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Abstract

I envision a future where collaboration between humans and robots will be indispens-
able to our work in numerous domains, ranging from surgery to space exploration.
The success of these systems will depend in part on the ability of robots to integrate
within existing human teams. The goal of this thesis is to develop robot partners
that we can work with easily and naturally, inspired by the way we work with other
people.

My hypothesis is that human-robot team performance improves when a robot
teammate emulates the effective coordination behaviors observed in human teams. I
design and evaluate Chaski, a robot plan execution system that uses insights from
human-human teaming to make human-robot teaming more natural and fluid. Chaski
is a task-level executive that enables a robot to robustly anticipate and adapt to other
team members. Chaski also emulates a human's response to implicit communications,
including verbal and gestural cues, and explicit commands.

Development of such an executive is challenging because the robot must be able
to make decisions very quickly in response to a human's actions. In the past, the
ability of robots to demonstrate these capabilities has been limited by the time-
consuming computations required to anticipate a large set of possible futures. These
computations result in execution delays that endanger the robot's ability to fulfill its
role on the team.

I significantly improve the ability of a robot to adapt on-the-fly by generalizing
the state-of-the-art in dynamic plan execution to support just-in-time task assign-
ment and scheduling. My methods provide a novel way to represent the robot's plan
compactly. This compact representation enables the plan to be incrementally up-
dated very quickly. I empirically demonstrate that, compared to prior work in this
area, my methods increase the speed of online computation by one order of magnitude
on average. I also show that 89% of moderately-sized benchmark plans are updated
within human reaction time using Chaski, compared to 24% for prior art.

I evaluate Chaski in human subject experiments in which a person works with
a mobile and dexterous robot to collaboratively assemble structures using building
blocks. I measure team performances outcomes for robots controlled by Chaski com-
pared to robots that are verbally commanded, step-by-step by the human teammate.



I show that Chaski reduces the human's idle time by 85%, a statistically significant
difference. This result supports the hypothesis that human-robot team performance
is improved when a robot emulates the effective coordination behaviors observed in
human teams.

Prof. Brian Williams
Thesis Supervisor

Prof. Cynthia Breazeal
Thesis Committee Member

Prof. Dava Newman
Thesis Committee Member

Prof. Randall Davis
Thesis Reader

Prof. Patrick Winston
Thesis Reader
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Chapter 1

Introduction

I envision a future where collaboration between humans and robots will be indispen-

sible to our work in many domains, ranging from surgery to space exploration. The

success of these systems will depend in part on the ability of robots to integrate with

existing human teams. The goal of this thesis is to develop robot partners that we

can work with more easily and naturally, as inspired by the way we work with other

people.

Today we treat robots primarily as tools that we explicitly command to perform

tasks step-by-step. However, we know from studies of human teamwork that explicitly

commanding is an inefficient means of coordinating the actions of multiple team

members. Instead, the best human teammates anticipate what their partners will

need and adapt to the actions of other team members (Entin et al., 1994; Sebanz

et al., 2006).

I address the challenge of developing robot partners that have the ability to antic-

ipate and adapt more as humans do. Specifically, I focus on designing a capability for

one-on-one human-robot teaming inspired by human teamwork in high-intensity do-

mains, such as surgery and space exploration. Examples include nurses and surgeons

coordinating in the operating room, or astronauts working together on a space walk.

Usually, teams working in these domains perform a well-defined task, and perform

the task under time pressure. The precise timing of the teammates' actions can have

a significant impact on the team's performance.



As robots are increasingly introduced into these domains (Bluethmann et al.,

2003; Treat et al., 2005), the research community is beginning to investigate ways

for mixed human-robot teams to coordinate efficiently and naturally to accomplish

tasks in shared, physical workspaces (Breazeal, 2002; Lockerd and Breazeal, 2004;

Trafton et al., 2005; Sidner et al., 2005; Berlin et al., 2006; Fong et al., 2006; Hoffman

and Breazeal, 2007). For example, NASA is developing Robonaut, a robotic system

to function as an astronaut equivalent during a spacewalk (Bluethmann et al., 2003)

(Figure 1-1). Rather than sending two astronauts, Robonaut would collaborate with a

human astronaut to perform the spacewalk, reducing the human risk associated with

working in the hostile environment. To work effectively side-by-side with humans,

Robonaut must actively anticipate and adapt to its human counterpart, much as a

human teammate would.

Figure 1-1: Robonaut, a robotic EVA assistant

In another application, Robotic Systems and Technologies, Inc. (New York, NY)

has developed and field-tested a robotic surgical assistant to assist a surgeon in the

operating room. The robotic assistant, named Penelope (Figure 1-2), serves part of

the role of a human surgical assistant, monitoring the surgery, providing instruments

and assistance to the surgeon, and keeping track of instruments in the operating

theater. Monitoring tasks are fatiguing for people, and as result, human surgical



assistants change shifts during long surgeries. In contrast, Penelope does not fatigue

from monitoring tasks, does not need to change shifts, and tracks the locations of the

instruments. As a result, Penelope may have the potential to improve patient safety

and outcomes.

Figure 1-2: Penelope, a robotic surgical assistant

Today, surgeons explicitly command Penelope to retrieve surgical instruments

step-by-step. This increases a surgeon's workload as compared to working with a

human surgical assistant. Ideally, a robotic surgical assistant should anticipate the

needs of the surgeon and provide instruments as necessary, respond quickly to the

surgeon's changing needs, and respond quickly to the surgeon's cues and requests.

In this thesis, I hypothesize and test whether human-robot team performance is

improved when a robot teammate emulates the behaviors and teamwork strategies

observed in human teams. I apply insights from human teamwork studies in order

to design and evaluate Chaski, a robot plan execution system that makes human-

robot teaming more natural and fluid. Chaski is a task-level executive that enables a

robot to robustly anticipate and adapt to other team members. Chaski also emulates

a human's response to implicit communications, including verbal and gestural cues,

and explicit commands.

The system's key innovation is a compact plan encoding that significantly im-



proves the ability of a robot to adapt on-the-fly. This compact representation enables

the plan to be incrementally updated very quickly. I empirically demonstrate that,

compared to prior work in this area, my methods increase the speed of online com-

putation by up to one order of magnitude. A key strength of this approach is that

it generalizes naturally to different styles of teamwork, and supports the ability to

emulate a human's response to communication and cues.

This chapter provides an executive summary of the key insights and innovations

presented in this thesis; its section structure follows the chapter structure of this

thesis. In Section 1.1, I present the results from human teamwork studies that others

and I have conducted to investigate the strategies and behaviors that people use

to effectively coordinate their actions. Based on these results, I propose a set of

design requirements for the Chaski system. In Section 1.2, I provide insight into

why the development of such a system is challenging, and I present my method for

significantly improving the ability of robots to adapt on-the-fly. In Section 1.3, I

describe two styles of teamwork that Chaski supports: Equal Partners and Leader

and Assistant and discuss how this method generalizes naturally from the Equal

Partners to the Leader and Assistant style of teamwork. In Section 1.4, I discuss

how the Chaski plan execution capability is extended to respond to a person's implicit

communications, including verbal and gestural cues, and explicit commands. Finally,

in Section 1.5, I describe the evaluation of Chaski through human subject experiments.

The experiment results support the hypothesis that human-robot team performance

is improved when a robot teammate emulates the behaviors and teamwork strategies

observed in human teams.

1.1 Human Teaming as a Guide for Human-Robot

Teaming

My hypothesis is that the performance of human-robot teams is improved when a

robot teammate emulates the effective coordination behaviors observed in human



teams. The deeper question underlying this hypothesis is whether we understand

human-human interaction (HHI) well enough to embody HHI techniques in a robot.

There is a precedent for HHI informing the design of HRI (Lockerd and Breazeal, 2004;

Sakita et al., 2004; Sidner et al., 2005; Trafton et al., 2005; Hoffman and Breazeal,

2007). In Chapter 2, 1 present a body of HHI research that has not yet been applied to

HRI: studies in human teamwork under stress induced by uncertainty, ambiguity, and

time pressure. Specifically, I present the results from studies that I and others have

conducted to investigate the strategies and behaviors that high-performing teams use

to coordinate their actions effectively. These finding lay the foundation for translating

research in human teamwork to enable effective human-robot teamwork. In this

section, I review the key results from these human-teamwork studies and, based on

these insights, propose a set of design requirements for the Chaski system.

Teammates make decisions on-the-fly.

Effective teams tend to distribute work among team members on-the-fly. In other

words, the best teams typically do not decide beforehand entirely who will do what

and when. Instead team members show flexibility in making these decisions as cir-

cumstances unfold (Entin et al., 1994).

Teammates frequently communicate updates on the progress

of the task.

Team members coordinate their actions through frequent updates on the status of

the task. For example, teammates frequently update their partners on their progress

by communicating when they start or finish parts of the task. Interestingly, studies

show that the more team members communicate updates during the task, the better

the team performs (Entin and Serfaty, 1999; Mackenzie et al., 2004). This is the

case even when team members coordinate to perform a task within a small shared

workspace, such as a table surface (Shah and Breazeal, 2010).



Teammates consider the consequences of their actions on oth-

ers.

Team members maintain shared mental models of the task and of each other's capa-

bilities and use these models to consider the consequences of their actions on others.

Shared mental models provide team members with a common understanding of who

is responsible for what task and what the information requirements are. In turn, this

allows them to anticipate one another's needs so that team members can coordinate

effectively. Evidence also suggests that people incorporate the capabilities of other

team members into their own action planning (Sebanz et al., 2006), and that people

act so as to minimize the idle time of other team members (Shah and Breazeal, 2010).

Teammates use and respond differently to explicit commands

and implicit cues.

The most effective team members also make use of both explicit commands and im-

plicit communications, including verbal and non-verbal cues, to coordinate action

within a team. "Bring me the coffee cup now" is an example of an explicit com-

mand. Alternatively, a person may convey the same intention through the implicit

communication "That over there" + gesture: point to coffee cup. This implicit com-

munication draws the team member's attention towards the coffee cup and prompts

the teammate to consider who needs this coffee cup, why, and when. In general, these

types of implicit communications are used to support the actions and needs of team

members by providing information to indirectly guide team members' actions (Entin

and Serfaty, 1999; Serfaty et al., 1993; Entin et al., 1994; Volpe et al., 1996; Orasanu,

1990).

Interestingly, results from human teamwork studies show that explicit command-

ing seems to be less efficient on average than using implicit communications to guide

teammates' actions (Orasanu, 1990; Stout et al., 1999). Studies also show that ex-

plicit commands nearly always elicit an immediate response, where as implicit com-

munications seem to imply a flexible time response (Shah and Breazeal, 2010). One



explanation for the benefits of implicit communications, discussed in Chapter 2, is

that a team-member's tendency to immediately respond to the specific commanded

action involves a switching cost that degrades team performance. The switching cost

refers to the extra time that may be required for the recipient of the command to

stop what the are doing, switch their attention to address the command, and then

switch their attention back to resume their work.

Design requirements for the Chaski Executive for Human-

Robot Teaming

Based on results from these and previous studies in human teamwork, I propose a set

of design requirements for the Chaski Executive for Human-Robot Teaming.

(1) Chaski should take as input a shared plan that serves the same purpose as

the shared mental model within a human team (Stout et al., 1999). The shared plan

should include the activities to be performed, plan deadlines, and information about

the capabilities of each team member. Chaski should use the shared plan to choose

and schedule the robot's activities. Chaski should make these decisions by considering

the capabilities of each team member, so that the team can successfully complete the

task within the plan deadlines.

(2) Chaski should enable a robot to choose just before execution which activities

to perform and when. This should be based on knowledge of the plan execution so

far. This ability to dynamically choose and schedule activities emulates the human

ability to flexibly make decisions as circumstances unfold (Entin et al., 1994).

(3) Chaski should enable a robot to reason about the consequences of its actions

on human teammates by favoring execution times that minimize a measure of the

humans' idle time. This design requirement is based on the observation that human

teammates consider the consequences of their actions on others (Stout et al., 1999),

and that effective teams seem to act to minimize the team's idle time (Shah and

Breazeal, 2010).

(4) Finally, Chaski should enable a robot to respond to explicit commands and



implicit communications based on how human teammates respond to different types

of communications. Specifically, Chaski should respond immediately to verbal explicit

commands, and respond to implicit verbal and non-verbal cues in a way that takes

advantages of the implied flexible response time.

1.2 Chaski Enables Collaborative Execution of a

Shared Plan

Chaski enables a human and a robot to collaboratively execute a shared plan that

includes the activities to be performed, plan deadlines, and information about the

capabilities of each team member. Chaski uses the shared plan to choose and schedule

the robot's activities, and makes these decisions by considering the capabilities of each

team member, so that the team can successfully complete the task within the plan

deadlines.

In this section I provide an example of the shared plan that Chaski takes as input,

and describe the desired outputs of Chaski. I then discuss why the development of

such an executive is challenging, and provide insight into how the methods presented

in this thesis significantly improve the ability of robots to adapt on-the-fly.

Problem Statement

Chaski takes as input a shared task plan that includes the activities to be performed,

ordering constraints among the activities, and plan deadlines.

Example Shared Task Plan

Figure 1-3 presents a shared task plan based loosely on the extra-vehicular activity

(EVA) procedures for EVA-11 Bravo, conducted at the International Space Station

(ISS) on November 20th, 2007. The purpose of the EVA was to configure Node-2 with

fluid, power, and cooling. Typically EVA procedures are planned in detail and include

ordered activities and temporal constraints. In the plan presented in Figure 1-3, the



activity "Egress/ Setup" must be completed before any of the other activities may

be performed. Also, the activity thread starting with "Remove NH3 Shunt" may be

executed concurrently with the activity thread starting with "Configure Vent Tools."

Finally, the task plan specifies that the entire plan must be completed by time tmax.

Remove NH3 Shunt Vent NH3 Shunt & Stow Release Loop A Tray

Egress/ Setup

Configure Vent Tools Fluid Cap SFU Reconfig - Release Loop B Tray

t tmax

Figure 1-3: EVA Shared Task Plan

Chaski also takes as input information about the capabilities of the team members,

including the activities that each agent may perform, and bounds on the amount of

time each agent takes to perform each activity. Table 1.1 lists for each activity, the

agents that are capable of performing the activity and how long each agent takes to

perform the activity. Both the Human and Robot can perform the activity "Egress/

Setup." The Human takes 5-8 minutes and the Robot takes 7-10 minutes to perform

this activity.

Chaski uses the shared plan to choose and schedule the robot's activities. It makes

these decisions by considering the capabilities of each team member (e.g. how long

each team member takes to perform the activities), so that the team can successfully

complete the task within the plan deadlines. It uses a dynamic strategy to make

each task assignment and scheduling decision online, right before execution, given

knowledge of the execution sequence thus far. For example, in the EVA Shared

Task Plan, the Robot may dynamically decide whether to perform the "Remove NH3

Shunt" or "Configure Vent Tools" depending on whether the Human is currently

performing "Remove NH3 Shunt" or "Configure Vent Tools". The output of Chaski

is a dynamic decision-making strategy, if one exists, that ensures the team members



Table 1.1: Human's and

Activity

Egress / Setup

Remove NH3 Shunt

Vent NH3 Shunt & Stow

Release Loop A Tray

Configure Vent Tools

Fluid Caps

SFU Reconfig

Release Loop B Tray

work together to assign, schedule and execute activities within the plan deadlines.

1.2.1 Technical Challenges

Development of an executive that adapts to a human on-the-fly is challenging be-

cause in high-tempo domains the robot must be able to choose and schedule its own

activities very quickly in response to a human's actions (Muscettola et al., 1998a).

One approach to this problem is to make all the activity assignment and scheduling

decisions ahead of time, before execution (Dean and Boddy, 1988; Huang and Ying,

2008). The challenge with this approach is that any deviation from the initial activity

assignment and schedule during execution requires re-planning. For example, if the

"Egress/ Setup" task in Figure 1-3 requires even a moment longer than anticipated,

then the agents must re-plan and re-schedule to ensure the task will be completed

within the plan deadlines. Re-planning and scheduling for multi-agent temporal plans

involving as few as three or four activities introduces time-consuming computations

requiring tens of seconds (Huang and Ying, 2008), and as a result may significantly

Robot's
Agent

Human
Robot
Human
Robot
Human
Robot
Human
Robot
Human
Robot
Human
Robot
Human
Robot
Human
Robot

Capabilities
Duration(s)

5-8
7- 10
5-8
7-10
5-8
7-10
5-8

7- 10
5-8
7-10
5-8
7-10
5-8
7-10
5-8
7-10



endanger the robot's ability to fulfill its role within the team.

Alternatively, many systems reduce the latency of online planning by enabling the

agents to schedule on-the-fly the precise timing of their activities online (Muscettola

et al., 1998b; Alami et al., 1998; Brenner, 2003; Lemai and Ingrand, 2004; Smith et al.,

2006). Before execution, these systems perform task assignment to allocate activities

among the agents, and then perform synchronization to introduce ordering constraints

among activities so that concurrent execution remains logically valid (Stuart, 1985;

Kabanza, 1995; Brenner, 2003). The process of task assignment and synchronization

generates temporally flexible plans that the agents may use to schedule plan activities

online, just before the activity is executed (Muscettola et al., 1998a; Tsamardinos

and Muscettola, 1998). The Kirk Planner (Kim, 2000; Shu, 2003; Effinger, 2006) and

Epilitis (Tsamardinos and Pollack, 2003) are two systems developed to quickly solve

temporally flexible plans with choice.

Figure 1-4 illustrates the task assignment and synchronization process for the EVA

Task Plan. Before execution, offline, each activity in the plan is assigned an agent.

For example, "Egress/ Setup" is assigned to the Human, and activity "Remove NH3

Shunt" is assigned to the Robot. Next, task assignment is synchronized, meaning or-

dering constraints are introduced among activities to ensure that each agent performs

only one activity at at time. The synchronization presented Figure 1-4 constrains the

Human to performs activities in the following order: "Egress/ Setup," "Configure

Vent Tools," "Vent NH3 Shunt & Stow," and then "Release Loop B Tray."

After task assignment and synchronization, agents are provided with a temporally

flexible plan that enables them to make scheduling decisions and adapt to small

disturbances online. For example, an agent may use this temporally flexible plan to

decide to perform a task at 10:10am rather than 10am to adjust for schedule slip.

While this strategy allows the agent to adapt to some disturbances that occur prior

to the activity, disturbances triggering task re-assignment or re-synchronization still

require a deliberative capability to generate a new plan or perform plan repair. This

re-planning process often requires up to tens of seconds (Tsamardinos and Pollack,

2003) and, again, this time lag may endanger the robot's ability to fulfill its role



Task Assignment

Robot Human Robot
Remove NH3 Shunt Vent NH3 Shunt & Stow Release Loop A Tray

Human Robot Human Human
Configure Vent ToosSFU Reconfg Release Loop Tra

t tmax

Synchronization

Robot Human Robot
Remove NH3 Shunt Vent NH3 Shunt & Stow R

Ers/Setup
Human Rbtuman Human

Configure Vent Tools Fluid Caps SFU Reconfig Release Loop B Tra I

t = tmal

Figure 1-4: Task Assignment and Synchronization of a Multi-agent Plan



within the team.

1.2.2 Chaski's Approach to Dynamic Plan Execution

Chaski significantly improves the ability of robots to adapt on-the-fly, compared to

prior work. The system's key innovation is a fast execution algorithm that operates

on a compact encoding of the scheduling policies for all possible task assignments.

Chaski first compiles the plan into to a compact encoding that can be efficiently

executed. The compiled form of the plan makes explicit the consequences for each

agents' activity choices and scheduling decisions. Agents then use this compiled plan

to make decisions online quickly.

In this section, I provide a notional example for the compact encoding of a shared

plan. In Chapters 4 and 5, I formally describe and present methods for automati-

cally computing the compact encoding for a shared plan. I show that this compact

encoding significantly reduces the space required to represent all feasible executions

of the shared plan, as compared to prior art (Tsamardinos and Pollack, 2001). Fi-

nally, I provide methods that allow agents to use this compiled plan to make activity

assignment and scheduling decisions one order of magnitude faster, on average, than

prior work (Tsamardinos and Pollack, 2001).

Compact Encoding of the Shared Plan

Chaski represents the feasible executions for a shared task plan in terms of a relaxed

plan and perturbations off of the relaxed plan. The relaxed plan captures the under-

lying activity structure common to all the feasible ways for executing the plan. The

perturbations encode the consequences for each agents' activity choices and schedul-

ing decisions as a set of differences from the relaxed plan.

Figure 1-5 shows a notional example of a relaxed plan and perturbations for the

Abridged EVA Plan. This plan includes two activities, "Remove NH3 Shunt" and

"Configure Vent Tools," that may be executed in parallel. Both activities must start

within five minutes of the plan start (the [0,5] notation), and both activities must



be completed within a fifteen minute deadline. A Human and Robot work together

to execute the shared plan. The Robot takes 7-10 minutes to perform each activity,

while the Human takes 5-8 minutes to perform each activity.

The relaxed plan captures the features common to all the feasible ways for exe-

cuting the plan. Just like the original plan, the relaxed Plan presented in Figure 1-5

captures that all plan executions involve the two activities "Remove NH3 Shunt" and

"Configure Vent Tools." Also, all plan executions require that both activities must

start within five minutes of the plan start, and both activities must be completed

within a fifteen minute deadline. The relaxed plan is different from the original plan

in that it contains relaxed bounds on how long each activity will take. "Remove NH3

Shunt" may take as little as five minutes if performed by the Human, or as long as

ten minutes if performed by the Robot. Finally, the relaxed plan does not include

information about agent assignments, because we do not know ahead of time which

agent will perform each activity.

Task Plan Relaxed Plan

Robot: [7,101
Human: [5,8]

[05 [Remove NH3 Shunt Rerove NH3 Shunt

I 1 I>
I 5] Robot: [7,10] ,

1 0,5 Human: [5,8] 1

t 0 Configure Vent Tools tC = [0,15) Configure Vent Tools t = [0,15]

Figure 1-5: Abridged EVA Plan and its Relaxed Plan, where numbers represent
bounds on allocated time (in minutes).

The perturbations encode the consequences for each agents' activity choices and

scheduling decisions as a set of differences from the relaxed plan. Figure 1-6 presents

the notional process of investigating perturbations off the relaxed plan, and Figure

1-7 shows the constraint changes to the relaxed plan for each of the possible ways to

assign and synchronize activities.



Figure 1-6: Investigate Perturbations off of the Relaxed Plan

Imagine that the Robot performs "Remove NH3 Shunt" and then "Configure Vent

Tools." We can infer that the Robot must finish the first activity within 8 minutes in

order to finish both activities within 15 minutes. This is because the Robot will take

at least 7 minutes to finish the second activity. Notice that Figure 1-7 records this

constraint change ("Remove NH3 Shunt completed within [0.8] minutes of plan start)

for the task assignment where the Robot performs both activities, and the synchro-

nization where the Robot first performs "Remove NH3 Shunt" and then "Configure

Vent Tools." These inferred constraints are recorded for each task assignment and

synchronization for the Robot to quickly reference during plan execution.

The compact representation, composed of the relaxed plan and perturbations sig-

nificantly reduces the number of constraints necessary to represent the solution set,

as compared to explicitly enumerating all the constraints for each task assignment

and synchronization. For example, 25 constraints are necessary to encode the relaxed

plan and perturbations. In comparison, 52 constraints are necessary to separately
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Figure 1-7: Constraint Changes for Abridged EVA Plan

encode the constraints for each task assignment and synchronization. In this simple

example, the Chaski compact representation reduces by one-half the number of con-

straints necessary to encode the plan. The empirical results presented in Chapters 4

and 5 indicate that for larger problems, the Chaski compact representation reduces

the number of constraints to encode the plan by up to one order of magnitude. This

reduces redundant computation at execution and improves the speed of online com-

putation by up to a factor of ten, compared to prior art (Tsamardinos and Pollack,

2001).

1.3 Chaski Enables Collaboration as Equal Part-

ners or Leader and Assistant

Chaski enables a human and a robot to execute a shared plan collaboratively under

two different styles of teamwork: Equal Partners and Leader and Assistant. These

two styles of teamwork are described and developed as different ends along a spectrum

of teamwork strategies. I designed Chaski to work within these two styles of team-



work since human team dynamics are often domain-dependent. For example, two

mechanics working together to repair a car (Equal Partners) interact differently from

a nurse and a surgeon, who coordinate in the operating room (Leader and Assistant).

I characterize Equal Partners teamwork by a flat, decentralized authority, meaning

that each member of the team has equal authority to make decisions when executing

the plan. I consider Equal Partners teamwork in the context of two mechanics working

together to replace a car engine. We assume that both team members share a common

understanding of the procedure to replace the engine, and are equivalent in their skill

and expertise. Under the Equal Partners style of teamwork, each team member has

equal authority to decide what they will do and when, and they coordinate their

actions to successfully replace the engine. For example, consider that Mechanic 1

begins by removing the top most accessible parts around the engine, and Mechanic

2 begins in parallel by draining the radiator coolant. If Mechanic 2 notices that

Mechanic 1 is taking longer than anticipated to complete his activity, then Mechanic

2 has the authority to divert her efforts at any time to help remove parts around the

engine.

In contrast, the Leader and Assistant style of teamwork is characterized by an

asymmetric authority over decision-making and a clearly defined leadership role. In-

teraction between a nurse surgical assistant and a surgeon is one example of a Leader

and Assistant style relationship. The surgeon has ultimate authority over how to

perform the surgery, including how to order the phases of the surgery and what in-

struments to use. The surgical assistant must act so as not to constrain the surgeon's

choices or block the surgeons actions.

As described in Section 1.2, shared task plans for both Equal Partners and Leader

and Assistant include the activities to be performed, ordering constraints among the

activities, and plan deadlines. In Equal Partners teamwork, the duration of an activity

is assumed to be within the agent's control, depending on how fast or slow the agent

chooses to work. A Leader and Assistant shared task plan extends the Equal Partners

plan in two ways that preserve the Leader's flexibility to act. First, a Leader and

Assistant plan annotates an Equal Partners plan to preserve the Leader's flexibility



to freely schedule its own activity durations. Additionally, a Leader and Assistant

plan annotates the activities that the Leader claims authority over, to ensure that

the Assistant preserves the Leader's flexibility to perform these activities.

Imagine that the Human and Robot perform the EVA Shared Task Plan (Figure

1-3) as Leader and Assistant, with the Human as Leader and the Robot an Assistant.

The Leader and Assistant plan includes a set-bounded representation of uncertainty

for the Leader's activity durations. For example, consider that the Leader takes

between 7-10 minutes to executive activity "Egress/ Setup." Set-bounded uncertainty

in this activity duration means that the Leader may take anywhere from 7 to 10

minutes to execute the activity, irrespective of the other temporal constraints in

the plan. The Assistant reasons using this representation of uncertainty to avoid

constraining the duration of the Leader's activities. A Leader and Assistant plan

annotates the Human's activity durations with a c to denote uncertainty in duration,

as shown in Table 1.2.

Table 1.2: Human's and Robot's Capabilities for Leader and Assistant EVA Plan,
where c refers to uncertain activity duration.

Activity Agent Duration(s)
Egress / Setup Human [5 - 8)c

Robot [7 - 10]

Remove NH3 Shunt Human [5 - 8]c
Robot [7 - 10]

Vent NH3 Shunt & Stow Human [5 - 8]c
Robot [7 - 10]

Release Loop A Tray Human [5 - 8]c
Robot [7 - 10]

Configure Vent Tools Human [5 - 8]C
Robot [7 - 10]

Fluid Caps Human [5 - 8]c
Robot [7 - 10]

SFU Reconfig Human [5 - 8]c
Robot [7 - 10]

Release Loop B Tray Human [5 - 8]c
Robot [7 - 10]

A Leader and Assistant plan also denotes a subset of the activities in the plan



that the Leader claims authority over. In the Leader and Assistant EVA Shared Task

Plan, we assume that the Human (Leader) has authority over the activities "Remove

NH3 Shunt" and "Configure Vent Tools." This means that the Robot (Assistant)

must leave each of these activities available for the Leader to perform next, until the

Leader makes a commitment to not perform the activity. Imagine that the Human

has just finished performing the activity "Egress / Setup." At this point the Human

may choose to perform either "Remove NH3 Shunt" and "Configure Vent Tools."

Since the Human has authority over both these activities, the Robot must preserve

the Human's ability to perform either next. As a result, the Robot sits idle until the

Human makes a commitment not to perform one of the activities.

As described in Section 1.2.2, Chaski compiles the shared task plan into a compact

form, composed of a relaxed plan and perturbations, that can be efficiently executed.

The rules needed to compute the perturbations for a Leader and Assistant plan include

the rules applied to an Equal Partners plan, and a set of additional rules designed

to reason specifically about the Leader's uncertain activity durations. I refer to the

Abridged EVA Plan presented in Figure 1-5 to illustrate the special computations

required to reason on the Leader's uncertain activity durations. Assume that the

Human is the Leader and the Robot is the Assistant. The Leader's activity dura-

tions are uncertain, and the Leader has authority over both plan activities. Recall

that the perturbations encode the consequences for each agents' activity choices and

scheduling decisions. For example, consider that the Human performs both activi-

ties "Remove NH3 Shunt" and "Configure Vent Tools." Given the uncertainty in the

Leader's activity durations, we infer that there is no guarantee that the Human will

finish both activities within the 15 minutes (e.g., if the Human takes 8 minutes to

perform each of the activities, the 15 minutes deadline will not be met.) The task

allocation where the Human performs both activities is therefore not dynamically

controllable. Given this information, at execution the Robot will act to ensure the

Human does not perform both activities.

The output of Chaski is a dynamically controllable decision-making strategy, if one

exists, that ensures the team members work together to assign, schedule and execute



activities within the plan deadlines. A strategy is dynamically controllable if there

exists an online strategy for making task assignments and scheduling decisions, given

knowledge of all choices thus far, that will result in a full feasible schedule irrespective

of exogenously-controlled choices. Exogenously-controlled choices are plan choices

modeled with an explicit representation of uncertainty. Within a Leader and Assistant

plan, these include the Leader's choices about task assignment and activity durations.

In Chapter 3, I describe the design decisions that I make to fully characterize a

team member's behavior within the Equal Partners and Leader and Assistant styles of

teamwork, and to provide illustrative examples of the functions that Chaski delivers.

In Chapter 4, I introduce methods for compiling and executing Equal Partners plans

into to a form that can be executed efficiently. In Chapter 5, I discuss how the

methods for compiling and executing a Equal Partners plan generalize naturally to a

Leader and Assistant plan.

1.4 Chaski Emulates Effective Coordination Be-

haviors

In the previous sections I discussed how Chaski enables a robot to adapt to a hu-

man on-the-fly. This section discusses how Chaski can act in ways that seem natural

and similar to our interactions with another person. I illustrate how Chaski acts

to fulfill the following three goals: (1) minimize the human's idle time, (2) respond

immediately to explicit commands, and (3) respond to implicit communications in

flexible time. Chapter 6 formulates each of these goals as preferences over plan execu-

tion sequences and provides implementations of these preferences within the Chaski

execution algorithm.

This section uses the Bottleneck Plan (Figure 1-8) to illustrate. That plan pre-

assigns an agent to each activity: e.g., the Robot performs activities A, B, and

D, the Human performs C and E. The "bottleneck" in the plan is that the Robot

must complete B before the Human performs C and E. The order of the Robot's



activities has a significant impact on the Human's idle time: three (of many) execution

sequences for the Bottleneck Plan presented in Figure 1-9 show that the Human's

idle time varies from five to fifteen minutes, depending on the order of the Robot's

activities.

Task Plan
I
I Robot: [5,101

Robot: [5,10] Human: [5,10]

Robot: [5,101 Human: [5,101

tstart

Figure 1-8: Bottleneck Plan

Goal: Robot should act to minimize the human's idle time.

As noted earlier, studies of human teamwork show that effective teammates consider

the consequences of their actions on other teammates and act so as to minimize the

team's idle time. We want a robot to do this too. Because a robot is not susceptible

to the ill effects of idling (e.g., boredom and inattention), Chaski enables a robot to

act to reduce the humans', rather than the team's, idle time. Chaski reduces the

human's idle time by favoring execution sequences that minimize an estimate of the

human's idle time.

Of the three execution sequences presented in Figure 1-9, Chaski first tries to

execute the plan according to Execution Sequence 3, since this execution sequence

minimizes the Human's idle time. This means that Chaski tries to schedule the
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Figure 1-9: Three Execution Sequences for the Bottleneck Plan
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Robot's activities in the order: B, D, A. If, for some reason Chaski finds it is not

possible to follow this execution sequence, it next favors Execution Sequence 2 and

tries to schedule activities in the order B, A, D.

