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Abstract

Lattice gauge theory is a valuable tool for understanding how properties of the nu-
cleon arise from the fundamental interactions of QCD. Numerical computations on
the lattice can be used not only for first principles calculations of experimentally ac-
cessible quantities, but also for calculations of quantities that are not (yet) known
from experiment.

This thesis presents two lattice studies of the quark substructure of nucleons. The
first study used overlaps calculated on the lattice to evaluate the goodness of trial
nucleon sources. A variational study was performed to find the trial source that best
approximated the true nucleon ground state. In this exploratory work with relatively
simple trial sources on quenched lattices, we obtained overlaps as high as 80%.

The second study was performed using domain wall valence fermions on Asqtad
improved staggered lattices provided by the MILC collaboration, with pion masses
as low as 290 MeV. We compute nucleon matrix elements of local quark operators:
(F', S'l@P(0) F{Il Dt1 2 ... i D 0 (0)|P, S), where F" E {y", -y"-y, -io*}. These op-
erators are parameterized by generalized form factors, which in the infinite momen-
tum frame can be unambiguously interpreted in terms of Fourier transforms of the
transverse spatial distributions of quarks in a nucleon. By calculating the local op-
erators at many different values of nucleon momentum, we extract a complete set of
generalized form factors for the lowest two moments of the vector, axial and tensor
operators. From the form factors, we compute a variety of quantities characterizing
the internal structure of the nucleon. Finally, we explore chiral extrapolations of the
lattice results to the physical pion mass.

Thesis Supervisor: John W. Negele
Title: William A. Coolidge Professor of Physics
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Chapter 1

Introduction

Protons and neutrons were once thought to be elementary particles. We now know,

however, that they are in fact composite particles, with a rich internal structure.

Experiments such as deep inelastic scattering have revealed many features of pro-

ton structure (for example, the distribution of the light-cone momentum of the con-

stituents). Meanwhile, there has been great progress in understanding the funda-

mental interactions that govern the quarks and gluons that make up protons and

neutrons. The goal of this work is to better understand how these fundamental in-

teractions give rise to nucleons, and to calculate experimentally observed properties

of nucleons from first principles.

The Lagrangian governing these interactions is extremely simple, but the resulting

systems can be quite complex. Fortunately, there are some approximations we can

make to simplify matters. The first approximation we make is to ignore the elec-

tromagnetic interaction. Although the quarks within the proton do carry an electric

charge, it is the strong "color force" which dominates their interactions. Therefore,

we will restrict our attention in this study to quantum chromodynamics (Eq. 2.2).

Furthermore, we will ignore the mass difference between the up and down quarks.

Since most of the mass of the proton comes from its binding energy, this is a reason-

able approximation to make. Under these two approximations, neutrons and protons

behave identically (isospin SU(2) becomes an exact symmetry), and so we typically

refer only to a generic "nucleon."



Calculations in QCD are difficult. At present, the only way to obtain quantitative

results for QCD at low energies is to numerically compute the theory on a discrete

spacetime lattice. In recent years, the combination of developments in lattice field

theory, algorithms and computer hardware have reached the point that calculations

from lattice QCD are becoming comparable to experimental results. For example,

the statistical errors in our lattice calculations of AE(,+d) are in some cases smaller

than the errors on the experimental number (see Chapter 6). Numerical calculations

which reproduce experimental values are an important test of the validity of lattice

QCD, but they do not necessarily provide much insight into how a particular value

arises. So, we would like to use lattice calculations not only to reproduce experimental

numbers, but also as a "tool" to explore the quark and gluon structure of the nucleon.

This thesis is organized as follows. In Chapter 2, we will briefly review some funda-

mental aspects of lattice gauge theory, with particular focus on quantities calculated

in this work. Chapter 3 presents the results of an exploratory variational calculation

using lattice QCD (this chapter is fairly self-contained and can be considered apart

from the rest of the thesis). Chapter 4 contains an introduction to generalized parton

distributions and related topics, and provides the background for the work presented

in the rest of the thesis. Chapters 5 and 6 present results and analysis for an extensive

set of lattice calculations of nucleon generalized form factors, and the final chapter

summarizes our findings.



Chapter 2

Nucleon Structure and Lattice

QCD

The nucleon is essentially a collection of quarks and gluons held together by the strong

force. A theoretical study of nucleon structure must therefore begin with QCD, the

quantum theory of the strong interactions. Our goal, then, is to understand the

properties of multi-quark systems, and how they arise from the QCD Lagrangian.

In a meaningful physical theory, one must have a way of calculating numbers

which correspond to physically observable quantities. As we will demonstrate, many

quantities of interest can be expressed in terms of n-point correlation functions' of

quark fields in Euclidean space-time. So, our first task is to calculate quark correlation

functions using lattice QCD.

2.1 The Path Integral Formalism

Path integrals provide a nonperturbative way to calculate correlation functions in

any theory defined by a Lagrangian. This is particularly useful when dealing with

QCD, for which perturbative expansions in the coupling constant are inapplicable

at low energies. In the path integral formalism, a quark correlation function can be

'A correlation function can be thought of as the amplitude for some set of particles to propagate
from initial spacetime points {xi} to final points {rxf}.



written[5] :2

(|T (x1) ... (xn) O(xn+1) ... -(X2n) I)
f DO DO D U e-sle,ep 4,(x1 ) ... O(X) O(Xn±) ... (2.1)

f DO DV D U e-sleb,Up

where 4, 4 are fermion (quark) fields, and U represents the gauge (gluon) field. Quan-

tities with hats ($, @) represent creation and annihilation operators acting on the

vacuum state |Q), and T denotes time-ordering. The field variables are functionally

integrated over all field configurations consistent with the (implicit) boundary con-

ditions at spacetime points X1, ... x 2n. The action is given by the integral of the

Lagrangian:

S[0, , U] Jd4x L

which in this case is simply the QCD Lagrangian:

1
LQCD = ,+ (P + m)@. (2.2)

The covariant derivative is defined as D, = p- igA,, where in terms of the generators

of SU(3) the gauge field is: A. = A Ta. The field strength tensor is: G = DA" -

DVA. Equations 2.1 and 2.2 completely specify the quark correlation function.

2.2 QCD on the Lattice

The functional integral in Eq. 2.1 is formally very elegant, but actually using it in

a calculation is not necessarily simple. In practice, we discretize the theory-write

down the QCD Lagrangian for a discrete, four-dimensional Euclidean lattice-and

evaluate the path integral numerically.

2Here I write the path integral directly in Euclidean space. For a more general treatment, see [6].



2.2.1 Path Integrals on the Lattice

Here we give a very brief outline of the evaluation of the path integral. Details can

be found in [5, 7].

The Lagrangian in Eq. 2.2 can be separated into a quark term and a pure gauge

term. These two pieces can be considered (almost) independently in the path integral.

Let us write the action as S = SG + Sq, where SG depends only on the gluon field, and

where Sq can depend on both the quark and gluon fields. On a discrete spacetime

lattice we have:

Sq = OmMmnVn, (2.3)

where the indices m, n represent lattice site, as well as dirac and color indices (M is

typically a very large matrix!). The integral over fermion field configurations can be

performed analytically, giving:

D DO e-Sq = detM (2.4)

De -sqm On = det M [M- 1]mn (2.5)

D_ D$b e-Sq-sm nt = det M ( [ M ].n [ M-1]1k

- [M- ]1 n [M ink) (2.6)

etc.

Note that any arbitrary n-point correlation function of quark fields can be expressed

as a series of products of quark two-point functions, or propagators, M- 1. Including

the integral over gauge field configurations (recall that M depends on the gauge field),

we obtain path integrals of the form f DU e-SG det M F(U), where F is some function



that may depend on the gauge field. We can write the integral as a discrete sum:

(F) = Z-1  e-SG det M F(U) Z [ Wu F(U), (2.7)
u U

where Z Eu e-SG det M, and where the sum runs over all configurations of the

gauge field U. In practice, we perform the sum numerically, using Monte Carlo

techniques to sample the space of all gauge configurations. An essential part of a

program of lattice calculations is thus the generation of an ensemble of sample gauge

configurations. It is natural to absorb the factor Wu - Z 1 (e-SG det M) into the

definition of the ensemble as a "weighting factor." Then instead of Eq. 2.7 we have:

(F)= F(U), (2.8)
UE{Uw}

where N is the number of configurations in the ensemble {Uw }, and where the prob-

ability of finding configuration U in the ensemble is proportional to Wu. The path

integral has now been reduced to a simple average (of whatever quark correlation

function we are interested in, calculated on each individual configuration) over an

ensemble of gauge configurations.

Generating the ensembles of gauge field configurations is one of the most com-

putationally expensive parts of a lattice calculation, and evaluating the determinant

of M is one of the most demanding parts of ensemble generation. For this reason,

it has been common3 to set det M = 1, effectively ignoring the fermion "sea." Such

lattices are called quenched lattices. Chapter 3 of this thesis presents a calculation

using quenched lattices.

Once an ensemble of configurations is available, calculating the quark propaga-

tor M-1 on each configuration is usually4 the most computationally intensive task

remaining. In fact, it is generally impractical to calculate the entire inverse of the

matrix M, and only the product [M-'] -S is calculated, for a particular quark source

3In times past. The steady rise of computational power and efficiency has made these quenched
calculations all but obsolete.

4But not always [8].



field S.

2.2.2 Aspects of Lattice Gauge Theory

In the discussion so far, we have not needed to know any details about the discrete

lattice action (SG and Sq), nor have we considered any of the potential issues arising

from the process of discretization. While a complete description of the discretized

theory is beyond the scope of this thesis, it is appropriate here to review some practical

aspects of lattice QCD.

Lattice action

The first step in putting QCD on a lattice is to discretize the Lagrangian (Eq. 2.2).

There is clearly more than one right way to do this-any expression with the correct

continuum limit could in principle be used. But there are some pitfalls to avoid. A

naive discretization of the fermion action results in the infamous fermion doubling

problem. The fermion doublers can be avoided by Wilson's projection operator tech-

nique [5], but this introduces a term that breaks chiral symmetry at any finite lattice

spacing. To preserve chiral symmetry at finite lattice spacing, we resort to more

expensive actions, such as the five-dimensional domain wall fermion action [9, 10].

The choice of lattice action is a non-trivial matter. We will not pursue the subject

further, however, but refer the reader to the works cited in the text.

Systematics

Any actual calculation must be performed in a finite volume with non-zero lattice

spacing. Each of these approximations introduces systematic effects, which must be

controlled. Ideally, one would repeat a lattice calculation at several different lattice

spacings, as well as at several different lattice volumes, and extrapolate the results to

the continuum limit. Realistically, finite computing resources constrain the available

number of lattices. The calculations presented in Chapter 5 were performed at two

different lattice volumes; however, only one lattice spacing was available.



In QCD, the (bare) quark masses enter as input parameters. To accurately sim-

ulate the world we live in, we of course ought to perform our calculations using the

correct values for the quark masses. However, the computational cost of lattice calcu-

lations increases dramatically with decreasing quark mass, and only in recent months

has it become possible for some groups [11] to perform calculations near the physical

pion5 mass. In most cases, it is necessary to do calculations at heavy pion masses,

and perform an extrapolation to the physical point. This topic will be explored in

more detail in Chapter 6.

2.2.3 Nucleon Two-Point Function

We want to use lattice QCD to study the nucleon, so an important object to calculate

is the nucleon two-point correlation function. Since a nucleon is composed of three

valence quarks (along with an unknown number of sea quark-antiquark pairs), this

is equivalent to calculating a six-point quark correlation function. A proton can be

written in terms of quark operators acting on the vacuum: 6

jNa(x)) -Na(x)|Q ) = ftbp edcbt Uj(x) U'(x) D6(x)|I), (2.9)

where U, D represent quark creation operators for u and d flavor quarks, respectively.

The factor f6yga depends on the particular nucleon source chosen[12], but it is im-

portant that the chosen operator N have the quantum numbers of a nucleon (see

Chapter 3 for more detailed discussion of the sources used in this thesis). The proton

two-point function is then:

(N&,(x') | Na(x) ) = fr -,y& 6, oc, b'c'd' "dcb

x1 (U ,~,(' (x') j, (x') Sj (x) $ (x) f' (x)|I ). (2.10)

5 Since it is extremely cumbersome to calculate quark masses on the lattice and the phenomeno-
logical values are not precisely known, rather than tuning bare quark masses in lattice field theory to
reproduce a suitably defined quark mass, it is preferable to tune them to reproduce the pion mass.

6Note that INa(x)) is not a pure proton state. It is rather our best approximation of a proton,
and generally has significant contamination from other (higher energy) states. See Chapters 3 and
6.



It is straightforward to write this in terms of quark propagators after the pattern of

Eqs. 2.4 - 2.6 (in practice, one just applies Wick's theorem-see Fig. 2-1).

d d d d

U U U

U U

Figure 2-1: Schematic diagrams of the quark propagator contractions that contribute

to the nucleon two-point function.

2.2.4 Nucleon Three-Point Function

Another thing we will want to do is calculate matrix elements of quark operators

between nucleon states (after working so hard to construct a nucleon on the lattice,

we want to be able to look inside and see what the quarks are doing). This is usually

(misleadingly) referred to as a "nucleon three-point function"; in fact it is more

properly thought of as a quark eight-point function.' Graphically, some contributions

to the three point functions of interest in this work are represented in Fig. 2-2. The

inserted operators take the form:

O (n) Y) = - a Y +--+ n- ~

Or V) $() a D #1---D 4-@jy,(2.11)

where F is some 4 x 4 dirac matrix, and D / represents a symmetric covariant lattice

derivative: D = 1/2(D - D). The fermion operator V@, represents either U or D.

Written completely in terms of quark operators, the nucleon three-point function is

7Through force of history and habit, we will continue to refer to such objects as "three-point
functions."

8 Don't confuse this D with the quark operator D.



thus:

(Nc&(XI ',() Ia N(X) far3'y'3' I bcd'Ee

x (Q j D,'(x') Uf(x') Uj,(x') @'"(y) 1\p D .-- DI"nl @,"(y) Uj(x) Uf (x) Dj (x) |).

(2.12)

where the nucleon states are given by Eq. 2.9. If we wish (and we typically do), we

can project the inserted operator onto a definite momentum. For a more thorough

discussion of the calculation of lattice three-point functions, see [12].

One of the possible contractions of the quark operators in Eq. 2.12 is of ' with

4'. This corresponds to the product of a nucleon two-point function with a quark

loop (with the operator insertion in the quark loop), and is represented graphically

by the right-hand side of Fig. 2-2. Such contributions are known as "disconnected

diagrams."9 To calculate the disconnected quark loop, one would need the quark

propagator from every lattice site to every lattice site-that is, one would need the

full inverse matrix M- 1. (This is somewhat of an oversimplification: see [13].) For

this reason, it is common to ignore the disconnected contributions, which are expected

to be small (but not, in general, negligible: [14, 15]). In such cases, special emphasis

is placed on the quark flavor combination u - d (the isovector combination), for which

the disconnected piece cancels out (since the disconnected contributions for operator

insertions on the u quarks and d quarks are identical).

The calculations performed in this thesis do not include contributions from dis-

connected diagrams.

9 0f course, the pieces of the diagram are actually connected by gluon lines, which are not drawn
in Fig. 2-2.



0

Figure 2-2: Schematic diagrams of some quark propagator contractions that con-
tribute to the nucleon three-point function. The operator insertion is represented by
0.
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Chapter 3

A Variational Study of the Nucleon

As we said in the introduction, we would like to use lattice calculations as a tool to

explore the quark and gluon structure of the nucleon. One such tool is the calculation

of overlaps. For a given trial nucleon state |Ntriai), it is a straightforward matter (Sec-

tion 3.1) to calculate the normalized quantum mechanical overlap with the "actual"

nucleon state |NQCD). The overlap I (NQCD INtrial) 12 is a direct measure of how closely

the trial state approximates the actual nucleon. By systematically varying the trial

state, we can obtain insight into key features of the nucleon wavefunction.

The only practical way to calculate nucleon correlation functions on a lattice is

to express them in terms of valence quark correlation functions (Section 3.2), so our

trial states can be varied by choosing the position and spatial extent of each quark

source. We also explore the smoothing of gluon fluctuations achieved by smearing

the gauge links included in the quark source, and the inclusion of only upper or of

both upper and lower spinor components (in the dirac basis).

Given recent resurgence of interest[16, 17, 18] in diquarks [19], it is of interest to

look for evidence of diquark substructure variationally. We could, in principle, study

two possible diquark configurations in a nucleon[20, 21]: the scalar channel (u Cy 5 d),

and the vector channel (u C-, d). However, at the one gluon exchange level, quarks

in the scalar configuration have lower energy than quarks in the vector configuration

[17], which are thus called "good" and "bad" diquarks respectively, and we will focus

our attention only on the good diquarks and consider sources of the form (U CY d) u.



Furthermore, in the limit where two quarks are bound into a point-like diquark, one

could also develop a "dog bone" model of baryons with a diquark and quark connected

by a flux tube.1 This model is phenomenologically successful [18, 19]. We can explore

this picture in our trial function by allowing for a diquark to have a different degree

of spatial localization and to be separated from the remaining quark.

3.1 Variational Method

In this study, a simple variational approach was used to study the ground state of

the nucleon. For a trial source operator N(x), the overlap with the ground state is

calculated from a fit to the nucleon two-point correlation function [22]. Starting with

the correlation function in position space:

CN(x, t) = (N(x, t) IN(O, 0))

where IN(0, 0)) N (0, 0)1Q), we project onto zero momentum 2 and insert a complete

set of states in the usual way to obtain:

CN(t) ZCN(Xt) - ZeEntI(N(0,0)In)| 2  ( AN,neEnt.
x n n

The energies En and coefficients AN,n are extracted by fitting C(t) with a sum of

exponentials, which at sufficiently large t (in practice, t > 1 is generally big enough)

can be truncated at two exponentials. The normalized overlap of our trial source with

the nucleon ground state is then given by:

I(N(0)|0)12  AN,O

n I(N(0)In)| 2  CN (0) - NO (3.1)

Figure 3-1 shows some typical nucleon two-point functions with fits.

The overlap AN,O is a measure of how closely the initial state (created by trial

'This simple baryon model is analogous to the simple picture of a meson comprised of an antiquark
and quark connected by a flux tube, which leads naturally to Regge trajectories.

2 on the lattice, this simply means summing over all lattice sites on each timeslice



source N) approximates the true nucleon ground state. By calculating the overlap

for many different trial sources, we can determine which is the "best" nucleon source.

This is interesting for both computational and physical reasons.

Computationally, it is desirable to find an optimal nucleon source for use in other

lattice calculations (e.g. calculating generalized form factors). Although it is true

that regardless of our initial state, it will eventually (if we "wait" long enough in

imaginary time) become dominated by the ground state, there are practical limits on

the quality of data at large source-sink separations. Especially for gauge configura-

tions at light quark masses, signal-to-noise ratios decrease dramatically as the time

separation increases. By starting with an optimized nucleon source, one can perform

lattice calculations closer to the source, and thus obtain less noisy data than would

otherwise be obtained with the same computing resources.

Physically, a variational study can provide insight into the nucleon wavefunction.

In the following, we emphasize this aspect of the study.

Note that this variational study with individual trial sources differs from the varia-

tional approach used extensively in spectroscopy[23], which considers a superposition

of distinct sources with arbitrary coefficients and determines the optimal coefficients

by minimizing the energy, rather than maximizing the overlap.

3.2 The Nucleon Two-Point Function

Let us briefly review how the two-point correlation function for the nucleon is con-

structed. A nucleon is created by the source operator N,(xi) and annihilated by the

sink operator SN&(xf). 3 Following the notation of [12], we can write a general nucleon

operator in terms of quark operators as:

Na(x) = fa3 c ' U,(x) U Y (x) D6 (x) (3.2)

3In this section, operators will be consistently denoted with "hats" (e.g. 0) to distinguish them
from the corresponding classical fields.



The nucleon two-point function on a single gauge field configuration U is then:

CNuW = aa' (QIN'(X) Na(0) 1Q)u

Taal fa'/,'s' ,,3 6bc'd' 6 dcb x

(Q Ifbf,'(x (x (x) Uj(0 Uc (0) D6()|~ (3.3)

where we take the spin projection matrix T,, = &o3oa&o in the dirac basis. Using

Wick's theorem, the quark six-point function in Eq. (3.3) can be written in terms of

quark propagators:

S"a (X;- 0)u U (Q| I a(X)q b(0)|1 ) U. (3.4)

On the lattice, quark propagators are calculated using the path integral method [5]

to evaluate correlation functions of quark fields.

3.2.1 Quark Propagators at t=O

We emphasize that Eqs. (3.3) and (3.4) are written in terms of quark operators. To

evaluate the quark propagators using (for example) path integrals, we need an un-

ambiguous way of associating operator expressions with the corresponding classical

quark field expressions. 4 In general, a time-ordered correlation function of classical

field variables (calculated using the path integral formulation) is equal to the corre-

sponding operator correlation function, when the equal-time operators are normal-

ordered using an appropriate prescription:

(T{}) - (T{N[0]}) (3.5)

where 0 is a function of the quark fields (q, q), and similarly for the corresponding op-

erators. Equation (3.5) can be thought of as defining the equal-time normal-ordering

prescription N. It has been shown [24] that for the Wilson action, the correct normal-

4The potential for ambiguity arises because of the differing anticommutation relations for op-
erators and the corresponding classical fields. The fermionic field variables in the path integral
anticommute: {0, } = 0. On the other hand, for the field creation and annihilation operators we

have {4"a, Vb} c 6ab.



ordering prescription in a basis where yo = diag(1, 1, -1, -1) is:

N[qa]= q

I-43a
if a, 0 = 1, 2

if a, # = 3, 4
(3.6)

Furthermore, the quark operators obey the (non-canonical) anticommutation relation

[24] :

{a(x), q -(y)} = [B~]l 7 (3.7)

where

BCO(x y) =- ( 6aS(X, y) - K (E~ abU 6 - y- +a6%-y +

j=1
(3.8)

We emphasize again that the preceding discussion applies specifically for the Wilson

fermion action.

Equation (3.4) is the quark propagator needed in the calculation of the nucleon

two-point function. Rewriting it so that the operators are normal-ordered according

to (3.6), we find:

(q (x) q4b(0)) (N[4a (X) q-(0)] ) - 6to 2
(3.9)

Note that (N[(x) $(0)] ) = (qg(x) q' (0) ) is the naive quark propagator typically

calculated on the lattice. Equation (3.9) makes it clear that the naive propagator is

incorrect at t = 0. To obtain the correct propagator, it is necessary to include the

B- 1 term. In practice, inclusion of this term made a difference of about 2% in our

calculated values of CN(t 0).

3.3 Calculation

We performed our exploratory calculation on 163 x 32 quenched Wilson lattices with

# = 6.0 and r, = 0.1530 (a ~ 0.09 fm, m, ~ 900 MeV) for ensemble sizes of 100 - 200

[B-]gg 0 ).
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Figure 3-1: Log plots of some typical two-
point correlation functions fit with the sum
of two exponentials (blue lines are extrap-
olated ground state terms). Top curve
shows a source with a large ground state
overlap.

Figure 3-2: RMS radius of quark source
field vs. number of smearing steps. Blue
circles are with no link smearing; red
squares are with APE-smeared links.

configurations. The trial sources were of the form

No,= (U [C -y5]fky D-1) UC, (3.10)

where C = iy2O is the charge conjugation matrix.

We varied the number of gauge-invariant smearing steps for the quark sources,

controlling their RMS radius [22], the number of dirac spinor components (four, or

two in the non-relativistic limit), the gauge field smearing in the source links, the

relative size of the quark and diquark radius, and the relative position of the quark

and diquark.

3.3.1 Quark Radius

A delta function (or "point source") is the simplest gauge-invariant expression that

we could imagine using for the quark fields in Eq. 3.10. However, the quarks in a

nucleon certainly have wavefunctions with finite spatial extent. To model this, we

"smear" the quark source fields over many different lattice sites. We use Wuppertal

smearing to produce gauge-invariant smeared sources [22]:

.0

N1
-5

S

RMS
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Figure 3-3: Overlap vs. quark RMS radius (in lattice units). Blue circles are results
for sources with no link smearing; red squares are with APE-smeared links. Inter-
polating curves are shown to guide the eye. Results are shown for four-component
spinors (left) and for non-relativistic two-component spinors (right). (Note difference
in vertical scales.)

3
Q(x) = Q(i-1l)(x) + A l( )Q(i1) (X - A) +±l4(X)Q(i~')(X -+ )

p=1

Qsrn(X) = Q(Nsmear)(X) (3.11)

where we take a = 3 and Qa) (x) = 6_o6aao. I The RMS radius of the quark source

is controlled by varying the number of smearing iterations (see Fig 3-2).

As a first step, we smear all three quark fields in Eq. 3.10 to the same RMS radius

and locate them at the same spatial position. Results for the variation of the quark

radius are shown in Fig 3-3 . The overlap behaves as in previous studies, starting at

the order of 10~ for a small quark radius, increasing to a maximum at some finite

radius, and falling off at larger radii. This reflects the finite spatial extent of the quark

wavefunction within a nucleon. The peak occurs around 4.5 lattice units (~ 0.4 fin),

consistent with [22].

3.3.2 Number of Spinor Components

The quark fields in Eq. 3.10 are, in general, four-component spinor fields. However,

one could also construct a nucleon source using non-relativistic quark fields. In the

5Here, a represents both color and dirac indices.



Figure 3-4: Overlap vs. diquark, quark RMS radius (in lattice units). Blue cylinders
represent points with error bars; interpolating surface is shown to guide the eye
(left: four-component spinors; right: two-component spinors). Numerical values for
overlaps plotted here are given in Tables A.1 and A.2.

dirac basis, this corresponds to taking the upper two components of the quark spinors,

so we have:

NNR = (UNR C07 5 DNR) UNR (.2

Where QNR _ _1 + -

For every trial source of the form given in Eq. 3.10, we get the corresponding two-

component source (Eq. 3.12) "for free." The right-hand side of Fig 3-3 shows results

for trial sources with two components. We find that the two-component sources have

significantly greater ground-state overlaps than the full four-component sources. This

is consistent with the expectation from the dirac equation that the lower components

for a single quark in a central mean field be in a p-wave type state, which has very

poor overlap with the approximately gaussian wavefunction used as a trial source

(also see discussion in [25]).

3.3.3 Link Smearing

Another variation tested was the smearing of the gauge fields used to construct trial

sources. For this purpose, we used 25 iterations of APE smearing with e = 0.35 in

the notation of [26]. Each iteration of APE smearing adds to each link the sum of its



5,0 
5[

2.0

20 2.5 3.0 3-5 40) 4.5 5D '02_533 . 5 5
D RMS D RMS

Figure 3-5: Contour plots for the surfaces shown in Fig 3-4. Diagonal line at Rquark =
Rdiquark shown for reference. Contour spacing is 0.0125 for the left-hand plot (four-
component spinors) and 0.167 for the right-hand plot (two-component spinors).

neighboring "staples" (with some coefficient), and projects the resulting matrix back

onto SU(3). Link smearing has the effect of smoothing out short-range fluctuations

in the gauge field, so fewer steps of quark smearing are required to reach a given RMS

radius (see Fig 3-2). As shown in Fig 3-3, the inclusion of APE smearing resulted in

a significant increase in overlaps.

The observant reader will note that the largest overlap obtained with smeared

links lies at the edge of our explored parameter space. So, we cannot claim to have

found even a local maximum. We believe, however, that we are close to the local

maximum, based on the corresponding results for unsmeared links. The fact that the

overlap peaks at different values of the RMS radius in the two cases reflects the fact

that a single parameter (the RMS quark radius) is not sufficient to completely specify

the quark distribution.

3.3.4 Relative Size of Quark, Diquark

If we take the diquark picture seriously, we might expect the quarks to have different

wavefunctions depending on whether or not they are "in" the diquark. To check

this, we considered sources in which the "diquark quarks" were smeared to a different

radius than the "lone quark":

J - (U(rl) C y5 D(rl)) U(r 2) (3.13)



where r1 and r2 represent the RMS radii of the diquark and lone quark, respectively.

Results for the variation of these two parameters are shown in Figs 3-4 and 3-5. A

clear off-diagonal peak in Fig 3-5 would suggest diquark substructure. In our results,

the peak overlap is very nearly centered along the r1 = r2 diagonal, showing little

evidence for diquark substructure. However, though there is no statistically significant

asymmetry, the slight asymmetry that is observed tends towards "smaller" diquarks

and "bigger" quarks, which is consistent with the expectation that diquarks exist as

a more tightly bound state.

3.3.5 Relative Position of Quark, Diquark

Motivated by the flux tube model, we constructed trial sources with the diquark

and lone quark spatially displaced. For these sources, we symmetrized the sink by

summing over displacement directions:

Cdss,(t) = KU(r, t) C-ys D(r, t) U(r + j, t) U(O, 0) C-Y D(0, 0) U(L1, 0)). (3.14)

Results for a variety of displacements f and smearing combinations are shown in Fig

3-6. The maximum overlap is observed for zero displacement, suggesting no flux tube

substructure. It may be noted, though, that for some values of quark/diquark smear-

ing, displacing the quark does marginally increase the calculated overlap. Intuitively,

this can be understood by imagining that we take our trial state and set the quark

(or diquark) to be smaller than it "wants" to be. In this case, a displacement of the

quark from the diquark may work to restore the quark to its "ideal" mean distance

to the center of the nucleon. Such a displaced trial source may then have a greater

overlap than its non-displaced counterpart.
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Figure 3-6: Array of plots showing overlap as a function of quark displacement (in

lattice units). Positive and negative displacements are identical, but are plotted for

clarity. Maximum achieved overlaps are circled. (Left panel: four-component spinors;

right panel: two-component spinors.) Numerical values for overlaps plotted here are

given in Tables A.3 and A.4.

3.4 Conclusions From the Variational Study

In summary, we observe dramatic changes in the overlap between a trial state and

the nucleon as we vary accessible features of the trial state. Smearing the quark

source fields from a point to an optimal RMS radius increases the overlap for a

four-component trial function from a fraction of a percent to about 35%. Remov-

ing the unphysical S-wave lower components increases the overlap from 35% to 50%.

Smearing the gauge field further improves the overlap from 50% to more than 80%.

Attempts to increase the overlap by including diquark correlations associated with

the relative size and position of the quarks and diquarks yielded no significant im-

provement, suggesting that such substructures do not play a major role in the nucleon

ground state.

From the perspective of lattice calculation technology, these results are extremely

useful in generating sources that involve minimal contaminants from excited states.

From a physics perspective, they give useful insight into what the quark and gluon

degrees of freedom are doing. It would be valuable to extend these calculations to
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lighter quark masses, but for our work using light domain wall quarks, we would need

to find an alternative to the transfer matrix construction required for the calculation

of unambiguous overlaps.



Chapter 4

Parton Distributions

In the rest of this thesis we will focus on another way to explore nucleon structure with

lattice calculations. Generalized parton distributions (see [27] for a review) contain

much information about the spatial and spin structure of the nucleon. In this chapter,

we will provide a brief introduction to GPDs and review their connection to lattice

calculations.

A few words regarding partons are in order. For our purposes, a "parton" may

be defined as an elementary (point-like) constituent of a nucleon, i.e. a quark or

gluon. In this study we focus almost exclusively on quarks, so when we refer to "par-

ton distributions," we generally have in mind quark distributions. The interaction

between partons is complicated-hence our need to resort to numerical calculations.

We note, however, that a parton's transverse position and longitudinal momentum

are well-defined quantities[28]. In addition, we interpret our results using an intu-

itive (though somewhat simplistic) picture of the nucleon. Imagine the nucleon as

composed of a cloud of point-like partons. In the infinite momentum frame (see

next section), Lorentz contraction flattens this cloud into a pancake in the transverse

plane. We will study the distribution of partons-more specifically, of parton charge

and energy-in this pancake.

The phrase "parton distribution" typically refers to the distribution of the parton

plus-momentum, expressed as a fraction of nucleon plus-momentum. On the lattice,

we can only access Mellin moments of such plus-momentum distributions. As dis-



cussed in this chapter, however, we can calculate the transverse spatial distributions

of quarks in a nucleon, and we often refer to these as transverse parton distributions.

4.1 The Infinite Momentum Frame

Strictly speaking, parton distributions are only well-defined in the infinite momentum

frame (IMF): a reference frame moving with speed u ~ c in the - -direction.1 In

principle, one could ask what the distribution of, say, quark energy is in any par-

ticular reference frame (such as the lab frame). However, such a question is most

easily posed-and answered-in the IMF. The reasons for this range from the sim-

ple (experimental studies of nucleon structure typically involve high-energy probes,

which "see" the nucleon in a fast-moving frame) to the subtle (see the discussion of

spin states in Appendix C). We will be content to note that the IMF provides an

unambiguous frame in which to define and calculate parton distributions, and refer

the interested reader to [29] and [30] for more detailed treatments.

In general, the dynamical details of a physical system are not frame-independent.

A familiar example of this can be found in classical electromagnetism, where a mag-

netic field in one frame develops an electric component in another frame. The resulting

kinematics should be the same in all frames (appropriately transformed, of course),

but the physical picture we use for the calculation might change. In the same way, the

internal dynamics of a proton in the IMF may look very different from the rest-frame

dynamics, but the answer to a kinematical question should be the same no matter

what frame we choose to compute it in. 2

1more precisely, the IMF corresponds to the u -- c limit of such a reference frame.
2Assuming, of course, that the particles about which we are asking the kinematical questions

have a frame-independent existence.



4.1.1 Light-Cone Coordinates

It is impossible to discuss the IMF without mentioning light-cone coordinates. Con-

sider the change of variables:

vi = (v0 v 3) (4.1)

for some four-vector 3 v". Then the coordinates (x+, X1, x2, x-) are known as light-cone

coordinates. The significance of light-cone coordinates can be appreciated by consid-

ering the Lorentz transformation relating the "lab frame" coordinates (X0, zl x 2 aX3 )

to the coordinates in the IMF (x MF XMF XMF XMF

XIMF 0 3

I MF (1 X1
XIMF 2

X MF X3

* 3MF z y(x 3 +/ )

where we take the limit 3 -+ 1. We see that the IMF time coordinate AjMF is

proportional to the light-cone coordinate x+ (expressed in the lab frame).4 In the

same way, the energy of a particle in the IMF is proportional to its lab frame plus-

momentum: pMF C p+. Choosing to use the light-cone coordinate system is therefore

equivalent to choosing the IMF as a reference frame [30].

We will use light-cone coordinates frequently in this thesis, and adopt the conven-

tion that roman indices refer to transverse vector components: vi = {vi, v 2 }. Also, we

commonly (though not exclusively) use boldface type to denote a transverse vector.

3we use the same notation for the dirac marices y
4 0n the other hand, XjMF isn't proportional to x~, but we can ignore x3MF since it's not a

independent coordinate anyway.



4.2 Nucleon Matrix Elements

Let us begin by writing down some matrix elements of quark operators between

nucleon states:

F(f f+ W g ( ) , S) (4.2)

(f f§e (PS( - -) V +)W () P,S) (4.3)
zi=z+=o

F(f) - 47d eiP+z 'FI, S/ 1V() 0.+iY5 w (Z) P, S) (4.4)
zi=z+=

where P (P'+P). |, S) denotes a nucleon state with four-momentum P and spin

S, and quark creation and annihilation operators are represented by @ and 0. Here

we explicitly include the quark flavor label (f) on the left hand side, but suppress the

label on the quark operators. 5 The Wilson line W _='Pe-if- -f dz'A+(z') connecting

the quark operators is needed for gauge invariance, but reduces to unity in light-cone

gauge (A+ = 0). (Note that by restricting ourselves to the plus-component of the

quark bilinear operators, we project out the twist-two distributions[29].)

We will refer to the operators in Eqs. 4.2, 4.3 and 4.4 as vector, axial and tensor

operators, respectively.

