
DURATION, DENSITY, AND EVOLUTIONARY FORM
APPLICATION OF BIOLOGICAL PRINCIPLES TO ARCHITECTURAL SURFACE MASSACHUSETTS INS

OF TECHNOLOGY

SEP 1 72010

JOHN ROTHENBERG LIBRARIES

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR ARCHIVES
OF SCIENCE IN ARCHITECTURAL DESIGN AT THE MASSACHUSETTS
INSTITUTE OF TECHNOLOGY.

JUNE, 2002.

@2002, ALL RIGHTS RESERVED, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SIGNATURE OF AUTHOR

CERTIFIED BY

JOHN ROTHENBERG
DEPART NT OF ARCHITECTURE

MAY 2002

PETER TESTA
ASSOCIATE PROFESSOR OF ARCHITECTURE

THESIS ADVISOR

2

DURATION, DENSITY, AND EVOLUTIONARY FORM
APPLICATION OF BIOLOGICAL PRINCIPLES TO ARCHITECTURAL SURFACE

Changes in the way we look at the relationship between artificial and
natural in architecture lead to new design possibilities that incorporate
the ideas of organic and evolutionary form. When these biological
models are coupled with computational power, architectural design can
begin to address the dimension of time. By dealing with the concept of
duration, architecture reaches levels of complexity that match the world
in which it exists. This thesis will explore the possibilities of organic
and evolutionary surface in architecture and will attempt to provide a
design that responds to a new understanding of duration in architecture.

This thesis explores the relevance of a time-based model of architecture
that draws on the concepts of organic and evolutionary form. It proposes
a new understanding of architecture's relationship with time, and then
uses this concept of duration as the foundation for experimental design.

The goal of such an exploration is to gain a deeper understanding of
the physical consequences of a new theoretical approach to architec-
ture. A secondary goal is to demonstrate the power and necessity of
computation in collaboration with biological models of architecture.

The thesis includes research into nonlinearity as a challenge to the domi-
nant understanding of the relationship between artificial and natural. From
this research, the concept of duration is proposed as a new way of viewing
the distinction between the natural and artificial. Duration then becomes
a metaphor and guide in the design process of a studio assignment. In
order to expand the possibilities of this concept, the thesis looks to ideas
of adaptation and evolution as well as biological models of systems ex-
hibiting these properties. Computation is used to model design sketches
based on adaptive and genetic algorithms. Finally, a design experiment
incorporates all of these ideas in an evolutionary architectural surface.

CONTENTS

I. PROJECT BACKGROUND: DURATION AS DISTINCTION

11. FOUNDATION: DESIGN WORK INFORMED BY DURATION

111. COMPUTATIONAL APPLETS: ADAPTIVE AND EVOLUTIONARY

IV. ADAPTIVE SURFACE: MOVEMENT AND MEMORY

V. CONCLUSIONS: ISSUES OF DENSITY AND INTENSITY

VI. ADDITIONAL MATERIALS: SOURCE CODE

6

I. PROJECT BACKGROUND

......

PROJECT BACKGROUND
DURATION AS DISTINCTION

TODD HIDO
UNTITLED #2621, 2000
PITTSBURGH, PA
CHROMOGENIC PRINT
24 X 20", 38 X 30", 48 X 38"

RETHINKING THE DISTINCTIONS BETWEEN MAN AND NATURE

Fundamental building and design principles are based on a certain
understanding of the relationship between man and nature. If our
understanding of this relationship were to break down, so too would much
of our current architectural dogma. Furthermore, when this relationship
is challenged, a new set of design possibilities emerges. Most clearly,
a new understanding of the problem of man and nature in architecture
questions the way we look at duration -- how time relates to the built world.
Where theory breaks down, there is the possibility of design at the point of
discontinuity. Old relationships are replaced by innovation.

The initial problem with the relationship between man and nature stems
from the existence of this distinction. Architectural theory fails to account
for the possibility that there is no distinction between man and nature -
that both are components of the same system. Let's look to the current
paradigm. Although there are myriad opinions on this division, we tend to
set up two categories, and then place elements of our world into one of
these categories. First we look to absolutes: the places least touched by
civilization (the depths of the ocean, remote and inhospitable land), are
categorized as part of the natural world, while the places most altered
by the hand of man (cities, dams, bridges) are categorized as part of the
artificial or built world. {Footnote: The word artificial is hardly ever used,
but it is the literal opposite of the natural, and using it helps to clarify the
underlying leanings of this system of categorization.} We follow this by
adding to each category, guided by the idea that anything not touched
by man is natural, and anything constructed by man (or his intellect)
is artificial. Technology, or its presence, also becomes an indication of
the artificial. Certainly cities and technology are built, but this system of
categorization presupposes that they are artificial. A question naturally
arises: is the built world necessarily artificial? So we actually have two
distinctions: one between the built and the unbuilt, and one between the
natural and artificial. The problem originates from our combination of these
two distinctions and the resultant architectural dogma. When we group
the unbuilt with the natural and the built with the artificial, we confuse two
entirely different questions.

Contemporary discourse and scientific discovery have found that the
quantitative differences between man and nature are less dramatic than
we once thought. The Human Genome Project demonstrated that man
is not more genetically complex than the rest of the animal kingdom. In
fact, the genetic variation between humans and other animals is minimal,
and humans do not possess the greatest number of genes. Even the
distinction between living and inert matter seems to be blurring. The
author and Columbia University lecturer Manuel De Landa discusses
this in his essay "Nonorganic Life." As computational power increases
through technology, we have been able to perceive the dynamics of more
complicated nonlinear chemical relationships. Previously, it was thought

TODD HIDO
UNTITLED #2840, 2001
KENT, OH
CHROMOGENIC PRINT
24 X 20", 38 X 30", 48 X 38"

10

that all chemical reactions moved linearly from one state to another. In
fact, certain systems have demonstrated the presence of inert matter that
exists in an infinitely dynamic state -- one that doesn't require a constant
source of energy. It seems that nonlinear relationships exist throughout
much of the sciences. Progress in the built world has allowed us to explore
these relationships.

Thus, one of the main causes of the paradigm shift that has allowed
us to "see" matter as capable of self-organization is an advance
in the technology that materially supports mathematics, and with it
mathematical technology. Needless to say, this will not be an overnight
replacement, and much of science (classical and quantum) will remain
linear. But nonlinear science has begun to reveal new and startling facts
about matter, in particular, that the behavior of entirely different material
systems can exhibit "universal features." [De Landa, "Nonorganic" p134]

Much of these phenomena remained invisible until the end of the
twentieth century. The difference between organic and inorganic matter is
deteriorating. We are finding that traditionally inert matter exhibits certain
properties of life. "In short, it seems that our bodies are inhabited as much
by the phenomena of "nonorganic life" as by the more familiar phenomena
of organic life." [De Landa, "Nonorganic" p133]. These discoveries have a
drastic effect on the relationship between the built and the unbuilt.

Architecture has established a hierarchy between the unbuilt and the built
that rests on the belief that "untouched" geology is inert. Barren land was
thought to be the opposite of civilization. Nonlinear science has shown
that geological systems are similar in complexity to civilization. The two
systems are driven by the same mater-energy relationships but proceed
at much different rates. This concept of time, or duration, becomes an
important way to look at actual differences between man and nature.
Civilization itself can be viewed as a complex system driven by the matter-
energy relationship. From this standpoint, the progress of civilization,
including the built world, is essentially a response to this relationship, and
it exhibits similarities to other large systems obeying these parameters.

Sedimentary rocks, species, and social classes (and other
institutionalized hierarchies) are all historical constructions, the product
of definite structure-generating processes that take as their starting point
a heterogeneous collection of raw materials (pebbles, genes, roles),
homogenize them through a sorting operation, and then consolidate the
resulting uniform groupings into a more permanent state. [De Landa,
1000 Years, p62]

Just as nonlinear dynamics have shown that inert matter exhibits levels of
complexity that match living matter, they can show that geological systems
exhibit the same levels of complexity as civilization. The development of
geologic systems mirrors the development of civilization at a much slower
rate, and thus the key difference between the built and unbuilt becomes
the variable of time. This actual difference is ignored by theorists in favor
of perceived philosophical differences.