Goal: Robot should respond immediately to explicit verbal

commands.

Even though studies show that explicit commanding is a less efficient means of co-

ordinating action, it is nonetheless important that a robot teammate respond appro-

priately to a human team member's commands. Chaski enables a robot to respond

to the human's explicit commands by performing the commanded activity next, if

possible. Specifically, Chaski enables a robot to respond by reasoning on a primary

preference to (1) favor execution sequences that address incoming explicit commands

next, and a secondary preference to (2) favor executions that minimize the human's

idle time.

Consider the case in which the Robot begins executing the Bottleneck Plan by first

performing activity B. Then, just before the Robot finishes activity B, the Human

explicitly commands the Robot to perform activity A next. The Robot responds to

the explicit command by doing this (as in Execution Sequence 2), even though there

are other execution sequences that would minimize the human's idle time. In general,

if the Robot has a choice between two or more execution sequences that address the

explicit command next, the Robot favors the one that minimizes the human's idle

time.

Goal: Robot should respond to implicit verbal cues and ges-

tures in flexible time.

Finally, Chaski enables a robot to respond to implicit verbal cues and gestures in

flexible time. This allows the robot to more efficiently incorporate the cued activity

into the team's workflow. The system enables a robot to execute the plan with the

primary preference to (1) favor execution sequences that address incoming implicit



cues in the near future (for example within 1-3 steps), and the secondary preference

to (2) favor executions that minimize the human's idle time.

Consider the case in which the Robot begins executing the Bottleneck Plan by

first performing activity B. Then, just before the Robot finishes activity B, the Hu-

man points to A and says "That!" This communication implicitly cues the Robot

to perform activity A. Since implicit cues imply a flexible response time, the Robot

can weigh an immediate response against the impact on the Human's idle time. The

Robot determines that it can significantly reduce the Human's idle time by delay-

ing activity A by one step (as in Execution Sequence 3), as compared to performing

activity A immediately (as in Execution Sequence 2). As a result, the Robot favors

Execution Sequence 3 and performs activity D next.

1.5 Human-Robot Teaming Experiments

I evaluated Chaski through human subject experiments in which a person teams with

the Mobile - Dexterous- Social (MDS) robot pictured in Figure 1-10. The human-

robot team performed a synthetic task developed to recreate aspects of tasks per-

formed by teams in space, military, and medical domains. The task requires col-

laboratively assembling structures using building blocks, subject to partial ordering

constraints, resource constraints, and a sense of time pressure. The experiments

are designed to test the hypothesis that human-robot team performance is improved

when a robot teammate emulates the effective coordination behaviors observed in hu-

man teams. The human-robot teaming study, including experiment design, analysis

and results is presented in Chapter 7. In this section I provide an overview of the

experiment method and key results.

Experimental Method

Sixteen human-robot teams performed the experimental task. Eight human team-

mates were randomly chosen to explicitly command the robot's actions step-by-step

(Explicit Teaming). The other eight human teammates worked with a robot con-



Figure 1-10: Mobile-Dexterous-Social (MDS) Robot

trolled by the Chaski executive under an Equal Partners style of teamwork (Implicit

Teaming). Teams in the Implicit Teaming group coordinated their actions by com-

municating when they started and completed each activity. Each team member then

relied on their parter to adapt based on these communications. This means that,

within the Implicit Teaming group, the robot took the initiative to choose and sched-

ule its own actions. Also, the robot acted with a preference to minimize the human's

idle time.

Team performance outcomes, including time to complete the task and human idle

time, were measured for each team. Human subjects were also administered a Likert

scale subjective questionnaire at the completion of the experiment. The questionnaire

addressed the robot's performance, the robot's contribution to the team, shared goals,

team fluency, trust in the robot, and attribution of credit and blame.



Key Results

My results show that human subjects in the Implicit Teaming group spent 85% less

time idling, on average, than human subjects in the Explicit Teaming group, a sta-

tistically significant difference (p = 0.02). Human idle time was reduced from 44 s to

6 s, on average. The Implicit Teaming groups also performed the task approximately

10% faster, on average, than the Explicit Teaming groups. Although this result is

not statistically significant, the trend is promising and warrants further investigation.

Finally, people in the Implicit Teaming group agreed with the statement "the robot

is trustworthy" more strongly a five point scale, than people in the Explicit Teaming

group, a statistically significant difference (p=0.02). These results support the hy-

pothesis that human-robot team performance is improved when a robot emulates the

effective coordination behaviors observed in human teams.



Chapter 2

Human Teaming As A Guide For

Human-Robot Teaming

2.1 Introduction

My hypothesis is that human-robot team performance is improved when a robot

teammate emulates the effective coordination behaviors observed in human teams.

This chapter lays the foundation for translating research in human teamwork to enable

effective teamwork between humans and robots. I report on experiments I conducted

to investigate how and when people use different types of communications within a

team. In later chapters, I apply insights from this work to design and evaluate a robot

plan execution system that makes human-robot teaming more natural and fluid, as

inspired by human-human teaming.

Section 2.2 presents a body of HHI research that has not previously been applied

to HRI: studies in human teamwork under stress induced by uncertainty, ambiguity,

and time pressure. I discuss the strategies and behaviors that people use to coor-

dinate their actions. For example, effective teams tend to distribute work among

team members on-the-fly and coordinate their actions through frequent updates on

'This chapter is based on the article: Shah, J., Breazeal, C. (2010) An Empirical Analysis of

Team Coordination Behaviors and Action Planning with Application to Human-Robot Teaming,
Human Factors, 52(2), 234-245.



the status of the task. Team members maintain shared mental models of the task

and each-other's capabilities and use these models to consider the consequences of

their actions on others. The best team members also make frequent use of implicit

communications, including verbal and non-verbal cues. Implicit communications are

used to preempt the actions and needs of others by providing information to indirectly

guide teammates actions.

Identifying the behaviors people use to coordinate actions within a team is the

first step toward understanding how a robot may emulate an effective human team-

mate. However, designing a robot teammate to work effectively with people requires

more than mimicking their behavior. Designing a robot that responds appropriately

to a person's communications requires an understanding of how people incorporate

various verbal and non-verbal cues into their action planning. Designing a robot that

communicates appropriately with a human teammate also requires an understand-

ing of how and when people use different types of communications. In Section 2.3, I

present experiments carried out to investigate the use of coordination behaviors in ac-

tion planning. The results of these experiments indicate that people use and respond

differently to explicit commands and implicit communications. Explicit commands

nearly always elicit an immediate response, where implicit communications seem to

imply a flexible time response.

Based on results from these and previous studies in human teamwork, Section

2.4 proposes a set of design requirements for the Chaski Executive developed in this

thesis for human-robot teaming. Chaski, presented in full detail in Chapters 4-6,

enables a robot to work with other agents, including people, to perform a pre-defined

collaborative task. Chaski decides on-the-fly which activities a robot should perform

and when, based on the progress of the task so far, and responds to explicit commands

and implicit communications based on the way human teammates respond to such

communications.



2.2 Prior Art: Teamwork Under Uncertainty, Am-

biguity, and Time Pressure

High performing teams working in areas like military tactics, aviation, and medical

trauma work within domains characterized by uncertainty, ambiguity, and time pres-

sure. Team dynamics have a significant impact on performance within these domains,

producing a strong incentive for teams to understand and apply the communication

and coordinations strategies that improve performance.

In this section, I review the teamwork strategies that are found to foster improved

performance. I also discuss evidence that shared mental models of the task, of capa-

bilities of teammates, and of goals promote effective teamwork strategies, and that

planning and training enhance the quality of shared mental models.

2.2.1 Strategies to Reduce Communication and Coordina-

tion Overhead

In general, teams are able to maintain or improve their performance under stress by

switching from explicit to implicit coordination behaviors (Stout et al., 1996; Salas

et al., 1999; Orasanu, 1990). Explicit coordination behaviors include communica-

tions meant to control teammates actions, and prompts or requests for information.

Implicit coordination behaviors include implicit communications and strategies that

reduce communication and coordination overhead (Entin and Serfaty, 1999). Implicit

communications support the actions and needs of others by providing information

to indirectly guide teammates actions, and are often offered without explicit request

(Entin and Serfaty, 1999; Serfaty et al., 1993; Entin et al., 1994; Volpe et al., 1996;

Orasanu, 1990). Periodic situation assessment has been shown to be an effective

implicit communication strategy (Entin and Serfaty, 1999; Mackenzie et al., 2004).

(Orasanu, 1990) found that effective aircrews included co-pilots who increased the

amount of unsolicited information, and captains who decreased the number of re-

quests for information during high-workload periods.



Other implicit coordination strategies include preplanning, using idle periods ef-

ficiently (Entin et al., 1994), and dynamically redistributing workload among team

members (Entin et al., 1994). For example, planning prior to the task, during low-

workload periods while performing the task, or both, can enhance team effective-

ness (Stout et al., 1999; Orasanu, 1990). Human resource literature, summarized in

(Stevens and Campion, 1994), suggests that as task complexity increases to involve

more interdependence among team members (through ordering, timing, or resource

constraints), the impact of coordination on team output also increases (Cheng, 1983).

2.2.2 Shared Mental Models

Empirical evidence indicates that implicit coordination strategies are promoted by

the use of shared mental models (SMMs) among team members (Volpe et al., 1996;

Blickensderfer et al., 1997). Shared mental models provide team members with a

common understanding of who is responsible for what task and what the information

requirements are. In turn, this allows them to anticipate one another's needs so

that team members can coordinate effectively (Stout et al., 1999). For example,

(Blickensderfer et al., 1997) found teams that shared expectations regarding member

roles and task strategies before a radar-tracking task communicated more efficiently

during the task and achieved higher overall performance outcomes. Also, (Volpe

et al., 1996) found improved team performance outcomes when team members had

been cross-trained to learn the tasks, responsibilities, and informational needs of other

teammates.

Studies of cognitive and neural processes involved in joint action (Sebanz et al.,

2006), also underscore the importance of shared mental models. For example, evi-

dence suggests that people incorporate the resources and capabilities of other team

members into their own action planning. Studies of anticipatory action control in-

dicate that shared representations of tasks allow individuals to extend the temporal

horizon of their action planning, acting in anticipation of others actions rather than

simply responding (Sebanz et al., 2006).

The research community has made progress in developing measures of team shared



cognition and the quality of shared mental models. (Cooke et al., 2000) have applied

techniques to measure teammates task and team-related knowledge both during the

missions and after, or in between, missions. (Langan-Fox et al., 2000) review methods

for eliciting, representing, and analyzing shared mental models. The review summa-

rizes the advantages and disadvantages of each method, and provides recommenda-

tions regarding when to use each method.

2.2.3 Enhancement of Team Performance through Planning

and Training

A great deal of research effort has focused on how to enhance shared mental models

and foster implicit coordination for improved team performance. Planning, including

setting goals, sharing task requirements, and discussing roles and responsibilities, is

one way of developing and enhancing shared mental models (Stout et al., 1996). Nine

planning dimensions are identified as important (summarized in (Stout et al., 1999)):

(a) creating an open environment, (b) setting goals and awareness of consequences

and errors, (c) exchanging preferences and expectations, (d) clarifying roles and in-

formation to be traded, (e) clarifying sequencing and timing, (f) discussing handling

of unexpected events, (g) discussing how high workload affects performance, (h) pre-

preparing information, and (i) self-correcting.

(Stout et al., 1999) and (Orasanu, 1990) found that more effective teams engaged

in more types of planning behaviors than less effective teams. Also, teams that

engaged in more types of planning behaviors were better able to pass information to

each other in advance of explicit requests (Stout et al., 1999). Studies have also shown

team training methods to be successful in promoting team performance. For example,

(Volpe et al., 1996) and (Salas et al., 1999) respectively, found cross-training and crew

resource management (CRM) training to enhance team performance outcomes.



2.3 An Empirical Analysis of Team Coordination

Behaviors and Action Planning

One of the most interesting findings of prior teamwork studies is that team perfor-

mance improves with increased use of implicit communications (Orasanu, 1990; Stout

et al., 1999). In other words, explicitly commanding a teammate to perform an action

seems to be less efficient on average than providing relevant information to indirectly

guide the teammate's actions. I propose a new theoretical explanation for this result,

and offer the first support for this explanation with a set of experiments I carried out

to investigate the use of coordination behaviors in action planning.

2.3.1 Switching Costs as an Explanation for Benefits of Im-

plicit Communication

I hypothesize that explicit communications, which command specific actions, necessi-

tate an immediate response from the team member. I suggest that a team-member's

tendency to immediately respond to the specific commanded action would degrade

team performance in two ways. First, responding to the command may involve a

switching cost, meaning that extra time is required for the recipient of the command

to stop what they are doing, switch their attention to address the command, and

then switch their attention back to resume their work. The temporal cost of switch-

ing between simple tasks is well documented (Rogers and Monsell, 1995; Yeung and

Monsell, 2003).

Second, in multi-agent planning and scheduling domains, often small changes in

the task assignment, scheduling, or ordering of activities can significantly impact plan

quality (Estlin et al., 2005; Pecora and Cesta, 2005; Mehler and Edelkamp, 2004). I

suggest that the reflex to immediately respond to a command does not allow flexibility

to efficiently incorporate the commanded action into the workflow, thereby degrading

human team performance.

In contrast, I hypothesize that implicit communications, meant to indirectly guide



the teammates actions, do not necessarily refer to specific actions and do not necessi-

tate an immediate response. I suggest that this ambiguity in what to do and flexibility

in when to act would allow teammates to incorporate actions more efficiently into their

workflow. Also, there is some evidence that an extended response window attenuates

the time cost of switching between simple tasks (Rogers and Monsell, 1995).

This thesis provides the first support for a switching cost explanation for the ben-

efits of implicit communication. I investigate three hypotheses addressing the use

of coordination behaviors in action planning, and provide empirical evidence that

people use and respond to implicit communications differently than explicit commu-

nications. I leave the quantitative investigation and modeling of the switching cost

to future work. Nonetheless, our empirical findings have the potential for important

applications to the design of effective and natural human-robot teaming (See Section

2.3.7: Application to Human-Robot Teaming).

2.3.2 Experiment Hypotheses

Hypothesis 0 (Validation of Previous Studies)

I aim to replicate results from previous studies demonstrating that teams exhibit

increased use of implicit coordination behaviors as time pressure increases (Serfaty

et al., 1993; Entin and Serfaty, 1999), and that increased use of implicit coordina-

tion behaviors is positively correlated with improved team performance outcomes

(Orasanu, 1990; Stout et al., 1999).

Hypothesis 1

Hypothesis 1 is that teammates exhibit varying speeds of response to communications

depending on communication type, including implicit, explicit, verbal, and non-verbal

cues. Specifically, I expect that nearly all explicit communications will elicit an im-

mediate response. I also expect that implicit communications (including verbal and

non-verbal cues) will elicit a flexible-time response more often that explicit commu-

nications.



Hypothesis 2

Hypothesis 2 is that the specificity of communications, measured by the number

of possible actions each implicit, explicit, verbal or non-verbal cue may refer to,

is dependent on communication type. Specifically, I expect that nearly all explicit

communications will refer to one specific action. I also expect implicit communications

to refer to one specific action less often than explicit communications.

2.3.3 Method

Participants

The participants consisted of 60 subjects (31 men and 29 women) recruited from the

MIT and Greater Boston area. The average age was 25.0 years (SD = 8.4). The

participants were organized into randomly selected teams of two. Each participant

was compensated with a $10 gift certificate.

Experimental Task

I developed a synthetic task to recreate aspects of tasks performed by teams in space

and medical domains. A synthetic task is a research task constructed by systematic

abstraction from a corresponding real-world task (Martin et al., 1998). I developed the

synthetic task by abstracting features from two real-world tasks: (a) two astronauts

working together on an extra-vehicular activity, and (b) a surgical technician and

surgeon working together in the operating room. Key features of these real-world

tasks include: (1) tightly coupled hand-to-hand, face-to-face interaction, (2) physical

actions with (partial) ordering and resource constraints, and (3) a sense of time

pressure.

This study is concerned with investigating the ways human teammates use coordi-

nation behaviors in action planning when performing tasks with these three features.

Thus, the synthetic task must capture these features, but may not have the look

and feel of the described operational environments (Cooke and Shope, 2005). To this

end, I created an experimental task in which teams of two people built pre-defined



structures (presented in Figure 2-1) using an off-the-shelf building block set.

Structure #1 Structure #2

Structure #3 Structure #4

Figure 2-1: Four Structures Used in Experiment Task (t denotes tan blocks)

The composition of the structures was chosen to impose interdependence among

team members through ordering and resource constraints in the following way. One

member of the team was permitted to manipulate only tan blocks. Each tan block

is labeled with a t in Figure 2-1. The other member of the team was permitted to

manipulate only colored blocks. This resource constraint resulted in natural ordering

constraints as the team built structures from the bottom up. Additional constraints

were imposed by providing the teams with too few blocks to build all four structures



simultaneously. The team member manipulating tan blocks was provided with only

four tan cubes, and therefore could not complete Structures 1 and 2 at the same

time. The team member manipulating the colored blocks was provided with only two

short thin rectangular prisms, and therefore could not complete Structures 1 and 2,

or Structures 1 and 4, or Structures 2 and 4 at the same time. These constraints

magnified the importance of tightly coupled coordination to build and dismantle

structures. Without effective coordination, one team member would be forced to

sit idle and degrade the teams performance outcome (measured as time to complete

building all four structures). Each structure was also designed with relatively large

sections of either tan or colored blocks, providing teammates with the opportunity to

dynamically adjust to low workload periods (i.e. prepare to build another structure).

Independent Variable

Thirty teams of two people performed the experimental task. Fifteen teams were

randomly chosen to perform the task under time pressure (Stress Group), while the

other fifteen teams, the Control Group, performed without time pressure. Manipulat-

ing this independent variable allowed us to compare the use of coordination behaviors

in teams performing under time pressure to teams performing without time pressure.

This manipulation also allowed us to investigate whether the use of communications

in action planning was dependent on the context in which the communication is used

(with or without time pressure).

A competitive environment was fostered with the Stress Group to induce a sense

of time pressure. These teams were told their goal was to build the four structures as

quickly as possible and they were given what was described as the best completion

time to-date. Best completion time to-date was in fact based on the pilot study

performance outcomes, and was calculated as approximately 20% lower than the best

completion time recorded in the pilot study. The Stress Group was also provided

with a prominently displayed timer to provide continuous feedback of their progress

in relation to the benchmark. In contrast, Control Group teams were told that they

had as long as they wanted to complete the task and were not provided with the



"best completion time to-date or a timer.

Dependent Measures

Each coordination behavior exhibited by Stress Group and Control Group teams

was classified according to the matrices presented in Tables 2.1 and 2.2 (a) implicit or

explicit, and (b) verbal, non-verbal, or combined (meaning both verbal and non-verbal

together). Coordination behaviors were identified in the audio and video recordings

of the experiment and classified separately by two analysts: the thesis author and an

independent analyst. Agreement between the two analysts was found to be high for

all measures. Coefficient alphas were 0.79 or higher (Cronbach, 1970).

Two dependent measures were collected for each coded coordination behavior

through analysis of audio and video recordings of the experiment. First, the speed

of response to each explicit and implicit communication was measured. Second, the

specificity of each communication was measured.

Table 2.1: Matrix Used to Code Explicit Coordination Behaviors

Explicit Coordination
Behavior

Attempts to control
teammates' actions
Explicit command for

future action (what
to do, with what,
where)

Prompts or requests for
information
Subtasks completed

Subtasks started

Subtasks in progress

Verbal Only

"Place the square block
on top of Structure 4"

"Is structure 1
complete?"

"What structure are
you starting?

"What are you working
on?"

Mode of Communication

Nonverbal
(Gesture) Only

N/A

N/A
N/A
N/A

Verbal Nonverbal

"Put the arch block here"
finger point

"Is this one done?" finger
point

"Which one is that?"
finger point

"is this Structure 2?"
finger point

Note. N/A = not applicable.



Table 2.2: Matrix Used to Code Implicit Coordination Behaviors

Mode of Communication

Nonverbal
(Gesture)

Implicit Coordination Behavior Verbal Only Only Verbal + Nonverbal

Anticipatory offering of info
to teammate
Cue future action with implicit
attention getter

Offer info on possible actions

point
Status updates

Subtasks completed

Subtasks started

Subtasks in progress

Efficient use of idle time'
Dynamic redistribution
of workload
Preplanning

"Here"; "This one";
"Number 3"

"Structure 2 ready
for you"

"Structure 1 complete"

"I'm starting Number 4"

"I'm working
on Structure 2"

Finger po

N/A

N/A

N/A

N/A

N/A; person/agent can efficiently use
communication with team member

int "Here" + finger point

"This is ready for your
blocks" + finger

"This one is done" +
finger point

"I'm starting 4 here" +
finger point

"This is Structure 2 in
progress" + finger
point

idle time without

Note. N/A - not applicable.
"Efficient use of idle time may be facilitated by other implicit and explicit coordination behaviors.



Classification of Explicit Communication

The analysts classified each explicit communication exhibited by each team perform-

ing the experimental task. Analysts used a specifically designed matrix to code ex-

plicit communications. This matrix is presented in Table 2.1, and includes an example

of each type of explicit communication. Explicit communications include (a) com-

mands meant to control the teammates future actions, and (b) prompts or requests

for information. A command was classified as explicit if it included two out of the

following three pieces of information: what action to perform (i.e., put), what is to

be manipulated (i.e., the red block), and where within the workspace the action it to

be performed (i.e., on Structure #2). For the experimental task, analysts categorized

prompts or requests for information according to their subject, regarding: subtasks

completed, subtasks started, or subtasks in progress. Each explicit communication

was further categorized by its mode of communication: verbal only, non-verbal only

(gesture), or combined.

Classification of Implicit Communications and Use of Idle Time

The analysts also cataloged each implicit communication exhibited by each team while

performing the structure-building task. Analysts used a specifically designed matrix

to code implicit communications. This matrix is presented in Table 2.2, and includes

an example of each type of implicit communication. Implicit communications include

(a) anticipatory offering of information to a teammate and (b) status updates, and

are further categorized according to subject and mode of communication. Analysts

also measured (c) efficient use of idle time. Efficient use of idle time was assessed by

recording each team's cumulative idle time while performing the experimental task.

Teams with lower cumulative idle time used low workload periods more efficiently.

We defined idle time of a teammate as the cumulative amount of time the teammate

spent watching the actions of the other, while not holding a building block.



Speed of Response to Communications

Analysts recorded the speed of response for each explicit and implicit communica-

tion, coded as either immediate or not immediate, depending on the number of actions

Teammate B executed before responding to Teammate A's communication. If Team-

mate B responded to the communication with the next action, then the response was

coded as immediate. Otherwise it was coded as not immediate.

Specificity of Communications

Analysts also recorded the specificity of each explicit and implicit communication.

The specificity of each communication was coded as either specific or non-specific,

depending on the number of actions that the communication may have possibly re-

ferred to. Analysts coded specificity taking into consideration the current state of the

task and any verbal and non-verbal cues. For example, if Teammate A exhibited a

finger-point towards Structure #4, the analysts coded specificity by considering all

possible next actions that Teammate B could perform on Structure #4.

2.3.4 Procedure

The experiment was divided into a familiarization phase and a test phase. Upon

arrival, team members were seated at a table across from one another. The table

surface between the teammates provided the shared workspace used to manipulate

the building blocks during both the familiarization and test phases. Prior to the

familiarization phase, the team was provided access to the building blocks. Each

team member was provided pictures of the four structures to be built during the test

phase. The team was also read a description of the experimental task, including an

assignment of which team member would manipulate tan blocks and which would

manipulate colored blocks.

During the familiarization phase, teams were provided access to the building

blocks, and pictures of the four structures to be built during the test phase. The

team members were permitted to talk, strategize, organize their blocks, and practice



building structures. The familiarization phase lasted for fifteen minutes, or else ended

once the team members decided together to terminate the familiarization phase early.

After the familiarization phase ended, teams were instructed that the test phase

would consist of three trials, in each of which the team must build all four structures.

They were instructed that while performing the trials: (1) the order in which they

built the structures was up to them, (2) they may build more than one structure at

a time, (3) once a structure was completed they would get credit for building it and

the structure did not have to remain intact while they built other structures. Teams

were also instructed to manipulate one block in each hand at a time during the trials.

In between trials, the team would be provided up to five minutes to dismantle any

structures and organize their workspace in preparation for the next trial. Also, in

between trials, the team members would be permitted to talk, strategize, and practice

building structures. However, teams would not be permitted to pre-build structures

before the trials.

Teams were not told that they lacked enough blocks to build all four structures

at the same time. Teams were expected to uncover this information as they built a

shared mental model of the task during familiarizing, or else during their first trial.

2.3.5 Results

Previous studies demonstrated that teams exhibit increased use of implicit coordi-

nation behaviors as time pressure increases (Serfaty et al., 1993; Entin and Serfaty,

1999). Also, studies have shown that increased use of implicit coordination behaviors

is positively correlated with improved team performance outcomes (Orasanu, 1990;

Stout et al., 1999). We report findings consistent with the results of these previous

studies. We also test two hypotheses related to action planning and not addressed

in previous studies. We investigate (1) the speed of response and (2) specificity to

different types of communications.



Hypothesis #0: Validation of Previous Studies

Results from the human teamwork experiments validate previous findings that teams

exhibit increased use of implicit coordination behaviors as time pressure increases.

We chose to analyze the third trial in order to minimize the effect of differences

in planning during the familiarization phase. Stress Group teams used an average

of 69% more implicit communications than Control Group teams. Control Group

teams exhibited on average 4.5(+/-0.1) implicit communications in the third trial,

while Stress Group teams exhibited on average 7.6(+/-0.1). A two-tailed, unpaired t-

test with unequal variance found this difference to be statistically significant (df=28,

alpha=0.5, t=3.64, p=0.001).

We also found that decreased idle time (i.e. more efficient use of low-workload

periods) was very strongly correlated with improved team effectiveness in both the

Stress and Control Group teams (r=0.92+/-0.03 and r =0.90+/-0.04, respectively).

Stress Group teams spent on average 33 seconds idle (stdev = 31 s) and took on

average 146 seconds to complete the task (stdev = 64 s). Control Group teams

spend on average 101 seconds idle (stdev = 84 s) and took on average 240 seconds to

complete the task (stdev = 89 s).

The results also validate previous findings that an increase in the use of implicit

communications is correlated with improved team effectiveness. I investigated the

correlation between the percent implicit communications (# implicit / total # of

communications in the trial) and team effectiveness. I used time to completion as

the measure of team effectiveness, and found that in Stress Group teams, the cor-

relation between use of implicit communications and improved team effectiveness

was strong (r=0.78+/-0.06). In Control Group teams the correlation was less strong

(r=0.44+/-0.04). The error measures in the reported statistics indicate the impact

of discrepancies in the two analysts' classifications.



Hypothesis #1: Speed of Response

Analysis shows that 80% of implicit communications were responded to with the next

action. In contrast, 99% of explicit communications were responded to with the next

action. This difference is statistically significant (X2=15.95, df=4, p=0.003). There

was no statistical difference in response for the Stress and Control Groups (compar-

ison of implicit behaviors: X2 =0.02, df=4, p=0.99; comparison of explicit behaviors:

X2=0.03, df=4, p=0.99), and no statistical difference for different modes of commu-

nication: verbal, non-verbal, combined (ranges for pair-wise comparisons: X2=[0.02-

2.68] , df=4 , p=[0.61-0.99]). See Table 2.3 for coordination behavior frequency data.

I discuss the interpretation of these numbers in the next section.

Hypothesis #2: Specificity

For implicit communications, analysis shows that 53% of purely verbal and combined

communications were specific, while 100% of purely non-verbal only implicit behav-

iors were specific. For explicit communications, 90% of purely verbal and combined

explicit communications were specific. These differences were statistically significant

(ranges for pair-wise comparisons: x2 =[14.37-54.58], df=4, p<0.01), and there was no

statistical difference between Stress and Control Groups (ranges for pair-wise compar-

isons: x 2=[ 1.29-2.11], df=4, p=[0.72-0.86]). See Table 2.3 for coordination behavior

frequency data. I discuss the interpretation of these numbers in the next section.

Table 2.3: Frequency Table of Coordination Behaviors

Type of
Coordination Stress Control
Behavior Group Group

Implicit nonverbal 18 8
only

Implicit verbal only 71 17
Implicit combined 65 13
Explicit verbal only 11 commands 8 commands
Explicit combined 53 commands 23 commands



2.3.6 Discussion

The results of these experiments provide valuable insight into the ways humans incor-

porate explicit and implicit communications into their action planning, and is the first

support for a switching cost explanation for the benefits of implicit communication. I

confirmed Hypothesis 1, that the ways in which humans incorporate communications

into their action planning is a function of whether the communication is implicit or

explicit. Additionally, I found that the ways in which teams interpreted and incorpo-

rated both implicit and explicit communications into their action planning remained

the same (for the dimensions analyzed), regardless of whether or not the task was

performed under time pressure.

I found that implicit verbal and combined cues did not often refer to one specific

action, and seemed to offer the teammate flexibility on when to respond to the cue.

In contrast, explicit verbal and combined cues were used to refer to one specific

action, and seemed to demand immediate response from the teammate. Interestingly,

implicit non-verbal cues (gestures) were found to be unique in that they were used

to refer to one specific action, yet seemed to offer the teammate flexibility on when

to respond to the cue. This last result is particularly intriguing, because it suggests

that gesture may be used to direct a specific action potentially without incurring

the full switching cost associated with explicit commands. Although this last finding

is statistically significant, it is based on only twenty-six coded gestures and merits

further investigation.

2.3.7 Application to Human-Robot Teaming

The human teamwork findings presented in this section lay the foundation for trans-

lating research in human teamwork to enable effective human-robot teamwork. In

later chapters, I apply insights from these findings to inform the design of a robot

plan execution system that makes human-robot teaming more fluid and natural.

Following the general approach of applying human-human interaction principles

to human-robot interaction, I believe that an effective robot teammate should: (1)



react to the human's communications in ways that seems natural to the human, and

(2) communicate based on an understanding of how the human teammate will incor-

porate the cues into his/her action planning. Based on insights from the experiments,

I propose that a robot should respond to communications differently, depending on

whether they are implicit, explicit, verbal only, non-verbal only (gesture), or com-

bined. A robot should respond immediately to explicit verbal and combined verbal

and non-verbal cues, but should not necessarily respond immediately to implicit ver-

bal, non-verbal and combined cues. The robot may instead take advantage of the

implied flexible response time to reason about the optimal time to respond to the

cue.

Based on insights from the experiments, I propose that a robot should exhibit

different types of coordination cues based on an understanding of how the teammate

will incorporate the cues into his/her action planning. For example, I propose that a

robot should use explicit cues when refering to one specific action and/or in situations

that demand immediate response from the teammate. Also, when possible, the robot

should promote efficient coordination by using implicit cues that offer the teammate

flexibility on when to respond. For example, the robot may use implicit cues to direct

the teammates attention towards unfinished work or a problem.

Interestingly, I found that the ways teammates use and incorporate coordination

behaviors into their action planning are the same (for the dimensions analyzed),

whether or not they are motivated to coordinate efficiently. I believe this finding has

important implications for human-robot teaming. I hypothesize that a robot reacting

to and exhibiting coordination behaviors based on insights from this study will seem

natural to the human teammate regardless of whether or not they are performing a

task under time pressure.

2.4 Design Requirements for Chaski Executive

In the following chapters I present the design and evaluation of Chaski, a robot

plan execution system that is founded on insights from the human teamwork studies



described in this chapter. In this section, I outline the requirements for Chaski and

link these requirements to the human teamwork study results.

Chaski takes as input a shared plan that serves the same purpose as the shared

mental model within a human team (Stout et al., 1999). The shared plan includes

the activities to be performed, plan deadlines, and information about the capabili-

ties of each team member. Chaski uses the shared plan to choose and schedule the

robot's activities. Chaski makes these decisions considering the capabilities of each

team member, so that the team can successfully complete the task within the plan

deadlines.

Effective teams tend to distribute work among team members on-the-fly (Entin

et al., 1994). Chaski enables a robot to choose which activities to perform and

when online, right before execution, given knowledge of the plan execution so far.

As a result, Chaski is able to adapt to the actions of other team members on-the-

fly the way people do. Chaski also enables a robot to coordinate its actions with

other team members through through frequent updates on the status of the task.

Studies in effective human teamwork indicate that these updates are a very effective

mechanism for coordinating team action (Entin and Serfaty, 1999; Shah and Breazeal,

2010). Chapters 4 and 5 present the algorithms that enable Chaski to perform these

functions.