4.2.1 Forward Matrix Elements

Consider the case where the initial and final nucleon states are the same: P = P', S = S'.

Then, for x > 0, Eq. 4.2 is simply the quark distribution function q(f)(x), which rep-

resents the probability of finding a quark (flavor f) with plus-momentum p+ - XP+

5Note that the matrix elements are also functions of x, P, P', S and S'.



in the nucleon 6:

F(f)(x)|p=p',s=s' = q(f)(x).

Equation 4.2 can also be given an interpretation for x < 0, in terms of the an-

tiquark distribution qfy)(-x). To see this, let us examine the behavior of the quark

operators in Eq. 4.2 under charge conjugation. This operation interchanges quarks

and antiquarks, so the charge conjugated operator now measures the antiquark den-

sity. We pick up a minus sign from the behavior of the fermion bilinear qyq under

charge conjugation, and the complex conjugate changes the sign of i (or, equivalently,

the sign of x). Keeping track of all the sign changes, we find:

F(f)(x)|p=p,,s=s, = -q(f)(-x) for x < 0.

For future reference, we note here that while FT also changes sign under charge

conjugation, F does not.

Quark Spin States

Specific quark spin states can be selected with the projectors:

P+ 1 ± Y5 (4.5)
z2

1 t yXy5
P±- = 2 , (4.6)X 2

where we consider the transverse i-direction for notational simplicity. Equation 4.5

can be thought of as projecting out quarks with definite light-cone helicity [30, 31].

To see this, consider a quark spin state written as an arbitrary linear combination of

'This can be seen by recognizing that Eq. 4.2 is essentially a nucleon matrix element of the quark
number operator ry0@ in the infinite momentum frame, projected onto a definite plus-momentum.



positive and negative light cone helicity states:

Uq C++c +CUuLc

(Light cone helicity states uf§ are defined in Appendix C.) Then it can be shown

(see Appendix) that:

69 + P: = |26fc LC (4.7)

Similarly, Eq. 4.6 projects out quarks with definite "transversity" along the s-

direction. If we write:

Uq = CiUI 0 + CT UC

where C (ULC ± uLc), then we find:

q+ + = |uq:C1|2 ifc ,+ LO (4.8)

A word of caution is in order. The states we are considering are not at rest in the

lab frame, and so cannot be eigenstates of the spin operator in an arbitrary direction.

Indeed, ztc is not an eigenstate of the transverse spin operator Si. However, the

spin state defined by uLc can be given a useful interpretation as the state obtained by

boosting a transversely polarized state from rest to a large longitudinal momentum

(see discussion in Appendix C). For ease of language, we will often refer to ufC as a

"transversely polarized" spin state; more precisely, it is a state of definite transversity

[4, 32].

By taking appropriate linear combinations of Eqs. 4.2, 4.3 and 4.4, it is possible

to write down the distribution function for any quark spin state. For example, the

distribution of quarks with positive helicity in a longitudinally polarized nucleon is

given by

q, (x) (F +

while the distribution of quarks with spin in a transverse direction in a transversely

polarized nucleon is given by:



11
(x2) = (F + FTy) | p ,,s=s'=r

Proton Spin States

In the preceding discussion, the dependence of the distribution functions on proton

spin was implicit. In this work, we use light cone helicity states for the proton spin as

well, by explicitly writing the proton spinors in terms of the light cone spinors defined

above (see Appendix H).

Some Notation

Let us take this opportunity to collect equations and establish some notation. A

parton distribution will be written as q, (x), where the superscript S indicates the

proton polarization, and the subscript s gives the quark polarization. Furthermore,

the arrows T, I will be used to indicate polarization in the plus or minus 2-direction,

respectively, while I, T indicate polarization parallel or antiparallel to a transverse

axis. (For simplicity, we will often take the transverse polarization axis to be the z-

axis, though by rotational symmetry the results can be applied to any transverse axis).

A missing index indicates a sum (or average, as appropriate) over the corresponding

spin states. For example, we can write distribution functions for quarks of flavor f:

q(f)(x) = qs;)(x) = F(5)(x)_,,ss,

qT(f(x) = (F(f)(x) + F(5)(x)) P ,ws (4.9)

q1 (f)(x) = 1 (F(f)(x) + F'5)(x |



defined for x > 0. Similarly, the antiquark (flavor f) distribution functions are:

q() (x) qs )(x) = - F(f)(-x) IPP,,s=s'

1
q1((x ) = (-F(f)(-x) + Ff)(-x))IP=P_,SsI=TI (I W =2

q1 ((x) =

(4.10)

1-(-F(f)(-x) - FT(' -x _s2 ,( ) ~1S S~

also for x > 0.

Note that we will often use the shorthand notation Q(f/f') =Q) ± Q(f'), for

some quantity Q.

4.2.2 GPDs

The matrix elements in Eqs. 4.2, 4.3 and 4.4 can be expressed in terms of generalized

parton distributions (GPDs) by writing out all possible independent terms consistent

with lorentz invariance. The parameterization is not unique; in this work, we pri-

marily use the conventions found in [33, 34].7 Writing the average proton momentum

P j(P + P'), the change in momentum A = P' - P, t A2 and the "skewness"

'This is the parameterization used in our calculations. Following [4], it will be convenient in the
analysis to rearrange some of the terms in Eq. 4.13. In particular, we will use the combination
2HT + ET = ET.



S= -A+, we have:

1
F(f) = 2p+

~1
F(f) =2P

-i
FT,(f) -2P+

t)2ma

y75A+ -]

t y+u + E()(X,

U y+7s-YU + 5(X I

HT,(f) (x, , t) 'Ua cuy5u + T,(f)(x, , t) ii a

+ ET,(f)(x, , t) ii 2m u+ET,(f)(x,

Note that the spinors ii, u in the above are the proton spinors, and depend implicitly

on P, P', S and S'. The eight GPDs (H, E, H, E, HT, HT, E and ET) are functions

only of x,( and t. Time reversal symmetry further constrains ET to be an odd

function of ( [27].

The quark distribution functions can now be expressed in terms of GPDs:

qff)(x) = q(f) (x) = H(f)(x, 0, 0)

qTf) (x) q (f(x) =

qj (f)(x) = q (f) (X) 1

(H(f)(x, 0, 0) +

(H(f)(x, 0, 0) -

5(f)(X, 0, 0))

H(f)(X, 0,0))

0) + HT,(f) (x, 0, 0))

IfH( (X, 0, 0)

(4.11)

(4.12)

§t) ii Yj. (4.13)

qI,(f)(X) = H

(4.14)

qI()()= - Hr,(f )(xI

IH(f) (x, (,t)

5fty)( (, t)



For completeness, we also give the antiquark distributions:

q(f) (x) q(f)(x) = -H(f)(-x, 0, 0)

q ) (x)= q(1) (x) (-H(f)(-x, 0, 0) + fI(f)(-x, 0, 0))

q,(I)(x) qt(I)(x) = (-H(f)(-x, 0, 0) - Htf)(-x, 0, 0))

(4.15)

q,(f)(z) - H(f)(-x, 0, 0) - HT,(f)(-x, 0, 0))

q ,()() - H(f)(-x, 0, 0) + HT,(f)(-x, 0, 0)).

Since q( (x) and qs(l) (x) can be interpreted as probability distributions, they must

necessarily be positive functions. This positivity can be used to put constraints on

the GPDs. For example, we see immediately from Eq. 4.14 that H(f)(x, 0, 0) >

H(f) (x, 0, 0). Tighter constraints can be obtained from more comprehensive analysis

of the distributions for arbitrary spin states[4].

4.2.3 Off-Forward Matrix Elements

The distribution functions in Eq. 4.14 only depend on the forward (t = 0) parts

of the GPDs. As we saw in the preceding sections, the GPDs in this limit can be

interpreted as probability densities. However, when t / 0, the initial and final proton

states in Eqs. 4.2, 4.3 and 4.4 are different, so we cannot attach to them a simple

probabilistic interpretation as we did in the forward case. How then can we interpret

the off-forward GPDs?

In this thesis, we focus on the case ( = 0. This corresponds to the situation

where the momentum transfer is entirely in the transverse directions (A+ = 0), so

the initial and final proton states differ only in their transverse momenta. One might



imagine that if we could somehow integrate out the matrix elements' dependence

on the transverse momentum, we could obtain again a result with a probabilistic

interpretation.

This is indeed the case, as can be seen by taking the (transverse) Fourier transform

of Eq. 4.2. Setting P+ = P'+, S = S' and suppressing the spin label and Wilson line

(we follow closely the notation in [4, 35]), we find:

fd2 L

= (27) 2

d 2 A z

(2-x)2~ ~ CbAI4FCXP+z- (p/, Ip+ fzi) -y+ V/ (Z2) I , P+)

=N-1 d 2P d 2A 26b- dz- eixp+z- p IIP+ I zi) -Y+ V/(Z2) PP +)
(27r) 2 (27r)2 47

where N f , and z2 = -zi- = !z (all other components zero).8 Note that

the last step is valid because the integrand is independent of P. We can change the

integration variables:

Y = N -If d2P d2p' e-ib-(P'-P) dz- eip."~ (P', P+ (zi) (Z2)IP, P+)
(27r)2w (27) 2  47r I

= N- 1  z eixp+z- (-b; P+4(zi)7-y* (z2)-b; P+), (4.16)
j d7 - (l Y )Z)I- -(-647r

where now the nucleon states are localized in transverse position space:

b; P+ e- ib-P p,+ (4.17)

In the above, b gives the transverse position of the center of momentum of all the

partons (both quarks and gluons) in the nucleon, defined as [28, 35] bcm = K xi bi.

If we shift our coordinate system so that the nucleon center of momentum is at the

8N here is divergent. This can be avoided by taking wavepackets spread out over position space.



origin, Eq. 4.16 becomes:

F = N-1 J z eiXP+- (0; P+|O(zi) Y+ gV(z2)|0; P+), (4.18)
f47r

where now z2 = Zi = b. (The fields in the Wilson line-which we suppress in Eq.

4.16-are also shifted to transverse position b.) Equation 4.18 is again a diagonal

matrix element of the quark current operator between nucleon states, but now it is

a function of transverse position as well as plus-momentum. We interpret this as the

impact parameter-dependent quark distribution function (or transverse distribution

function, for short) q(x, b): the probability to find a quark with momentum fraction

X, at transverse position b relative to the nucleon center of momentum. In the same

way, the polarized transverse position dependent quark distribution functions are:

q, (x, b) = (F + F) |PP',S-s'
I( ~ 1

q1 (x, b) 2 h ( P=P

and so on, where F and F+ are defined analogously to F. In terms of (Fourier

transforms of) GPDs, we have (see Appendix H):

q(x,b) = qT(x, b) = H (4.19)

gL (x, b) = -H - by12 S (4.20)

qT (x, b) = (H +n (4.21)

q,'(x, b) = -7-) (4.22)



q{(x, b) = - - - by (ET + 2N-(T) (4.23)
2\ m Ob2  m Ob 2

+ ( 4m ab ab I + ((bx)2 - (by) 2 ) 1 ( 2

q- (x, b) - I -H - b1 0 + b4 (Er + 2nr) .24)

2 m2)b2  m Ob2

- - Am2abi )bi -(bx (by 2

where 7-(x, b) is the Fourier transform of the GPD H(x, 0, -A 2 ), S(x, b) is the

Fourier transform of E(x, 0, -A 2), etc. Here we take I to indicate polarization along

i-axis (more general forms of these equations can be found in [4]).

In order to make contact with notation existing in the literature, we note that

the distribution we have called q' (x, b) is the same as the distribution Burkardt calls

qx(x, b1 ) in [361, and Aq(x, b1 ) in [36] is equal to our q (x, b) - q'(x, b).

$ f 0 corresponds to the situation where the momentum transfer is in an arbitrary

direction. In this case, Eq. 4.2 cannot be given a simple probabilistic interpretation.

We do not consider the ( # 0 case in this thesis, but refer the reader to the studies

in [37, 38].

4.3 On the Lattice: GFFs and Mellin moments

The quark operators in Eqs. 4.2, 4.3 and 4.4 are non-local-the V) and @ are separated

by a light-like displacement (which is integrated over). Such operators are impossible

to compute directly on a finite Euclidean lattice. Rather, the operators which are

accessible on the lattice are Mellin moments of the bi-local operators. The n'h Mellin

moment of a function f(x) is defined as f " dx x 1 f(x). In Appendix G, we show

explicitly how the Mellin moments of Eq. 4.2 and following lead to matrix elements

of the local operators Or:

O01~~."n = 4,(o)1p{1 i D P
2

... i D) nl@(0), (4.25)



where {-- } indicates symmetrization of indices, and F represents the gamma matrix

insertion: P4 E {7C , 7 79yf3.y, -JIy 5

It should be noted that taking Mellin moments of the bilocal operators is equiv-

alent to performing an operator product expansion (OPE). We will not pursue the

connection in this thesis, but refer the reader to the discussions of the OPE in [29].

These lattice operators are parametrized in terms of generalized form factors

(GFFs),10 which are (related to) moments of GPDs. Using the conventions in [33, 34],

the GFFs for the lowest-moment operators are:

(P'I I/)(0) -" @'(0) P) = Aio(t) u 7y u + z B 10(t) A, u a"01 u (4.26)
2m

1-
(P'I I.(0) 7y1 -y5.(0) P) = A10 (t) ii yy 5 u + B10(t) A" U y5 u (4.27)

2m

1-
(P'I N(0) ia" @(0)|P) = ATio(t) fitiu'a u + - AT1o(P11(t (0PA) 'or 0(AI) 1P -

+ Brio(t) _ (y"A" - 'y0a ) U. (4.28)
2m

(A complete listing of all GFFs considered in this thesis is given in Appendix G.)

Note that the tensor operator in Eq. 4.28 can be written with or without the 75 by

virtue of the identity [31]:

Also, we will generally use the GFF BTO = 2ATnO + BTnO in preference to BTO.

The form factors tend to appear in this combination in the physical observables

we consider, so we regard BTnO as the more fundamental quantity. In addition,

the combination 2Arno + BTnO is much more well determined in our actual lattice

calculations than either ATnO or BTO individually.

9Note that oa" is written here with only one "active" index.
loin exactly the same way as the bilocal operators were parameterized by GPDs



We can write the GFFs in terms of moments of GPDs:

A 10 (t) = dx H(x, ,t)

B1o(t) = dx E(x, (, t)

A 1 0(t) = dx H(x, (, t)

Alo(t) = dx HT(x, ,t)

AT10(t) = dx HT(X, t)

BT10(t ) =dx ET (x,,t ).

Similar identities hold for

Fourier transforms of the

transforms of GPDs:

A 0 (b 2)

higher moments (see Appendix G). We also note that the

GFFs can be expressed in terms of moments of Fourier

e-ib-AA(A 2 ) dxK(xb),
(27r )2ii

(4-30)

and so on.

The proliferation of functions, symbols, and subscripts may threaten to overwhelm

readers unfamiliar with the territory. To prevent confusion, let us pause to emphasize

that GFFs and GPDs can be thought of as two different "languages" for describing

the same physics. The primary difference between the two is that while GPDs contain

the full x-dependence of the matrix elements in Eq. 4.2 and following, GFFs have

the x-dependence integrated out (giving the Mellin moments described above).' 1 If

we had the complete (infinite!) set of GFFs, we could reconstruct the GPDs. The

reason for using GFFs at all is that they are the quantities we can access in lattice

calculations. In this thesis, we will often begin a discussion using the language of

"There is thus an infinite number of GFFs corresponding to each GPD.

(4.29)



GPDs, and then translate the conclusions into the language of GFFs in order to

make contact with calculations.

4.3.1 More on Moments

Note that the integration interval in the definition of Mellin moments extends from

-1 to 1. As discussed in Section 4.2.1, values of x in the range -1 < x < 0 lead to

antiquark distribution functions. So, when we take Mellin moments of GPDs, what

we actually calculate are sums (or differences, depending on the moment) of quark and

antiquark observables. This is an unavoidable feature of our lattice calculations. In

the next section, we will keep careful track of the antiquark terms; in future chapters,

we will generally leave these terms implicit.

4.4 Nucleon Structure from Parton Distributions

It is clear that GPDs and GFFs encode a huge amount of information about nucleon

structure. It may not be as clear how to understand that information. In this thesis,

we will focus on quantities that have a simple physical interpretation in terms of

the parton distributions discussed above. It turns out that quite a few physical

observables can be extracted from the GFFs within the parton framework.

As we begin this partonic exploration of nucleon structure, it will be helpful to

review our primary tools-the transverse position-dependent parton distribution func-

tions in Eqs. 4.19 - 4.23. These distributions will be treated as probability densities,

giving the probability of finding a parton (in this case, a quark) with a particular

transverse position and longitudinal momentum inside a nucleon." The polariza-

tions of both the quark and the nucleon can be specified.

It is important to emphasize that these distributions, as interpreted above, strictly

apply only to a nucleon in the infinite momentum limit. In the lab frame, one could

imagine that they correspond to distributions of the plus-component of quark current,

1 2 As already discussed, lattice calculations do not provide access to the full x-dependence of these
distributions, but only to moments in x. However, it will be convenient to start with the language
of x-dependent GPDs.



and can be more appropriately interpreted as the quark number density plus the quark

current in the i-direction. We will occasionally take this point of view, to demonstrate

that the results are independent of frame (Section 4.4.4). Also, the spin states used

in Eqs. 4.19 - 4.23 are light cone helicity states, which are not the same as ordinary

helicity or spin states in the lab frame (see Appendix C).

It will be useful to keep in mind the particular roles played by the vector, axial

and tensor lattice operators: the vector operators are insensitive to quark polarization

(they sum over quark spin states), the axial operators involve quark spins along the

longitudinal axis, and the tensor operators involve quark spins along a transverse

axis.

With these guidelines in mind, let us consider some specific aspects of nucleon

structure that can be studied in our calculations. Note that some of the quantities

discussed below are not (yet) experimentally accessible. Such quantities still provide

valuable insight into what is going on inside a proton, and may be thought of as

complementing the available experimental data.1 3

4.4.1 Charges

One of the simplest things we can do with parton distributions is to count.14 By

integrating over all the distribution variables, we can count the number of quarks in

a particular state. For example, the total number of quarks of flavor f is given by

(using Eqs. 4.14 and 4.15 ):

N(f) = dx q(f)G () = dx H(f)(x, 0, 0). (4.31)

Note that the range of integration over x is from 0 to 1. As discussed above, lattice

calculations only have access to integrals over x from -1 to 1, corresponding in this

13 0f course, such insight from the lattice is only valuable because there do exist other quantities

which can be compared with experiment.
14This section will act as a warm-up for the sections to come, so we take extra time to familiarize

the reader with our methods and notation.



case to the number of quarks minus the number of antiquarks:

N(f -) = N(f) - N(y) = dx H(f)(x, 0, 0) A(f0 (0)

This quantity (the vector charge) simply counts the number of valence quarks in the

nucleon. Since we already know what this number should be (we used it to build a

nucleon on the lattice in the first place), we use the measured value as a normalization.

Axial charge

If we try to count the number of quarks with spin parallel to the proton spin along

the i-axis, we find that the accessible quantity is the difference:

N' -N'- dx (q(x)W

= 11

- q1(1)x)

0) + H(f)(-x, 0, 0) + 5(f)(-x, 0, 0))

H(f)(x, 0, 0))

Similarly:

(Alf() + Z0)(0)) .2 ( =(A) + - ( 0

N') - f 1' (A(f)(0) -Af1(o))IN M NT, 2 (10 - 1

(4.33)

(4.34)

If we take the difference of the two, we have the axial charge:' 5

Alf(0) = NT -(ff)NT .

1
5 Usually, the "axial charge" is taken to be specifically the isovector flavor combination: u - d. In

this section, we use the term more generally, without regard to flavor.

(4.32)

= dx (H(f) (x, 0, 0) + f(f)(x, 0,

dx- (H(f)(x, 0, 0) +



Note that the axial charge (for each flavor) is proportional to the quark spin contri-

bution to the nucleon angular momentum. This fact will be used in our discussion of

angular momentum in Section 4.4.5.

Tensor charge

If we take the polarization axis to be in a transverse direction, we get:

N'N' N I (0) + A2 (0)) (4.35)

N'f - N 10 (0) - A (0) (4.36)

with the corresponding tensor charge:

ASf 0(0) = N- - - N'y .
T10 I 1(f_f) - ,f f

Note that in contrast to the axial charge, which gave the sum of the quarks and

antiquarks aligned with the nucleon spin (minus those anti-aligned), the tensor charge

gives the difference. This fact will be discussed later in Section 6.4.

4.4.2 Momentum Fractions

Given the quark distribution functions q(x), the second moment f dxx q(x) simply

gives the average quark momentum fraction (x). This is the fraction of the nucleon

plus-momentum (or, in the IMF, the fraction of the total nucleon energy) that is

carried by the quarks (plus or minus antiquarks). If we ignore quark polarization, we

have the sum:

(x)(f) + (x)(y) = dx x H(f)(x, 0, 0) = A f)(0). (4.37)



The contributions to the momentum fraction from polarized quarks are:

(X) + (+x)

(z ±g + ( ) -

() + (X)T) =

Af) (0) + A)(0))

(A20(0) - A(0()))

Alf)(0) + A()

It is common to quote the differences:

( I)(ff - )')-,(f(f)) A~()

)I ('i ) Tf+h T2) (')f)

Note that, apart from relativistic effects due to the the choice of a special longitudinal

direction, the difference between longitudinal and transverse quark polarizations is

again the sign of the antiquark contribution. (It is a straightforward generalization

of the above discussion to write down the higher moments ( 2 ), (x3 ). In this thesis,

however, we will focus on the lowest two x-moments.)

4.4.3 Charge Radius

In the above calculations of charges and momentum fractions, we used only the "or-

dinary" parton distributions q(x). What additional information can we extract from

the distributions in transverse position space, q(x, b)?

One quantity of interest is the mean squared charge radius (b2), 16 which is a

16here we write the subscript e to indicate that we are considering distributions of electric charge

(4.38)

A(f (0)

(4.39)

(4.40)

-A~f (0))



measure of the transverse distribution of charge in the proton.' 7 In terms of GFFs,

for unpolarized quarks we find:

(b')(f) + (b')() = e(f) dx d2 b b2 (q(f)(x, b) - q(f)(x, b))

= e()J dx d2b b2H(f)(x, b) (4.41)

4 e(f) atAfo (t) |t=,

where we denote the charge of the quarks by e(f). In this case we have the sum of

quark, antiquark contributions because e(f) = -e(f). (Note, however, that (b) is

negative for distributions of negative charge.) If we assume that the charge distri-

bution in the rest frame of the proton is spherically symmetric, we can define the

three-dimensional radius:

(r2 ) =2 (b2)_
2

(In the lab frame, there is no rigorous relation of form factor slope to spatial radius.

However, because there is a correspondence in the non-relativistic limit, it is common

to define the dirac radius (r) -= 62A( )(t)jt=0, and to loosely think of it-as we do

above-as the radius of a spherically symmetric distribution in three dimensions.18)

One could also define the mean squared radius of the "spin densities":

(b2 )f -(b2)1 = 4 2( A (t) (4.42)

(b2)±1f - (b2 )(ff) = 4 AtA o(t)Lo. (4.43)

17This is the natural quantity to measure in the IMF, where the proton appears flattened due to

lorentz contraction. It is analogous to measuring (rj), where ri is the distance to the longitudinal

axis.
18 see [39] for some relevant discussion



(Note that here we do not include the electric charge e(f) in the definition of (b2),

and the sign of the antiquark contribution is set accordingly.)

4.4.4 Magnetic Moments

The magnetic moment of the proton provides an especially interesting context in

which to explore the application of transverse parton distributions. To see this, let

us start with the expression for the magnetic moment of a classical current density

j(r) [40, 15]:

= dr r x j(r). (4.44)

If we consider the case where the magnetic moment is in the i-direction, and fur-

thermore assume that the current density j is symmetric under rotations about the

x-axis, we have:

pX = dr (rY jz(r) - rz -Y(r))

J d3r ry jz(r). (4.45)

If the coordinate origin is taken to be the (lab frame) center of mass of the distri-

bution, we can add f dar r' jo(r) = 0 to the above equation, where j0 is the charge

distribution. We obtain:

pl= d3r ry (jz(r) + jO(r))

= NJd3r r j+(r), (4.46)

where the normalization N is chosen such that N f d3r j+(r) gives the total charge.

Let us now apply Eq. 4.46 to a proton polarized in the 1-direction, assuming that the



current density is completely due to the constituent partons. As discussed previously,

we can take the distribution e(f) q'(x, b) to be the density of the lab frame plus-

current j+ of flavor f quarks in a transversely polarized' 9 proton. From Eq. 4.20, we

have (for _L in the z:-direction):

qL(x, b) = X-(x, b2 ) - by E(x, b2)m Ob2

= X(x, b 2) .(x, b2 447)
2m Oby

Remembering to include the "Melosh shift" (see Appendix C), we have the flavor f

contribution to the magnetic moment of the proton:

P/(f+) = e(f) dx d2b by + 1L) (-(f)(x, b2) -(f)(x, b2)

= e(f) dx I (H(f)(x, 0, 0) + E(f)(x, 0, 0))/1 2m

= e(/) A f)(0) + BW (0)) (4.48)
2m 101

where e(f) is the electric charge for quark flavor f. (Note that we again have the sum

of quark and antiquark contributions, due to the factor of electric charge.) Referring

back to Eq. 4.26, we see that this is the familiar result for the magnetic moment of a

spin-j particle (see [6], for example). It is interesting to consider how we arrived at

Eq. 4.48. Starting with a classical expression (Eq. 4.44) and applying it to a parton

model, we obtain the correct field-theoretic result. Moreover, the Melosh shift was

key to obtaining the full expression-if we had not included the shift, we would only

have gotten the anomalous magnetic moment r = Bio(0).

In the above calculation, we interpreted the parton distribution q'(x, b) as the

lab frame density of the plus-current. However, we would have obtained exactly the

19 in light cone helicity states!



same result if we had stayed in the IMF. In that case, we would interpret e(f) qL(x, b)

as an electric charge density, and Eq. 4.48 would be interpreted as an electric dipole

moment, measured with respect to the lab frame center of mass. This is simply

another way of viewing the magnetic moment-a magnetic dipole boosted to a moving

frame does indeed develop an electric dipole moment (as a simple consequence of

the Lorentz transform). We emphasize that the above manipulations should not be

regarded as a derivation, but rather as a suggestive mnemonic, illustrating the extent

to which our simplistic model of the nucleon as a cloud of partons gives the correct

(previously known) result.

We can also calculate the contribution to the magnetic moment from quarks po-

larized [anti]parallel to the proton-we simply use the distribution function qj(x, b)

[q}(x, b) ] (Eq. 4.23) as our current density. The result is:

p(f+f) = A 0(0) + BIf (0) + AT1 (0) + 5 (0)) (4.49)

Py = Alf) (0) + Bif) (0) - Af o(0) - -1(f (0)) (4.50)(f +1) -4m ( 10 (0 1 0~ Tb (0 T10 u} (.0

where || (4) indicates the quark spin (anti)parallel to the proton spin. (This notation

denotes basically the same thing as pi, with p understood to be measured along the

direction of the proton spin.) The difference, e (Af o(0) + 5 o(0)), measures how

much more of the magnetic moment is due to quarks aligned with the proton than

to quarks antialigned.

4.4.5 Angular Momentum

The quark contribution to the nucleon spin is in many ways analogous to the quark

contribution to the nucleon magnetic moment. One might speculate that the integral:

m dx jd2b b x qI(x, b) (4.51)



has something to do with quark orbital angular momentum, since in the rest frame

of the proton (where P+ oc m) it resembles the expectation value of r x p, where p is

the parton four-momentum:

J dx d2b by p+ q(x, b) oc dx d2b b (p +p)qI(x, b).

In fact, Burkardt showed [41] that (4.51)-once the Melosh shift is taken into account-

actually gives the total (orbital plus spin) quark contribution to the proton spin. Using

Eq. 4.20, we find that the total angular momentum in the i-direction for quarks of

flavor f inside a proton polarized in the i-direction is:20

12
Jo,(f+f) o ( l(0) + Big (0)) . (4.52)

This well-known result was first calculated by Ji in [42].2 One could further divide

this into contributions from quarks polarized parallel or antiparallel to the proton:

i -+/ = ( )(0) + Bif)(0) + A 0 (0) + 5f (0)) (4.53)

J ) = (2(0) + Bif (0) - Ad/O (0) - 5 (0)), (4.54)

where we use the notation defined previously.

As mentioned earlier, the axial form factor A gives the total quark spin contri-

bution to angular momentum. Subtracting this from Eq. 4.52, we obtain the total

quark orbital angular momentum:

L(f+/) = A (0) + Bif)(0) - AM (b)) . (4.55)(f+ 2 \ 0201

20The Melosh shift is essential to obtaining the A 20 term in this result.
211t is intriguing to observe that in this formulation, an expression that resembles the classical

orbital angular momentum density turns out to give the total quark angular momentum. Similarly,
in the previous section, the total quark contribution to the magnetic moment was calculated using the

expression for a classical current density. This suggests that, on some level, all angular momentum

can be viewed as a sort of "orbital" angular momentum [43), and all magnetic dipoles can be viewed

as current loops.



4.4.6 Quark Center of Charge, Momentum

We have seen that the GFFs Bo appear in the expressions for magnetic moment

and angular momentum. These form factors can also be understood in terms of the

quark center of charge, or dipole moment (Bio), and center of light-cone momentum

(B 20), measured in a transversely polarized nucleon. This follows directly from the

distribution in Eq. 4.20:

( bu )- dx d 2b by q-L(x, b) = Bio (4.56)/ 12m

(x bu)- dx x d2b by qL(x, b) = B20, (4.57)
// 2m

where locations are measured relative to the center of (light-cone) momentum of all

the partons in the nucleon. Similar relations hold for the tensor form factors BTno.

Equation 4.57 implies that 1B ( equals the distance between the quark center

of momentum and the gluon center of momentum. If this distance is zero (as lattice

calculations suggest-see Fig. 5-5), then the total fractional quark contribution to

the nucleon angular momentum (Eq. 4.52) would be equal to the total fractional

quark contribution to the nucleon plus-momentum (Eq. 4.37).

4.4.7 Other "Radii"

We have given many examples of quantities that can be expressed in terms of GFFs/GPDs.

It should be clear from these examples that parton distribution functions (in partic-

ular, transverse position-dependent distribution functions) provide a framework for

interpreting many of the GPDs. As a final example, consider the Pauli radius r 2

defined in terms of the slope of the GFF Bi0 (for ease of notation we suppress the



quark flavor label):

2r2=6 aBio0 tr2 at

3jdx Jd2bb2 E(x, b). (4.58)

One might be inclined to stop at this point and interpret ri as the mean square radius

of the (anomalous) magnetic moment density, motivated by the fact that the integral

f dx f d2b E(x, b) gives the anomalous magnetic moment. Indeed, it is tempting to

treat E(x, b) as the transverse density of the anomalous magnetic moment. However,

more careful consideration suggests that -b a E(x, b) more properly deserves that

identification (see Eq. 4.48).22 So let us press on:

r= - fjdx d2b (bx)2by + (b E (x, b)

3m dx d2b (bx)2by + (by) '(x, b2 ) -- E(x, b)

= 3m dx Jd2b b2 - (by)2 by q (x, b). (4.59)

We now have an expression for r2 as the expectation value of (b2 - [(by) 2 )by in the

distribution q' (x, b). This is indeed related to (but not identical to) the mean square

radius of the "magnetic moment density" encountered in Eq. 4.48. More generally,

r can be thought of as one measure of the spatial distribution of quark current in the

proton.23 This interpretation can be extended to the derivative of the tensor GFF

BT10 as well, which contains the corresponding information about the distribution of

polarized quark current.

Observe what is going on here. The generalized form factors (through their Fourier

22 The integral is the same: f d2b (-by) -9E(x, b) - f d2 b E(x, b).
23 Note that the distribution -by -JE(x, b) is manifestly not rotationally symmetric.



transforms) parameterize the transverse spatial distribution of quarks in the nucleon.

Any physical quantity that can be computed from charge or current24 distributions

can be expressed in terms of GFFs. Conversely, any moment or derivative of a GFF

from the set {An0, B 0, An, ATnO, ATnO, 5TnO} can be interpreted as some aspect of a

quark charge or current distribution.

24charge/current here could also be energy/momentum



Chapter 5

Lattice Calculation

This chapter describes the lattice calculations performed and presents the primary

results of these calculations.

5.1 Calculation Parameters

The calculations were performed on gauge configurations produced by the MILC

collaboration [44]. These configurations were generated using Asqtad improved stag-

gered fermions [45, 46],1 with two degenerate flavors of "light" fermions (representing

up and down quarks) and one flavor of "heavy" fermion (representing the strange

quark). The lattice spacing for these configurations was determined by heavy quark

spectroscopy[47] to be a = 0.124 fm = 1.59 GeV- 1 . We used HYP smearing[48] to

smooth the gauge field sufficiently that dislocations did not induce a large domain

wall residual mass. This smearing only induces higher dimension operators, and so

does not change the continuum limit of the lattice action.

For the valence quarks, we chose to use the domain wall action[9, 10].2 Domain

wall fermions are significantly more expensive than staggered fermions, but have the

advantage of preserving an explicit chiral symmetry at finite lattice spacing. We set

the extent of the fifth dimension to L5 = 16, and the domain wall mass to M5 = 1.7

'This is the action used when calculating det M in Eq. 2.4 and following.
2 This corresponds to the action used when calculating M 1 in Eq. 2.5.



(see [33] for more details on the selection process). The valence quark masses were

tuned so that the domain wall pion mass matched the corresponding staggered pion

mass on each ensemble. Table 5.1 summarizes the parameters for the ensembles used.

The calculations fall into two categories. The older set of calculations (datasets 1-6

in Table 5.1 ) was run on configurations that were cut in half in the time direction; we

refer to these as the chopped calculations. Each chopped configuration was used for

only one nucleon measurement (source/sink combination), with ten lattice spacings

between source and sink. Some results for these calculations were previously published

in [33].

For the newer set of calculations (datasets 7-11 in Table 5.1) we used the full

time extent of each configuration; we refer to these as the unchopped lattices. For

the unchopped calculations, we put four nucleon/antinucleon sources (for an effective

total of eight nucleon measurements) on each lattice, with a source-sink separation

of nine lattice spacings. We used the so-called "coherent sink" technique [2, 49] to

reduce computation time.

Calculations were performed at six different pion masses. Unchopped calculations

were done for the lightest four of these (with two volumes in one case, for a total of

five unchopped data points), while chopped calculations were done at the five heaviest

masses (for a total of six chopped data points). There are thus four ensembles that

were used in both chopped and unchopped calculations. In these cases, results were

consistent within statistical error. Since the chopped and unchopped calculations

in such cases were performed on the same lattices and are therefore not statistically

independent, we use only the higher-statistics results from the unchopped calculations

in our final analysis (we report the numerical results from all calculations in Appendix

A).

The Chroma software suite was used for these runs [50, 51].

5.1.1 Extracting the GFFs

Here we give a summary of the procedure used to extract generalized form factors

from actual lattice calculations.



data set # config volume mstaggered mDWF MDWF mDWF MDWF [MeV] Zonpert
mq, mq i MN 7rWF

1 423 203 x 32 0.050 0.0810 0.4771(15) 0.986 759 1.129

2 348 0.040 0.0644 0.4326(18) 0.945 688 1.119

3 557 0.030 0.0478 0.3742(3) 0.877 595 1.109

4 472 0.020 0.0313 0.3108(3) 0.810 494 1.099

5 652 0.010 0.0138 0.2226(3) 0.728 354 1.085

6 270 283 x 32 0.010 0.0138 0.2226(3) 0.728 354 1.085

7 563(x8) 203 x 64 0.030 0.0478 0.3742(3) 0.877 595 1.109

8 484(x8) 0.020 0.0313 0.3108(3) 0.810 494 1.099

9 628(x8) 0.010 0.0138 0.2226(3) 0.728 354 1.085

10 461(x8) 0.007 0.0081 0.1822(8) 0.691 290 1.084

11 273(x8) 283 x 64 0.010 0.0138 0.2226(3) 0.728 354 1.085

Table 5.1: Data sets used for the calculations in this section. All quantities are given

in lattice units unless otherwise indicated. Heavy sea quark mass m staggered = 0.05
for all ensembles. Nucleon masses taken from [1].