TODD HIDO
UNTITLED #2736, 2000
PACIFICA, CA
CHROMOGENIC PRINT
24 X 20", 38 X 30", 48 X 38"

12

...................------

Architectural dogma responds to changes in the understanding of the
nature of the world through a process of revision rather than replacement.
This is the opposite of the approach we find in the scientific community.
Even when architects recognize problems with theory, they respond by
modifying existing paradigms rather than by rejecting them altogether.
Architects believe in the existence of an architectural truth that has to be
discovered. The French Philosopher Gilles Deleuze would argue for a
different conception of truth, one that is created rather than discovered.

This idea that truth is not something preexistent that we have to discover,
but that it has to be created in every domain, is obvious in the sciences,
for example. Even in physics, there is no truth that doesn't presuppose a
system of symbols, even if they are only coordinates. There is no truth that
doesn't "falsify" established ideas. To say that "truth is created" implies
that the production of truth involves a series of operations that amount
to working on a material - strictly speaking, a series of falsifications.
[Deleuze, "Mediators" p287]

If we choose to reject certain tenets of architectural dogma, based on the
weakness of the man versus nature argument, a new set of design options
become available, and the direction of the profession changes.

Architecture's relationship with time has previously focused on the
concept of monumentality. In many ways, monumental architecture
is civilization's fight against the permanence of nature; it becomes a
symbol of civilization's conquest of the unbuilt (permanent transformation
of unbuilt into built). This emphasis on competition between man and
nature rests on misconceptions about the differences between the built
and unbuilt. When we view the two systems, geology and civilization, as
similar in complexity but differing in duration, monumentality becomes
less important as a design concern. In fact, geology lasts so much longer
than civilization that any battle against the permanence of nature seems
misguided and ignorant. Deleuze explores the concept of duration as it
relates to the philosophy of Bergson, and argues for an understanding of
time that places less emphasis on the idea of an object enduring.

We must not say that external things endure, but rather that there is some
inexpressible reason in them which accounts for our inability to examine
them at successive moments of our duration without observing that they
have changed." [Deleuze, "Bergsonism" p48]

When we view both the world of civilization and the world of geology as
kinetic systems, we can get beyond the idea of architecture as a tool in
man's progress against nature. We are prisoners of a very narrow-minded
ideal of architecture: one that is concerned with duration and elitism.
Perhaps monumentality derives from a fear of death, or the desire for
immortality, but it ultimately places emphasis on a certain type of building.
A masterpiece must fit the criteria of permanence. We favor the solid
and static over the light and kinetic. This seems inappropriate to our
contemporary world: one of migrants, rapidly evolving technology, genetic
engineering. Our world is becoming more dynamic at an exponential rate,
and we are still obsessed with the immobile.

TODD HIDO
UNTITLED #2904, 2001
PACIFICA, CA
CHROMOGENIC PRINT
24 X 20", 38 X 30", 48 X 38"

14

.........

Architects are in a rare position. Our work is a unique combination of
problem solving and cultural statement: the balancing act of scientific
foundation and artistic possibility. Through the combination of these two
realms, the limits of architecture are pushed beyond their current state.
Here lies the real power of the profession: not to be canonical, but to push
the boundaries of man's possibilities. There is no way to reach these true
monuments if the scientific foundation of architecture rests on inaccurate
assumptions. Remodeling these assumptions is not a valid solution. They
must be abandoned. As boundaries are pushed, new possibilities will
emerge. The idea is not to find the end, but to find the edge.

16

II. FOUNDATION

FOUNDATION
DESIGN WORK INFORMED BY DURATION

AN EARLY SKETCH OF THE VARIOUS LAYERS: FOREST FLOOR, FOLIAGE, PATH,

gallery
cinema
dance theater
performance space
dance studio
cafe
blackbox theater
artist studio -
info site
brasserie

SCHEMATIC OF THE MASTER PLAN FOR THE ENTIRE SITE

............... :
........................

ARCHITECTURAL LAYERS AND RATES OF CHANGE

The design of an Expo master plan and pavilion incorporates an
understanding of duration as the primary method for increasing the
architecture's connection with time. The proposal is a series of archi-
tectural events set in a landscape of isolation and discovery. This is
accomplished through a series of structural and compositional layers: the
forest floor, a network of elevated paths and ramps, barrier walls, large
signage walls, and finally, contained architectural space. An essential
element of the design is an intentional blurring of the built and unbuilt
aspects of the design. The landscape and architecture are universally
viewed as temporal, with tangible compositional shifts at various intervals.

1. GRADUAL/NATURAL: The expo plot was set within a forested region
with the intention that the forest would overtake the architecture once the
expo finished. The architectural infrastructure would first become a service
for the landscape but would eventually decay, leaving only traces of itself.

II. SEASONAL: The visual connections between the sites within the forest
depend upon the amount of foliage, which shifts seasonally within the forest.
The color and feel of the site as well as the user's perception of the architec-
ture depend on the time of year. In the summer, the sites are secluded and
almost impenetrable, whereas in the winter they barely seem disconnected.

To understand the more immediate temporal shifts in the landscape,
it becomes necessary to examine the design of a single building site
within the master plan. The landscape is split into a series of plots which
would be designed for specific cultural spaces. One of these sites is
an open-air theater for dance performances. The theater is composed
of two major elements: a sign wall separating the theater from the cir-
culation route and a container forming the backstage and operational
contents of the theater. This design continues to look at rates of change.

Ill. DAILY: The container is seen as a solid object with clear borders
during the day, but at night it becomes a collection of luminous points
within the landscape. The skin of the container is constantly weathering
and looks different based on the weather conditions of a certain day.

IV. IMMEDIATE: The surface of the signage wall is constantly changing,
expressing the surroundings and displaying projections at various scales.
The wall is used to move people through the site and it transforms the con-
stantly changing aspects of the site into visual information at various scales.

20

BOARD 1:
THE MEANING OF PLATFORM

7

THE MEANING OF PLATFORM: CREATING A SEQUENCIAL EXPERIENCE FOR THE PERFORMERS WHILE PROVIDING PROGRAM FOR THE ENTIRE CONTAINER

HARDWARE

MEETING SPACE AND LOUNGE -

ELEVATED, STEPPING AWAY FROM
THE PERFORMANCE.
//
TRANSPARENCY TO THE THE NORTH
IN ORDER TO TURN THE USER AWAY
FROM THE STAGE AND INTO THE
FORREST.

DIRECTOR'S OFFICE I

DETACHED FROM THE INTERIOR SCHEME
BY A STEP UP FROM ENTRANCE PLATFORM.
//
STILL SPACE AT THE END OF THE VOLUME

ENTRANCE SPACE__

COLLECTS DANCERS, CREW, AND VISITORS.
//
LIGHT SPACE WITH DENSE SKIN PERFORATIONS.
//
MOVEMENT IN THREE DIRECTIONS: UP THE RAMP
TO THE MEETING SPACE AND LOUNGE, UP A STEP
TO THE DIRECTOR'S OFFICE, OR DOWN THE RAMP
TO THE DRESSING ROOMS.

HEATING, VENTALATION, AND ELECTRIC STORED
UNDERNEATH MEETING SPACE, PROVIDING
STRUCTURE AS WELL.

STRUCTURAL BARRIER WALL

LAYERING ELEMENT FROM SITE SCHEME

SREVES MULTIPULE FUNCTIONS; TIES CONTAINER INTO LARGER
SYSTEM, PROVIDES ADDITIONAL SEQUENCING BARRIER FOR
DANCERS, AND PROVIDES LATERAL STABILITY TO THE CONTAINER.

BACKSTAGE

DRS SINGR)OOMSSERIES OF STEPS LEADING TO THE STAGE.

FIRST IN A SEQUENCE OF EXPERIENCES THE PREPARE
THE DANCER FOR THE PERFORMANCE.

SEPARATED FROM THE EVERYDAY USE OF THE THE
CONTAINER BY A SERIES OF BARRIERS: THE RAMP TO
THE MEETING SPACE, A PARTITION WALL, AND THE
RAMP TO THE DRESSING ROOM ELEVATION.
//
TRANSPARENT TO THE NORTH AND SOUTH, BUT FEW
PERFORATIONS TO THE WEST.

LARGE OPEN SPACE FOR STORAGE OF PROPS AND
PERFORMANCE EQUIPTMENT.
//
ISOLATED SPACE, NO PERFORATIONS IN THE SKIN.

