual

interpretation but is limited in speed, and a low-level system (the computer) that has very

limited visual abilities but can perform low-level operations very efficiently.

On the other hand, users tend to be frustrated if the system does not appear to know

how to integrate their feedback. This means that the low-level retrieval system cannot

be completely dumb and, at the very least, should be able to integrate the information

provided by the user throughout the entire course of interaction. Otherwise, it will simply
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keep oscillating between the image classes that best satisfy the latest query and convergence

to the right solution will be difficult.

Consequently, in addition to a powerful image representation, a good retrieval system

must also incorporate inference mechanisms to facilitate the user-interaction. However, the

two problems cannot be solved in isolation, as the careless selection of the representation

will make inference more difficult and vice-versa. In the previous chapters, we have estab-

lished that probabilistic retrieval is a powerful solution to the problem of evaluating image

similarity. We now show that it is also the natural answer to the inference problem.

7.1 Prior work

The design of inference algorithms is particularly difficult for retrieval systems based on

holistic image similarity because, in this case, two different tasks must be accomplished.

First, the system must figure out what exactly is the set of visual image properties or

concepts that the user is interested in. Finding a good match for these concepts is possible

only after they are identified. As the example in Figure 6.1 demonstrates, the first step

cannot be accomplished from the observation of a single image, and several iterations of the

interaction between user and retrieval system must occur before the latter knows exactly

what the former is looking for, assuming that this is ever clear. By avoiding this first

learning step, systems relying on localized feedback need to concentrate only on the second

problem, which has easier solution.

Given this observation, it is somewhat surprising to realize that, while various solutions

have been presented to the inference problem (commonly referred to as relevance feedback

in the retrieval literature) [12, 32, 110, 150, 175], most of them are intimately related with

image representations that preclude local similarity. In fact, to the best of our knowledge,

only the "Four eyes" system [110] combines learning with local queries, and even these are

restricted to image patches of a sizeable dimension.

With respect to the inference mechanisms, both the "Four eyes" [110] and "PicHunter" [32]

systems are Bayesian in spirit. "Four eyes" pre-segments all the images in the database, and

groups all the resulting regions. Learning consists of finding the groupings that maximize
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the product of the number of examples provided by the user with a prior grouping weight.

This can be seen as an approximation to Bayes rule. "PicHunter" defines a set of actions

that a user may take and, given the images retrieved at a given point, tries to estimate

the probabilities of the actions the user will take next. Upon observation of these actions,

Bayes rule gives the probability of each image in the database being the desired target.

The main limitations of these two systems are due to the fact that the underlying

image representations and similarity criteria are not conducive to learning per se. For

example, because there is no easy way to define priors for region groupings, in [110] this is

done through a greedy algorithm based on heuristics that are not always easy to justify or

guaranteed to lead to an interesting solution. On the other hand, because user modeling is a

difficult task, [32] relies on several simplifying assumptions and heuristics to estimate action

probabilities. These estimates can only be obtained through an ad-hoc function of image

similarity which is hard to believe valid for all or even most of the users the system will

encounter. Indeed it is not even clear that such a function can be derived when the action

set becomes more complicated than that supported by the simple interface of "PicHunter".

For example, in the context of local queries, the action set would have to account for all

possible segmentations of the query image, which are not even defined a priori.

All these problems are eliminated by the Bayesian formulation of the retrieval problem

introduced in this thesis because it grounds all inferences directly on the image observations

selected by the user. In this chapter, we show that, by combining a probabilistic criteria

for image similarity with a generative model for image representation, there is no need

for heuristic algorithms to learn priors or heuristic functions relating image similarity and

the belief that a given image is the target. Under the new formulation, 1) the similarity

function is, by definition, this belief and 2) prior learning follows naturally from belief

propagation according to the laws of probability [127, 75, 85, 76]. Since all the necessary

beliefs are an automatic outcome of the similarity evaluation and all previous interaction can

be summarized by a small set of prior probabilities, this belief propagation is very simple,

intuitive, and extremely efficient from the points of view of computation and storage.
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7.2 Bayesian relevance feedback

Following Cox et al. [32], we identify two types of searches: target search and open-ended

browsing. While in target search users seek to find an image from a specific image class,

in open-ended browsing they only have a vague idea of what they are looking for. It

is relatively easy to extend the Bayesian retrieval model so that it can account for both

situations. Instead of a single queryl x, we consider a sequence of queries xt = {x } 1

and, instead of a class indicator variable Y, we define a collection Yj = {Y } , where t is

the iteration number. The event Y = i indicates that the ith image class is the target for

iteration t.

Applying Theorem 1 and denoting the sequences {X1,..., Xt} and {i...,it} by Xi

and il, respectively, the decision function that minimizes the probability of error is

g*(xt) = argmaxlogPyixt(il1xi)
1

= arg max{log Pxtlyt(xilii) + log Pyt (i4)}, (7.1)
1 1

where the maximum is taken over all the possible configurations of Yt. This is a well

known problem in many areas of engineering and statistics including dynamics systems [54],

speech processing [140], statistical learning [97], information theory [52] and, more recently,

machine vision [28, 122, 196], where Y is a variable that encodes the state of the world and

x observations from a phenomena to be modeled.

Application of the chain rule of probability leads to

g*(xt) = argmax{logPxiy,(xili) + logPy(ii)
i1

t

+ E[log PXXk 1 y (xklx- 1, i ) + log Py Z- (ikij-
k=2

Since, in practice, it is difficult to estimate the conditional probabilities PX|Xk-1y,ylt(xklx, 7Z1

and Py yk-1(ikli1) for large t (due to the combinatorial explosion of the number of possi-

'Notice that, as in previous chapters, each query xi is a collection of Ni feature vectors that we now

denote by xi = {Xi,1, .. ,x Ni I
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bilities for the conditioning event), it is usually necessary to rely on simplifying assumptions.

A common solution is to rely on the following conditional independence assumption for the

observations.

Assumption 5 Given the target image class for iteration k, the query for that iteration is

independent of the queries and target image classes for all other iterations

Pxkix-1,y(xkIx-, A) = Pxkly(xklik).

In the retrieval context, the assumption of conditional independence implies that the user

provides the retrieval system with new information at each iteration. This is reasonable

since users will tend to get frustrated if they feel that they have to repeat themselves, and

will probably stop using the system when conditional independence does not hold.

Under Assumption 5, we obtain what is usually referred to as an hidden Markov model

(HMM) [140] or a Markov source [52], and the probability of retrieval error is minimized

when

t t
g*(x1) = arg nax{log Py, (ii) + logPX,|Yk(xk + Og yk1(ik

k=1 k=2

This model is valid for both target search and open-ended browsing. When the transition

probabilities Pykyk (ik li|- 1) are unconstrained, users are free to change their mind as

frequently as they want and we have a model for browsing. If, on the other hand, switching

between states is not allowed,

Py k-1(iki- 1 ) - PYkjYk _(ikjik_1) = 64_14,

where 6
k1_,ik is the Kronecker delta function defined by (2.3), we have a model for target

search; i.e., the user decides on a target image class at the start of the interaction according

to Py, (ii) and holds on to that target class until it is found, or the search aborted. In this
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case, the retrieval model can be simplified into

t
g*(xt) = arg max{log Py (i) + E log Pxkly(xkli)}, (7.2)

k=1

where Y = Yi. In practice, estimating transition probabilities involves implementing an

actual retrieval system, assembling a body of users and collecting extensive statistics on

the patterns of interaction. This a "chicken and egg" problem since without the transition

probabilities it is not possible to implement a system that supports browsing. For this

reason, we restrict ourselves to the problem of target search, leaving the more general

question of open-ended browsing open for subsequent discussion.

7.3 Target search

Using Assumption 5 the chain rule of probability and Bayes rule, (7.2) can also be written

as

t-1

g*(XI) argmax{log PX Y(xtji) logPXlY(Xkji) + log PY(i)}
k=1
t-1

= arg max{log Pxg y(xtfi) + E log Pxlk-1 y(xklx , i) + log Py (i)}
k=1

= arg max{log Pxgly(xtli) + log Pxt- 1 y(x 1 ji) + log Py(i)}

= arg max{log Pxt1 y(xtli) + log PyjXt-1(ilxi71)}. (7.3)

By comparing (7.3) with (2.14), the term Py 1Xt-1(iIxt- 1) can be seen simply as a prior belief

on the ability of the ith image class to explain the query. However, unlike the straightforward

application of the Bayesian criteria, this is not a static prior determined by some arbitrarily

selected prior density. Instead, it is learned from the previous interaction between user and

retrieval system and summarizes all the information in this interaction that is relevant for

the decisions to be made in the future.

Recalling from (7.1) that, in target search mode,

g*(x') = arg max{log PyIxt (iIxt)} (7.4)
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and comparing with (7.3) reveals an intuitive mechanism to integrate information over time.

Together, (7.3) and (7.4) state that the system's beliefs on the user's interests at time t - 1

simply become the prior beliefs for iteration t. New data provided by the user at time t are

then used to update these beliefs, generating the posteriors on which the retrieval decisions

are based. These posteriors in turn become the priors for iteration t + 1. In other words,

prior beliefs are continuously updated from the observation of the interaction between user

and retrieval system. This is illustrated in Figure 7.1.

P (xI1)XMY
P (1 I x 0 O0 P ( I xt-1)Y1 X 1YI X 1

P (x' -)
P (ilx t ) O XI O P l 11)
Yl X 1Yl X

P (MI xt) O O P (M I xtj
Y' X P (xI M) Y1 X

XMY

Figure 7.1: Belief propagation across iterations of the retrieval process.

From a computational standpoint, the procedure is very efficient since the bulk of the

computation at each time step is due to the evaluation of the log-likelihood of the data in

the corresponding query. Notice that this is exactly equation (2.16) and would have to be

computed even in the absence of any learning. From the storage point of view, the efficiency

is even higher since the entire interaction history is reduced to a number per image class. It

is a remarkable fact that this number alone enables decisions that are optimal with respect

to the entire interaction.