Human teammates consider the consequences of their actions on others (Stout

et al., 1999), and the most effective teams idle the least (Shah and Breazeal, 2010).

Chaski also enables a robot to reason about the consequences of its actions on human

teammates by favoring execution times that minimize a measure of the humans' idle

time. Finally, Chaski enables a robot to respond to explicit commands and implicit

communications based on how human teammates respond to different types of com-

munications. Specifically, Chaski responds immediately to verbal explicit commands,

and responds to implicit verbal and non-verbal cues in a way that takes advantages

of the implied flexible response time. Chapter 6 extends the Chaski plan execution

algorithms presented in Chapter 4 and 5 to incorporate these coordination behaviors.



Chapter 3

Equal Partners and Leader and

A ssistant Teamwork

My goal is to design a robot that emulates the ability of a good human teammate

to robustly anticipate and adapt to other team members. In this chapter I motivate

the capabilities required for natural and fluid human-robot teaming, as inspired by

human-human teaming. I also provide an intuition for how the Chaski Executive

delivers these functions.

The Chaski Executive is founded on insights that effective teammates dynami-

cally distribute workload, and coordinate their actions through frequent updates on

the status of the task. Chaski also enables a robot to emulate other coordination

behaviors documented in effective human teams, for example enabling a robot to fa-

vor executions that minimize idle time. Chaski's response to explicit commands and

implicit communications is inspired by how human teammates respond to such com-

munications. The goal of this chapter is to provide a qualitative description of the

functions Chaski delivers and to lay the foundation for Chapters 4-6, which formally

define and present solution methods for the plan execution problems addressed.

Chaski enables human-robot collaboration under two different styles of teamwork:

Equal Partners and Leader and Assistant. I characterize Equal Partners teamwork

by a flat and decentralized authority, meaning that each member of the team has

equal authority to make decisions when executing the plan. In contrast, Leader and



Assistant teamwork is characterized by asymmetric authority over decision-making

with a clearly defined leadership role. Interaction between a surgical assistant and

a surgeon is one example. The surgeon has ultimate authority to choose how to

perform the surgical procedure; the surgical assistant must act so as not to constrain

the surgeon's choices or block his/her actions.

I begin by presenting a human-robot teaming scenario similar to the one used to

evaluate Chaski, presented in Chapter 7. Here I introduce the scenario as a thought

exercise in how two humans would collaborate to execute the task as Equal Partners

and as Leader and Assistant, and use this scenario to motivate the functions Chaski

provides. I also discuss how incorporating the types of coordination behaviors used

by highly effective human team members can enhance the fluidity of teamwork for

the Equal Partners and Leader and Assistant styles of interaction.

3.1 Description of Teaming Scenario

This section presents a teamwork scenario similar to the one used to evaluate Chaski

within the Human-Robot Teaming Study (Chapter 7).

The teamwork scenario involves a team of two agents working together to build

three structures, which must be built from the bottom up according to the pictorial

instructions presented in Figure 3-1.

The two teammates work together to assemble the materials and build the struc-

tures. Teammate 1 is the Builder, and is the only person that may connect the blocks

together to form the structures. At the beginning of the task, Teammate 1 is provided

with the base materials for each of the three structures. As the task proceeds, either

Teammate 1 or Teammate 2 may gather the remaining building materials. Team-

mates must perform this task subject to the following constraints: (1) Teammate 1

must begin building a structure within 30 seconds of the plan start. (2) Once Team-

mate 1 begins building a structure, he must finish building the entire structure before

starting another structure. (3) Additionally, while Teammate 1 is in the middle of

building a structure, he may not leave the work bench to gather materials until the
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Figure 3-1: Build Instructions for Teamwork Task. Structures are built from the
bottom up in the order: base, middle, top. Building pieces are connected together
using small black clasps.



structure is complete.

3.2 Common Features of Equal Partners and Leader

& Assistant Teamwork

In this section, I describe the common features of Equal Partners and Leader &

Assistant teamwork. In the next sections, I describe what distinguishes these two

models of teamwork.

In both models, team members fully know the capabilities of their teammates, in

terms of which activities they may perform and approximately how long the activities

take. Also, the team does not negotiate beforehand who will do what and when,

and instead makes decisions on-the-fly as circumstances unfold. Finally, the team

members communicate to provide their team with timely information on the status

of the task and rely on their team members to use this information when deciding

what to do next.

Next, I describe common characteristics of the two models along two dimensions:

decision-making strategy and communicative acts. Decision-making strategy refers

to a team member's policy for deciding what activities to perform and when. Com-

municative acts describe the mechanism teammates use to coordinate their actions

as they carry out the shared task.

3.2.1 Decision-making Strategy

In my models, both teammates use a dynamic decision-making strategy that delays

task assignment and scheduling commitments until execution. In other words, rather

than deciding who will do what and when ahead of time, the teammates make these

decisions on-the-fly. This is consistent with results from human teamwork studies

(presented in Chapter 2) indicating that the most effective teams are able to redis-

tribute tasks on-the-fly in response to changing circumstances.



3.2.2 Communicative Acts

In my models, teammates coordinate their actions through communicative acts.

Specifically, a teammate communicates an "update" whenever he or she begins or

finishes an activity in the plan. Studies of effective human teamwork (described in

Chapter 2) indicate that the frequent offering of updates is correlated with improved

team performance (Shah and Breazeal, 2010).

3.3 Equal Partners Teamwork

In this section, I describe what characterizes a team member's behavior in Equal

Partners teamwork, and then describe a scenario where two people work together as

Equal Partners.

I distinguish Equal Partners from Leader & Assistant teamwork along two di-

mensions: decision-making authority and decision-making strategy. Decision-making

authority categorizes plan decisions as either within a team member's control or con-

trolled exogenously by other teammates. Recall that decision-making strategy refers

to a team member's policy for deciding what activities to perform and when.

3.3.1 Decision-making Authority

Decision-making authority within my Equal Partners model of teamwork is charac-

terized by three properties. (1) Each person has the authority to choose his or her

own actions. (2) Each person has full control of the timing of their actions within

specified bounds. (3) Each team member assumes that their teammates also have full

authority to choose which actions to perform and have full control of the timing of

their actions within specified bounds. As a result, in Equal Partner teamwork each

member of the team has equal authority to make decisions when executing the plan.



3.3.2 Decision-making Strategy

In my model, teammates employ a dynamic decision-making strategy that guarantees

a successful plan execution. This means that teammates make decisions to ensure

there is a way to complete the task that respects the temporal deadlines of the plan,

and respects the model of the agents' capabilities.

3.3.3 Equal Partners Illustrative Example

This section walks through an illustrative example of Equal Partners. Consider two

people work together to perform the building task described in Section 3.1 as Equal

Partners.

Consider that Teammate 1 begins the task by first gathering the blue squares for

Structure 1, then gathering the blue open squares for Structure 3. Next, Teammate

1 begins building the base of structure 1 at time t=28, just under the 30 second

deadline, and then finishes building the base at time t=52. Concurrently, Teammate

2 first gathers the pink squares for Structure 1, then gathers the red squares for

Structure 3, next, the yellow triangles for Structure 2, and then finally the green

rectangles for Structure 1. Teammate 2 finishes gathering the green rectangles at

time t=60. Figure 3-2 presents a timeline for this partial plan execution, and includes

the teammates' communicative acts.

In terms of decision-making authority, both teammates have full authority over

their own choices regarding which activities to perform. The team members also have

control as to how fast or slow they perform each activity, within the specified bounds.

For example, Teammate 1 decides to take 12 seconds to retrieve the blue squares, and

14 seconds to retrieve the blue open squares. In terms of decision-making strategy,

both teammates make task assignment and scheduling decisions that that satisfy the

constraints of the plan. For example, Teammate 1 schedules his activities to ensure

he begins building a structure within the thirty second deadline. Finally, the team

members coordinate their actions by communicating when they begin and finish each

activity.
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Figure 3-2: Plan Execution Timeline for Equal Partners Teamwork

3.4 Leader and Assistant Teamwork

This section describes what characterizes team member behavior in the Leader and

Assistant model, and then describes an example of that behavior.

Leader and Assistant teamwork is distinguished from Equal Partners teamwork

in that team members have an asymmetric authority over decision-making. Inter-

action between a surgical assistant and a surgeon is one example of a Leader and

Assistant style relationship. The surgeon has ultimate authority over how to perform

the surgery, including how to order the phases of the surgery and what instruments

to use. The surgical assistant must act so as not to constrain or block the surgeons

actions.

I more formally characterize Leader and Assistant teamwork along the two dimen-

sions: decision-making authority, and decision-making strategy.

3.4.1 Decision-making Authority

I describe two properties of decision-making authority characterizing Leader and As-

sistant. First, the Leader may claim authority over a subset of the activities in the



plan to ensure that the Assistant does not constrain the Leader's ability to to perform

these activities next. For example, in the Building Scenario, consider that Teammate

1 is the Leader and Teammate 2 is the Assistant. Assume that the Leader has claimed

authority over who performs the activity "Get Blue Squares." This means that the

Assistant may choose to perform this activity only after the Leader makes a decision

to not gather the blue squares.

The second characteristic mirrors Equal Partners in that the Leader and Assistant

both have full control of the timing of his or her actions within specified bounds. The

key difference is that the Leader has the authority to choose his own activity durations,

within the specified bounds, irrespective of the other constraints in the plan. In other

words, the Leader may choose to work fast or slow and does not necessarily make

this decision considering the plan deadlines. As a result, in Leader and Assistant

teamwork, the team members have asymmetric authority to make decisions when

executing the plan.

3.4.2 Decision-making Strategy

There are two differences that distinguish the decision-making of the Leader and

Assistant as compared to Equal Partners. First, the Assistant employs a strategy

that does not constrain the Leader's ability to perform next any of the activities that

the Leader has authority over. Second, the Assistant makes decisions so as not to

constrain the Leader's choice of activity duration. These modeling decisions preserve

the Leader's flexibility to choose and schedule plan activities.

3.4.3 Leader and Assistant Illustrative Example

In this section, I walk through an illustrative example of Leader and Assistant team-

work to ground the description of Leader and Assistant decision-making authority,

decision-making strategy, and communicative acts. Consider two people working to-

gether as Leader and Assistant to perform the building task described in Section 3.1.

Teammate 1, the Leader, claims authority over the "gather materials" activities. This



means the Assistant must not constrain the ability of the Leader to perform these

activities next.

Notice that in the Leader and Assistant plan execution presented in Figure 3-3 that

Teammate 2, the Assistant, sits idle at the beginning of the plan execution. This is

a consequence of the Assistant's decision making strategy. Recall that Teammate 2's

role is to gather materials. However, Teammate 1, the Leader, claims authority over

all the "gather materials" activities. This means that when executing the plan, the

Assistant must not constrain the Leader's ability to perform these activities next. As

a result, the Assistant may not perform each of these activities until the Leader makes

a commitment not to perform the activity himself. Once Teammate 1 begins building

Structure 1, he implicitly makes a commitment to not gather the remaining materials

for Structure 1. This is because once Teammate 1 starts building a structure, he may

not leave the work bench to gather materials until the structure is complete. At this

point, Teammate 2 may choose to gather the remaining materials for Structure 1.
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Figure 3-3: Plan Execution Timeline for Leader and Assistant Teamwork



3.5 Teamwork Enhanced through Effective Coor-

dination Behaviors

As discussed in Chapter 2, effective human teams use a variety of coordination behav-

iors that are correlated with improved team performance outcomes. In this section, I

provide an intuition for how certain coordination behaviors may enhance the fluidity

of a team within the Equal Partners and Leader and Assistant styles of teamwork.

Specifically I discuss three coordination behaviors exhibited in human teams (see

Chapter 2):

(1) reasoning about the consequences of one's own actions on other teammates by

favoring execution sequences that minimize the team's idle time,

(2) responding immediately to verbal explicit commands, and

(3) responding to implicit verbal and non-verbal cues in a way that takes advantage

of the implied flexible response time.

Reasoning about consequences in idle time

Consider how the Equal Partners plan execution presented in Figure 3-2 would change

if the teammates make decisions considered the effect on team idle time. Notice

in Figure 3-2 that Teammate 1 sits idle for nearly ten seconds after finishing the

base of Structure 1 while he waits for Teammate 2 to finish gathering the green

rectangles. Idle time may degrade team performance in a few ways. In studies

of human teamwork, increased idle time is correlated with an increase in time to

complete the task (Shah and Breazeal, 2010). Also, for human team members, idling

may result in boredom and inattention.

Teammate 1 sits idle because the team must gather the blue squares and the green

rectangles before Teammate 1 may finish building the middle section of Structure 1.

However, once Teammate 1 starts building the first structure, he may not leave the

work bench to gather materials until the structure is complete. In other words,

Teammate 2 is not reasoning about the consequences in idle time when he delays



gathering the green rectangles for Structure 1. The effect is that Teammate 1 must

sit idle for nearly ten seconds, degrading the efficiency of the team effort. Studies in

effective human teamwork suggest that Teammate 2 should instead make decisions

considering the effect on idle time.
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Figure 3-4: Plan Execution Timeline for Equal Partners Teamwork with Reasoning
on Idle Time

Figure 3-4 presents a partial plan execution where Teammate 2 is reasoning about

idle time. In this execution, Teammate 2 retrieves the green rectangles before Team-

mate 1 finishes building the base of Structure 1, so that Teammate 1 can proceed

immediately to building the next section.

Reasoning about idle time may also improve team performance outcomes for

Leader and Assistant teamwork. Consider the Leader and Assistant plan execu-

tion presented in Figure 3-3. Notice that Teammate 1, the Leader, sits idle for over

twenty seconds while waiting for Teammate 2 to finish gathering the materials for

the middle of Structure 1. Meanwhile, Teammate 2 first gathers the materials for

the top of Structure 1, and then gathers the materials for the middle of Structure 1.

Teammate 2 may reduce the amount of time Teammate 1 sits idle by instead first

gathering the middle materials for Structure 1.



Responding immediately to explicit commands

Studies also have shown that effective human teams employ many different types

of communication behaviors, in addition to updates, to coordinate action. Explicit

commands, meant to direct or control a teammate's future actions, are one type

of coordination behavior documented in human teams. Interestingly, results from

human teamwork studies presented in Chapter 2 show that increased use of explicit

commands among team members is correlated with an increase in time to perform

the task.

One explanation for this result, discussed in Chapter 2, is that a team-member's

tendency to immediately respond to the specific commanded action involves a switch-

ing cost that degrades team performance. The switching cost refers to the extra time

that may be required for the recipient of the command to stop what the are doing,

switch their attention to address the command, and then switch their attention back

to resume their work.

Even though explicit commands are correlated with inefficiency, they may still be

useful in improving the fluidity of the team if used appropriately. For example, con-

sider the Leader and Assistant plan execution presented in Figure 3-3. Teammate 1,

the Leader, may explicitly command Teammate 2, the Assistant, to retrieve the green

rectangles right at the beginning of plan execution. By explicitly the commanding the

Assistant, the Leader has made a commitment to not retrieve the green rectangles.

The Assistant performs this activity immediately, thereby reducing the amount of

time the Assistant sits idle.

Responding in flexible time to implicit communications

Finally, implicit verbal and non-verbal cues may also be used to improve the fluidity

of the team. A teammate may take advantage of the implied flexible response time

for implicit communications to more efficiently incorporate the cued activity into the

plan execution. Specifically, a teammate may choose when to respond to a cue by

balancing a quick response with impact on idle time. For example, in the Leader and



Assistant plan execution presented in Figure 3-3, consider that just as the Leader

begins building Structure 1, he points to the pink squares and says "Those". The

Assistant interprets this as an implicit cue to retrieve the pinks squares. Since implicit

cues seem to offer the teammate flexibility on when to respond, the Assistant may

delay retrieving the pink squares and instead retrieve the green rectangles so as to

reduce the amount of time the Leader sits idle.

3.6 Chaski: An Executive for Equal Partners and

Leader and Assistant Human-Robot Teaming

In the previous sections, I describe the features of Equal Partners and Leader and

Assistant teamwork, and provide illustrative examples for how two people work to-

gether under these styles of teamwork. In the following chapters, I introduce Chaski,

a capability that enables a robot to work with other agents, including people, under

these two styles of teamwork.

In Chapter 4, I present a capability that enables a robot to work with other

agents, including people, to perform a pre-defined collaborative task under an Equal

Partners style of teamwork. First, I formulate the problem of Equal Partners plan

execution. I then discuss different approaches for achieving the desired behavior,

and present algorithms for collaboratively executing a plan according to the Equal

Partners model.

In Chapter 5, I present the problem formulation for Leader and Assistant plan

execution and describe methods for executing multi-agent temporal plans under the

Leader and Assistant model of teamwork. I develop the Leader and Assistant model

as a straightforward extension to the Equal Partners model presented in Chapter 4

and show that methods for executing multi-agent temporal plans under the Equal

Partners model generalize naturally to the Leader and Assistant model.

Chapter 6 augments Equal Partners and Leader and Assistant plan execution with

the coordination behaviors described in Section 3.4. Specifically, I present extensions



to the Chaski execution algorithms that enable a robot teammate to reason about

the consequences of its actions on human teammates by favoring execution sequences

that minimize a measure of the humans' idle time. I also provide mechanisms that

further extend the execution algorithms to enable a robot teammate to (1) respond

immediately to verbal explicit commands, and (2) respond to implicit verbal and

non-verbal cues in a way that takes advantage of the implied flexible response time.



Chapter 4

Fast Distributed Multi-agent Plan

Execution for Equal Partners

Teamwork

4.1 Introduction

The Chaski Executive enables a human and robot to collaboratively execute a shared

plan under the styles of teamwork, Equal Partners and Leader and Asisstant, de-

scribed in Chapter 3. In this chapter I present a model for Equal Partners teamwork,

and algorithms for collaboratively executing a plan according to this model.

In Section 4.3, I formulate the problem of collaboratively executing a plan as Equal

Partners. In Section 4.4, I discuss the challenges that this execution problem poses,

and present an overview of the Chaski algorithms for Equal Partners teamwork. In

Sections 4.5 - 4.7, I describe the algorithms for the proposed solution method in full

detail, and in Section 4.8 I present their empirical evaluation.

4.2 Illustrative Example: The Ball Scenario

In this section I describe the Ball Scenario, where two robots work together at Equal

Partners to manipulate balls in their workspace according to a shared task plan.



This scenario is used throughout the chapter to illustrate the Equal Partners problem

formulation, as well as the methods for executing multi-agent temporal plans under

this model of teamwork.

Figure 4-1 shows the two robots, Left Robot and Right Robot, and their workspace

and Figure 4-2 presents the Ball Scenario Task Plan. The robots must coordinate

to remove one ball from each of the four numbered locations in their communal

workspace. Each robot also has one striped ball located in its own private workspace

and must pass the striped ball to the other robot using a hand-to-hand exchange. The

scenario includes temporal constraints specifying that the task must be completed

within 250 seconds. The scenario also includes occupancy constraints specifying that

each agent may perform only one activity at a time.

Figure 4-1: The Ball Scenario

This scenario is interesting because the robots must cooperate closely on some

parts of the plan and may work independently on other parts. They must work to-

gether to perform the hand-to-hand exchange activities, but may independently act

to remove balls from the center locations. Also, some activities are not a-priori al-

located to a particular robot. The "Remove one ball from Loc.X" activities may be

performed by either robot. Finally, the robots have heterogeneous temporal capa-

bilities because the Left Robot has a shorter reach distances to Locations 1 and 2

than the Right Robot. As a result, removing a ball from either Loc.1 or Loc.2 takes

the Left Robot 32-39 seconds and takes the Right Robot 42-55 seconds. Table 4.1



Remove one ball from Loc. -

Remove one bal from Loc 2

Remnove one Dal" from Loc. 3

Remove one ball from Loc. 4 --

Swap back str ped bal
- Rght Robot picks up and
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- Left Robot reaches out to
received ball.
* Left Robot pu ts DaP away.

Swap red striped bal
- Left Robot picks up and offers
ball. insh= 2 5 0

Right Rooot reaches out to
received ball.

Robot puts ball away.

Figure 4-2: The Ball Scenario Task Plan

indicates for each activity, the agents that are capable of performing the activity and

how long each agent takes to perform the activity.

In working together as Equal Partners, both robots have equal authority to decide

which activities to perform and when. The robots also decide how fast or slow they

perform each activity. For example, the Left Robot may take 32-39 seconds to perform

the activity "Remove one ball from Loc. 1," depending on how fast or slow it chooses

to work.

4.3 Problem Statement: Equal Partners Plan Ex-

ecution

The Chaski Executive takes as input either an Equal Partners plan or a Leader and

Assistant plan. In this chapter, I formulate the Equal Partners model of teamwork as

a Multi-agent Disjunctive Temporal Constraint Network (MA-DTCN), also referred



Table 4.1: Agent Capabilities for Ball Scenario

Agent Activity Durations
Left Robot Right Robot

Remove one ball from loc. 1 [32,39] [42,55]
Remove one ball from loc. 2 [32,39] [42,55]
Remove one ball from loc. 3 [42,55] [32,39]
Remove one ball from loc. 4 [42,55] [32,39]

Pick up red-striped ball [38,65] n/a
Reach out to receive red-striped ball n/a [18,38]

Put away red-striped ball n/a [42,55]
Pick up black-striped ball n/a [42,55]

Reach out to receive black-striped ball [18,38] n/a
Put away black-striped ball [42,55] n/a

to as an Equal Partners plan. An Equal Partners plan specifies the activities to be

performed, time bounds on how long each agent takes to perform each activity, and

temporal constraints among the plan activities. An Equal Partners plan may also

include agent occupancy constraints specifying a set of mutually exclusive activities

that an agent cannot execute simultaneously.

The output of the system is a dynamic decision-making strategy, if one exists, that

ensures the team members work together to assign, schedule and execute activities

within the plan deadlines. A dynamic strategy enables an agent to make each task

assignment and scheduling decision online, right before execution, given knowledge of

the execution sequence thus far. For example, in the Ball Scenario, the Right Robot

may dynamically decide whether to retrieve a ball from Loc. 1 or Loc. 3, depending

on whether the Left Robot is currently retrieving a ball from Loc. 1 or Loc. 3.

4.3.1 Input

Chaski takes as input an Equal Partners plan in the form of a Multi-agent Disjunctive

Temporal Constraint Network (MA-DTCN). The MA-DTCN includes the activities

to be performed, ordering constraints among the activities, and plan deadlines. The

plan also includes information about the capabilities of the team members, including



the activities that each agent may perform, and bounds on the amount of time each

agent takes to perform each activity.

An Equal Partners plan encodes activities in terms of a set of variables X1 , ... ,

representing timepoints with real-valued domains. Each activity is composed of a

begin timepoint and end timepoint. Figure 4-3 presents the begin timepoint b and

end timepoint c for the activity "Remove one ball from Loc. 1".

.Remove one bal from Loc. 1 J

Remove one ball from Loc. 1

OR

L,132,391V R:42,55]

Figure 4-3: Plan Activity "Remove one ball from Loc. 1" Reformulated to Timepoint
Representation

Activity durations and other temporal constraints relating timepoints (e.g. "The

entire plan must be completed within 250 seconds.") are formulated as binary con-

straints composed of simple intervals of the form:

(Xk - Xi) E [aik, bik]. (4.1)

An Equal Partners plan may also encode flexibility in which agent performs each

activity, and the corresponding choice in activity duration, by specifying an agent

assignment to each interval in a disjunctive binary constraint as follows:

(Xk - Xi) E P(agents : [aik, bik]I[aik k bik]j), (4.2)



In Figure 4-3, the disjunctive constraint L:[32,39] V R:[42,55] between events "b"

and "c" specifies that the Left Robot "L" takes 32-39s to perform the activity, while

the Right Robot "R" takes 42-55s.

Finally, the Equal Partners plan allows agent occupancy constraints, encoded as

a set S of mutually exclusive intervals that cannot overlap in time.

Figure 4-4 presents the full plan represented as a Multi-Agent Disjunctive Tem-

poral Constraint Network.

Remove one ball from Loc. 1

finish

Agent Constraints: Each agent may
only perform ore activity at a time.

Figure 4-4: Multi-robot Plan Represented as a Multi-agent Disjunctive Temporal
Constraint Network



4.3.2 Output

The output of Chaski is a dynamic and least-commitment policy, if one exists, for mak-

ing task assignment and scheduling decisions. The policy ensures the team members

work together to assign, schedule, and execute activities within the plan deadlines.

A policy is dynamic if there exists an online strategy for making task assignments

and scheduling decisions, given knowledge of all choices thus far, that will result

in a full feasible schedule of activities. A policy is least-committment if each agent

delays decisions until right before the commitment is made. In this case, agents delay

deciding which activities they will perform and the timing of the activities.

The execution strategy generated by Chaski under the Equal Partners model is

correct in that any complete task assignment and execution sequence generated by

the dispatcher also satisfies the constraints of the Equal Partners plan. The execution

strategy is also deadlock-free, in that any partial execution generated by the dispacther

can be extended to a complete execution that satisfies the constraints of the Equal

Partners plan.

4.4 Supporting Work: Modeling and Execution of

Multi-agent Temporal Plans

In the previous section, I introduced the Multi-agent Disjunctive Temporal Constraint

Network to model an Equal Partners plan, and described a capability that enables

an agent to execute this plan using a dynamic and least-commitment strategy. Both

of these concepts are found in prior art on multi-agent temporal plans. This section

reviews this supporting work and discusses the extensions necessary to model and

execute an Equal Partners plan.

4.4.1 Flexible Time Representations for Multi-agent Plans

Many recent multi-agent systems perform dynamic plan execution by exploiting a

flexible-time representation of the plan to absorb temporal disturbances online (Lemai



and Ingrand, 2004; Smith et al., 2006). These systems employ a planning process that

performs task assignment to allocate activities among the agents, and synchroniza-

tion to introduce ordering constraints among activities so that concurrent execution

remains logically valid (Stuart, 1985; Kabanza, 1995; Brenner, 2003). Consider the

following task allocation in the Ball Scenario: the Left Robot performs both the ac-

tivities: (1) Remove one ball from Loc.1, and (2) Remove one ball from Loc.2. Since

the robot may only perform one activity at at time, any synchronization of this task

allocation would introduce ordering constraints to exclude concurrent execution of

these two activities.

The process of task assignment and synchronization generates temporally flex-

ible plans described as Simple Temporal Problems (STPs) (Dechter, 1991). An

STP (Dechter, 1991) models qualitative and metric constraints as a set of variables

X1, ..., Xn, representing timepoints with real-valued domains, and unary and binary

constraints. Binary constraints are of the form:

(Xk - Xi) E [aik, bik] (4-3)

A solution to an STP is an assignment to each timepoint such that all constraints

are satisfied. An STP is said to be consistent if at least one solution exists. Checking

an STP for consistency can be cast as an all-pairs shortest path problem. The STP is

consistent iff there are no negative cycles in the all-pairs distance graph. This check

can be performed in O(V2logV + VE) time (Cormen et al., 2001).

Although STPs have proven useful for important applications, their applicability

to many problems is limited by their lack of disjunctive constraints. For example, the

STP model cannot represent choice in interval between two events, a necessary feature

to encode the flexibility in task assignment described in a multi-agent temporal plan.

A Disjunctive Temporal Constraint Network, otherwise known as a Temporal Con-

straint Satisfaction Problem (TCSP), extends an STP by allowing multiple intervals

in constraints, given by the power set of all intervals:



(Xk - Xi) G P( [aik,binkI[aik < bi (.

A TCSP can be semantically viewed as a collection of component STPs, where

each component STP is defined by selecting one STP constraint (i.e. one interval)

from each TCSP constraint. Checking the consistency of the TCSP involves search-

ing for a consistent component STP (Dechter, 1991). This approach is the basis of

most modern approaches for solving temporal problems with disjunctive constraints

(Stergiou and Koubarakis, 2000; Oddi and Cesta, 2000; Tsamardinos and Pollack,

2003).

The TCSP has a number of features that are useful for encoding the Equal Partners

model of teamwork. First, the TCSP is able to encode choice in intervals for activity

duration. For example, the TCSP may encode a choice in activity duration as a

disjunct of simple intervals constraining an activity begin and end event. Second,

within a TCSP model, the executive has full control over choice in intervals as well

as the timing of an event within the specified interval. This is analogous to an

agent's decision-making authority within Equal Partners teamwork; the agent has

the authority to choose its own activities and activity durations within the specified

bounds.

The TCSP, however, lacks the following feature necessary to represent an Equal

Partners plan. The TCSP does not encode the relationship between the discrete

choice in agent assignment and the corresponding choice in interval for activity dura-

tion. For example, the TCSP cannot encode that agent a takes between 7-9 seconds

to perform an activity, and agent b takes between 11-15 seconds. Without this ex-

plicit representation of agent assignment, the TCSP cannot encode agent occupancy

constraints. For example, the TCSP cannot encode the constraint that each agent

may perform only one activity at a time.

(4.4)



4.4.2 Dynamic Execution of Temporal Plans

The previous section discussed simple and disjunctive models for temporally flexible

plans. This section reviews prior work on dynamic scheduling of simple and disjunc-

tive temporal problems (Muscettola et al., 1998a; Tsamardinos and Pollack, 2001).

These methods are the basis for the Equal Partners and Leader and Assistant plan

execution methods presented in this thesis.

Dynamic scheduling of a plan allows the executive to make scheduling decisions

on-the-fly without introducing unnecessary conservatism. For a dynamic scheduling

strategy to be useful in practice, an executive must perform online computations fast

to preserve the ability to adapt and recover from disturbances in a timely fashion.

Dispatchable execution is one way to increase the efficiency of dynamic plan execution.

Dispatchable execution introduces a compiled form and a dispatcher that operates on

this compiled form. First, off-line, the the plan to be executed is compiled to a

dispatchable form. This form encodes a fast dynamic scheduling strategy such that

for each event XA, it is possible to arbitrarily pick a time t within XA's timebounds

and find feasible execution times in the future for all other events through a one-

step propagation of timing information. A dispatcher then schedules events using

this dispatchable form online. Next, I review prior art in dispatchable execution for

simple and disjunctive temporal problems.

Dispatchable Execution of Plans Modeled as Simple Temporal Problems

The dispatchable form of a consistent STP is compiled by first translating the STP

into an associated distance graph (Dechter, 1991). Each constraint of the STP, con-

taining both lower and upper bounds, is converted to a pair of edges in the distance

graph. One edge in the forward direction is labeled with the value of the upper time

bound, and one edge in the reverse direction is labeled with the negative of the lower

time bound. Figure 4-5 presents (a) an example STP, and (b) the distance graph of

the STP.

The all-pairs shortest path (APSP) graph of a consistent STP distance graph
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Figure 4-5: (a) Example STP, (b) Distance Graph, (c) All-Pairs-Shortest-Path Graph

is a dispatchable form of the STP. The APSP form of the problem represents the

tightest bound on the temporal distance between any two events. The APSP form

is dispatchable, meaning that one-step propagation makes explicit all constraints on

neighboring events. Figure 4-5(c) presents the APSP form for the example STP.

The constraints in the dispatchable form may then be simplified by removing all

redundant constraints that may be inferred through two-step propagation can infer

(Muscettola et al., 1998a). The resulting network is a minimal dispatchable network,

which is the tightest representation of the STP constraints that still contains all

solutions present in the original network. This compact form significantly reduces

the amount of computation at execution to propagate timing information.

Figure 4-6 below illustrates step-by-step the dynamic scheduling of a dispatchable

STP. Figure 4-6(a) shows a snapshot where event A has just been executed at time

t = 0 and the execution windows for neighboring events have just been updated

based on this commitment. The execution window (0, 10) for event C is computed

as follows. Event C is constrained to execute between zero and ten seconds after the

execution of event A, and event A was executed at t = 0. Therefore, the event C

must execute within the window (0 + 0, 0 + 10) = (0, 10).

Figure 4-6(b) shows a snapshot were event C has just been executed at t = 1

and the execution windows for neighboring events have been updated based on this

commitment. Event C may be executed at this time because it is both live and

enabled. An event e is live if the current time is within the event e's feasible execution

window. In the example, event C is live at t = 1 since this time falls within the



execution window (0,10). An event e is enabled if all other events constraint to execute

before e have been executed. In this case, event A is the only event constrained to

execute before E, and A has been executed previously at t = 0. Dispatch continues,

as illustrated in Figure 4-6(c,d), until all events have been executed.