Consider a nucleon three-point function of the sort described by Eq. 2.12. This

almost corresponds to the evaluation of a nucleon matrix element of a local lattice

operator (Eq. 4.25). However, the situation is complicated by the fact that the state

N IQ) is not a nucleon state-it contains contamination from excited states. Also,

the normalization of the states is unknown (and imaginary time-dependent!), and we

must account for that. To see how this is done, consider a nucleon two point function,

projected onto momentum P. It can be written as a sum over a complete set of states

(generalizing the notation in Chapter 3) [521:

C 2pt(P, t) = e-En(P)(t-tsrc) punpol (Ne (P, t .. ).n)(nINa(P, tsc))

= e-Eo(P)(t-trc) (Z(p)Z(p)) 1/2 x Trace [r unpol U(P)U(P)]
Eo(P)

+ [contributions from excited states],

(5.1)

(5.2)

where U'(P) = Z(P)- 1/ 2 Eo(P)1 /2(N,(P)|0) (note that we use 10) as a shorthand for



the nucleon state with implied momentum P) is a spinor with the usual normalization.

Similarly, the three point function for operator 0 can be written:

C3t (P, P', t) = eEn(P)(t-tfrc) EEk(P')(tsnk-t) (5.3)
n,k

xFPO' ,(N,,(P', t)|Ik) (k|10(t)|In) (n|IN(P, t))

= eEo(P)(t-tsc) Eo(P')(tnk-t) (Z(P)2(p'))1/ 2  (5.4)
Eo(P)Eo(P')

x Trace [FPOI U(P)U(P)] x (010(t)10) + [excited states],

where the nucleon is created on timeslice tsrc, the operator is inserted at t, and the

nucleon sink is located at tnk .3 Explicit expressions for our choices of FP' and F""P'l

are given in Appendix G. For t sufficiently far from both the source and the sink,

the excited states can be ignored. It is important to confirm that this is indeed the

case in our calculations; Appendix F summarizes our studies of the excited state

contamination. When excited states are negligible (as they are in this work), the

three point function is indeed proportional to the desired matrix element (010(t)|0).

The exponentials and factors of Z cancel out if we construct the ratio:

C t ( P, P', t) C2 Pt(P,tsnk - t + tsrc)C2pt(P'itsnk)C2pt(P',tsnkY1/
2

R 0 (P, F' t) C 2Pt(P', tsnk) C 2pt(P', tsnk - t + tsrc)C2Pt(P, tsnik)C 2 pt (P, tsnk)J

(5.5)

(Here we use the historically common way of writing the ratio Ro. For a more enlight-

ening way of organizing this expression, see [3].) Because of statistical fluctuations

in the lattice data, a two-point function in the above ratio may happen to have a

negative value. Such cases are excluded from our analysis.

A lattice measurement of Ro(P, P', t) gives a plateau with excited state "tails" in

imaginary time (see Appendix F). Near the center of the plateau, Ro approaches the

3We use t here to indicate time; elsewhere we use it to denote momentum transfer A2 . The

context should make it clear which meaning is intended.



desired lattice operator, and can be written explicitly in terms of GFFs (Appendix

G). In practice, we average the R-values over several values of t near the plateau

midpoint. For source-sink separations of nine (ten) lattice steps, we take the average

of the central two (three) points.

The operators we calculate are renormalization scale dependent. Lattice operators

are effectively regularized using a momentum cutoff of 1/a, and must be converted

to the MS scheme at some renormalization scale p2. The conversion takes the form

[33, 53]:

O s( 2 )W Z O "lattice (5.6)

where the off-diagonal components of Z 0 are operator mixing coefficients, which are

negligible in this calculation [33]. Perturbative renormalization factors ZO,pert were

calculated at the one-loop level in [53]. The relevant factors for this work, transformed

to an MS scale of p 2 = 4GeV 2, are given in Table 5.2.

One factor in the calculation of the perturbative ZOpel is common to all operators.

The axial current renormalization factor ZA, which arises from the renormalization

of the wave function, is a non-trivial part of the perturbative renormalization factors.

Since this factor can also be calculated non-perturbatively (see [33]), we improve the
Z7onpert Opr.R m[3,whaeZPt

renormalization factors by using Zo ZO'Pe". From [53], we have ZO'Pet --
A

0.964. (The values of Z"onPer t are listed in Table 5.1.)

operator H(4) rep ZOPert(p 2 = 4GeV 2)

[y5]y{ID'1 r3) 0.9394

[-ys]-y"Dvlo r(6) 0.9453

[Pff"DOV} r(8), (8) 0.9652

Table 5.2: Perturbative renormalization factors at an MS scale of p 2 = 4GeV 2. The
Z,pe are calculated in the limit of zero quark mass, where the renormalization
factors are the same with or without the inclusion of 75 .

Once we have our renormalized lattice operators, calculated for many values of the



momenta P, P', we have all the ingredients we need to solve for the generalized form

factors. As described in Appendix G, each value of Ro(P, P') which is calculated on

the lattice can be written as a linear combination of generalized form factors with

known coefficients:

Ro(P, P') = c (P, P') FF1 (t) + co(P, P') FF2 (t) + cO (P, P') FF3(t)+-.. (5.7)

The FFj represent the form factors appropriate for the operator ( under consider-

ation. The coefficients co are known functions of P, P' and nucleon mass, and are

calculated by evaluating the dirac traces in Eq. G.1 (transformed to Euclidean space).

Note that the form factors depend only on the magnitude of the momentum transfer

t = A2 . Since we typically have access to many different P, P' corresponding to each

value of t (see Table 5.3), as well as several index combinations for each lattice oper-

ator (see Appendix G), Eq. 5.7 represents an overdetermined' system of equations,

where the unknown quantities are the GFFs FFi(t). We use an SVD analysis [54] to

solve the system of equations and extract the form factors.

Solving the overdetermined system of equations is equivalent to performing a least

squares fit to the lattice data. When performing such a fit, we have the option of

taking correlations among the data points into account by using the full covariance

matrix in the definition of x2 . Also, many of the index and momentum combinations

for a given lattice operator lead to the Ro(P, P') being set equal to zero (that is, all

the co = 0). If we are using a correlated x2 , we have the option of including these

"measurements of zero" in the fit.5 In the data analysis for this thesis, we chose to

extract the form factors using an uncorrelated fit (this is the method used in [52]).

For studies using the more sophisticated correlated analysis, see [2, 3].

4 for most values of t
5For an uncorrelated fit. these zero cases necessarily drop out of the analysis.



5.2 GFFs

Here we present the primary results of the lattice calculations described above, and

discuss the fits we performed to the form factor data. Full results for all the form

factors calculated in this thesis are given numerically in Appendix A. Generalized

form factors for the mq = 0.01, 203 x 64 unchopped MILC ensemble6 (with fits, as

described in the next section) are plotted in Fig. 5-1 and Figs. 5-3 through 5-7. In

these plots (and in the fits to all ensembles), we include only a subset of the calculated

momenta. The included momenta are indicated with a checkmark in Tab. 5.3. Points

at the excluded momenta are generally much noisier than the rest of the data,7 and

tend to be highly correlated with each other[49], so leaving them out of the analysis

has a minimal effect numerically. For comparison, Fig. 5-2 shows examples of form

factor plots with all the momenta included.

Table 5.3: Lattice momenta at which GFFs were calculated. Momentum is related to
k by P - 2k, where L is the spatial extent of the lattice. Curly braces represent all
possible rotations and reflections of the enclosed components. Only cases indicated
by V/ were included in the analysis (this is similar to the cut applied in [2, 3]).

The data shown here for the second moment GFFs include the perturbative renor-

6data set 9
7because of large individual momentum components

source k: sink k': included?

000 000

( ~ -100){100 000

-111}1 0 V/-1{10} -100
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Figure 5-1: Here we show lattice results for the generalized form factors of the zero-
derivative vector operators from data set 9. From top to bottom, the GFFs plotted
are: A(') B('. Left hand plots are for flavor u, right hand for flavor d. The lines with
error bands are the results of fits with Eq. 5.8; resulting fit parameters and mean X2
are shown in inset. All errors are from a jackknife analysis.

malization factors (with non-perturbative improvement) as described above. The first

moment results are not shown with any renormalization.

5.2.1 Fits to GFFs

In this section, we discuss the fits we performed to the form factor data. We fit

the form factors for two reasons. In cases where lattice data at momentum transfer

Q2 = -t = 0 is not available, we need to extrapolate the data to obtain a value for

the form factor in the forward limit. Also, to plot the transverse parton distributions

discussed in Chapter 4, we need to take fourier transforms of the form factors. For

this we need a continuous function that approximates the lattice data.

We emphasize that the form factor fits are motivated by practical considerations,

and not by any theoretical functional form. It is common to fit many of these form

AO = 1.170(63)

mA = 1.419(72)
p = 6.00(39)

2 .(.
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Figure 5-2: Plots of Aio for data set 9 showing both the well-behaved momenta that

were included in the regular analysis (blue points), as well as the noisy momenta that

were excluded (red points). Note that only four out of the six possible bad points

appear in these plots. The other two were excluded from the analysis because of

negative two-point functions appearing in Eq. 5.5.
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Figure 5-3: Sample results for the generalized form factors of the zero-derivative axial

operators. See caption of Fig 5-1 for details.
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factors to a dipole ansatz: f2(Q 2 ) = .) In this work, we consider a more

general p-pole ansatz [4, 55]:

A
f,(Q2) om.

(5.8)

There are some practical constraints we must impose on the the value of p, if we are

to avoid divergences in the resulting transverse parton distributions [4]. Requiring

that the distributions remain finite at b = 0 constrains p to be larger than some

5 (5.u.)

Q2(.u.)

&2(I.u.)
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Figure 5-5: Sample results for the generalized form factors of the one-derivative vector
operators. See caption of Fig 5-1 for details.

minimum pmin (see Tab. 5.4). In most of our fits, we constrain p to be greater than

( + 0.5) to avoid spurious peaks at the origin. For the GFFs ATnO, which poorly

constrained p, we fixed p = 3.5. In addition, we require p to be less than 6 in all

cases, and keep mA between 0.3 and 3.3 (in lattice units). These constraints keep

poorly determined fits from giving unreasonable values, and in most cases have no

impact on the fit results. When fitting GFFs that do not enter into the transverse

distributions, we generally allow p to range between 1 and 6. In the particular case

of BT21, for which the lattice data was consistent with zero, we fixed p = 1.
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form factors of the one-derivative axial

For select cases, we tested the dependence of the fits on the strength of the pole by

holding the parameter p fixed at different values and comparing the results. We also

checked the dependence on the range of Q2 = -t included in the fit. These checks

are summarized in Appendix E.

GFF:

Pmin:

Ano

1

Bno

3/2

AnO

1

ATno

1

ATnO

2

BTnO

3/2

Table 5.4: pin for the GFFs in the transverse parton distributions [4]
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Chapter 6

Results

In this chapter, we will take a closer look at the results of the calculations discussed

in the previous section, with particular emphasis on the physical interpretation of

quantities that can be extracted from generalized form factors. We also explore

chiral extrapolations of the lattice results.

6.1 Transverse Position PDFs

In this thesis, we have been using the transverse parton distributions in Eqs. 4.19 -

4.23 as a framework for interpreting generalized form factors. In Section 4.4, we looked

at many of the usual physical quantities calculated from GFFs, and saw how they

arise directly from consideration of the parton distributions. These quantities may in

fact be thought of as embodying basic features of the distributions (normalization,

mean, variance, etc.). From this perspective, most GFFs have a straightforward

interpretation, though their physical significance may be somewhat obscure.

As described in Chapter 5, we can fit the form factor data to smooth functions of

Q2 = -t. It is therefore possible to construct (x-moments of) the transverse parton

distributions given in Eq. 4.19 and following. We show plots of these distributions

in Figs. 6-1 - 6-3. These plots provide a way of bringing together, in a convenient

visual summary, all the separate quantities discussed in Section 4.4. In addition,

they display information about the more obscure quantities not discussed (e.g. the



Q2 -dependence of ATlo). Such pictures have an obvious intuitive appeal, though they

are more suited to conveying the qualitative features of transverse distributions than

quantitative results.

Some additional comments should be made about these pictures. Keep in mind

that the lattice data (Figs. 5-1 - 5-7 ) spans a finite range of Q2. To make the plots

in Figs. 6-1 - 6-3 , we are relying on fits as discussed previously. Since the behavior of

the distributions near |bI = 0 is determined by the behavior of the GFFs at Q2 -+ 0o,

which is strongly influenced by our choice of fitting ansatz, the details of this region

(as well as other fine spatial features-or lack thereof) are nearly entirely dependent

on the systematics of our fits. Also, we have at present no way to perform a chiral

extrapolation of all the GFFs at large values of momentum transfer, so there is no

way to extrapolate these pictures to the physical pion mass. 1 Here we show results

only for data set 9 (plots for more ensembles are given in Appendix B).

6.2 Chiral Extrapolation Schemes

The quantities presented here have been calculated on lattices with large pion masses.

To compare with real world experiments, we need to extrapolate these results to the

physical pion mass. For this, we make use of Chiral Perturbation Theory (xPT)-

an effective field theory of QCD in the limit where the bare light quark masses go

to zero. In this limit, chiral symmetry becomes an exact symmetry of the QCD

lagrangian, and so the pions (the Goldstone bosons of the dynamical breaking of chiral

symmetry) become massless. Since the "real world" pion masses are small (relative to

the dynamical symmetry-breaking scale AX 1.2 GeV), it is reasonable to perform an

expansion in the pion mass, thus organizing corrections to the chiral limit according

to a well-defined ordering scheme. In practice, there are several different ways this

ordering can be defined, depending on which degrees of freedom are included in the

effective field theory and which (mass) scales are considered to be large. Here we

briefly summarize the features of the various XPT schemes used in this thesis.

'For some of the GFFs, though, this may be feasible [33}.
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6.2.1 Heavy-Baryon XPT

Heavy-baryon chiral perturbation theory (HBXPT) is the most basic flavor of chiral

perturbation theory.2 It takes both A. and the nucleon mass to be large scales, and

the pion mass and momentum transfer to be small scales. The perturbative expansion

is ordered by powers of c, where e is any small scale divided by any large scale. One-

loop chiral expressions in the HBXPT scheme for every GFF considered in this thesis

can be found in the work by Diehl, Manashov and Schsfer [56, 57). Because of this

availability, we use HBXPT as our primary chiral extrapolation tool.

6.2.2 Covariant Baryon XPT

The covariant baryon chiral perturbation theory (CBXPT) scheme includes correc-

tions due to finite nucleon mass MN by keeping all powers of the factor (m,/Mo)

arising from the calculation of loop diagrams of the effective theory. (In comparison,

HBXPT can be thought of as the truncation of this expansion at the power correspond-

ing to the given chiral order.) In our analysis we use the expressions calculated in

the IR renormalization scheme of Gail and Hemmert [58, 59]. Unfortunately, CBXPT

expressions are not yet available for all quantities we calculate here. In the cases

where they are available, it will be interesting to compare the CBxPT extrapolations

with the corresponding HBXPT versions.

6.2.3 SSE

The most basic XPT power counting assume that pions and nucleons are the only

relevant degrees of freedom. However, this is not always the case-the delta resonance

is known to play an important role in the nucleon axial coupling gA, for example. The

SSE (small scale expansion) scheme[58, 60] is one scheme which includes the delta

explicitly in its power counting by treating the delta-nucleon mass splitting Am as an

additional small mass scale. In the limit where the delta decouples from the theory,
2There are actually many effective theories that could be labeled as HB\PT. In this thesis, we

use the label to refer specifically to the basic yPT power counting as described in this paragraph.
This could also be called "nucleon HBXPT."



we recover the standard nucleon HBXPT expressions.3 As with the covariant case,

SSE expressions are available only for a limited set of quantities, so comparison with

HBXPT will be useful.

Of course, a perturbative chiral expansion only works for small enough pion

masses, and most of our calculations were done at pion masses beyond a credible

range of applicability. For this reason, we generally restrict the range of our fits to

m, , 500 MeV, when possible.4 Because of our limited number of data points, we

hold fixed some of the low energy constants (LECs) that are relatively well known

from phenomenology. Also, some of the CBxPT fits depend explicitly on the nucleon

mass at finite m,; in these cases, we used a simple linear (in m,) interpolating func-

tion to approximate MN(mr).5 Table 6.1 gives the nucleon interpolating function, as

well as constants that were used as inputs to these fits.

g0 fAc c 0, MN' Interpolating formula for MN(mr)

1.2 86 MeV 1.5 3.5 270 MeV 890 MeV 0.806GeV +0.991 mr

Table 6.1: inputs to chiral fits.

6.3 Results for Physical Quantities

Here we present results for many of the physical quantities discussed previously in

Chapter 4. We show the isovector (u - d) and isoscalar (u + d) flavor combinations. 6

In these plots, the lattice data are shown with the results of various chiral fits. Blue

3 Note that within the broader category of HBXPT, the delta has often been included as an
explicit degree of freedom. SSE can be regarded as one particular example of such a scheme.

4This is still quite heavy. The fits in this chapter are primarily a test of the plausibility of the
chiral extrapolations.

5This interpolating function does not have the correct behavior in the chiral limit, but it does
happen to come surprisingly close to the physical nucleon mass[1].

6Note that we define our isoscalar quantities to be normalized according to the lattice (u + d)
flavor combination. For example, the isoscalar dirac form factor Fj'(0) = A1d)(0 ) = 3.



circles are data points from 203 x 64 unchopped lattices (data sets 7-10); yellow

diamond is data point from 283 x 64 unchopped lattice (data set 11); red squares are

from chopped lattices (data sets 1 & 2). The experimental or phenomenological point,

when applicable, is indicated by a star. The dark part of the error band shows range of

m, values fit (the experimental point is never included in fit). We give the fit x2/d.o.f

and extrapolated value at physical pion mass (PP) in the inset of each graph. Lowest-

moment quantities have been normalized by dividing by gv - A"-7d) (0) before fitting.

The results from phenomenological analyses of experiments are from [61, 62, 63].

6.3.1 gA

In Fig. 6-4, we show the results of fitting the (normalized) lattice data for g -=

A(0 (0) with the SSE chiral formula. A fit to the four lightest pion masses (right-

hand panel) describes the lattice data reasonably well, but significantly undershoots

the experimental value. (Our extrapolated result is consistent with the lattice calcu-

lations discussed in [64], but our smaller statistical errors no longer encompass the

experimental point.). A fit to just the three lightest masses (the minimum number of

points needed to determine all three fit parameters) happens to come quite close to

the experimental point, though with a large statistical uncertainty.

9A BA

1.6SSE SSE
1.5 2 : 0.02(28) .2: 0.29(77)

PP: 1.29(14) PP: 1.183(41)
1.4 1.4

1.3 1.3

0.1 0.3 0.4 O.5 6M 0.1 0.2 0.3 0.4 0.5 0.6
1.1 1.1

1.0 1.0-

Figure 6-4: SSE fits to gA. For these fits, we fixed f,0, CA and A' to the values shown

in Table 6.1. The three fit parameters were 9 4, gi and a counter-term. Resulting

values of gi are 4.6(3.1) and 2.4(6) for the left-hand and right-hand fits, respectively.

Figure 6-5 shows the results of HBXPT fits to gA. It is clear that these fits fail to



describe the lattice data, and miss the experimental point completely. We take this

as evidence that inclusion of the delta degrees of freedom (as in the SSE formula) is

essential when fitting gA.

8A 9A

1.3 HB1.3

[IGeV] 1.2
0.1 0.2 0.3 0.4 0.5 0.6m

1.1 ;1.1

1.0 i1.0
20(8

0.9 ~ PP: 1.130(75) 0.

0.8 L0.8-

Figure 6-5: HBXPT fits to gA. Each fit involves

term.

HB

0.2 .3 0.4 0.5 0.6 m,2[Ge

f:1.9(1.9)
PP: 0.987(15)

two parameters: g0 and a counter-

6.3.2 AEu+d

The isoscalar combination A1" (0) gives the total7 light quark contribution to AE.

HBXPT fits to the lattice data (Fig. 6-6) have poor x2 values, but come surprisingly

close to the experimental point. The main "feature" of the chiral extrapolations is the

precipitous drop at low pion masses. This drop-off provides the connection between

the lattice data (which is relatively flat over the fitting range) and experiment. It will

be interesting to see whether this behavior shows up in lattice calculations at lighter

pion masses. Note that the fits are relatively insensitive to changes in the values of

the LECs used.

7except for disconnected contributions, which we do not calculate in this study
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Figure 6-6: HBXPT fits to AEu+d. Upper plots fix

lower left-hand plot we fix go = 1.3 to illustrate the

lower right-hand plot we fix f0 - 92 MeV.
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6.3.3 Tensor Charges

Figure 6-7 shows HBXPT fits to the lattice data for the isovector tensor charge (gT =

A$"-d) (0)). The tensor charge is in many ways the transverse analog of the axial

charge gA, and indeed we note that the HBXPT fits to gr resemble the HBXPT fits

to gA (Fig. 6-5). By extension, we expect that the inclusion of the delta is necessary

for an accurate extrapolation of gT (also see [65]).
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Figure 6-8 shows fits to the isoscalar combination A "u+d) (0), which we call 6 Eu+d

in analogy to the axial AEu+d. Again, note that the resulting extrapolations are

almost identical to the axial case shown in Fig. 6-6.

0.7

0.6-

0.5

0.4

0.3

0

j2: 0.6(1.1)
PP: 0.422(15)

0.2 0.3 0.4

x2: 3.9(2.3)
PP: 0.3832(89)

Figure 6-8: HBXPT fits to 6Eu+d

6.3.4 Momentum Fractions

Unpolarized

We perform fits to the unpolarized momentum fraction (x) using both the HBXPT

and CBXPT formulas (Figs. 6-9, 6-10). In both isovector and isoscalar cases, the

covariant fit appears to describe the lattice data over a wider range of pion masses;

however, the heavy baryon fit extrapolates closer to the phenomenological point.

Note that the HBXPT chiral formula for (x) (u+d) at one the one-loop level is simply a

linear expression in m'. The corresponding O(p2 ) CBxPT expression has nonanalytic

dependence on m' due to the inclusion of nucleon mass terms.

The CBxPT expression for (x)(u-d) depends on the chiral limit value of the po-

larized momentum fraction (X) d). For the fit, we set this value to 0.16, based on

the HBXPT fit presented in the next section.
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Polarized

For the polarized momentum fractions (x)A and (x)6 , we fit using HBXPT. The fits

for axial polarization (Fig. 6-11) look quite reasonable, and extrapolate well to the

physical point. Phenomenological values for tranverse polarization (Fig. 6-12) are

not available, but the fits do a noticeably worse job of describing the lattice data.
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6.3.5 Radii

Unpolarized (charge radius)

Figure 6-13 shows data for the slope of A1d (t) at t = 0. As discussed in Section

4.4.3, the three-dimensional charge radius can be expressed in terms of the slope:

(r2 ) = 62Aio(t)|t-o. In chiral perturbation theory, this is a divergent quantity, with

leading log m, behavior. At the one-loop level, both the HBXPT and SSE formulas

have only one free parameter, which is a constant offset that shifts the whole curve

up or down. The shape of the curve in both cases clearly fails to describe the lattice

data, but as a plausibility check we constrain the curves to go through the lowest-

mass point. (By a fortuitous accident, the curves also pass close to the experimental

point.)
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The O(p 4 ) CBXPT formula has a term proportional to the LEC c6 (which is

essentially the chiral limit value of the isovector anomalous magnetic moment, and

should have a value of approximately 4.5). Including c6 as a fit parameter, we get the

two-parameter fit shown in the bottom plot of Fig. 6-13. The resulting fit is able to

describe the lattice data, but falls short of the experimental point. Also, the value of

c6 from this fit is about 16, which is much too large. Clearly, none of the available

formulas are able to describe both the lattice data over the full range of pion mass

and the experimental point.
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Figure 6-13: Slope of

obtained by fitting the

the GFF A(u-) with chiral fits. (Note: these slopes were

form factors to Eq. 5.8 with p > 2.)

For the isoscalar charge radius (Fig. 6-14), both the HBXPT and CBxPT fits do

well at fitting the lattice data, and give very similar extrapolations. However, they

completely fail to account for the experimental point. This behavior, while puzzling,

is consistent with the results of other lattice studies[3].
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obtained by fitting the form factors to Eq. 5.8 with p > 2.)

Polarized (spin density radii)

As discussed previously, the slopes of the axial and tensor GFFs A10 and ATo can

be interpreted respectively as radii of longitudinal and transverse spin densities in

appropriately polarized nucleons. At the one-loop order, the HBxPT formula for

these quantities is simply a constant plus corrections of O(m.), so here we fit to the

ansatz CO + Cm,.

In Fig. 6-15 we show fits to lattice data for the slope of the axial form factor.

Figure 6-16 shows the corresponding fits to the tensor form factor. The fits describe

the lattice data reasonably well, although with large uncertainties. In all cases the

slopes are significantly less than for the unpolarized form factor.
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Figure 6-15: Slope of Z+d) (left) and A"-d) (right) with chiral fits. In the left-hand

graph, the outlying point at m, ~ 350 MeV was excluded from the fit. (Note: these

slopes were obtained by fitting the form factors to Eq. 5.8 with p > 2.)
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6.3.6 Anomalous Magnetic Moments

Unpolarized

In the case of the anomalous magnetic moment, we have chiral formulas available in

all three schemes used in this work: HBXPT, CBXPT and SSE.

Results for the isovector case are shown in Fig. 6-17. All three schemes provide

plausible descriptions of the lattice data over the range of the fits, and show the same

sharply peaked behavior in the chiral limit. Quantitatively, the SSE and CBXPT ex-

trapolations agree with each other quite well, and are several sigma from the HBXPT

extrapolation (though this agreement must be something of a coincidence, because

the two schemes involve different corrections to the naive heavy baryon case).

The SSE formula used in this case contains terms up to partial O(e0) [60], and

so does not represent a complete or consistent power counting. Nevertheless, the

SSE extrapolations come within a few (statistical) sigma of the experimental value,

which is relatively good agreement compared with the HBXPT result. Also, the SSE

formula contains the LEC cv, which we include as a free parameter in our fits. From

the fit to values of m, ,< 600 MeV (lower right-hand side of Fig. 6-17), we obtain

cv = -2.8(6) GeV', which is consistent with phenomenology.
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Figure 6-17: Chiral fits to the isovector anomalous magnetic moment r,. Upper left-

hand plot shows CBxPT fit; lower left-hand plot shows HBXPT fit. Right-hand plots

show SSE fits for two different ranges of pion mass.

The isoscalar fits are shown in Fig. 6-18. In this case, the partial O(E4) SSE

formula is simply linear in m2 and has no dependence on the delta. Thus the "SSE"

results in this section can be thought of as simply tree-level HBXPT results. It is

interesting to note that the simple linear fits do much better than the one-loop heavy

baryon formula, at both fitting the lattice data and extrapolating to the experimental

point. The CBXPT formula here is O(p4 ) and agrees well with the linear fit.
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Figure 6-18: Chiral fits to the isoscalar anomalous magnetic moment K,. Upper left-

hand plot shows CBXPT fit; lower left-hand plot shows HBXPT fit. Right-hand plots

show SSE fits for two different ranges of pion mass.

Polarized

As discussed in Chapter 4, one can separate the magnetic moment into contributions

from quarks polarized (anti)parallel to the nucleon. The GFF characterizing this

separation is 5T1o(0), which we will call r6. For both the isovector (Fig. 6-19) and

isoscalar (Fig. 6-20) cases, the heavy baryon fits describe the data reasonably well.

(In the isoscalar case, the fit formula depends on the chiral limit value of ATOd.

Based on our results for this quantity (see Section 6.3.3), we set this value to be 0.4.

The dependence is quite weak: changing this number by a factor of two changes the

resulting extrapolation by about one sigma.)

100

mf2[GeV 2l

u(,+d)



1 .d) 
K.(,d

2.5 2.5 HB

2.0 2.0

1.5 x2 : 0.5(1.4) 1.5 ,: 0.25(71)

PP: 1.38(56) PP: 1.29(16)

1.0 0.1 .2 0.3 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6m 1e
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KV, for two different ranges of included pion mass.
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6.3.7 Angular Momentum

We saw previously that we can calculate the quark contribution to nucleon angular

momentum: Jq = . (A20 (0) + B20 (0)), as well as the contribution of quark spin to

angular momentum: jAE = !A 10(0). By taking the difference of the two, we obtain

the quark orbital angular momentum. In addition, we can find the difference in

contributions to angular momentum from quarks polarized parallel and antiparallel

to the nucleon: 6 Jq = 1 (AT20(0) + 5T20(0)). Lattice data for these quantities are

shown in Fig. 6-21 for up and down flavor quarks individually. (The chiral fits are

done with a combination of HBXPT and SSE expressions.)

There are several interesting features of these results. Notice that the total angular

momentum contribution of the down quarks is nearly zero (top left panel of Fig. 6-
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21). Also, the orbital angular momentum of up quarks is nearly equal and opposite

to the orbital angular momentum of down quarks (bottom left panel).8 For the one

case where experimental data is available, lattice results agree well with experiment

(top right graph).
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Figure 6-21: Quark angular momentum and various components thereof.
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6.4 Comparison between (X)A and (Xz) 6

In this section, we look more closely at the difference between the axial and tensor

moments (x")A and (x")i. As noted in Section 4.4.1, these quantities have similar

intuitive interpretations. The main difference between them, if we neglect other

relativistic corrections due to the choice of a special longitudinal direction, is the sign

of the antiquark contributions. For example, the axial charge' is the sum of quark,

8 One could say that the quark contribution to nucleon angular momentum is found on the up
quarks. Or, one could say that the total quark contribution comes from quark spin. However, it is
clearly a logical fallacy to conclude that the quark contribution to nucleon spin can be attributed
to the spin of the up quarks!

9Here we consider only the isovector flavor combination.
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antiquark contributions:

gA -Au +Ai - (Ad±+Ad). (6.1)

On the other hand, the tensor charge is the difference of quark, antiquark contribu-

tions:

gT = Su - 6u -(6d -- d). (6.2)

Now, Aq and 6q (defined here without antiquark contributions) are not identical

quantities except in the non-relativistic limit [323. However, for the purposes of this

discussion, let us assume that the differences between them are small in relation to

the size of the antiquark terms Aq. Then the ratio gT/gA can be approximated as:

gT AU - Ai- (Ad - Ad)

gA AU +Ai-(Ad +Ad)

=1-2 Aii -Ad
AU A - (Ad--Ad)

=1-2 (6.3)
9A

We can thus estimate the magnitude of the antiquark contributions to gA by compar-

ing gA with gr. In the left-hand plot of Fig. 6-22, we show the lattice data for the

ratio 9T/gA as a function of pion mass, together with a fit to a quadratic in m,.0

From this plot, we estimate that the antiquark contributions to gA are on the order

of 5%, and that the quantity (A-i - Ad) is positive. We can compare this with the

recent measurements of Aq in [66], from which we find: (1 - 2 Aii-Ad)exp = 0.76(6) at

a renormalization scale of 4 GeV 2. This gives antiquark contributions on the order of

10%, and a positive value for (As - Ad). Given the approximations we made in our

10 We saw previously that we don't yet have a reliable chiral formula that can fit 9T, so here we
use a polynomial fit ansatz to get some idea of the extrapolation to the physical pion mass.
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interpretation of the lattice data, we consider these results to be consistent.

We could also compare the second moments (x)A and (x)3 (see right-hand plot in

Fig. 6-22). The signs of the antiquark contributions in this case are reversed relative

to the first moments, and the lattice results reflect this.
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Quadratic fit
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1.4 /
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0.85 PP: 0.877(26)
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Figure 6-22: Comparison of tensor and axial moments. Left: gT/gA. Right: ratio of

second moments.

6.5 The Other GFFs

Eight generalized parton distributions (per quark flavor) parameterize the bilocal

matrix elements in Eqs. 4.2, 4.3 and 4.4. Only six of these enter into the expressions

for transverse quark distributions (Eq. 4.19 and following). As we argued in Chapter

4, the GFFs corresponding to Mellin-moments of these six GPDs (for ( = 0) can

be given a straightforward physical interpretation. The other GFFs come into the

picture only for f 0, and so do not have a simple interpretation in terms of transverse

parton distributions.

Some of these form factors do have well-established interpretations in other con-

texts; for example, the GFF bio(t) can be identified as the pseudoscalar form factor

Gp(t) [67]. It would be interesting to study these form factors further, and to under-

stand their relationship to the parton distributions discussed here.
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6.6 Error Analysis

Error analysis is an essential part of any measurement or numerical calculation. A

number without an error bar is nearly useless at best, and deceptive at worst. The

uncertainties in a physical measurement generally fall into two categories: statistical

(errors resulting from random fluctuations) and systematic (errors resulting from the

experimental procedure). The same is true of calculations in lattice QCD (which in

some ways can be thought of as a "numerical experiment").

6.6.1 Statistical Uncertainties

Statistical fluctuations are intrinsic to any Monte Carlo procedure. In lattice QCD,

these fluctuations are manifest in the random gauge configurations that constitute an

ensemble. A great deal of effort has been put into obtaining enough statistics (i.e.

large enough ensembles) to bring these uncertainties under control. Indeed, a major

feature of the work presented here is the significant reduction of statistical error bars

relative to the older calculations presented in [33). The analysis of statistical error in

this calculation was done using the jackknife procedure as described in Appendix D.

6.6.2 Systematic Uncertainties

The nature of systematic uncertainties makes them more difficult to pin down than

statistical uncertainties. In some cases, we can only hope to estimate the magnitude

of a systematic effect. Such estimates are valuable, however, and we have undertaken

several studies in an attempt to understand the potential systematic errors in our

results. In the next few sections, we will briefly discuss some of the possible sources

of systematic error.

Excited States

As mentioned several times in this thesis, one potential source of systematic error is

the contamination of our nucleon measurements with excited states. We studied this

possibility by fitting selected operator plateaus with expressions containing excited
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state terms (see summary in Appendix F). These terms were negligible on the time

slices we use in our analysis, leading us to conclude that excited states are not a

significant source of error in our results.

Fits to Form Factors

By arbitrarily selecting a particular ansatz" to fit the generalized form factors, we

necessarily bias the resulting extrapolations to t = 0 (as well as the calculated values

of form factor slopes). One way to gauge the severity of this bias is to vary the fit

ansatz and observe the resulting change in the fit values. We present the results

of such an exploration in Appendix E. We conclude that the choice of fit function

may indeed have a significant effect on the extrapolation of form factors, and on

the calculation of slopes at t = 0. In the worst cases, the systematic error may be

several times the statistical uncertainty. It would be desirable to reduce this error

by calculating GFFs at more values of t near zero, either by going to larger lattice

volumes or through techniques such as partially twisted boundary conditions [68].

Finite Lattice Volume and Lattice Spacing

In this study, most of the calculations were done at a single volume of about (2.5 fm)3 .

At one pion mass (- 350 MeV), calculations were also done at a larger volume of

about (3.5 fm) 3 to get an estimate of any finite size effects. With only two data

points, it is impossible to do a rigorous analysis, but a survey of the results presented

in this chapter suggests that there is not a large systematic effect due to finite volume.