There is however one limitation associated with this belief propagation which is evident

from (7.2): for large t, the contribution of the new data provided by the user is very small

and the posterior probabilities tend to remain constant. This limitation can be avoided by

replacing (7.3) with the more generic maximization problem [11],

g*(x) = argmax{logPxajy(xtli) + A log Pyjt (ilxI~- 1)}
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where one looks for the image class that best explains the current query, under a constraint

on how well it explains all the previous interaction. The scalar A is a Lagrange multiplier

that weighs the importance of the past. Defining a = 1/(1 + A) E [0, 1] this is equivalent to

g*(x) = argmax{a log Px ly(xtli) + (1 - a) log Pylt-i(ixj'-1)}, (7.5)

in which case the past is all that matters when a = 0, while all the emphasis is on the

current query when a = 1, and we recover (7.3) when a = 0.5. Rewriting this equation as

g*(x) = arg max{a log Px ly(xtli) + a(1 - a) log PX,_ 1-(xti 1i)

+(1 - a) 2 log PylXt-2(iIxy- 2 )I
t

= arg max{Z a(1-a)tk log Pxkly(xkji) + (1 - a)t log Py(i)}
k=1

a(1 - a)t-k can be seen as a decay factor that penalizes older terms.

7.4 Negative feedback

While positive feedback is a powerful addition to retrieval systems, there are many situ-

ations in CBIR where it is not sufficient to guarantee satisfactory performance. In such

situations, it is usually possible to attain significant improvements by combining it with

negative feedback. One example is when various image classes in the database have over-

lapping densities. This is illustrated in Figure 7.2, where we depict an hypothetical search

on a database with two major image classes that share a common attribute (large regions

of blue sky), but are different in other aspects (images in class A also contain regions of

white snow, while those in class B contain regions of grass). This could, for example, be

a database of recreation sites where class A contains pictures of a ski resort, while class B

contains pictures of the same resort but taken during the summer.

If the user starts with an image of class A (e.g. a picture of a snowy mountain), using

regions of sky as positive examples is not likely to quickly lead to the images of class B.

In fact, all other factors being equal, there is an equal likelihood that the retrieval system

will return images from the two classes. This is illustrated in the top row. On the other
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Figure 7.2: Two queries based on the same query image (shown on the left). The regions

blocked by the light green (dark red) rectangle are positive (negative) examples for the

search. Top: query for sky. Bottom: query for sky but not snow.

hand, if the user can explicitly indicate interest in regions of sky but not in regions of snow,

the likelihood that only images from class B will be returned increases drastically. This is

illustrated in the bottom row.

Another example of the importance of negative feedback are situations in which there

does not appear to be a good positive example to select next. These happen when, in

response to user feedback, the system returns a collection of images that have already been

retrieved in previous iterations. Assuming the user has already given the system all the

possible positive feedback, the only way to escape from such situations is to choose some

regions that are not desirable and use them as negative feedback. In the example above,

when users get stuck with a screen full of pictures of white mountains, they can simply

select some regions of snow to escape the local minima. On the other hand, if only positive

examples were allowed, what to do next would not be clear. This is illustrated in Figure 7.3.

In order to account for negative examples, we must penalize the classes under which

these score well while favoring the classes that assign a high score to the positive examples.
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Figure 7.3: The user is looking for pictures taken in the summer and has already provided

the retrieval system with various examples of sky. What to do next is not clear, unless

negative examples are allowed.

Unlike positive examples, for which the likelihood is known, it is not straightforward to

estimate the likelihood of a particular negative example given that the user is searching for

a certain image class. We denote the use of the vector z as a negative example by E and

rely on the following assumption.

Assumption 6 The likelihood that z will be used as a negative example, given that the

target is class i, is equal to the likelihood it will be used as a positive example given that the

target is any other class

PZ = = Pzjy(zIY 0 i- (7-6)

This assumption captures the intuition that, when searching for class i, a good negative

example is one that would be a good positive example if the user were looking for any

class other than i. For example, if class i is the only one that does not contain regions of

sky, using pieces of sky as negative examples will quickly eliminate the other images in the

database. Thus, one would expect the user to provide sky as a negative example with high

probability.

Denoting by i = {i}j the collection of negative queries, these can be accounted for
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by simply replacing (7.3) and (7.4) with

g*(x') = arg max{logPyjXz(ilxi, z)}

= arg max{log Pxtztly(xt, ztli) + log Py t-1,zti(ilx- 1 1 )

= arg max{log PXly (xt~i +og PZejy (5t~ + l~ y~-,

= arg max{log Pxtly(xtji) + log Pziy(ztjY # i) + log Pyt-zt- -(ijx71 z 1

argmax logPXty(xtli) +loPgYzt(y i) + o yi1)}{ 1 -1yz( ei t Py (Y i)1 1

argmax logPXtiy(xtli) +log 1logy(-(ix z - 1)

where we have also used Assumptions 5 and 6 and the fact that Pz (zt) does not depend on

i. Applying Bayes rule recursively then leads to the following natural generalization of (7.2)

g*(xi) = argmax {log PY (i) + E log PXkiy (xkli) + log 1 PyIZ(;z)

In practice, however, this equation is not very useful since the terms 1 - PriZ,(ilzk) and

1- Py (i) tend to be close to one. To see this, suppose that we are dealing with a database of

10, 000 image classes which are assumed to be equally likely a priori: Py (i) = 1/10, 000. In

this case, even if the observation of zk increases, the probability of class i one-hundred-fold

Pyizk(ilzk) = 1/100, the ratio (1 - Pyizk(ilzk))/(1 - Py(i)) is only 0.99. This means that

negative examples have very small influence in the overall decision function.

An alternative solution is to choose the class i that maximizes the posterior odds ra-

tio [55] between the hypotheses "class i is the target" and "class i is not the target"

PYlXiZt (ixi,1 21)
g (xt) = arg max log

i Prixt,zt(Y $ ix , 2t)

P~ey~t~) P~i~s~i Pylxt-1,zt-1 iXt1 2t-1)
= arg max log Pxtiy(xtii) Pztjy(2tfi) Pix 1)

i Pxiy(xt|Y # i) Pztly(zlY i) PYzX-1 1 zt-i( i*x 1, 21)

Pxgy(xtli) Pzt1y(zt7 # i) Py1 Xi-1,z-(i 12 )
= arg max log 

1 1(Y t t)i PXly(Xt|Y 7 i) Pzety(ztli) Pix 1, 1iX 1

= arg max log Pxtiy(xtli) Py1zt(Y 7 ilzt) Py1 -iXt- Ij ,i
i PZe y(ztji) Pyjxt(Y # ilxt) Py 1 izt-1(Y # i~xt1,t1)
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Pxy~t~) -Pyzile) Prixt'Ztz (ijx 1 i-1)
= arg max log 1 -PYizt(i1Zt)] 1y 1  1 tti 1x 1 , -1

i Y(t - PY|Xt (iXt) Py gt-1,z*1-1 Y'Aj1 - , z1-

S arg m ax log + lgP y(xt li) W6 Py lxt-1 zt-1 ( ijx t_ , z t*1- )
i Pz1~t~) P , 1( 1 1

where we have used the fact that (1 - Pylz,(izt))/(1 - PylXt(ilxt)) ~ 1. Including a decay

factor to penalize ancient terms, we obtain

PP (ty|X*-1,Z*-1(i~_ t1
g (xg PX ary max a+ (1 - a) log 1x1-i i 1 . (7.7)(Xt r mx a Pztiy (zt li) Pyl t-1 (Y :A Nit , zit-1)

This equation is similar to (7.5) but now the terms on the denominator penalize the image

classes that explain well the negative examples. Overall, the decision function favors image

classes that explain well the positive examples and poorly the negative ones.

There is however, under the posterior odds ratio, a tendency to over-emphasize the

importance of negative examples. In particular, any class with zero probability of generating

the negative examples will lead to an infinite ratio, even if it explains very poorly the positive

examples. To avoid this problem, we proceed in two steps:

" start by solving (7.5), i.e. sort the classes according to how well they explain the

positive examples.

" select the subset of the best N classes and solve (7.7) considering only the classes in

this subset;

Overall, the inference algorithm has two free parameters: the decay factor a, and the size

N of the window used in the second step. In the next section, we present experimental

evidence that the learning performance is quite robust to variations in these parameters.

7.5 Experimental evaluation

We performed several experiments to evaluate the improvements in retrieval performance

achievable with Bayesian inference. Because in an ordinary browsing scenario it is difficult to
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know the ground truth for the retrieval operation (at least without going through the tedious

process of hand-labeling all images in the database), we relied on the mosaic databases (for

which ground truth is available).

7.5.1 Experimental setup

The goal of the experiments was to determine if it is possible to reach a desired target

image by starting from a weakly related one and providing feedback to the retrieval system.

This simulates the interaction between a real user and the CBIR system and is an iterative

process, where each iteration consists of 1) selecting a few examples, 2) using them as

queries for retrieval, and 3) examining the top V retrieved images to find examples for the

next iteration. V should be small since most users are not willing to go through lots of false

positives to find the next query.

The most challenging problem in automated testing is to determine a good strategy

for selecting the examples to be given to the system. The closer this strategy is to what

a real user would do, the higher the practical significance of the results. However, even

when there is clear ground truth for the retrieval (as is the case of the mosaic databases),

it is not completely clear how to make the selection. While it is obvious that regions of

texture or object classes that appear in the target should be used as positive feedback, it

is much harder to determine automatically what are good negative examples. As shown in

Figure 7.4, there are cases in which images from two different classes are visually similar.

Selecting images from one of these classes as a negative example for the other will be a

disservice to the learner.

While real users tend not to do this, it is hard to avoid such mistakes in an automated

setting, unless one does some sort of pre-classification of the database. Because we wanted to

avoid such pre-classification, we decided to stick with a simple selection procedure and live

with these mistakes. At each step of the iteration, examples were selected in the following

way: among the top V images returned by the retrieval system, the one with most sub-

images from image classes also present in the target was selected to be the next query. One

block from each sub-image in the query was then used as a positive (negative) example

if the texture or object depicted in that sub-image was also (was not) represented in the
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Figure 7.4: Examples of pairs of visually similar images that appear in different image

classes.

target image.

This strategy is a worst-case scenario. First, the learner might be confused by conflicting

negative examples. Second, as seen in Chapter 6, better retrieval performance can be

achieved if more than one block from each region is included in the queries. However, using

only one block reduces the computational complexity of each iteration, allowing us to 1)

average results over several runs of the inference process and 2) experiment several values

for the a and V parameters of the retrieval system. We selected several (a, V) pairs and

performed 100 runs with random target images for each. In all cases, the initial query image

was the first in the database containing one sub-image in common with the target.