[2,11] [2,11] [2,111 [2,111

(0,10) (2,2) t=2 t=2
BB B B

C CC
(0.10) W= W= t=1

(a) (b) (c) (d)

Figure 4-6: Dispatch of a Simple Temporal Problem

Dispatchable Execution of STPs With Incremental Update

During plan execution, recovering from a disturbance may involve replanning. Modi-

fications to the plan may involve adding, removing, or otherwise changing constraints

in the STP. The STP must then be quickly compiled back to a dispatchable form be-

fore scheduling may proceed. (Stedl, 2004) introduced an incremental algorithm for

maintaining dispatchability of STPs in response to plan changes. For example, when

a constraint is tightened, the following Dynamic Back-Propagation (DBP) rules are

used to propagate the logical consequences of this constraint change throughout the

network. I now briefly review the DBP rules, since they are the basis for the new in-

cremental algorithm for compiling an Equal Partners plan to a compact dispatchable

form.

Consider the dispatchable STP distance graph presented Figure 4-7(a). Event B

must be executed two to five seconds after event A. Event C must be executed ten

to thirteen seconds after event B. Also, event C must be executed exactly fifteen

seconds after event A. Next, imagine that the constraint relating events B and C



is tightened from [10,13] to [11,13], as shown in Figure 4-7(b). The STP in Figure

4-7(b) is no longer dispatchable for the following reason. If event B is executed five

seconds after A, then there is no execution time for C that satisfies both constraints

AC[15,15] and BC[11, 13]. The DBP rules are applied to recompile the STP back

to a dispatchable form by tightening constraint AB from [2,5] to [2,4], as shown in

Figure 4-7(c). The STP in Figure 4-7(c) is dispatchable in that for each event XA,

it is possible to arbitrarily pick a time t within XA's timebounds and find feasible

execution times in the future for all other events through a one-step propagation of

timing information.

15 15 15

3 13 4 13
A 2 B 10 A -2 -1A -2 B 1

-15 -15 4 2-15

(a) (b) (c)

Figure 4-7: Example Application of DBP: (a) distance graph of dispatchable STP,
(b) tightening of edge CB to -11, (c) application of DBP(ii) tightens edge AB to 4.

Table 4.2 presents a graphical description of the DBP rules, and the accompanying

proof presents the derivation of the rules.

Lemma (STP-DBP): Given a dispatchable STP with associated distance graph

G: (i) Consider any tightening (or addition) of an edge AB, such that d(AB) = y,

where y > 0 and A # B. For all edges BC such that d(BC) = u < 0, it follows that

d(AC) = y + u. (ii) Consider any tightening (or addition) of an edge BA such that

d(BA) = x, where x < 0 and A # B; for all edges CB such that d(CB) = v, where

v > 0, it follows that d(CA) = x + v.

Proof: (i) During execution, a positive edge AB propagates an upper bound

to B of ubB = T(A) + d(AB). A non-positive edge BC propagates a lower bound

to B of lbB = T(C) - d(BC). At execution time, changing AB will be consistent if

ubB > lbB for any C, or T(A)+d(AB) > T(C)-d(BC), which implies T(C>-T(A) <



Table 4.2: Graphical Description of DBP Rules

Graphical
Description Preconditions Postconditions

(1) AB is Create new
DBP() changed to a (+) edge AC if none

y+u u edge, exists or tighten
(2) BC is a (-) if y+u < existing

C edge edge.

x (1) BA is Create new
( changed to a (-) edge CA if none

DBP(ii) edge, exists or tighten
X+v v (2) CB is a (+) if x+v < existing

C edge. edge.
- V

d(AB) +d(BC). Adding an edge AC of d(AB) +d(BC) to G encodes this constraint.

Similar reasoning applies for case (ii) when a negative edge changes.

Recursively applying rules (i) and (ii), when an edge is tightened in a dispatchable

distance graph, will either expose an inconsistency or result in a dispatchable graph.

The key feature of DBP is its increased efficiency because it only requires a subset

of the edges to be checked to ensure that the modified constraint is consistent, rather

than all edges when the all-pairs graph is computed. In this chapter I generalize

upon the DBP rules to incrementally compile an Equal Partners plan to a compact

dispatchable form.

Dispatchable Execution of Disjunctive Temporal Problems

I briefly summarize prior art in dynamic scheduling of disjunctive temporal prob-

lems, including Temporal Constraint Satisfaction Problems (TCSPs), and discuss the

shortcoming of this prior work as motivation for the approach introduced in this

chapter.

Previous work has developed a dispatching executive for disjunctive temporal

problems (Tsamardinos and Pollack, 2001). In this work, a disjunctive temporal



problem is viewed as a collection of component STPs, where each component STP is

defined by selecting one STP constraint (i.e. one interval) from each disjunctive con-

straint. The (Tsamardinos and Pollack, 2001) method first requires enumerating and

compiling all consistent component STPs to dispatchable form. The dispatcher then

schedules and executes events in the problem on-the-fly while guaranteeing that the

schedule satisfies at least one consistent component STP. The executive accomplishes

this by updating the set of component STPs in parallel as scheduling decisions are

made, and computing deadline windows for events to ensure that scheduling decisions

will not simultaneously eliminate the STP solution set.

The problem with this approach is that the amount of work to compile and dis-

patch disjunctive temporal problems grows exponentially with the number of disjuncts

in the worst case, and becomes prohibitive for moderately-sized problems composed of

thousands of solution STPs. For problems of this size, repeated online computations

and propagation of timing information in multiple STPs contribute to execution la-

tencies up to tens of seconds, which endangers a system's ability to adapt and recover

from disturbances. In the next sections I propose an efficient approach that addresses

these shortcomings for the special case of compiling and dynamically executing an

Equal Partners plan.

4.5 Equal Partners Plan Execution In a Nutshell

In Section 4.2 I modeled a plan to be executed under Equal Partners teamwork

as a Multi-agent Disjunctive Temporal Constraint Network (MA-DTCN). This is

a straightforward generalization of the Temporal Constraint Satisfaction Problem

(TCSP). Execution of an MA-DTCN, however, is not a straightforward augmen-

tation of the (Tsamardinos and Pollack, 2001) execution method. Unfortunately, the

amount of work needed to execute disjunctive temporal problems with the Tsamardi-

nos method grows exponentially with the number of disjuncts in the worst case and

becomes prohibitive for moderately-sized problems, composed of thousands of flexi-

ble scheduling policies. For problems of this size, online computation contributes an



execution latency of up to tens of seconds, which may endanger an agent's ability to

adapt and recover from disturbances in a timely fashion.

In this section, I provide an intuition for how Chaski performs fast, distributed

multi-agent plan execution within the Equal Partners model of teamwork. As with

previous approaches to dynamic execution, the methods I introduce for compiling

and dispatching Equal Partners plans rely on first compiling the plan, off-line, into

to a form that can be executed efficiently. The compiled form of the plan makes

explicit the consequences for each agents' decisions. Agents then use this compiled

plan to make decisions online quickly. Each agent has a dispatcher that dynami-

cally assigns, schedules and executes activities on-the-fly, while guaranteeing that the

schedule satisfies the constraints of the plan.

I use an abridged version of the Ball Scenario to introduce the key ideas behind

my method. The abridged Equal Partners plan, presented in Figure 4-8, includes

four of the activities in the original plan presented in Figure 4-4, and a new temporal

constraint that all four activities must be completed within 110 seconds. Activity

bc represents the activity "Remove one ball from Loc. 1", activity jk represents

the activity "Pick up red-striped ball," activity 1m represents activity "Reach out to

receive red-striped ball", and activity no represents activity "Put away red-striped

ball." The abridged Ball Scenario allows the reader to focus on the interaction of

only four plan activities and is therefore a useful example for providing intuitive,

step-by-step explanations of the compilation and dispatch process.

Compiling an Equal Partners Plan

Compiling an Equal Partners plan to executable form requires separately compil-

ing each consistent component solution to dispatchable form. A component solution

to a plan is defined by a full task assignment and synchronization. A task assign-

ment assigns one agent to perform each activity and then selects the corresponding

STP constraints (i.e. one interval) from each disjunctive constraint. Consider the

following full task assignment for the abridged Ball Scenario: Left Robot performs

activities bc and jk and the Right Robot performs activities Im and no. These task
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Figure 4-8: Equal Partners plan for the abridged Ball Scenario

assignments correspond to the following STP constraints: bc : [32, 29], jk : [38, 65],

lm : [18,38], and no : [42, 55]. A synchronization is specified by imposing a set of

ordering constraints to ensure mutually exclusive intervals do not occur simultane-

ously. The abridged Ball Scenario specifies that each robot may perform only one

activity at a time. Figure 4-9 presents each of the consistent component solutions for

the abridged Ball Scenario, compiled to dispatchable form.

Rather than represent each component solution uniquely, I encode the solution

set in a compact representation, using a Base Solution that captures the underlying

structure of the problem, and a Set of Differences that encodes the dispatchable

component solutions as perturbations of the Base Solution. Figure 4-10 presents the

compact encoding for the Equal Partners plan in Figure 4-8.

The Base Solution is a relaxed form of the Equal Partners plan, compiled to dis-

patchable form, and is computed as the minimal dispatchable form for the relaxation

where each disjunctive constraint is relaxed to a unary interval constraint. For exam-

ple, consider the activity bc in the abridged Ball Scenario plan presented in Figure

5-4. The plan encodes a disjunct, or choice, for the activity bc: either the Left Robot

performs the activity within [32,39], or the Right robot performs the activity within
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Figure 4-9: Component STPs for abridged multi-robot coordination scenario. (a)
Task Assignment: Left Robot performs the activity composed of timepoints b, c;
Synchronization: impose ordering k -+ b (b) Task Assignment: Right Robot performs
the activity composed of timepoints b, c; Synchronization: impose ordering c -+ I
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Figure 4-10: Compact Dispatchable Form for the abridged ball scenario



[42,55]. The Base Solution represents this activity as a relaxation where the choice in

activity duration is relaxed to a unary interval [32,55], meaning activity bc will take

somewhere between [32,55] seconds to perform (depending on whether the Left Robot

or Right Robot performs the activity). The key feature of the relaxed plan is that it

is guaranteed to contain all successful executions of every component solution of the

Equal Partners plan (See the Proof of Completeness in Section 4.6.4). Intuitively, the

Base Solution encodes information about the plan structure and constraints (activities

to be performed, ordering and temporal constraints among activities) that is common

to many of the plan's feasible component solutions. The Base Solution contributes to

the compactness of the compiled form because this information is represented once,

rather than repeatedly in the component solution set.

The Set of Differences encodes the constraint changes for small incremental per-

turbations off of the Base Solution. Specifically, the Set of Differences encodes the

constraint changes with respect to the Base Solution that are necessary to repre-

sent each dispatchable component solution, defined by a full task assignment and

synchronization. Next I describe with examples how the constraint changes in the

Set of Differences are applied to compute the dispatchable form for each component

solution.

Notice that the Set of Differences in Figure 4-10 records one constraint change

with respect to the Base Solution for the task assignment where the Right Robot

performs activity bc. The constraint change is: ab[, 68]. Any dispatchable solution for

this task assignment can be composed, in part, by applying this constraint change to

the Base Solution. Intuitively, this constraint change indicates that the Right Robot

must start activity bc within 68 seconds of the plan start. This ensures that the Right

Robot completes activty bc within the plan deadline of 110 seconds.

Next, I describe how the synchronization constraint changes are applied to the

Base Solution to compose a dispatchable solution. Consider synchronizing the plan

such that the Right Robot performs activity bc, then activity Im, then activity no.

This requires introducing a synchronization constraint cl specifying that the activity

bc finishes before activity 1m starts. The Set of Differences in Figure 4-10 records four



additional constraint changes for this task assignment and synchronization: jc[, 47],

ac[, 50], ab[, 8] and jb[, 5]. Intuitively, these constraint changes indicate that the Right

Robot must start activity bc within 8 seconds of the plan start and finish activity bc

within 50 seconds of the plan start, to ensure the robot can perform the activities

in sequence and still complete the plan within the deadline of 110 seconds. The

dispatchable component solution, resulting from intersecting the Base Solution with

the task assignment and synchronization constraint changes, yields the same set of

execution possibilities as the corresponding component solution in Figure 4-9 (See

Proof of Completeness in Section 4.6.4).

The compact representation, composed of the Base Solution and Set of Differences

significantly reduces the number of constraints necessary to represent the solution

set, as compared to explicitly enumerating each dispatchable component solution.

For example, 26 constraints are necessary to encode the compact, compiled plan

presented in Figure 4-10. In comparison, 38 constraints are necessary to encode each

component solution explicitly, as presented in Figure 4-9. In this simple example, the

compact compiled form reduces by one-third the number of constraints necessary to

encode the solution set. The empirical results presented in Section 4.8 indicate that

for larger problems, the compact compiled form consistently reduces space to encode

the solution set by up to one order of magnitude.

One of the key innovations of this work is in computing the set of differences

to compactly encode the Equal Partners plan. The set of differences is computed

by applying a set of update rules to infer changes in consequences incrementally.

The rules needed to compute the set of differences are exactly the Dynamic Back-

Propagation (DBP) incremental update rules. In this work, I apply these rules to

systematically investigate and record the logical consequences that a particular simple

interval constraint implies on other constraints. Section 4.6 further elaborates how

the DBP rules are applied to compile a dispatchable Equal Partners plan.



Dispatching an Equal Partners Plan

The purpose of a dispatcher is to ensure that all plan constraints are satisfied while

assigning and scheduling plan activities. Each agent maintains its own dispatcher,

and the agents' dispatchers communicate their assignment and scheduling decisions

to coordinate the plan execution. As an illustrative example, consider the plan for

the abridged Ball Scenario presented in Figure 4-8. Next I walk through how the

Right Robot's dispatcher makes assignment and scheduling decisions.

The dispatcher works by searching through each feasible task assignment and

synchronization to assemble a list of enabled activity events, which are events whose

predecessor events have all been executed. Imagine that the Right Robot executes

event a in the abridged Ball Plan at t = 0. This means that the Right Robot has

initiated the start of the plan. At this point, event b is enabled for the Right Robot.

Specifically, event b is enabled in the component solution where the Right Robot

performs activity bc. Event b is enabled in this solution because event a is the only

event constrained to execute before the activity bc. This means that there exists a

feasible plan execution where the Right Robot performs activity bc next.

For each enabled event, the dispatcher iterates through the feasible task assign-

ments and synchronizations to assemble the set of feasible time windows for executing

the event. For example, the Right Robot must schedule event b, the start time of

activity bc, within 8 seconds of the plan start.

If the current time is within one of these feasible time windows, then the dispatcher

claims the activity, meaning it communicates the intention to schedule the activity

event immediately. (In the case more than one agent claims the activity, the agents

apply a tie-breaking criteria to assign the activity.) The dispatcher then schedules

the event, communicates this scheduling decision to other agents, and updates the

plan based on this commitment. All the while, the dispatcher is also checking for

communications indicating that other agents have claimed and scheduled activity

events.

In Section 4.6, I formally present the Incremental Compilation Algorithm for
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computing the compact compiled form of a Equal Partners plan and in Section 4.7,

I present an algorithm that correctly dispatches this compact encoding.

4.6 Incremental Compilation Algorithm for Multi-

agent Temporal Plans

In this section I present an Incremental Compilation Algorithm (ICA-MAP) for com-

piling an MA-DTCN to a compact dispatchable form: This compact representation is

compiled by incrementally computing constraint modifications for task assignments

and synchronizations, and then aggregating common information among synchroniza-

tions. The key idea behind ICA-MAP is to apply the Dynamic Back-Propagation

(DBP) rules, described in (Stedl, 2004), to systematically investigate and record the

logical consequences that a particular task allocation and synchronization imply for

future scheduling policies. I show that this compact representation drastically re-

duces the number of constraints necessary to encode the feasible scheduling policies

and supports fast dynamic execution.

4.6.1 Top-level Pseudo-code for ICA-MAP

ICA-MAP takes as input a Multi-Agent Disjunctive Temporal Constraint Network, G,

and returns a compact encoding of the scheduling policies for feasible task assignments

and synchronizations in the form of S, the Base Solution, and L(T, C), the Set of

Differences. The top-level pseudo-code for ICA-MAP is presented in Algorithm 1.

The algorithm is composed of the four main steps. Steps 1 and 2 compute the

Base Solution, and Steps 3 and 4 compute the Set of Differences.

Step 1 relaxes the MA-DTCN (G) to a relaxed plan encoded as a Simple Tem-

poral Problem (S) (Line 2). This is accomplished by relaxing each disjunctive binary

constraint to a simple interval. For each disjunctive constraint, a new simple tem-

poral constraint is constructed using the lowerbound and upperbound of the union

of intervals in the disjunctive constraint. Consider the activity bc in the abridged
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Algorithm 1 Top-level Pseudo-code for ICA-MAP
1: procedure ICA-MAP(G)
2: S <- Relax-Network-to-STP(G)
3: S <- Compile-STP-to-Dispatchable-Form(S)
4: if S is inconsistent then
5: return FALSE
6: end if
7: L(T, C) +- Initialize-Task-Allocation-Synchronization-List
8: for each full task assignment (Ti) do
9: Qj <- add-Ti-constraints-to-queue

10: L(T) +- BACKPROPAGATE-TASK-ASSIGN(Qt, S, L(T))

11: if BACKPROPAGATE-TASK-ASSIGN returns false then
12: clear L(T) and goto Line 8
13: end if
14: Cy <- Synchronize-Task-Assignment(Ti)
15: for each synchronization y in C, do
16: +Qy +- add-Cy-ordering-constraints-to-queue
17: L(T, Cy) <- BACKPROPAGATE-SYNCH (Qy, S, L(Ti, Cy))
18: if BACKPROPAGATE-SYNCH returns FALSE then
19: clear L(T) and goto Line 15
20: end if
21: end for
22: end for
23: if L(T, C) is empty then
24: return FALSE
25: else return S and L(T, C)
26: end if
27: end procedure
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Ball Scenario plan presented in Figure 4-8. Activity bc is encoded as a disjunctive

constraint L : [32, 29] V R : [42, 55], specifying the choice: either the Left Robot

performs the activity within the duration [32,29], or the Right robot performs the

activity within the duration [42,55]. In Step 1, this disjunctive constraint is relaxed

to a unary interval [32,55], meaning activity bc will take somewhere between [32,55]

seconds to perform (depending on whether the Left Robot or Right Robot performs

the activity).

Step 2 then compiles the resulting STP to dispatchable form to create the Base

Solution (Line 3). Figure 4-10 presents the Base Solution for the Equal Partners plan

presented in Figure 4-8. If the Base Solution is inconsistent, then there is no solution

to the multi-agent plan and ICA-MAP returns false (Line 5). If the Base Solution

is consistent, then Line 7 initializes a data structure L(T, C) to record the Set of

Differences containing the scheduling policies for feasible task assignments (T) and

their synchronizations (C).

Step 3 computes the constraint changes for each full feasible task assignment,

and records the constraint changes in the Set of Differences. In Line 8, the algorithm

iterates through each full task assignment. The Equal Partners plan in Figure 4-8

encodes two full task assignments: either (1) the Right Robot performs activity bc,

or (2) the Left Robot performs activity bc. For each full task assignment T, the con-

straints associated with Ti are placed on a queue Qt (Line 9). In the example, assume

that initially the interval constraints associated with the first of these assignments

are placed on the queue: Qt = {bc[42, 55]}.

Each constraint in Qt implies the tightening of a constraint in the Base Solu-

tion S. The function BACKPROPAGATE-TASK-ASSIGN propagates the effect of these

constraint tightenings throughout S (Line 10) to compute the constraint changes

for each full task assignment. Any dispatchable solution for this task assignment

can be composed, in part, by applying these constraint changes to the Base Solu-

tion. For example, given Q = {bc[42, 55]} for the plan presented in Figure 4-8,

BACKPROPAGATE-TASK-ASSIGN derives no constraint modifications for the upper

bound of ab: [, 68]. Intuitively, this constraint change indicates that the Right Robot
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must start activity bc within 68 seconds of the plan start. This ensures that the Right

Robot completes activty bc within the plan deadline of 110 seconds.

The modified constraints associated with task assignment T are recorded in L(T).

During this process, typically only a subset of the constraints in the relaxed network S

must be modified and recorded, contributing to the compactness of the representation.

If back-propagation results in a temporal inconsistency, then the task assignment

T is not consistent and the algorithm continues with the next full task assignment

(Line 12).

Step 4 computes the constraint changes for each feasible synchronization of each

full feasible task assignment, and records the constraint changes in the Set of Dif-

ferences. Given a consistent task assignment T, Line 14 collects the set of synchro-

nizations for T, and then Line 15 iterates through each synchronization y. Each

synchronization y imposes a set of ordering constraints on the plan activities. For

example, consider the task assignment: RightRobot : bc[42, 55]. Any possible syn-

chronization of this task assignment must provide a strong ordering on the activities

performed by the Right Robot, for example, bc -+ 1m -+ no. Imagine that initially

the interval constraints associated with this synchronization are added to the queue,

Qy = {cl[0, inf]} (Line 16).

The function BACKPROPAGATE-SYNCH then propagates the effect of these order-

ing constraints throughout the network (Line 17) to compute the constraint changes

for each synchronization. In our example, the function BACKPROPAGATE-SYNCH

derives four modified constraints from the ordering constraint clf[0, inf]. These con-

straint changes are: jc[, 47], ac[, 50], ab[, 8] and jb[, 5]. Intuitively, these constraint

changes indicate that the Right Robot must start activity bc within 8 seconds of

the plan start and finish activity bc within 50 seconds of the plan start, to ensure

the robot can perform the activities in sequence and still complete the plan within

the deadline of 110 seconds. These constraints are recorded in L(T, Cy) as follows:

L(RightRobot : bc[32, 39], cl[0, inf]) ={jc[, 47], ac[, 50], ab[, 8], jb[, 5]}.

If back-propagation of a synchronization y results in a temporal inconsistency, then

that synchronization y and its derived constraints are removed from L(T, C), and the
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algorithm continues with the next synchronization (Line 19). The synchronization

where the Right Robot performs activities in the order im --+ bc -+ no is tempo-

rally inconsistent, since the Right Robot must start activity no at most 3 seconds

after completing activity im. The function BACKPROPAGATE-SYNCH identifies this

temporal inconsistency and removes the infeasible task assignment and synchroniza-

tions from the Set of Differences in L(T, C). If L(T, C) remains empty after iterating

through all full task allocations and synchronizations, then there is no solution to the

multi-agent plan and ICA-MAP returns false.

The output of ICA-MAP, if it exists, is S, the Base Solution and L(T, C), the

Set of Differences. Together the Base Solution and Set of Differences compactly en-

code the scheduling policies for feasible task assignments and synchronizations. The

dispatchable solution for any feasible task assignment T and any feasible synchroniza-

tion y of T can be composed by applying the constraint changes computed for T and

y to the Base Solution. For example, the dispatchable solution for task assignment

RightRobot : bc[42, 55] and synchronization cl[0, inf] can then be computed by ap-

plying the following constraint changes to the Base Solution: RightRobot : bc[42, 55],

cl[0, inf], jc[, 47], ac[, 50], ab[, 8], and jb[, 5].

The key to compactly encoding the scheduling policies for feasible task allocations

and synchronizations lies in how the two functions BACKPROPAGATE-TASK-ASSIGN

and BACKPROPAGATE-SYNCH apply the Dynamic Back-Propagation Rules to com-

pute the constraint changes in the Set of Differences. Next, I walk through each of

these functions.

4.6.2 Pseudo-code for Backpropagate-Task-Assign

The function BACKPROPAGATE-TASK-ASSIGN, presented in Algorithm 2, computes

the constraint changes for each full task assignment. The function takes as its input

the queue of task assignment constraints Qt corresponding to one full task assign-

ment T-, the Base Solution S, and the Set of Differences list L(T) that records

the constraint modifications for task assignment T. As an example, consider calling

BACKPROPAGATE-TASK-ASSIGN for the task assignment: RightRobot : bc[42, 55]. In
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this case, the input queue contains the following interval corresponding to this task

assignment: Qt = {bc[42, 55]}. The function also takes as input the Base Solution

presented in Figure 4-10 and the Set of Differences list L(Rightftobot : bc[42, 55]).

The function computes the derived constraints for task assignment T and returns

them in the list L(T). The derived consequences for the task assignment RightRobot

bc[42, 55] is the constraint change ab[, 68].

Algorithm 2 Pseudo-code for BACKPROPAGATE-TASK-ASSIGN

1: procedure BACKPROPAGATE-TASK-ASSIGN(Qt, S, L(T))
2: for each constraint ej in Qt do
3: add ej to L(T)
4: for each DBP incremental update rule propagating ej do
5: deduce-new-constraint-zi(ei, S, L(T))
6: if is-pos-loop(zi) then
7: goto Line 2
8: end if
9: if is-neg-loop(zi) then

10: return FALSE
11: end if
12: if zi-is-tightening(zi, S, L(T)) then
13: L(T) <- add zi to L(T)
14: Q, <- add zi to Q,
15: end if
16: end for
17: end for
18: BACKPROPAGATE-TASK-ASSIGN(Q, S, L(T))
19: return L(Ti)
20: end procedure

First, Lines 2 and 3 add each constraint ej in Qt to L(T). Line 4 applies the DBP

Rules to infer the effects of each constraint change ej. The inferred constraints encode

the changes to the Base Solution that are necessary to assemble any dispatchable

solution for the task assignment Ti.

Line 5 deduces new constraints using the DBP as follows. First a network S'

associated with task assignment T is created by intersecting the constraints in L(T)

with the constraints in S. In our example, the new network S' is created by replacing

the constraint R, L : bc[32, 55] in the Base Solution with bc[42, 55].

Next, the DBP Rules are applied to propagate the effect of the constraint change
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bc[42, 55] throughout the network S'. Using DBP Rule ii, edge cb in S' (corresponding

to activity bc's loweber duration of 42) is propagated through edge ac of distance 110

in S' to deduce a new constraint zi = 48 on edge ab.

Propagation terminates in two cases: (Case 1) all effects have been inferred for

each constraint change ej, or (Case 2) the function returns false during propagation,

meaning that the task assignment T is not feasible.

BACKPROPAGATE-TASK-ASSIGN detects that all constraints have been inferred

for a constraint change ej if back-propagation deduces a new constraint zi, and zi is

a positive self-loop. In this case the new constraint zi does not have to be recursively

propagated and the algorithm continues at Line 4. As explanation, recall that a

positive self-loop in a distance graph specifies that the temporal distance t, between

an event v and itself must be less than or equal to the value zi (tv - tv < zi). If zi > 0

then the temporal distance constraint is satisfied.

BACKPROPAGATE-TASK-ASSIGN may return false, meaning that the task assign-

ment T is not feasible, if and only if the effects of a constraint change ej results

in a temporal inconsistency. This means that the constraints of the plan cannot be

satisfied for the given task assignment.

BACKPROPAGATE-TASK-ASSIGN detects a temporal inconsistency if back-propagation

deduces a new constraint zi, and zi is a negative self-loop, meaning zi < 0. A negative

self-loop indicates that the temporal distance t, between an event v and itself must

be less than or equal to the value zi (t_ - t_ < zi), which is not satisfied for zi < 0. In

this case, propagation has exposed a temporal inconsistency and the function returns

false.

If zi is neither a positive nor negative loop, then Line 12 checks to determine

whether zi is tighter than the corresponding constraint in S'. For example, the

deduced constraint 68 on edge ab is tighter than the edge ab of 78 in S'. If so, zi

is recorded in L(T) and added to the queue Q, for further propagation (Lines 13

and 14). The constraints of Q, are recursively propagated through the network in

Line 18. The output of BACKPROPAGATE-TASK-ASS1GN is the data structure L(T),

which records the constraint modifications to the Base Solution S that are necessary
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to assemble any dispatchable solution for the task assignment Ti.

4.6.3 Pseudo-code for Backpropagate-Synch

In the previous section I walk through how the ICA-MAP algorithm computes the

Set of Differences constraint changes for a task assignment T using the function

BACKPROPAGATE-TASK-ASSIGN. Next I present the function BACKPROPAGATE-

SYNCH, presented in Algorithm 3, that computes the constraint changes for each

synchronization of the task assignment Ti.

The function takes as its input the queue of synchronization constraints Q, for a

task assignment T, the Base Solution S, and the Set of Differences list L(T, C) that

records the constraint modifications for task assignment T and its synchronization

y. Imagine calling BACKPROPAGATE-SYNCH for the task assignment RightRobot :

bc[42, 55] and the synchronization constraint cl[0, inf]. In this case, the input queue

contains the synchronization constraint Q, = {cl[0, inf]}. The function also takes

as input the Base Solution presented in Figure 4-10 and the Set of Differences list

L(RightRobot : bc[42, 55], cl[0, inf ]).

The function computes the derived constraints for the synchronization y of task

assignment T, and returns them in the list L(T, C). The derived consequences for

the task assignment RightRobot : bc[42, 55] and synchronization cl[0, inf] are the

constraint changes jc[, 47], ac[, 50], ab[, 8], and jb[, 5].

BACKPROPAGATE-SYNCH applies the DBP Rules to deduce constraint modifi-

cations in much the same way as BACKPROPAGATE-TASK-ASSIGN. The inferred

constraint encode the changes to the Base Solution that are necessary assemble any

dispachable solution for the task assignment T and synchronization y.

First, Lines 2 and 3 add each constraint ej in Q, to L(T, Cy). Line 5 deduces new

constraints using the DBP Rules. First a network S" associated with task assignment

T and synchronization y is created by intersecting the constraints in L(T, Cy) with

the constraints in S. In our example, the new network S" is created by replacing the

constraint R, L : bc[32, 55] in the Base Solution with bc[42, 55] and then tightening

the constraint cl in the Base Solution to cl[0, 8].
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Algorithm 3 Pseudo-code for BACKPROPAGATE- SYNCH

1: procedure BACKPROPAGATE-SYNCH(y, Qy, S, L(T, C))
2: for each constraint ej in Q, do
3: add ej to L(Ti, Cy)
4: for each DBP incremental update rule propagating ej do
5: deduce-new-constraint-zi(e , S, L(T, Cy))
6: if is-pos-loop(zi) then
7: goto Line 2

8: end if
9: if is-neg-loop(zi) then

10: return FALSE
11: end if
12: if zris-tightening(zi, S, L(T, Cy)) then
13: if L(T) contains a constraint f with ei's start and end events then
14: L(Ti,C) +- add f
15: L(T, Cy) <- replace f with ej
16: L(T) <- remove f
17: end if
18: if L(T, C) all contain ej then
19: L(T) <- add ej
20: L(T, C) +- remove ej
21: end if
22: Q, <- add zi to Q,
23: end if
24: end for
25: end for
26: BACKPROPAGATE-SYNCH(y, Q,, S, L(T, C))
27: return L(T) and L(T, C)
28: end procedure
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Next, the DBP Rules are applied to propagate the effect of the constraint changes

in Q, = {cl[0, inf]} throughout the network S". Using DBP Rule i, edge ic in S"

(corresponding to temporal constraint cl's lowerbound of 0) is propagated through

edge ji of distance 47 in S" to deduce a new constraint zi = 47 on edge jc.

If back-propagation deduces a new constraint zi, which is tighter than the corre-

sponding constraint in S", then Lines 13-21 perform computations to refactor L(T, C)

such that constraints common to all feasible synchronizations of T are recorded in

L(T). In Line 22, zi is added to the queue Q, for further propagation. The constraints

of Q, are recursively propagated through the network in Line 26. BACKPROPAGATE-

SYNCH returns L(T) and L(T, C), which record the constraint modifications to S

that ensure synchronized execution of the task assignment T. The refactoring pro-

cess in Lines 13-21 ensures that constraints common to all of Ti's synchronizations

are recorded once, contributing to the compactness of the encoding.

4.6.4 Completeness of ICA-MAP

In the previous sections, I present the ICA-MAP algorithm for compiling an Equal

Partners plan to a compact dispatchable form. The definition of the Equal Partners

dispatchable form is that it preserves the set of task assignment and scheduling se-

quences attained by compiling each component solution to dispatchable form using

an all-pairs-shortest-path computation. In this section, I show that ICA-MAP pro-

duces a dispatchable form using the DBP Rules, rather than by directly computing

the all-pairs-shortest-path graph for each component solution.

Theorem: ICA-MAP is complete in that it compiles an MA-DTCN to a dis-

patchable form that preserves the set of task assignment and scheduling sequences

attained by compiling each component solution to all-pairs-shortest-path form.

Proof Sketch: First (Lemma 1) I show that when a constraint is tightened

in a dispatchable Simple Temporal Problem (STP), the Dynamic Back-Propagation

(DBP) rules may be applied to recompile the modified STP to a dispatchable form

that preserves the set of execution possibilities attained by compiling the modified

STP to the All-Pairs-Shortest-Path dispatchable form.
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Next, I generalize this result to a temporal network with disjunctive constraints.

I show that ICA-MAP applies the DBP rules to systematically infer and record the

effect of all possible sets of disjuncts on the other constraints in the problem (Lemma

2). The feasible sets of disjuncts therefore preserve exactly the set of execution

possibilities attained by compiling each feasible component STP separately (as in the

Tsamardinos, 2001 method).