In particular, the data for gA (see Fig. 6-4, for example) shows excellent agreement

between the two volumes. Since 9A is known to be particularly sensitive to finite

volume effects [69, 70], we conclude that finite volume effects are not significant in

this work.12

All of our calculations were done at a single lattice spacing, so we have no way to

perform any sort of continuum extrapolation with our results. However, comparing

"iin our case, Eq. 5.8
12One caveat: calculations at the lowest pion mass are more sensitive to lattice volume.
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with other studies (e.g. [3]), we expect the effects of finite lattice spacing to be small.
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Chapter 7

Summary and Conclusions

In this work, we have presented results for two different studies of nucleon structure.

These studies use lattice QCD to probe the spatial and spin distribution of the quarks

in a nucleon, and illustrate the potential of numerical calculations not only to repro-

duce experimental values, but also to shed light on the behavior of strongly bound

systems in QCD.

The first study (Chapter 3) used the calculation of overlaps of trial nucleon sources

with the nucleon ground state to perform a variational study of the nucleon wave-

function. By calculating the overlaps for many different trial sources, we were able to

determine which trial source most nearly approximates the true nucleon. Not only is

this advantageous for future computations, but it also provides insight into nucleon

structure. Trial sources with large overlaps give us clues as to where the quarks are

inside a nucleon, and what they are doing.

In this study, we achieved overlaps of over 80% with trial sources involving a

combination of gauge smearing and quark smearing. The best trial sources were

obtained by using only the non-relativistic components of the quark source fields,

making all the quark wavefunctions about the same size, and centering all three

quarks at the same point.

The second and larger study presented in this thesis used the calculation of gen-

eralized form factors to explore nucleon structure through parton distributions. We
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obtain expressions for parton distributions in three dimensions: longitudinal (plus-)

momentum, and transverse position in the infinite momentum frame. Lattice cal-

culations give us Mellin moments of the longitudinal distributions, leading to two-

dimensional (transverse) distributions of charge and energy. We emphasized an intu-

itive picture of the nucleon as a cloud of point-like constituents, and used this picture

as a framework to interpret the physical significance of the form factors we calculate.

By taking appropriate linear combinations of the vector, axial and tensor operators,

we obtained distributions of quarks with particular spin polarizations. These distri-

butions provide us with a quantitative picture of the quarks inside a nucleon in the

infinite momentum frame.

In Chapter 4, we provided an extensive list of specific nucleon observables that

can be extracted from these parton distributions. Chapters 5 and 6 presented the

results of a major effort to calculate a complete set of generalized form factors for the

lowest two Mellin moments, using domain wall fermions on MILC lattices with pion

masses as low as 290 MeV. From these form factors, we constructed the transverse

distribution functions explicitly. We also performed chiral extrapolations for many

selected form factor observables, using three different flavors of chiral perturbation

theory.

From these studies, we conclude that lattice QCD has matured as a valuable tool

for understanding nucleon structure from first principles.
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Appendix A

Tables

A.1 Variational Calculation

1.1

0.01331(61)

0.1508(98)

0.254(19)

0.281(22)

0.280(24)

4.2

0.0474(24)

0.238(17)

0.331(24)

0.340(26)

0.329(28)

4.9 5.3

0.0620(33) 0.0656(36) 0.0660(38)

0.283(20) 0.296(21) 0.297(21)

0.360(25) 0.363(26) 0.358(26)

0.357(27) 0.355(28) 0.348(29)

0.340(29) 0.335(30) 0.327(31)

Table A.1: Overlap tables for non-APE smeared four-component sources.

Rqtark 1.1 3. 4.2 4.9 5.3

1.1 0.01667(81) 0.0834(46) 0.1146(65) 0.1225(72) 0.1236(75)

3. 0.231(17) 0.364(29) 0.438(33) 0.462(34) 0.468(33)

$ 4.2 0.380(32) 0.473(38) 0.507(37) 0.508(37) 0.502(37)

4.9 0.415(37) 0.480(40) 0.491(40) 0.483(40) 0.472(41)

5.3 0.413(39) 0.462(42) 0.464(42) 0.452(43) 0.439(44)

Table A.2: Overlap tables for non-APE smeared two-component sources.

111

Rquark

1.1

Z 3.

4.2

4.9

5.3



Rquark

3.1 4.3 5.

e = 0 0.397(24) 0.457(24) 0.477(24)

3.1 4 0.466(31) 0.473(31)

8 0.426(47)

_ = 0 0.534(26) 0.570(26) 0.579(26)

* 4.3 4 0.549(34) 0.561(24) 0.562(24)

8 0.485(51) 0.518(38) 0.518(50)

f = 0 0.566(27) 0.589(27) 0.593(28)

5. 4 0.570(36) 0.574(26) 0.572(27)

8 0.536(64)

Table A.3: Overlap tables for APE smeared four-component sources, at different

values of quark-diquark separation f?.

Rquark

3.1 4.3 5.

f = 0 0.625(40) 0.723(37) 0.754(35)

3.1 4 0.737(48) 0.748(46)

8 0.678(76)

f = 0 0.767(37) 0.808(35) 0.817(36)

' 4.3 4 0.784(48) 0.792(34) 0.792(35)

8 0.678(78) 0.728(58) 0.729(74)

f = 0 0.789(37) 0.809(38) 0.810(39)

5. 4 0.785(50) 0.782(38) 0.777(38)

8 0.723(93)

Table A.4: Overlap tables for APE smeared two-component sources, at different

values of quark-diquark separation f.
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A.2 Generalized Form Factors

Tables A.5 - A. 15 give numerical results for the generalized form factors as a function

of Q2 (in lattice units). The top panel of each table gives results for up quarks in

a proton, and the bottom panel gives results for down quarks. The last four rows

of each panel give the parameters and X2 /d.o.f. resulting from a fit of Eq. 5.8 to

the corresponding form factor data. Only Q2 values indicated with a check mark are

included in the fit. Note that while the second moment form factors are renormalized

as described in Chapter 5, the first moment results are shown without renormalization.

(We choose to display the results this way because we simply use the vector charge

A17 d~ (0) to renormalize the first moment form factors.)
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Q2 Ajo(") Biol") A20 (") B20 (") C20("1) Zio0(") f5I 1 ) 12)(") Z320(")) N20(") A-,10(") Z'rrto(* ) AT20 A-r 1-20(") no0") 1$20(") f3r1"2

/0.000 1.726(2) - 0.413(4) 0.789(11) 0.229(5) 0.779(11) 0.253(5)
0.081 1.416(59) 0.741(373) 0.381(21) 0.058(119) -0.172(144) 0.757(55) 0.225(21) 0.677(47) 0.922(107) 2.290(269) 0.236(21) 0.109(38) 0.268(96) 0.299(332)

/0.096 1.324(5) 1.164(47) 0.358(3) 0.191(16) -0.064(12) 0.676(9) 6.786(313) 0.209(4) 0.805(131) 0.659(10) -0.422(157) 2.302(27) 0.224(4) 0.030(61) 0.429(13) -0.021(29)
/0.097 1.313(10) 1.203(99) 0.356(6) 0.148(34) -0.043(29) 0.672(19) 6.893(706) 0.204(8) 0.686(262) 0.664(17) -0.361(285) 2.287(49) 0.228(7) -0.051(106) 0.432(22) 0.034(90)

0.166 1.108(56) 0.720(219) 0.315(19) 0.049(68) -0.070(42) 0.608(52) 3.184(1.296) 0.199(20) 0.426(421) 0.746(71) -2.291(738) 2.032(157) 0.235(25) -0.355(247) 0.352(53) 0.156(117)
/0.188 1.054(9) 0.889(41) 0.312(4) 0.149(15) -0.051(7) 0.588(11) 4.725(193) 0.189(4) 0.534(78) 0.568(10) -0.310(84) 1.828(26) 0.203(5) - 0.384(12) 0.009(19)
/0.189 1.036(18) 0.956(90) 0.314(8) 0.141(34) -0.079(17) 0.564(26) 4.294(540) 0.178(9) 0.395(187) 0.567(20) -0.303(205) 1.825(54) 0.198(8) 0.114(74) 0.388(22) 0.084(61)
/0.197 1.049(14) 0.950(51) 0.317(5) 0.167(18) -0.026(9) 0.593(13) 4.937(261) 0.193(5) 0.595(114) 0.561(16) -0.193(125) 1.763(34) 0.204(7) 0.039(50) 0.367(13) -0.019(24)

0.249 0.879(70) 0.598(211) 0.271(23) 0.044(69) -0.043(36) 0.525(65) 3.141(990) 0.181(26) 0.414(357) 0.584(64) -0.874(457) 1.598(156) 0.182(23) 0.059(166) 0.336(55) 0.077(112)
/0.276 0.868(13) 0.697(43) 0.276(5) 0.123(15) -0.039(7) 0.513(14) 3.318(204) 0.173(5) 0.430(83) 0.501(14) -0.254(97) 1.479(30) 0.184(6) 0(0.041) 0.338(13) -0.006(21)

0.286
/0.294 0.850(16) 0.780(49) 0.277(6) 0.148(17) -0.027(8) 0.508(15) 3.352(221) 0.172(5) 0.484(97) 0.479(17) -0.109(100) 1.420(33) 0.183(7) 0.038(39) 0.324(13) 0.008(23)

0.360
/0.361 0.736(19) 0.630(54) 0.250(7) 0.128(20) -0.037(9) 0.477(19) 2.840(237) 0.163(8) 0.461(107) 0.443(22) -0.052(127) 1.196(39) 0.161(8) 0.043(55) 0.282(17) -0.012(26)
,0.364 0.716(31) 0.620(114) 0.237(12) 0.086(34) -0.037(18) 0.425(39) 2.318(468) 0.145(16) 0.241(206) 0.451(34) -0.270(212) 1.160(61) 0.167(13) -0.072(88) 0.278(26) 0.010(51)
/0.395 0.713(16) 0.592(42) 0.249(6) 0.130(18) -0.034(8) 0.453(14) 0.161(6) 0.307(10) 0.462(14) 1.125(34) 0.139(6) 0.115(7) 0.273(16) -0.042(18)

0.408
/0.443 0.626(20) 0.509(49) 0.225(7) 0.096(16) -0.036(6) 0.414(18) 2.111(153) 0.146(7) 0.289(71) 0.410(20) -0.157(73) 1.019(37) 0.156(8) -0.014(36) 0.255(15) -0.005(18)
/0.447 0.591(37) 0.543(100) 0.218(14) 0.087(34) -0.045(13) 0.360(42) 1.729(351) 0.128(15) 0.153(148) 0.388(34) -0.210(137) 0.997(66) 0.147(14) -0.013(62) 0.257(26) 0.023(46)
/0.475 0.600(21) 0.521(58) 0.216(8) 0.106(20) -0.020(8) 0.414(23) 2.021(205) 0.148(9) 0.379(102) 0.391(24) -0.091(94) 0.924(37) 0.151(9) 0.011(40) 0.242(15) 0.008(24)
/0.491 0.603(15) 0.502(35) 0.221(6) 0.104(13) -0.027(5) 0.407(14) 2.052(131) 0.149(6) 0.271(78) 0.383(22) -0.088(74) 0.940(28) 0.149(9) 0.022(32) 0.243(12) -0.023(12)

Ao 1.726(2) 1.549(74) 0.413(4) 0.217(20) -0.078(19) 0.789(11) 11.069(1.496) 0.230(5) 1.215(1.043) 0.780(11) -0.618(261) 2.993(50) 0.253(5) 0.054(77) 0.507(16) -0.011(12)
mA 0.770(40) 0.797(34) 1.120(185) 1.029(497) 0.522(122) 0.985(187) 0.603(200) 1.256(1.717) 0.441(1.006) 0.896(67) 0.860(242) 1.143(196) 1.432(943) 0.904(711) 1.931(66) 3.3

p 1.778(169) 2. 1.955(599) 2.013(1.755) 1. 1.657(546) 2.038(783) 1.698(5.418) 1.146(2.68) 1.504(212) 3.5 3.702(1.091) 2.545(3.094) 3.5 6.00000(3) 1

0.637(658) 0.481(446) 0.586(502) 0.606(604) 1.309(822) 0.526(561) 0.682(633) 0.640(671) 0.479(508) 0.076(106) 0.298(307) 0.238(305) 0.168(199) 0.469(432) 0.202(256) 0.848(718)

Q2 Alo (d) Bio(d) A20 (d) B20 (d) C20 (d) Zio (d) 510o(d) Z2o(d) 520 (d) ATi0o(d) ATio (d) 5110 (d AT200 Zd T20 (d) 12." 5d 21(d

/0.000 0.8748(9) 0.186(2) -0.231(7) - -0.056(3) -0.190(6) - -0.053(2)
0.081 0.677(32) -1.566(255) 0.174(11) -0.322(70) -0.070(94) -0.239(33) -0.063(10) -0.146(23) 0.634(69) 1.587(172) -0.055(10) 0.094(25) 0.235(61) -0.052(206)

/10.096 0.640(3) -1.103(26) 0.155(2) -0.212(9) -0.062(6) -0.195(6) -1.885(155) -0.049(2) -0.055(66) -0.162(6) 1.041(79) 1.487(16) -0.046(2) 0.132(28) 0.296(8) -0.073(15)
/0.097 0.634(6) -1.144(59) 0.155(3) -0.222(20) -0.038(17) -0.210(11) -2.214(338) -0.049(4) 0.030(125) -0.164(9) 0.969(157) 1.531(29) -0.048(3) 0.123(57) 0.315(12) -0.022(55)

0.166 0.512(30) -1.011(153) 0.135(9) -0.242(44) 0.011(27) -0.181(29) -1.240(642) -0.043(10) 0.167(233) -0.131(29) 0.897(326) 1.347(93) -0.050(11) 0.190(125) 0.277(32) -0.019(69)
/0.188 0.489(5) -0.892(24) 0.131(2) -0.191(9) -0.042(4) -0.165(6) -1.114(98) -0.044(3) 0.012(47) -0.145(6) 0.876(50) 1.178(16) -0.043(2) 0.154(20) 0.258(8) -0.041(10)
/0.189 0.483(10) -0.853(59) 0.132(4) -0.191(19) -0.047(11) -0.172(14) -1.054(278) -0.046(5) -0.061(113) -0.153(10) 0.943(112) 1.207(33) -0.048(4) 0.199(42) 0.280(12) -0.044(36)
/0.197 0.475(7) -0.815(34) 0.130(2) -0.170(11) -0.039(5) -0.171(7) -1.343(139) -0.044(3) -0.004(59) -0.147(7) 0.797(69) 1.118(22) -0.045(3) 0.164(29) 0.247(8) -0.049(13)

0.249 0.398(35) -0.693(143) 0.110(10) -0.210(43) -0.006(24) -0.164(34) -1.186(545) -0.036(11) 0.009(219) -0.133(33) 0.977(272) 1.067(95) -0.052(12) 0.243(101) 0.261(33) -0.031(64)
/0.276 0.386(7) -0.720(26) 0.112(2) -0.172(9) -0.036(4) -0.146(7) -0.840(103) -0.039(3) -0.008(48) -0.133(8) 0.728(53) 0.956(19) -0.040(3) 0.132(22) 0.228(9) -0.035(11)

0.286
/0.294 0.367(8) -0.648(32) 0.110(2) -0.151(10) -0.032(5) -0.149(8) -0.876(116) -0.040(3) 0.013(55) -0.133(8) 0.649(56) 0.899(22) -0.042(3) 0.150(22) 0.218(8) -0.034(13)

0.360
/0.361 0.318(10) -0.586(31) 0.100(3) -0.166(12) -0.045(5) -0.122(10) -0.594(114) -0.040(4) -0.022(59) -0.115(10) 0.608(59) 0.783(23) -0.034(4) 0.096(26) 0.196(10) -0.030(14)
/0.364 0.303(16) -0.551(63) 0.096(5) -0.158(21) -0.053(11) -0.117(18) -0.505(213) -0.032(7) 0.052(104) -0.125(15) 0.700(106) 0.790(38) -0.041(6) 0.144(45) 0.205(15) -0.031(30)
/0.395 0.292(9) -0.506(25) 0.095(3) -0.125(10) -0.040(5) -0.130(8) -0.037(3) -0.071(5) 0.273(9) 0.689(22) -0.035(3) 0.069(4) 0.176(9) -0.060(10)

0.408
/0.443 0.259(11) -0.482(30) 0.086(3) -0.140(11) -0.033(4) -0.103(9) -0.365(83) -0.033(4) 0.020(43) -0.112(10) 0.537(46) 0.669(24) -0.034(4) 0.102(20) 0.181(10) -0.023(10)
/1.447 0.246(18) -0.433(63) 0.084(6) -0.135(21) -0.040(9) -0.099(20) -0.255(178) -0.036(7) -0.045(82) -0.129(17) 0.625(91) 0.668(44) -0.043(7) 0.154(35) 0.200(17) -0.011(25)
/0.475 0.235(10) -0.454(34) 0.081(3) -0.130(12) -0.035(5) -0.113(12) -0.583(107) -0.031(4) 0.001(57) -0.107(11) 0.471(55) 0.612(24) -0.033(5) 0.108(25) 0.171(9) -0.019(14)
//0.491 0.236(8) -0.424(22) 0.083(3) -0.113(8) -0.031(3) -0.115(7) -0.513(73) -0.034(3) 0.043(46) -0.111(11) 0.437(41) 0.573(18) -0.038(5) 0.096(19) 0.154(7) -0.045(7)

Table A.5: MILC-20 3-m05-chopped - data set 1

A,, 0.8748(9) -1.450(48) 0.186(2) -0.247(11) -0.057(7) -0.232(7) -4.059(1.44) -0.055(3) -0.068(8.521) -0.188(10) 1.310(94) 1.964(31) -0.052(2) 0.182(26) 0.354(10) -0.065(18)
mrA 0.887(52) 1.326(517) 1.186(190) 1.976(86) 0.794(143) 1.357(642) 0.410(221) 1.092(92) 0.303(376) 1.067(2.893) 1.208(61) 1.076(169) 1.261(161) 1.732(276) 1.891(57) 0.751(279)
p 2.726(305) 4.999(3.439) 2.777(836) 6.000(5) 1. 3.220(2.823) 1.627(770) 1.5 6.000(146) 1.587(10.042) 3.5 3.403(904) 1.500(28) 3.5 5.999(78) 1

2 0.188(309) 0.464(448) 0.202(247) 1.015(883) 1.430(822) 0.659(504) 1.151(799) 0.193(183) 0.298(363) 0.256(335) 0.497(499) 0.698(597) 0.502(397) 0.708(552) 1.020(849) 1.236(906)



Q2 Aio(u) B10(") A20 (") B20 (") C 20 (") Zio(") 510o(4) Z20(") 5320 (") AT1io(U) AI(u) 53T10(u) AT20 (") ZT2M(u) 5T20(ul) 53T21(u1)

/0.000 1.752(2) 0.396(5) 0.788(16) 0.222(6) 0.756(13) 0.237(6)
0.079 1.427(59) 1.589(385) 0.335(21) 0.192(134) 0.10(163) 0.750(63) 0.175(21) 0.641(47) 1.254(110) 3.121(275) 0.206(22) 0.227(42) 0.562(104) 0.076(387)

/0. 096 1.329(7) 1.135(60) 0.346(4) (0.155)21) -0.058(17) 0.669(13) 6.886(382) 0.204(5) 0.544(170) 0.665(14) -0.783(195) 2.320(31) 0.219(6) -0,074(84) 0.425(15) -0.021(41)
,/0-096 1.328(15) 1.149(123) 0.343(8) 0.141)38) -0.093(39) 0.697(26) 7.512(801) 0.197(10) 0.365(284) 0.657(22) -0.455(341) 2.186(61) 0.213(9) -0(093(118) 10.359(26) -0.(095(129)

0.164 1. 17 2(69)) 1.172)(260) 0.:317)22) 0.215)81) -0.059)48) 0.658)65) 4.372(1.252) 0.175(23) -0.139)438) 0.678)81) -0.847)720) 2.131)157) 0.212(27) -0. 174(261) 0.390(59) -0,11(124)
'(0.188 1.065(12) () 914(51) 0.30.5)5) 0M155(18) -0.0141)8) (05590(14) 4.821)222) 0. 18 7(6) 0.420)99) 01,568)(15) -0. 257(101) 1.813)30) 0. 196)6) 0.1123)42) 1.3731)15) -0.014(23)
1/0.188 1.1163(28) 0.906)124) 0.30(411) 0.1)86)40) -0.1156)22) 111629)32) 5.356)605) 0.183)11) 0.312)226) 0.562)28) 01.109(235)) 1.657)67) (.194)11) -0.0127)1)2) 01 281(27) -0.093(75)
,/0)1)7 1.11231)18) 1.826)62) 1.297)6) 01111)21) -0.0139)11) 1.577)17) 4.683(311) 0.183(6) 0.337(134) 0.541)18) -1.26(1136) 1.672)41) (1188(7) 1.046)55) 11.123)16) 011.05)28)

1.246 (.969)1113) 1.064(298) 0.291(36) 0.163)83) -0.1)22)48) 0.636)98) 3.587(1.153) 0.191(35) 0.318(402) 0.584(98) 0.001(591) 1.674(196) 1.199)34) -11.1511(219) 1.3111(6o) 111175)1K,)
,/0.275 0.878(19) 10.773(54) 0.273(7) 0.148(20) -1.1)34(9) 0.519(19) 3.444(233) 0.172(7) 0.337(99) 0.488(20) -0.096(109) 1.457(38) 0.181(8) 0.006(49) 1.338(17) -11.122(26)

(.280 1.507(1.974) 1.575(2.321) 0.379(490) 0.283(563) 0.102(314) 1.004(1.295) - 0.140(210) - 0.889(1.164) 1.186(1.476) 2.896(3.602) 0.351(476) 10.334(463) 0.80(16).122) 10.215(718)
,/0.294 (.819(19) 0.669(56) 0.254(6) (.094(19) -0.040(10) 0.495(18) 3.310(235) 0.157(7) 0.160(117) 0.445(19) -0.011(102) 1.243(35) 0.172(7) 0.010(46) 0.246(16) 0.1031(28)

0.353
./0.359 (.765(28) 0.646(65) 0.245(10) 0.101(24) -0.023)13) 0.476(26) 2.586(318) 0.160(10) 0.275(160) 0.482(34) -0.277(179) 1.272(51) 0.173(15) -0.015(80) 0.319(22) -0.041(34)
./0.362 0.760(61) 0.618(167) 0.253(22) 0.089(55) -0.018(27) 0.498(68) 2.950(760) 0.143(23) 0.134(319) 0.486(66) -0.414(381) 1.165(107) 0.188(26) -0.152(146) 0.252(41) 0.027(77)
,/0.395 0.680(22) 0.513(46) 0.234(8) 0.10(19) -0.034(10) 0.417(20) 0.155(8) 0.275(13) 0.448(17) 1.088(42) 0.131(8) 0.109(7) 0.259(19) -0.024(26)

0.403
/0.439 0.632(28) 0.502(54) 0.216(11) 0.101(19) -0.017(9) 0.398(24) 1.884(214) 0.143(10) 0.186(94) 0.401(28) -0.152(94) 1.002(48) 0.157(13) -0.027(47) 0.254(20) -0.020(22)
/11444 0.624(81) 0.377(149) 0.220(31) 0.031(50) -0.016(26) 0.416(74) 1.707(524) 0.130(24) 0.126(229) 0.400(71) -0.228(228) 0.828(121) 0.155(29) -0.094(99) 0.155(42) 0.044(70)
/0.474 0.607(32) 0.449(73) 0.220(12) 0.099(26) -0.022(12) 0.405(29) 1.656(250) 0.137(11) 0.047(133) 0.404(31) -0.167(120) 0.948(56) 0.145(12) 0.038(55) 0.240(22) -0.002(33)
0. 49)1 0.568(19) 0.407(39) 0.208(7) 0.083(14) -0.025(6) 0.368(18) 1.906(166) 0.140(7) 0.208(91) 0.345(25) -0.074(81) 0.863(34) 0.139(12) 0.015(40) 0.224(15) -0.012(15)

At) 1.752(2) 1.495(88) 0. 397(5) 0.178)24) -0.103)50) 0.789(16) 10.917(1.426) (1.223(7) 0.730(449) 0.762(14) -2.289(3.095) 3.169(66) 0.238(6) -(.076(3.741) 0.479(22) -1.014(45)
0.)11780()52) 1.455(56) 1.182(271) 1.953(244) 0.372)146) 1.931(65) 0.881(465) 2.158(1.987) 1.111(2.943) 1.447(677) 0.469(250) 0.741(20) 2.021(2.108) 0.3 1.034(61) 2.172(17.004)

() 1.877(2311) 6. 2,147)911) 5.997(423) 1.00111)1) 5.988)233) 3.757(2,988) 4.823(8.2) 4.733(19.096) 3.527(3.133) 3.5 2.00(0(43) 4.4(08(8.807) 3.5 2. 1

0.(3:18:368) 0.3161)362) 1.327(219) 0.862(665) 1)338)386) 1,450)479) 0.392(323) 0.322(319) (.312(333) (.865(652) 0.883(724) 2.758(1.164) 0.281)397) 0.498(571) 3,8911(1.474) 1.548(482)

Q' A10
1
'd) Bi (d) A20 (d) B20 (d) C20 (d) A,,(d) fi10 (d) i201(d) i320 (d) ATIO (d) ATlQ() PTb1o(d) AT20 (d) AT20

11  
BT20

11 
B(d)

1

/0.000 0.888(10) 0.175(2) -0.227(9) -0.054(3) -0.176(7) -0.048(3)
0.079 0.641(31) -1.216(247) 0.144(10) -0.246(73) -0.135(90) -0.190(33) -0.056(10) -0.125(23) 0.678(69) 1.697(173) -0.034(11) 0.118(24) 0.297(60) 0.086(222)

/0.096 0.640(4) -1.083(31) 0.147(2) -0.192(11) -0.057(9) -0.193(7) -2.133(201) -0.048(3) -0.084(87) -0.156(7) 1.008(95) 1.423(20) -0.044(3) 0.147(40) 0.262(10) -(.033(22)
/0.096 0.632(9) -1.018(67) 0.145(4) -0.162(22) -0.055(21) -0.183(14) -2.108(422) -0.048(6) -0.111(153) -0.157(11) 0.924(177) 1.477(39) -0.046(4) 0.181(62) 0.255(17) -0.038(75)

0.164 0.481(35) -0.862(160) 0.121(10) -0.160(42) -0.057(27) -0.155(35) -2.184(703) -0.047(11) -0.142(246) -0.108(33) 0.642(348) 1.252(97) -0.040(12) 0.261(135) 0.242(35) 0.048(77)
,/0.188 0.484(7) -0.854(29) 0.126(2) -0.158(10) -0.042(5) -0.162(8) -1.144(138) -0.043(3) -0.017(52) -0.149(8) 0.877(58) 1.116(19) -0.043(3) 0.158(23) 0.223(10) -0.022(13)
/11.188 0.472(15) -0.698(70) 0.124(5) -0.150(21) -0.056(13) -0.131(19) -0.672(380) -0.046(7) -0.053(130) -0.159(15) 1.057(157) 1.140(46) -0.047(5) 0.150(54) (.225(18) -0.039(49)

/11.197 0.463(9) -0.819(35) 0.121(3) -0.164(11) -0.033(7) -0.160(8) -1.082(176) -0.041(3) -0.039(78) -0.138(9) 0.741(75) 1.076(25) -0.040(3) 0.115(32) 0.225(11) -(1.046(17)
0. 246 0. 346(46) -(.503(169) 0.099(14) -0.142(44) -0.036(29) -0.097(45) -0.882(641) -0.049(15) -0.181(252) -0.127(43) 1.042(345) 1.004(127) -0.026(15) 0.075(132) (.221(44) (1.129(87)

/1)275 0. 377(1(1) -0.694(33) 0.109(3) -0.14(1(11) -0.035(6) -0.140(10) -0.738(127) -0.041(4) -0.040(57) -(.148(10) 0.800(61) 0.915(25) -0.042(4) 0.140(26) (1.2110(11) -1.116(15)
0, 28(1 (.496)658) -(1.79().129) 0.1(12(126) -(.169(255) (1.028(16(1) -(.276(375) -0.1088(126) -0.104(163) 0.668(833) 1.678(2.093) 0.014(67) (.131(193) 1.326(481) 1.219)488)

,/0.294 (1:1510(1))) -0),60(232) (.11)2(3) -0.131(11) -(1(131(6) -(.135(9) -0.766(146) -(1.1142(4) -0.123(71) -0.136(11) (.675(66) 1.834(25) -0.114(1(4) (.122(25) 1.185(1(1) -11(122(17)
(0,353

/11.359 (.326(13) (.584)41) 11(193)5) -1.126(13) -111123(7) -(.141(13) -0.847(157) -(1.0136(5) 0.1124(74) -(1.121(15) 0.530(83) 0.753(31) -(.041(6) 0.128(35) 11.169(14) (1.126(19)
/11.362 (.286(28) -0, 598(93) (1.192(1(1) (.131(29) -0.024(16) -(.144(32) -(.969(357) -(.031(11) 0.008(137) -(1.119(26) (.389(162) 0.818(73) -(1.04(1(10) (.106(63) 0.172(27) (.029(44)
/11.195 1.28(11) -0.527)31) (.189)4) -(.113(12) -0.1128(6) -0.139(11) -(0.034(4) -(.066(7) 0.267(10) (.674(25) -0.1129(4) (.065(4) (.167(11) -(1(117(14)

0.1840(35(2
1.19 4 1 . 3(8

/0.439 0.254(14) -0.477(38) 0.081(5) -0.104(11) -0.023(5) -0.120(13) -0.625(109) -0.031(5) -0.033(49) -0.122(14) 0.502(61) 0.630(31) -0.039(6) 0.128(27) 0.152(12) -(.018(13)
,/0.444 0.224(34) -0.377(85) 0.072(12) -0.105(27) -0.014(14) -0.090(33) -0.272(297) -0.032(11) 0.095(135) -0.151(39) 0.567(175) 0.657(90) -0.050(14) 0.148(64) 0.163(31) 0.031(40)
,/0.474 (.225(16) -0.480(50) 0.075(5) -0.124(16) -0.013(7) -0.101(18) -0.446(165) -0.036(7) -0.032(83) -0.099(15) 0.392(69) 0.607(37) -0.037(7) 0.085(33) 0.154(15) -0.018(21)
/0.491 0.226(9) -0.443(27) 0.078(3) -0.105(10) -0.025(4) -0.123(10) -0.423(98) -0.030(4) 0.045(59) -0.110(15) 0.406(52) 0.566(21) -0.037(7) 0.090(24) 0.149(9) -0.024(9)

A0  0.888(10) -1.436(51) 0.175(3) -0.221(15) -0.091(23) -0.222(9) -5.244(834) -0.054(4) -0.168(763) -0.175(7) 1.372(114) 1.944(43) -0.048(3) 0.183(36) 0.308(14) -0.041(27)

MA 0.852(60) 0.775(29) 1.373(519) 1.035(82) 0.390(81) 0.925(67) 0.3 1.563(4.189) 0.879(1.952) 2.319(3.27) 1.125(73) 0.771(100) 1.660(509) 1.645(429) 1.043(57) 0.612(455)
p 2.661(351) 2. 3.612(2.431) 2. 1.000(8) 1.5 1.313(151) 3.113(15.806) 5.881(12.127) 5.097(12.302) 3.5 2.027(398) 1.5 3.5 2. 1

T2 0.497(406) 0.879(609) 0.231(296) 0.380(297) 0.545(425) 0.864(625) 0.760(635) 0.170(161) 0.445(309) 0.487(434) 0.950(752) 0.530(527) 0.203(307) 0.293(409) 0.130(113) 0.427(418)

Table A.6: MILC203-m04-chopped - data set 2



Q2  Aio(") Bi(
11
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1
) B 20(

11
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11  
20() AnO ("1) ATM") 5&o "u) Ar2

1) ZT20(") 531'20(") 5T,"2
/0.000 1.764(2) 0.397(5) 0.808(17) 0.231(7) 0.761(13) 0.247(6)

0.077 1.297(56) 1.106(386) 0.317(20) 0.038(128) -0.089(165) 0.649(62) 0.171(21) 0.546(44) 0.749(121) 1.859(302) 0.207(23) 0.076(48) (.184(119) 0.411(387)

/0.096 1.308(7) 1.059(57) 0.341(5) 0.184(19) -0.062(14) 0.672(13) 7.255(370) 0.203(5) 0.556(158) 0.662(14) -0.749(182) 2.184(31) 0.222(6) -(1.066(79) 0.396(15) (.015(40)

,/0.096 1.309(16) 1.069(122) 0.343(9) 0.194(38) -0.037(38) 0.679(27) 7.727(786) 0.204(10) 0.445(311) 0.660(23) -0.606(342) 2.237(68) 0.224(9) -0.121(128) 0.393(28) -1.058(121)
0.160 1.050(63) 0.863(238) 0.288(22) 0.097(74) -0.061(52) 0.580(60) 3.945(1.202) 0.162(21) 0.436(397) 0.654(82) -1.096(760) 1.630(156) 0.217(29) -0.344(271) 0.268(58) -0.024(144)

,/0.186 1.028(12) 0.830(47) 0.299(5) 0.145(17) -0.046(8) 0.575(15) 4.612(221) 0.180(6) 0.367(79) 0.571(15) -0.408(95) 1.701(31) 0.201(6) -0.045(41) 0.334(15) 0.011(24)
/11.187 1.036(28) 0.784(116) 0.308(11) 0.155(41) -0.023(23) 0.569(34) 4.377(581) 0.194(13) 0.599(223) 0.589(29) -0.500(228) 1.728(72) 0.204(11) 0.008(95) 0.339(28) 0.145(82)

/0.197 0.991(16) 0.836(53) 0.291(7) 0.170(19) -0.020(11) 0.576(17) 4.669(266) 0.184(6) 0.305(116) 0.550(19) -0.314(123) 1.620(38) 0.199(7) -0.036(51) 0.328(16) 0.004(28)

(0.241 0.798(75) 0.552(213) 0.251(26) 0.121(70) -0.050(42) 0.419(71) 1.592(908) 0.139(25) 0.482(336) 0.548(78) -0.628(481) 1.237(149) 0.172(27) -0.100(181) 0.224(51) 0.043(126)

0.268 0.492(127) 0.137(429) 0.172(52) -0.151(149) -0.119(126) 0.349(134) 0.044(44) 0.235(82) 0.317(148) 0.773(369) 0.140(58) -0.018(57) -0.057(143) 0.358(281)
1.272 10.841(20) 0.653(51) 0.267(7) 0.130(19) -0.039(10) 0.486(19) 2.978(217) 0.162(7) 0.314(89) 0.501(21) -0.244(98) 1.386(38) 0.181(8) -0.005(47) 0.296(18) 0.028(31)

1.293 101.792(19) 0.621(55) 0.256(7) 0.126(19) -0.018(10) 0.494(20) 3.235(236) 0.169(8) 0.324(108) 0.487(22) -0.296(107) 1.278(37) 0.191(8) -0.085(44) 0.289(15) 0.005(28)

0.339 1)471(126) 1.261(355) 0.1211(40) 0.021(108) -1.024(66) 0.372(127) 1.798(1.354) (0.062(41) 0.160(510) 0.463(242) -0.991(1.058) 0.6(17(271) 0.124(78) -0.229(382) ((.119(101) 0.126(194)
/0.19 0.99(123) 0.434(534) (226(9) 0,068(21) 0.020(12) 0.401(24) 1.853(257) 0.138(9) 0.050(132) 0.474(34) -0.355(152) 1.075(43) (1165(14) -(.041(67) 1.242(21) -0.118(32)

/0.28 0.492(127) 0.137(429)5) .452)-00914) 0.5(0) -. 7771

/ .9.339 .47(1) 0.527(128) 0.252(22) 0.062(43) -0.189(317) 0.465(8) -0.218(363) 1.215(123) 0.179(31)