The performance of the learning algorithm can be evaluated in various ways. We con-

sidered two metrics: the percentage of the runs that converged to the right target and the

number of iterations required for convergence. Because, to prevent the learner from entering

loops, any given image could only be used once as a query, the algorithm can diverge in two

ways. Strong divergence occurs when, at a given time step, the images (among the top V)

that can be used as queries do not contain any sub-image in common with the target. In

such situation, a real user will tend to feel that the retrieval system is incoherent and abort

the search. Weak divergence occurs when all the top V images have previously been used.

This is a less troublesome situation because the user could simply look up more images (e.g.

the next V) to get new examples. To make the presentation compact, in the next sections

we only show results relative to strong divergence.
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7.5.2 Positive feedback

Figure 7.5 presents plots of the convergence rate, mean number of iterations until con-

vergence, and number of iterations until divergence as a function of the decay factor a and

the number of matches V, for the two mosaic databases. In both cases, the inclusion of

learning (a < 1) typically increases the convergence rate. This increase can be very signifi-

cant (as high as 15%), and larger gains occur when the convergence rate without learning is

low. If the convergence rate is already high without learning, the inclusion of learning does

not change it significantly. In general, a precise selection of a is not crucial for achieving a

rate of convergence close to the best possible.

The rate of convergence is also affected by the number of matches V from which the user

is allowed to select the next query. While, as expected, the larger this number the faster the

convergence, a law of diminishing returns seems to be in effect: while the convergence rate

increases quickly when V is small, it levels off for large values of V. This is an interesting

result because there is usually a cost associated with a large V: users are not willing to go

through lots of image screens in order to find a suitable next query. Another interesting

result is that, under the assumption that users will only look at the first image screen

returned by the retrieval system (V E [15,20]), the inclusion of learning leads to visible

convergence improvements.

In terms of the number of iterations, when convergence occurs it is usually very fast

(from 4 to 8 iterations). On the other hand, the number of iterations until divergence is

usually well above 8. This indicates that, in practice, it would be easy to detect when the

retrieval system is not likely to converge: if the number of iterations is above 8 to 10, then

it is probably preferable to start a new query (from another initial image) than to insist on

the current one.

We next present examples of the relevance feedback process in the Columbia mosaic

database. Figure 7.6 depicts a search for a target image consisting of a plastic bottle,

a white hanger, a blue plastic donut, and a coffee cup. The top picture depicts the first

iteration of the retrieval process. The search starts with an image containing the blue donut

and, since the retrieval precision is high for this object, it appears in all the 15 retrieved
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Figure 7.5: Plots, as a function of the learning factor a, of the convergence rate (top)

average number of iterations for convergence (middle) and divergence (bottom). In all plots

different curves correspond to different values for the number of images V examined at the

end of each iteration. Left: Brodatz mosaic database. Right: Columbia mosaic database.
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Figure 7.6: Two iterations of positive feedback. In both cases, the target image is shown at

the top left and the query image immediately below. The query itself is based on a single

feature vector from each of the sub-images (8 x 8 neighborhood indicated in the center of

the sub-image) that are shared by the query and the target images. The number above

each retrieved image indicates the number of objects that it shares with the target.
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image slots. At this point the retrieval system has basically restricted the set of possible

matches to the K images that contain the blue donut. Hence, for each of the 15 slots, the

probability of the target image appearing in the slot is approximately 1/K. Since K << D,

where D is the database size, this is dramatically higher than the 1/D associated with

random guessing. Furthermore, if there are M images containing both the blue donut and

one of the three other objects of interest, the corresponding probability is M/K. This can

be high and it is therefore not surprising that, due to chance alone, one of the other objects

in the target will also appear among the retrieved images. This is indeed the case of the

first image in the second row, which also contains the white hanger.

By the selecting this image as next query (bottom picture) the user increases the prob-

ability per slot from approximately 1/K to approximately 1/L where L is the total number

of images containing the two query objects. Notice that, as more objects are included in

the query, the total number of images containing those objects decreases substantially and

the above probabilities increase drastically. In the example of the figure, because there are

less than 15 images in the entire database containing both objects, one would expect the

target to appear among the top 15 matches with very high probability. This is indeed the

case, and the target shows up as the first image in the second row.

The example illustrates how, provided that precision is high for the individual query

objects, retrieval can be very fast. In this sense, it corresponds to a best-case scenario since

the system will typically have to deal with objects for which precision is not so high. It is

in these situations that learning becomes most important.

Figures 7.7 and 7.8 show one such example. The target consists of a plastic bottle, a

container of adhesive tape, a clay cup, and a white mug, while the initial query is an image

containing the clay cup. Since there are various objects made of wood in the Columbia

database and these have surface properties visually similar to those of the clay cup, precision

is now significantly smaller (top picture of Figure 7.7): only 4 of the 15 top matches are

correct. This makes it difficult to zero in on the target for two fundamental reasons: first,

it is not as likely as in the previous example that the other objects in the target will appear

among the top matches. Second, when this happens, it is likely that the new target objects

will not share an image with the object used in the query. Both of these points are illustrated
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by the example. First, the feedback process must be carried for three iterations before a

target object other than that in the query appears among the top matches. Second, when

this happens (top picture of Figure 7.8), the new object (tape container) is not part of an

image that also contains the clay cup.

In this situation, the most sensible option is to base the new query on the newly found

target object (tape container). However, in the absence of learning, it is unlikely that

the resulting matches will contain any instances of the query object used on the previous

iterations (clay cup) or the objects that are confounded with it. As illustrated by the bottom

picture of Figure 7.8, the role of learning is to favor images containing these objects. In the

example of the figure, 7 of the 15 images returned in response to a query based on the tape

container include the clay cup or visually similar objects (in addition to the tape container

itself). This enables new queries based on both target objects which, as seen in the previous

example, have an increased chance of success. In this particular case, it turns out that one

of the returned images is the target itself.

7.5.3 Negative feedback

Figure 7.9 presents plots of the convergence rate, mean number of iterations until con-

vergence, and strong divergence rate for the two mosaic databases when both positive and

negative feedback are used and the number, N, of top positive feedback matches considered

in (7.7) is 50. Comparing with the plots of Figure 7.5, it is clear that the convergence rate is

significantly improved by the inclusion of negative feedback. In particular, for most values

of V the convergence rate is close to 100% and, in all cases, the rate of strong divergence is

zero.

Since the convergence rate is high, learning is usually less relevant than it was in the

experiments where only positive feedback is allowed. Notice, however, that the best con-

vergence happens for values of a larger than 0.5. In fact, some degradation is noticeable

on Columbia as we approach the 0.5 limit. This degradation is related to the fact that the

number of iterations required for convergence is now larger than for positive feedback-only

retrieval. This increase in the number of iterations is more significant for the harder re-

trieval scenarios (smaller V) and particularly noticeable for V = 15, where it reaches 100%

140



Figure 7.7: First two iterations of positive feedback for the example discussed in the text.
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Figure 7.8: Last two iterations of positive feedback for the example discussed in the text.
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Figure 7.9: Plots, as a function of the learning factor a, of the convergence rate (top),

average number of iterations for convergence (middle), and divergence rate (bottom). In all

plots, different curves correspond to different values of the number of images V examined

at the end of each iteration and N is number of top positive feedback matches that are

considered when negative feedback is taken into account. Left: Brodatz mosaic database.

Right: Columbia mosaic database.
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on Brodatz and and 50% on Columbia.

The combination of all these observations allows the following conclusions. First, in-

troducing negative feedback allows exploration of the database and this, in turn, leads to

better convergence. In particular, retrieval is never stopped because the user runs out of

examples to select next. Second, an increase in the number of iterations required for con-

vergence is inherent to this exploration. Notice that, while in Figure 7.5 this number was

approximately the same for all V, we now have significant differences. In particular, con-

vergence takes longer for smaller V, i.e. when retrieval is most difficult. This is a sensible

result, and suggests that the average number of iterations increases because retrieval takes

much longer on a small set of difficult cases. Our personal experience of interaction with

the retrieval system confirms this hypothesis.

The plots also expose a trade-off between the number of images that the user inspects

to find the next query (V) and the number of iterations for convergence. Notice that, by

increasing V from 15 (approximately one screen of images) to 30 (two screens), it is possible

to increase the speed of convergence to the levels of Figure 7.5. It remains to be studied

what would be more appealing to users: less iterations or a smaller number of images to

inspect per iteration.

Figure 7.10 shows the impact of the parameter N in the retrieval performance. The

figure depicts the convergence rate and speed for the Columbia mosaic database when

N = 100 and N = 150. Notice that, while performance is not as good as when N = 50,

it is still clearly superior to that achievable with positive feedback alone. This confirms

that a very precise selection of N is not required to guarantee the improvements inherent

to negative feedback. More drastic differences happen for the convergence speed, which

can vary substantially with N. Here, however, learning plays a significant role and, when

learning is in effect, the number of iterations necessary for convergence can also be reduced

to the levels of Figure 7.5.

We finish by presenting some examples of how negative feedback can indeed improve the

speed of convergence to the target image. Figure 7.11 depicts a search for a target image

consisting of a rubber frog, a toy boat, a plastic jar, and a plastic bottle. The top picture

depicts the first iteration of the retrieval process when only positive feedback is allowed.
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Figure 7.10: Plots, as a function of the learning factor a and number of images V examined

at the end of each iteration, of the convergence rate (top) and average number of iterations

for convergence (bottom) on the Columbia mosaic database. N is number of top positive

feedback matches that are considered when negative feedback is taken into account. Left:

N = 100. Right: N = 150.

145

80

70 - . . .. . . .

60- -

40-

30-

20 -e- V =15 N=100
-0- V=-20.N=10
--0-- V = 25 N = 100

10 -0 - - 30, N -100

90-

20 --- V -- N 15

60 - -. .--. - - -

5 0 - - ..- - -...-- - ..- - --

-e - V = 5 N =150
-0- V = 20 N = 10

10-0-- V 25, N = 150

0 V=30,N. 10.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0005



The bottom picture depicts the same iteration when both positive and negative feedback

are used. The search starts with an image containing two views of the rubber frog, a plastic

donut, and a clay object.