Lemma 1: The Dynamic Back-Propagation (DBP) rules may be applied to re-

compile a tightened STP to a dispatchable form that preserves the set of execution

possibilities attained by compiling the modified STP to the All-Pairs-Shortest-Path

dispatchable form.

Proof: I have previously shown the following property of the DBP rules: Given a

dispatchable STP with associated distance graph G: (i) Consider any tightening (or

addition) of an edge AB, such that d(AB) = y, where y > 0 and A # B. For all

edges BC such that d(BC) = u < 0, it follows that d(AC) = y + u. (ii) Consider any

tightening (or addition) of an edge BA such that d(BA) = x, where x < 0 and A f B;

for all edges CB such that d(CB) = v, where v > 0, it follows that d(CA) = x + v.

The DBP Rules strictly tighten d(AC) and d(CA) as described. An All-Pairs-

Shortest-Path computation may modify d(BC) and d(CB) as well. Regardless of

whether d(BC) and d(CB) are modified, the bound of execution possibilities propa-

gated through AC is [-x -v, y+u], and the bound propagated through AB is [-x, y].

The interval CB does not impact the feasible execution times of B since by definition

the interval AB must be equal to or tighter than the bound propagated through AC

and CB.

Lemma 2: ICA-MAP applies the DBP rules to systematically infer and record

the effect of all possible sets of disjuncts on the other constraints in the problem.

Proof: First (1) I show that the relaxed dispatchable form of the Base Solution

is guaranteed to contain all successful executions of every component STP of the

MA-DTCN. Next (2) I show that ICA-MAP systematically applies the DBP rules to

infer and record the effect of all possible sets of disjuncts on the other constraints in

the problem.
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(1) Consider the MA-DTCN G where events are related through constraints of

the form:

(Xk - Xi) E ({ k, bIk[ak bln} V ... V {[a, b ||a; bk}). (4.5)

In the relaxed form of the Base Solution of G, events are related through con-

straints of the form: (Xk - Xi) E ({[likUik]Jlik Uik}) where lik E {a k,. .,k

U li k bk k an - i k , and uik > f a'an k k --- .

Since the constraints in the relaxed form are strictly looser than the constraints in

any component STP, it follows that the All-Pairs-Shortest-Path dispatchable form of

the relaxed problem must contain all successful executions of every component STP.

(2) An MA-DTCN includes two types of choices that encode the family of compo-

nent STPs: choice in task assignment and synchronization. Each full task assignment

corresponds to choosing one disjunct of each binary disjunctive constraint, and syn-

chronization involves choosing ordering constraints among activities timepoints in a

given task allocation. ICA-MAP explicitly enumerates every possible task assignment

and synchronization (Lines 8,15) thus enumerating all possible component STPs in

the MA-DTCN.

4.7 Dispatching Algorithm for Fast, Distributed

Execution of Multi-agent Temporal Plans

Thus far I have presented ICA-MAP, which compiles an Equal Partners plan to a

novel, compact encoding that supports fast dynamic scheduling. This section de-

scribes how to schedule in real-time the compact compiled form.

The compact compiled form is composed of the Base Solution S and the Set of

Differences with respect to the base L(T, C). The dispatching algorithm FAST-MAP-

DISPATCH, introduced in this section, operates on this compact encoding to assign

and schedule activity events online just-in-time before executing the event.
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4.7.1 Top-level Pseudocode for Fast-MAP-Dispatch

The purpose of the dispatcher is to ensure all plan constraints are satisfied when

assigning and scheduling plan activities. The function FAST-MAP-DISPATCH, pre-

sented in Algorithm 4, dispatches a compiled Equal Partners plan. The function takes

as input the compiled plan in the form of the Base Solution S, and the Set of Differ-

ences L(T, C), which records the constraint changes with respect to the Base Solution

that are necessary to represent each dispatchable component solution. Plan execution

is distributed in that each agent maintains its own dispatcher and the agents' dis-

patchers communicate their assignment and scheduling decisions to coordinate plan

execution. In this section I present FAST-MAP-DISPATCH and, as an illustrative ex-

ample, I walk through the first few steps in dispatching the compiled Equal Partners

plan for the Ball Scenario presented in Figure 4-10.

In performing distributed dispatch of the plan, each agent must keep a list E of

the events currently enabled for other agents, and keep a list ESELF of the events

currently enabled for itself. An event N is enabled for an agent A if there exists some

feasible synchronization where: the event N is assigned to agent A and all events that

are constrained to occur before event N have already been executed. Lines 2 and 3

initialize E and ESELF. Initially, the plan's epoch start event is placed in either E,

ESELF or both, depending on the event's enablement conditions. Imagine dispatching

the Ball Scenario Plan from the perspective of the Right Robot. Initially event a,

the plan start event, is the only enabled timepoint. This timepoint represents the

plan epoch and in Lines 2-3 FAST-MAP-DISPATCH begins by initializing both E and

ESELF with a. Intuitively, this means that either agent, the Left Robot or Right

Robot, can signal the start of the plan execution for the Ball Scenario.

Next, in Line 4 the dispatcher computes WE and WSELF, the feasible execution

windows for events in E and ESELF, respectively. In our example, either agent may

begin executing the plan at any time and so the execution windows for event a are

initialized follows: WE = {[0, irfla} and WSELF {[0, iTf a}. Line 5 initializes the

plan clock to t = 0.
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Algorithm 4 Pseudo-code for FAST-MAP-DISPATCH

1: procedure FAST-MAP-DISPATCH(S, L(T, C))

2: E +- Initialize-other-agents'-enabled-list
3: ESELF <- Initialize-self-agent's-enabled-list
4: {WE, WSELF} +- Initialize-execution-window-lists
5: currentTime = 0

6: while one or more events have not been executed do
7: for each event N in E or ESELF do
8: WE,N +- Compile-Other-Agents'-Windows(N, WE)
9: WSELFN &- Compile-Self-Agents'-Windows(N, WSELF)

10: if currentTime is in WE,N and E contains N then
11: if other agent has executed N then
12: set N's execution time to currentTime
13: label N with executing agent's name
14: end if
15: else if currentTime is in WSELFN and ESELF contains N then
16: claim N for self-agent and resolve any claim conflict
17: if self-agent owns N then
18: set N's execution time to currentTime
19: label N with self-agent's name
20: execute N
21: broadcast the successful execution of N
22: end if
23: end if
24: if execution implies a commitment for N then
25: E, ESELF &- clear-lists
26: E, ESELF, WE, WSELF PRUNE-AND-UPDATE-

ENABLED(N, S, L(T, C))
27: end if
28: end for
29: end while
30: end procedure
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Once these initializations are complete, the dispatcher begins to iterate through

each enabled event N in E or ESELF, searching for the opportunity to assign and/or

schedule event N (Lines 6,7). The dispatcher continues until all plan events have been

executed. Specifically, in Lines 8 and 9, the dispatcher iterates through WEN and

WSELF,N, the feasible execution windows of N for other agents and itself, respectively.

WE,N and WSELF,N are computed as subsets of the windows in WE and WSELF.

If the current time is within another agent's feasible window of execution (Line

10) then the self-agent checks whether another agent has broadcast the successful

execution of event N. If so, the self-agent records N's execution time as the current

time, and labels N with the name of the agent that executed N (Lines 12,13). If N

has not yet been executed by another agent, the self-agent checks whether the current

time is within its own feasible window of execution (Line 15). If so, then the self-

agent broadcasts a claim to execute N (Line 16). A claim communication indicates

that the self-agent intends to schedule and execute event N immediately. A conflict

arrises in the case where another agent has also communicated a claim to execute N.

In this case, the agents must then communicate to resolve the conflict, meaning they

must negotiate the assignment of event N. If after resolution, the self-agent owns

the event N, then the self-agent schedules N's execution time as the current time,

labels N with its own name, executes N, and broadcasts the successful execution of

N (Lines 18-21).

Imagine that the Left Robot initiates the plan execution by broadcasting a claim

to event a. This means that the Left Robot intends to schedule and execute event a

immediately at t = 0 (Lines 10,11). We assume there is no conflict, meaning that the

Right Robot has not also claimed event a. The Left Robot then owns event a and

therefore schedules, executes, and communicates the successful execution of event a

at t = 0. The self-agent, the Right Robot, receives this communication, records a's

execution time, and labels event a with the name Left Robot, the agent that executed

a (Lines 12,13).

Lines 24-26 describe the process of updating the plan in response to commitments

triggered by (1) the execution of event N, or else (2) the violation, through inaction,
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of a task assignment or synchronization choice involving event N. For example, the

execution of an event a is a plan commitment and the dispatcher must update the

enabled events and execution windows in response to this commitment (Line 24).

First, the enabled lists E and ESELF are cleared (Line 25), since the execution of

N may make the task assignments and synchronizations that support the currently

enabled events infeasible. Next, in Line 26, the function PRUNE-AND-UPDATE-

ENABLED-LEADER-ASSISTANT is called to remove infeasible task assignments and

synchronizations from L(T, C), update the enabled lists E and ESELF, and compute

the execution windows for the enabled events. FAST-MAP-DISPATCH terminates

once all plan events have been executed.

4.7.2 Pseudo-code for Prune-And-Update-Enabled

The function PRUNE-AND-UPDATE-ENABLED, presented in Algorithm 5, is called

after a plan commitment is made to compute the list of enabled events. The function

takes as input N, the recently committed event, S, the Base Solution, and L(T,C),

the Set of Differences that records the constraint changes for the feasible task assign-

ments and their and synchronizations. As an illustrative example, I continue to walk

through the first few steps in dispatching the compiled Equal Partners plan for the

Ball Scenario presented in Figure 4-10. Let's continue to imagine dispatching from

the perspective of the Right Robot, and assume that the Left Robot has just executed

the plan epoch event a at time t = 0.

Lines 2-18 check each task assignment T and synchronization y, to determine

whether it is still a feasible component solution after the commitment to event N.

First the function iterates through each full task assignment T (Line 2), checking

whether the commitment of N implies task assignment T is infeasible. T may be

infeasible due to inconsistent agent assignment (Line 3), inconsistent execution time

(Line 6), or unsatisfied enablement conditions (Line 9). If Ti is found to be infeasible,

then T and all its synchronizations are marked infeasible. If T is found to be feasible,

then the function iterates through each feasible synchronization y, of T (Line 12),

checking whether the commitment of N implies y, is infeasible. The synchronization
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Algorithm 5 Pseudo-code for PRUNE-AND-UPDATE- ENABLED

1: procedure PRUNE-AND-UPDATE-ENABLED(N, S, L(T, C))
2: for each feasible full task assignment T do
3: if N's agent assignment is inconsistent with T then
4: mark T and all its synchronizations as infeasible and goto Line 2
5: end if
6: if N's execution time is inconsistent with T then
7: mark T and all its synchronizations as infeasible and goto Line 2
8: end if
9: if N's enablement conditions are not satisfied within T then

10: mark T and all its synchronizations as infeasible and goto Line 2
11: end if
12: for each feasible synchronization of y, do
13: if N's execution time is inconsistent with y, then
14: mark y, as infeasible and goto Line 12
15: end if
16: if N's enablement conditions are not satisfied within y, then
17: mark y, as infeasible and goto Line 12
18: end if
19: E, ESELF +- gather-enabled-events-using-(yn, Ti, S)
20: WE, WSELF +- update-enabled-windows-using-(yn, T, S)
21: end for
22: end for
23: end procedure
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yn may be infeasible due to inconsistent execution time or unsatisfied enablement

conditions (Lines 13,16). If a given synchronization y, of task assignment T is found

to be feasible, then Line 19 gathers the enabled events.

In our example, all task assignments and synchronizations are still feasible after

the commitment to event a. Line 19 gathers the enabled events in E, ESELF for

each task assignment and synchronization, as presented in Table 4.3. Consider the

task assignment where the Right Robot performs activity bc, and the synchronization

where the Right Robot first performs activity bc, then activity Im, and finally activity

no. Table 4.3 shows that the enabled list for the Right Robot contains event b

(ESELF = {b}), meaning the Right Robot may perform activity bc next.

Table 4.3: Snapshot of E, ESELF after the execution of a at t = 0
Task Assignment & Synchronization

R : bc[42, 55] & cl[0, inf] L : bc[32, 29] & kb[O, inf]
E
ESELF b 1

Lines 20 then computes the feasible execution windows for the enabled events.

The execution windows for an enabled event N are computed within each dispatch-

able component solution through one-step propagation of timing information. For

example, the execution window for timepoint b in task assignment R : bc and syn-

chronization cl is computed by first intersecting the Base Solution constraint ab[0, 78],

and the Set of Differences constraints ab[, 68] and ab[, 8], resulting in a new constraint

ab[0, 8]. Next, the execution time of event a at t = 0 is propagated through constraint

ab to compute event b's execution window of [0,8].

Table 4.4 presents the execution windows for each of the events in E.

Table 4.4: Snapshot of WE, and WSELF after the execution of a at t = 0
Task Assignment & Synchronization

R : bc[42, 551 & cl[0, inf] L : bc[32, 29] & kb[0, inf]

E [0 30]j [0 31]j
ESELF 0, 8]b 0, 77]1

To follow through with the example, imagine that next the Right Robot begins to
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perform activity bc and the Left Robot begins to perform activity jk, both at t = 2.

This means events b and j, the activity start events, are scheduled and executed at

t = 2. Again, the dispatcher calls the function PRUNE-AND-UPDATE-ENABLED in

response to these commitments. The dispatcher computes that only events c and k

are enabled. This means that the robots must each finish their current activity before

beginning the next activity. These enablement conditions are a consequence of the

synchronization constraints, which ensure that each agent performs one activity at a

time.

Next, imagine that the Right Robot finishes performing activity bc and the Left

Robot finishes performing activity jk both at t = 45. The Right Robot then continues

on to perform activities 1m and no. Execution completes once the Right Robot finishes

performing these activities.

4.7.3 Properties of FAST-MAP-DISPATCH

I show that FAST-MAP-DISPATCH has the following properties: (1) it is correct

in that any complete task assignment and execution sequence generated by the dis-

patcher also satisfied the constraints of the MA-DTCN, (2) it is deadlock-free in that

any partial execution generated by the dispacther can be extended to a complete

execution that satisfies the constraints of the MA-DTCN, and (3) it is maximally

flexible in that the dispatcher generates the same set of complete execution sequences

that are generated by dispatching the consistent component STPs of the MA-DTCN.

These proofs follow the same form as those in (Tsamardinos and Pollack, 2001).

Theorem: FAST-MAP-DISPATCH is correct in that any complete execution

sequence generated by the dispatcher also satisfies the constraints of the MA-DTCN.

Proof: Consider an arbitrary execution event e in the complete execution se-

quence s. FAST-MAP-DISPATCH Lines 10 and 15 ensure that the executed event e

is enabled and live for some STP m that is a solution to the MA-DTCN at time t = r.

The live execution windows for future enabled events are then calculated for each

remaining feasible task assignment and synchronization in PRUNE-AND-UPDATE-

ENABLED Line 12. Also, m must be consistent with all previous executed events,
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otherwise PRUNE-AND-UPDATE-ENABLED would have marked the corresponding

task assignment and synchronization as infeasible. Thus, if the execution sequence

is complete, it is an exact solution of some STP m that is a solution of the original

MA-DTCN.

Theorem: FAST-MAP-DISPATCH is deadlock-free in that any partial execution

generated by the dispatcher can be extended to a complete execution that satisfies

the constraints of the MA-DTCN.

Proof: It is sufficient to show that the function PRUNE-AND-UPDATE-ENABLED

never empties the solution set until after the FAST-MAP-DISPATCH has generated

a complete execution sequence. The function PRUNE-AND-UPDATE-ENABLED

marks task assignments and synchronizations as infeasible, thereby removing STPs

from the solution set, only after a commitment is made. In this case, the dispatcher

is guaranteed to retain at least one STP, namely the one consistent with the event

sequence so far (m in the proof of the previous Theorem).

Theorem: FAST-MAP-DISPATCH is maximally flexible in that the dispatcher

generates the same set of complete execution sequences that are generated by dis-

patching the consistent component STPs.

Proof: Every execution sequence s that satisfies the constraints of the original

MA-DTCN will be a solution to some consistent component STP m of the MA-

DTCN. It suffices to show that when the dispatcher follows s, m will not be removed

from the set of STP solutions. PRUNE-AND-UPDATE-ENABLED will not remove

m because m is temporally and logically consistent with s.

4.8 Empirical Evaluation

In this section, I present the empirical evaluation of the Chaski algorithms for com-

piling and dispatching Equal Partners plans. First, I develop a benchmark suite of

parameterized, structured Equal Partners plans in which the parameters are gen-

erated randomly. Next, I empirically investigate the execution latency associated

with dispatching the Chaski compiled form compared to the execution latency of
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dispatching the Tsamardinos component solution representation. Results show that

dispatching the Chaski encoding reduces execution latency, by one order of magni-

tude on average, compared to the Tsamardinos method. For moderately-sized plans

composed of thousands of component solutions, 89% of plans executed by Chaski

exhibit an execution latency within human reaction time, compared to only 24% of

plans executed using the Tsamardinos approach.

I empirically demonstrate that the Chaski compact encoding supports fast dy-

namic execution. I compare the compactness of solutions compiled with ICA-MAP

to the compactness of a direct enumeration of component solution set (as performed

in Tsamardinos and Pollack (2001)). I show that ICA-MAP consistently reduces the

number of constraints necessary to encode the set of feasible scheduling policies by

up to one order of magnitude.

4.8.1 Generation of Structured Equal Partners Plans

In this section, I describe how the benchmark suite of Equal Partners plans was

generated.

I generated fifty Equal Partners plans for each n = 13, 15, and 17 activities.

Recall that each activity is composed of two events: a start event S and end event

E. A binary disjunctive constraint of two intervals is randomly generated between

each S and E, where each interval maps to one of the two agents. These intervals

correspond to the activity durations for each agent. Intervals are randomly generated

with upperbound time constraints between [1, maxDuration = 10], and lowerbound

time constraints between [0, upperbound] so that the duration is nonzero and locally

consistent. The method of generating upperbounds and lowerbounds for a disjunctive

constraint ensures non-overlaping intervals. All plan include the constraint that each

agent may perform only one activity at a time.

I use the method described in (Stedl, 2004) to derive constraints among activ-

ities. I randomly place each activity in a two-dimensional plan space similar to a

simple scheduling timeline, where overlapping activities represent concurrent activi-

ties. Simple interval constraints are generated with locally consistent values in order
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to constrain neighboring activities. Intuitively, these simple interval constraints im-

pose ordering constraints among activities and plan deadlines. These constraints are

generated for each event a by randomly selecting another event b in the plan, and

then generating an interval constraint with an upperbound proportional the plan

space distance between a and b. This process ensures that the structure of randomly

generated plans results in plan executions that generally flow from left to right in

the plan space. The parameter r specifies the number of simple interval constraints

generated for each event. In these experiments I set r = 1, meaning that one interval

constraint is generated for each event in the plan. I make this design decision based

on my observation that many of the hand-generated Equal Partners plans in this

thesis, for example the Ball Scenario and the Human-Robot Teaming Scenario, have

approximately 2n simple interval constraints relating plan activities.

4.8.2 Experimental Setup

I empirically investigate the solution compactness and execution latency for Chaski

and for the (Tsamardinos and Pollack, 2001) flexible dispatch method. I implemented

both Chaski and the Tsamardinos method in Java for fair basis on comparison. All

results are generated on a 2.53 GHz Intel Core 2 Duo with 4 GB memory.

To evaluate execution latency, I executed the benchmark plans using the Chaski

dispatching algorithm FAST-MAP-DISPATCH and recorded the maximum execution

latency observed during plan execution. Execution latency refers to the time required

to update the plan after a plan commitment has been made. I compare this to

the execution latency of the Tsamardinos method. For the Tsamardinos method, I

recorded the execution latency after the first executed event. This is a conservative

measure for execution latency because all task assignments and synchronizations are

still feasible, and therefore the time required to update the plan is at a maximum

after the first commitment.

To evaluate solution compactness, I applied ICA-MAP to the benchmark suite of

Equal Partners plans. I computed the number of constraints necessary to represent

the compact encoding of the solution set, and compare this result to the number
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of constraints necessary to explicitly represent each component solution of the plan,

as proposed in prior art (Tsamardinos and Pollack, 2001). My implementation of

the Tsamardinos method maintains a separate, all-pairs-shortest-path dispatchable

solution for each feasible task assignment and synchronization. I also recorded the

time to compile each plan.

4.8.3 Results: Execution Latency

Figures 4-11 - 4-13 present the maximum execution latency for each dispatchable

Equal Partners plan, recorded for the Chaski and Tsamardinos dispatchers. The hor-

izontal axis in each figure indicates the number of feasible component solutions for

each plan. The Figures 4-11 - 4-13 show that the Chaski FAST-MAP-DISPATCH al-

gorithm significantly reduces execution latency, by one order of magnitude on average,

compared to the Tsamardinos dispatcher.

Of the 150 benchmark plans generated, 54 are moderately-sized plans, meaning

they are composed of thousands of component solutions. Of these plans, 89% ex-

ecuted by Chaski exhibited an execution latency within human reaction time (250

ms), compared to only 24% executed using the Tsamardinos dispatcher.

Figure 4-14 presents the median execution latency, as a function of number of plan

activities. These results indicate that median execution latency grows exponentially

with the number of plan activities, and the growth trend is similar to that for median

compiled size.

4.8.4 Results: Solution Compactness

In the previous section I have shown that the Chaski reduces execution latency by

up to a factor of ten. In this section I empirically show that Chaski's compact plan

representation supports fast dynamic execution.

In Figures 4-15 - 4-17 I present the number of constraints necessary to encode

each dispatchable Equal Partners plan, as compiled by the Chaski and Tsamardinos

methods. The horizontal axis in each figure indicates the number of feasible compo-
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nent solutions for each plan. The Figures 4-15 - 4-17 show that the Chaski ICA-MAP

compilation algorithm consistently reduces the number of constraints necessary to

encode the solution set, by up to one order of magnitude.

Figure 4-18 presents the median number of constraints necessary to represent the

solution set, as a function of number of plan activities. These results indicate that

the median size of the compiled plan grows exponentially with the number of plan

activities.

Finally, Figure 4-19 reports the median and range for the time to compile each

plan. Compilation time did not differ significantly for the Chaski and Tsamarindos

methods, therefore the compilation time for only Chaski is presented. For the two

methods, there were only small variations in the time to compile each feasible compo-

nent solution. However, a significant amount of time was required to search through

each component solution in order to enumerate only the feasible component solutions.

This enumeration time was the same for both methods.
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4.8.5 Summary of Results

Results on the benchmark plans show that Chaski enables agents to perform dis-

tributed dynamic execution while (1) reasoning on flexible scheduling policies for

thousands of possible futures, and (2) often achieving execution latency within the

bounds of human reaction time (250 ms). For moderately-sized plans composed of

thousands of component solutions, 89% executed by Chaski exhibited an execution

latency within 250 ms, compared to only 24% executed using the Tsamardinos dis-

patcher.

The system's key innovation is a compact plan encoding that significantly im-

proves the ability of a robot to adapt on-the-fly. This compact representation enables

the plan to be incrementally updated very quickly. I empirically demonstrate that,

compared to prior work in this area, Chaski increases the speed of online computation

by up to one order of magnitude. A key strength of this approach is that it gener-

alizes naturally to different styles of teamwork (Chapter 5), and supports the ability

to emulate a human's response to communication and cues (Chapter 6).
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Chapter 5

Fast Distributed Multi-agent Plan

Execution for Leader and Assistant

Teamwork

5.1 Introduction

The Chaski Executive enables a team of agents to work together to execute a shared

plan under the models of teamwork: Equal Partners and Leader and Assistant. In

the previous chapter I formulated the problem of Equal Partners plan execution and

presented an efficient method for executing multi-agent temporal plans under the

Equal Partners model of teamwork.

This chapter formulates Leader and Assistant plan execution and describes meth-

ods for compiling and dispatching Leader and Assistant plans. I develop the Leader

and Assistant model as a straightforward extension to the Equal Partners model.

The Leader and Assistant model annotates the shared plan to preserve the Leader's

flexibility to act. Additionally, I show that methods for compiling and dispatching

multi-agent temporal plans under the Equal Partners model generalize naturally to

the Leader and Assistant model.

In Section 5.3, I formulate the problem of collaboratively executing a plan as
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Leader and Assistant. In Sections 5.4 and 5.5, I discuss, in a nutshell, how the methods

for collaboratively executing a plan under Equal Partners teamwork generalize to

Leader and Assistant teamwork, and present supporting work. In Sections 5.6 and

5.7 I present the algorithms for the proposed solution method in full detail, and in

Section 5.8 I present their empirical evaluation.

5.2 Illustrative Example: The Ball Scenario En-

coded for Leader and Assistant

In this section I describe the Ball Scenario (introduced in Section 4.2) in the context

of Leader and Assistant teamwork, and use it as an example throughout the chapter

to illustrate the Leader and Assistant problem formulation, as well as the methods for

compiling and dispatching multi-agent temporal plans under this model of teamwork.

Consider two robots, Left Robot and Right Robot, working together as Leader

and Assistant to execute a shared plan. Figure 5-1 shows the two robots and their

workspace. The robots must coordinate to remove one ball from each of the four

numbered locations in their communal workspace. Each robot also has one striped ball

located in its own private workspace and must pass the striped ball to the other robot

using a hand-to-hand exchange. The scenario includes temporal constraints specifying

that the task must be completed within 250 seconds. The scenario also includes

occupancy constraints specifying that each agent may only perform one activity at a

time.

Assume that the Left Robot is the Leader and the Right Robot is the Assistant.

Under the Leader and Assistant model of teamwork, the Assistant must preserve the

Leader's flexibility to freely schedule its own activity durations. For example, consider

that the Leader takes 32-39 seconds to perform the activity "Remove one ball from

Loc. 1," depending on how fast or slow the Leader chooses to work. The Assistant

must preserve the Leader's flexibility to complete the activity anywhere within this

time bound.

132



Figure 5-1: The Ball Scenario

Also, we assume that the Leader has authority over the activities: "Remove one

ball from Loc. 1-4", meaning the Assistant must not make commitments that con-

strain the Leader's ability to perform these activities next. For example, consider

the activity "Remove one ball from Loc. 1", which may be performed by either the

Leader or Assistant. The Assistant must leave the activity available for the Leader

to perform next, until the Leader makes a commitment to not perform the activity.

5.3 Problem Statement: Leader and Assistant Plan

Execution

The Chaski Executive takes as input either an Equal Partners plan or a Leader and

Assistant plan. In Chapter 4, I formulate the Equal Partners model of teamwork as a

Multi-agent Disjunctive Temporal Constraint Network (MA-DTCN), here on referred

to as an Equal Partners plan. An Equal Partners plan specifies the activities to be

performed, time bounds on how long each agent takes to perform each activity, and

temporal constraints among the plan activities. An Equal Partners plan may also

include agent occupancy constraints specifying a set of mutually exclusive activities

that an agent cannot execute simultaneously.

In this section, I formulate the Leader and Assistant model of teamwork as a
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Multi-agent Disjunctive Temporal Constraint Network with Uncertainty (MA-DTCN-

U), a straightforward extension to the Equal Partners plan. The MA-DTCN-U, also

referred to as a Leader and Assistant plan, annotates an Equal Partners plan to

preserve the Leader's flexibility to freely schedule its own activity durations. Addi-

tionally, a Leader and Assistant plan annotates the activities that the Leader claims

authority over, to ensure that the Assistant leaves these activities available for the

Leader to perform next.

The output of Chaski is a dynamic decision-making strategy, if one exists, that

ensures the team members work together to assign, schedule and execute activities

within the plan deadlines. A dynamic strategy enables an agent to make each task

assignment and scheduling decision online, right before execution, given knowledge

of the execution sequence thus far. For example, in the Ball Scenario, the Assistant

robot may dynamically decide whether to retrieve a ball from Loc. 1 or Loc. 3,

depending on whether the Leader is currently retrieving a ball from Loc. 1 or Loc.

3.

5.3.1 Input

The Chaski Executive takes as input a Leader and Assistant plan in the form of a

Multi-agent Disjunctive Temporal Constraint Network with Uncertainty (MA-DTCN-

U). The MA-DTCN-U, or Leader and Assistant plan, extends the Equal Partners

plan introduced in Section 4.3 in two ways that preserve the Leader's flexibility to

act. First, the Leader and Assistant plan includes a set-bounded representation of

uncertainty for the Leader's activity durations. For example, consider that the Leader

takes 32-39 seconds to executive activity "Retrieve ball from Loc.1." Set-bounded

uncertainty in this activity duration means that the Leader may take anywhere from

32 to 39 seconds to execute the activity, irrespective of the other temporal constraints

in the plan. The Assistant reasons on this representation of uncertainty to avoid

constraining the duration of the Leader's activities.

Second, the Leader and Assistant plan denotes a subset of the activities in the

plan that the Leader claims authority over. In the Ball Scenario example, the Leader
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has authority over the activities "Retrieve ball from Loc. 1-4." This means that the

Assistant must leave each of these activities available for the Leader to perform next,

until the Leader makes a decision to not perform the activity.

Both the Equal Partners and Leader and Assistant plans encode each activity in

terms of a begin timepoint and end timepoint. Figure 5-2 presents the begin timepoint

b and end timepoint c for the activity "Retrieve ball from Loc. 1".

Retrieve ball from Loc.1

Remove one ball from red bin

OR

{L:[32,39]cV R:[42,55]}L

Figure 5-2: Plan Activity "Remove one ball from Loc. 1" Reformulated to Timepoint
Representation

Activity durations and other temporal constraints relating timepoints (e.g., "The

entire plan must be completed within 250 seconds.") are formulated as binary con-

straints composed of simple intervals of the form:

(Xk - Xi) E [aik, bik]. (5.1)

Both the Equal Partners and Leader and Assistant plans may encode flexibility in

which agent performs each activity, and the corresponding choice in activity duration,

by specifying an agent assignment to each interval in a disjunctive binary constraint

as follows:

(Xk - Xi) E P({agent, : [aik, bik]'IEaik < bik]}), (5.2)
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For example, in Figure 5-2, the disjunctive constraint L:[32,39] V R:[42,55] between

events "b" and "c" specifies that the left robot "L" takes 32-39s to perform the

activity, while the right robot "R" takes 42-55s.

There are two key differences between the Equal Partners plan and the Leader

and Assistant plan. First, the Leader and Assistant plan encodes uncertainty in

the duration of the Leader's actions by allowing I E {c, 0} to denote set-bounded

uncertainty in the duration of an agent a's activity. The uncertain activity duration,

W, is encoded as an uncontrollable process that may last any duration between the

specified lower and upper bounds. For example, the superscript c in L : [32, 39]c

denotes the uncertain duration of the Leader's activity "Retrieve ball from Loc. 1."

Second, the Leader and Assistant plan distinguishes the activities that the Leader

has authority over by allowing q E {L, 0}, a variable specifying whether or not the

Leader claims authority over choice in task assignment for the activity composed of

events Xk, Xi. For example, the superscript L in the bc constraint {L : [32, 39]cVR :

[42, 5 5]}L denotes that the Leader has authority over the activity "Retrieve ball from

Loc. 1." This annotation encodes a discrete model of uncertainty in the Leader's

next activity. Given a subset of activities plan that the Leader may perform next,

the Leader's decision on the next activity is modeled as an uncontrollable choice over

the activities that the Leader has authority over.

Finally, both the Leader and Assistant and Equal Partners plans allow logical

agent occupancy constraints, encoded as a set S of mutually exclusive intervals that

cannot overlap in time.

Figure 5-3 presents the full plan represented as a Multi-Agent Disjunctive Tem-

poral Constraint Network with Uncertainty.

5.3.2 Output

The output of Chaski is a dynamically controllable and least-commitment policy, if

one exists, for making task assignment and scheduling decisions. The policy ensures

the team members work together to assign, schedule, and execute activities within

the plan deadlines.
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Retrieve one ball from Loc.1

k finish

/. [0,3]

Swap bMack stiped ball
[3, 0inf L:[42,55]1

r s

Agent Occupancy Constraint: Each agent may only perform one activity at a time.

Figure 5-3: Multi-robot Plan Represented as a Multi-agent Disjunctive Temporal
Constraint Network With Uncertainty
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A policy is dynamically controllable if there exists an online strategy for making

task assignments and scheduling decisions, given knowledge of all choices thus far,

that will result in a feasible schedule irrespective of exogenously-controlled choices.