0.393
/0.395 0.645(20) 0.492(42) (.229(8) 0.112(18) -0.027(9) (.394(18) (.143(7) 0.267(12) 0.395(15) (.953(37) (1128(7) (.10)7) 0.233)18) -0.0(3(22)
/0.433 (.361(28) (.361(49) 0.205(10) 0.171(17) -(.016(8) (.362(25) 1.557(176) 0.133(10) 0.178(81) 0.414(32) -0.256(99) 0.906(44) .167(14) -9.)74(46) 0.222(19) 1.1(2(22)

0.438
/1.472 (.551(28) 0.363(61) 0.207(11) 0.062(23) -0.021(11) 0.385(31) 1.578(230) 0.143(12) 0.209(116) 0.358(33) -0.125(110) 0.812(52) 0.149(14) 0.(16(52) 1.182(20) -(.131(32)

/0.491 (.519(18) 0.394(33) 0.196(8) 0.100(14) -0.023(6) 0.349(16) 1.622(141) 0.130(7) 0.192(84) 0.343(26) -0.083(77) 081(30) 0.151(12) -0.029(38) (.203(14) 0.11(15)

A0  1.764(2) 1.443(92) 0.396(5) 0.249(32) -0.111(67) 0.807(17) 13.647(2.067) 0.231(7) 0.933(981) 0.765(14) -1.136(459) 2.905(50) 0.247(6) -0.055(59) 0.475(20) 0.025(56)

TrA 0.803(51) 1.373(365) 1.554(616) 0.849(666) 0.312(144) 1.644(878) 0.607(192) 1.521(1.193) 0.461(981) 1.933(75) 0.756(177) 1.395(149) 1.240(1.124) 2.152(4.526) 1.776(74) 0.3
p 2.146(250) 5.962(2.695) 3.799(2.838) 2.163(2.674) 1. 5.107(5.106) 2.645(1.011) 3.006(4.422) 1.455(3.063) 5.998(75) 3.5 5.861(1.119) 1.752(2.974) 3.5 6.00000(9) 1

y 0.231(205) 0.602(490) 0.377(302) 1.076(772) 0.876(577) 0.505(414) 1.121(823) 0.531(439) 0.610(617) 0.313(382) 0.350(416) 0.415(428) 0.257(218) 0.317(262) 0.236(240) 0.583(459)

Q2 A 10 (d) Bwo (d) A 20 (d) B 20 (d) C 20 (d) A10 (d) fild) A2 0(d) 5 20 (d) AT1O(d) ATio(d) PT10(d) AT2 0(d) AT20(d) 5T20 5BT2 1(d)

/0.000 0.8941(9) - 0.170(3) -0.248(10) -0.049(4) -0.194(7) -0.048(3)

0.077 0.617(32) -0.719(245) 0.131(11) -0.185(73) -0.012(101) -0.177(43) -0.038(13) -0.123(25) 0.529(73) 1.325(182) -0.047(13) 0.081(29) 0.203(72) -0.267(241)

/0.0967 0.631(4) -1.072(33) 0.141(2) -0.181(11) -0.053(8) -0.206(8) -1.932(206) -0.046(3) -0.113(89) -0.162(7) 0.932(88) 1.380(22) -(.043(3) 0.118(37) 0.245(10) -0.027(21)

.096 0.634(9) -1.048(72) 0.144(4) -0.177(23) -0.081(23) -0.198(17) -1.321(462) -0.045(6) -0.219(171) -0.166(12) 1.114(168) 1.363(41) -0.041(4) 0.107(56) 0.248(16) -0.1(1(72)

0.16 0.474(34) -0.792(161) 0.116(10) -0.158(43) -0.052(31) -0.160(41) -0.735(763) -0.026(13) -0.014(242) -0.139(37) 0.970(362) 1.051(105) -0.038(13) 0.042(128) (.217(38) -0.222(86)

/0.186 0.471(7) -0.844(31) 0.119(2) -0.161(11) -0.047(5) -0.189(9) -1.477(117) -0.042(3) -0.128(49) -0.135(8) 0.679(56) 1.072(23) -0.037(3) 0.055(25) 0.211(10) -0.046(11)

/0.187 0.478(15) -0.22(72) 0.124(5) -0.147(22) -0.03((14) -0.228(22) -2.116(358) -0.033(7) 0.057(127) -0.121(15) 0.390(132) 1.118(46) -0.036(6) 0(079(48) 0.210(16) -0.054(49)

/0.197 0.464(9) -0.807(35) 0.119(3) -0.145(12) -0.033(6) -0.168(10) -1.408(154) -0.041(3) -0.199(76) -0.128(1) 0.619(71) 1.019(26) 0.035(4) (.(44(31) (.198(1() ((.(27(17)

0.241 0.328(39) -0.825(165) 0.089(12) -0.154(45) -0.035(23) -0.172(48) -1.315(603) -0.024(15) -(.030(205) -0.027(40) 0.003(299) (.827(1(5) -(.133(14) (.041(1(2) (.172(36) -0.146(76)
(.268 (.182(65) -0.509(301) 0.063(28) -0.147(88) -0.066(70) 0.004(90) -0.007(29) -0.012(42) (.169(92) 0.423(231) -(.062(33) 0.016(34) ((.1(44(85) -((.249(182)

/10.272 0.365(11) -0.711(35) 0.102(3) -0.138(12) -0.034(6) -0.178(11) -1.212(119) -0.041(4) -0.122(55) -0.113(11) 0.507(60) 0.892(28) -0.037(5) 0.072(29) (.188(11) -(.14((16)

/0.293 0.351(10) -0.654(34) 0.101(3) -0.133(11) -0.026(6) -0.157(11) -1.083(132) -0.038(4) -0.208(65) -0.10(12) 0.422(61) 0.819(25) -0.023(5) -0.014(27) 0.179(10) -0.034(18)

0.339 0.110(55) -0.368(235) 0.029(22) -0.083(72) -0.009(43) 0.039(84) 0.726(873) 0.030(29) 0.142(306) -0.016(127) 0.205(602) 0.172(168) 0.013(42) -0.217(217) 0.096(63) -0.159(110)

/0.354 0.288(12) -0.532(41) 0.090(4) -0.120(13) -0.036(7) -0.126(13) -0.613(133) -0.037(4) -0.152(65) -0.088(15) 0.378(70) 0.689(29) -0.024(6) 0.017(33) 0.170(13) -0.050(18)

//0.358 0.319(28) -0.571(84) 0.10(10) -0.131(28) -0.024(16) -0.151(31) -0.602(321) -0.036(10) -0.159(133) -0.115(29) 0.446(140) 0.741(69) -0.038(12) 0.094(58) 0.154(24) -0.060(42)

0.393
//0.395 0.275(11) -0.508(32) 0.088(4) -0.120(12) -0.024(6) -0.129(11) -0.036(4) -0.069(7) 0.254(10) 0.643(26) -0.031(4) 0.058(5) 0.149(12) -0.033(14)

/0.433 11229(14) -0.478(39) 0.080(5) -0.108(13) -0.028(5) -0.136(14) -0.618(98) -0.034(5) -0.099(48) -0.095(16) 0.371(55) 0.587(32) -0.025(6) 0.030(23) 0.153(13) -0.045(13)

0.438
./1.472 0.233(14) -0.436(43) 0.077(5) -0.087(14) -0.019(7) -0.118(18) -0.577(139) -0.028(7) -0.117(69) -0.065(16) 0.215(58) 0.503(30) -0.022(7) 0.026(27) 0.130(12) -0.018(20)

/0.491 0.214(1) -0.427(27) 0.073(4) -0.106(9) -0.019(4) -0.120(10) -0.594(82) -0.034(4) -0.114(58) -0.078(16) 0.279(47) 0.518(22) -0.025(7) 0.036(24) (.128(9) -1.024(9)

Ao 0.8941(9) -1.388(62) 0.170(3) -0.211(20) -0.083(42) -0.244(10) -2.844(272) -0.049(4) -0.154(66) -0.196(13) 1.379(152) 1.797(36) -0.049(4) 0.195(142) 0.287(12) -0.049(18)

rr
1
A 0.824(59) 1.259(631) 1.208(327) 1.214(1.879) 0.557(841) 1.782(1.425) 1.256(64) 1.732(4.181) 3.286(933) 1.618(1.182) 0.894(68) 1.437(321) 1.807(1.618) 0.700(321) 1.871(209) 0.922(490)

p 2.624(353) 4.444(3.9) 2.856(1.429) 2.567(7.179) 1.462(2.463) 5.047(7.464) 6. 2.681(13.074) 5.631(9.277) 5.725(7.212) 3.5 5.915(2.377) 5.541(8.777) 3.3 5.971(1.158) 1

yV 0.514(407) 0.286(251) 0.284(372) 0.279(311) 0.808(617) 1.110(551) 1.205(894) 0.248(270) 0.581(528) 0.357(264) 0.899(519) 0.303(355) 0.590(335) 0.755(428) 0.261(324) 0.481(51()

Table A.7: MILC-203-m03-chopped - data set 3
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,0.000 1.787(2) 0.375(9) 0.809(29) 0.214(11) 0.742(23) - 0.237(10)
0.074 1 109(88) 0,302(657) 0.295(38) 0.203(189) -0.081(251) 0.520(112) 0.184(37) 0.603(83) 0.702(205) 1.737(512) 0.187(39) 0.113(71) 0.276(177) -0.064(608)
0.095 1 295(13) 0.915(85) 0.325(7) 0.132(30) -0.083(22) 0.654(23) 6.310(592) 0.189(9) 0.279(242) 0.655(24) -1.004(282) 2.056(55) 0.218(10) -0.209(130) 0,382(25) -0.024(63)

/0.096 1.302(29) 1.117(215) 0.319(13) 0.187(39) 0.013(59) 0.648(49) 7.377(1.313) 0.186(17) 0.092(428) 0.648(39) -0.739(513) 2.219(107) 0.237(17) -0.473(197) 0.379(41) 0.036(192)
0. 156 0.956(91) 0.623(414) 0.268(30) 0.110(104) -0.009(70) 0.513(111) 4.327(1.868) 0.161(34) 0.140(566) 0.535(111) 0.320(1.037) 1.458(252) 0.230(42) -0.513(370) 0.254(79) -0.123(225)

/0.184 1.003(20) 0.705(73) 0.288(8) 0.128(27) -0.055(13) 0.575(25) 4.363(334) 0.177(9) 0.278(139) 0.539(24) -0.202(146) 1.503(48) 0.202(11) -0.031(65) 0.266(23) .103(40)
/0.186 1.023(49) 0.930(189) 0.281(17) 0.192(54) -0.067(35) 0.611(62) 4.795(922) 0.185(22) 0.487(323) 0.593(50) -0.667(332) 1.538(101) 0.204(19) -0.168(134) 0.263(41) 0.054(123)
/0.197 0.962(27) 0.729(89) 0.284(11) 0.162(30) -0.057(16) 0.549(29) 4.289(417) 0.163(10) 0.331(207) 0.507(29) -0.213(184) 1.512(63) 0.183(13) -0.012(85) 0.336(27) 0.035(43)

0.234
0.255 0.386(185) 0.391(683) 0.120(83) 0.379(275) 0.107(205) 0.137(237) 0.068(77) 0.103(131) 0.184(247) 0.451(619) 0.078(104) -0.054(95) -0.141(242) -0.170(502)

/0.269 0.814(31) 0.492(79) 0.253(11) 0.079(30) -0.041(15) 0.525(34) 3.008(345) 0.169(12) 0.130(146) 0.498(34) -0.296(152) 1.149(52) 0.195(15) -0.075(69) 0.213(26) 0.111(48)
/0.293 0.784(32) 0,579(88) 0.245(11) 0.129(29) -0.019(16) 0.533(36) 3.431(357) 0.163(12) 0.435(170) 0.428(34) -0.135(145) 1.113(60) 0.170(15) -0.066(66) 0.251(24) -0.024(44)

0.323
/0.349 0.672(47) 0.534(114) 0.213(17) 0.087(41) -0.013(20) 0.407(45) 1.614(460) 0.136(17) -0.231(249) 0.549(87) -0.728(332) 0.953(84) 0.217(38) -0.282(146) 0.243(36) -0.003(58)
/0.353 0.724(112) 0.894(433) 0.248(37) 0.149(113) -0.103(44) 0.688(192) 4.198(1.468) 0.228(71) 0.626(580) 0.405(80) -0.081(451) 0.895(160) 0.186(37) -0.079(236) 0.163(62) 0.160(165)

0.382
/0.395 0.610(30) 0.456(68) 0.204(12) 0.045(28) -0.041(15) 0.399(30) 0.143(12) 0.218(19) 0.347(24) 0.835(59) 0.108(12) 0.093(11) 0.217(27) -0.022(34)
/0.425 0.564(42) 0.419(90) 0.186(15) 0.048(31) -0.022(13) 0.386(43) 1.350(273) 0.131(16) 0.034(122) 0.354(49) -0.101(137) 0.684(67) 0.159(23) -0.096(67) 0.134(29) -4.005(38)

0.432

V 469 0.661(77) 0.391(131) 0.217(25) 0.117(45) -0.032(20) 0.356(65) 1.224(375) 0.118(25) -0.150(206) 0.424(73) -0.277(194) 0.751(95) 0.191(33) -0.164(94) 0.175(41) -0.011(59)
0.490 0.531(29) 0.325(55) 0.192(11) 0.074(23) -0.014(10) 0.346(27) 1.477(220) 0.122(12) 0.151(136) 0.328(46) -0.081(117) 0.702(44) 0.111(24) 0.052(63) 0.180(21) 0.019(25)

Ao 1.787(2) 1.263(236) 0.375(8) 0.204(41) -0.112(33) 0.794(29) 10.575(950) 0.212(10) 0.565(324) 0.749(23) -2.420(3.188) 3.145(120) 0.241(9) -0.726(3.204) 0.485(41) 0.089(98)
3 0.657(58) 0.992(1.371) 1.869(1.101) 1.546(226) 1.188(532) 1.635(1.869) 1.087(54) 2.302(534) 1.143(360) 1.836(538) 0.513(283) 0.650(35) 2.409(684) 0.503(939) 0.821(70) 0.325(232)

1 1.617(243) 3. 191(7.248) 5.369(5.89) 6. -.980(3.738) 4.840(10.214) 6.0000(4) 5.856(2.36) 6. 5.857(3.276) 3.5 2.001(123) 5.983(2.555) 3.5 2. 1

5 0.347(314) 0.517(495) 0.398(269) 0.963(743) 0.926(452) 0.604(445) 1.120(724) 0.418(300) 0.972(722) 0.745(516) 0.810(562) 0.605(534) 0.899(658) 1.179(800) 1.368(871) 1.062(608)

Q2  
Aio0 ( ) B 10(d) A 20(d) B2 0 (d) C20(d) A1 0 (d) f51 0 (d) A20(d) f520 (d) ATio(d) ATO(d) BTO(d) AT2 0(d) AT20(d) BT 20(d) iT 2 1(d)

/0.000 0.906(1) 0.159(5) - -0.259(16) -0.050(6) - -0.202(12) - - -0.046(5)
0.074 0.604(56) -2.074(476) 0.114(19) -0.261(122) -0.097(157) -0.247(70) - -0.026(21) - -0.075(44) 0.481(130) 1.204(326) -0.066(26) 0.097(48) 0.243(121) -0.704(402)

/0.095 0.623(7) -1.064(55) 0.134(4) -0.165(17) -0.077(13) -0.215(12) -2.356(323) -0.043(5) -0.075(126) -0.178(12) 1.005(143) 1.308(36) -0.047(6) 0.175(71) 0.228(16) -0.115(39)
/0.096 0.619(16) -0.972(118) 0.133(6) -0.123(34) -0.054(33) -0.202(29) -1.422(733) -0.047(9) -0.177(262) -0.182(21) 1.008(275) 1.255(67) -0.039(7) -0.001(109) 0.201(27) -0.045(111)

0.156 0.430(52) -1.277(274) 0.094(14) -0.137(66) -0.031(43) -0.103(66) 0.033(1.106) -0.014(21) 0.062(337) -0.144(62) 1.095(565) 1.006(169) -0.019(22) -0.097(192) 0.152(55) -0.117(146)
/0.184 0.472(11) -0.791(50) 0.114(4) -0.143(17) -0.033(8) -0.180(14) -1.601(190) -0.040(5) -0.177(81) -0.130(13) 0.556(81) 0.986(32) -0.035(6) 0.041(36) 0.173(15) -0.074(25)
(0.186 0.459(26) -0.903(110) 0.116(8) -0.129(33) -0.056(24) -0.214(32) -1.894(482) -0.038(11) -0.038(204) -0.126(26) 0.183(217) 0.921(67) -0.032(9) -0.107(80) 0.142(24) 0.040(85)

/0.197 0.430(14) -0.715(54) 0.110(4) -0.109(17) -0.044(10) -0.185(15) -1.452(229) -0.037(5) 0.034(115) -0.164(17) 0.734(109) 0.938(38) -0.044(7) 0.167(49) 0.204(15) -0.041(31)
0.234
0.255 0.214(117) -1.088(621) 0.039(50) 0.003(154) 0.037(131) -0.126(147) -0.040(49) -0.109(84) 0.152(166) 0.391(418) -0.088(68) 0.002(58) 0.013(146) -0.322(327)

/0.269 0.369(16) -0.655(55) 0.096(5) -0.127(18) -0.022(9) -0.149(18) -1.141(182) -0.041(7) -0.337(94) -0.101(18) 0.414(95) 0.750(34) -0.026(9) -0.004(44) 0.132(16) -0.035(29)
/0.293 0.338(17) -0.539(57) 0.097(5) -0.089(18) -0.039(9) -0.123(18) -0.663(188) -0.036(6) -0.171(105) -0.136(18) 0.479(92) 0.707(38) -0.037(8) 0.069(42) 0.159(15) -0.053(33)

0.323
/0.349 0.306(24) -0.477(65) 0.087(8) -0.10(24) -0.033(12) -0.121(22) -0.685(198) -0.026(9) -0.114(117) -0.102(33) 0.396(126) 0.578(54) -0.012(15) 0.004(63) 0.129(23) -0.083(35)
/0.353 0.248(42) -0.522(188) 0.100(16) -0.043(53) -0.047(25) -0.194(86) -0.855(672) -0.031(25) -0.001(234) -0.086(39) 0.125(230) 0.657(109) -0.012(14) -0.103(112) 0.134(42) -0.066(99)

0.382
/0.395 0.255(16) -0.434(41) 0.082(6) -0.112(18) -0.051(9) -0.123(15) -0.033(6) -0.059(11) 0.207(14) 0.527(35) -0.031(7) 0.052(7) 0.134(18) -0.050(22)
/0.425 0.244(21) -0.358(55) 0.070(7) -0.095(20) -0.022(9) -0.095(22) -0.495(147) -0.023(8) -0.074(76) -0.066(25) 0.240(79) 0.482(45) -0.025(12) 0.035(38) 0.097(19) -0.059(26)

0.432
/0.469 0.229(33) -0.393(78) 0.078(11) -0.057(26) -0.029(13) -0.143(33) -0.738(238) -0.021(12) -0.026(126) -0.070(32) 0.153(102) 0.483(62) -0.022(14) 0.033(48) 0.132(27) -0.037(42)
/0.490 0.213(15) -0.341(36) 0.069(5) -0.093(14) -0.022(6) -0.104(15) -0.397(123) -0.037(6) 0.028(91) -0.079(26) 0.238(69) 0.445(28) -0.044(13) 0.091(36) 0.123(14) -0.029(15)

Ao 0.906(1) -1.469(134) 0.160(5) -0.182(24) -0.106(53)
rIA 0.689(66) 1.004(634) 1.383(932) 1.016(154) 0.375(155)
p 2.050(347) 3.719(3.812) 3.675(4.548) 2. 1.

-0.261(16) -3.855(589) -0.050(6) -0.205(119) -0.209(12) 1.569(328) 1.870(98) -0.048(5)
1.677(288) 1.046(79) 1.085(231) 1.631(588) 1.659(178) 0.785(98) 0.763(208) 1.829(2.778)

5.909(1.849) 6. 1.5 6. 5.997(144) 3.5 2.392(973) 4.869(13.523)

0.077(105) 0.264(25) -0.144(118)
1.641(3.315) 0.949(99) 0.406(280)

3.5 2. 1

x 0.323(298) 0.406(258) 0.243(263) 0.867(745) 1.291(753) 0.580(356) 0.714(433) 0.461(382) 1.187(660) 0.814(541) 0.928(585) 0.265(254) 0.871(657) 1.838(972) 1.284(807) 0.484(489)

Table A.8: MILC-203 -m02-chopped - data set 4



Q2 A1(") Bl0(), A20(") B
2 0 (*) C2.'(") A10("0 $1(") 42o" B2(*) A'r

1
(") " 31,1 A (() Ar2))(u ArM(") ST20(") b121 ")

Q
2  

Ajo(d) Biod' A 20 (d) B 20(d) C 20 (d) Ai 0 (d) B 10 (d) A20da B 20 (d) ATIo ad ATIo (d BT101" AT20"' AT20"' BT20"' BT2'

,(0.000 0.917(2) 0.164(9) -0.332(36) -0.065(12) -0.190(24) -0.035(11)

0.070 0.635(549) -3.822(4.274) 0.215(239) -1.122(1.368) -0.516(1.032) -0.576(696) -0.325(363) - 0.078(252) 0.847(969) 2.115(2.421) -0.001(163) 0.304(407) 0.760(1.019) -0.141(2.443)

1,0.3094 0.619(16) -0.951(97) 0.132(7) -0.153(32) -0.083(24) -0.240(26) -2.601(609) -0.052(10) -0.019(250) -0.179(25) 0.842(270) 1.188(65) -0.025(12) 0.034(148) 0.202(33) -0.028(80)

v(0.1095 0.596(35) -1.047(248) 0.132(14) -0.123(62) -0.018(70) -0.243(68) -3.026(1.471) -0.079(24) -0.214(556) -0.146(42) 0.857(550) 1.187(142) -0.039(20) 0.230(224) 0.168(57) 0.024(266)

((.150 (.300(130) -0.681(788) 0.052(39) -0.059(180) -0.004(142) -0.338(218) -2.422(3.117) -0.173(80) -1.092(1.014) -0.380(203) 2.536(1.604) 0.775(436) -0.016(69) -0.060(612) 0.088(170) 0.064(532)

,(3.182 (.424(20) -0.705(79) (.107(8) -0.102(30) -0.052(15) -0.225(27) -1.920(337) -0.045(11) -0.148(146) -0.158(29) 0.623(157) 0.876(62) -0.020(14) 0.048(81) 0.178(30) -0.015(56)

1(1. 184 ((428(54) -1.1(43(255) 0.133(18) -0.124(68) -(.084(48) -0.221(85) -2.422(1.063) -0.3159(31) -0.230(409) -0.138(57) (1.1(18(4(39) ((.064(153) -(1.017(23) -0.101(192) 0.190(65) -(.188(205)

1(3(197 3.444(29) (0.582(1(04) 3.115(11) -(.112(32) -(.047(22) -0.201(33) -1.815(416) -(1.362(12) -0.215(225) -0.149(37) 0.610(225) 1.912(81) -((.3128(18) 3.357(1311) 3.18.5(32) 3.30(467)

((.225 (.251(145) -0,.599(742) (0.381(3:3) -(1.349(169) -0.161(133) -(.247(250) -3.479(2,786) -0.3(84(84) -0.249(776) -0.3109(196) -((.269(1.127) (1.6(12(444) -03.020)85) 0.0113(551) (.3(168) 0.(3)6(444)

023(6 3.344(242) -(0.824(1.326) (.1(35(157) (.192(373) -(1.328(401) 0.187(415) -0.103(160) 0.269(312) 3.126(427) -(3 346(1.3(79) 0.3061(229)) (0.146(196)) (.358(495) 3) 70(3()12(1)

V/ 0.263 (0.3230(29) -(.494(94) 30.387(12) -((.3(67(34) -0.020(18) -0.209(34) -1.274(338) -0.058(15) -(1.139(159) -(1.314(1(43) -(0.045(178) 0.644(72) -((.3(16(21) 3.3027(99) m;() 0.0)(( ((32)3)4)

./0. 292 033.78(37) -0. 454(13(1) 0.10(13) -((.3(67(34) -0.04(1(19) -0.247(45) -2.1(26(418) -(.082(16) -((.585(211) -((.3178(45) ((.152(182) 6.783)86) ((.3136)22) 3.0(39(91) 019((37) -0.0(4()75)
0.331

/(0.340 (0.252(38) -0.287(117) 0.069(17) -0.122(47) -0.045(23) -0.168(54) -1.101(395) -0.038(22) ((.002(189) -0.3104(64) -0.01(3(223) 0.515(93) 0.012(30) 3.327)1236) 3(158)54) 3.378)76)

/(1.347 (.186(90) -0.442(373) (0.063(30) -().132(97) -0.024(51) -(.124(184) -0.403(1.236) -0.035(58) ((.270(447) -0.031(88) 0.307(374) 0.362(234) -0.3)24(41) -0.3(77(191) 1.1:39(931) -0.247(238)

0.367
1(0.395 0.223(31) -0.353(76) 0.090(14) -0.104(34) -0.039(18) -0.117(32) .0.049(14) -0.074(26) 0.164(26) 6.424(66) -0.01(18) (0.040(14) 0.1(12(37) -0.039(48)

0.413 .
(..4221

10.465 0.235(49) -0.210(117) 0.044(15) -0.051(37) 0.003(23) -0.094(64) -0.405(384) -0.043(24) 0.176(221) 0.003(66) 0.255(176) 0.403(91) -0.073(36) 0.153(95) 0.104(45) 0.042(74)

/0.490 0.163(29) -0.249(60) 0.070(12) -0.077(26) -0.016(12) -0.123(30) -0.796(215) -0.047(13) -0.246(170) -0.050(56) 0.089(129) 0.377(55) 0.048(35) -0.113(79) 0.3177(28) -0.006(33)

A) 0.917(2) -1.483(316) 0.163(9) -0.166(52) -0.115(68) -0.317(34) -3.853(927) -0.061(12) -0.190(198) -0.207(22) 2.511(1.446) 1.645(106) -0.035(11) 0.410(1.991) 0.254(45) -0.029(113)

MA 0.771(180) 0.961(1.155) 1.361(1.956) 0.928(317) 1.111(1.993) 1.676(341) 1.237(160) 3.054(6.356) 2.574(4.165) 1.417(240) 0.535(138) 1.312(67) 1.540(1.471) 0.429(660) 1.624(252) 0.305(3.03)

p 2.734(1.122) 4.310(8.411) 4.019(10.74) 2. 5.776(14.901) 5.922(1.922) 6. 4.452(16.782) 5.990(3.27) 6.0000(1) 3.5 6.000(7) 5.788(8.559) 3.5 6. 1

0.790(556) 0.416(419) 0.881(590) 0.418(400) 0.509(463) 0.499(355) 0.597(521) 0.643(453) 1.076(853) 0.918(507) 0.838(532) 0.560(495) 0.880(583) 0.665(510) 0.510(423) 0.456(375)

Table A.9: MILC-20 3 Mo1-chopped - data set 5

v0.000 1.810(4) 0.384(20) 0.815(51) 0195(21) 0.780(43) 0.248(23)

0.070 1.590(1.518) 0.837(3.365) 0.471(491) 0.134(1.019) -0.275(1.308) 0.587(772) 0.005(191) 1.118(1.242) 0.171(1.079 0.390)2.703) 0.151(270) 0.214(492) 0.5290.23) -0.777(3.873)

10.094 1.287(26) 0.881(155) 0.310(14) 0.136(49) 0.116(41) 0.687(41) 9.309(1.05) 0.178(15) -0.048)432) 0.607)42) -0.212)503) 1.783(1)2) 0217(22) -0.147(254) 0.257(48 0.204(139)

,/0.095 1.195(54) 0.409(376) 0.279(24) 0.181(101) -0.108)101) 0.843(116) 11.554)2.685) 0.177(35) 0.442(842) 0.645)74) -(.063)959) 1.871(232) 0)212(33) -0.44(396) 0.3(90) 0.318(467)

0.150 0.625(213) 0.159(1.097) 0.111(71) 0.070(300) 0.080(228) 0.514)319) 8.78((4.821) 0.061(96) -1.014(1.458) 0.313(283) (.36((2.489) 1.134(657) (.122)116) (.856(1.298) -0.(55(278) 0.718(883)

0.182 0.966(35) 0.690(125) 0.263(13) 0.119(44) -0.047(23) (.517(38) 4.141(506) 0.160(16) (.281(227) (.546(44) -0.531(265) 1.354(91) 0.184(21) 0.001(132) 0.227)43) (.(79(88)

,(0.184 0.884(90) 0.028(356) 0.269(34) 0.255(100) -0.036(73) 0.775(129) 5.111(1.571) 0.171(46) 0.434(600) 0.536(97) -0.475(607) 1.441(254) 0.189(41) -0.285(277) 0.385(104) -0.364)293)

,10.197 0.913(51) 0.615(146) 0.258(19) 0.069(46) -0.050(33) 0.547(52) 4.362(694) 0.161(20) 0.314(330) 0.505(60) 0.050(335) 1.258(112) 0.189(28) 0.028(147) 0.266(45) 0(138(105)

0.225 0.400(235) -0.027(920) 0.143(88) 0.313(315) -0.170(202) 0.097(347) -2.004(3.474) 0.030(122) 0.139(1.307) 0.135(384) 0.929(2.526) 0.718(760) 0.150(139) 0.201(745) 0.075(260) 0.294(667)

0.236 0.114(370) 0.966(1.942) -0.009(195) -0.113(559) -0.145(458) 0.120(650) - -0.025(185) -- 0.109(336) 0.531(690) 1.314(1.724) 0.770(664) -0.406(416) -1.102(1.098) 4.254(3.521)

,0.263 0.709(56) 0.603(145) 0.213(21) 0.149(55) -0.057(29) 0.364(54) 2.338(521) 0.149(23) 0.311(245) 0.563(68) -0.750(262) 0.885(117) 0.169(32) -0.004(154) 0.146(57) 0.124(103)

10.292 0.710(60) 0.568(155) 0.237(22) 0.163(53) 0.037(34) 0.398(67) 1.674(611) 0.145(26) -0.063(337) 0.540(76) -0.305(281) 1.031(121) 0.196(32) -0.142(130) 0.231(53) -0.181(111)
0.301

,10.340 0.610(78) 0.204(179) 0.191(30) 0.101(77) -0.030(36) 0.389(89) 1.972(662) 0.085(32) -0.132(317) 0.440(122) -0.475(424) 0.581(145) 0.161(58) -0.109(214) 0.160(77) 0.014(129)

10.347 0.499(171) 0.200(505) 0.212(63) 0.019(148) -0.009(80) 0.260(250) 1.506(1.624) 0.156(99) 0.119(777) 0.670(248) -0.643(960) 0.727(313) 0.295(108) -0.419(412) 0.094(124) -0.328(387)
(7.367

1(1.395 0.555(58) (.194(112) 0.224(27) 0.069(48) -0.046(27) 0.331(55) 0.108(24) 0.171(40) 0.270(40) 0.643(99) 0.076(28) 0.083(22) 0.194(56) -0.087(77)
0.413
().422

10.465 0.523(86) ((.209)172) (.188(32) -0.00(1160) -0.3(54(32) 0.473(103) 2.148(613) (.163)40) 0.611(305) (.691)164) -0.684(376) 0.455(130) ((.214)67) -((.118)175) ((((49(61) ((124)117

10.493 0.451(51) (.342(9(1) (.172)21) (.3)11)34) -0.034(17) 0.301(46) 0.774(339) 0.107(19) -(.171(240) 0.398)97) -1.261(215) 0(.546(80) ((199)54) (( 089)(121) 0(t61(43) ((((24)48)

Ao 1.81(1(4) 1.153(321) (.372(18) (.229(71) -0.199(196) (.842(50) 40.859(9.36) 0.200(19) 0.363(450) 0.745(44) -0. 446(163) 2.642)284) 0.235(24) -((((91186) (.345(66) (((((1(13)4)

M
1
A (.693)119) 1.219(2.152) 0.847(64) 1.265(248) 0.3 1.047(685) 0.3 2.142(392) 1.418(1.283) 0.958(141) 3.30((209) 1(186)910) 1.26(436) 3300)289) 1.703(36) 0.3

p 1.994(586) 5.276(15.603) 1.5 6. 1.114(807) 2.879(3.344) 2.026(220) 5.948(1.406) 6. 1.5 3.5 4.862(6.946) 1.5 3.5 6. 1
2

0.432(436) 1.045(670) 0.501(344) 0.950(632) 0.843(599) 1.297(731) 0.774(623) 0.435(369) 0.807(545) 0.818(525) 0.595(334) 0.567(501) 0.453(444) 0.402(423) 0.891(647) 1.186(691)



Q2  Ai("' BO" A20") B2 0(') C20(" Zo") 510 ("11  
A20

11) 5 20
11) Ao"

1) Z',ri") .riofu AT 20
1) Ar20"

)  
P-r20(") 5T "l

/0.000 1.808(4) 0.371(17) 0.765(52) 0.207(20) 0.700(46) 0.243(24)
0.042 1.782(100) 2.821(981) 0.364(42) -0.134(288) -0.412(409) 0.909(145) 0.238(47) - 0.621(94) 1.345(305) 3.350(763) 0.197(56) 0.080(140) 0.195(350) -0.139(1.267)

/0.049 1.500(18) 1.033(191) 0.348(16) 0.118(62) -0.214(52) 0.721(42) 12.124(1.245) 0.199(16) 0.706(508) 0.644(44) -0.300(575) 2.262(117) 0.236(22) -0.155(284) 0.392(52) 0.237(198)
/0.049 1.479(25) 0.642(294) 0.325(19) 0.137(95) -0.048(109) 0.813(68) 13.369(2.165) 0.203(22) 0.945(755) 0.654(59) -0.398(889) 1.940(163) 0.234(26) -0.433(402) 0.418(81) 0.160(509)

0.086 1.361(80) 1.431(525) 0.306(32) 0.088(160) -0.241(117) 0.901(119) 10.718(2.969) 0.229(41) 1.018(891) 0.680(118) -0.232(1.496) 2.393(328) 0.186(46) 0.470(551) 0.330(146) 0.327(367)
/0.096 1.295(27) 0.866(160) 0.309(15) 0.106(49) -0.071(29) 0.708(45) 8.772(808) 0.196(16) 0.899(271) 0.612(41) -0.438(349) 1.929(98) 0.206(20) 0.047(168) 0.353(46) 0.091(96)
/0.097 1.227(38) 0.526(267) 0.286(19) -0.006(86) -0.167(65) 0.692(74) 7.933(1.576) 0.210(22) 1.611(482) 0.600(58) -0.761(583) 1.771(144) 0.221(24) -0.315(278) 0.348(70) -0.062(289)
/0.101 1.199(42) 0.625(201) 0.304(18) 0.089(63) -0.029(44) 0.675(54) 8.550(1.124) 0.180(19) 0.877(442) 0.523(56) 0.374(502) 1.667(129) 0.205(28) 0.103(209) 0.341(59) 0.081(140)

0.128 1.172(90) 1.358(433) 0.262(32) 0.006(143) -0.208(104) 0.766(114) 6.957(1.985) 0.231(42) 0.699(706) 0.583(110) -0.151(923) 1.824(284) 0.195(51) 0.291(468) 0.320(117) 0.565(317)
0.142 1.128(36) 0.676(147) 0.278(15) 0.176(50) -0.061(32) 0.648(47) 6.375(712) 0.192(17) 0.864(252) 0.594(45) -0.572(292) 1.650(95) 0.191(23) 0.068(175) 0.263(45) 0.140(98)
0.149