Observation of the top picture reveals that there are several images in the database

where the rubber frog appears along with wooden objects, that have surface properties

similar to those of clay. When negative feedback is allowed and the clay object used as a

negative example, these images are penalized and the rank of the target image improves

significantly. Notice that, while for positive feedback only (top image) seven slots are

occupied by objects that have similar surface properties to those of the clay object, only

two appear when negative examples are also allowed (bottom image). Consequently, the

rank of the target image improves from higher than 15 to 6.

This example illustrates the importance of negative examples when dealing with over-

lapping images classes, as we had already suggested through Figure 7.2. For the mosaic

databases, overlap means images sharing the same objects. In this particular query, con-

vergence takes 6 iterations when the retrieval system is based on positive feedback alone

and 1 iteration when negative examples are also allowed.

The final example (Figures 7.12 and 7.13) illustrates the importance of negative examples

when it is not clear what positive examples to choose next. The target image is now

composed of a blue hanger, a stapler, a clay object, and a plastic jar. The search starts

with the query image that was also used to initiate the previous example (two rubber frogs,

clay object, and plastic donut).

Figure 7.12 presents the first two iterations for the situation in which only positive feed-

back is allowed. The clay object is selected in the first iteration, and 15 images containing

clay objects are returned. While this is an impressive result in terms of precision/recall, it

is not very useful from the point of view of getting to the target image. In fact, it is not

clear that any of the returned images is closer to the target than the query image itself.

Since only positive examples are allowed, the only alternative is to choose another image

containing the clay object (preferably under a different view than the previously used). This

is exactly what happens, and an image containing two different views of the clay object is

selected for the next query. However, since the new examples are not all that different from
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Figure 7.11: First iteration of relevance feedback for the same query image when only

positive (top) and both positive and negative feedback (bottom) are allowed. The query

itself is based on a single feature vector from each of the sub-images (8 x 8 neighborhood

indicated in the center of the sub-image). Positive examples are extracted from the sub-

images that are shared by the query and the target images, negative examples are extracted

from the remaining sub-images.
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Figure 7.12: Two iterations of positive feedback.
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the ones used in the first iteration, the retrieved images are approximately the same. In

fact, out of the 15 images returned in the second iteration only 4 had not been already

retrieved in the first. This makes it even more difficult to decide on which image to use as

next query. It appears that the retrieval system is not doing much progress and, in a real

retrieval scenario, the user would tend to get frustrated. In fact, proceeding in this way

takes 8 iterations to get to the target.

Figure 7.13 presents results for the same query when negative feedback is allowed. In this

case, in addition to the clay objects, several ceramic objects are also returned in response

to the first query. Since there are no ceramic objects in the target, such objects are a good

selection to use as negative examples in the next iteration. This is what happens and, despite

the fact that the query images used in the two iterations are the same as in Figure 7.12, the

number of images retrieved in both iterations is now only 3. Since, as before, the positive

examples constrain these images to contain clay objects, it is not surprising that the target

is reached in the second iteration. This example confirms what had already been pointed

out in Figure 7.3: negative examples allow users to escape situations in which, because

there are no good positive examples to use next, it is difficult to make progress through

positive reinforcement.
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Figure 7.13: Two iterations of the query of Figure 7.12 but now allowing both positive and

negative feedback.
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Chapter 8

Long-term learning

We have seen in the previous chapter that, in order to enable rapid convergence to the de-

sired target image, good retrieval systems must know how to integrate information provided

by the user over the entire retrieval session. In this chapter, we argue that this ability to

learn from user interaction must also occur at longer time scales. In particular, retrieval

systems should be able to develop internal representations of concepts that are likely to be

of interest to their users.

Some of these representations may be hard-coded into the retrieval system from the

start, i.e. it may contain modules specialized on the recognition of certain concepts that

are required for semantic image understanding. Examples include detection of faces and

people [148, 170, 45], face and gender recognition [112, 113], semantic scene classifica-

tion [173, 182, 191, 186, 47], or even image classification according to form or function (e.g.

graphics vs. photographs [6]). Since the design of such modules is usually difficult and,

when feasible, requires large amounts of expert knowledge and training, they are likely to

have economic justification only for visual concepts that are known to be of interest to most

users.

This leaves out the majority of the concepts that are of interest to each individual user.

For example, while it is unlikely that there will ever be sufficient economic pull to build

a detector for the bluefinch shown in Figure 8.1, images of this bird may be among the

top choices for a particular bird lover. Furthermore, users do not always require full-fledged
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Figure 8.1: A bluefinch.

semantic recognition capabilities. E.g. while designing a generic dog recognizer is a daunting

task, detecting the particular dog of an individual user may be a much simpler problem. In

fact, the retrieval examples from the Columbia database show that it is relatively easy to find

complicated objects in a relatively large database without requiring high-level knowledge of

what an object is.

The really difficult task is generalization, e.g. the ability to classify the object of Fig-

ure 8.1 as a bird even though you may never have seen it before. While desirable, it is not

clear that generalization will be required at all times and by all users. Instead, in most

situations, users will probably be satisfied with the ability to train the retrieval system on

the specific objects that are of interest to them. And, since users interested in particular

visual concepts will tend to search for them quite often, there will be plenty of examples

to learn from, by simply monitoring user actions. Hence, the retrieval system can build

internal concept representations and become progressively more apt at recognizing them as

time progresses. We refer to such mechanisms as long-term learning or learning between

retrieval sessions, i.e. learning that does not have to occur on-line, or even in the presence

of the user.

In addition to integrating information over time (learning), a good retrieval system

should also be able to integrate information from diverse sources. Besides enabling more

sophisticated queries (e.g. the ability to fuse face and speech recognition would allow

queries for "the video clip where the president talks about the budget"), this ability to

integrate information from diverse sources can significantly simplify the retrieval process.

For example, any text annotations that may be available with the database can be used to
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constrain the visual search to the classes that are semantically relevant to the query.

In this chapter, we show that Bayesian retrieval can be easily extended to multiple

content modalities and design a Bayesian long-term learning mechanism that complements

the inference procedures discussed in Chapter 7. In particular, we show that the Bayesian

approach scales well with the number of modalities to be integrated, has intuitive inter-

pretation, and leads to extremely simple algorithms. Experimental evaluation on the Corel

database demonstrates that it is possible to learn various types of visual concepts with

surprising accuracy.

8.1 Probabilistic model

We start by extending the Bayesian retrieval model to multimodal content sources. First, we

should notice that, conceptually, the problem does not change. The only difference is that,

instead of a single feature space X, we now have as many features spaces as the number

of content modalities or attributes under consideration. Denoting the individual feature

spaces by Xi, we can combine them into a meta feature space M by simply concatenating

the individual feature vectors. I.e. if xi is a feature vector in Xi, then

M = {xi, . . ., xm},

where m is the total number of attributes, is a feature vector in M. If we define a query mi

as a collection of Ni feature vectors mi = {m ~ij and a retrieval session as a sequence of

queries mi = {mi}_ 1 , all the results that were previously derived for X are also valid for

M. The only difference is that we now talk about content classes instead of image classes.

While conceptually the two problems are identical, in practice there is a substantive

difference: the dimension of M can be significantly higher than that of X. While this

makes the estimation of joint densities infeasible in M, it is usually true that the different

modalities are associated with processes that can be considered independent. For example,

it is reasonable to assume that a set of features used to characterize speech is independent

of the visual features extracted from images of the speaker. This leads to the following

independence assumption.
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Assumption T Given the target content class, the different content modalities are inde-

pendent

PM y(mli) = H PM ,y(mki).
k=1

For retrieval, the user instantiates a subset of the m modalities. The particular process of

instantiation depends on the nature of the content associated with each attribute. While

text can be instantiated by the simple specification of a few keywords, pictorial attributes

are usually instantiated by example.

8.2 Incomplete queries

Of course, not all attributes need to be instantiated in all queries. Borrowing the termi-

nology from the Bayesian network literature [127, 75, 76], we denote, for a given query, an

index set o of observed attributes and an index set h of hidden attributes. E.g. if m = 3,

attributes 1 and 2 are instantiated and attribute 3 is left unspecified then o = {1, 2} and

h = {3}. The likelihood of a query q is then given by

PM|y(qfi) = MPMy(qo,qhli), (8-1)
qh

where the summation is over all possible configurations of the hidden attributes. Using

Assumption 7 and the fact that E Pxy (xji) = 1,

PM|y(qf) = z PM0 y(q0i)PMhl (qhi)
uhl

= PMO y(qoi) I PME y(qkli)
qh kEh

= PMO y(qoi) fi (PM y(qkji)
krEh qk

= PM0oy(q0ji), (8.2)

'The formulation is also valid in the case of continuous variables with summation replaced by integration.
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i.e. the likelihood of the query is simply the likelihood of the instantiated attributes. In

addition to being intuitively correct, this result is also of considerable practical significance.

It means that the complexity of retrieval grows with the number of attributes specified by

the user and not with the number of attributes known to the system, which can therefore

be made arbitrarily large.

8.3 Combining different content modalities

While the Bayesian framework can integrate all types of content modalities, in this thesis

we restrict our attention to the integration of visual attributes and text annotations. In

particular, we consider retrieval sessions mt = {t', x' }, composed of text (ti) and visual

attributes (xi). Combining (7.7) with Assumption 7, assuming only positive examples, and

disregarding the decay factor 2, we obtain

g*(m') = arg max {log Pxy(xtjli) + log PTty(ttli) + logPylMt-1 (imi1)}. (8.3)

This equation has several equally intuitive interpretations. The standard one is to

consider log PyIMt-1 (ilm - 1) as a prior belief, for iteration t, that gives more weight to those

classes that have performed well in the past and Pxjy(xtli) and Pt (tt Ii) as the likelihoods

of the current observations. Two alternative interpretations are however possible.

The first, and vision centric, is that the optimal class is the one which would best satisfy

the visual query alone but with a prior consisting of the combination of the second and third

terms. By instantiating text attributes, the user establishes a context for the evaluation

of visual similarity that changes the system's prior beliefs about which class is most likely

to satisfy the visual query. Or, in other words, the text attributes provide a means to

constrain the visual search. The second, and text centric, is to consider the second term the

likelihood function, with the combination of the first and the third forming the prior. In this

interpretation, the visual attributes constrain what would be predominantly a text-based

2In order to simplify the presentation, in this chapter we ignore negative examples and decay factors.