Exogenously-controlled choices are plan choices modeled with an explicit representa-

tion of uncertainty. Within a Leader and Assistant plan, these include the Leader's

discrete choices about task assignment as well as real valued choices in the Leader's

activity durations.

A least-committment policy means that each agent delays decisions until right

before the commitment is made. In this case, agents delay deciding which activities

they will perform and the timing of the activities.

The execution strategy generated by Chaski under the Leader and Assistant model

is correct in that any complete task assignment and execution sequence generated by

the dispatcher also satisfies the constraints of the Leader and Assistant plan. The

execution strategy is also deadlock-free, in that any partial execution generated by

the dispatcher can be extended to a complete execution that satisfies the constraints

of the Leader and Assistant plan.

5.4 Leader and Assistant Plan Execution In a Nut-

shell

In Section 5.3 I modeled a plan to be executed under Leader and Assistant teamwork

as a Multi-agent Disjunctive Temporal Constraint Network with Uncertainty (MA-

DTCN- U), which is a straightforward generalization of the Multi-agent Disjunctive

Temporal Constraint Network introduced for Equal Partners in Section 4.3.

In this section, I provide an intuition for how the methods introduced in Chapter

4 for compiling and dispatching the Equal Partners model generalize naturally to plan

execution under the Leader and Assistant model.

As with previous approaches to dynamic execution, the methods I introduce for

compiling and dispatching Leader and Assistant plans rely on first compiling the
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plan off-line into to a form that can be efficiently executed. The compiled form of the

plan makes explicit the consequences for each agents' decisions. Agents then use this

compiled plan to make decisions quickly online. Each agent has a dispatcher that

dynamically assigns, schedules and executes activities on-the-fly, while guaranteeing

that the schedule satisfies the constraints of the plan.

I use an abridged version of the Ball Scenario to introduce the key ideas behind

my method for fast, distributed execution of a multi-agent plan under the Leader

and Assistant model. The abridged Leader and Assistant plan, presented in Figure

5-4, includes two of the activities in the original plan presented in Figure 4-2, and a

new temporal constraint that both activities must be completed within 80 seconds.

Activity bc represents the activity "Retrieve a ball from Loc. 1", and activity de

represents the activity "Retrieve a ball from Loc. 2." The abridged Ball Scenario

allows the reader to focus on the interaction of only two plan activities.

[0,80]

{L:[2,39]c V R:[42,55]}

0O,inf] [0,in

[132,39]C V R:[42,55} [0,in V
d ye

Agent Occupancy Constraint: Each agent may only
perform one activity at a time.

Figure 5-4: Leader and Assistant plan for the abridged ball scenario

Compiling a Leader and Assistant Plan

Compiling a Leader and Assistant plan to executable form requires separately compil-

ing each consistent component solution to dispatchable form. A component solution
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to a plan is defined by a full task assignment and synchronization. A task assign-

ment assigns one agent to perform each activity and then selects the corresponding

interval from each disjunctive constraint. Consider the following full task assignment

for the abridged Ball Scenario: Left Robot performs activity bc and the Right Robot

performs activity de. These task assignments correspond to the following interval

constraints: bc : [32, 29]c and de : [42, 55]. A synchronization is specified by impos-

ing a set of ordering constraints to ensure mutually exclusive intervals do not occur

simultaneously. For example, the abridged Ball Scenario specifies that each robot

may perform only one activity at a time. Figure 5-5 presents each of the consistent

component solutions for the abridged Ball Scenario, compiled to dispatchable form.

Rather than represent each component solution uniquely, I encode the solution

set in a compact representation, introduced in Chapter 4, using a Base Solution

that captures the underlying structure of the problem, and a Set of Differences that

encodes the dispatchable component solutions as perturbations of the Base Solution.

Figure 5-6 presents the compact encoding for the Leader and Assistant plan in Figure

5-4.

The Base Solution is a relaxed form of the Leader and Assistant plan, compiled

to dispatchable form, and is computed as the minimal dispatchable form for the re-

laxation where each disjunctive constraint is relaxed to a controllable unary interval

constraint. For example, consider the activity bc in the abridged Ball Scenario plan

presented in Figure 5-4. The plan encodes a disjunct, or choice, for the activity bc:

either the Left Robot performs the activity within the uncontrollable duration [32,29],

or the Right robot performs the activity within the controllable duration [42,55]. The

Base Solution represents this activity as a relaxation where the choice in activity du-

ration is relaxed to a unary interval [32,55], meaning activity bc will take somewhere

between [32,55] seconds to perform (depending on whether the Left Robot or Right

Robot performs the activity). The key feature of the relaxed plan is that it is guaran-

teed to contain all successful executions of every component solution of the Leader and

Assistant plan (See the Proof of Completeness in Section 5.6.5). Intuitively, the Base

Solution encodes information about the plan structure and constraints (activities to
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Figure 5-5: Component solutions for abridged ball scenario
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TaskAssignment

Synchronization:

bc L:[32,390, de L:[32,390

ad [ .41]
ab[ .41]

cd [O,infJ eb [Oint]

ac [ ,41] ae [,411
ab[ ,2] ad [.2]

bc L:[32,39f, de R:[42,55

ab [,41]

bc R:[42,55], de L:132,39c

ad [ ,41]

Figure 5-6: Compact Dispatchable Form for the abridged ball scenario
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be performed, ordering and temporal constraints among activities) that is common

to many of the plan's feasible component solutions. The Base Solution contributes to

the compactness of the compiled form because this information is represented once,

rather than repeatedly in the component solution set.

The Set of Differences encodes the constraint changes necessary to represent each

dispatchable component solution. The Set of Differences computed for a Leader

and Assistant plan differs from that for an Equal Partners plan in that constraint

changes preserve the Leader's flexibility to choose its own activity durations anywhere

within the specified bound. For example, recall that in the abridged Ball Scenario

the Leader may take anywhere between 32 seconds and 39 seconds to execute each

activity irrespective of the plan constraint to finish within 80 seconds. The constraint

changes are computed to ensure that the dispatch policy is robust to this uncertainty

in activity duration.

Next I use examples to demonstrate how the constraint changes in the Set of

Differences are applied to compute the dispatchable form for each component solution.

Notice that the Set of Differences in Figure 5-6 records two constraint changes with

respect to the Base Solution for the task assignment, where the Left Robot performs

both activities bc and de. The constraint changes are: ad[, 41] and ab[, 41]. Any

dispatchable solution for this task assignment can be composed, in part, by applying

these constraint changes to the Base Solution. Intuitively, these constraint changes

indicate that the Left Robot must start each activity within 41 seconds of the plan

start. This ensures that the entire plan can be completed within the deadline of

80 seconds, even though the Leader may take anywhere between 32 seconds and 39

seconds to execute each activity.

Next, I describe how the synchronization constraint changes are applied to the

Base Solution to compose a dispatchable solution. Consider the synchronization

where the Left Robot performs activity bc and then activity de. This requires intro-

ducing a synchronization constraint cd specifying that the activity bc finishes before

activity de starts. The Set of Differences in Figure 5-6 records two additional con-

straint changes for this task assignment and synchronization: ac[, 41] and ab[, 2].

143



Intuitively, these constraint changes indicate that the Left Robot must start the first

activity be within 2 seconds of the plan start, and then finish the activity within 41 sec-

onds of the plan start, to ensure the robot can perform both activities in sequence and

still complete the plan within the deadline of 80 seconds. The dispatchable compo-

nent solution, resulting from intersecting the Base Solution with the task assignment

and synchronization constraint changes, yields the same set of execution possibilities

as the corresponding component solution in Figure 5-5 (See Proof of Completeness

in Section 5.6.5).

The compact representation, composed of the Base Solution and Set of Differences

significantly reduces the number of constraints necessary to represent the solution

set, as compared to explicitly enumerating each dispatchable component solution.

For example, 31 constraints are necessary to encode the compact, compiled plan

presented in Figure 5-6. In comparison, 60 constraints are necessary to encode each

component solution explicitly, as presented in Figure 5-5. In this simple example,

the compact compiled form halves the number of constraints necessary to encode the

solution set. The empirical results presented in Section 5.8 indicate that for larger

problems, the compact compiled form reduces space to encode the solution set by

about one order of magnitude on average.

One of the key strengths of the Equal Partners compilation method, presented in

Chapter 4, is that the algorithm generalizes naturally to a method for Leader and

Assistant compilation. The Base Solution is computed using the same procedure as

for the Equal Partners plan. And, as with an Equal Partners plan, the Set of Differ-

ences for a Leader and Assistant plan is computed by perturbing the Base Solution.

Specifically, the compilation algorithm perturbs the constraints in the Base Solution

to match a task assignment or set of synchronization constraints. The compilation

algorithm then applies a set of update rules to investigate the logical consequences of

the perturbation and records the resulting constraint changes in the Set of Differences.

The rules needed to compute the Set of Differences for Leader and Assistant are

exactly the Incremental Update Rules described in (Stedl, 2004). The Incremen-

tal Update Rules include the Dynamic Back-Propagation (DBP) Rules presented in
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Chapter 4 to compute the Set of Differences for an Equal Partners plan. The In-

cremental Update Rules also include additional update rules developed specifically

for reasoning about uncontrollable durations within temporal problems (Stedl, 2004).

These additional rules are necessary to preserve the Leader's flexibility to choose its

own activity durations. Section 5.6 reviews the Incremental Update Rules and further

elaborates how the rules are applied to incrementally compile a Leader and Assistant

plan to dynamically controllable form.

Dispatching a Leader and Assistant Plan

The Equal Partners dispatch algorithm also generalizes naturally to Leader and As-

sistant. I start with a high-level review of how the Equal Partners dispatcher works,

and then discuss the Equal Partners dispatcher is extended to dispatch a Leader and

Assistant plan.

The purpose of a dispatcher is to ensure that all plan constraints are satisfied while

assigning and scheduling plan activities. Each agent maintains its own dispatcher,

and the agents' dispatchers communicate their assignment and scheduling decisions

to coordinate the plan execution. As an illustrative example, assume the plan for

the abridged Ball Scenario presented in Figure 5-4 is an Equal Partners plan. Next

I walk through how the Right Robot's dispatcher makes assignment and scheduling

decisions.

The dispatcher works by searching through each feasible task assignment and

synchronization to assemble a list of enabled activity events, which are events whose

predecessor events have all been executed. For example, consider that the Right

Robot executes event a at t = 0. This means that the Right Robot has initiated the

start of the plan. At this point, both events b and d are enabled for the Right Robot.

Event b is enabled in the component solution where the Right Robot performs activity

bc and the Left Robot performs activity de. Event b is enabled in this solution because

event a is the only event constrained to execute before the activity bc. Similarly, event

d is enabled in the component solution where the Right Robot performs activity de

and Left Robot performs activity bc.
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For each enabled event, the dispatcher iterates through the feasible task assign-

ments and synchronizations to assemble the set of feasible time windows for executing

the event. For example, the Right Robot must schedule event b, the start time of

activity bc, within 48 seconds of the plan start.

If the current time is within one of these feasible time windows, then the dispatcher

claims the activity, meaning it communicates the intention to schedule the activity

event immediately. In the case more than one agent claims the activity, the agents

apply a tie-breaking criteria to assign the activity. The dispatcher then schedules

the event, communicates this scheduling decision to other agents, and updates the

plan based on this commitment. All the while, the dispatcher is also checking for

communications indicating that other agents have claimed and scheduled activity

events. The reader is referred to Chapter 4 for further description of the Equal

Partners dispatching algorithm.

The Leader and Assistant dispatcher extends the Equal Partners dispatcher by

preserving the Leader's authority over the next choice in task assignment. Specifically,

the Assistant does not compute execution windows for any activity that the Leader

has authority over and may feasibly perform next. Next, I illustrate how the Assistant

selectively computes feasible time windows for the Leader and Assistant Ball Scenario

plan. Consider that the Right Robot, the Assistant, executes event a at t = 0. This

means that the Right Robot has initiated the start of the plan. At this point, both

events b and d are enabled for the Right Robot. However, the Right Robot does not

compute the feasible time windows for either of enabled events b or d. The reason

is that the Left Robot, the Leader, has authority over both activities bc and de and

may feasibly perform either next. The Right Robot is therefore required to hold off

from performing both these activities so as to preserve the Leader's choice to perform

one of the activities next.

In the next section, I review supporting work in temporal plans with uncertainty.

In Section 5.6, I formally present the Incremental Compilation Algorithm for com-

puting the compact compiled form of a Leader and Assistant plan and in Section 5.7

I present an algorithm that correctly dispatches this compact encoding.
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5.5 Supporting Work: Temporal Plans With Un-

certainty

In the previous sections I introduced two key ideas for modeling and executing a

Leader and Assistant plan: an explicit representation of temporal uncertainty to

model the uncertain duration of the Leader's activities, and dynamic controllability.

Both of these concepts are found in prior art on temporal plans with uncertainty. In

this section I review this supporting work, and discuss the extensions necessary to

model and execute Leader and Assistant teamwork.

In Section 4.4 I described how multi-agent temporal plans can be formulated as

Simple Temporal Problems (STPs) through a process of task assignment and synchro-

nization. The STP model assumes that the plan is executed in a fully-controllable

world, where the executive has authority to schedule start times and durations of

activities within the specified bounds. However, in the multi-agent context, in many

cases the executive controls only a subset of the plan's choices, and some choices are

made by nature or other agents. For example, a rover can control when it starts driv-

ing to a rock; however, its precise arrival time may be influenced by environmental

factors. To achieve successful execution of a partially controllable plan, the executive

must guarantee that all temporal constraints are satisfied, even though some activ-

ity durations are uncontrollable. Since it is impossible to provide such a guarantee

without any knowledge about the uncertainty in activity duration, the executive uses

a plan model that bounds the behavior of activity durations. One such model is

the Simple Temporal Problem with Uncertainty (STPU) (Vidal and Ghallab, 1996;

Vidal, 1999).

A Simple Temporal Problem with Uncertainty (STPU) is an extension of an STP

(Dechter, 1991), presented in Section 4.4, that distinguishes between controllable and

uncontrollable durations. Durations constraining the execution times of two events

may be modeled as either requirement links or contingent links. As in an STP, the

duration modeled as a requirement link is considered controllable, meaning the exec-

utive has the authority to schedule the activity duration within the specified bounds
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to guarantee plan success. In contrast, a contingent link models an uncontrollable

process whose uncertain duration, w, may last any duration between the specified

lower and upper bounds. All contingent links terminate on a contingent event whose

timing is controlled exogenously.

For example, in the Teaming Scenario introduced in Section 3.1, the duration of

Teammate l's activity "Building 1 Base" may be modeled as a contingent link. This

means that Teammate 1 may control when he or she begins executing the activity,

but the precise duration of the activity not in Teammate l's control and may fall

anywhere within the bounds specified.

An STPU is dynamically controllable if, given only observations of past events,

there exists an execution strategy that schedules controllable events online, while

guaranteeing the temporal constraints of the plan will be satisfied irrespective of

nature's choices.

The STPU shares many of the same advantages and disadvantages as the STP.

While STPUs have proven useful for many important applications, their applicability

to many problems is limited by their lack of disjunctive constraints. For example,

the STPU model cannot represent choice in interval between two events, a necessary

feature to encode the flexibility task assignment.

Prior art (Venable et al., 2010) introduced a Temporal Constraint Satisfaction

Problem with Uncertainty (TCSPU) that extends an STPU by allowing multiple

controllable and uncontrollable intervals in constraints. A TCSPU is a tuple <

Te, Tc, L, Le, C >, where Te is the set of executable events whose timing is con-

trolled by the executive, Tc is the set of contingent events whose timing is controlled

exogenously, L, is the set of requirement links, Le is the set of contingent links, and

C is a finite set of binary disjunctive temporal constraints. Te and Tc are disjoint

sets, meaning that a binary disjunctive constraint may either be composed of one or

more requirement links or one or more contingent links, but not both.

The TCSPU is a special case of a Disjunctive Temporal Problem with Uncertainty,

where C is a finite set of (possibly non-binary) disjunctive temporal constraints. I

refer the reader to (Venable et al., 2010) for further elaboration of the semantics of
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the more general DTPU constraints.

A TCSPU can be semantically viewed as a collection of component STP(U)s,

where each component STP(U) is defined by selecting one STPU constraint (i.e.

one interval) from each TCSPU constraint. A TCSPU is dynamically controllable

if there exists a dynamically controllable component STPU (Venable et al., 2010).

Intuitively, this means that there exists a dynamically controllable policy for some

choice of intervals in the TCSPU. In this definition of a TCSPU, the executive has

full control over the choice in intervals.

The TCSPU has a number of features that are useful for encoding the Leader and

Assistant model of teamwork. In particular, the TCSPU is able to encode choice in

intervals for activity duration and uncertainty in activity duration. For example, the

TCSPU may encode a choice in activity duration as a disjunct of simple intervals

constraining an activity begin and end event. The TCSPU may encode uncertainty

in an activity duration using a contingent link relating the activity begin and end

events. However, the TCSPU lacks three features necessary to represent Leader and

Assistant teamwork.

First, as with the TCSP, the TCSPU does not explicitly encode the relationship

between the discrete choice in agent assignment and the corresponding choice in

interval for activity duration. For example, the TCSPU cannot encode that agent

a takes between 7-9 seconds to perform an activity, and agent b takes between 11-

15 seconds. Without this explicit representation of agent assignment, the TCSPU

cannot encode agent occupancy constraints. For example, the TCSPU cannot encode

the constraint that each agent may only perform one activity at a time.

Second, the TCSPU assumes that the executive has full control over choice in

intervals. However, in Leader and Assistant, the Assistant's choice of task assignment

may be constrained exogenously by the Leader. Specifically, the Assistant must not

choose to perform an activity that the Leader has both claimed authority over and

may perform next, until the Leader makes a commitment to not perform the activity.

Third, the TCSPU by definition does not permit disjuncts of both requirement

and contingent links within the same binary constraint. This means that a single
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activity cannot contain a choice between a controllable and uncontrollable duration.

This is a significant limitation for encoding Leader and Assistant teamwork for the

following reason. According to the Leader and Assistant decision-making strategy,

the Leader may choose to take any amount of time to execute an activity within

the specified bounds irrespective of the temporal constraints. The Leader's activity

durations may be modeled as uncontrollable durations. In contrast, the Assistant has

full control of the timing of its actions and makes scheduling decisions to guarantee a

temporally and logically consistent execution. The Assistant's activity durations may

be modeled as controllable durations. As a consequence, the TCSPU cannot model

the choice in activity duration when either the Leader or Assistant may perform

the activity, because this would require a disjunctive constraint composed of both a

controllable and uncontrollable duration.

5.6 Incremental Compilation Algorithm for Multi-

agent Temporal Plans With Uncertainty

In this section I present the Incremental Compilation Algorithm (ICA-MAP-U) for

compiling an MA-DTCN-U to a compact dispatchable form. ICA-MAP-U is a gener-

alization of the ICA-MAP algorithm introduced in Chapter 4 that compiles a compact

representation by incrementally computing constraint modifications for task assign-

ments and synchronizations. The key idea behind ICA-MAP-U is to apply Incre-

mental Update Rules, described in (Stedl, 2004), to systematically investigate and

record the logical consequences that a particular task allocation and synchroniza-

tion imply for future scheduling policies. The Incremental Update Rules include the

Dynamic Back-Propagation (DBP) Rules for controllable constraints, as well as ad-

ditional update rules developed specifically for reasoning on uncontrollable durations

within temporal problems.

First, I describe supporting work on the incremental update of partially control-

lable dispatchable plans and review the Incremental Update Rules. Next, I present
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the ICA-MAP-U algorithm and detail how I apply the Incremental Updates Rules to

compute a compact, dynamically controllable form for a Leader and Assistant plan.

5.6.1 Incremental Update Rules

The Incremental Update Rules, first presented in (Stedl, 2004), were developed to

incrementally infer the consequences of small changes to partially controllable plans

modeled as STPUs. During plan execution, a significant disturbance may require

recovering by modifying a plan through a plan repair or re-planning process. Modifi-

cations to the plan may involve adding, removing, or otherwise changing constraints

in the STPU. The STPU must then be quickly compiled back to a dynamically con-

trollable dispatchable form. (Shah et al., 2007) introduced an incremental algorithm

that applies the Incremental Update Rules to maintain dispatchability of STPUs in

response to plan changes.

The Incremental Update Rules include the Dynamic Back-Propagation (DBP)

Rules for controllable constraints, and as well as additional update rules developed

specifically for reasoning on uncontrollable durations within temporal problems (Stedl,

2004). In addition to tightening constraints, the Incremental Update Rules add con-

straints, called conditional constraints, to the plan to preserve flexibility at execution

for uncontrollable durations. When a constraint is tightened, the Incremental Up-

date Rules are used to propagate the logical consequences of this constraint change

throughout the network. I briefly review the Incremental Update rules, since they

are the basis of the incremental algorithm for compiling a Leader and Assistant plan

to a dynamically controllable form.

The Incremental Update Rules, their conditions of use and effects are presented in

Table 5.1. The rules, like the DBP rules, are applied to the distance graph encoding

of the problem. In the distance graph, each link of the STPU, containing both lower

and upper bounds, is converted to a pair of edges in the distance graph. One edge

in the forward direction is labeled with the value of the upper time bound, and one

edge in the reverse direction is labeled with the negative of the lower time bound.

The distinction between contingent and requirement edges is maintained.
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Table 5.1: Incremental Update Rules

Graphical Pre-cond.iions Post- conditions Derivation
Description

I) Edge AB is changed to a I(- Create new reqt. edge AC if DBP(i & i)
regt. edge and edge BC is edge none exists or tighten if 4-

x BC :s a 1-) reqt. Cdge. x)< existingz edge
2) Edge BC is changed to a ( )

rqt edge and edge AB is a (+)

ret. edge.

2 1) Edge BA is changed to a - Create new ret. edge CA if Procede Reduction

reqt edge and edge C13 is (+) cont none exists or tighten if(x- jMorris 200119dAge. z)< ex'stxng edge.
I2) Edge BC is changed to a (-

ztnt edge and edge BA is a-)

reqi Edge.

Edge AB is changed to a -) Crete new reqt. edge AC if Precede Reduction

reqt edge and edge CB is (-) cent none exists or tighter if (z- (Morris 20011

12) Edge CB iL changedtoa et-

zentt edge and AB; rcqt.
edge.

H Edge BA LS changed to I+ regt Create cond. edge AC. f(y- Un-ordered Reduction
4 edge and edge B3C is a (-I cont. zx then convert the (Morris 20011

edge conditional constraint into a
<3, v 2) Edge C1 is changed to a - requirement edge CA wit

cent. edge and edge BA is a f-) distance x.

reqg. edge .

) Edge Al rL changed to a N Create ctrd edge AC :f(x- Regression Morris

reqt edge, there ex:sts a z<the b of cont:ngen Lnk 20011

:ondmuonal constraint BC, and D. ending on D, ther convert
0 A the condittona consrant

D. z -4 0
2) Conditioral const:aint BC is into a requirerent edge AC

tnged. edge AlB is a I -) re4t with distance to.

ede and D A.

6 ) Conditional constraint BA is Create cord. edge CA- If (- Regression (Morris
changed and there exists a (+) x)< the b of contingent lnn 20011

or. edge (13 ending on D, ten convert
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D x-t Y~U-11-1C-eA

crt. edge and there exists a into a requirement edge AC

crnd:tzcon:.l constrairt [BA. with distarcc L).
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The first incremental update rule encodes the two Dynamic Back-Propagation

(DBP) rules developed for reasoning on controllable intervals. The other rules are

introduced to preserve flexibility at execution for uncontrollable durations.

Consider Incremental Update Rules 2 and 3 presented in Table 5.1. These rules

deal with the situation where an event A is executed before the contingent event

B. In this case, the dispatcher will never know the execution time of the contingent

event B when it needs to schedule event A. To maintain dynamic controllability, the

dispatcher must avoid a situation in which uncontrollable duration BC is squeezed

due to propagation from constraint AB during dispatching. To ensure this does not

happen, the dispatcher must constrain the temporal relationship between timepoints

A and C such that, no matter how long uncontrollable duration BC takes within

[x, y], timepoint A can be executed to satisfy the constraint AB. These update rules

achieve this guarantee by tightening the edges AC and CA as indicated.

Incremental Update Rule 4 addresses the situation when the execution of A and

B are unordered. In this case, we introduce a conditional constraint to prevent prop-

agations from possibly squeezing the uncontrollable duration AB during dispatching.

If C is executed before B, as in the previous situation described, constraint CA must

be tightened to ensure that no matter how long uncontrollable duration CB takes

within [x, y], constraint AB will be satisfied. If B is executed before A, then the dis-

patcher knows the execution time of B when scheduling event A, and tightening CA

is not necessary. This conditional tightening is encoded by introducing a new type

of constraint called a conditional constraint. For example, a conditional edge GC

labeled < -3, D > specifies that G must wait at least 3 time units after C executes

or until D executes, whichever comes first. If the conditional constraint requires that

A always be executed before B, then the edge is unconditional and is converted into

a requirement edge as described in the rules below.

Incremental Update Rules 5 and 6 are used to propagate the consequences of the

new conditional constraints throughout the problem. They ensure that the condi-

tional constraints are not violated at execution and are satisfied for all outcomes of

uncontrollable events. Recursively applying these rules when an edge is tightened
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will either expose an inconsistency or result in a dynamically controllable dispatch-

able graph (see Stedl (2004)). In this chapter I generalize upon the Incremental

Update Rules to incrementally compile a Leader and Assistant plan to a dynamically

controllable form. Specifically, I apply the Incremental Update Rules to compute the

Set Of Differences, as discussed in the next three sections.

5.6.2 Top-level Pseudo-code for ICA-MAP-U

ICA-MAP-U takes as input a Multi-Agent Disjunctive Temporal Constraint Network

With Uncertainty, G, and returns a compact encoding of the scheduling policies for

feasible task assignments and synchronizations in the form of S, the Base Solution,

and L(T, C), the Set of Differences. The top-level pseudo-code for ICA-MAP-U is

presented in Algorithm 6.

The algorithm is composed of the same four main steps as ICA-MAP, presented in

Chapter 4. Steps 1 and 2 compute the Base Solution, and Steps 3 and 4 compute

the Set of Differences.

Step 1 relaxes the MA-DTCN-U (G) to a relaxed plan encoded as a Simple

Temporal Problem (S) (Line 2). This is accomplished by relaxing each disjunctive

binary constraint to a simple interval. The distinction between requirement links and

contingent links within the MA-DTCN-U is disregarded when constructing the relaxed

STP. For each disjunctive constraint, a new simple temporal constraint is constructed

using the lowerbound and upperbound of the union of intervals in the disjunctive

constraint. For example, consider the activity bc in the abridged Ball Scenario plan

presented in Figure 5-4. Activity bc is encoded as a disjunctive constraint L : [32, 29]c

V R : [42, 55], specifying the choice: either the Left Robot performs the activity

within the uncontrollable duration [32,29], or the Right robot performs the activity

within the controllable duration [42,55]. In Step 1, this disjunctive constraint is

relaxed to a unary interval [32,55], meaning activity bc will take somewhere between

[32,55] seconds to perform (depending on whether the Left Robot or Right Robot

performs the activity).

Step 2 then compiles the resulting STP to dispatchable form to create the Base

154



Algorithm 6 Top-level Pseudo-code for ICA-MAP-U
1: procedure ICA-MAP-U(G)
2: S +- Relax-Network-to-STP(G)
3: S <- Compile-STP-to-Dispatchable-Form(S)
4: if S is inconsistent then
5: return FALSE
6: end if

7: L(T, C) +- Initialize-Task-Allocation-Synchronization-List
8: for each full task assignment (Ti) do
9: Qj &- add-Ti-constraints-to-queue

10: L(T) <- BACKPROPAGATE-TASK-ASSIGN-U(Q,, S, L(T))
11: if BACKPROPAGATE-TASK-ASS1GN-U returns false then
12: clear L(T) and goto Line 8
13: end if
14: C, +- Synchronize-Task-Assignment(Ti)
15: for each synchronization y in C, do
16: Qy +- add-Cy-ordering-constraints-to-queue
17: L(T, Cy) +- BACKPROPAGATE-SYNCH-U(Qy, S, L(T, Cy))
18: if BACKPROPAGATE-SYNCH-U returns FALSE then
19: clear L(T) and goto Line 15
20: end if
21: end for
22: end for
23: if L(T, C) is empty then
24: return FALSE
25: else return S and L(T, C)
26: end if
27: end procedure
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Solution (Line 3). Figure 5-6 presents the Base Solution for the Leader and Assistant

plan presented in Figure 5-4. If the Base Solution is inconsistent, then there is no

solution to the multi-agent plan and ICA-MAP-U returns false (Line 5). If the Base

Solution is consistent, then Line 7 initializes a data structure L(T, C) to record the

Set of Differences containing the scheduling policies for feasible task assignments (T)

and their synchronizations (C).

Step 3 computes the constraint changes for each full feasible task assignment,

and records the constraint changes in the Set of Differences. In Line 8, the algorithm

iterates through each full task assignment. For example, the Leader and Assistant

plan in Figure 5-4 encodes four full task assignments: either (1) the Left Robot

performs both activities bc and de, (2) the Right Robot performs both activities

bc and de, (3) the Left Robot performs activity bc and the Right Robot performs

activity de, and (4) the Right Robot performs activity bc and the Left Robot performs

activity de. For each full task assignment T, the constraints associated with T are

placed on a queue Qt (Line 9). In the example, assume that initially the interval

constraints associated with the first of these assignments are placed on the queue:

Qt = {bc[32, 39]c, de[32,39]'}.

Each constraint in Qt implies the tightening of a constraint in the Base Solution

S. The function BACKPROPAGATE-TASK-ASSIGN-U propagates the effect of these

constraint tightenings throughout S (Line 10) to compute the constraint changes for

each full task assignment. Any dispatchable solution for this task assignment can

be composed, in part, by applying these constraint changes to the Base Solution.

For example, given Qt = {bc[32, 39]C, de[32, 29]c} for the plan presented in Figure 5-

4, BACKPROPAGATE-TASK-ASSIGN-U derives constraint modifications for the upper

bound of ab: [, 41] and the upper bound of ad: [, 41]. Intuitively, these constraint

changes indicate that the Left Robot must start each activity within 41 seconds of

the plan start. This ensures that the entire plan can be completed within the deadline

of 80 seconds, even though the Leader may take anywhere between 32 seconds and

39 seconds to execute each activity.

The modified constraints associated with task assignment T are recorded in L(T).
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During this process, typically only a subset of the constraints in the relaxed network S

must be modified and recorded, contributing to the compactness of the representation.

If back-propagation results in a temporal inconsistency, or else implies strictly

tighter bounds on an uncontrollable duration, then the task assignment T is not dy-

namically controllable and the algorithm continues with the next full task assignment

(Line 12).

Step 4 computes the constraint changes for each feasible synchronization of each

full feasible task assignment, and records the constraint changes in the Set of Dif-

ferences. Given a consistent task assignment T, Line 14 collects the set of synchro-

nizations for T, and then Line 15 iterates through each synchronization y. Each

synchronization y imposes a set of ordering constraints on the plan activities. For

example, consider the task assignment: LeftRobot : bc[32, 39], LeftRobot : de[32, 39].

Any possible synchronization of this task assignment must provide a strong order-

ing on the activities performed by the Left Robot, for example, either bc -+ de or

de --+ bc. In the example, let's assume that initially the interval constraints associated

with synchronization bc -+ de are added to the queue, Q, = {cd[0, inf]} (Line 16).

The function BACKPROPAGATE-SYNCH-U then propagates the effect of these

ordering constraints throughout the network (Line 17) to compute the constraint

changes for each synchronization. In our example, the function BACKPROPAGATE-

SYNCH-U derives two modified constraints from the ordering constraint cd[0, inf].

These constraint changes are: ac[, 41] and ab[, 2]. Intuitively, these constraint changes

indicate that the Left Robot must start the first activity bc within 2 seconds of the plan

start, and then finish the activity within 41 seconds of the plan start. This ensures

the robot can perform both activities in sequence and still complete the plan within

the deadline of 80 seconds. These constraints are recorded in L(T, Cy) as follows:

L(Lef tRobot : bc[32, 39]C; Right Robot : de[32, 29]c, cd[0, i'nf]) = {ac[, 41], ab[, 2]}.

If back-propagation of a synchronization y results in a temporal inconsistency, or

else implies strictly tighter bounds on an uncontrollable duration, then that synchro-

nization y and its derived constraints are removed from L(T, C), and the algorithm

continues with the next synchronization (Line 19). For example, any synchronization
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is temporally inconsistent for the task assignment where the Right Robot performs

both activities bc and de. The Right Robot takes at least 84 seconds to perform

both activities in sequence and therefore cannot meet the constraint to finish the

plan within 80 seconds. The function BACKPROPAGATE-SYNCH-U identifies this

temporal inconsistency and removes the infeasible task assignment and synchroniza-

tions from the Set of Differences in L(T, C). If L(T, C) remains empty after iterating

through all full task allocations and synchronizations, then there is no solution to the

multi-agent plan and ICA-MAP-U returns false.