... - 0 11

BOARD 11:
THE MEANING OF SKIN

23

THE MEANING OF SKIN: PROVIDING CONTINUITY AND IDENTITY TO THE CONTAINER WHILE MEDIATING LIGHT BETWEEN INTERIOR AND SITE

TRANSFORMATION

IN DAYLIGHT, CONTAINER IS PERCEIVED AS OBJECT.
//
AFTER SUNSET, THE OBJECT IS SEEN AS A COLLECTION
OF POINTS --THE EFFECT OF INTERIOR LIGHT PASSING
OUT THROUGH THE PERFORATIONS.
//
CONTAINER BECOMES LANTERN.

PERFORATION

DENSITY OF OPENINGS BASED
ON PROGRAMATIC NEEDS.
//
CONSISTENT SIZE OF ELEMENT
WITH RANDOMIZED LOCATION.
//
ETABLISHING BORDERS OF
EXTENSITY AS OPPOSED TO
BORDERS OF INTENSITY

DURATION

SKIN IS MATERIALIZED AS ROUGH STEEL PLATES.
//
OVER TIME THE COLOR AND TEXTURE OF THE
CONTAINER WILL CHANGE.
//
THE DURATION OF THIS CHANGE IS MUCH GREATER
THAN THE RATE OF DAILY TRANSFORMATION BETWEEN
OBJECT AND POINTS.

............... , -... I'll. .. - .. R" A-

BOARD III:
THE MEANING OF CONTAINER

THE MEANING OF CONTAINER: DISTINGUISHING ARCHITECTURE FROM ARCHITECTURAL LANDSCAPE

SITE ORGANISM

TAKING LAND FROM PUBLIC REALM --
ENCLOSED SPACE BECOMES PRIVATE.
//
EXISTING AS A UNIT THAT PENETRATES THE
ARCHITECTURAL WALL OF THE THEATER AS
WELL AS THE GROUND.
//
TRANSMITING LIGHT AND OCCUPYING SPACE
IN BILOGICAL FASHION WHERE BOUNARIES
ARE FELXIBLE RATHER THAN CONCRETE.

DYNAMIC MYSTERY

THE FOLDS OF THE ROOF AND PLATFORM, AS WELL AS THE NATURE
OF THE PERFORATIONS SIGNAL A LIFE WITHIN THE BUILDING THAT
CANNOT BE DECIPHERED WITHOUIT ENTERING THE SPACE.
//
EMPHASIZING THE DISTINCTION BETWEEN AUDIENCE AND PERFORMERS,

SELF-SUFFICIENT PROGRAM

CONTINUITY OF SKIN AND ROOF ALLOW THE
VOLUME TO BE READ AS ONE UNIT OF DESIGN.
//
PROGRAM OF CONTAINER RELATES ONLY TO USER
SO IT IS HIDDEN FROM THE SITE.
//
NO ENTRANCES ARE VISIBLE IN ELEVATION.

.- I -.. --------- --- xxxxxx, 1111

BOARD IV:
THE MEANING OF WALL

27

THE MEANING OF WALL: SURFACE OF INFORMATION AT LEVELS OF SCALE AND ABSTRACTION

ENVIRONMENTAL ABSTRACTION

SHADOWS CAST ON THETRANSLUCENT PANELS RELATE TO THE
INTERACTION OF LANDSCAPE AND LIGHT -- SUNLIGHT DURING
THE DAY AND ARTIFICAL LIGHT AT NIGHT.
//
THROUGH THE SCREEN OF THE WALL, THE SITE OF THE DANCE
THEATER IS DISTORTED INTO AN ABTSRACT IMAGE. SIGNAGE AND ICON

TEXT MESSAGES CAN BE PROJECTED ONTO THE SURFACE
OF THE WALL - GIVING DISTANT VIEWERS AN IDEA OF THE
PROGRAM AND PERFORMANCES.
//
LARGE PROJECTIONS CAN TRANSFORM THE WALL INTO A
BILLBOARD FOR THE SITE - SEEN THROUGH THE FORREST
AND DIRECTING THE AUDIENCE TO THE SITE.

......... --- --- -----------------

BOARD V:
THE MEANING OF LANDSCAPE

29

PATH

EMPHASIZES MOVEMENT
CONNECTION, AND CLARITY:
ELEVATED ABOVE PROGRAM
TO LINK EXPO PLOTS.

BARRIER WALLS __-

DIVIDES PROGRAM OF EXPO
PLOTS INTO INTIMATE REGIONS.

LIGHT COLUMNS

SUPPORTS CANOPY STRUCTURE
OF DANCE THEATER AND SERVES
AS A SLOW DEVICE: PAUSING
VISITORS AT THE SITE.

FORREST FLOOR

CHANGES IN ELEVATION IN
RESPONSE TO PROGRAM.

ASPHALT SURFACE - STAGE

ARTIFICIAL GROUND
DISCOVERED BENEATH
SURFACE OF FORREST
FLOOR.

- CONTAINER

PERFORMANCE REGION
AND LINK BETWEEN
PUBLIC AND PRIVATE USE.

PRIVATE NEEDS DEFINE THE
ENCLOSED STRUCTURE.

MEDIA WALL

DISPLAYING SITE
INFROMATION AT
LEVELS OF SCALE
AND ABSTRACTION.

THE MEANING OF LANDSCAPE: SYSTEMATIC LAYERING TO PROVIDE ARCHITECTURAL SPACES WITHOUT FIXED BOUNDARIES

...............

III. COMPUTATIONAL APPLETS

ADAPTIVE AND EVOLUTIONARY FORM
ENABLING ARCHITECTURE TO FUNDAMENTALLY CHANGE WITH TIME

GROWTH AND DECAY OF PHYSICAL SPACE

Although we may believe that there is no fundamental contradiction
between the built world and the natural world, we must still acknowledge
that architecture's relationship with time has primarily been one of aging.
Essentially the built world deteriorates over a range of durations. It's
relationship with time is subtractive and the only way to counteract the role
of time is to rebuild the building or to add something new to it. Rarely does
the built world change through its own initiative. Today computation offers
us a way to enable architecture to reconfigure itself over an extended
period of time.

If we look to simple organisms we will find a natural model that can be
applied to the built world through computation. This thesis primarily
explores the concepts of short-term and long-term adaptation as they can
be applied to architectural form. When a structure is able to balance im-
mediate adaptation and its own internal history, it can exhibit properties of
biological life. At this point, the differences between artificial and natural
form truly begin to dissolve. Architecture begins to fundamentally change
over time, and architectural complexity approaches the complexity of the
environment surrounding it.

Architects have looked to both kinetic systems to answer questions re-
garding short-term adaptation in architecture and genetic algorithms as a
technique for long-term adaptation, but they have yet to synthesize these
two ideas. Kinetic systems allow physical space to change dramatically
post-construction, but these systems lack an internal history and there
is a corresponding lack of distinction between the states of the system.
Genetic properties have been used to model and generate form, but they
have yet to be applied to a building post-construction in order to enable
space to evolve over the course of a building's life.

This thesis aims to look at the possibilities of evolutionary form, first as
diagrammatic sketches, and then as architectural surface. The initial work
focuses on gaining an understanding of genetic and adaptive algorithms
as a visual and spatial phenomenon. It soon becomes clear that the goal
of the work is not to formulate a literal genome for a physical space, but
instead to bring the ideas of history and memory to built form. The work
develops into a balancing of short-term and long-term adaptive traits in
a kinetic surface such that the resulting space develops a distinct char-
acter over time -- one that changes as it is used in different ways and by
different users.

COMPUTATIONAL APPLETS
SKETCHES OF ADAPTIVE AND EVOLUTIONARY FORM

....................

MODELING BIOLOGICAL PROPERTIES AS ARCHITECTURAL SKETCH

This work is concerned with the accumulation of memory in a compu-
tational system based on properties of biological life. In order to better
understand the spatial and visual consequences of biological systems, the
properties of these systems are modeled as visual sketches. These Java
applets, either adaptive or evolutionary in character, provide a conceptual
foundation for the design of a computational architectural surface with
memory.

ADAPTIVE SYSTEM: The adaptive system consists of a feedback loop
and an internal history that develops over time. As the user interacts
with the system, the system responds, but in ways that change based on
previous user interaction with the system. This system is composed of
simple organisms that have a life cycle where their survival is based on
fitness criteria. These organisms affect the entire system, but they do not
reproduce and pass their genetic material to their offspring.