However, all results are extensible to the generic case and the extension is straightforward: simply modify the

denominator of (7.7) in the same way as the numerator is changed and add a and (1 - a) where appropriate.
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search.

Independently of the interpretation, the significance of (8.3) is that it illustrates one

of the most attractive properties of the Bayesian retrieval formulation: because all models

speak the same language (the language of probabilities) it is relatively easy to combine the

outputs of specialized modules into a global inference. Because, due to Assumption 7, we

are relying on a simple model for the dependencies between the attributes, the integration

is fairly simple (simply adding log-likelihoods). If more complex models were available,

it would still be possible even though probably through a more complicated expression.

Notice that the only fundamental requirement for the integration to be possible is that the

different attributes can be modeled probabilistically. In the previous chapters, we have seen

how this can be done for pictures. We next concentrate on the issue of representing text.

8.4 Text representation

The standard representation for text retrieval is the vector space model [154, 50] where each

document is represented as a collection of indexing terms. An indexing term can be a word,

a group of words, or a word stem3 among others. The space of indexing terms can be seen as

the observation space Z for text, and associated with each index term and each document

there is a binary feature indicating if the term appears, or not, in the document. That is,

the document is represented by a binary vector t = {ti,... ,i tL}, where tj = 1 (t 3 = 0) if

the index term i appears (does not appear) in the document, and L is the total number of

indexing terms known to the retrieval system. A query is simply a collection of index terms

and is therefore represented in the same way.

The simplest possible retrieval model is to, in response to a query, extract from the

database all the documents whose feature vectors match that of the query. This, however,

does not take into account the fact that some terms are more relevant to the characterization

of a document than others. A better approach is therefore to associate a weight with

each component of the feature vector. Even though such weights are not always justified

3A word stem [154] is a descriptor for a collection of words with similar semantics, e.g. different verb

tenses, variations on a word by the introduction of suffixes, etc.
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probabilistically [51], usually they are constrained to the interval [0, 1] and therefore have

a probabilistic interpretation.

Truly probabilistic representations are, however, popular in the text retrieval literature.

Among these the most commonly used is the so-called naive Bayes model [87] which

assumes that the L binary features are independent, and models each feature as a Bernoulli

random variable

PT 1y(tjti) 1 - Pi j, if tj = 0(8.4)
pij, I if tj = 1.

The probabilities pi,j can be seen as the weight vector for documents from class i.

Despite its simplicity, and after decades of research on more sophisticated alternatives,

the naive Bayes model has proven difficult to beat [87]. In terms of the discussion above,

it is equivalent to considering each possible index term as a different content attribute and

relying on Assumption 7. Hence, the naive Bayes model fits naturally into the overall

Bayesian retrieval formulation developed in this thesis and, because it is simple, we adopt

it 4 . Combining Assumption 7 with (8.2) and (8.4), and taking logs we obtain

log PTiy(ti) = 6t,1 logpi,j + 6(5t,o log(1 - pi,j),
j j

where 6 is the Kronecker delta function (2.3). When there are only positive examples

log PTIy (tli) = 2 t1 log pij. (8.5)

8.4.1 Parameter estimation

There are several ways to estimate the parameters pi,j. When an actual text document

is available (as is usually the case with text retrieval), the estimates can be derived from

frequency counts, i.e. pi,j is a function of the number of times that term j appears in

document (or document class) i. While there are image retrieval scenarios in which a

text document is associated with each image (e.g. web pages), this does not always hold.

4 Notice that this does not mean that other more sophisticated text models could not be used in the

Bayesian retrieval formulation.
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Furthermore, it has not yet been established that, when a free text document is available,

visual retrieval will add any improvements to text-based retrieval. For these reasons, we

concentrate on the situations in which a detailed textual description of the image content

is not available. In such cases, the straightforward solution to the annotation problem is to

use manual labeling, relying on the fact that many databases already include some form of

coarse image classification. For example, an animal database may be labeled for cats, dogs,

horses, and so forth. In this case, it suffices to associate the term "cats" with ti, the term

"dogs" with t 2 , etc and make pi,1 = 1 for pictures with the cats label and pi,1 = 0 otherwise,

Pi,2 = 1 for pictures with the dogs label and Pi,2 = 0 otherwise, and so forth. In response to

a query instantiating the "cats" attribute, (8.5) will return 0 for the images containing cats

and -oo for those that do not. In terms of (8.3) (and associated discussion in section 8.3),

this is a hard constraint: the specification of the textual attributes eliminates from further

consideration all the images that do not comply with them.

Hard constraints are usually not desirable, both because there may be annotation errors

and because annotations are inherently subjective. For example, while the annotator may

place leopards outside the cats class, a given user may use the term "cats" when searching

for leopards. A better solution is to rely on soft constraints where the pij are not restricted

to be binary. In this case, the "cats" label could be assigned to leopard images, even though

the probability associated with the assignment would be small. In this context, pij should

be thought of as the answer to the question "what is the likelihood that users will instantiate

attribute tj given that they are interested in images from class i?". In practice, it is usually

1) too time consuming to define all the pi,j manually, and 2) not always clear how to decide

on the probability assignments. A better alternative is to rely on learning.

8.4.2 Long term learning

Unlike the learning algorithms discussed in section 7.2, here we are talking about long-

term learning or learning across retrieval sessions. The basic idea is to let users attach a

label to each of the regions that are provided as queries during the course of the normal

interaction with the retrieval system. For example, if in order to find a picture of a snowy

mountain a user selects a region of sky, the user has the option of labeling that region with
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the word "sky" establishing the "sky" attribute. Learning then consists of estimating the

probabilities pi,j from the example regions. For this we rely on the following assumption.

Assumption 8 When, during retrieval, a user instantiates a text attribute tj, the user is

looking for images that contain regions similar to those previously provided as examples for

that attribute.

The assumption simply means that we expect users to be consistent, providing a basis for

the estimation of the pij. It states that the instantiation of attribute t3 is equivalent to

complementing the visual component of the query with the examples that were previously

stored for attribute tj. Mathematically, the query {x, ti = 1}, where x is a collection of

visual feature vectors, is equivalent to the query {x, ej} where ej is the example set con-

taining the example regions for attribute tj, ej = {ej,1,... ej,K}. Since, from Assumption 7

and (8.5),

logPxpj,1y(x, 1|i) = logPxly(xli) + log Pjiy(1|i)

= log Pxly (xIi) + log pij,

this means that

log Pxly (xji) + logpi, = log Pxly (xii) + log Pxly (eJ,1,. . . ej,Kli)

or

pij PXjy(ej,1, ... ej,K i)-

From Assumption 2,

logpij = ElogPxiy(ej,kIi)
k

= ElogPxiy(ej,k,Ili), (8.6)
k,l

where ej,k,l is the 1th feature vector from example region k for text attribute j.

This expression is all that has to be computed in the learning stage. Notice that,

because only the running sum of log PX|y(ej,kli) must be saved from session to session,

159



there is no need to keep the examples themselves. Instead, it suffices to store one number

per image class/attribute pair. Notice also that, since all the log PXiy(e,k i) terms have to

be computed for the queries in which the examples ej,k are defined, there is no computational

cost associated with the learning procedure itself; i.e., long-term learning is highly efficient

in terms of both computation and memory.

Grounding the annotation model directly in visual examples also guarantees that the

beliefs of (8.6) are of the same order of magnitude as those of (5.7), making the application

of (8.3) straightforward. If different representations were used for annotations and visual

attributes, one would have to define weighting factors to compensate for the different scales

of the corresponding beliefs. Determining such weights is usually not a simple task.

There is, however, one problem with the example-based learning solution. While the

complete set of examples of a given concept may be very diverse, individual image class

models may not be able to account for all this diversity. In the case of "sky" discussed

above, while there may be examples of sunsets, sunrises, and skies shot on cloudy, rainy or

sunny days in the "sky" example set, particular image classes will probably not encompass

all this variation. For example, as illustrated in Figure 8.2, images in the class "pictures

of New York at sunset" will only explain well a fraction of the sunset examples. It follows

that, while this class should receive a high rank with respect to "skyness," there is no

guarantee that this will happen since it assigns low probability to a significant number of

sky examples.

The fact is that most image classes will only overlap partially with broad concept classes

like "sky". The problem can however be solved by requiring the image classes to explain

well only a subset of the concept examples. One solution is to rank the examples according

to their probability and apply (8.6) only to the top ones,

R

logpg, = log PxIy (e li), (8.7)
r=1

where e (r)is the example region of rank r and R a small number (10 in our implementation).
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Figure 8.2: An image class may not encompass all the examples from a given attribute, even

when the attribute is present. The solid line represents the density of the class "pictures of

New York at sunset", "+" are examples of sunsets, "x" of shiny sky, "*" of cloudy skies,

and the dashed line the overall density for "sky".
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8.5 Experimental evaluation

The performance of a long-term learning algorithm will not be the same for all concepts

that may need to be learned. In fact, the learnability of a concept is a function of two main

properties: visual diversity and distinctiveness on the basis of local visual appearance.

Diversity is responsible for misses, i.e. instances of the concept that cannot be detected

because the learner has never seen anything like them. Distinctiveness is responsible for false

positives, i.e. instances of other concepts that are confused with the desired one. Since the

two properties are functions of the particular image representation, it is important to test the

performance of the learner with concepts from various points in the diversity/distinctiveness

space.

We relied on the Corel database to evaluate long-term learning and identified five such

concepts: a flag, tigers, sky, snow, and vegetation. The flag is representative of computer

graphics objects, such as logos, that tend to be presented with small variation of visual

appearance and therefore are at the bottom of the diversity scale. Tigers (like most animals)

are next: while no two tigers are exactly alike, they exhibit significant uniformity in visual

appearance. However, they are usually subject to much stronger imaging transformations

than logos (e.g. partial occlusion, lighting, perspective). Snow and sky are representative

of the next level in visual diversity. Even though relatively simple concepts, their visual

appearance varies a lot with factors like imaging conditions (e.g. shiny vs. cloudy day) or

the time of the day (e.g. sky at noon vs. sky at sunset). Finally, vegetation encompasses a

large amount of diversity.

In terms of distinctiveness, logos rank at the top (at least for Corel where most images

contain scenes from the real world), followed by tigers (few things look like a tiger), vegeta-

tion, sky and snow. Snow is clearly the less distinctive concept, on the basis of local visual

appearance, since large patches of smooth white surfaces are common in many scenes (e.g.

clouds, white walls or other objects like tables, paper, etc.). The distribution of the five

concepts on the diversity/distinctiveness space is shown in Figure 8.3.