/10.150 1.015(42) (.459(172) 0.269(18) 0.071(53) -0.031(36) 0.600(54) 5.599(818) 0.179(20) 1.403(360) 0.505(54) -0.125(363) 1.511(109) 0.177(25) (.109(167) 0.278(54) -(.015(118)
0.185 0.999(43) 0.543(160) 0.274(19) 0.026(56) -0.059(35) .571(58) 4.436(758) 0.182(21) 0.864(351) 0.486(66) 0.167(411) 1.475(108) 0.194(32) 0.167(219) (.293(53) 0.221(129)

,/0.186 0.924(57) 0.653(252) 0.239(2) 0.056(81) ((.)52(46) (.528(90) 3.911(1.11) 0.160(31) 0.555(457) .441(74) 0.683(522) 1.223(152) (.161(33) 0.211(248) (.272(75) (.088(198)
0.187
0.201 0.929(56) 0.577(155) 0.287(26) (.148(6)) -(.065(44) (.583(59) (.164(25) 0.376(42) (.540(64) 1.314(16) (1151(27) 0.111(29) (.263(72) -0.004(138)
0.210

/0.227 0.860(43) 0.523(127) 0.252(19) (1(6((45) ((.(7((21) (.558(56) 3.703(535) 0.173(20) 0.692(209) (.489(51) -0.155(240) 1.281(94) 0.167(26) 0.089(128) (.268(47) 0.067(74)
/0.229 0.777(62) 0.358(220) 0.204(22) -(.137(73) -(.092(36) (1448(90) 3.031(843) 0.152(30) 0.566(289) 0.414(73) 0.070(333) 0.942(143) 0.167(31) -(.085(163) (.235(68) (.1(6(165)
/1.243 0.806(49) 0.381(170) 0.223(19) 0.018(59) -0.073(32) 0.512(68) 3.297(656) 0.133(25) 0.535(333) 0.391(66) 0.309(310) 1.001(101) 0.168(33) 0.(74(176) 0.267(55) -(.173(119)
,/0.251 0.814(51) (.452(121) 0.262(22) 0.050(44) -0.052(25) 0.564(53) 4.135(575) 0.165(22) 0.636(320) 0.336(69) 0.546(285) 1.082(105) 0.118(43) 0.181(167) 0.227(47) -0.1116(84)

Ao 1.808(4) 1.131(275) 0.374(17) 0.187(143)
m
1

A 0.707(148) 0.630(120) 0.798(53) 0.535(1.869)
p 2.056(756) 2. 1.5 2.715(15.446)

-0.198(66) 0.798(50) 21.962(6.945) 0.214(19) 1.297(419) 0.720(47) 0( -13\n6. 10) 2.624(152) 0.253(24) 0.001(144) 0.459(70) 0.128(176)
0.302(80) 1.878(211) 0.367(237) 2.189(414) 1.429(386) 1.593(159) 0.3 1.235(57) 1.697(268) 0.344(5.944) 0.807(130) 0.3

1. 5.998(53) 1.781(1.178) 6.000(4) 6. 5.997(70) 3.5 6.00000(3) 5.991(512) 3.5 2. 1

x2  0.705(551) 0.537(482) 0.890(704) 0.365(470) 1.324(708) 0.521(311) 0.477(486) 0.349(283) 0.690(582) 0.519(443) 1.217(768) 1.253(848) 0.211(226) 0.705(604) 0.096(154) 0.296(327)

Q2  
Aio,

1 ) Bio(d) A 20
1() B20 (d) C20(d) Ai(d f510d) A20"d) 5 20 (d) ATio(d) ATio(d) 5T10(d) AT20(d) AT20(d) 5T20 (d) 51 22

1 
")

/0.000 0.917(2) 0.155(10) -0.315(36) -0.056(14) -0.178(26) -0.033(11)
((.1042 10.841(6(0) (((184(639) 0. 152(24) -0-252(177) -0.189(293) -0.215(83) -0.036(27) -0.171(60) 0.906(180) 2.269(451) -0.026(33) 0.055(98) 0.137(246) -0.308(796)

/0.049 0.729(10) -1.233(115) 0.139(8) -(.202(44) -0.114(32) -0.269(27) -2.468(781) -0.052(12) 0.087(324) -0.201(24) 1.688(350) 1.464(86) -0.049(12) 0.356(175) 0.215(38) -0.113(105)
0.049 0.7135(15) -1(027(186) 0.132(10) -01(89(62) -1.043(73) -(.193(37) -1.334(1.173) -0.05((17) -(.532(472) -0.181(32) 1.39((500) 1.428(1(6) -0.029(12) 0.286(236) (.149(53) (.026(323)
0.086 0.677(56) -0.613(354) 0.153(20) -(.168(1(2) 0.234(68) (.188(70) -2.984(1.477) -0.027(24) -0.746(565) -(.167(62) 1.392(768) 1.498(195) -0.035(24) (.395(308) 0.127(95) 0.247(235)

/0.096 0.602(16) -1.063(98) 0.121(8) -0.180(37) -(.058(17) -0.250(26) -2.274(424) -0.049(11) 0.065(176) -0.190(24) 1.218(192) 1.250(74) -0.050(11) 0.252(96) 0.204(35) 0.023(58)
/0.097 0.612(24) -0.919(171) 0.119(10) -(.196(55) -0.042(45) -0.230(44) -2.905(927) -0.041(17) -0.093(332) -(.154(34) 0.695(376) 1.250(97) -0.028(13) 0.245(170) 0.158(45) 0.187(187)
/0.101 0.595(21) -1.073(136) 0.116(8) -0.161(44) -0.028(26) -0.224(29) -1.714(588) -0.051(12) 0.039(292) -0.216(30) 1.255(275) 1.099(91) -0.037(13) 0.114(133) 0.189(39) -0.031(93)

0.128 0.547(62) -0.555(310) 0.133(20) -0.059(96) -0.181(67) -0.117(76) -0.753(1.222) -0.015(25) -0.328(448) -0.107(64) 0.670(632) 1.047(177) -0.008(27) 0.147(277) (.153(81) 0.240(205)
0.142 0.498(21) -0.961(94) 0.107(8) -0.161(36) -0.047(19) -(.212(28) -1.373(397) -0.040(11) 0.185(184) -0.168(28) 0.887(204) 1.069(72) -0.048(14) 0.149(101) 0.186(36) 0.007(62)
0.149

/0.150 0.499(22) -1.020(120) 0.105(8) -0.146(38) -0.029(23) -0.225(31) -1.744(491) -0.047(12) 0.361(249) -0.183(31) 0.759(229) 1.081(81) -0.048(13) 0.164(102) 0.170(34) -0.010(80)
0.185 0.409(24) -0.798(106) 0.099(10) -0.146(41) -0.048(21) -0.210(33) -1.502(413) -0.051(14) -0.001(222) -0.142(37) 0.613(228) 0.923(79) -0.059(19) 0.139(128) 0.174(32) -0.110(84)

/0.186 0.421(40) -0.550(164) 0.095(12) -0.030(53) -0.041(31) -0.142(55) -0.871(688) -0.046(22) -0.306(301) -0.165(42) 0.673(292) 0.819(105) -0.055(17) 0.218(150) 0.094(49) -0.173(122)
0.187
0.201 0.388(30) -0.680(105) 0.092(10) -0.166(45) -0.043(28) -0.172(32) -0.050(13) -0.060(23) 0.298(40) 0.751(101) -0.034(16) 0.069(19) 0.177(47) 0.010(87)
0.210

/0.227 0.349(26) -0.730(99) 0.089(10) -0.134(35) -0.042(15) -0.191(32) -1.175(291) -0.046(13) -0.01(149) -0.130(32) 0.514(146) 0.831(75) -0.058(16) 0.132(81) 0.183(31) -0.048(53)
/0.229 0.372(46) -0.511(158) 0.087(12) -0.044(48) -0.040(27) -0.203(58) -1.339(591) -0.046(22) -0.177(224) -0.135(45) 0.458(249) 0.851(105) -0.043(17) 0.183(115) 0.136(42) 0.009(96)
/1.243 0.361(29) -0.728(123) 0.082(9) -0.10(36) -0.021(20) -0.195(38) -1.244(402) -0.049(17) -0.034(226) -0.177(38) 0.507(201) 0.682(76) -0.052(18) 0.054(97) 0.150(34) -0.184(81)
/1.251 (.345(26) -. 62(0(8() (.077(9) -0.137(34) -0.010(16) -0.167(27) -0.366(295) -0.044(12) 0.275(207) -0.161(42) 0.687(179) 0.644(73) -0.037(22) 0.072(95) 0.169(33) 0.006(53)

Ao 0.917(2) -1.423(142) 0.155(10)
pA 0.767(155) 1.328(97) 1.431(590)
p 2.775(1.033) 6. 5.646(4.079)

-0.194(53) -0.152(59) -0.291(36) -3.571(854) -0.053(14) -0.034(4.107) -0.197(25) 2.193(422) 1.760(103) -0.043(10) 0.433(205) 0.204(44) -0.024(39)
0.833(226) 0.3 0.795(154) 0.984(125) 1.416(1.167) 0.525(12.898) 2.543(1.) 0.691(93) 1.238(60) 3.3 0.698(243) 1.298(480) 3.3

2. 1.404(545) 1.5 6. 1.5 5.641(21.007) 5.999(70) 3.5 6. 1.5 3.5 2. 1

Table A.10: MILC-28 3-mOl-chopped - data set 6

0.175(258) 0.866(795) 0.084(135) 1.286(1.039) 0.518(556) 0.655(401) 0.980(687) 0.044(88) 0.891(832) 0.538(404) 0.396(458) 0.684(383) 0.694(563) 0.215(316) 0.618(701) 0.331(336)



Q2  
Aio(") Bio(u) A 20 (u) B 2 0(u) C 2 0 () Ai(u) 51o(u) A 20

1 ) 5 20

1
") ATIo(u) AT1o(U) Tio(U) AT2o(u) AT 20 (u) 1T20(") 5T21(")

/0.000 1.7678(6) - 0.406(2) 0.788(4) 0.229(2) 0.765(4) 0.249(2)
0.077 1.387(17) 1.354(117) 0.358(6) 0.198(36) -0.091(47) 0.703(19) 0.205(7) 0.621(15) 1.049(34) 2.607(84) 0.223(7) 0.182(14) 0.449(36) 0.211(106)

,0.096 1.321(2) 1.102(17) 0.350(1) 0.172(6) -0.063(4) 0.672(4) 7.251(104) 0.206(2) 0.465(47) 0.657(4) -0.538(47) 2.197(9) 0.227(2) -0.033(21) 0.407(5) 0.037(11)
.'(0.096 1.313(4) 1.107(35) 0.344(2) 0.158(10) -0.049(10) 0.669(7) 7.102(210) 0.202(3) 0.452(77) 0.651(6) -0.532(83) 2.159(17) 0.220(3) -0.058(30) 0.392(7) -0.027(33)

0.160 1.110(18) 1.040(71) 0.321(6) 0.183(21) -0.077(13) 0.615(18) 5.112(346) 0.188(6) 0.631(110) 0.599(20) -0.284(173) 1.868(42) 9.2(1(7) 0.028(66) 0.354(17) 0.012(39)
/0186 1.041(3) (0.862(14) 0.307(1) (0.155(5) -0.048(2) (0.582(4) 4.618(58) 0.188(2) 0.424(24) (0.571(4) -(0.359(24) 1.791(9) 0.205(2) -0.016(11) ((.346(4) 0.((16(7)
/0.187 1.033(7) 0.842(32) 0.301(3) 0.146(10) -0.029(6) 0.578(9) 4.518(153) (.184(3) 0.424(54) (.564(7) -0.373(57) 1.651(16) (.198(3) -0.(39(23) 0.334(7) 0.023(22)
0. 197 1.012(5) ((.836(16) ((.298(2) ((.146(5) -0.027(3) 0.576(5) 4.580(77) 0.184(2) ((.362(36) 0.556(5) -((.318(35) 1.623(11) 0.200(2) -0.024(15) 0 .33(4) -0.014(8)
0.241 0.909(23) 0.788(66) 0.282(8) 0.160(20) -0.051(12) (.530(21) 3.44((271) 0.168(7) 0.483(89) 0.523(21) -0.253(12) 1.441)43) 0.180(8) 0.018(47) 0.317)16) -0.008)35)
0.268 0.997(186) 0.924(264) 0.307(57) 0.107(75) -(.032(66) 0.585(119) (.163(39) 0.467(94) (.795(147) 1.947(361) 0.207(46) (.127(39) 0.209(96) 0.065(143)

/0.272 0.849(5) 0.697(15) 0.272(2) 0.139(6) -0.039(3) 0.514(5) 3.287(60) 0.173(2) 0.389(25) 0.496(5) -((.216(26) 1.362(10) ((.184(2) -0.002(12) 0.304(5) 0.014(7)
/0.293 0.813(5) 0.660(14) 0.262(2) 0.126(5) -0.022(3) 0.504(5) 3.201(60) 0.168(2) 0.368(29) 0.483(6) -0.236(26) 1.268(10) (.182(2) -0.023(12) ((.282(4) -0(013(8)

0.339 0.741(128) 0.746(207) 0.260(45) 0.135(63) -0.053(32) 0.419(87) 2.622(693) 0.133(30) 0.559(223) 0.478(106) -0.226(364) 1.130(194) 0.168(40) 0.009(152) 0.266(64) -0.034(92)
,/0.354 0.723(7) 0.579(18) 0.246(2) 0.124(6) -0.030(3) 0.454(7) 2.449(70) 0.158(3) 0.273(36) 0.445(8) -0.129(37) 1.146(13) 0.172(4) -0.007(19) 0.279(6) 0.001(10)
/0.358 0.731(13) 0.579(36) 0.245(5) 0.111(12) -0.024(6) 0.457(15) 2.345(148) 0.149(6) 0.210(65) 0.450(14) -0.178(63) 1.107(24) 0.172(6) -0.034(28) 0.272(10) -0.006(19)

0.393 0.703(43) 0.730(86) 0.239(15) 0.126(26) -0.026(14) 0.450(38) 2.130(288) 0.139(13) 0.276(113) 0.470(50) -0.316(193) 1.042(70) 0.171(20) -0.122(81) 0.253(24) -0.068(38)
/0.395 0.667(6) 0.502(12) 0.234(2) 0.109(5) -0.023(3) 0.429(5) 0.153(2) 0.276(4) 0.422(4) 1.020(11) 0.137(2) 0.109(2) 0.255(5) -0.005(6)
./0.433 0.622(7) 0.480(14) 0.225(3) 0.111(5) -0.027(2) 0.412(7) 1.907(48) 0.148(3) 0.271(22) 0.409(7) -0.139(22) 0.956(12) 0.159(3) -0.004(11) 0.241(5) 0(0.006)
/0.438 0.613(14) 0.455(32) 0.217(5) 0.112(10) -0.014(5) 0.400(15) 1.749(106) 0.140(5) 0.256(41) 0.401(12) -0.193(40) 0.912(23) 0.153(5) -0.026(18) 0.236(9) -0.019(16)
/0.472 0.576(8) 0.451(19) 0.211(3) 0.104(7) -0.020(3) 0.391(8) 1.737(64) 0.139(3) 0.207(32) 0.374(8) -0.104(27) 0.849(13) 0.153(4) -0.010(14) 0.221(6) -0.002(9)
/0.491 0.557(5) 0.422(10) 0.206(2) 0.096(4) -0.019(2) 0.380(5) 1.757(41) 0.140(2) 0.248(26) 0.361(7) -0.073(22) 0.825(9) 0.149(4) 0(104(11) ((.216(4) -((.1(14(4)

A,, 1.7678(6) 1.464(34) 0.406(2) ((.197(7) -0.115(17) 0.787(5) 12.972(647) (.228(2) 0.591(41) 0.765(4) -(.968(110) 2.975(22) (.25((2) -0.084(75) 0.480(7) 0(01(65)
M717(12) (.025(179) 1.133(57) 2.019(68) 0.321(36) 1.271(142) 7.544(55) 1.516(394) 1.741(15) 1.408(233) (.739(48) 0.834(40) 1.493(676) (.637(3(4) 1(116(1(8) 0.3
1 1.718(51) 3.253(929) 1.772(176) 6.11(1(1(3) 1. 2.743(552) 2.119(231) 2.546(1.217) 6. 3.31(l(028) 3.5 2.386(174) 2.593(2.13) 3.5 2.1(9(348) 1

2 0.480(297) 0.337(281) 1.137(604) 0. 672(5221 5.174(-.547) 0.263(225) (.181(.582) (.77((611) 0.988(797) (.539(4(1) 0.773(522) 2.421(1.119) 0.94515171 0.560(533) 1.663(778) 2.426(1.18)

Q' 4.(d) B10
1('1  

A20
1
(d

1  
B20

1
(d) c20 (d) A10(d) B10

14 
Ad 20

4 
Bd f 20

1
(d

1  ATIO (d) ATIO (d) f3T (d) AT20
1
(d) AT20

1  
B1T2.((') bT2

0

./0.000 0.8958(3) - 0.1760(8) --. 0.245(3) -0.054(11) -0.190(2) -0.0468(9)
0.077 0.653(10) -1.049(72) 0.149(3) -0.212(22) -0.084(28) -0.201(11) -0.046(4) -0.135(7) 0.653(22) 1.636(54) -0.038(4) 0.115(9) 0.289(22) 0.012(75)

,/0.096 0.631(1) -1.094(9) 0.1462(7) -0.191(3) -0.061(2) -0.207(2) -2.125(55) -0.0494(9) -0.159(24) -0.160(2) 0.917(24) 1.399(6) -0.0414(9) 0.111(11) 0.259(3) -0.043(6)

./0.096 0.630(2) -1.079(19) 0.145(1) -0.182(6) -0.049(6) -0.210(4) -2.182(113) -0.049(2) -0.095(42) -0.162(3) 0.918(44) 1.368(11) -0.042(1) 0.107(16) 0.241(5) -0.043(21)
0.160 0.496(9) -0.866(45) 0.129(3) -0.169(13) -0.051(8) -0.181(11) -1.304(200) -0.046(4) -0.045(64) -0.146(10) 0.792(93) 1.181(28) -0.041(4) 0.125(36) 0.219(11) -0.029(24)

/0.186 0.469(2) -0.846(8) 0.1231(7) -0.160(3) -0.044(1) -0.180(2) -1.395(34) -0.0452(9) -0.117(13) -0.140(2) 0.721(15) 1.074(6) -0.0373(9) 0.099(7) 0.220(3) -0.034(4)
,/0.187 0.469(4) -0.820(19) 0.123(1) -0.150(5) -0.040(4) -0.183(5) -1.480(89) -0.046(2) -0.108(32) -0.137(4) 0.649(34) 1.053(11) -0.039(1) 0.094(13) 0.209(5) -0.039(13)
/0.197 0.459(2) -0.806(11) 0.1206(9) -0.153(4) -0.037(2) -0.177(3) -1.340(44) -0.045(10) -0.096(21) -0.135(3) 0.662(20) 1.032(7) -0.037(1) 0.093(9) 0.212(3) -0.031(5)

0.241 0.389(11) -0.686(42) 0.113(4) -0.141(12) -0.044(7) -0.164(12) -1.120(163) -0.044(4) -0.066(55) -0.128(10) 0.593(72) 0.926(28) -0.039(4) 0.096(28) 0.199(10) -0.030(23)
0.268 0.415(79) -(0.339(153) 0.120(23) -0.179(55) -0.072(38) -0.067(42) -0.022(14) -0.060(23) 0.445(84) 1.117(210) -0.015(16) 0.092(24) 0.232(61) 0.017(91)

v/0.272 0.363(3) -0.673(9) (.1055(9) -0.140(3) -0.037(1) -0.160(3) -1.023(35) -0043(10) -0.111(14) -0.123(3) 0.569(17) ((859(7) -0.034(1) 0.081(8) ((193)3) -0.034(4)
/0.293 0.347(3) -0.627(10) 0.1028(10) -0.130(3) -0.032(2) -0.153(3) -0.932(37) -0.041(1) -0072(18) -0.118(3) 0.507(17) (4849(7) 0133(1) ((176(8) .182)3) -0.(25(5)

0.339 (.27((49) -(.312(122) 0.091(16) -0.106(35) -0.037(19) -0.091(36) -0.340(337) -0.025(13) 0.041(126) -0.079(43) 0.339(208) 1.646)119) -0.022(17) 0.0(88) 0 139(39) 0.022)
/10.354 (0.295(3) -(0.545(11) 0.093(1) -(.128(4) -0.033(2) -0.144(4) -0.730(38) -0.039(1) -0.10(19) -0.109(4) 0.458(19) 0.715(8) -(.032(2) (.077(9) 0.170)4) -0.020)
/0.358 0.307(7) -0.555(22) 0.096(2) -0.129(7) -0.028(4) -0.144(8) -0.726(78) -0.038(3) -0.052(34) -0.114(6) 0.466(34) 0.707(15) -01035(3) 0.091(14) 0.165)6) -0.115)12)

((.393 0.279(19) -0.500(51) 0.091(6) -0.123(15) -0.025(8) -0.122(18) -0.489(151) -0.033(6) 0.042(64) -0.117(19) 0.491(88) 0.649(39) -0.034(7) 0.073(34) 1)142(13) (.037(24)
/0.395 0.271(3) -0.501(9) 0.087(1) -0.118(3) -0.028(2) -0.134(3) -0.038(1) -0.064(2) 0.256(3) 0.648(7) -0.028(1) 0.063(1) 0.161(3) -(.028(4)
v0.433 0.241(4) -0.467(10) 0.083(1) -0.113(3) -0.027(1) -0.131(4) -0.584(27) -0.037(1) -0.074(13) -0.100(4) 0.387(14) 0.602(8) -0.030(2) 0.066(7) 0.154(4) -0.027(4)

,/0.438 0.248(7) -0.434(20) 0.084(2) -0.105(6) -0.022(3) -0.122(8) -0.541(60) -0.037(3) -0.074(24) -0.103(6) 0.378(24) 0.581(15) -0.032(2) 0.072(11) 0.146(5) -0.018(10)
./0.472 0.227(4) -0.423(12) 0.079(1) -0.099(4) -0.023(2) -0.123(5) -0.546(37) -0.035(2) -0.083(20) -0.089(4) 0.312(17) 0.543(8) -0.027(2) 0.052(8) 0.142(4) -0.025(6)
/0.491 0.214(3) -0.405(8) 0.075(10) -0.100(3) -0.024(1) -0.117(3) -0.500(23) -0.034(1) -0.057(16) -0.091(4) 0.328(13) 0.523(6) -0.026(2) 0.056(6) 0.137(3) -0.020(3)

A0  0.8958(3) -1.492(19) 0.1762(8) -0.224(4) -0.088(5) -0.245(3) -3.634(277) -0.054(1) -0.182(99) -0.190(2) 1.242(32) 1.905(13) -0.0468(10) 0.134(10) 0.299(5) -0.052(7)

'rnA 0.792(14) 0.845(69) 1.071(60) 1.004(20) 0.423(22) 1.082(173) 0.637(120) 1.634(3.531) 0.722(2.098) 0.980(182) 1.027(20) 0.795(37) 1.185(680) 1.355(96) 1.240(288) 0.615(98)
p 2.474(82) 2.485(314) 2.372(243) 2. 1. 2.066(576) 2.509(589) 2.653(11.21) 1.515(6.045) 1.759(588) 3.5 2.233(160) 1.762(1.845) 3.5 2.767(1.111) 1

y2 1.276(605) 0.448(389) 0.627(495) 1.264(763) 1.872(993) 0.234(273) 0.272(253) 0.118(161) 0.710(488) 0.319(282) 0.989(585) 1.221(655) 0.595(567) 0.453(380) 2.077(965) 0.456(369)_

Table A.11: MILC-20 3-m03-unchopped - data set 7



Q2  Ai,(u) B0 (u) A 20(1) B20(
11

) C20() 4(u) gO(u) 1 2 0(u) 52 0(u) ATO(
1 1

) ATO(") 3T10(u) AT20(
1 1

) AT2 0(") PT20 "0 BT21(u)

/0.000 1.785(11) - 0.395(3) 0.784(8) 0.225(3) 0.757(6) 0.243(3)
0.074 1.382(33) 0.938(188) 0.365(12) 0.077(58) -0.131(77) 0.680(34) 0.194(12) 0.619(25) 0.927(54) 2.301(134) 0.229(14) 0.147(23) 0.361(58) 0.217(191)

/0.095 1.309(3) 1.018(26) 0.340(2) 0.161(8) -0.071(6) 0.663(6) 7.117(147) 0.203(2) 0.407(63) 0.648(6) -0.534(70) 2.025(14) 0.223(3) -0.075(32) 0.378(7) 0.006(18)
/0.096 1.294(7) 0.937(50) 0.330(4) 0.141(15) -0.036(15) 0.661(12) 7.056(332) 0.197(4) 0.330(108) 0.646(10) -0.550(125) 1.947(27) 0.220(4) -0.126(49) 0.355(11) -0.102(51)

0.156 1.084(32) 0.692(111) 0.307(10) 0.101(31) -0.031(23) 0.562(30) 4.207(522) 0.176(11) 0.085(173) 0.628(36) -0.657(277) 1.647(66) 0.223(15) -0.237(111) 0.337(26) -0.079(68)
0. 184 1.019(5) 0.775(21) 0.298(2) 0.136(7) -0.048(4) 0.576(6) 4.476(82) 0.184(2) 0.336(35) 0.561(6) -0.320(38) 1.565(12) 0.202(3) -0.016(18) 0.324(7) 0.008(11)

/0.186 1.002(10) 0.748(45) 0.285(4) 0.119(15) -0.037(9) 0.558(13) 4.031(209) 0.177(5) 0.291(76) 0.550(11) -0.298(80) 1.486(26) 0.193(5) 0.004(35) 0.298(11) 0.026(33)
0. 197 0.994(7) 0.781(23) 0.290(3) 0.137(8) -0.037(5) 0.568(7) 4.456(105) 0.181(3) 0.290(51) 0.551(8) -0.328(46) 1.474(16) 0.199(4) -0.038(22) 0.308(7) 0.011(13)
0.234 0.895(39) 0.600(106) 0.278(12) 0.116(30) -0.020(20) 0.477(35) 2.534(401) 0.172(13) 0.221(134) 0.523(33) -0.282(177) 1.387(69) 0.180(14) 0.028(79) 0.276(25) -0.083(63)
0.255 0.739(162) 0.535(322) 0.222(56) 0.085(104) 0.094(89) 0.390(114) 0.131(40) 0.354(84) 0.282(98) 0.671(241) 0.192(60) 0.076(42) 0.171(104) 0.180(225)

0. 269 0.827(7) 0.633(22) 0.263(3) 0.122(8) -0.033(4) 0.510(8) 3.048(81) 0. 170(3) 0.301(37) 0.498(9) -0.250(39) 1.260(15) 0.182(4) 0.004(21) 0.284(8) -0.001(13)
1(0.293 0.796(8) 0.620(22) 0.254(3) 0.117(8) -0.031(4) 0.489(9) 2.872(85) 0.165(3) 0.241(46) 0.481(9) -0.239(37) 1.160(16) 0.180(4) -0.020(18) 0.258(7) 0.013(13)

0323 0.620(157) 0.284(221) 0.232(58) 0.044(75) -(.068(52) 0.335(105) 1.954(1.151) 0.111(35) 0.096(372) 0.648(340) -1.109(1.187) 0.718(227) 0.217(116) -0.262(406) 0.162(77) 0.102(135)
/034 0.717(12) 0.512(22) 0.23(4) 003(10) -0.025(5) 0446(11) 2.124(96) 0.157(4) 0.166(50) 0.467(15) -0.203(58) 1.018(20) 0.185(7) -0.056(31) 0.259(10) -0.021(15)
/0.353 0.7120(2) 0.486(58) 0.231(7) 0.085(18) -0026(9) 0.445(26) 2.169(221) 0.158(10) 0.179(93) 0.459(22) -0.229(93) 0.967(35) 0.183(9) -0.132(41) 0.250(15) -0.081(32)

0.382 0.636(68) 0.234(123) 0.214(24) 0.051(42) -0.037(24) 0.365(62) 1.900(464) 0.135(22) 0.057(198) 0.436(92) -0.244(321) 0.794(108) 0.226(49) -0.341(161) 0.224(41) -0.043(70)
/0.395 0.647(8) 0.498(17) 0.228(4) 0.109(8) -0.025(4) 0.430(8) 0.156(3) 0.260(6) 0.374(6) 0.896(16) 0.133(4) 0.103(3) 0.236(8) -0.017(10)
/0.425 0.612(11) 0.434(21) 0.217(4) 0.087(8) -0.024(3) 0.401(10) 1.688(67) 0.145(4) 0.192(30) 0.411(12) -0.125(32) 0.865(18) 0.166(6) -0.020(17) 0.230(9) -0.008(10)
/0.432 0.578(22) 0.396(47) 0.199(8) 0.063(15) -0.028(7) 0.362(23) 1.411(145) 0.139(9) 0.142(58) 0.374(20) -0.099(54) 0.750(32) 0.149(8) -0.025(27) 0.192(14) -0.008(25)
/0.469 0.572(14) 0.410(28) 0.204(5) 0.073(10) -0.014(5) 0.390(14) 1.579(91) 0.140(6) 0.176(47) 0.404(15) -0.161(42) 0.771(22) 0.162(7) -0.040(19) 0.204(10) -0.037(15)
,/0.490 0.541(8) 0.408(14) 0.203(3) 0.094(6) -0.022(3) 0.378(8) 1.652(59) 0.142(3) 0.278(40) 0.383(12) -0.150(29) 0.731(12) 0.148(6) 0.003(16) 0.203(6) 0.003(7)

A0  1.785(11) 1.345(64) 0.395(3) 0.186(14) -0.136(18) 0.783(8) 13.911(988) 0.223(3) 0.534(107) 0.757(6) -0.772(124) 2.715(35) 0.244(3) -0.10(243) 0.442(10) -0.004(6)

04A 0.653(16) 0.807(203) 0.930(11) 1.128(1.03) 0.3000(8) 1.071(166) 0.503(62) 1.156(30) 0.518(105) 0.917(17) 0.843(81) 0.972(96) 1.163(39) 0.755(977) 1.014(25) 3.3
p 1.556(65) 2.161(793) 1.5 2.382(3.624) 1.013(100) 2.067(555) 2.075(269) 1.5 1. 1.5 3.5 3.145(503) 1.5 3.5 2. 1

y7 0.948(585) 0.783(728) 1.550(904) 1.560(1.103) 1.006(610) 0.591(519) 3.106(1.371) 0.599(552) 1.054(720) 0.612(502) 0.384(397) 2.339(1.08) 1.158(709) 1.718(1.124) 1.555(906) 1.948(875)

Q2  A I()(( BI()(d) A20 (d) B20 (d) C2 o(d) A 10d) B1l0 (d) A20 (d) bi20 (d) ATIO (d) AT IO(d) B3TIO (d) AT2 0O(d) AT2 0 (d) BOT2 0 (d) 3T2 1 (d)

/0.000 09045(5) 0,169(1) -0.250(4) 0.049(2) -0.188(3) -0.045(1)
0.074 0.673(17) -1.205(119) 0.149(6) -(.201(33) -0.060(49) -0.184(21) -0,038(6) -0.135(13) 0.634(32) 1.589(80) -0.036(7) (0.103(15) 0.259(37) -0.007(119)

V/0.0195 0.6201(2) -1.056(14) 0.139(1) -0.179(5) -0.063(3) -0.209(3) -2.234(85) -0.045(1) -0.085(34) -0.157(3) 0.864(35) 1.305(10) -0.040(2) ((.117(17) ((.241(5) -0.1)63(9)
,/0.096 0.615(4) -1.040(28) 0.136(2) -0.168(8) -0.0156(9) -0.203(7) -2.225(177) -0.042(2) -0.094(58) -0.149(4) 0.757(62) 1.263(16) -0.039(2) 0.111(25) 0.225(7) -0.077(31)

0.156 (0.502(17) -0.945(75) 0.127(5) -(0.148(18) -0.051(13) -0.171(19) -1.123(316) -0.043(6) -0.179(105) -0.150(18) 0.776(150) 1.126(43) -0.038(7) 0.049(60) 0.229(17) -01.065(40)
0. 184 0.452(3) -0.799(12) 0.117(1) -0.151(4) -0.046(2) -0.180(4) -1.356(51) -0.042(2) -0.088(20) -0.134(3) 0.640(22) 0.989(9) -0.037(2) 0.104(10) 0.203(4) -0.0401(6)

/0. 186 0.448(6) -0.758(27) 0.112(2) -0.140(8) -0.041(6) -0.187(9) -1.557(127) -0.040(3) -0.099(48) -0.131(6) 0.597(47) 0.953(15) -0.037(2) 0.096(21) 0.183(7) -0.053(20)
/0.197 0.439(3) -0.745(15) 0.113(1) -0.142(5) -0.039(3) -0.173(4) -1.244(61) -0.040(2) -0.057(29) -0.135(4) 0.651(26) 0.941(9) -0.035(2) 0.112(13) 0.197(4) -0.023(8)

0.234 0.388(20) -0.723(74) 0.111(6) -0.139(17) -0.046(12) -0.172(22) -1.199(249) -0.041(7) -0.136(85) -0.125(19) 0.502(116) 0.916(47) -0.047(7) 0.110(49) 0.180(16) -0.063(39)
0.255 0.323(75) -0.568(223) 0.052(22) -0.055(58) 0.060(53) -0.131(64) -0.013(20) - -0.072(34) 0.339(78) 0.853(197) -0.002(27) 0.054(28) 0.134(70) 0.100(145)

,/0.269 0.345(4) -0.632(13) 0.10(1) -0.132(5) -0.036(2) -0.160(4) -0.944(47) -0.040(2) -0.088(23) -0.118(4) 0.485(22) 0.786(10) -0.034(2) 0.091(12) 0.178(5) -0.029(8)
/0. 293 0.332(4) -0.564(14) 0.094(1) -0.114(5) -0.032(2) -0.156(5) -0.915(48) -0.037(2) -0.062(27) -0.117(5) 0.468(22) 0.729(9) -0.033(2) 0.090(11) 0.163(4) -0.015(8)

0.323 0.239(66) -0.556(201) 0.074(23) -0.070(49) -0.029(31) -0.112(58) -0.655(611) -0.038(20) -0.207(254) -0.102(128) 0.409(522) 0.715(188) -0.028(46) 0.023(191) 0.164(60) -0.046(83)
0. 349 0.287(6) -0.521(17) 0.087(2) -0.117(6) -0.028(3) -0.141(6) -0.657(55) -0.034(2) -0.055(26) -0.111(7) 0.441(28) 0.655(13) -0.027(3) 0.056(14) 0.164(6) -0.043(9)

,/0.353 0.280(10) -0.476(34) 0.086(3) -0.113(10) -0.038(5) -0.130(13) -0.596(107) -0.034(5) -0.072(44) -0.093(9) 0.370(42) 0.604(21) -0.027(4) 0.058(21) 0.142(9) -0.035(19)
(1382 0.266(34) -0.538(92) 0.087(11) -0.135(24) -0.048(15) -0.128(33) -0.474(253) -0.033(12) -0.052(103) -0.122(38) 0.395(143) 0.593(78) -0.021(13) -0.003(57) 0.147(26) -0.050(44)