The output of ICA-MAP-U, if it exists, is S, the Base Solution and L(T, C), the

Set of Differences. As stated before, together the Base Solution and Set of Differences

compactly encode the scheduling policies for feasible task assignments and synchro-

nizations. The dispatchable solution for any feasible task assignment T and any

feasible synchronization y of T can be composed by applying the constraint changes

computed for T and y to the Base Solution. For example, the dispatchable solution

for task assignment LeftRobot : bc[32, 39]C; RightRobot : de[32, 29]c and synchroniza-

tion cd[0, iif] can then be computed by applying the following constraint changes

to the Base Solution: LeftRobot : bc[32, 39]c, RightRobot : de[32,29]c, cd[O,inf],

ab[, 41], ad[, 41], ac[, 41], and ab[, 2].

The key to compactly encoding the scheduling policies for feasible task allocations

and synchronizations lies in how the two functions BACKPROPAGATE-TASK-ASSIGN-

U and BACKPROPAGATE-SYNCH-U apply the Incremental Update Rules to compute

the constraint changes in the Set of Differences. Next, I walk through each of these

functions.

5.6.3 Pseudo-code for Backpropagate-Task-Assign-U

The function BACKPROPAGATE-TASK-ASSIGN-U, presented in Algorithm 7, com-

putes the constraint changes for each full task assignment. The function takes as

its input the queue of task assignment constraints Qt corresponding to one full task

assignment T, the Base Solution S, and the Set of Differences list L(T) that records

the constraint modifications for task assignment T. As an example, consider calling
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BACKPROPAGATE-TASK-ASSIGN-U for the task assignment: LeftRobot : bc[32, 39],

LeftRobot : de[32, 39]. In this case, the input queue contains the following intervals

corresponding to this task assignment: Qt = {bc[32, 39]c, de[32, 29]C}. The function

also takes as input the Base Solution presented in Figure 5-6 and the Set of Differences

list L(LeftRobot : bc[32, 39}, LeftRobot : de[32, 39]).

The function computes the derived constraints for task assignment T and returns

them in the list L(T). In our example, the derived consequences for the task assign-

ment LeftRobot : bc[32, 39], LeftRobot : de[32, 39] are the constraint changes ab[, 41]

and ad[, 41].

The function BACKPROPAGATE-TASK-ASSIGN-U generalizes BACKPROPAGATE-

TASK-ASSIGN, introduced in Chapter 4, by computing derived constraints for task

assignments with both controllable and uncontrollable activity durations.

Algorithm 7 Pseudo-code for BACKPROPAGATE-TASK-ASSIGN-U

1: procedure BACKPROPAGATE-TASK-ASSIGN-U(Qt, S, L(T))
2: for each constraint ej in Qt do
3: add ej to L(T)
4: for each Incremental Update Rule propagating ej do
5: deduce-new-constraint-zi(ei, S, L(T))
6: if is-pos-loop(zi) then
7: goto Line 2
8: end if
9: if is-neg-loop(zi) or zi-tightens-contingent-link(zi, S, L(T)) then

10: return FALSE
11: end if
12: if zi-is-tightening(zi, S, L(T)) then
13: L(T) <- add zi to L(T)
14: Q, +- add zi to Q,
15: end if
16: end for
17: end for
18: BACKPROPAGATE-TASK-ASSIGN-U(Q, S, L(T))
19: return L(TI)
20: end procedure

First, Lines 2 and 3 add each constraint ej in Qt to L(T). Line 4 applies the

Incremental Update Rules to infer the effects of each constraint change ej. The

inferred constraints encode the changes to the Base Solution that are necessary to
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assemble any dispatchable solution for the task assignment Ti.

Line 5 deduces new constraints using the Incremental Update Rules as follows.

First a network S' associated with task assignment T is created by intersecting the

constraints in L(T) with the constraints in S. In our example, the new network S' is

created by replacing the constraints R, L : bc[32, 55] and R, L : de[32, 55] in the Base

Solution with bc[32, 39]C and de[32, 39]c, respectively.

Next, the Incremental Update Rules are applied to propagate the effect of the

constraint changes bc[32, 39]c and de[32, 39]c throughout the network S'. For exam-

ple, using Incremental Update Rule 3, edge bc in S', corresponding to activity bc's

upperbound duration of 39, is propagated through edge ac of distance 80 in S' to

deduce a new constraint zi = 41 on edge ab.

Propagation terminates in two cases: (Case 1) all effects have been inferred for

each constraint change ej, or (Case 2) the function returns false during propagation,

meaning that the task assignment T is not feasible.

BACKPROPAGATE-TASK-ASSIGN-U detects that all constraints have been inferred

for a constraint change ej if back-propagation deduces a new constraint zi, and zi is

a positive self-loop. In this case the new constraint zi does not have to be recursively

propagated and the algorithm continues at Line 4. As explanation, recall that a

positive self-loop in a distance graph specifies that the temporal distance t, between

an event v and itself must be less than or equal to the value zi (t, - t, < zi). If zi > 0

then the temporal distance constraint is satisfied.

BACKPROPAGATE-TASK-ASSIGN-U may return false, meaning that the task as-

signment T is not feasible, in two circumstances: (1) either the effects of a constraint

change ej result in a temporal inconsistency, meaning that the temporal constraints

of the plan cannot be satisfied for the given task assignment, or (2) the task assign-

ment is not dynamically controllable, meaning that the dispatcher cannot provide the

Leader full flexibility to choose its own activity duration within the specified bounds

and still guarantee that the constraints of the plan will be satisfied.

BACKPROPAGATE-TASK-ASSIGN-U detects a temporal inconsistency if back- prop-

agation deduces a new constraint zi, and zi is a negative self-loop, meaning zi < 0.
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A negative self-loop indicates that the temporal distance t, between an event v and

itself must be less than or equal to the value zi (t, - t, ; zi), which is not satisfied

for zi < 0. In this case, propagation has exposed a temporal inconsistency and the

function returns false.

If the exposed constraint zi implies strictly tighter bounds on an uncontrollable

duration, then that uncontrollable duration is squeezed (Morris et al. 2001) and the

task assignment is not dynamically controllable. In this case there exists a situation

(Vidal 1999) where the outcome of the uncontrollable duration results in no feasible

schedule of controllable events to satisfy the task assignment, and so the function

returns false.

If zi is neither a positive nor negative loop, then Line 12 checks to determine

whether zi is tighter than the corresponding constraint in S'. For example, the

deduced constraint 41 on edge ab is tighter than the edge ab of 48 in S'. If so, zi is

recorded in L(Ti) and added to the queue Q, for further propagation (Lines 13 and

14). The constraints of Q, are recursively propagated through the network in Line

18. The output of BACKPROPAGATE-TASK-ASSIGN-U is the data structure L(T),

which records the constraint modifications to the Base Solution S that are necessary

to assemble any dispatchable solution for the task assignment Ti.

5.6.4 Pseudo-code for Backpropagate-Synch-U

In the previous section I walk through how the ICA-MAP-U algorithm computes

the Set of Differences constraint changes for a task assignment T using the function

BACKPROPAGATE-TASK-ASSIGN-U. Next I present the function BACKPROPAGATE-

SYNCH-U, presented in Algorithm 8, that computes the constraint changes for each

synchronization of the task assignment Ti.

The function takes as its input the queue of synchronization constraints QV for a

task assignment T, the Base Solution S, and the Set of Differences list L(T, C) that

records the constraint modifications for task assignment T and its synchronization y.

As an example, consider calling BACKPROPAGATE-SYNCH-U for the task assignment

LeftRobot : bc[32,39], LeftRobot : de[32,39] and the synchronization constraint
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cd[O, inf]. In this case, the input queue contains the synchronization constraint

Qy = {cd[O,inf]}. The function also takes as input the Base Solution presented

in Figure 5-6 and the Set of Differences list L(LeftRobot : bc[32,39]; LeftRobot

de[32, 39], cd[O, if]).

The function computes the derived constraints for the synchronization y of task

assignment T, and returns them in the list L(T, C). In our example, the derived

consequences for the task assignment LeftRobot : bc[32, 39], LeftRobot : de[32, 39]

and synchronization cd[O, inf] are the constraint changes ac[, 41] and ab[, 2].

The function BACKPROPAGATE- SYNCH-U generalizes BACKPROPAGATE-SYNCH,

introduced in Chapter 4, by computing derived constraints for task assignments and

synchronizations with both controllable and uncontrollable activity durations.

BACKPROPAGATE-SYNCH-U applies the Incremental Update Rules to deduce con-

straint modifications in much the same way as BACKPROPAGATE-TASK-ASSIGN-U.

The inferred constraint encode the changes to the Base Solution that are necessary

assemble any dispachable solution for the task assignment T and synchronization y.

First, Lines 2 and 3 add each constraint ej in Q, to L(T, Cy). Line 5 deduces new

constraints using the Incremental Update Rules. First a network S" associated with

task assignment T and synchronization y is created by intersecting the constraints in

L(T, Cy) with the constraints in S. In our example, the new network S" is created

by replacing the constraints R, L : bc[32, 55] and R, L : de[32, 55] in the Base Solution

with bc[32, 39]C and de[32, 39]c, respectively, and then tightening the constraint cd in

the Base Solution to cd[O, 16].

Next, the Incremental Update Rules are applied to propagate the effect of the

constraint changes in Qy = {cd[O, inf]} throughout the network S". For example,

using Incremental Update Rule 1, edge dc in S", corresponding to temporal constraint

cd's lowerbound of 0, is propagated through edge ad of distance 41 in S" to deduce a

new constraint zi = 41 on edge ac.

If back-propagation deduces a new constraint zi, which is tighter than the corre-

sponding constraint in 5", then Lines 13-21 perform computations to refactor L(T, C)

such that constraints common to all feasible synchronizations of T are recorded in
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Algorithm 8 Pseudo-code for BACKPROPAGATE-SYNCH-U
1: procedure BACKPROPAGATE-SYNCH-U(y, Q,, S, L(Ti, C))
2: for each constraint ej in Q, do
3: add ei to L(Ti, Cy)
4: for each Incremental Update Rule propagating e do
5: deduce-new-constraint-zi(e2 , S, L(T, Cy))
6: if is-pos-loop(zi) then
7: goto Line 2

8: end if
9: if is-neg-loop(zi) or zi-tightens-contingent-link(zi, S, L(T)) then

10: return FALSE
11: end if

12: if zi-is-tightening(zi, S, L(T, Cy)) then
13: if L(T) contains a constraint f with e's start and end events then
14: L(T, C) -add f
15: L(T, Cy) 4- replace f with ei
16: L(T) +- remove f
17: end if
18: if L(T, C) all contain ej then
19: L(T) +- add e
20: L(T, C) +- remove e,
21: end if
22: Q, +- add z, to Q,
23: end if
24: end for
25: end for
26: BACKPROPAGATE-SYNCH-U(y, Qn, S, L(T, C))
27: return L(T) and L(T, C)
28: end procedure
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L(T). In Line 22, zi is added to the queue Q, for further propagation. The constraints

of Q, are recursively propagated through the network in Line 26. BACKPROPAGATE-

SYNCH-U returns L(T) and L(T, C), which record the constraint modifications to S

that ensure synchronized execution of the task assignment T. The refactoring pro-

cess in Lines 13-21 ensures that constraints common to all of Ti's synchronizations

are recorded once, contributing to the compactness of the encoding.

5.6.5 Completeness of ICA-MAP-U

In the previous sections, I present the ICA-MAP-U algorithm for compiling a Leader

and Assistant plan to a compact dispatchable form. The definition of the Leader

and Assistant dispatchable form is that it preserves the set of task assignment and

scheduling sequences attained by compiling each component solution to dynamically

controllable form using the DC algorithm (Morris et al., 2001). In this section, I show

that ICA-MAP-U produces a dispatchable form using the Incremental Update Rules,

rather than by directly applying the DC algorithm to each component solution.

Theorem: ICA-MAP-U is complete in that it compiles an MA-DTCN-U to a

dispatchable form that preserves the set of task assignment and scheduling sequences

attained by compiling each component solution to dynamically controllable form using

the DC algorithm (Morris et al., 2001).

Proof Sketch: First (Lemma 1) I show that when a constraint is tightened in

a dispatchable Simple Temporal Problem With Uncertainty (STPU), the Incremen-

tal Update Rules may be applied to recompile the modified STPU to a dynamically

controllable form that preserves the set of execution possibilities attained by compil-

ing the modified STP(U) to dynamically controllable form using the DC algorithm

(Morris et al., 2001).

Next, I generalize this result to a temporal network with disjunctive constraints. I

show that ICA-MAP-U applies the Incremental Update Rules to systematically infer

and record the effect of all possible sets of disjuncts on the other constraints in the

problem (Lemma 2). The feasible sets of disjuncts, therefore, preserve exactly the

set of execution possibilities attained by compiling each feasible component STP(U)
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separately.

Lemma 1: The Incremental Update Rules may be applied to recompile a tight-

ened STPU to a dynamically controllable form that preserves the set of execution

possibilities attained by compiling the modified STPU to dynamically controllable

form using the DC algorithm (Morris et al., 2001).

Proof: The dynamic controllability (DC) algorithm introduced by (Morris et al.,

2001) reformulates a distance graph with uncertainty (DGU) to ensure that each

uncontrollable duration, wi, is free to finish any time between [li, uj], as specified by

the contingent link, C. The first step of the algorithm (1) computes the APSP-graph

of the DGU using the Floyd-Warshall algorithm (Cormen et al., 2001) in order to

expose implicit temporal constraints. Exposing implicit constraints is necessary to

ensure events are scheduled in the proper order, and with requisite temporal distances

between events. I have previously shown in Section 4.6.4 that the Dynamic Back-

Propagation (DBP) rules (i.e Incremental Update Rule 1) may be applied to recompile

a tightened STP to a dispatchable form that preserves the set of execution possibilities

attained by compiling the modified STP to the All-Pairs-Shortest-Path dispatchable

form.

If the exposed constraints imply strictly tighter bounds on an uncontrollable dura-

tion, then that uncontrollable duration is squeezed (Morris et al., 2001) and the plan is

not dynamically controllable. In this case there exists a situation (Vidal 1999) where

the outcome of the uncontrollable duration results in no feasible schedule of con-

trollable events to satisfy the STNU. An STNU is pseudo-controllable (Morris et al.,
2001) if it is both temporally consistent and none of its uncontrollable durations are

squeezed.

However, even if an STNU is pseudo-controllable, the uncontrollable durations

may be squeezed at execution time (Morris et al., 2001) as follows. When the dis-

patcher executes a timepoint, it fixes the value of the timepoint. Updating the implicit

constraints based on this value may then squeeze, meaning imply tighter bounds, on a

contingent link. To avoid squeezing uncontrollable durations, the DC algorithm, Step

(2) adds constraints to the plan. The constraints take the form of simple temporal
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constraints and conditional constraints (or wait constraints) and are applied according

to the Precede, Un-ordered, and Unconditional Unordered Reduction rules described

in (Morris et al., 2001). Incremental Update Rules 2 and 3 apply together apply

the same computation as the (Morris et al., 2001) Precede Reduction. Incremental

Update Rule 3 applies the same computation as the (Morris et al., 2001) Un-ordered

Reduction, and Incremental Update Rules 5 and 6 apply the same computation as

the (Morris et al., 2001) Regression Rules.

Lemma 2: ICA-MAP-U applies the Incremental Update rules to systematically

infer and record the effect of all possible sets of disjuncts on the other constraints in

the problem.

Proof: First (1) I show that the relaxed dispatchable form of the Base Solution is

guaranteed to contain all successful executions of every component STP of the MA-

DTCN. Next (2) I show that ICA-MAP-U systematically applies the Incremental

Update Rules to infer and record the effect of all possible sets of disjuncts on the

other constraints in the problem.

(1) Consider the MA-DTCN G where events are related through constraints of

the form:

(Xk - Xi) E ({[aal,' <b} V bn)'|al b'}). (5.3)

In the relaxed form of the Base Solution of G, events are related through con-

straints of the form: (Xk - Xi) E ({[lik, Uikj 1ik Uiktk}) where lik c {aa,... ai}

Uik E {bjk, ... , b-}, lik {aik, ... , a , bik, ... ,bg}, and Uk ,ik,..., ai, bi, ... , bi

Since the constraints in the relaxed form are strictly looser than the constraints

in any component STP(U), it follows that the All-Pairs-Shortest-Path dispatchable

form of the relaxed problem must contain all successful executions of every component

STP(U).

(2) An MA-DTCN-U includes two types of choices that encode the family of com-

ponent STP(U)s: choice is task assignment and synchronization. Each full task as-

signment corresponds to choosing one disjunct of each binary disjunctive constraint,
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and synchronization involves choosing ordering constraints among activities time-

points in a given task allocation. ICA-MAP-U explicitly enumerates every possible

task assignment and synchronization (Lines 8,15) thus enumerating all possible com-

ponent STP(U)s in the MA-DTCN-U.

5.7 Dispatching Algorithm for Fast, Distributed

Execution of Multi-agent Temporal Plans With

Uncertainty

Thus far I have presented ICA-MAP-U, which compiles a Leader and Assistant plan

to a novel, compact encoding that supports fast dynamic scheduling. In this section,

I describe how to schedule in real-time the compact compiled form.

The compact compiled form is composed of the Base Solution S and the Set of

Differences with respect to the base L(T, C). The dispatching algorithm FAST-MAP-

U-DISPATCH, introduced in this section, operates on this compact encoding to assign

and schedule activity events online just-in-time before executing the event.

The function FAST-MAP-U-DISPATCH is largely identical to FAST-MAP-DISPATCH

introduced in Chapter 4. The key difference between the two functions is that FAST-

MAP-U-DISPATCH computes feasible execution windows differently for Assistant

and Leader to ensure that the Assistant's actions preserve the Leader's flexibility

to act. Specifically, the Assistant selectively computes execution windows for any

activity that the Leader has authority over and may feasibly perform next. This

selective computation of execution windows ensures the Assistant's commitments do

not restrict the Leader's next choice of action. Any complete execution sequence

generated by the dispatcher is guaranteed to satisfy the constraints of at least one

feasible component solution of the Leader and Assistant plan.
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5.7.1 Top-level Pseudocode for Fast-MAP-U-Dispatch

The purpose of the dispatcher is to ensure all plan constraints are satisfied when

assigning and scheduling plan activities. The function FAST-MAP-U-DISPATCH,

presented in Algorithm 9, dispatches a compiled Leader and Assistant plan. The

function takes as input the compiled plan in the form of the Base Solution S, and the

Set of Differences L(T, C), which records the constraint changes with respect to the

Base Solution that are necessary to represent each dispatchable component solution.

Plan execution is distributed in that each agent maintains its own dispatcher and

the agents' dispatchers communicate their assignment and scheduling decisions to

coordinate plan execution. In this section I present FAST-MAP-U-DISPATCH and, as

an illustrative example, I walk through the first few steps in dispatching the compiled

Leader and Assistant plan for the Ball Scenario presented in Figure 5-6.

In performing distributed dispatching of the plan, each agent keeps a list E of

the events currently enabled for other agents, and keeps a list ESELF of the events

currently enabled for itself. An event N is enabled for an agent A if there exists some

feasible synchronization where: the event N is assigned to agent A and all events that

are constrained to occur before event N have already been executed. Lines 2 and 3

initialize E and ESELF. Initially, the plan's epoch start event is placed in either E,

ESELF or both, depending on the event's enablement conditions. For example, let's

consider dispatching the Ball Scenario Plan from the perspective of the Right Robot,

the Assistant. Initially event a, the plan start event, is the only enabled timepoint.

This timepoint represents the plan epoch and in Lines 2-3 FAST-MAP-U-DISPATCH

begins by initializing both E and ESELF with a. Intuitively, this means that either

agent, the Left Robot or Right Robot, can signal the start of the plan execution for

the Ball Scenario.

Next, in Lines 4-9 the dispatcher computes WE and WSELF, the feasible execution

windows for events in E and ESELF, respectively. In our example, either agent may

begin executing the plan at any time and so the execution windows for event a are

initialized follows: WE [{, inf]a} and WSELF - {{O, Mf)a}. Line 10 initializes the
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Algorithm 9 Pseudo-code for FAST- MAP- U- DISPATCH
1: procedure FAST-MAP- U-DISPATCH(S, L(T, C))
2: E +- Initialize-other-agents'-enabled-list
3: ESELF t- Initialize-self-agent's-enabled-list
4: {WE} j- Initialize-other-execution-window-list
5: if SELF=ASSISTANT then
6: {WSELF} - Initialize-assistant-execution-window-list
7: else
8: {WSELF} - Initialize-self-execution-window-list
9: end if

10: current Time = 0
11: while one or more events have not been executed do
12: for each event N in E or ESELF do
13: WE,N +- Compile-Other-Agents'-Windows(N, WE)

14: WSELFN +- Compile-Self-Agents'-Windows(N, WSELF)
15: if currentTime is in WE,N and E contains N then
16: if other agent has executed N then
17: set N's execution time to currentTime
18: label N with executing agent's name
19: end if
20: else if currentTime is in WSELFN and ESELF contains N then
21: claim N for self-agent and resolve any claim conflict
22: if self-agent owns N then
23: set N's execution time to currentTime
24: label N with self-agent's name
25: execute N
26: broadcast the successful execution of N
27: end if

28: end if
29: if execution implies a commitment for N then
30: E, ESELF +- clear-lists
31: E EzE LF W L - PRUNE-AND-UPDATE-ENABLED-

LEADER-ASSISTANT(N, S, L(T, C))
end if

end for
end while

end procedure
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plan clock to t = 0.

Once these initializations are complete, the dispatcher begins executing the plan

by iterating through each enabled event N in E or ESELF, searching for the opportu-

nity to assign and/or schedule event N (Lines 11,12). The dispatcher continues until

all plan events have been executed. Specifically, in Lines 13 and 14, the dispatcher

iterates through WE,N and WSELFN, the feasible execution windows of N for other

agents and itself, respectively. WE,N and WSELF,N are computed as subsets of the

windows in WE and WSELF-

If the current time is within another agent's feasible window of execution (Line

15) then the self-agent checks whether another agent has broadcast the successful

execution of event N. If so, the self-agent records N's execution time as the current

time, and labels N with the name of the agent that executed N (Lines 17,18). If

N has not yet been executed by another agent, the self-agent checks whether the

current time is within its own feasible window of execution (Line 20). If so, then

the self-agent broadcasts a claim to execute N (Line 21). A claim communication

indicates that the self-agent intends to schedule and execute event N immediately.

We say a conflict arrises in the case where another agent has also communicated a

claim to execute N. In this case, the agents must then communicate to resolve the

conflict, meaning they must negotiate the assignment of event N. In any conflict

that arrises between a Leader and Assistant, the Assistant defers to the Leader. If

after resolution, the self-agent owns the event N, then the self-agent schedules N's

execution time as the current time, labels N with its own name, executes N, and

broadcasts the successful execution of N (Lines 23-26).

For example, let's assume that the Left Robot, the Leader, initiates plan execution

by broadcasting a claim to event a. This means that the Left Robot intends to

schedule and execute event a immediately at t = 0 (Lines 15, 16). We assume there is

no conflict, meaning that the Right Robot, the Assistant, has not also claimed event a.

The Leader then owns event a and therefore schedules, executes, and communicates

the successful execution of event a at t = 0. The self-agent, the Right Robot, receives

this communication, records a's execution time, and labels event a with the name

170



Left Robot, the agent that executed a (Lines 17,18).

Lines 29-31 describe the process of updating the plan in response to commitments

triggered by (1) the execution of event N, or else (2) the violation, through inaction,

of a task assignment or synchronization choice involving event N. For example, the

execution of an event a is a plan commitment and the dispatcher must update the

enabled events and execution windows in response to this commitment (Line 29).

First, the enabled lists E and ESELF are cleared (Line 30), since the execution of

N may make the task assignments and synchronizations that support the currently

enabled events infeasible. Next, in Line 30, the function PRUNE-AND-UPDATE-

ENABLED-LEADER-ASSISTANT is called to remove infeasible task assignments and

synchronizations from L(T, C), update the enabled lists E and ESELF, and compute

the execution windows for the enabled events. FAST-MAP-U-DISPATCH terminates

once all plan events have been executed.

5.7.2 Pseudo-code for Prune-And-Update-Enabled-Leader- As-

sistant

The key difference between the Equal Partners dispatcher and the Leader and Assis-

tant dispatcher lies in the function PRUNE-AND-UPDATE-ENABLED-LEADER-ASSISTANT.

Recall that the Leader and Assistant dispatcher computes feasible execution windows

differently for the Assistant and Leader to ensure the Assistant's commitments do

not restrict the Leader's next choice of action.

The function PRUNE-AND-UPDATE-ENABLED-LEADER-ASSISTANT computes the

list of enabled events in the same way as the function PRUNE-AND-UPDATE-ENABLED

introduced in Chapter 4. If the self-agent is the Leader, then the two functions com-

putes executions windows in the same way as well. However, if the self-agent is an As-

sistant, then the two functions differ in how they compute feasible execution windows.

Specifically, the function PRUNE-AND-UPDATE-ENABLED-LEADER-ASSISTANT does

not compute execution windows for any task assignment or synchronization where the

Assistant next performs an event that the Leader has authority over and may feasibly
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perform next.

PRUNE-AND-UPDATE-ENABLED-LEADER-ASSISTANT is presented in Algorithm

10. The function takes as input N, the recently committed event, S, the Base Solu-

tion, and L(T,C), the Set of Differences that records the constraint changes for the

feasible task assignments and their synchronizations. As an illustrative example, I

continue to walk through the first few steps in dispatching the compiled Leader and

Assistant plan for the Ball Scenario presented in Figure 5-6. Let's continue to con-

sider dispatching from the perspective of the Right Robot, the Assistant, and assume

that the Left Robot, the Leader, has just executed the plan epoch event a at time

t = 0.

Lines 2-18 check each task assignment T and synchronization yn to determine

whether it is still a feasible component solution after the commitment to event N.

First the function iterates through each full task assignment T (Line 2), checking

whether the commitment of N implies task assignment T is infeasible. T may be

infeasible due to inconsistent agent assignment (Line 3), inconsistent execution time

(Line 6), or unsatisfied enablement conditions (Line 9). If T is found to be infeasible,

then T and all its synchronizations are marked infeasible. If T is found to be feasible,

then the function iterates through each feasible synchronization yn of T (Line 12),

checking whether the commitment of N implies y, is infeasible. The synchronization

yn may be infeasible due to inconsistent execution time or unsatisfied enablement

conditions (Lines 13,16). If a given synchronization yn of task assignment T is found

to be feasible, then Line 19 gathers the enabled events.

In our example, all task assignments and synchronizations are still feasible after

the commitment to event a. Line 19 gathers the enabled events in E, ESELF for each

task assignment and synchronization, as presented in Table 5.2. For example, consider

the task assignment where the Leader, the Left Robot, performs both activities, and

the synchronization where the Leader first performs activity bc and then activity de.

Table 5.2 shows that the enabled list for the Leader, the Left Robot, contains event

b (E {b}), meaning the Left Robot can perform activity bc next.

Lines 20-24 then compute the feasible execution windows for the enabled events.
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Algorithm 10 Pseudo-code for PRUNE-AND-UPDATE-ENABLED-LEADER-
ASSISTANT

1: procedure PRUNE-AND-UPDATE-ENABLED-LEADER-
ASSISTANT(N, S, L(T, C))

2: for each feasible full task assignment T do
3: if N's agent assignment is inconsistent with T then
4: mark T and all its synchronizations as infeasible and goto Line 2
5: end if
6: if N's execution time is inconsistent with T then
7: mark T and all its synchronizations as infeasible and goto Line 2
8: end if
9: if N's enablement conditions are not satisfied within T then

10: mark T and all its synchronizations as infeasible and goto Line 2
11: end if
12: for each feasible synchronization of y, do
13: if N's execution time is inconsistent with y, then
14: mark y,, as infeasible and goto Line 12
15: end if
16: if N's enablement conditions are not satisfied within y, then
17: mark y, as infeasible and goto Line 12
18: end if
19: E, ESELF +- gather-enabled-events-using-(yn, Ti, S)
20: WE +- update-enabled-windows-using-(yn, T, S)
21: if SELF=ASSISTANT then
22: {WSELF }- update-assistant-enabled-windows-using- (yn, T, S)
23: else
24: {WSELF} <- update-self-enabled-windows-using-(yn, Ti, S)
25: end if
26: end for
27: end for
28: end procedure

Table 5.2: Snapshot of E, ESELF after the execution of a at t = 0
Task Assignment & Synchronization

L:bc, L:de, cd L:bc, L:de, eb R:bc, L:de L:de,R:bc
E b d d b
ESELF 0 0 b d
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The execution windows for an enabled event N are computed within each dispatch-

able component solution through one-step propagation of timing information. For

example, the execution window for timepoint b in task assignment L : bc; L : de and

synchronization cd is computed by first intersecting of the Base Solution constraint

ab[0, 48], and the Set of Differences constraints ab[, 41] and ab[, 2], resulting in a new

constraint ab[0, 2]. Next, the execution time of event a at t = 0 is propagated through

constraint ab to compute event b's execution window of [0,2].

Table 5.3 presents the execution windows for each of the events in E. Note that

the execution windows in WE represent the feasible execution windows for the Leader

and are computed for all feasible task assignments and synchronizations.

Table 5.3: Snapshot of WE, and WSELF after the execution of a at t = 0
Task Assignment & Synchronization

L:bc, L:de, cd L:bc, L:de, eb R:bc, L:de L:de,R:bc
E [0,2]b [0,2]d [0, 41]d [0, 41]b
ESELF 0 0 0 0

Line 21-24 computes the execution windows for the events in ESELF. The ESELF

execution windows computed for the Ball Scenario are presented in Table 5.3. Note

that the execution windows in WSELF represent the feasible execution windows for

the Assistant and are therefore computed for only a subset of the feasible task as-

signments and synchronizations. This selective computation ensures the Assistant's

commitments do not restrict the Leader's next choice of action. For example, events b

and d are both enabled for the Assistant. However, recall that the Leader has claimed

authority over both the activities bc and de and may choose to perform either next.

For example, the Leader may perform activity bc next in the following task assign-

ment/ synchronizations: {L : bc; L : de, cd} and {L : bc; R : de}. Similarly, the

Leader may perform activity de next in the following task assignment/ synchroniza-

tions: {L : bc; L : de, eb} and {L : bc; R : de}. This means that the Assistant should

not compute execution windows using any task assignment and synchronization were

the Assistant performs either b or d next. The result is that the Assistant currently

has no feasible execution windows and must sit idle, waiting until the Leader makes
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a commitment to not perform one of these activities.

To follow through with the example, consider next that the Leader begins to per-

form activity de at t = 2. This means event d, the activity start event is scheduled and

executed at t = 2. Again, the dispatcher calls the function PRUNE-AND-UPDATE-

ENABLED-LEADER-ASSISTANT in response to this committment. The Assistant's

dispatcher computes that event b is still enabled for the Assistant. However, the

dispatcher still does not compute execution windows for b because the Leader has

authority over activity bc and there still exists a feasible task assignment/ synchro-

nization where the Leader performs event b next, namely {L : bc; L : de, eb}. As a

result, the Assistant currently has no feasible execution windows and continues to sit

idle, waiting until the Leader makes a commitment to not perform activity bc.

Next, consider that Leader finishes performing activity de at t = 37 seconds and

sits idle for five more seconds until t = 42. At this point, Lines 2-18 of PRUNE-AND-

UPDATE-ENABLED-LEADER-ASSISTANT determine there are no longer any feasible

task assignments and synchronizations that include the task assignment L : bc. In

other words, there is no longer any guarantee that the Leader can perform activity

bc next, taking anywhere between 32 and 39 seconds to finish the activity, and still

accomplish the plan within 80 seconds. Therefore, effectively, the Leader has made

a commitment to not perform activity bc. The Assistant is now free to compute

execution windows for event b. The Assistant schedules event b for t = 43 and begins

executing activity bc at that time. Execution completes once the Assistant finishes

performing bc.

5.7.3 Properties of Fast-MAP-U-Dispatch

I show that FAST-MAP-U-DISPATCH has the following properties required of a dis-

patcher: (1) it is correct in that any complete task assignment and execution sequence

generated by the dispatcher also satisfies the constraints of the Leader and Assistant

plan, and (2) it is deadlock-free in that any partial execution generated by the dis-

pacther can be extended to a complete execution that satisfies the constraints of the

Leader and Assistant plan. These proofs follow the same form as those in (Tsamardi-
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nos and Pollack, 2001).