EVOLUTIONARY SYSTEM: The evolutionary system is based on the
properties of genetics and the algorithms involved in natural selection.
Organisms with a genetic code survive and reproduce based on certain
selective and fitness requirements. When two organisms reproduce,
genetic crossover and mutation determine the genes the offspring receive.
The most fit organisms are surviving the longest and have the greatest
chance of reproducing. In this way, the population is always moving to-
wards an optimal configuration -- one determined by user interaction with
the system.

Both of these systems provide ways to balance short-term and long-term
adaptation. The user is able to directly effect the system by interacting
with the applet, but the result of the interaction depends on the internal his-
tory of the system. Adaptive and evolutionary models become the vehicle
for accomplishing this accumulation of memory. In the end however, the
emphasis is on memory rather than the algorithms used to accomplish this
memory.

*s

//life cycle of blocks regulated by user input
//size and position of blocks determine fitness
//blocks grow if clicked and can be dragged to new locations
//above a certain threshold, blocks are anchored
//anchored blocks get agitated if clicked
//anchored state determines where new blocks will be born
//nothing lasts forever ...

.. =.... .= - - . ::::: .:- ::

ADAPTIVE APPLET no. 002
http://web.mit.edufjroth/www/thesis/

This sketch consists of a series of blocks that can be altered by user input.
Blocks have a life cycle where their fitness is based on their position and
size. By changing the sizes and positions of the blocks, the user also
changes how new blocks are added to the system. The visual patterns
that emerge are based on a combination of user input and internal his-
tory, but the system is not designed to evolve. This sketch is primarily
concerned with the nature of feedback in the system, and examines the
indirect consequences of user interaction.

SELECTION ALGORITHM: Blocks have a "life ability" that determines
their probability of surviving to the generation of the program. This life
ability is based on their distance from the place of their birth as well as
their size and age.

public void tallyLifeo {
if(!anchored) {

life ability = 0
//distance from the lifeline:
distance = Math.abs(y_val-175);
more = distance-20;
if (distance>20) life-ability += 2*distance/3;
/age factor:
life ability += 40-generation;
//size factor:
if (size>16 && size <= 52) life-ability += size;
f(life ability>=1 00) {
anchored = true;

anchorclock = 60;
}

}
if(anchored) anchor_clock -= 1;

}

public void killingSpreeo {
if(!anchored) {

int hit = r.randomlnt(100);
if (life-ability<5) {

if (hit>40) alive = false; }
if (life-ability>5 && life-ability<20) {

if (hit>70) alive = false; }
if (life-ability>20 && life-ability<60) {

if(hit>90) alive = false; }
if (life-ability>60 && life-ability<1 00) {

if(hit>97) alive = false; }
}

else {
if(anchor clock < 0) alive = false;

}
}

a U , 0
U.

U EU U U so

THE BLOCKS ARE INITIALLY DISPERSED OVER THE ENTIRE HORIZONTAL

AS THE USER SELECTS BLOCKS AND BRINGS THEM TO NEW LOCATIONS, THE NEW
STATE OF THE SYSTEM DETERMINES WHERE THE NEXT GENERATION OF BLOCKS
WILL BE BORN.

S %E * UJim

. gillilim

BLOCKS CAN ALSO BE PUSHED IN LARGE NUMBERS

dl

sofoiuA

U
U

U *g
U

U

E
AS BLOCKS PASS A THRESHOLD IN LIFE ABILITY, THEY BECOME ANCHORED IN
POSITION AND GREY IN COLOR. THESE ANCHORED BLOCKS DETERMINE THE
STATE OF THE SYSTEM. THE ORGANISMS BECOME THE CONTROLS. CLICKING
ON ANCHORED BLOCKS WILL AGITATE THEM AND CHANGE THE VERTICAL DISPER-
SION OF THE NEXT GENERATION OF ORGANISMS. TEMPORARY VISUAL PATTERNS
EMERGE AND GENERATE NEW PATTERNS.

ON - -

...

p

//organisms are born, exist, and die in dataspace
/user input defines the environment
/organisms act in response to the environment
/selective criteria determines who will reproduce
//genetic code of organisms is passed to offspring
//variation through crossover and mutation
/form emerges

................ ::

EVOLUTIONARY APPLET no. 001
http://web.mit.edu/jroth/www/thesis/

This sketch consists of a series of evolutionary organisms existing
within a landscape that can be altered by user input. The nature
of the landscape, in combination with the genetic traits of the
organisms, determines the state of the system. In this way, the
user can only indirectly control the visual patterns of the system --
much is left to the nature of the organisms themselves. This work
emphasizes the long-term adaptive characteristics of the system,
perhaps at the expense of short-term adaptation.

evoORGANISMS: genetic characteristics determine visual traits
reproduction based on selective criteria
offspring inherit parental genetic information

dataSPACE: landscape governing the life cycle of evoOrganisms
provides rules governing selection
user input directly effects the landscape

GENETIC ALGORITHM:

1. ACTION / RESPONSE: Each organism will respond to the environment (and
thus any user interaction) based on its genetic traits.

II. FITNESS: The age of the organism, its distance from other
inhabitants, as well as certain genetic traits will
determine the likelihood that it will survive.

IlIl. SELECTION: Two organisms, the most fit and the most diverse, will
be selected to reproduce.

IV. REPRODUCTION: Genetic crossover and mutation will be included in the
reproductive cycle to allow for the evolutionary
development of the system over time.

U.w "U a

A POPULATION OF ORGANISMS IS RANDOMLY GENERATED AS THE APPLET OPENS

THE ORGANISMS IMMEDIATELY BEGIN TO MOVE, REPRODUCE, AND POSSIBLY
DIE. THE USER CAN EFFECT THE SYSTEM BY CLICKING ON THE LANDSCAPE AND
CREATING POCKETS OF UNINHABITABLE SPACE. THE LOCATION OF ORGANISMS
RELATIVE TO THESE POCKETS BEGINS TO EFFECT THE LIKELIHOOD THAT THEY
WILL REPRODUCE.

LA

U

U

; V.

THE SYSTEM BEGINS TO CONVERGE ATA STATE INFORMED BY USER INPUT

an *muu

GENETIC ALGORITHMS ARE PRIMARILY USED FOR OPTIMIZATION AS THEY TEND TO
MOVE TOWARDS A SPECIFIC CONFIGURATION. IN THIS CASE, THE BEST ORGAN-
ISMS ARE CONTINUOUSLY REPRODUCING AND THE VISUAL PATTERN BEGINS TO
BECOME CONGESTED AT SPECIFIC POINTS AND EMPTY AT OTHERS.

...................................... ::::::

//parallel systems of genetic algorithm and user input
/the two systems are linked by a common grid
/user adds simple elements to the system
/these elements manipulate the grid spacing
/selective criteria and fitness are determined in relation to the grid
//phenotype is represented in the banding patterns of the organisms
/in this way, user input has an indirect, but lasting impact on the global system
/balancing the need for an adaptive global system and interactive local control

..................- .-- .- .- , - I I I I I I I I I -I I - : : :: . -- I I I I - - - - - ---

EVOLUTIONARY APPLET no. 002
http://web.mit.edu/roth/www/thesis/

This applet focuses on adding elements of stability to previous sketches.
The system uses a grid to keep populations of inhabitants stable.
Genetic characteristics of the organisms are also made more visible
through a series of graphic bands. The user interacts with the system by
adding simple organisms to the landscape. These organisms have the
ability to change the position of the grid, and as the grid changes, new
visual patterns emerge. Essentially the grid becomes a mediating device
between the user and the evolutionary system. In this way, the applet
develops the most sophisticated relationship between the system and the
user. At this point the evolutionary algorithm reaches a point where it can
be applied to architectural form.

evoORGANISMS: genetic characteristics determine physical form
reproduction is based on selective criteria
offspring inherit parental genetic information

dataSPACE: grid space governing the life cycle of evoOrganisms
Intermediary between user and evoOrganisms
provides rules governing selection

simpleORGANISMS: placed into the system by the user
fixed life span and no reproduction
collide with grid lines and change gridSpace

evoORGANISM:

FOUR GRAPHIC BANDS: physical representation of genomic data
EXTERIOR BOUNDING BOX: device for observing system patterns
SIX GENES: x_position, yposition, size, amplitude, mobility, and color
SEXINESS: factor determining the likelihood of reproduction
LIFE ABILITY: probability that the organism will continue to live

simpleORGANISM:

SIZE: how much the organism will affect the grid structure of the dataSpace
SPEED: how fast the organism moves
LIFESPAN: how long it will live

A POPULATION OF ORGANISMS IS RANDOMLY GENERATED AS THE APPLET OPENS

AS THE SYSTEM DEVELOPS, THE GRAPHIC BANDING OF THE ORGANISMS ALLOWS
THE CYCLE OF REPRODUCTION AND MUTATION TO BECOME MORE VISUALLY OBVI-
OUS. THE GRID-DEFINED SELECTION AND FITNESS RULES PREVENT THE SYSTEM
FROM CONVERGING IN A SINGULAR DIRECTION.