,/0.395 0.251(4) -0.432(12) 0.082(2) (4.106(5) -0.031(2) -0.128(5) -0.034(2) -0.056(3) 0.225(4) 0.571(10) -0.023(2) 0.058(2) 0.148(5) -1.024(6)
,/0.425 (0.233(6) -0.439(15) 0.078(2) -(0.108(5) -0.027(2) -(0.129(6) -0.522(38) -0.035(2) -0.055(18) -0.098(6) 0.358(20) 0.554(12) -0.027(3) 0.060(10) 0.145(6) -0.0131(6)
./11.432 (0.221(101) -0.377(30)) 0.074(3) (-.086(9) -0.029(4) -(0.122(13) -0.488(86) -0.030(5) -0.017(34) -0.099(9) 0.331(33) 0.501(21) -0.035(4) 0.094(16) 0.110(8) -0.1028(15)
/11469 0.215(7) 4(135908) 0,.072(2) -(1.1188(6) -(.025(3) -0.113(8) -0.429(55) -0.030(3) -0.039(28) -0.089(7) 0.314(22) 0.479(12) -0.028(3) 0.066(11) 0.125(6) -0.027(10)

0.1 49(1 0.200((4) -0.349(10) 0.017(l() -01090(4) -(0.0)23(2) -(.111(4) -0.428(33) -0.033(2) (.024(22) -0.089(6) 0.300(17) 0.456(7) -0.029(4) 0.068(10) 0.124(4) -0.019(4)

40 (0.9045(5) -1,477(35) (.169(1) -(1.214(6) -0.098(1(1) -0.248(5) -4.157(527) -0.049(2) -0.129(34) -0.186(3) 1.124(50) 1.798(23) -0.045(1) 0.144(17) 0.284(8) -0.100(39)
IIIA (.725(19) 0.879(128) 0.964(81) 0.954(29) 0.394(33) 1.341(478) 0.600(157) 1.245(510) 1.520(291) 0.875(35) 1.030(32) 0.809(58) 1.100(99) 1.352(151) 1.015(335) 0.354(116)

p 2.286(107) 2.921(662) 2.089(307) 2. 1. 3.257(2.097) 2.664(839) 1.545(.154) 6. 1.5 3.5 2.430(261) 1.5 3.5 2.122(1.137) 1

57 0.672(470) 1.110(728) 0.668(548) 1.150(795) 1.074(604) 0.447(328) 0.597(466) 0.428(373) 0.361(391) 0.628(401) 0.755(543) 1.588(806) 0.590(381) 0.739(538) 2.617(1.191) 1.138(808)

Table A.12: MLC-20-m2-unchopped - data set 8



Q2  Ao(u) Bl(u) A 20(1) B 20(u) C20(U) Ao(u) fi3)(u) Au(-) 5120(u) ATIO(u) AToO(u) 5TIO(U) AT20(U) AT20(") 13'o20 (u) 5T21" 1

/0.000 1.808(2) 0.387(5) - 0.765(14) 0.211(5) 0.753(12) 0.252(6)
0.070 1.331(66) 0.232(392) 0.328(27) 0.008(119) -0.009(169) 0.580(76) 0.150(23) 0.530(51) 0.784(127) 1.942(317) 0.249(34) 0.121(54) 0.295(134) 0.509(451)

/0.094 1.301(7) 0.889(40) 0.336(4) 0.151(14) -0.081(10) 0.661(10) 7.436(259) 0.195(4) 0.337(105) 0.654(12) -0.489(127) 1.868(28) 0.221(7) 0.034(66) 0.313(13) -0.007(35)
V0.095 1.284(13) 0.780(98) 0.325(7) 0.153(27) -0.037(28) 0.607(24) 6.995(583) 0.178(9) 0.211(209) 0.606(20) -0.217(247) 1.830(56) 0.219(9) -0.007(100) 0.336(23) -0.005(100)

0.150 0.984(51) 0.425(194) 0.272(18) 0.109(54) -0.043(43) 0.496(56) 3.956(820) 0.176(19) 0.147(266) 0.520(63) -0.344(464) 1.500(123) 0.185(26) 0.154(221) 0.296(53) 0.195(156)
/0.182 1.008(8) 0.694(34) 0.292(4) 0.120(12) -0.048(6) 0.580(11) 4.517(133) 0.183(5) 0.358(57) 0.551(12) -0.224(64) 1.422(23) 0.206(6) -0.017(37) 0.288(12) 0.007(23)
/0.184 1.00(21) 0.667(86) 0.286(9) 0.099(26) -0.022(18) 0.609(32) 4.979(423) 0.168(11) 0.373(151) 0.533(25) ((0.160) 1.402(57) 0.195(11) 0.039(70) (.255(23) -0.066(76)
/0.197 0.978(13) 0.701(35) 0.290(5) 0.114(13) -0.046(9) 0.570(13) 4.406(168) 0.175(5) 0.346(82) 0.532(15) -0.082(78) 1.343(27) 0.205(8) -0.069(42) 0.269(13) -0.013(28)

0.225 0.732(62) 0.523(180) 0.238(22) 0.043(49) -0.020(34) 0.419(72) 2.440(710) 0.135(25) 0.031(214) (.412(68) -0.(19(344) 1.167)125) 0.145(27) 0.097(152) 0)247(52) 0(1f(138)
0.236

/0.263 0.811(14) 0.591(37) 0.260(6) 0.113(14) -0.042(7) 0.504(15) 3.018(130) 0.168(6) (.279(60) (1470(18) -(.112(71) 1107(28) 0.190(9) 0.026(41) 0.255(15) (0.011)28)

/0.292 0.782(15) 0.537(35) 0.251(5) 0.086(13) -0.029(8) 0.510(16) 3.069(145) 0.164(6) 0.275(73) 0.484(18) -(.167(67) 1.045(28) 0.195(9) 0.068(35) 0.222(13) 0.018(27)
0.301
0.340 0.662(18) 0.427(47) 0.225(8) 0.077(18) -0.015(9) 0.459(22) 2.185(155) 0.156(9) 0.301(80) 0.462(29) -0.275(94) 0.925(37) 0.169(15) 0.030(55) (.193(19) 0.005(34)

/0.347 0.572(28) 0.209(79) 0.200(10) 0.047(26) -0.016(15) 0.456(44) 2.291(306) 0.153(16) 0.413(134) 0.378(37) -0.034((36) 0.742(55) 0.143(17) 0.014(67) 0.161(26) -0.019(59)
0.367 0.409(54) 0.294(188) 0.134(20) 0.056(59) -0.026(28) 0.251(86) 0.801(485) 0.095(31) 0.262(174) 0.235(55) 0.196(239) 0.589(106) 0.076(25) 0.153(134) 0.116(52) 0.053(123)

,(0.395 0.649(15) 0.415(30) 0.233(7) 0.091(14) -0.038(7) 0.433(15) 0.155(7) 0.242(11) 0.334(11) 0.790(29) 0.136(9) 0.084(7) 0.185(17) -0.002(22)
/(0.413 0.555(16) 0.346(33) 0.202(6) 0.067(12) -0.027(5) 0.397(16) 1.577(94) 0.138(7) 0.220(45) 0.358(19) -0.052(50) 0.715(26) 0.161(10) -0.007(31) 0.161(14) 0.012(20)
/0.422 0.508(33) 0.230(71) 0.185(12) 0.014(24) -0.003(14) 0.452(48) 1.847(261) 0.120(16) 0.098(98) 0.339(37) 0.013(100) 0.571(53) 0.161(18) -0.032(54) 0.156(25) -0.022(51)
/0.465 0.548(22) 0.336(45) 0.205(8) 0.068(16) -0.022(8) 0.439(27) 1.807(151) 0.141(10) 0.247(81) 0.345(27) 0.003(67) 0.631(35) 0.137(15) 0.027(38) 0.144(18) 0.027(32)
/0.490 (.547(13) 0.344(23) 0.203(6) 0.080(10) -0.018(4) 0.386(13) 1.286(86) 0.138(5) 0.149(67) 0.363(24) -0.058(51) 0.667(22) 0.186(14) -0.060(31) 0.174(12) 0(0.014)

A0 1.808(2) 1.170(63) 0.388(5) 0.192(23) -0.169(36) 0.763(14) 13.355(1.388) 0.211(7) 0.470(94) 0.754(12) -0.912(647) 2.616(79) 0.249(6) -0.025(23) 0.395(18) 0.002(12)
MA (.637(27) 1.419(72) 1.079(224) 0.825(86) 0.3 1.164(432) 0.680(166) 2.186(4.336) 1.768(332) 1.634(1.168) 0.583(182) 0.890(159) 1.137(74) 3.3 1.703(75) 3.295(2.995)

S1.583(1103) 5.997(390) 1.971(721) 2. 1.149(172) 2.211(1.43) 3.205(1.025) 4.439(15.889) 6. 4.785(6.486) 3.5 2.994(832) 1.5 3.5 6.0000(2) 1
S 3.496(1.399) 1.8(16(1.006) 2.462(1.066) 1.261(830) 1.351(735) 1.098(485) 1.729(799) 0.869(575) 0.553(406) 1.201(624) .993(553) 2.171(1.037) 1.276(751) 0.816(612) 1.213(700) .259(265)

Q2 A,( (d) B
1 1

(d) A20
1
d) B20~ d) C20 (d) A1 (d) j3 10ld) 20 (d2) 0.0 (2) 0.412(d8) B31 It(" 21(d 14T20l') BdB

/0.000 0.9157(8) - .163(3) -0.283(8) -0.054(3) -0.198(6) -0.041(3)

((.070 (0.607(38) -1.289(268) (.125(15) -0.245(79) -0.061(103) -0.262(51) -0.077(15) -0.167(31) 0.5(1((84) 1.253(21(1) ((.056(20) 0.075(33) 0. 190(8:3) -0.378)29)
0.094 0.607(4) -1.025(24) 0.134(2) -0.152(9) -0.067(6) -0.223(6) -2.448(145) -0.044(3) -0.112(61) -(.164(7) 0.812(69) 1.211(17) -0.040(3) 0.113(38) (.210(9) -0.025(22)

/0.095 0.600(8) -1.030(61) 0.129(3) -0.128(15) -0.051(17) -0.251(16) -2.802(367) -0.050(5) -0.083(122) -0.162(11) 0.744(130) 1.161(37) -0.036(5) 0.097(58) (.209(14) 0.084(66)
0.150 0.435(27) -0.776(130) 0.108(9) -0.168(36) -0.069(27) -0.208(37) -1.471(533) -0.061(12) -0.357(164) -0.180(37) 0.936(294) 0.895(85) -0.042(15) 0.126(122) 0.167(34) -0.035(94)

/0.182 0.432(5) -0.762(21) 0.112(2) -0.127(8) -0.049(4) -0.187(7) -1.342(85) -0.037(3) -0.044(34) -0.143(7) 0.651(42) 0.912(16) -0.037(4) 0.081(21) 0.186(8) -0.047(14)
/0.184 0.435(12) -0.767(54) 0.106(4) 0.140(16) 0.029(11) -0.209(19) -1.570(234) -0.049(7) -0.101(92) -0.128(13) 0.517(95) 0.880(35) -0032(6) 0.067(41) 0.177(15) -0.039(46)
/0.197 0.424(7) -0.706(24) 0.109(2) -0.117(8) -0.045(5) -0.187(7) -1.126(98) -0.040(3) -0.038(52) -0.156(9) 0.714(53) 0.851(18) -0.034(4) 0.067(26) 0.174(9) -0.016(17)

0.225 0.309(32) -0.623(123) 0.082(11) -0.121(33) -0.010(22) -0.177(42) -1.096(401) -0.046(14) -0.160(136) -0.102(39) 0.322(216) 0.634(84) -0.043(16) 0.104(99) 0.107(33) -0.035(82)
0.236

/0.263 0.323(7) -0.603(25) 0.096(3) -0.097(9) -0.040(4) -0.168(8) -0.880(79) -0.038(4) -0.066(39) -0.114(10) 0.443(45) 0.723(19) -0.023(5) 0.028(26) 0.165(10) -0.046(18)
./0.292 0.314(8) -0.561(24) 0.093(3) -0.097(8) -0.038(4) -0.164(9) -0.785(79) -0.040(4) -0.098(48) -0.122(11) 0.446(45) 0.675(18) -0.023(5) 0.013(22) 0.144(9) -(1.025(19)

0.301
0.340 (.256(9) -0.456(29) 0.082(4) -0.091(12) -0.027(5) -0.138(12) -(.636(92) -0.034(5) -0.042(45) -0.10(1(15) (.310(54) (.568(23) ((((:34(8) ((.08(1(31) ((129(13) (((.(19(21)

/0.347 0.229(16) -0.420(52) 0.068(5) -0.091(15) -(.019)9) -(.1(23) -(.326(167) -0.038(9) -(.086(8) -(1096(2() (.374(76) 0.507(38) 0.029(9) 0.046(38) ((113(16) ((((26(38)

(.367 ((.17(1(30) -((.31(1 23) 0.0143)10) -0(1052(36) (.01(7(17) -((.088(55) -(.427(311) -(.047(19) -0.231(1(17) -0(.062(34) ((.247(142) ((.35(6(7(1) -((((21(15) (((((12(76) ((1(11(32) -((.1(14(86)

/(0.395 (.239(8) -(.391(2() (((72(4) -0.075(9) -0.(31(5) -(.133(9) -0..934(4) -059(7) (.193(7) (8492(18) --0(23(5) .(48(4) .124(11) -(((33)15)

//0.413 0.189(8) -0.364(23) 0((69)3) -0.077(9) -(((25(3) -0.123(9) -(.428(57) -(.31(4) -0.058(26) -(.092(11) 0.280(33) ((447)1)) -0.025(6) 0((35(17) ((122)1)) ((((51)13)

/((.422 ((.105(18) -0.327(49) ((.160(6) -(.096(15) -0.1114(8) -(.099(26) -0.243(145) -0.038(9) -0.084(62) -(((182(22) ((.316166) 0, 415(:38) -0.0(12)1))) ((((39131) 0.0(1717) -0. 030(33)

/0.465 0.198(12) -0.299(29) (.166(4) -0.078)10) -(.116(5) -0.1(1(14) -(.322(86) -(.031(6) -(.045(49) -(.194(16) (.291(44) ((423(23) -(((3)(8) 0.053(22) (1(11) ((((11)2)

v/0.40 0.184(7) -0.326(16) 0.166(3) -(.063(6) -(.023(3) -0.111(7) -(.338(53) -0.03((3) -0.037(40) -0.094(14) 0.273(31) 0.395(14) -(.1(4(9) -0(005(20) (.1(8) ((((27(9)

A, 0.9157(8) -1.460(72) 0.163(4) -0.181(12) -0.091(24) -0.281(8) -6.008(1.459) -0.052(3) -0.084(66) -0.198(6) 1.218(103) 1.676(46) -0.043(3) 0.181(82) 0.256(12) -0.033(13)

MA (0.747(39) 1.001(325) 1.343(537) 1.649(91) 0.803(944) 1.293(724) 0.483(166) 1.054(118) 0.878(1.128) 1.396(1.513) 0.930(52) 0.996(198) 1.955(521) 0.770(212) 1.731(75) 2.620(8.329)

p 2.632(243) 3.911(2.046) 3.999(2.816) 5.996(182) 2.579(4.341) 3.689(3.726) 2.590(943) 1.5 1. 3.753(7.617) 3.5 3.653(1.181) 5.952(2.379) 3.5 5.998(83) 1

V
2 2.320(1.125) 0.568(435) 1.308(769) 0.638(447) 1.092(821) 0.854(493) 0.758(458) 0.540(389) 0.260(275) 0.664(548) 1.066(657) 0.885(615) 1.033(567) 0.781(604) 0.468(480) 0.884(608)

Table A.13: MILC-20 3 Mol-unchopped - data set 9



Table A. 14: MILC-20 3 -m007-unchopped - data set 10

Ao 0.915(3) -1.380(75) 0.151(5) -0.171(23) -0.115(54) -0.269(15) -5.983(3.588) -0.044(7) -1.236(2.018) -0.204(15) 1.341(294) 1.554(105) -0.028(7) 0.075(45) 0.205(29) -0.046(18)

MA 0.740(84) 1.315(47) 1.743(564) 1.620(189) 0.349(123) 1.786(386) 0.403(311) 1.024(339) 0.510(237) 1.502(1.648) 0.844(115) 1.221(866) 3.123(5.925) 3.134(4.963) 1.051(192) 3.3

p 2.641(523) 6. 5.804(3.432) 6. 1. 5.877(2.186) 1.913(1.289) 1.5 6. 5.554(10.616) 3.5 4.873(5.969) 1.5 3.5 2. 1

5.7 0.607(412) 1.119(726) 0.386(287) 1.416(795) 1.018(562) 0.503(354) 0.615(542) 0.760(442) 1.143(654) 1.166(673) 1.678(827) 1.285(626) 0.416(337) 0.370(310) 0.808(560) 1.306(709)

Q2  
A10(") Bio(") A20

((U B 20
") C20

A i"(u) (u) A2
1

i" B1() AT1O(U2 AT20(u0 BT10"
01  

AT2o0u) A-o"u) BT20
1
'" Br21 "

/0.000 1.811(7) - 0.368(10) 0.810(29) 0.208(12) 0.749(26) 0.268(13)
0.068 1.194(118) 0.553(740) 0.288(48) 0.060(218) -0.448(291) 0.761(141) 0.248(46) 0.558(100) 0.701(268) 1.733(670) 0.205(76) 0.038(125) 0.087(314) 0.393(1.004)

v-0.094 1.282(15) 0.867(85) 0.322(8) 0.159(30) -0.073(24) 0.650(20) 7.357(495) 0.197(8) 0.171(227) 0.649(28) -0.408(290) 1.884(59) 0.244(15) -0.109(156) 0.305(33) 0.0)72(80)
/0.095 1.252(30) 0.563(189) 0.310(12) 0.136(54) -0.036(56) 0.758(57) 8.794(1.212) 0.194(19) 0.417(456) 0.591(42) 0.424(533) 1.694(119) 0.219(18) 0.089(241) 0.214(52) -0.281(267)

0.146 0.999(96) 0.439(379) 0.216(29) 0.014(101) -0.013(86) 0.703(131) 3.389(1.746) 0.197(40) 0.258(541) 0.375(137) 0.989(1.021) 1.673(281) 0.246(64) -0.271(473) 0.213(118) 0.524(325)
V0.180 1.001(19) 0.418(65) 0.294(8) 0.111(25) -0.060(14) 0.576(22) 4.205(277) 0.182(9) 0.297(116) 0.534(26) -0.118(128) 1.446(54) 0.221(16) -0.143(91) 0.269(31) -0.033(58)
/0.183 1.002(45) 0.283(182) 0.294(17) 0020(55) -0.059(41) (.595(70) 3.457(872) 0.189(27) 0.085(336) 0.588(57) -0.621(359) 1.457(127) 0.226(26) -0.038(166) 0.114(52) 0.078(188)

0(.197 0.932(24) 0.544(73) 0.276(1() ().142(26) -0.039(18) 0.520(26) 3.675(321) 0.178(1) 0.223(168) 0.523(34) -(.2(7(174) 1.249(58) 0.213(17) -0.006(95) 0.260(31) 0.074(61)
0.220
0.227 0.686(255) 1.292(886) 0.160(1(8) -0.149(231) -0.189(220) -(.013(270) 0.037(88) 0.140(176) (.394(333) (.969(831) 0.282(200) -0.052(147) -0.1(4(376) 0.61((794)

/0.261 0.850(31) 0.504(80) 0.276(13) (.088(34) -0.045(17) (.527(33) 2.9(9(300) (.186(14) (.350(146) (.483(42) -(.049(158) 1.2(1(71) (13(24) 0.098(104) (.109(43) 0.031)

0.290
/1.292 (.735(28) (.461(76) .261(12) 0.099(27) -0.039(16) (.498(34) 2.758(287) 0.184(13) (.3(1(148) (.497(40) -0.320(140) 0.990(63) .216(22) -(.114(87) 0.205(33) -(.(47(7)
/0.336 (.633(43) (.399(1(4) 0.235(19) 04498(43) -0.024(21) 0.352(47) 1.122(351) 0.145(18) 0.291(186) .540(90) -0.357(268) 0.911(96) (.131(42) 108(142) .181(54) (.125(81)
,/0.344 (.812(130) (0.733(320) 0.257(43) 0.203(98) -0.058(42) 0.459(156) 1.376(942) 0.077(52) -0.005(383) ((.414(111) 0.209(458) 0.924(215) 0.186(54) 0.0147(223) 0.153(86) -((.115(226)

0.359
/0.395 0.594(31) 0.251(64) 0.200(12) 0.115(27) -0.017(13) 0.375(30) 0.141(13) 0.191(23) 0.298(22) 0.705(56) 0.088(20) 0.078(15) 0.176(39) 0.047(46)
/0.407 0.546(34) 0.259(66) 0.203(15) 0.088(28) -0.027(13) 0.367(38) 1.249(229) 0.126(14) 0.147(105) 0.465(64) -0.265(145) 0.712(67) 0.162(36) -0.004(92) 0.178(40) .032(52)
/0.418 0.590(111) 0.220(219) 0.205(41) 0.015(70) -0.073(40) 0.314(143) 0.835(744) 0.123(53) 0.336(296) 0.376(119) -0.351(317) 0.878(200) 0.131(52) 0.170(161) 0.103(90) 0.218(200)
/0.463 0.624(70) 0.490(136) 0.235(26) 0.078(46) -0.019(23) 0.504(80) 1.616(385) 0.145(28) 0.314(191) 0.355(80) 0.159(190) 0.705(115) 0.196(45) 0.004(113) 0.157(56) 0.059(96)
,/0.490 0.485(24) 0.332(43) 0.202(11) 0.094(19) -0.031(9) 0.350(23) 1.317(187) 0.132(10) 0.269(125) 0.306(55) -0.021(114) 0.577(42) 0.117(39) 0.049(80) 0.133(27) -0.016(33)

A0  1.811(7) 1.122(166) 0.365(9) 0.156(35) -0.117(104) 0.809(29) 20.949(8.515) 0.216(10) 0.283(162) 0.747(26) -0.331(270) 2.529(99) 0.267(12) -0.333(706) 0.336(43) 0.043(98)
M A 0.630(55) 0.698(75) 2.046(825) 1.187(360) 0.408(764) 0.933(450) 0.357(165) 2.424(207) 3.295(1.718) 0.929(783) 1.093(609) 1.327(38) 2.236(366) 0.455(330) 1.785(241) 0.3

p 1.617(231) 2 5.579(4.177) 2. 1.109(1.84) 1.912(1.528) 1.837(665) 5.996(136) 3.965(16.812) 1.615(2.407) 3.5 6.000(9) 5.976(1.328) 3.5 6. 1

S((82(1(450) 1.262(567) 0.851(413) 0.781(589) 0.414(341) 1.207(614) 1.395(741) 0.840(518) 0.292(272) 0.578(380) 0.990(544) 0.815(536) 0.599(377) 0.637(423) 0.964(654) (.835(488)

Q2 4( d B (d) A20)('
1  

B2 0 d) C2) d Al(I [3 B 1 01d) A20
1 ( B 2 0 (d

1  A~ri (d A' 0
1
d) B ri)()

1  
AT20 (d) AT 20(") 13-ro

1  
B' 121(

/ 0,00 (915)3) 0.150(15) -. 269(17) - (2.051(7) .0.2(6(16) -0.3.1(18)
1.68 (0.515(63) -1.562(495) 0.105(27) -0.228(157) -0.106(195) -0.232(87) -0.062(27) 0.029(58) 0.341(168) 0.852(42) -0.017(50) 0.)19(82) (((49(25) ((227(697)

/0.094 0.602(7) -0.980(48) 0.128(4) -0.122(18) -0.062(14) -0.230(12) -2.405(301) -0.035(5) -0.074(134) -0.184)17) 1.019(167) 1.194(41) -0.030(9) 0.046(93) (.190(20) -0.111(59)
/0.095 0.585(16) -1.074(127) 0.124(7) -0.145(33) -0.079(37) -0.196(32) -3.088(703) -0.052(12) -0.624(283) -0.116(22) 0.508(281) 1.015(81) -0.023(10) 0.067(135) 0.165(36) 0.253(191)

0.146 0.403(51) -0.899(244) 0.079(16) -0.130(62) -0.06(50) -0.066(73) -0.712(946) -0.015(23) 0.061(311) -0.154(82) 1.626(630) 0.867(180) -0.029(36) 0.128(277) 0.108(73) 0.115(205)

/0.180 0.435(10) -0.734(41) 0.111(4) -0.126(16) -0.01(8) -0.181(14) -1.262(160) -0.034(5) -0.120(70) -0.148(17) 0.620(86) 0.868(34) -0.022(10) 0.077(55) 0.139(17) -0.019(36)

/0.183 0.422(26) -0.927(122) 0.112(9) -0.099(35) -0.068(25) -0.206(40) -1.895(511) -0.026(15) -0.333(199) -0.089(35) 0.314(228) 0.899(86) -0.022(14) 0.130(107) 0.099(40) 0.040(127)
/0.197 0.411(12) -0.729(50) 0.103(4) -0.118(16) -0.031(11) -0.208(17) -1.575(213) -0.030(6) 0.106(108) -0.136(21) 0.659(112) 0.851(41) -0.038(11) 0.086(61) 0.167(21) -0.024(43)

0.220
0.227 0.246(124) 0.783(593) 0.008(61) -0.155(173) 0.112(146) -0.057(170) 0.016(54) -0.073(108) 0.424(205) 1.068(513) -0.036(120) 0.044(101) 0.113(258) -0.190(530)

/0.261 0.346(15) -0.658(56) 0.093(7) -0.113(21) -0.043(10) -0.164(21) -0.908(180) -0.021(8) 0.088(83) -0.105(25) 0.362(103) 0.770(45) -0.029(16) 0.103(68) 0.099(25) -0.013(46)
0.290 (

/0.292 0.284(15) -(0.531(48) 0.087(6) -0.085(17) -0.033(11) -0.181(21) -0.802(181) -0.027(8) -0.004(99) -0.097(24) 0.368(95) 0.643(43) -0.01(13) -0.024(57) 0.135(23) -0.1079(43)

/0. 336 01 232(21) -(0.51(0(70) (0.6085(10) -0.1072(26) -0.019(13) -0.172(27) -0.703(203) -0.029(10) 0.066(113) -0.162(41) 0.590(130) 0.618(64) -0.033(25) 0.102(90) 0.155(36) -(0.1018(56)

/11.344 0. 2 84(5:1) -(1 457(168) (0.1087(18) -0.17(1(53) -(1(132(26) -(0.138(73) .1.00(458) -(0.048(29) -0.120(203) -0,046(60) -0.011(234) 0.498(124) -(0(048(28) 0.1095)119) (0.15(61) -0.006)132)

0.28(4)9
(114195111(46

(1 39,- (122(117) -01 378137) (((8(1(7) -(1.115((17) (1(139(91) -0, 122(17) -01 129(8) -((.1147)15) ((.173(14) (0.441(36) -((.0:35(12) ((.145(1(1) (.119(21) -0. 118(:32)

,(0.4(07 0(1912(17' -0.40(845) (1(1(4(7) .1180(18) -0-0(12(8) -0. 128(21) -(1.531 (13(1) -(0.0301(8) -0.0(59)66) -(0.1062)35) (0.258(84) (0.482)46) -. 01261(191) 0.(172)53) (0.1112(24) (0.014)33)

./01418 11179(49) -0.6(59(173) (.157)(18) -0.1092(49)) -(00(21(2:1) -0.1(64(91) -(.969(476) -(1.61(2(31) (.182(184) -(0.1053)75) -0.019(214) (0.520(131) -0.0149)3:3) (0.14(1(9) (1.191(61) 0.1(16)124)

/10.463 (0,198(33) .1.481(86) ((.167(12) -(1.144(31) -(00143(15) -01.125)45) -(0,524)234) -0.035(17) 0.0137(122) -0.1(12(48) (.50(1(12(1) 0.593(80) -(0(027)25) (1(173(67) (.14(1(36) -0,0169)163)

,/0.490 (0.178(14) -0.275)28) 0.066)6) -(.1048(12) -0.026(6) -(0.114(14) -0,383(112) -0.033(6) 0.015(80) -0.059(35) 0.172(73) 0.384)28) -0.0:34(23) 0.0154)47) (0.1093(19) -(0.1041(23)



Q2 Ajo(u) glo(u) A20 (u) B20 (u) C20 () Alo~u) 5010() E20(u) 20 (U) AIO (U) Eno,10") Ano0(*1) AT20 (") AT20(* $3r20(" 5% "2

V0.000 1.812(2) 0.378(5) 0.791(14) 0.209(6) 0.733(12) 0.231(5)
0.042 1.560(22) 1.436(219) 0.353(11) 0.165(77) -0.231(109) 0.782(32) 0.197(11) 0.639(22) 0.994(65) 2.471(162) 0.218(15) 0.141(34) 0.348(85) 0U90(323)

/0.049 1.505(4) 1.039(51) 0.350(4) 0.135(16) -0.091(14) 0.714(12) 10.966(351) 0.196(5) -0.013(140) 0.693(11) -0.885(155) 2.171(32) 0.221(6) -0.020(81) 0.348(17) -0.056(47)
/,0.049 1.498(6) 1.067(88) 0.334(5) 0.153(26) -0.008(28) 0.730(17) 11.338(548) 0.190(7) -0.218(195) 0.679(14) -0.793(210) 2.163(44) 0.216(6) -0.079(95) 0.366(22) -0.196(141)

0.086 1.341(21) 1.237(146) 0.321(9) 0.199(42) -0.089(27) 0.703(28) 7.075(666) 0.193(10) 0.246(209) 0.648(27) -0.194(297) 2.047(74) 0.211(13) -0.108(136) 0.333(36) -0.097(95)
/0.096 1.285(6) 0.916(44) 0.324(4) 0.119(15) -0.076(7) 0.660(12) 7.205(203) 0.190(5) 0.328(68) 0.642(10) -0.553(71) 1.848(26) 0.211(5) -0.070(41) 0.319(15) -0.005(26)
/0.097 1.269(9) 0.913(73) 0.310(5) 0.124(23) -0.054(16) 0.650(19) 6.847(391) 0.189(8) 0.289(144) 0.638(14) -0.720(141) 1.855(41) 0.207(6) -0.096(69) 0.333(20) -0.068(79)
/0.101 1.250(9) 0.839(53) 0.314(4) 0.128(18) -0.042(11) 0.640(13) 7.340(260) 0.186(5) 0.391(111) 0.610(14) -0.464(116) 1.758(34) 0.208(6) -0.0121(64) 0.309(17) -0.079(40)

0.128 1.172(23) 1.094(120) 0.299(9) 0.157(38) -0.065(23) 0.647(29) 5.425(467) 0.185(11) 0.135(167) 0.624(28) -0.452(224) 1.761(63) 0.224(13) -0.246(109) 0.315(29) -0.037(83)
(0.142 1.117(8) (0.814(41) 0.3(00(4) 0.106(15) -0.059(8) 0.609(13) 5.271(173) 0.182(5) 0.309(67) 0.592(12) -0.388(78) 1.583(25) 0.204(6) -0.059(44) (0.295(14) (0.004(27)

/,0. 149 1.124(75) 1.146(241) 0.305(28) 0.129(77) -0.133(75) 0.646(70) -- 0.196(25) 0.482(46) 0.728(76) 1.786(189) (0.2(03(31) 0.104(39) 0.245(99) 0.174(197)
,/0.150 1.077(1(0) 0.70)6(45) (1.288(4) (0.112(15) -(0.0)31(9) (0.586(14) 5.160(203) 0.178(6) 0.377(91) (0.565(13) -0.367(92) 1.495(30) 0.194(6) -0.025(50) (1279(15) -0.0)42(32)

(0.185 (0.985(11) 1)654(41) 0.286(5) (1095(14) -(0.063(8) 0.559(13) 3.9(09(179) (1167(5) 0.068(85) (0.575(16) -0.431(93) 1.391(26) (0.2(03(8) ((.12(1(53) (0.276(15) -((.1(17(31)
/11.1860 (.97(1(16) 0.690(71) 0.271(6) 0.1(8(22) -(1.0136(13) 0.557(22) 3.946(279) 0.155(8) -0.096(120) (.566(18) -(0397(119) 1.383(41) ((.2(14(8) -(0.185(61) ((1(15(21) -(1.13(1(51)
/11.187 ((.998(67) 1.1(07(189) 0.28(1(22) (.165(58) -(1.1(7(1(38) (1.61(1(61) 3,253(695) (1.183(23) 0.360(241) (1.524(79) 0.1170(431) 1.546(132) 0.2(19(36) (.175(212) ((.258(63) (((118(112)

0.201 .938(13) 0.586(42) 0.277(6) (1104(18) -(.143(12) 0.543(13) 0.163(6) (.367(10) (.515(14) 1.252(34) (.156(7) (.108(8) (.255(2) ((.158(35)
/0.210 .931(31) 0.855(119) 0.258(11) 0.166(36) -0.027(19) 0.590(39) 3.591(398) 0.165(14) 0.032(160) (.531(33) -0.241(188) 1.32((72) (1197(16) -0.158(93) (.313(32) (1.112(74)
/11.227 0.881(11) (0.605(34) 0.267(4) 0.089(12) -0.049(5) 0.528(13) 3.156(111) 0.163(5) 0.119(51) 0.539(13) -0.338(52) 1.234(23) 0.191(7) -(1.1)68(32) (.264(13) -(1.01(6(21)
/0.229 0.861(17) 0.558(59) 0.253(6) 0.104(20) -0.024(9) 0.501(24) 2.955(209) 0.155(8) -0.020(79) 0.531(18) -0.349(83) 1.224(40) (.194(8) -0.112(41) 0.272(18) -(.149(4)
/0.243 0.828(13) 0.535(41) 0.253(5) 0.080(14) -0.039(8) 0.506(17) 2.987(153) 0.154(6) 0.114(84) 0.508(16) -0.265(75) 1.129(29) 0.186(8) -0.070(43) 0.268(15) -0.033(32)
,/0.251 0.827(12) 0.522(33) 0.257(5) 0.091(13) -0.036(7) 0.505(12) 3.291(143) 0.160(6) 0.425(90) 0.493(19) -0.255(72) 1.103(25) 0.184(10) -0.054(44) 0.241(14) -0.032(21)

Ao 1.812(2) 1.247(65) 0.375(5) 0.156(19) -0.106(20) 0.792(14) 20.345(2.384) 0.209(6)
MA 0.643(26) 1.299(41) 0.908(484) 1.627(181) 0.364(63) 0.844(26) 0.327(68) 2.209(436)
p 1.665(123) 6.0000(3) 1.507(1.776) 5.982(314) 1. 1.5 1.603(303) 5.726(2.085)

0.297(101) 0.738(12) -1.051(192) 2.612(59) 0.228(6) -0.080(31) 0.380(19) -0.058(51)
1.432(413) 1.104(626) 0.727(88) 0.830(205) 1.317(579) 3.3 1.070(70) 0.494(515)

6. 2.000(2.107) 3.5 2.709(1.1) 1.509(1.435) 3.5 2. 1

2 0.503(418) 1.406(1.095) 1.615(840) 0.617(569) 2.528(1.155) 0.490(472) 1.434(827) 0.601(423) 4.020(1.768) 0.796(524) 0.495(395) 1.076(886) 0.372(336) 0.719(621) 0.751(674) 0.998(698)

Q2  
A10(d) Blo(d) A 2 0(d) B20(d) C20(d) A0 (d) f30 (d) 20 (d) 5 20 (d) ATIO Zd) 4r(d) BTIO(d) AT 20(d) ZT20(d) 5T 2 (d) 5T21(d)

/0.000 0.918(10) - 0.156(3) -0.255(9) -0.045(3) -0.191(7) -0.041(3)
0.042 0.751(13) -1.181(138) 0.148(6) -0.106(46) -0.188(66) -0.224(19) -0.044(6) -0.157(11) 0.592(43) 1.482(108) -0.1)24(8) (1.188(24) ((.221(61) ((139(188)

/0.049 0.735(2) -1.207(26) 0.142(2) -0.175(10) -0.079(8) -0.233(7) -3.617(183) -0.046(3) -0.242(69) -0.169(7) 0.809(76) 1428(19) -(1139(3) (14(42) (.2171(1) (0.147(27)
/0.049 0.735(4) -1.141(43) 0.136(3) -0.157(14) -0.077(18) -0.220(10) -3.511(292) -0.043(4) -0.213(102) -0.158(8) 0.7(3(115) 1.414(28) -0.034(3) (1(61(55) 0.2(13) ((15((86)