In order to train the retrieval system, we annotated all the images in the database

according to the presence or not of each of the five concepts. We then randomly selected a
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Figure 8.3: Distribution of the concepts in terms of diversity and distinctiveness.

number of example images for each concept and manually segmented the regions where the

concepts appeared. These regions were used as examples for learning. Concept probabilities

were estimated for each image outside the training set using (8.7) and, for each concept,

the images were ranked according to these probabilities. Figure 8.4 presents the resulting

precision/recall curves for the five concepts. Retrieval accuracy seems to be directly related

to concept distinctiveness: a single training example is sufficient for perfect recognition of

the logo and with 20 examples the systems does very well on tigers, reasonably well on

vegetation and sky, and poorly on snow. These are surprisingly good results, particularly

if one takes into account the reduced number of training examples and the fact that the

degradation in performance is natural for difficult concepts.

Performance can usually be improved by including more examples in the training set, as

this reduces the concept diversity problem. This is illustrated in Figure 8.5, where we show

the evolution of precision/recall as a function of the number of training examples for sky

and tigers. In both cases, there is a clear improvement over the situation in which only one

example is used. This result is particularly significant, since the one-example scenario is

equivalent to the standard query-by-example paradigm. Under this paradigm, a user would

try to retrieve images containing a given concept by providing the retrieval system with one

example of that concept. As the figures clearly demonstrate, one example is usually not

enough, and long-term learning does improve performance by a substantial amount. In the

particular case of sky, it is clear that performance can be made substantially better than
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Figure 8.4: Performance of long-term learning. Precision/recall curves for the five concepts

described in the text.

that of Figure 8.4 by taking more examples into account.

On the other hand, Figure 8.6 shows that more examples make a difference only when the

performance is limited by a poor representation of the concept diversity, not distinctiveness.

For snow, where the latter is the real bottleneck, providing more examples does not seem

to make a difference.

Figures 8.7 to 8.11 show the top 36 matches for the five concepts. These figures illustrate

well how the long term learning mechanism is robust with respect to concept diversity,

either in terms of different camera viewpoints, shading, occlusions, etc (e.g. tiger images)

and variations in visual appearance of the concept itself (e.g. sky or vegetation images).

In general, the errors are intuitive: for the logo retrieval is perfect; for sky and vegetation

errors correspond to images that could have been labeled either way (e.g. images of a tiger

or an owl with some trees on the background were labeled as not containing vegetation);

and for snow errors tend to be images containing large smooth white surfaces (walls, flower,

clouds, car hoods, etc.). The less intuitive errors happen for tigers, where the texture of

some paintings is confused with a tiger, but are few.
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The snow example actually illustrates one advantage of systems that learn by example:

since users provide all the examples, they can develop an understanding of which concepts

are easier to learn. In this case, because the training for snow consisted of smooth white

image patches and all the errors contain such patches, it is not clear how the system could

be trained to improve its ability to detect snow. Hence, a user could quickly realize that

snow is a difficult concept for the system. This is indeed the case since distinguishing a

patch of snow from a white wall requires high-level scene understanding abilities that the

system does not possess.
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Figure 8.7: Top 36 matches for the flag concept. The number shown on top of each image

indicates if the image was annotated as containing the concept (1) or not (0).
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Figure 8.8: Top 36 matches for the tiger concept.
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Figure 8.9: Top 36 matches for the sky concept.
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Figure 8.10: Top 36 matches for the vegetation concept.
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Figure 8.11: Top 36 matches for the snow concept.
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Chapter 9

The RaBI retrieval system

In the previous chapters, we introduced a decision-theoretic formulation for the retrieval

problem and shown that it has interesting properties as a unified solution to the visual

recognition and learning problems. In this chapter, we discuss the implementation of a

CBIR system based on this decision-theoretic formulation. The "Retrieval as Bayesian

Inference" (RaBI) system is an image search engine designed to operate under the query

by example search paradigm. It implements most of the retrieval functionalities discussed

so far, including support for multimodal queries (visual and text), short- and long-term

learning, local queries, and both positive and negative examples. We next discuss the

implementation of each of these functionalities in some detail.

9.1 System overview

Figure 9.1 presents a generic block diagram of RaBI. The system consists of three software

modules: a Java client, a SQL server, and an image server. The Java client implements the

user interface and communicates with the image server through a simple custom protocol.

It is a light-weight applet that can run on any platform either in stand-alone mode or from

an Internet browser. Once connected to the image server, the client allows the user to select

a database and perform text-based searches, visual searches, or a combination of both.

The SQL server implements two functionalities. First, it allows one level of indirection
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Client/Server Protocol

Figure 9.1: Block diagram of the RaBI retrieval system.

with respect to the physical location of all the files on the database. This simplifies the

process of relocating all the data if that becomes necessary. Second, it supports simple

text-based queries that can be performed very efficiently using standard SQL indexing

mechanisms. The image server accepts queries from the client, performs the searches, and

transmits back the search results. Some of the text-based searches are dispatched to the

SQL server. We next provide a more detailed description of each of the modules.

9.1.1 Client

The client consists of two major modules: a graphical user interface (GUI) and the client/server

protocol (CSP) interface. The GUI is presented in Figure 9.2. The larger image displayed

in the top left corner is the query canvas. By dragging the mouse over a given region of the

image, the user can select that region as a positive (by pressing the left button) or negative

(right button) query example. Boundaries of the image blocks in the positive examples are

displayed in green, while those in negative examples are shown in red.

Three text boxes are shown below the query canvas. The one on the left displays the

text keywords known to the system, the one in the middle shows which vision modules are

available, and the one on the left displays the visual concepts on which the system has been

trained. By selecting the "Show me" or "Not interested in" buttons the user can select any

of the entries on the text boxes as positive or negative text examples, respectively. The
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Figure 9.2: The GUI of the RaBI system.

selected keywords then appear in the two boxes in the bottom-left.

When the user presses the "Submit" button, the query (consisting of all the keywords,

the lists of coordinates of the selected image blocks, and the identifier of the query image) is

passed to the CSP interface that encodes all the information and dispatches it to the image

server. The server replies with a list of URLs that point to the images that best satisfy

the query. This response is decoded by the CSP interface and the top M x N images are

displayed on the right half of the GUI, as illustrated by Figure 9.2. The variables M and

N can be defined by the user. Two buttons are displayed above each image. By pressing

the button containing an arrow, the user can make the image appear in the query canvas

and use it as a basis for subsequent queries. By pressing the other button (pencil icon), the

user can change the text annotations associated with the image (e.g. give less weight to a

particular keyword).

Whenever visual examples are selected in the query canvas, it is possible to associate

a concept keyword with them. For this, the user simply needs to press the "Concept

examples" button. A dialog box then presents a list of the known concepts and the user
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has the option of either selecting one of these concepts or defining a new one. The concept

examples are then sent to the image server and passed on to the concept learning algorithm.

Finally, the menus on the top-left corner of the interface allow a series of routine oper-

ations, such as clearing the short-term learning memory (when the user is starting a new

query), opening and closing databases, and setting the values of the various parameters of

the retrieval algorithm (e.g. the number of subspaces to be considered and the decay factor

a for learning).

The CSP is a simple communications protocol consisting of 1) a control sequence that

indicates what type of operation the user is carrying out (e.g. query, opening new database,

providing concept examples, etc.), and 2) a collection of data fields that depends on the

type of operation.

9.1.2 SQL server

The SQL database contains pointers to all the image information and implements a pre-

liminary image classification according to database and image class. It associates three

information components to each image: a database name, an image class, and two strings

indicating the image URL and the physical image location on disk.

The database classification establishes a very coarse image grouping. Current databases

are the ones discussed in the previous chapters: Corel, Columbia, Brodatz, Columbia mo-

saics, and Brodatz mosaics. Each database defines a set of keywords that allow finer image

grouping. These appear in the "Annotations" box of the GUI of Figure 9.2.

Image classes allow the user to restrict the query to a subset of the database, and can

be defined in several ways. For some databases, images are naturally grouped into obvious

classes. For example, Brodatz (Columbia) contains various views of each texture (object),

while Corel images are organized into thematic directories, each containing 100 images. In

these cases, textures, objects, and themes constitute natural classes for image grouping.

If a text model is available, classes can also be derived automatically, by associating each

image to the keyword that explains it with highest probability. Finally, classes can always

be defined manually.
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Despite the support for database and image classes, there is no obligation on the part

of the user to use this information at any point of the retrieval operation. Instead, the

classification should be seen as a filtering mechanism to quickly eliminate many images that

are a priori known to be irrelevant for the search, and direct the attention of the retrieval

system to the images that matter. Since changing the database in the middle of a query

may lead to inconsistencies in learning, this mechanism can only be used at the beginning

of a visual retrieval session. If it is, this initial database/class query is based on standard

SQL indexing structures and, therefore, very efficient.

9.1.3 Image server

The image server has two main operation modes. In the database selection mode, it 1)

provides the client with a list of available databases and image classes, 2) receives a text-

based query relative to these, and 3) dispatches this query to the SQL server. The SQL

server replies with the list of internal file paths and URLs associated with the images to

be considered in the subsequent visual queries. The image server then assembles all the

data-structures required for these queries and enters the visual query mode.

Seven different data-structures are assembled. The first is a collection of matrices con-

taining the mixture parameters that are required to evaluate the likelihood of the visual

query features according to (2.14). Two others are a text probability matrix, and a concept

probability matrix. In these matrices, each row corresponds to a textual or visual concept

and each column corresponds to one image, the entry i, j containing the parameter log pj

required by (8.5). Textual concepts are keywords derived either from the text-model dis-

cussed in section 8.4 or from vision sensors. For example, a face detector can be applied

to each image in the database, assigning the "face" keyword to each image with a certain

probability. Visual concepts are learned over time as discussed in section 8.4.2.