.............. : L

THE USER ADDS THE GREEN SIMPLE ORGANISMS TO THE SYSTEM

THESE ORGANISMS CHANGE THE POSITION OF THE GRID LINES WHICH, IN TURN,
LEAD THE SYSTEM TO DEVELOP NEW PATTERNS. THE BALANCE BETWEEN SHORT-
TERM AND LONG-TERM ADAPTATION IS THE MOST EVEN-HANDED OF ALL THE
SKETCHES.

........................

//returning to issues of interaction and adaptation
//grid manipulation is responsive and cumulative
//certain actions cannot be undone

ADAPTIVE GRID no. 001
http://web.mit.edufjroth/www/thesis/

This sketch returns to early ideas of adaptation in order to find a simple
algorithm that can be applied to an architectural surface. The complexity
of the evolutionary applets seems appropriate to their format as visual-
izations, but might not necessarily be advantageous as an architectural
device. In fact, most of the evolutionary properties of the second applet
where artificially constrained in order to prevent it from converging on
an optimal solution. This grid is the simplest in terms of computation,
but it balances short-term and long-term adaptation more elegantly than
previous work. The system changes through growth and decay. Visu-
ally, the grid helps the user see the system as one organism composed
of a collection of elements. The design of an architectural surface is the
obvious next step.

......... - n _ - "'fmp

50

IV. ADAPTIVE SURFACE

ADAPTIVE SURFACE
MOVEMENT AND MEMORY

VKZ7

FRAME

HARDWARE-__

- SKYLIGHT

INTERIOR LIGHT.

PULLEY

PANEL

.. I

COMPUTATIONAL ARCHITECTURES OF TIME

The emphasis of this thesis is the development of
a true architecture of time, one that establishes its
own internal history and memory. This work in-
cludes the design of a computational architectural
surface composed of individual units of skylight,
interior light, and kinetic panel. Each unit func-
tions as a light modulator and the units can be
networked to form an aggregate computational
surface.

This surface has the ability to sculpt space
through the physical movements of each panel.
Three pulleys connected to steel cables manipu-
late the height and rotation of the wood panel.
These panels respond to direct user input and the
surface also modulates according to a variety of
ambient sensing. The collective surface develops
a history that is interconnected and cumulative.
In this way, the physical architecture displays
characteristics of short-term and long-term
adaptation.

The panels occupy the space above the inhabit-
ants and modulate the architecture in subtle,
but effective ways. Manipulating spatial and
optical qualities in collaboration allows these
computational units to have a profound effect on
the experience of a space. Such a place seems
to be inhabited by a living architecture, one that
responds to the needs of the user while retaining
its own identity.

PHYSICAL MODEL OF AGGREGATE SYSTEM

This model is a demonstration of the compu-
tational units applied in aggregate form as a
architectural surface. The units can be linked to
outside sensors depending on the nature of the
program. The frame will contain a skylight when
possible, but this is not essential. In this model,
the system involves ambient sensing, but the
panels are not linked to skylights.

TRANSLATION: The panels can drop to create
zones of intimate space, or they can rise to create
more open space.

ROTATION: The panels rotate to change their
optical parameters. Above each panel is a set of
lights, usually a skylight and an interior light. The
rotation of the panel in conjunction with the time
of day and type of illumination give the space
ranges of dark and light.

INPUT: This collection of panels respond to direct
user input in the form of an array of switches and
also respond to ambient sensors detecting levels
of visible and infrared light within the space. In
this way the surface will respond to momentary
shifts of light such as passing clouds as well as
cyclical changes occurring daily, seasonally, or
even longer. Infrared sensing allows the system
to see where people are inhabiting the space and
to respond accordingly.

xxxxxxxxxxxx ..

COMPUTATIONAL MODEL OF AGGREGATE SYSTEM

ADAPTIVE SURFACE v 2.0
http://web.mit.edu/jroth/www/thesis/

This model offers an interactive look at how
the system will respond once implemented. It
contains a three dimensional study of the archi-
tectural form as well as a way to prototype the
embedded computation.

The surface drew on the growth and decay model
of the Adaptive Grid no. 001 applet, and was
programmed in the proce55ing suite for Java,
developed by Ben Fry and Casey Raes of the
MIT Media Lab. The panels initially respond quite
dramatically to user input or changes in ambient
sensors, but the system then settles to a more
stationary state. This base state is constantly
updating and represents the internal history of
the aggregate system.

The translation from computational to physical
space requires the surface to obey physical laws.
Rotation and translation of the panels must be
limited physically, and the freedom of the system
must be contained to a range of possibilities. In
previous cases of computational architecture be-
ing realized as physical form, there is often a gap
between the envisioned computational model
and the resulting physical model. This system
attempts to model a real situation of aggregate
panels. For this reason, the freedom and com-
plexity of the evolutionary algorithm is replaced
by a more practical adaptive algorithm until the
physical implementation reaches the point where
it can handle such complexity.

... -................

..........

VIEWS OF COMPUTATIONAL AND PHYSICAL MODEL

...........

60

ADAPTIVE SURFACE IN AGGREGATE FORM

ADAPTIVE SURFACE IN AGGREGATE FORM
MOVEMENT AND MEMORY

.. X'...

V. CONCLUSION

64

ISSUES OF DENSITY AND INTENSITY

This thesis is concerned with the forms of architectural change over time.
Differentiation over time can be emphasized by the variations between a
static repeated object, or by the variations between an object and itself
in the form of a kinetic set of elements that change relative to each other.
In the first case, it is the movement of the user through a sequence of
repetition and variation that establishes the durations of the system. In
the second, it the physical space itself that fundamentally shifts over time,
exhibiting duration.

Shifting densities and intensities can produce surprising architectural
results. Recursion is a computational concept where an algorithm calls
itself to solve a problem. Recursion deals with the cumulative variation
that develops when a sequence is altered slightly and repeated. A history
develops and informs the next iteration of the algorithm. Each state of
the system is part of a potentially infinite set of states. This idea can be
applied to architecture to produce spatial results that develop a cumula-
tive complexity. Most importantly, the results can be in the form of growth
or decay -- the system does not have to be directed at a specific end or
solution.

My work is a proposal for an architecture of densities that shift over time
according to rules of growth and decay. In this way the physical form is
able to develop an internal history that responds and reacts to the passage
of time. When built objects determine their own rates of change, they
begin to exhibit the complexity of the unbuilt world. Such an architecture
of intensities emphasizes that the greatest difference between the artificial
and natural worlds might simply be one of duration.

66

VI. ADDITIONAL MATERIALS

68

WORKS CITED

DE LANDA, MANUEL. ONE THOUSAND YEARS OF NONLINEAR HISTORY. CAMBRIDGE: ZONE BOOKS, 2000.

DE LANDA, MANUEL. "NONORGANic LIFE" ZONE 6. EDS. JONATHAN CURRY AND SANFORD KWINTER.

CAMBRIDGE: ZONE BOOKS, 1992.

DELEUZE, GILLES. BERGSONISM. CAMBRIDGE: ZONE BOOKS, 1990.

DELEUZE, GILLES. "MEDIATORS" " ZONE 6. EDS. JONATHAN CURRY AND SANFORD KWINTER.

CAMBRIDGE: ZONE BOOKS, 1992.