0.086 0.626(12) -0.953(85) 0.132(4) -0.115(25) -0.083(15) -0.188(17) -2.117(368) -0.037(6) -0.088(125) -0.143(15) 0.808(170) 1.284(50) -0.024(7) (.005(85) (.186(24) 0.165)60)
/0.096 0.603(3) -1.003(23) 0.129(2) -0.153(9) -0.068(4) -0.209(7) -2.224(99) -0.042(3) -(.088(39) -0.158(6) 0.829(44) 1.206(17) -0.037(3) 0.180(23) 0.2(3(9) -0.048(16)
/0.097 0.602(5) -0.975(40) 0.124(3) -0.146(13) -0.064(10) -0.199(11) -2.220(210) -0.037(4) -0.072(77) -0.146(8) 0.746(84) 1.186(26) -0.032(3) 0.054(40) 0.181(13) -0.103(49)
/1.101 0.594(5) -0.981(30) 0.125(2) -0.147(12) -0.048(6) -0.209(7) -2.249(154) -0.043(3) -0.107(72) -0.156(7) 0.781(66) 1.176(23) -0.034(4) 0.098(35) 0.192(12) -0.041(23)

0.128 0.531(14) -0.839(73) 0.120(5) -0.132(22) -0.069(12) -0.164(17) -1.270(264) -0.029(6) -0.034(101) -0.133(15) 0.702(127) 1.112(46) -0.019(7) -0.039(63) 0.177(21) -0.089(57)
0.142 0.504(4) -0.849(23) 0.118(2) -0.142(9) -0.055(4) -0.188(7) -1.518(96) -0.038(3) -0.051(42) -0.154(7) 0.780(48) 1.037(16) -0.036(4) 0.077(28) 0.189(9) -(.043(18)

./0.149 0.509(39) -0.824(145) 0.143(15) -0.090(48) -0.115(45) -0.182(39) - -0.042(13) - -0.092(24) 0.449(55) 1.130(139) -0.003(18) 0.070(24) 0.175(61) 0.140(130)
10.150 0.492(5) -0.834(25) 0.113(2) -0.127(10) -0.042(5) -0.189(8) -1.608(116) -0.039(3) -0.073(61) -0.143(7) 0.691(53) 0.993(19) -0.031(4) 0.074(29) 0.169(10) -0.020(20)

0.185 0.432(6) -0.733(24) 0.111(3) -0.123(10) -0.056(5) -0.182(8) -1.348(101) -0.040(3) -0.136(45) -0.123(9) 0.508(48) 0.904(17) -0.030(4) 0.081(30) 0.175(9) -0.016(18)
/0.186 0.433(9) -0.657(40) 0.104(3) -0.117(13) -0.055(8) -0.168(13) -1.261(163) -0.039(5) -0.160(67) -0.115(11) 0.491(70) 0.877(27) -0.024(5) 0.029(37) 0.175(13) -0.101(33)
/0.187 0.441(35) -0.692(115) 0.126(12) -0.069(37) -0.072(24) -0.133(35) -0.868(400) -0.033(11) -0.049(145) -0.116(43) 0.701(265) 1.011(98) -0.011(22) 0.076(130) 0.165(41) 0.058(71)

0.201 0.422(8) -0.695(23) 0.103(3) -0.130(11) -0.040(7) -0.174(8) -0.039(3) -0.096(6) 0.335(9) 6.846(22) -0.029(4) 0.062(5) 0.157(13) -0.041(21)
/0.210 0.397(17) -0.554(75) 0.101(6) -0.104(21) -0.051(12) -0.137(22) -1.057(225) -0.030(8) -0.125(89) -0.102(19) 0.431(118) 6.854(48) -0.018(9) -0.010(58) 0.176(22) -0.117(50)
/.227 0.374(6) -0.645(22) 0.103(2) -0.112(9) -0.048(3) -0.163(7) -0.999(63) -0.036(3) -0.091(28) -0.122(8) 0.502(33) 0.802(16) -0.03(4) 0.069(19) 0.166(9) -0.034(13)
//0.229 0.370(9) -0.626(38) 0.098(3) -0.108(12) -0.049(6) -0.162(13) -1.029(123) -0.035(5) -0.125(50) -0.109(10) 0.461(51) (.773(27) -(.026(5) 0.047(28) (.155)12) -(.185(28)
/0.243 0.357(6) -0.630(25) 0.096(3) -0.107(9) -0.042(5) -0.164(10) .1.029(101) -0.140(4) .0.104(46) 0.112(9) 0.445(44) 0.751(19) -(.126(4) (.058(25) (.159(1) -(.137(1)
/0.251 0.357(7) -0.603(18) 0.095(3) -0.113(8) -0.035(4) -0.156(7) -0.813(83) -0.038(3) -0.009(51) -0.135(11) 0.520(45) 6.727(18) (1.026(7) (.055(28) (( 141 (9) -((.1(22)141

A, 0.918(10) -1.473(35) 0.156(3) -0.191(12) -0.095(9) -0.256(9) -6.982(617) .0.046(3) -0.257(195) -0.188(7) 1.059(74) 1.729(32) -0.041(3) (.101(34) 0.227(12) -0.1(63(24)
,rrt A 0.702(33) 0.664(14) 0.810(21) 0.852(52) 0.437(41) 0.803(69) 0.301(29) 1.233(197) 0.320(233) 0.801(58) 0.982(56) 0.749(121) 1.162(2.818) 1.122(356) 1.1187(74) (.561(256)

-2.344(207) 2. 1.5 2. 1. 1.503(198) 1.545(138) 1.5 1. 1.5 3.5 2.311(599) 2.906(13.385) 3.5 2. 1

5x1 0.170(229) 0.814(798) 1.113(725) 0.508(579) 1.778(1.123) 0.509(523) 0.390(389) 0.384(395) 0.770(662) 1.107(762) 1.087(754) 0.445(522) 0.620(534) 0.366(437) 0.521(386) 1.500)1.183)

Table A.15: MILC-28 3 mO1-unchopped - data set 11



Appendix B

Plots of Transverse Parton

Distributions

B.1 Contour Plots

Figures B-1 through B-4 show contour plots of transverse quark distributions for some

of the data sets studied in this thesis. Each page of plots contains results for the first

and second moments of the distributions for up and down flavor quarks. The legend

in the corner of each plot indicates the polarization state shown: the outer arrow

shows the direction of the proton spin, and the inner arrow shows the direction of the

quark spin. A missing arrow denotes the unpolarized case. The contour spacing is

0.004 for the n = 1 plots, and 0.002 for the n = 2 plots.

B.2 Three-dimensional Plots

In Figs. B-5 and B-6 we show three-dimensional views for selected cases of the contour

plots in Figs. B-1 through B-4 , in order to make the statistical error bands visible.

As noted elsewhere, the apparent structure on small distance scales in some of the

plots is due to poorly determined fits to GFFs that are nearly zero, and is generally

not statistically significant.
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Figure B-1: Contour plots of transverse parton distributions for data set 10.
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Figure B-2: Contour plots of transverse parton distributions for data set 9.
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Appendix C

Spin States

Here we give an explicit representation of the spin states used in this thesis. We use

the dirac basis, where:

'0Y =

0
I,

-II'

0 o

-07 0

(C.1)

C.1 Spin States in the Lab Frame

For a spin-1/2 particle at rest, we have:

u+(0) c

I 

0

0

0

u_ (0) oc

0

1

0

0

(C.2)

for spin up and spin down, respectively.'

If we boost the spinors in (C.2) to a finite momentum p, we obtain:

'The antiparticle spinors v+ will not be considered in this discussion.
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1 0

u+(p) = N , u_(p) = N , (C.3)

E+M E+M

px+ipy pZ

E+M E+M

where the standard normalization is N = V/E + M. Note that the spinors in (C.3)

are no longer eigenstates of the spin operator. The + and - labels on u±(p) should

be understood as "reminders" of the spin of the original unboosted state, not as an

actual spin label. For convenience, we may refer to such states as "spin up [down]

states with momentum p"; more precisely, they should be understood as "spin up

[down] states, boosted to momentum p."

C.2 Light Cone Helicity States

For the distributions in Eqs. 4.19 - 4.23, it is useful to define states of definite light

cone helicity uC(p) [30, 31]. These are states, with momentum p in the lab frame,

that have a definite helicity when viewed from a frame moving at (nearly) light speed

in the negative z-direction. In other words, unc(p) are eigenstates of the helicity

operator taken in a reference frame with vz --+ -c [30]. These spinors are (written in

the lab frame) [31]:

E + M + pz \px + pY

px +ipY E + M + pZ
ULC(p) = N , ULC(p) N , (C.4)

E-M+pz px ipy

px + ipY -E+ M -pz

where we use the normalization N = ' giving usCLC = 2m. Note that for
V2(E+pz)

p = pzz (i.e. the lab frame momentum only in the z-direction) the spinors in (C.4)

coincide 2 with the ordinary lab frame helicity eigenstates uf(p), where:

2up to a possible phase
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U H(p) = N'

pZ + pl

pX + ip Y

E+M

I(P±iPY)
E+M

u H(p) = N'

- /p2 _ pz 2

eiO(pz +| I|
I4 P (Pp |)Z2

E+M

-eO IpI(pz±IpI)-e E+M

The normalization here is N' -
E+M (The phase 0 - arctan(py/px) is not

uniquely defined for px, pY -+ 0, but can be ignored in the limit where p = pz

C.3 Spin Projectors

The spinors in (C.4) represent the spin states selected by the "projectors" in Eq. 4.5.

This can be verified explicitly by checking Eq. 4.7. For ease of notation let us define:

(C.6)

By straightforward manipulations:

G+LC = (E+pz)

G-uLC (E+p z)

1

0 _ LC

0-1

0

0

1 =+ ULC

0

1

(C.7)

(C-8)

(C-9)Gi LC - o p

From the above equations, it is easy to prove Eq. 4.7.
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In the same way, it is straightforward to check Eq. 4.8. Thus we see that by using

the projectors in Eqs. 4.5 and 4.6, we have selected the light-cone helicity eigenstates

to be our basis states for quark spin.

C.4 Melosh Rotation

In this section, I discuss the kinematical transformation between lab frame spin states

and light cone helicity states. I will closely follow the discussion found in [41]. Other

useful references are [71, 72].

It was demonstrated in the previous section that the quark spin states used in Eqs.

4.19 - 4.23 are eigenstates of light-cone helicity. In writing down these equations, we

have chosen to use light-cone helicity states for the proton spin states as well (see

Appendix H). However, we will often want to calculate quantities in the lab frame.

In particular, we will be interested in proton wave packets in transverse position

space, which involve integrals over transverse momentum. For pZ = 0 but p # 0,

the light-cone spinors (C.4) are not the same as the "lab frame spin states" (C.3).

Rather, we find:

(C P Np X + TpYuic(p)= N U t(p) + MU (p)

(C.10)

LC(p) = N, _(p) X - ipY )

U_ NP (U- P) -E±M

where N, E+M If we keep the transverse momentum small3, px, py < M, then

we have:

uLC(p) - U+(p) + 2M p )

(C.11)

ULC p.

3 n other words, if we 2M p'Inothr wrds ifwebuild large transverse nucleon wave packets.
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This transformation (C.11) is known as the Melosh rotation. In position space, it

results in a non-trivial perpendicular shift of the wave packet for transversely polarized

states. To see this, consider a particle polarized in the 2-direction in its rest frame,

with small transverse momentum pi in the lab frame. Then in the lab frame we have

the spin state:

U+:i(PL) (U (u (piL) +±u- p)v12

Let us now consider a transverse momentum space wave packet 0+1(pI), where

4+:(pi) is a symmetric function that is non-zero only for small values of pI. The

corresponding position space wave packet:

#+(r_) J d2 peirp +i(pi) (C.12)

is centered at the origin and has a large spatial extent (RM > 1). The complete

state can then be written:

|@l', +_) = Jd2p + (pi) U+±(Pi) (C.13)

Jd2p i'/0+1(Pi) 1 - uLC (pi) + P ULC(p1 )) (C.14)

JdP1 L() C 'eP_) UL17 (P_) + b(P_1 ) U(p_1 )), (C. 15)

where we used the Melosh rotation (C.11) in the second step. The transversely

polarized light cone states are given by:

uL (p) = }(nC(pjw) ± uLC

137



We see that the "light cone wave packets" in momentum space are:

)= (1 +(C.16)

?k (Pi) = 0+, (p). (C.17)_X L) 2M

The corresponding position space wave packets are (for Pi < M):

# ( = #+e (ri - 2M)(C.18)

#L,7(ri) = #+, (r). (C.19)
2M rx

In the limit where 4+j (r±) describes a delocalized state (for example, a broad gaussian

in position space), #qE(r 1 ) can be ignored. Then the position space wave packet for

a light cone polarized state is the same as the wave packet for the corresponding

lab frame polarized state, but shifted by 1 in the perpendicular direction. This

remarkable result is important when interpreting the results of our calculations (which

were done using light cone helicity states) in the lab frame. Effectively, we will take

the coordinate origin4 of the transverse parton distributions for a nucleon polarized in

the 2-direction (using light cone spin states) to be shifted by - in the y direction.

Burkardt explores this effect in [41]. In this thesis, we take the "Melosh shift" for

granted when dealing with polarized nucleon states, and refer the reader to Burkardt's

paper for a more thorough analysis.

4 which we intend to correspond to the lab frame center of mass
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Appendix D

Jackknife Error Analysis

In this Appendix we summarize key features of the jackknife method for estimating

statistical errors. Here we will focus on a practical, intuitive description of the tech-

niques used in this thesis. A more thorough treatment can be found in the excellent

work by B. Efron [73].

Consider a data set consisting of N independent measurements of some quantity

Q: {Qi, Q2, ... , QN}. For example, Q might be the value of the nucleon two-point

function (for some particular source) at Euclidean time t = 0, calculated for an

ensemble of N gauge configurations. We take the average of the N measurements

1 = Qi (D. 1)
i

as our estimate of the "true value" of Q, and the standard error

E(Qi Q) 22 (D.2)
N(N - 1) )/

as a measure of the uncertainty in our estimate Q.

However, there are some quantities of interest that cannot be expressed as a simple

average over a data set as in (D.1). For example, the overlap of a trial nucleon source

with the ground state (as in Chapter 3) is extracted from a fit to the nucleon two-

point function. To properly weight the data points in the fit, we must already have
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a good idea of the uncertainty in each data point. The overlap resulting from such

a procedure depends upon the individual configurations in an intrinsically non-linear

way. In other words, the overlap is calculated for an ensemble of configurations, but

is not well-defined on an individual configuration. Formula (D.2) clearly cannot be

used to estimate the uncertainty in such quantities.

The jackknife is a simple, yet powerful, extension of (D.2) to "non-linear" quan-

tities such as the overlap. Instead of treating our data set as a single ensemble of N

configurations, we consider it to be a collection of N (overlapping) sub-ensembles of

N -1 configurations each. The ith sub-ensemble E(i) is composed of all configurations

except the ith one.1 Now we define Q(i) as the quantity Q calculated for sub-ensemble

E(i). Our estimate of the true value is given by the jackknife average:

Q(.) = 1), (D.3)

and the uncertainty in Q(.) is estimated by the jackknife error:

0JK N (Q ) ~ Q())2) 1/2 (D.4)

Note that for the special case of a "linear" quantity,2 (D.3) is identical to (D.1),

and (D.4) reduces to (D.2). We take the jackknife as a prescription for estimating

statistical errors for any quantity we calculate on an ensemble of lattices.

A big advantage of using jackknife error analysis is that correlations between

quantities are dealt with in a reasonable way. For example, we expect that there exists

a positive correlation between lattice three-point functions and two-point functions

calculated on a particular region of a gauge configuration. When calculating the

ratios of three-point functions to two-point functions as defined in Eq. 5.5, this

positive correlation will tend to cancel out. In a jackknife analysis, this cancellation

happens for every sub-ensemble, reducing the overall statistical fluctuation.

'Any two sub-ensembles will thus be very similar, differing only in a single configuration.
2 That is, one for which Q(} = N 1 -1 Li Qi.

140



The jackknife procedure can be further extended to quantities that depend on

multiple independent ensembles. 3 This is particularly useful for chiral extrapolations,

which involve fits to data points from calculations at many different pion masses. Here

we will describe the "super jackknife" technique invented by C. Dawson [74].

Suppose we have a collection C of M different ensembles: C = {E 1 , E 2 , ... , Em ,

with Nm configurations in ensemble E'. Let Nc = m Nm. Define Nc "sub-

collections" in the following way:

" For ensemble El, construct the N1 regular jackknife sub-ensembles in the usual

way.

" For each sub-ensemble El), construct the sub-collection C) by associating El)

with the full ensembles E(2), E(3), etc: C1 = {E , E2.-- ,Em}. This defines

N1 sub-collections.

* In the same way, construct N 2 sub-collections from the sub-ensembles for E2:

C = {E1, E 2), E 3, -. ,

" Proceed in the same manner for the rest of the ensembles, constructing in total

Ni + N2 + - - -+ NM distinct sub-collections.

It is now completely straightforward to generalize (D.3) and (D.4) to quantities that

depend on collections of ensembles: simply replace the sum over sub-ensembles with

a sum over sub-collections. It is easy to check that this prescription is equivalent 4

to the original jackknife prescription for quantities defined on individual ensembles.

Moreover, this prescription appropriately takes into account the correlations within a

particular ensemble, while forcing correlations between different ensembles to be zero

(as they should be).

The jackknife (and super jackknife) prescription is essentially a resampling scheme,

where the resampled data sets are defined in a precise, deterministic way. Another

common resampling scheme is the bootstrap (see [73]), which involves the generation

3Let us refer to a set of multiple ensembles as a "collection."
4In the limit of large ensembles.
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Figure D-1: Results of a comparison of a super jackknife analysis (right hand plots)
with a bootstrap error analysis (left hand plots). The bootstrap analysis was done

using 5000 resampled ensembles. The difference between the upper and lower plots

is the range of m, values included in the fit.

of a very large number of sample data sets drawn randomly (with replacement) from

the original data set. It is interesting to compare the (super) jackknife prescription

with a bootstrap analysis, to see how different they might be. Figure D-1 compares

super jackknife with a bootstrap analysis of SSE chiral fits to lattice data for gA. It

is clear that the two schemes give almost identical results in these cases. Since the

super jackknife procedure is computationally less demanding than bootstrap, we use

super jackknife to calculate statistical uncertainties for all chiral fits presented in this

thesis.
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Appendix E

Studies of Fits to Form Factors

In this appendix we explore some variations of the fits discussed in Chapter 5. To test

the sensitivity of the fits to the "pole ansatz," we hold p fixed rather than making it

a fit parameter. In addition, we change the range of Q2 included in the fit.

Figure E-1 shows four such fits to the GFF A(U) (all data from data set 9: the

MILC 203 x 64, mq = 0.01 unchopped ensemble). In Figs. E-2 and E-3, we show

exploratory fits to B(") and B(U) respectively. We are particularly interested in the

variation of the extrapolation to Q2 = 0 and of the slope at Q2 = 0, since these are

quantities that often enter into calculations of observables.

In the case of Au), there is a data point at Q2 which strongly constrains the fit-

the parameter AO hardly changes as we vary the value of p and the range of Q2 values

fit. The systematic variation in AO from changing the fit ansatz is about one-third

of the statistical uncertainty. However, the slope of the form factor at Q2 = 0 shows

much more significant variation; in particular, the slope is strongly affected by the

value of p used in the fit. Changing from p = 1.5 to p = 2 caused the slope of the

resulting fit at zero momentum transfer to change from 7.15(12) to 6.70(11), when

fitting over the full rangel of Q2. This is a change of about four times the statistical

uncertainty, and suggests that the systematic errors in the form factor slopes and

derived quantities such as (r 2)-are significant.

For the form factor Bu), lattice data is not available at Q2 = 0, so the fit parameter

'Note that changing the fit range has little impact on the result.
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Explorations of p-pole fits to the A
the range of m, included in the fit.
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mA = 0.7320(60)

p= 2

x2 = 1.19(73)

0.1 0.2 0.3 0.4 0.5
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10 GFFs. The dark part of the error

A0 (which represents the extrapolation to Q2 = 0) is much more sensitive to changes

in p and fit range than in the case of Au. Restricting the fit to Q2 < 0.3 (in lattice

units) shifted the extrapolated value by about twice the statistical uncertainty. We

also observe a potentially significant dependence on the value of p chosen. Similarly,

the form factor slopes vary by up to three (statistical) sigma as the fit technology

changes.

The second-moment form factor 5(0)has similar behavior. Both the value and

the slope of the form factor at zero momentum transfer show systematic variation

comparable to the statistical fluctuations.

We conclude from this exploration that systematic effects from choice of fit ansatz

and fitting range can be significant (i.e. several times the statistical errors), especially

when extracting slopes of form factors at Q2 = 0. It would be good to reduce this un-

certainty by performing lattice calculations at smaller non-zero values of momentum
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Figure E-2: Explorations of p-pole fits to the B10 GFFs. The dark part of the error
band shows the range of m, included in the fit.

transfer (either by taking larger lattice volumes, or using techniques such as twisted

boundary conditions [68]).
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Figure E-3: Explorations of p-pole fits to the BT20 GFFs. The dark part of the error
band shows the range of m, included in the fit.
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Appendix F

Operator Plateaus and Excited

States

Even the best nucleon source we can construct on the lattice has contamination from

excited states. Far away (in Euclidean time) from the source or sink, these con-

taminations become negligible, and the ground state dominates. However, statistical

noise also increases as we move away from the source, so we would like to find an

optimal distance-far enough from the source that excited states are negligible, but

not so far that noise swamps the signal-at which to measure nucleon operators. It

is therefore important to check whether excited states can indeed be ignored at our

chosen source-sink separation. One way to do this is by fitting the lattice data to

extract the excited state contributions.

In Chapter 3, we show that the nucleon two-point function can be written as a

sum of exponentials:

C(t, P) Ane-En(P)t. (F.1)
n

In addition, for the calculations performed in Chapter 5, we observe that the lattice

data appears to "oscillate" due to negative eigenvalues of the transfer matrix [75].
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Figure F-1: Fits to lattice two-point data using (F.2). Extracted energies (in lattice
units) are given in inset. Lattice data is from data set 9.

We account for this by including a term proportional to (-1)' in our fit ansatz:

C2(t) = Ae-Eot + AleElt + ( )t Ae-Et. (F.2)

(In practice, we use an analytic expression like cos(7rt) in place of (-1)' when we do

the fit.) For a given value of momentum P, we can estimate the effective excited and

oscillating state "masses" from a fit to (F.2). Figure F-1 shows examples of such fits

to two-point functions.

The excited state contaminations for the lattice operators (nucleon "three-point"

functions) are similar, but now we have contaminations coming from both the source

and the sink. For the ratio defined in Eq. 5.5, we can write the leading terms:

Ro(P, P', t) = (0, P'010, P)

+ C10 e(E1(P')-EO(P'))(t-tkng) (1, P00, F)

+ C01 eE1(P) -Eo(P))(t-t.rc) (0, P/1)i, F)

+ - (F.3)

where In, P) represents the nth energy eigenstate with momentum P (so the nucleon

ground state would be 10, P)). Including oscillating contaminations coming from the
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P=1,1,0 P'=-1,0,0 ; vectorl op4 U (unchopped)
R(t)

0.6-

0.2

P=1,1,0 ; P'=-1,0,0 ; vectorI op4 U (chopped)
R(t)

-3 '-2 -I 1 1 2 - 3 -4 - -2 L2

Figure F-2: Fits to sample lattice operator plateaus using ansatz (F.4). Left-hand
plot is for the unchopped data set 9; right-hand plot is for the corresponding chopped
data set 5. In each case, the blue line shows the fit result, the straight purple line
shows the constant piece (Aoo), the brown line shows the excited state contributions,
and the green line shows the oscillating terms.

source and the sink, we obtain the following fit ansatz for Ro(P, P', t):

Rfpt(t) = Aoo

+ Aio eAE'(t-tsnk) + A01 eAE(t-tsrc)

+ (-1)(t-tnk) Aio eAE'(t-tnk) + ( )(t-tsrc) Ao1 eAE(t-tsr) (F.4)

where we define AE' = E1 (P') - Eo(P'), AE' -E(P') - Eo(P'), etc. If we include

as inputs the masses obtained from fitting the two-point function, then (F.4) is, in

general, a fit with five free parameters: the ground state operator Aoo, the excited

state terms A10 and A01 , and the oscillating terms A10 and Aoi. Figure F-2 shows

examples of fits to data for lattice operators. We conclude that the excited states are

indeed negligible near the center of the plateau.
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Appendix G

Nucleon Operators on the Lattice

G.1 Calculating Operators

The ratio in Eq. 5.5 can be written (neglecting excited state contributions):

R0"(P', P) = (E(P)E(P) x 1Trr[unpo'(P + in)] Tr[funpoI(P + m)] 1/2
(22i)]

1
x 1Tr[Fp 1(fp' + m)Co(P', P)(f + m)].

4
(G.1)

Note that the above expression is written in Minkowski space. The left-hand side of

(G.1) is constructed from three-point and two-point functions, as described in Chapter

5. In our calculations, we use F"" 1 = (1+70) and F (1+70)(1 -773

Following the notation of [52], the kernel Io(P', P) is defined for an operator (

by:

(P'|0|P) = U(P')Ao(P', P)U(P)

For example, in the case of the zero-derivative vector operator 0' = 0(0)-y"0(0), we

have:

(P'I10 |P) = U(P') '"Aio(t) + 9p0 AcBi0 (t)J~U(P)
2m

-YPAio(t) + cya A Bio(t)2m
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G.1.1 GFF parameterization of lattice operators

The expression used for the kernel depends on the conventions for the form factor

decomposition of the corresponding operator. Table G.1 gives an explicit listing of

the kernels for the operators we use.

operator kernel

k(0)'y() y"Aio + 3 oJpa AaBio

b(O)jY{ID 92}@(0) (-i)P 1792}A20 + A,,1, 2}Q B 20 + 1A"'A/2}C20

0(0)-/P' 5'(0) 'y7y5Aio + -LAy 5 Bio

(0)-f11,y (D 92}@(0)(-i) P 92}75Z2o + _A{i p1P2}1y 5B20

(0)io"#O(0) io4 "ATo + $(PLAv - PvAA)ATo + 2(/A" -

(-i) (iovPP1}A 2 0 + J(PAIvPt11 - AIIPVP1})Jo

(0)iulfv D Pi }@(0) {vpp1_

2m- P'~~Y'vzVI})BT2l)
+ 1(7"PI"Att1} - PyA'YVA )5r 21

Table G.1: Minkowski space operators and kernels. Curly braces denote symmetriza-

tion of indices.

G.1.2 Euclidean space

So far, all expressions given have been for Minkowski space. However, our lattice

calculations are done in Euclidean space. To extract GFFs from a lattice calculation,

we must find Euclidean versions for these expressions.

For convenience, we collect some useful identities. Our Minkowski metric is:

diag(-1, -1, -1, 1), where the time component is written last. A four-vector V trans-

forms:

VLu =

VEU =

Vyink

VinkiV 4fl
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But the gamma matrices:

Euc - YMink

4 4
lEuc YMink

So, for example, (JP + m)Mink = (-iP + m)Euc. Applying these rules carefully, we

obtain Euclidean expressions for the kernels of the Euclidean operators corresponding

to the (Minkowski) operators in Table G.1. These are listed in Table G.2.

Euclidean operator Euclidean kernel

q(0)-q(0) 7y"Aio + 'o aAABio

q(0)71y1 D { 2}q(O) (i) (P{"172}A 20 + 2P"102}aAQB 20 - $A{P1A92}C2 )

q(0)-y' 5 q(0) 75Aio - Ay-f5B10

q(0)7117I D 92}q(0) (i) Ay172}y5A20 - 2A yPP2}5 B 2 0 )

q(0)Ziuvq(0) iorA"ATo - - PvAA)A-rio - y " - yvAP)B

(i) (io'VPP1IAT20 - -(PttAfVP['1} - AIP "1)2

q(0)iuor{1" D P1}q(0) -" - Ah7yPP1) r

-i (71Pt11 - Pwt"AYP11})BT2

Table G.2: Euclidean space operators and kernels (all dirac matrices and

in this table are the Euclidean versions).

four-vectors

G.2 Moments of Continuum Operators

In this section we show explicitly how the local lattice operators arise from Mellin

moments of the bilocal continuum operators. To be concrete, we will write out the

expressions for the vector operator in Eq. 4.2 (the same procedure applies for axial
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and tensor operators). The matrix element can be written:

dz-eip'"~ (P S (
4-F~psI9 -) ,+ e-igf- dz'A+(z') 2 P, S) , (G.2)

z =z+=o

where we write out the Wilson line explicitly. The lowest moment gives:

11 1
dz F=

1Idz
-1

dz-eixp+z-
47

e-ig f  - az'A+(z')
2

= df dz
dze iX P', S'|f( - + - - dz'A+(z')

4w 2' 2

-27r J (P+z~) (P', S'| (-

= 2P+ O) + 0(0P, S).

zi=z+=o

(In the second step we made use of the fact that F must vanish for |x| > 1.) Com-

paring this with Eqs. 4.11 and 4.26, we see immediately that:

I l dx H(x, , t) = A 10 (t) dx E(x, , t) = Bio(t).
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zPzS)
zi +=

zi=z+=O

(G.3)

(P pI, g) _ Y+

) 7+ -ig f _5z_ dz'A+ (z')p



The second moment is similar:

I l
_1l

xdx F = az-

x(P', SI -( - 5) Y+ e-ig fj._ dz'A+(z') Z p7 S)
zi=z+=O

=-f

x

dz-
4wr

- )~+ -i f 5 _ dz'A+ (z')

zi=z+=O

7S'1 P(0)Y+ _+ - igA+(0))

Note that the Wilson line in the definition of the bilocal operator leads directly to

the covariant derivative in the local operator. Using the generalized form factor

decomposition shown in the second entry of Table G.1, we find:

x dx H(x, , t)
-l-1

= A20 (t) + 4 2 C20 (t) x dx E(x, , t) = B 20 (t)

In this way, relations can be found connecting all the form factors to GPDs.

G.3 Explicit List of Lattice Operators

As discussed previously (Eq. 4.25), the lattice operators we calculate have the general

form:

Of"i ... = (0) I1"( D ) 2 ... D" ) $(0)

Specific index combinations of these operators are taken in order to obtain twist-two

operators that belong to irreducible representations of H(4) (see [76] and references
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dx 47jP+

Z27r (P+z-)

S2(+)2

= 2(p+) 2

V)(0)|P, S)

(G.4)

- 4 2C20(t).

S/1()7+ D _+ V)(0)|1P, S).



therein). The choice of these index combinations is not unique, so in the next section

we give an explicit listing of the conventions used (also see [52, 34]).

G.3.1 Vector and axial operators

First let us consider the vector and axial operators, which can be written:

Of'""= 4'(0) 'yf" [h'] D 2 -- - Du""l 4(0),

where the [5] indicates the possible inclusion of -y. For the zero-derivative (n = 1)

case, there are just the four operators:

0lat,[5] - O[51 l~at,[5] 51

For the one-derivative (n = 2) operators, there are two irreducible representations

of H(4) we can use. There are three "diagonal" operators (belonging to the T)

representation):

o2,n2 -1(

lat,[51 2 5 [5

o(,n=2 (oil - o2)

= }(og - o9f)

There are also six non-diagonal operators (belonging to the ri6- representation):

lt[5] [5

91a [5] 5]

oo5t
lat,[5

Note that the operators above have already been symmetrized in their two indices:

o"I 1 ( [] + [5])
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G.3.2 Tensor operators

We can write the tensor operators as:

O '.". =. 4f(0) ioUVfPI1 D ) 2 
. . . D ) (0).

For n = 1 (zero derivatives), the operators are simple:

09 XY 0Q12
latT -T

-x o14

0Iat T T f

latT Tf

Note that these operators are automatically antisymmetric in their two indices.

The case n = 2 (one derivative) is a bit more complicated. There are two in-

equivalent 8-dimensional representations ( ri8) and -r2") that we use, for a total of 16

operators. Explicitly:

For Ti):

O1 T of 22 - oD33

0lat,T T o T o3
(2 - 9 11 __ D 33

OlatT 322
01at,T T T~1

o4 _ (O11 + 422

lat,T 22 33 -2 41- 2 x OT)

lat,T 1 ( 33 - 2 x

lat,T 3 322 - 2 x

8 _ (O411 +4 22 - 2 X
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For T(8)

0 at,T = 2 x Of

lat,T = 2 x

lat,T =2 x 3

0a2 = 2 x 34

0 as, = 013 _ 021)

lat,T T21

lat,T = T 31

lat T 4 V32

For completeness, we include our normalization conventions. Note that final indices

have already been symmetrized: 0 23 =~0 3 + 0 2)
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Appendix H

Fourier Transform of F

In this Appendix, we discuss how we go from Eq. 4.11 to the transverse parton

distributions in Eq. 4.19. (Similar manipulations can be performed on the axial and

tensor matrix elements.)

H.1 Spinor Products

The first step is to evaluate the proton bilinears that appear in Eqs. 4.11 - 4.13. The

four-momenta P and P' are generally not the same, but we consider the case where

their plus components are equal: P+ (P+)'. Using the light cone helicity spinors

in Appendix C, we find:

jiff(p'_Y+ ULC(P) P+

fLC(P') Y+ U (P) = 

if (P'h _+ _Y LC (P P+

LLC(p_±5ULC(p) = 0 (H.1)

GiLC(pi) icr+1 ULC ± 2P+

fiLC(p)i +i ULC(p) = 0

ic( pi : +2 L'(P) = 2iP+
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and so on. Note that the light cone spinors result in particularly simple products

when P+ - (p+)'. This would generally not be the case for an arbitrary spinor basis

(such as the "lab frame" spin states in Eq. C.3).

Now we can write out the matrix element F (Eq. 4.11) for a particular proton

spin state. For (= 0, S = S' =1 (so that u = u"), we find:

F = H(x, 0, -A 2 )+ YE(x, 0, -A 2 ). (H.2)
2m

H.2 Fourier Transform of GFFs

The next step is to take the Fourier transform of (H.2):

7 = e-ib-A F (H.3)

d2A eig A
= 2Ae A H(x, 0, -A2)+ E(x,0, -A2) (H.4)
(27r)2 2m

1 &8 d2 A= N(x, b2 ) - - 2  -2 e AE(x, 0, -A 2 ) (H.5)
2mn Oby (21r)2

108
= H(x, b) - E--S (x, b), (H.6)

2m Oby

which gives us Eq. 4.20. Mellin moments of H(x, b) correspond to Fourier transforms

of the generalized form factors Ano(t):

dx x x(x, b) = f2 A o-(b-A Ano(b 2 ), (H.7)

and similarly for the other GPDs. To proceed further, we need to know more about the

functional form of the GFFs. Let us assume that the form factors can be approximated

by our p-pole fit ansatz A(Q 2) = AQ ) (see Eq. 5.8). Then we can perform the

Fourier transform analytically. It is straightforward but tedious to verify the results
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given in [4], which we reproduce here for reference:

A(b2 ) = C(mA b)'- 1 Kp-1(mA b)

9A(b2)
1
2 ACm(mA b)p~ 2 Kp- 2 (mA b)

(H.8)

bb2= m C(mA b)- 3 Kp- 3 (mA b)

b b A(b 2 ) = - Cm2 (mA b)- 2 {2Kp- 2 (mA b) - mA b K 3 (mA b)},

where C = mA, and K is a modified Bessel function of the second kind.2P,7rr(p)'
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