The remaining data-structures are a visual likelihood buffer, a concept likelihood buffer,

a text likelihood buffer, and a short-term memory buffer. The first three hold information

relative to the current iteration of the retrieval process, while the fourth is reset only when

the user starts a new query. Their role is illustrated by Figure 9.3, which provides a graphical

depiction of the inner workings of the image server.
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In response to a visual query, the image server uses the mixture parameters associated

with each image in the database and (2.14) to evaluate the log-likelihood of the visual

features. The resulting log-likelihoods are stored in the visual likelihood buffer. The textual

component of the query is then analyzed. The rows of the text and concept likelihood

matrices associated with the keywords and concepts selected in the query are added and

stored in the text and concept likelihood buffers, respectively. The log-likelihoods associated

with the current query are then evaluated by adding the three buffers. The following

step is to combine these log-likelihoods with the log-posterior probabilities given the past

interaction, that are stored in the short-term memory buffer. This is done according to (7.5),

i.e. by weighting the entries in the two buffers according to the memory decay factor a.

The result is a set of log posterior probabilities that are passed to an image ranking module.

Text probability matrix Concept probability matrix

Text query Concept query

Short-term memory

Figure 9.3: Block diagram of the image server.

As described, the process only accounts for positive examples. Extension to negative

examples is straightforward, simply requiring the duplication of the four buffers and ap-
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plication of (7.7) instead of (7.5). As discussed in section 7.4, the main difference occurs

in the image ranking module. When only positive examples are considered, this module

simply orders the images by decreasing log-posterior probabilities. When negative examples

are present, the top N matches according to the positive examples are then re-ordered by

decreasing log posterior odds-ratio. The parameter N can be modified by the user, the

default being N = 50.

Given the list of top matches, the image server requests the corresponding URLs from

the SQL database and transmits them to the client using the CSP. The client simply displays

the images and waits further instructions from the user, upon which the entire query process

is repeated.

9.2 Implementation details

We conclude this chapter by discussing some implementation details of the RaBI system.

This discussion is intended mostly for those interested in replicating portions or the entirety

of the work described in the thesis. Although many of the details have already been men-

tioned in the previous chapters, we believe that it is useful to present a cohesive summary of

the most important points. We concentrate on the three components of the retrieval archi-

tecture: feature transformation, feature representation, and evaluation of image similarity.

Before proceeding to describe the details of each component we note that, even though

the theoretical formulation developed in the thesis is valid for any grouping of the database

images into image classes, in RaBI each image is currently considered as a class by itself

for the purposes of visual retrieval. In the future, we plan to investigate the impact of

more sophisticated hierarchical database organization strategies in the retrieval efficiency.

A preliminary step in this direction has, indeed, already been presented in [188].

9.2.1 Feature transformation

Given a database image, feature transformation currently consists of the following steps.
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" Extract all 8 x 8 image blocks separated by d pixels in each dimension. d can be

defined by the user, the default value being d = 4.

" Compute the DCT for each block according to (4.11).

" Vectorize the 2-D DCT array into a row vector. While this can be done in several

ways, RaBI relies on the coefficient scanning mechanism defined by the MPEG [63]

standard.

" If there are various color channels, interleave the corresponding vectors. For example,

if there are three color channels, the first three coefficients of the interleaved vector

contain the first coefficient from each of the three color channels.

" RaBI currently uses the YBR color-space defined by MPEG, but this selection has not

been subject to detailed scrutiny. Better results may be possible with a perceptual

color space, e.g. HSV [163].

9.2.2 Feature representation

In RaBI, feature representation is based on Gaussian mixtures with a fixed number C of

classes. The default value is C = 8, but can be modified when the database is initial-

ized. Several methods have been proposed in the literature to automatically determine

the number of mixture components in each model. These include minimum description

length [146], Akaike's information criteria [81] and the Bayesian information criteria [23]

among others. Because these methods increase the complexity of density estimation by a

significant amount, we decided to use a fixed number of mixture components. Automatic

determination of the number of components may, however, be included in future versions

of RaBI.

All Gaussian mixture parameters are estimated using the EM algorithm [36, 143, 13].

The implementation is fairly standard, the only details worth mentioning are the following.

" All Gaussians have diagonal covariances.

" In order to avoid singularities, a variance limiting constraint is applied. This constraint
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places a minimum value of 0.1 on the variance along each dimension of the feature

space.

" Initialization is performed with a vector quantizer designed by the LBG algorithm,

using a variation of the cell splitting method described in [58].

" In order to split a cell, 1) we compute the (diagonal) covariance matrix of all the points

that land inside it, and 2) replicate its centroid, adding to the replica a perturbation

in the direction of largest variance. The perturbation is the square root of this largest

variance.

" Given the codebook obtained with the LBG algorithm, we compute covariances and

mixing probabilities for each of the quantization cells. These, together with the cen-

troids contained in the codebook, provide an initial estimate for the mixture param-

eters.

" This initial estimate is refined with EM. Since significant changes usually only occur

in the first iterations, we limit these to eight.

9.2.3 Evaluation of image similarity

The evaluation of image similarity consists of the following steps.

" Given the list of query block coordinates, extract these blocks from the query image.

" Compute the DCT, vectorize, and interleave the color channels of each block as de-

scribed in section 9.2.1.

" Evaluate the likelihood under each database mixture model according to (2.16).

" To prevent numerical underflow, the likelihood of each feature vector is replaced by

a fixed threshold T before taking the logarithm if its value is smaller than T. The

default value is T = 10-300.
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9.2.4 Vision modules

Currently, only a face detection module is implemented in RaBI. This face detector consists

of a set of libraries that were provided by Henry Rowley at CMU. It is described in [148].

Since vision sensors can be applied to the images in the database off-line, RaBI is highly

extensible. In fact, the system does not even need to know the implementation details of

the sensors, since all that is required is the table of probabilities generated by these. We

therefore expect to incorporate other vision sensors in RaBI in the future.
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Chapter 10

Conclusions

10.1 Contributions of the thesis

This thesis introduced a new decision-theoretical formulation for the visual information

retrieval problem. This formulation was shown to lead to 1) new insights on the retrieval

problem, and 2) new guidelines for the design of practical systems. In particular, we have

shown that the decision-theoretic formulation has the following appealing properties.

* Provides a unified solution to the problems of visual recognition and learning, that is

optimal in the sense of minimizing the probability of retrieval error.

" Establishes a universal probabilistic language for the retrieval problem which enables

the design of systems that can seamlessly integrate information from multiple content

modalities.

" Establishes objective guidelines for the design of the three main components of a

visual recognition architecture: feature transformation, feature representation, and

similarity function.

" Unifies a significant number of recognition approaches that have been previously pro-

posed both in terms of image representation and similarity function.

" Enables the design of systems that learn across multiple temporal scales.
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These theoretical properties were shown to be of important practical consequence. In

particular, we have presented new solutions to the following challenging problems.

" Joint modeling of image color and texture.

" Precise characterization of the trade-off between feature transformation and feature

representation, and guidelines for the design of each of these modules.

" Unified support for local and global queries without requiring image segmentation.

" Integration of textual and visual queries.

" Decision-theoretically optimal design of short-term learning (relevance feedback) al-

gorithms that allow fast convergence to the desired images.

" Decision-theoretically optimal design of long-term learning (concept learning) algo-

rithms that, over time, allow personalization of the retrieval system to the preferences

of the user.

These solutions were combined into a new visual recognition architecture that was exper-

imentally shown to 1) perform well on object, texture, and generic image databases, 2)

provide a good trade-off between retrieval accuracy, invariance, and complexity, 3) lead

to perceptually relevant judgments of similarity, and 4) support learning through belief

propagation algorithms that, although optimal in a decision-theoretic sense, are extremely

simple, intuitive, and easy to implement. This recognition architecture is the basis of the

RaBI image retrieval system that was designed according to the theoretical principles laid

out by the thesis.

10.2 Directions for future work

Obviously, there are several interesting questions in retrieval that we could not solve, or even

address, in the course of the thesis research. Some of these questions were ignored simply

because of temporal constraints. Two good examples are 1) how to extend the models now

used for static images to other content types, such as video or audio, and 2) how to create

indexing structures compatible with Bayesian retrieval?
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We would like to emphasize that one of the added, and not thoroughly discussed in the

thesis, advantages of Bayesian retrieval is exactly the fact that it provides a unified solution

to these questions. On one hand, probabilistic representations from the class of mixture

models are among the best known for modeling speech (where hidden Markov models are

predominant [140]) and there is good reason to believe that they will be equally successful

for video [69]. On the other, we have already shown that probabilistic representations are

amenable to the design of hierarchical descriptors that exploit the structure of the database

to efficiently build indexing structures [188]. In fact, because they maintain a complete

description of the conditional density of each image class at each step of the hierarchy,

we have strong reason to believe that they will outperform many of the standard indexing

techniques that keep only a representative vector. Hence, while indexing and extensions to

other data types remain topics for future work, we believe that they will not pose major

problems to Bayesian retrieval.

A more challenging question is how to incorporate spatial relationships in Bayesian

retrieval. Ideally, one would like to allow not only local queries, but also queries of the type

"a region similar to x above and to the left of a region similar to y". Theoretically, there

is no fundamental difference between these and the local queries currently supported, one

simply has to rely on a more sophisticated model, capable of capturing spatial dependencies

between regions, e.g. a Markov random field. In practice, however, it usually turns out that

this is more complex than predicted by the theory since inference is much more difficult,

sometimes even intractable, in such models. In spite of this difficulty and the fact that,

so far, we do not have a completely satisfying solution to the problem, we are convinced

that Bayesian retrieval is the best framework in which to address it. The key question is

how to develop models that achieve a good trade-off between the expressive power required

to account for spatial relationships and complexity. Most alternative solutions that we are

aware of (e.g. [93, 164]), tend to be based on heuristics that are not always easy to justify,

rely on assumptions that are usually not made explicit, and lead to representations that

cannot be easily extended to deal with other components of the retrieval problem.

Establishing a language to deal with spatial relationships would bring us one step closer

to the holy grail of image retrieval: the automatic extraction of semantic content descriptors.

This is, without question, the main challenge for the next generation of retrieval systems.
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While the retrieval by visual similarity presented in this thesis is sufficient in some domains,

a substantial number of applications require instead semantic retrieval, e.g. support for

queries such as "pictures of a child pointing to a bird on the sky", or the "the scene where

the murder takes place".