70

SOURCE CODE FOR EVOLUTIONARY APPLET no. 002

evo6.java evolution with reproduction, crossover, mutation

import java.awt.*;
import java.applet.Applet;
import java.util.Date;

import java.awt.event.*;
import java.awt.geom.*;
import java.lang.Math.*;
import java.lang.StringBuffer;

import Randomizer;
import evoOrganism;
import simpleOrg;

public class evo6 extends Applet
implements MouseListener, MouseMotionListener, Runnable {

public static evo6 instance;

/for mouse dragging:
boolean moving = false;
int mousedown;
int mouseup;

/for double buffering:
Dimension size;
Image buffer;
Graphics bufferGraphics;
Thread animator;
boolean please-stop;

//randomizer with time-based seed:
Date time = new Dateo;
long seed = time.getTimeo;
Randomizer r = new Randomizer(seed);

/global colors:
int co = 0;

Color c3 = new Color(235, 240, 230);
Color c4 = new Color(1 68, 168, 139);

Color grey = new Color(196, 196, 196);
Color white = new Color(255, 255, 255);
Color lime = new Color(209, 245, 99);

Color block = new Color(117, 117, 95);
Color band = new Color(246, 246, 204);
Color bound = new Color(1 01, 101, 75);

/pause for runtime:
int pause-factor = 15;
int special-clock = 0;

/general framework for evoltion:
int number living = 0;
int number-simple = 0;

/specific variables for applet:
evoOrganism[] burp = new evoOrganism[300];
simpleOrg[] sim = new simpleOrg[300];
int temp-x, temp-y, temp-size, temp-mob, temp-col, temp-amp;
int temp-width, temp-height;
int initial blocks = 12;
/int initialbarriers = 3;
/int initialattract = 2;

int bX, bY, bD, bW, bH, bA, bM, bL, bS;

dataSpace data = new dataSpaceo;

/testing and expanding barriers:
boolean open-space;
boolean expanding;
int which_simple;

//selection of mates:
int temp-sexy = 0;
int possible-mates = 0;
int sexyone = 0;
int sexytwo = 0;
boolean mating = false;
into best = new int[2];
int[] second-best = new int[21;
int male;
int female;
int danger x, danger-y, dense x, dense-y;

/genetic reproduction:
int number-genes = 6;
into male-genes = new int[6];
int[] female-genes = new int[6];
into genes-one = new int[6];
into genes-two = new int[6];

//life-cycle:
int fillhere = 0;

/occupancy rules:
int regions = data.regions;
int width = data.gridwidth;
int height = data.grid-height;

/init method is similar to the main method in a java application

public void inito {
instance = this;
size = this.sizeo;
buffer = this.createlmage(size.width, size.height);
bufferGraphics = buffer.getGraphicso;

addMouseListener(this);
addMouseMotionListener(this);

/dataSpace data = new dataSpaceo;

/start with 10 blocks on their own:
for (int i=0; i<initial_blocks; i++) {

temp x = r.randomlnt(500)+50;
temp y = r.randomlnt(240)+30;
temp-size = r.randomlnt(40)+10;
temp-mob = r.randomlnt(6)+5;
temp-col = r.randomint(31);
temp-amp = r.randomInt(4)+2;

burp[i] = new evoOrganism(temp x, temp-y, temp-size, temp-mob, temp-col, temp-amp);
data.addOrg(burp[i]);
number-living += 1;

}
//System.out.printn("initialized" + number-living + "organisms");

}

public void paint(Graphics g) {

/draw background
this.setBackground(c4);
bufferGraphics.setColor(this.getBackgroundo);
bufferGraphics.fillRect(0, 0, size.width, size.height);

/draw grid
bufferGraphics.setColor(white);
for(int gX=0; gX<data.grid width; gX++) {

int wave = r.randomlnt(3);
int grid-x = data.grid-x[gX];
//bufferGraphics.fillRect(grid-x, 0, wave, 300);
bufferGraphics.drawLine(grid-x, 0, grid-x, 300);

}
for(int gY=0; gY<data.grid-height; gY++) {

int wave2 = r.randomlnt(3);
int grid-y = data.grid-y[gY];
//bufferGraphics.fillRect(0, grid-y, 600, wave2);
bufferGraphics.drawLine(0, grid-y, 600, grid-y);

}

/draw barriers
bufferGraphics.setColor(lime);
for (int j=0; j<number.simple; j++) {

bX = sim[j].getXo;
bY = sim[j].getYO;
bW = sim[j].getSizeo;

bufferGraphics.fillRect(bX, bY, bW, bW);
}
if(expanding) {

sim[which simple].increaseSize(;
//try { Thread.sleep(5); } catch (InterruptedException e) { ; }

/draw organisms
for (int i=0; i<numberjliving; i++) {

co = burp[i].getColor(;
bX = burp[i].getXo;
bY = burp[i].getYo;
bD = burp[i].getSizeo;
int drawsize = bD;
bA = burp[i].fixedAmpo;
bM = burp[i].getMobo;
bS = burp[i].getSexy(;
bL = burp[i].getLife(;

int jump = burp[i].getAmp(/2;

bufferGraphics.setColor(block);
bufferGraphics.fillRect(bX, bY, draw-size-1, draw-size-1);

bufferGraphics.setColor(band);
int band-height = drawsize/4;
//a band for all of it's characteristics:
bufferGraphics.fillRect(bX, bY, bA*10, bandheight);
bufferGraphics.fillRect(bX+bM, bY+band-height, drawsize-bM, band-height);
bufferGraphics.fillRect(bX, bY+(2*band-height), bS/bD, band-height);
bufferGraphics.fillRect(bX+co*2, bY+(3*band-height), draw size-co*2, band-height+1);

bufferGraphics.setColor(bound);
bufferGraphics.drawRect(bX-1*bD+jump, bY-3*bD+jump, 9*bD, 5*bD);

}

/draw info buffer:
bufferGraphics.setColor(white);
bufferGraphics.fillRect(0, 299, 600, 340);

bufferGraphics.setColor(lime);
bufferGraphics.fillRect(0, 290, special-clock/10, 4);
/put an overwraped bar of timeline here.

String living = new String("// " +String.valueOf(numberjliving) + " system organisms");
bufferGraphics.setColor(bound);
bufferGraphics.drawString(living, 10, 330);

String inputs = new String("// " +String.valueOf(number-simple) + user inputs");
//bufferGraphics.setColor(lime);
bufferGraphics.drawString(inputs, 10, 318);

g.drawlmage(buffer, 0, 0, this);
}

public void update(Graphics g) { paint(g); }

/method for runnable:
public void runo {

while(!please-stop) {

if (special-clock%i 0 == 0) {
this.moveSims(;
this.killSimso;

}

if (special-clock%50 == 0) {
this.calculateOccupantso;
this.gridResponseo;

}

if (special-clock%250 == 0)
this.selectMateso;
this.reproduceo;
this.selectKillsO;
this.kill();

}

special-clock++;
/change to 10(?) before posting to web

try { Thread.sleep(i2); } catch (InterruptedException e) { ; }
repainto;

animator = null;

public void calculateOccupantso {
int orgx;
int org-y;
int left;
int right;
int top;
int bottom;

//zero the number of occupants in each region:
data.zeroOccupantso;

/check each organism and assign to the dataSpace:
for (int i=0; i<numberjliving; i++) {

org-x = burp[i].getXo;
org-y = burp[i].getYo;
for (int w=0; w<(width-1); w++) {

left = data.grid-x[w];
right = data.grid-x[w+1];
/keep the on the edge vague - let organisms exploit it
if ((left < org-x) && (right > orgx)) {

for(int h=0; h<(height-1); h++) {
top = data.grid-y[h];
bottom = data.grid-y[h+1];
if ((top < org-y) && (bottom > org-y)) {

data.gridAdd(w, h, i);

}

}

public void gridResponseo {
int occ;
for(int i=0; i<(data.grid-width-1); i++) {

for(int j=0; j<(data.grid-height-1); j++) {
occ = data.occupants[i][j][0];

/region of 2 blocks
if (occ == 2) {

int last-in = data.grid-org[i][j][occ-1];

int mobile = burp[last in].getMob(;
int x move = (r.randomlnt(2000)%mobile)*2 - mobile/2;
int y-move = (r.randomlnt(2000)%mobile)*2 - mobile/2;

/makes a random move
burp[last in].move(x-move, y-move);

// gets a color change - more life ability
int color-change = r.randomlnt(2000)%4 -2;
burp[lastjin].changeColor(1);

}

/region of more
if (occ > 2) {

int lastin = data.grid-org[i][j][occ-1];

while(occ>3) {
burp[lastjin].getKilledo;
occ = data.occupants[i][][0] -= 1;

last-in = data.grid-org[i][j][occ-1];
}
/now last in should be 3:
int mobile = burp[last-in].getMob(;
int xmove = (r.randomInt(2000)%mobile)*4 - mobile/4;
int y-move = (r.randomInt(2000)%mobile)*4 - mobile/4;

burp[last-in].move(x-move, y-move);
}

}
}

}

public void killSimso {
if (number-simple == 1) {

if (sim[0].life < 1) number-simple = 0;
}
else for (int i=0; i<number-simple-1; i++) {

if (sim[i].life < 1) {
sim[i] = sim[i+1];
number-simple -= 1;

}
}

int lirle_x;
int line-y;
public void moveSimso {

for (int i=0; i<number-simple; i++) {
temp-x = sim[i].getX(;
temp-y = sim[i].getYo;

/check to see if the x-point lies on a gird line:
for (int j=0; j<width; j++) {

linex = data.grid-xj];
//hiting a verticle:
if (Math.abs(line x-temp-x) < 2) {

if(sim[i].left) data.gridxj] -= sim[i].getSizeo;
else data.grid-xj] += sim[i].getSizeo;
sim[i].left =! sim[i].left;

}
}

for (int k=0; k<height; k++) {
line-y = data.grid-y[k];
if (Math.abs(line-y-temp-y) < 2) {

if(sim[i].down) data.grid-y[k] += sim[i].getSizeo;
else data.gridy[k] -= sim[i].getSizeo;
//System.out.println("vert");
sim[i].down =! sim[i].down;

}
}

sim[i].moveo;
}

}

//tally sexiness and 2 most sexy that aren't stranded will mate:
public void selectMateso {

best[0] = 0; //highest sexy value
best[l] = 0; //corresponding org index
second-best[0] = 0;

second-best[0] = 0;
/possible mates = 0;

int danger x = data.simpleX(;
int danger-y = data.simpleYo;
int dense-x = data.averageX(;
int dense y = data.averageY(;

if(numberjliving>1) {
this.selectOneo;
this.selectTwoo;
male = best[1];
female = second-best[1];
mating = true;
/System.out.println("sexiest" + best[1] + "mating" + second-best[1]);

}

public void selectOneo {

/checking distance from danger
/including color as an attractive quality

for (int i=0; i<numberjliving; i++) {
tempsexy = 60;
tempx = burp[i].getXo;
if (number-simple != 1) {

temp-sexy = Math.abs(temp-x - danger-x);
temp-sexy += Math.abs(temp-y - danger-y);

}
temp-sexy -= (burp[i].getSizeo);
temp-sexy += (burp[i].getColoro);
burp[i].setSexy(temp-sexy);
//System.out.printin("org" + i + "barrier/size" + temp-sexy);

}

//selecting the most fit:
for (int j=0; j<numberjliving-1; j++) {

int sexy-current = burp[j].getSexyo;
if (sexy-current > best[0]) {

best[0] = sexy-current;
best[1] = j;
burp[j].selected = true;

}
}

}

public void selectTwoo {

f/checking distance from others
//including Age as an attractive quality
for (int i=0; i<numberjliving; i++) {

tempx = burp[i].getXo;
temp-sexy = Math.abs(temp-x - dense-x);
temp-sexy -= Math.abs(temp-y - dense-y);
temp-sexy += (burp[i].getAgeo);
burp[i].setSexy(temp-sexy);
//System.out.println("org" + i + "diversity/color"+ temp-sexy);

//selecting the most fit:
//ignore the already seleceted
for (int j=0; j<numberjliving-1; j++) {

if (!burpUj].selected) {
int sexy-current = burpj].getSexyo;
if (sexy current > second-best[0]) {

second-best[0] = sexy-current;
second-best[1] = j;

}
}

}

public void reproduceo
if(mating) {

int crosspoint = r.randomInt(2000)%6;
int onemutation = r.randomlnt(2000)%6;
int twomutation = r.randomInt(2000)%6;

male-genes[O] = burp[male].getXo;
male genes[1] = burp[male].getYo;
male-genes[2] = burp[male].getSizeo;
male-genes[3] = burp[male].getMobo;
male-genes[4] = burp[male].getColoro;
male-genes[5] = burp[male].getAmpo;

female-genes[O] = burp[female].getXo;
female-genes[1] = burp[female].getYo;
female-genes[2] = burp[female].getSizeo;
female-genes[3] = burp[female].getMobo;
female-genes[4] = burp[female].getColoro;
female-genes[5] = burp[female].getAmpo;

//crossover
for (int i=0; kcrosspoint; i++) {

genes one[i] = male-genes[i];
genesjtwo[i] = female-genes[i];

}
for (int j=crosspoint; j<6; j++) {

genes-oneU] = female-genesj];
genesitwoUj] = male-genesj];

}

//mutation

genes one[one-mutation] += (r.randomlnt(2000)%12 - 5);
//System.out.printin("mutating gene" + one-mutation);
genes-two[two-mutation] += (r.randomlnt(2000)%12 - 5);

burp[numberjliving] = new evoOrganism(genes-one[0], genesone[l], genes-one[2], genes-one[3],
genes-one[4], genes-one[5]);

data.addOrg(burp[number-living]);
number-living += 1;
burp[number living] = new evoOrganism(genesjtwo[0], genesjtwo[1], genes-two[2], genesjtwo[3],

genes-two[4], genes_two[5]);
data.addOrg(burp[number-living]);
number-living += 1;

mating = false;

}
}

public void selectKillsO {
// give everyone a year of age, and calculate their life ability
for (int i=0; i<numberjliving; i++) {

burp[i].addAge(;
burp[i].tallyLifeo;

}

public void kill() {
//System.out.println("alive" + number-living);
fillhere = 0;
for(int i=0; i<(number-living); i++) {

if(burp[i].getAlive() {
burp[fill-here] = burp[i];
fillhere += 1;

}
}
number-living = fill-here;
//System.out.println("alive" + number-living);

}

public void start()
if (animator == null) {

please-stop = false;
animator = new Thread(this);
animator.starto;

}
}

public void stop() { please-stop = true; }

/ will he notice this - yes

//methods for mouse press, clicked, entered, exited -- MouseListener
public void mousePressed(MouseEvent event) {

open-space = true;
temp-x = event.getXo;
temp-y = event.getYO;
if (number-simple == 0) {

tempsize = 8;
temp x = tempx - tempwidth/2;
temp-y = temp-y - tempwidth/2;

sim[number-simple] = new simpleOrg(tempx, temp-y, temp-size);
data.addSim(sim[number-simple]);
number-simple += 1;
open-space = false;

}
/check to see if you are already on a void space - make new or expand existing.
else {

for (int i=0; i<number simple; i++) {
int block-x = sim[i].getXo;
int block-y = sim[i].getYo;
int size = sim[i].getSizeo;

if(temp-x>blockx && temp x<(block x+size)) {
if(temp-y>block-y && temp-y<(block-y+size)) {

//bar[i].increaseSizeo;
whichsimple = i;
expanding = true;
//try { Thread.sleep(5); } catch (InterruptedException e) { ; }
open-space = false;

}
}

}

}
if(open-space) {

tempsize = 8;
temp-x = temp-x - temp size/2;
temp-y = temp-y - temp-size/2;

sim[number-simple] = new simpleOrg(tempx, temp-y, temp-size);
data.addSim(sim[number-simple]);
number-simple += 1;

}
}

public void mouseReleased(MouseEvent event) {
expanding = false;

public void mouseCicked(MouseEvent event)
public void mouseEntered(MouseEvent event) {}
public void mouseExited(MouseEvent event) {}

/methods for mouse moved, dragged -- MouseMotionListener
public void mouseMoved(MouseEvent event) {}
public void mouseDragged(MouseEvent event) {

/fif(moving)->do something
}

}

evoOrganism:

characteristics: position, size, age, color, mobility, distance from danger, proximity to food

*/

import java.awt.*;
/import java.lang.Math.*;
//import java.util. Date;
import Randomizer;
import dataSpace;

public class evoOrganism {

/genetic code: private values
int x_val;
int y_val;
int size;
int mobility;
int color_val;
int amplitude;