In [186, 191], we have shown that it is possible to extend the Bayesian retrieval framework

introduced in this thesis to the extraction of semantic-level descriptors, and introduced a

semantic classifier based on attributes such as action, type of set (man-made vs natural),

presence of close-ups (commonly associated with dialog), and crowds (scenes containing

a large number of people). While this classifier demonstrates the feasibility of extracting

semantic information from images and video, its practical value is somewhat limited by the

fact that it requires expert knowledge about the content domain where the characterization

takes place. This is an expected limitation for semantic characterization since some form of

regularization will always be required to disambiguate between the multiple interpretations

that a given scene may have. Better understanding of the semantic content characterization

problem can only be attained though a substantial amount of research in questions such as

1) which semantic attributes can and cannot be modeled and detected and 2) how generic

can semantic classifiers be?

In the absence of semantic classifiers, or as a complement to these, it is imperative

that retrieval systems can learn from user-interaction and become better matched to the

interests of their users as time progresses. We believe we have presented convincing evidence

supporting the claim that Bayesian retrieval is a natural solution to the learning problem.

However, we relied on several assumptions that may not always hold. It remains to be

seen how much is lost by relying on these assumptions, what would be the complexity of

learning algorithms that did not rely on them, and what other forms of learning could be

implemented.
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Appendix A

Experimental setup

The ultimate performance test for a CBIR system is the degree to which it is found useful

by its users. This is however not an easy property to test without conducting field tests

with real users, and performing experiments with human subjects is usually a complex

task. A significant number of subjects must be assembled for the results to be statistically

significant, the experiments must be carefully designed to ensure that they do not bias the

subjects to the desired responses, and only simple and relatively fast tests can be conducted

if one expects to engage a large number of subjects. Furthermore, it is not possible to repeat

an experiment when something goes wrong, or to modify the system parameters and try

again.

The next best alternative is to define an objective criteria for performance evaluation

that does not require human intervention. Because it is so much simpler than field testing,

this has been the evaluation method of choice among the retrieval community. It must,

however, be performed carefully if one is to avoid oversimplified scenarios that have small

resemblance with reality. In this context, the two main free variables for the design of an

automated testing strategy are the choice of databases and performance criteria. In this

appendix, we discuss the reasons that motivated the experiments described in the thesis.
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A.1 Databases

While CBIR systems are ultimately designed to deal with generic images, generic databases

are not always the most suited to allow the understanding of the strengths and weaknesses of

different retrieval approaches. This is due to various reasons. First, classifying a collection

of generic images is usually a subjective task to which different people will give different

answers. This ambiguity makes it difficult to establish the ground truth that is required for

automated testing. Second, on generic databases it is difficult to determine exactly what are

the properties of the recognition architecture that are responsible for particular successes

and failures. E.g. one image representation may characterize better color, while other may

characterize better texture, and a third may characterize better object shape, all leading to

similar overall results. While combining the strengths of the three methods would lead to

significantly better performance, it may be difficult to determine what those strengths are

since it is difficult to tell what properties are most important for each image. Third, tests

that require ground-truth for particular visual concepts (e.g. the presence of a given object

in an image) can only be performed upon manual annotation of the entire database. This

is particularly difficult in cases where it is not even clear what the objects of interest may

be before testing begins, e.g. the evaluation of learning algorithms. Finally, because there

is only a short history of evaluation with generic databases, it is difficult to compare results

with previously proposed retrieval solutions.

For all these reasons, while it is imperative to, whenever possible, evaluate performance

on generic databases, it is also useful to consider databases that 1) stress specific aspects

of the retrieval problem, 2) have unambiguous classification ground truth, and 3) have a

long usage history in the retrieval literature. This observation motivated us to, in addition

to the generic Corel database of stock photography, also consider in many chapters of the

thesis two specialized databases: the Brodatz texture database, and the Columbia object

database. For all databases, we have also tried to identify the approaches that are known

to give best retrieval results for the image properties captured by the database, implement

those approaches, and compare results to those obtained with the recognition architecture

now proposed. This is an unfair test in the sense that these approaches tend to be specific

to the database domain (e.g. texture), while the architecture now proposed is generic. It
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was, nevertheless, necessary since one of the important goals of the thesis was to know how

close a generic architecture can get to the performance of the specialized approaches in their

domains of expertise. We next provide a more detailed description of each of the databases.

A.1.1 Standard databases

The Brodatz database is a set of images from 112 fairly homogeneous textures. Each

of these 112 images was broken into 9 128 x 128 patches for a total of 1008 database

entries [134]. This database was further divided into two subgroups: while the first image

in each texture class was stored in a query database (112 total images), the remaining

896 images formed the retrieval database. Among the various approaches proposed in the

texture recognition literature, independent tests conducted by different laboratories [134,

94, 96] have shown that the combination of 1) the coefficients of a least squares fit of

the multi-resolution SAR (MRSAR) texture model [104] and 2) the Mahalanobis distance

(MD) achieves the best performance on Brodatz. The performance of the MRSAR/MD

combination is, therefore, usually considered a good benchmark for the evaluation of state

of the art texture recognition algorithms.

The Columbia database is a set of images of 100 objects each shot in 72 different views

obtained by rotating the object in 3D in steps of 5'. Once again, the database was split into

two subgroups, one containing the even and the other the odd images from each object. For

computational simplicity, the retrieval database was further sub-sampled by four (9 views of

each object separated by 400) and only the first image of each object was kept in the query

database (100 total images). All images were converted from the original RGB to the YBR

color space (as defined in the JPEG standard [128]). The Columbia database is similar

in many aspects to the color database used by Swain and Ballard when they introduced

histogram-based recognition [172], but significantly larger. While there as not been such

an extensive evaluation of color-based retrieval techniques as in the case of texture, it is

safe to say that the combination of color histograms with the histogram intersection (HI)

metric [172] has so far become the de-facto standard in the area. We therefore rely on HI

as a benchmark for the evaluation of color-based retrieval.

The Corel database is a set of 20, 000 images from 200 generic image classes (100 images
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in each class). While the groupings are of a semantic nature and there are several classes

which are impossible to recover by the analysis of low-level properties such as color and

texture (e.g. classes containing too much variety of visual stimuli like "China" or "Egypt,"

broad concepts like "nature scenes" that overlap with more specific ones like "North Amer-

ican wild flowers," concepts that require higher-level content understanding like the "spirit

of Buddha," etc.), there are also various classes characterized by an amount of visual uni-

formity that makes the task feasible. For our experiments we selected 16 among these

("Arabian horses," "auto racing," "coasts," "divers and diving," "English country gar-

dens," "fireworks," "glaciers and mountains," "Mayan and Aztec ruins," "oil paintings,"

"owls," "land of the pyramids," "roses," "ski scenes," "religious stained glass," "tigers")

leading to a total of 1,600 images.

In order to create the query database, we randomly selected 20% of the images in each

class, leaving the remaining 80% in the retrieval database. All images were converted from

the original RGB to the YBR color space. Note that, even though the classes are somewhat

visually uniform, there is plenty of variation within them and retrieval is significantly harder

than in the case of the two previous databases. In particular, it does not suffice to use

color or texture attributes alone, but representations that can account for both color and

texture. Thus, in addition to MRSAR/MD and histogram intersection , we considered two

such approaches: color correlograms, and linear weighting of texture and color. These are

discussed in Chapter 6.

A.1.2 Artificial databases

Automated performance evaluation is particularly difficult for local queries, since these

involve image segmentation and it is infeasible to manually segment all the images in the

database to establish ground truth. The problem is even worse when evaluating learning

algorithms because, in this case, the objects or concepts to retrieve may themselves change

during learning. A feasible alternative is to construct artificial databases where the ground

truth is always known. In this thesis, we pursue this alternative exactly for the evaluation

of local queries and short-term learning. In particular, all experiments performed in these

areas were based on two artificial databases constructed from Brodatz and Columbia.
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In each case, an artificial database was created from the retrieval databases described

above, by randomly selecting 4 images at a time and making a 2 x 2 mosaic out of them.

Figure A.1 shows two examples of these mosaics. We call these image sets the mosaic

databases. They are representative of databases whose images do not consist of a single

object or visual concept but are instead a composition of different visual stimulae.

Figure A.1: Example mosaic images derived from the Brodatz (left) and Columbia databases

(right).

A.2 Evaluation criteria

In addition to a database for which the classification ground truth is unambiguous, the ob-

jective evaluation of a retrieval system also requires a criteria for performance evaluation.

The most commonly used criteria in the visual recognition literature is classification accu-

racy. This is obtained by performing several queries and measuring the fraction of these in

which the top match belongs to the same class as the query. Despite the long history of its

use, classification accuracy only provides a limited view of the abilities of a retrieval system.

If there is an image in the database which is a close replica of the query (e.g. two pictures

of the same scene taken a few minutes apart), any sensible retrieval approach will return

that image as the best match. This, however, does not mean that the retrieval results are

good. In fact, if the retrieval system is poorly designed and the remaining images of the

same class are not near exact replicas of the query, these images may receive a very low

rank in the list of returned images.
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This issue has been discussed at length in the text retrieval literature, where it has

long been agreed upon that a good evaluation criteria should consider more than the best

match alone. The standard performance metric in text retrieval is precision/recall (PR),

and consists of a mix of two different criteria. The basic idea is that, since users are likely to

look only at the top matches, only a portion of database entries should actually be returned

in response to a query'. Precision is the fraction of the returned images that are relevant to

the query, and recall the fraction of the total number of relevant images that are returned.

If T is the set of returned images and R the set of images that are relevant to the query,

then

precision = IRnTI (A.1)
|T|

recall = RnTI (A.2)
|RI

where |Al is the cardinality of the set A. Since there is no optimal value for the cardinality

of the set of retrieved images, results are usually presented in the form of a PR curve.

Several levels of recall {l,... ,lm} are established and Tj is the smallest set of returned

images that satisfy recall level li. Precision is then measured for each Ti originating a PR

curve. Usually, the curve is averaged over several queries.

PR is a much more complete performance criteria than classification error, since it also

provides information about the images that were not returned as the best match. For

example, low precision at high recall indicates that the system has difficulty in capturing

the diversity of the images in the class of the query. Since generalization is one of the most

difficult problems in visual recognition (where a simple change of the imaging parameters,

e.g. 3-D rotation, can lead to substantial changes of visual appearance), PR is a much better

performance criteria than classification error for this domain. This has indeed become the

prevalent view in the image retrieval community, where PR is the main tool for performance

evaluation.

'Otherwise, users may feel overwhelmed and assume that the system is not sure about the results of the

search.
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