I/life ability fields:
int lifeability;
int sexy;
boolean alive;
int age;
int distancebad;
int distancegood;
public int diversitybonus = 0;
int initiallife = 20;

//graphic characteristics:
public boolean anchored;
public int anchor-clock;
boolean vibrate;
public boolean stranded;
public boolean selected;

Randomizer r = new Randomizer(2);
/public netPoint netpt;

/object should be initialized with all 6 elements of it's genetic code:
public evoOrganism(int x, int y, int delta, int mobile, int col, int amp) {

/genetic code - cannot be altered except in reproduction/mutation sequence.
x-val = x;
yval = y;
size = delta;
mobility = mobile;
color val = col;

/keep color in range!
if(color-val > 31) color-val = 31;
amplitude = amp;

/state characteristics
alive = true;
anchored = false;
vibrate = true;
stranded = false;
age = 0;

/determining factors in
life-ability = initiallife;
sexy = 0;

}

public int getXO { return xval;}
public vit getY({ return yval; }
public void setX(int x) {xval = x;}
public void setY(int y) {yyval = y;}
public void move(int x, int y) {

x_val += x;
y_val += y;

public int getAmp() {return r.randomlnt(amplitude);)
public int fixedAmpo {return amplitude;)
public void setAmp(int amp) {amplitude = amp;}

public int getSizeO {return size;)
public void setSize(int d) {

int delta-size = d - size;
x_val -= deltasize;
y_val -= deltasize;
size = d;

public void increaseSize(int d) {
x-val -= d/2;
y val -= d/2;
size += d;

public int getColor() {return color-val;}
public void setColor(int c) {

color val = c;
if(color val>31) color-val = 31;

}
public void changeColor(int a) {

color val += a;
if(color val>31) color-val = 31;
if(color val<O) color val = 0;

}

public int getMob() (return mobility;)
public void setMob(int m) (mobility = m;

public void addAgeo {age += 1;}
public int getAgeo {return age;)

public void expand(int how-much) {
if(!anchored) {

for(int i=0; i<howmuch; i++) {
this.increaseSize(1);

)}

public int getSexyO {return sexy;)
public void setSexy(int s) {sexy = s;)

public void tallyLifeO {

int reaper = r.randomInt(2000)%1 5;

life-ability = initial life;
life-ability -= age/3;
/color will also play a role in action/response
life-ability += 5-color-val/8;
if(stranded) life ability -= 1;
if(size>50) lifeability -= 1;
if(amplitude>1 2) lifeability -= 1;
if(mobility<12) life _ability -= 1;

if(reaper>life-ability) alive = false;

if (x val > 500) alive = false;
if (x-val < -10) alive = false;
if (y-val > 300) alive false;
if (yval < -10) alive = false;

}

public void getKilledo (alive = false;}

public boolean getAliveo {return alive;)
public int getLife() {return life-ability;}

}

84

evoBarrier.java:

characteristics: position, size, severity

import java.awt.*;
import Randomizer;
import java.util.Date;

public class simpleOrg {

//state: private values
int x_val;
int yval;
int delta;

I/life span:
public int life;

/movement cues:
public int craze;
public boolean left;
public boolean down;

Date time = new Dateo;
long seed = time.getTimeo;
Randomizer r = new Randomizer(seed);

/object should be initialized with all position and size
public simpleOrg(int x, int y, int d) {

x_val = x;
y-val = y;
delta = d;

craze = r.randomInt(99)%3+1;
life = 30*craze;

//state characteristics
int mover = r.randomlnt(99)%2;
if (mover == 1) left = true;
else left = false;
mover = r.randomInt(99)%2;
if (mover == 1) down = true;
else down = false;

}

public int getXO { return x-val;}
public int getYO { return y-val; }
public int getSizeO {return delta; }

public void increaseSizeO {
x_val -= 1; //d/2;
y_val -= 1; //d/2;
delta += 2;

}

public void move() {

if (left) x-val -= craze;
else x val += craze;
if (down) y val += craze;
else y val -= craze;

life -= 1;
}

public void expand(int how-much) {
for(int i=0; i<howmuch; i++) {

this.increaseSizeo;
evo6.instance.repainto;

}
}

}

dataSpace.java
tracking positions and densities of the world

import java.awt.*;
import evoOrganism;
import simpleOrg;

public class dataSpace {

public static dataSpace datainstance;

int numbe'rorgs;
int numbersim;
intx ave;
int yave;
int simple_x;
int simple-y;

int org-xvals[] = new int [1000];
int org-yvals[] = new int [1000];
int simxvals[] = new int[1 000];
int sim yvals[] = new int[1 000];

public static int gridwidth = 7;
public static int grid-height = 4;

public int regions = (grid-width-1)*(grid-height-1);
/public int[] occupants = new int[regions];
/public int[][occupants = new int[(grid-width-1)][(grid-height-1)];

public int grid-x[= new int[grid-width];
public int gridy[] = new int[grid-height];

/oversized for convenience:
public int occupants[][]] = new int [grid-width][grid-height][1];
public int grid-org[][][] = new int [grid-width][grid-height][60];

public dataSpaceo {
number orgs = 0;
number sim = 0;
x_ave = 0;
y_ave = 0;
simplex = 0;
simple y = 0;
for (int i=0; i<grid-width; i++) {

//System.out.println("here");
grid-x[i] = 100*(i)-1;

}
for (int j=0; j<grid-height; j++) {

grid-yj] = 100*(j)-1;
}
for (int k=0; k<grid-width; k++) {

occupants[k][0][0] = 0;
occupants[k][1][0] = 0;
occupants[k][2][0] = 0;

}
}

public void zeroOccupants() {

for (int k=O; k<gridwidth; k++) {
occupants[k][0][0] = 0;
occupants[k][1][0] = 0;
occupants[k][2][0] = 0;

}
}

//to move a block: add it to new grid, and then subtract one from old grid.
public void gridAdd(int width, int height, int which-one) {

int placement = occupants[width][height][0];
occupants[width][height][0] += 1;
grid-org[width][height][placement] = which one;

}

public void gridSub(int width, int height) {
/the last one in must get the fuck out first;
/other functions can't get at it once we shift the index.
occupants[width][height][0] -= 1;
//most likely have to do a major shift ...

}

public void addOrg(evoOrganism org) {
org-xvals[number-orgs] = org.getXO;
org-yvals[number-orgs] = org.getYO;
number orgs ++;
x ave = ((number-orgs-1)*x-ave + org.getXo)/number-orgs;
y ave = ((number-orgs-1)*y.ave + org.getYo)/number-orgs;
//System.out.println("averageX =" + x-ave +", averageY =" + y-ave);

}

//this needs to be double checked!
public void removeOrg(int org-number) {

for (int i=orgnumber; i<number-orgs-1; i++) {
orgxvals[i] = orgxvals[i+1];
org-yvals[i] = org-yvals[i+1];
//System.out.println("shift");

}
number orgs -= 1;
x_ave = 0;
y_ave = 0;
for (int j=1; j<number-orgs; j++) {

x_ave = ((-1)*xave + org-xvalsj]) / j;
y-ave = (0-1)*y-ave + org-yvalsbj]) / j;

}
//System.out.println("averageX =" + x ave +", averageY =" + y-ave);

}

public int averageX() { return x-ave; }
public int averageY() { return y ave; }

public void addSim(simpleOrg sim) {
sim-xvals[number-sim] = sim.getXo;
sim-yvals[number-sim] = sim.getYO;
number sim ++;
simple-x = ((number-sim-1)*simple x + sim.getXo)/number-sim;
simple.y = ((number sim-1)*simple-y + sim.getXo)/number sim;
//System.out.printin("simple-averageX ="+ simple x +", averageY =" + simple-y);

}

public int simpleX() {return simple-x;}
public int simpleY() {return simpley;}

public void removeSim(int sim-number) {
for (int i=sim-number; <number-sim-1; i++) {

sim-xvals[i] = sim-xvals[i+1];
sim-yvals[i] = sim-yvals[i+1];
//System.out.println("shift");

}
numbersim -= 1;
simplex = 0;
simple-y = 0;
for (int j=1; j<number-sim; j++) {

simple-x = ((j-1)*x-ave + orgxvalsj]) / j;
simple-y = ((j-1)*y-ave + org-yvals[j]) / j;

}
//System.out.println("simpleX =" + simplex +", simpleY ="+ simpley);

}
}

90

91