Theorem: FAST-MAP-U-DISPATCH is correct in that any complete execution

sequence generated by the dispatcher also satisfies the constraints of the MA-DTCN-

U.

Proof: Consider an arbitrary execution event e in the complete execution se-

quence s. FAST-MAP-U-DISPATCH Lines 15 and 20 ensure that the executed event

e is enabled and live for some STP(U) m that is a solution to the MA-DTCN-U at

time t = r. The live execution windows for future enabled events are then calcu-

lated for a subset of the remaining feasible task assignments and synchronizations

in PRUNE-AND-UPDATE-ENABLED-LEADER-ASSISTANT Lines 20-24. Also, m must

be consistent with all previous executed events, otherwise PRUNE-AND-UPDATE-

ENABLED-LEADER-ASSISTANT would have marked the corresponding task assign-

ment and synchronization as infeasible. Thus, if the execution sequence is complete,

it is an exact solution of some STP(U) m that is a solution of the original MA-DTCN-

U.

Theorem: FAST-MAP-U-DISPATCH is deadlock-free in that any partial exe-

cution generated by the dispatcher can be extended to a complete execution that

satisfies the constraints of the MA-DTCN-U.

Proof: It is sufficient to show that the function P RUNE-AND-UPDATE-ENABLED-

LEADER-ASSISTANT never empties the solution set until after the FAST-MAP-U-

DISPATCH has generated a complete execution sequence. The function PRUNE-AND-

UPDATE- ENABLED- LEADER-ASSISTANT marks task assignments and synchroniza-

tions as infeasible, thereby removing STP(U)s from the solution set, only after a

commitment is made. In this case, the dispatcher is guaranteed to retain at least one

STP(U), namely the one consistent with the event sequence so far (m in the proof of

the previous Theorem).
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5.8 Empirical Evaluation

In this section, I present the empirical evaluation of the Chaski algorithms for compil-

ing and dispatching Leader and Assistant plans. First, I develop a benchmark suite

of parameterized, structured Leader and Assistant plans in which the parameters are

generated randomly. Next I empirically investigate the execution latency associated

with dispatching the Chaski compiled form compared to the execution latency of

dispatching the Tsamardinos component solution representation. Results show that

dispatching the Chaski encoding reduces execution latency, by one order of magni-

tude on average, compared to the Tsamardinos method. For moderately-sized plans

composed of thousands of component solutions, 83% of plans executed by Chaski

exhibit an execution latency within human reaction time, compared to only 17% of

plans executed using the Tsamardinos approach.

I empirically demonstrate that the Chaski compact encoding supports fast dy-

namic execution. I compare the compactness of solutions compiled with ICA-MAP-U

to the compactness of a direct enumeration of component solution set (as performed

in Tsamardinos and Pollack (2001)). I show that ICA-MAP-U consistently reduces

the number of constraints necessary to encode the set of feasible scheduling policies

by up to one order of magnitude.

5.8.1 Generation of Structured Leader and Assistant Plans

I generated fifty Leader and Assistant plans for n = 13 and 15 activities. Recall

that each activity is composed of two events: a start event S and end event E. A

binary disjunctive constraint of two intervals is randomly generated between each S

and E, where each interval maps to one of the two agents, leader or assistant. These

intervals correspond to the activity durations for each agent. Intervals are randomly

generated with upperbound time constraints between [1, maxDuration = 101, and

lowerbound time constraints between [0, upperbound] so that the duration is nonzero

and locally consistent. The method of generating upperbounds and lowerbounds for

a disjunctive constraint ensures non-overlaping intervals. Intervals mapping to the
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leader are labeled as uncontrollable durations, and intervals mapping to the assistant

are labeled as controllable durations. All plan include the constraint that each agent

may perform only one activity at a time.

I use the method described in (Stedl, 2004) to derive constraints among activities.

I randomly place each activity in a two-dimensional plan space similar to a simple

scheduling timeline, where overlapping activities represent concurrent activities. Sim-

ple, controllable interval constraints are generated with locally consistent values in

order to constrain neighboring activities. Intuitively, these simple interval constraints

impose ordering constraints among activities and plan deadlines. These constraints

are generated for each event a by randomly selecting another event b in the plan,

and then generating an interval constraint with an upperbound proportional the plan

space distance between a and b. This process ensures that the structure of randomly

generated plans results in plan executions that generally flow from left to right in

the plan space. The parameter r specifies the number of simple interval constraints

generated for each event. In these experiments I set r = 1, meaning that one interval

constraint is generated for each event in the plan. I make this design decision based

on my observation that many of the hand-generated plans in this thesis, for example

the Ball Scenario and the Human-Robot Teaming Scenario, have approximately 2n

simple interval constraints relating plan activities.

5.8.2 Experimental Setup

I empirically investigate the solution compactness and execution latency for Chaski

and for the Tsamardinos (2001) flexible dispatch method. I implemented both Chaski

and the Tsamardinos method in Java for fair basis on comparison. All results are

generated on a 2.53 GHz Intel Core 2 Duo with 4 GB memory.

To evaluate execution latency, I executed the benchmark plans using the Chaski

dispatching algorithm FAST-MAP-U-DISPATCH and recorded the maximum execu-

tion latency observed during plan execution. Execution latency refers to the time

required to update the plan after a plan commitment has been made. I compare this

to the execution latency of the Tsamardinos method. For the Tsamardinos method,
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I recorded the execution latency after the first executed event. This is a conservative

measure for execution latency because all task assignments and synchronizations are

still feasible, and therefore the time required to update the plan is at a maximum

after the first commitment.

To evaluate solution compactness, I applied ICA-MAP-U to the benchmark suite

of Leader and Assistant plans. I computed the number of constraints necessary to

represent the compact encoding of the solution set, and compare this result to the

number of constraints necessary to explicitly represent each component solution of the

plan, as proposed in prior art (Tsamardinos and Pollack, 2001). My implementation

of the Tsamardinos method maintains a separate, dynamically controllable solution

for each feasible task assignment and synchronization, computed using the Morris

et al. (2001) Dynamic Controllability (DC) algorithm. I also recorded the time to

compile each plan.

5.8.3 Results: Execution Latency

Figures 5-7 and 5-8 present the maximum execution latency for each Leader and

Assistant plan, recorded for the Chaski and Tsamardinos dispatchers. The horizontal

axis in each figure indicates the number of feasible component solutions for each plan.

The results show that the Chaski FAST-MAP-U-DISPATCH algorithm significantly

reduces execution latency, by one order of magnitude on average, compared to the

Tsamardinos dispatcher.

Figures 5-9 and 5-10 compare the execution latency for Equal Partners and Leader

and Assistant plans compiled by Chaski. Results show that there is a small overhead

for executing Leader and Assistant plans, with uncertainty in both activity duration

and action selection.

Of the 100 benchmark plans generated, 12 are moderately-sized plans, meaning

they are composed of thousands of component solutions. Of these plans, 83% ex-

ecuted by Chaski exhibited an execution latency within human reaction time (250

ms), compared to only 17% executed using the Tsamardinos dispatcher.

179



* Tsamardinos

X Chaski0.01

0.001 -

1000 2000

Number of Feasible Component Solutions

Figure 5-7: Execution Latency for Leader and Assistant Plans with 13 Activities

10

0.1

x

0.01

0.001 -

0 2000 4000

* Tsamardinos

K Chaski

6000 8000

Number of Feasible Component Solutions

Figure 5-8: Execution Latency for Leader and Assistant Plans with 15 Activities

180

10

0.1 + +

3000

'A
-o
C
0
C-)
a)
(A

'4
C
a)

4
-J

(U
-J
a
0

'4

cu
uJ



0.1

0.01 *

0.001

4XX

4

* Chaski EP

x Chaski LA

0 1000 2000 3000 4000

Number of Feasible Component Solutions

Figure 5-9: Execution Latency
(LA) Plans with 13 Activities

to

0

C

C

0
,4:
:)
'CW

for Equal Partners (EP) and Leader and Assistant

10

1

0.1
xg

0.01 -

0.001

4*

* s

x
* Chaski EP

K Chaski LA

0 2000 4000 6000 8000

Number of Feasible Component Solutions

Figure 5-10: Execution Latency for Equal Partners (EP) and Leader and Assistant
(LA) Plans with 15 Activities

181

V)

0

Li

-A



5.8.4 Results: Solution Compactness

In the previous section I have shown that the Chaski reduces execution latency by

up to a factor of ten. In this section I empirically show that Chaski's compact plan

representation supports fast dynamic execution.

In Figures 5-11 and 5-12, I present the number of constraints necessary to encode

each Leader and Assistant plan, as compiled by the Chaski and Tsamardinos methods.

The horizontal axis in each figure indicates the number of feasible component solutions

for each plan. The figures show that the Chaski ICA-MAP-U compilation algorithm

consistently reduces the number of constraints necessary to encode the solution set,

by up to one order of magnitude.

Figures 5-13 and 5-14 compare the solution compactness for Equal Partners and

Leader and Assistant plans compiled by Chaski. Results show that there is little

overhead, in terms of solution compactness, for compiling plans with uncontrollable

activity durations.

Finally, Figure 4-19 reports the median and range for the time to compile each

plan. Compilation time did not differ significantly for the Chaski and Tsamarindos

methods, therefore the compilation time for only Chaski is presented. For the two

methods, there were only small variations in the time to compile each feasible compo-

nent solution. However, a significant amount of time was required to search through

each component solution in order to enumerate only the feasible component solutions.

This enumeration time was the same for both methods.

5.8.5 Summary of Results

Results on the benchmark plans show that Chaski is able to execute Leader and

Assistant plans composed of flexible scheduling policies for thousands of possible

futures, often achieving execution latency within the bounds of human reaction time

(250 ms).

For comparably-sized plans, Leader and Assistant plan execution is slightly more

computationally intensive than Equal Partners plan execution. In a few cases, execu-
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tion latency for Leader and Assistant plans ranges up to three times that for Equal

Partners plans. Of moderately-sized plans, 89% executed by Chaski exhibited a la-

tency within human reaction time under Equal Partners teamwork, compared to 83%

for Leader and Assistant teamwork. These differences are relatively small and are

due primarily to the extra constraints required to ensure dynamic controllability of a

Leader and Assistant plan.
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Chapter 6

Multi-agent Plan Execution

Enhanced through Effective

Coordination Behaviors

6.1 Introduction

In the previous two Chapters I discussed how Chaski enables a robot to adapt to

a human on-the-fly. This chapter discusses how Chaski can act in ways that seem

natural and similar to our interactions with another person. I describe how Chaski

acts to fulfill the following three goals: (1) minimize the human's idle time, (2) respond

immediately to explicit commands, and (3) respond to implicit communications in

flexible time.

I formulate each of these goals as preferences over plan execution sequences. The

key strength of this approach is that Chaski, presented in Chapter 4 and 5, generalizes

naturally to favor execution sequences based on a preference ordering. I then provide

one possible implementation for each of these preferences within the Chaski Executive.

The methods presented herein are not the only possible implementations for these

preferences, nor are they validated as the best implementations. Rather, I focus

on developing implementations that require only small modifications to the Chaski
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execution algorithms presented in Chapters 4 and 5.

This chapter uses the Simple Bottleneck Task Plan (Figure 6-1) to illustrate. The

plan includes two activities, bc and de, performed by the Robot, and one activity,

fg, performed by either the Human or the Robot. All activities take between five

and ten minutes to perform, and each agent may only execute one activity at a

time. The "bottleneck" in the plan is that the Robot must complete de before fg

may be executed. The order of the Robot's activities has a significant impact on the

Human's idle time: three (of many) execution sequences for the Bottleneck Plan

presented in Figure 6-2 show that the Human's idle time varies from five to fifteen

minutes, depending on the order of the Robot's activities.

I
I Robot: [5,10]

Sbc
Human: [5,10]

Or
I Robot: [5,10] Robot: [5,10]

tstart

Figure 6-1: Simple Bottleneck Task Plan

6.2 Favoring Executions that Minimize Human Idle

Time

My studies in human teamwork indicate that the most effective teammates seem

to consider the consequences of their actions on other teammates and act so as to

minimize the team's idle time (see Chapter 2). We want a robot to do this too.
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Execution Sequence 1: Human's min idle time = 15 min.

0 5-10 10-20 15-30
1

Robot

Human

bc de fg

Execution Sequence 2: Human's min idle time = 10 min.

0
Robot

Human
bc

5-10 10-20 15-30

±Ad I -LI.
(IIgII

Execution Sequence 3: Human's min idle time = 5 min.
0 5-10 10-20
i I I

Robot

Human

de b

f9 IIJ
Figure 6-2: Three Execution Sequences for the Simple Bottleneck Task
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Because a robot is not susceptible to the ill effects of idling (e.g. boredom and

inattention), Chaski enables a robot to act to minimize the humans', rather than the

team's, idle time. I extend Chaski to perform plan execution with a preference to

favor execution sequences that minimize a measure of the humans' idle time.

6.2.1 Problem Statement

Chaski takes as input either an Equal Partners or a Leader and Assistant task plan.

The output of the system is the same as described in Chapters 4 and 5, except that

the decision-making strategy favors execution sequences that minimize the human's

idle time. Of the three execution sequences presented in Figure 6-2, Chaski first

tries to execute the plan according to Execution Sequence 3, since this execution

sequence minimizes the Human's idle time. This means that Chaski tries to schedule

the Robot's activities in the order: de, bc. If, for some reason Chaski finds it is not

possible to follow this execution sequence, it next favors Execution Sequence 2, trying

to schedule the activities in the order bc, de.

Input

Chaski takes as input either an Equal Partners plan (introduced in Chapter 4) or a

Leader and Assistant plan (introduced in Chapter 5), as well as a description denoting

which agents are human.

As an example input, Figure 6-3 presents the Equal Partners plan representation

for the Simple Bottleneck Task Plan.

Output

The output of the system is the same as described in Chapters 4 and 5, except that the

execution strategy includes a preference for task assignments and synchronizations

that minimize a lowerbound on the humans' idle time.

Chaski computes a bound on the human idle time ht,, as a cost over each feasible

component solution ct,, for the plan. Recall that a component solution to a plan
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Each agent may only execute one activity at a time.

Figure 6-3: Equal Partners plan for the Simple Bottleneck Task

is defined by a full task assignment t and synchronization s. The Chaski execution

strategy then makes task assignment and scheduling decisions consistent with the

feasible component solution that minimizes cost.

In the Equal Partners plan presented in Figure 6-3, either the Human or Robot

may perform activity fg. If the Robot performs the activity, the Human will sit

idle throughout the entire plan execution, a minimum of 15 minutes. If the Human

performs the activity fg, then the Human will sit idle a minimum of 10 minutes

while waiting for the Robot to complete activities bc and de. Therefore, Chaski

favors execution sequences where the Human performs activity fg.

The execution strategy generated by Chaski is correct in that any complete task

assignment and execution sequence generated by the dispatcher also satisfies the

constraints of the plan. Also, the execution strategy is deadlock-free, in that any

partial execution generated by the dispatcher can be extended to a complete execution

that satisfies the constraints of the plan. Finally, the execution strategy must also

satisfy the preference for component solutions that minimize cost.

6.2.2 A Lower Bound for Human Idle Time

I extend the Chaski compilation algorithm to compute, for each feasible task assign-

ment / synchronization, a lower bound on human's idle time. The system then favors

task assignments and synchronizations that minimize the bound.
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Given a task assignment t and a synchronization s of that task assignment, the

bound ht,, is calculated as the sum over Idle t, the minimum waiting time for each

human agent aj.

ht,s =3 Idle ",1 (6.1)

Imagine computing ht,, for the task assignment where the Human performs activ-

ity fg in Figure 6-3 and the synchronization where the Robot first performs activity

bc and then de. This task assignment / synchronization is illustrated in Figure 6-4,

and the flexible schedule for this task assignment / synchronization is illustrated in

Figure 6-2, Execution Sequence 2.

The bound for human idle time is calculated as the minimum amount of time the

Human must wait before starting activity fg plus the minimum amount of time the

Human must sit idle between finishing activity fg and the end the plan. Execution

Sequence 2 in Figure 6-2 shows that the Human waits a minimum of ten minutes

before starting activity fg. The minimum amount of time the Human sits idle

between finishing activity fg and the end of the plan is zero minutes. Therefore, the

ht,, = 10 + 0 = 10 minutes for this task assignment and synchronization.

b Robot[5,101 c ,in

d Robot[5j0[,n Human:[5,10

Figure 6-4: Task Assignment and Synchronization for Equal Patners Simple Bottle-
neck Plan

Pseudo-code for Compute-Agent-Idle

The algorithm COMPUTE-AGENT-IDLE presented in Algorithm 11 computes Idleao,

the minimum waiting time between an agent a's consecutive activities. The function
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takes as its input G, (the plan), a, (the human agent), t, (a feasible task assignment),

and s, (a set of feasible synchronization constraints for the task assignment t).

Algorithm 11 Pseudo-code for COMPUTE-AGENT-IDLE
1: procedure COMPUTE-AGENT-IDLE(G, t, s, a)

2: H +- Intersect-Constraints(G, t, s)
3: B - Initialize-List-of-Begin-Timepoints(G)
4: E +- Initialize-List-of-End-Timepoints(G)
5: Idleao +- Initialize-To-Zero
6: for each end timepoint ej in E do
7: idletwnActivities +- Initialize-To-Pos-Inf
8: for each begin bi timepoint in B do
9: if ej and bi are not from the same activity then

10: timebtwnActivities +- (-)Shortest-Distance(H, ej, bi)
11: if timebtwnActivities > 0 and timebtwnActivities < idlebtwnActivities then
12: idlebtwnActivities ~ timebtwnActivities

13: end if
14: end if
15: end for
16: Idle'a Idla + idlebtwnActivities

17: end for
18: return Idle'
19: end procedure

Idle", is calculated as follows. First, in Line 2, a distance graph network H

is computed by taking the set intersection of the constraints in G with the task

assignments in t and synchronization constraints in s. Figure 6-2 presents the result

of intersecting the constraints in G (Figure 6-3), with the task assignment that the

Human performs activity fg, and the synchronization constraint cd. The resulting

plan in Figure 6-4 is translated to distance graph form H, and is presented in Figure

6-5. Recall that each constraint in the plan, containing both lower and upper bounds,

is converted to a pair of edges in the distance graph. One edge in the forward direction

is labeled with the value of the upper time bound, and one edge in the reverse direction

is labeled with the negative of the lower time bound.

Next, Line 3 initializes a list B with all the begin timepoints of activities assigned

to agent a and the plan's end timepoint. In the example, Line 3 initializes a list

B = {f, h} with all the begin timepoints of activities assigned to the Human (f) and
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Figure 6-5: H, Distance Graph Form of the Synchronized MA-DTCN

the plan's end timepoint h.

Line 4 initializes a list E with end timepoints of activities assigned to agent a

and the plan begin timepoint. In the example, Line 4 initializes a list E = {g, a}

with all the end timepoints of activities assigned to the Human and the plan begin

timepoint. The plan begin and end timepoints are included in these lists so that the

bound computation includes waiting time before agent a's first activity, and waiting

time after agent a's last activity.

Next, for each timepoint ej in E, the algorithm loops through all timepoints in

B (Lines 6-8). If the begin and end timepoints ej and bi do not belong to the same

activity (Line 9), then Lines 10-15 compute timebtwnActivities, the lowerbound temporal

distance between activities. The quantity timebtwnActivities is computed as the shortest

distance (Cormen et al., 2001) from bi to ej in the distance graph H (Line 10). The

shortest distance from f to a in H (Figure 6-5) is -10. This shortest distance can

be interpreted in constraint form as follows: the negation of the shortest distance

provides the lowerbound on the temporal distance between ej, the end of one activity,

and bi, the beginning of another activity. This means that the Human must sit idle

at least 10 minutes between a, the plan start, and f, the beginning of the Human's

first activity.

The minimum lowerbound timebtwnActivities found represents the minimum waiting

time between two consecutive activities and is recorded as idlebtwnActivities in Line 12.

Finally, Line 16 sums the minimum waiting time for all of agent a's consecutive pairs

of activities. The algorithm returns the result Idle a in Line 18.
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Continuing through the algorithm with the illustrative example, we find that the

shortest distance from h to g is zero. This means that there is no minimum wait time

for the Human between the end of the activity fg and the plan end. Ultimately,

COMPUTE-AGENT-IDLE returns Idlea= 10. Since there is only one human agent,

, = > Idle = 10.

The bound for human idle time ht,, is computed using COMPUTE-AGENT-IDLE of-

fline at compilation time. The time complexity for COMPUTE-AGENT-IDLE depends

on the specific implementation of shortest distance algorithm and is polynomial in

the number of agent a's activities.

The output of COMPUTE-AGENT-IDLE is guaranteed to provide a lowerbound for

the human's actual idle time. This is because the all-pairs-shortest-path computation,

used to compute the duration between the human's activities, by definition provides

the shortest temporal distance between two events.

6.2.3 Dispatching With a Preference to Minimize Human

Idle Time

In the previous section I discussed how, at compilation, Chaski computes the human

idle time bound as a cost over each candidate task assignment / synchronization. In

this section, I extend the Chaski dispatcher presented in Chapters 4.7 and 5.7 to make

decisions that are consistent with the lowest cost, currently feasible task assignment

/ synchronization.

The Chaski dispatching algorithms make task assignments and scheduling deci-

sions using largely the same algorithms presented in Sections 4.6 and 5.6. The key

difference here is that the algorithms impose an order on how the dispatcher iterates

through enabled events and time windows. Specifically, the dispatcher orders the

enabled events and time windows for each task assignment and synchronization ac-

cording to the human idle.time bound ht,, presented in Section 6.2.2. First I provide

the reader a high-level review of how the Chaski dispatcher works. Next, I discuss

how I modify the Chaski dispatcher to reason on idle time at execution.
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Review of Chaski Dispatching

The Chaski dispatcher assigns and schedules plan events. As an illustrative example,

I walk through how the Chaski dispatcher executes the Equal Partners plan in Figure

6-3. This plan has two feasible task assignments: either the Human or the Robot

performs activity fg. Two synchronizations exist for the task assignment in which the

Human performs activity fg: the Robot performs either activity bc first or de first. Six

synchronizations exist for the task assignment in which the Robot performs activity

fg. Each synchronization corresponds to a different permutation of the Robot's three

activities.

Recall that the dispatcher works by searching through each feasible task assign-

ment and synchronization to assemble a list of enabled activity events, which are

events whose predecessor events have all been executed. For example, consider that

the Robot executes event a at t = 0. This means that the Robot has initiated the start

of the plan. At this point, both events b and d are enabled. Event b is enabled in

each of the synchronizations in which the Robot performs activity bc first, and event

d is enabled in each of the synchronizations in which the Robot performs activity de

first. This is because event a is the only event constrained to execute before activities

bc and de.

For each enabled event, the dispatcher assembles the set of feasible time windows

for executing the event. If the current time is within one of these feasible time windows

and the event may be performed by the self-agent, then the dispatcher claims the

activity, schedules the event, communicates this information to other agents, and

updates the plan based on this commitment. All the while, the dispatcher is also

checking for communications indicating that other agents have claimed and scheduled

activity events. The reader is referred to Chapters 4 and 5 for further description of

the Chaski dispatching algorithms.
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Extension: Dispatching with a Preference to Minimize ht,,

The key difference here is that the Chaski dispatching algorithms imposes an order on

how the dispatcher iterates through enabled events and time windows. Specifically,

the dispatcher orders the enabled events and time windows for each task assignment

and synchronization according to the human idle time bound ht,, presented in Section

6.2.2.

The ordered list for enabled events is constructed and utilized as follows. As

before, the dispatcher searches through each feasible task assignment and synchro-

nization to assemble the list of enabled events. Once an enabled event is identified

in a particular task assignment t and synchronization s, the event is labeled with the

associated human idle time bound ht,,. This label is used to sort the enabled events

according to the human idle time bound, low to high.

Imagine the situation where the Robot executes event a at t = 0. At this point,

both events b and d are enabled. The Human sits idle for 10 minutes (ht,s = 10)

for task assignments where the Human performs activity fg and synchronizations

where the Robot performs either activity bc or de first. For these task assignments

/ synchronizations, the enabled events b and d are labeled with ht,s = 10. Similarly,

recall that ht,, = 15 for task assignments where the Robot performs activity fg and

synchronizations where the Robot performs either activity bc or de first. For these

task assignments / synchronizations, b and d are labeled with ht,, = 15.

Enabled events are added to a priority queue where events are ordered from low

to high ht,,. If an enabled event is labeled with more than one ht,,, then only the

minimum ht,, is maintained. The dispatcher then iterates through enabled events on

the priority queue, attempting to only assign and schedule enabled events with min-

imum ht,,. The dispatcher constructs and utilizes a priority queue for time windows

of enabled events in a similar fashion.

Next, I show that by utilizing the ordered lists of enabled events and time windows

as described, the Chaski dispatcher satisfies the preference for feasible component

solutions that minimize cost.
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First recall that the enabled lists and liveness time windows include the infor-

mation necessary to correctly execute any one of the currently feasible component

solutions. The dispatcher only considers scheduling minimum ht,, enabled events,

meaning events that are enabled within the one of minimum cost, feasible compo-

nent solutions. Constraining execution times to minimum ht,, windows then ensures

that the scheduling of an event is consistent with one of the minimum cost, feasible

component solutions.

Also note that any execution sequence generated by the dispatcher is a correct

sequence since the dispatcher uses methods identical to those presented in Chapters 4

and 5 for computing enabled events and liveness windows (see proofs of correctness in

Sections 4.6.5 and 5.6.4). The dispatcher is also deadlock-free; the ordering of events

and time windows does not impact the proofs provided in Sections 4.6.5 and 5.6.4.

6.3 Reasoning on Explicit Verbal Commands

Studies show that human team members make use of verbal and non-verbal commu-

nication to coordinate their actions (see Chapter 2). Explicit commands, meant to

direct or control a teammate's future actions, are one type of coordination behavior

documented in human teams. Interestingly, results from the human teamwork studies

I conducted (presented in Chapter 2) show that increased use of explicit commands

among team members is correlated with an increase in time to perform the task. In

other words, the more team members explicitly command their teammates, the worse

the team performs.

One explanation for this result, discussed in Chapter 2, is that a team-member's

tendency to immediately respond to the specific commanded action involves a switch-

ing cost that degrades team performance. The switching cost refers to the extra time

that may be required for the recipient of the command to stop what they are doing,

switch their attention to address the command, and then switch their attention back

to resume their work.

Even though use explicit commands is correlated with inefficient team coordina-
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tion, it is nonetheless important that a robot teammate respond appropriately to a

human team member's commands. In this section I discuss how Chaski enables a

robot to perform a commanded activity next, when possible. I extend the system to

perform plan execution with a primary preference to (1) favor execution sequences

that address incoming explicit commands next, and a secondary preference to (2)

to favor executions with low ht,. In other words, the robot should try to perform

the commanded activity next, and if this is not possible, the robot should continue

executing the plan while acting to minimize the human's idle time.

6.3.1 Problem Statement

Chaski takes as input either an Equal Partners or a Leader and Assistant task plan.

Chaski also takes as input a time sequence of explicit commands. The output of the

system is the same as described in Chapters 4 and 5, with the following additional

property. The decision-making strategy favors execution sequences that perform the

explicitly commanded activity next, if possible, and otherwise favors execution se-

quences that minimize the human's idle time. Consider the case in which, just as the

Robot is about to begin the Simple Bottleneck Plan in Figure 6-3, the Human ex-

plicitly commands the Robot to perform activity bc next. The Robot responds to the

explicit command by doing this next (as in Execution Sequence 2 in Figure 6-2), even

though there are other execution sequences that would minimize the human's idle

time. In general, if the Robot has a choice between two or more execution sequences

that address the explicit command next, the Robot favors the one that minimizes the

human's idle time.

Input

Chaski takes as input either an Equal Partners or a Leader and Assistant plan, as

well as a description denoting which agents are human.

The system also takes as input a time sequence of explicit commands, cexplicit,

directed at the self-agent. As an example, consider the following explicit command
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time sequence directed from the Human to the Robot: ceplicit = {t = 2, Do Activity

f g }. This cexplicit indicates that the Robot receives a communication from the Human

at time t = 2 commanding the Robot to perform activity fg next.

Output

The output of the system is the same as described in Chapters 4 and 5, with the ex-

ception that the execution strategy includes a primary preference for task assignments

and synchronizations that address incoming explicit commands next, and secondary

preference for executions with low ht,.

The Chaski execution strategy makes task assignment and scheduling decisions

consistent with the feasible component solution that performs the commanded activity

next and minimizes cost ht,,. Consider the plan presented in Figure 6-3, where either

the Human or Robot may perform activity fg. If the Robot performs the activity,

the Human will sit idle throughout the entire plan execution, a minimum of 15

minutes. If the Human performs the activity fg, then the Human will sit idle a

minimum of 10 minutes while waiting for the Robot to complete activities bc and de.

Typically, Chaski favors execution sequences where the Human performs activity fg.

In the case the Human explicitly commands the Robot to perform fg next, then if

feasible, the system instead favors the task assignments and synchronizations where

the Robot performs activity fg next. If it is not feasible to perform fg next, then the

Robot disregards the explicit command and continues execution with a preference for

executions with minimum ht,,.

The execution strategy generated by Chaski must be correct in that any complete

task assignment and execution sequence generated by the dispatcher also satisfies the

constraints of the plan. Also, the execution strategy must be deadlock-free, in that any

partial execution generated by the dispacther can be extended to a complete execution

that satisfies the constraints of the plan. Finally, the execution strategy must also

satisfy the preference for component solutions that (1) perform the commanded action

next, and (2) minimize cost ht,8 .
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6.3.2 Dispatching With a Preference to Address Explicit Com-

mands Next

This section describes how the Chaski dispatcher, presented in Section 6.2.3, is ex-

tended to respond to explicit commands. As described in Section 6.2.3, the Chaski

dispatcher orders enabled events and their time windows according to the human idle

time bound ht,,. The dispatcher then iterates through the ordered lists of enabled

events and time windows, attempting to assign and schedule enabled events with

minimum ht,,.

Once the dispatcher receives an explicit command to perform an activity v, the

dispatcher must give precedence to performing the commanded activity next. The

dispatcher does this by first searching the enabled list to determine whether it contains

the begin timepoint Vb of activity v. If the begin timepoint Vb is enabled, this means

that there currently exists a feasible task assignment and synchronization where the

self-agent may execute activity v next. Imagine the Robot executes activity de first

starting at time t = 1. At t = 2, the Robot receives an explicit command from the

Human to execute activity fg next. Once the Robot finishes activity de at t = 7, the

enabled list contains the start event f since there still exists a feasible task assignment

where the Robot performs fg and a feasible synchronization where fg is executed next

after de.

The dispatcher then iterates through the priority queue of time windows for time-

point Vb. Since the time windows on the queue are ordered from low ht,, to high, the

dispatcher will fulfill the secondary objective to favor executions with low ht,.

If the enabled list does not contain begin timepoint Vb, this means that there does

not currently exist a feasible task assignment and synchronization were the self-agent

may execute activity v next. In other words, the self-agent may not perform activity v

next and still satisfy the constraints of the plan. This situation arises in the case where

the Robot performs activity bc first starting at t = 1. At t = 2, the Robot receives

an explicit command from the Human to executive activity fg next. However, even

once the Robot finishes activity bc at t = 7, the enabled list does not contain the start
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event f. This is because activity de must finish before activity fg can be started. In

this case, the dispatcher disregards the explicit command to perform the commanded

activity and continues execution with the preference to minimize human idle time

until receiving the next explicit command.

6.4 Reasoning on Implicit Verbal Cues and Ges-

tures

In addition to explicit commands, human team members use implicit cues, including

short verbal and gestural attention-getters, meant to indirectly guide the actions

of other teammates. Results from the human teamwork experiments I conducted

(presented in Chapter 2) indicate that implicit verbal cues and gestures are effective

coordination behaviors in that their increased use is correlated with a decrease in time

to perform the task. One possible explanation for this result is that implicit cues seem

to offer the teammate flexibility regarding when to respond, and allow teammates to

incorporate actions more efficiently into their workflow.

In this section, I further extend the Chaski dispatcher to enable a robot to respond

to implicit verbal cues and gestures in flexible time. I extend the Chaski capability to

perform plan execution with the primary preference to (1) favor execution sequences

that address incoming implicit cues in the near future (for example within 1-3 steps),

and the secondary preference to (2) to favor executions with low ht,8 .

6.4.1 Problem Statement

Input

Chaski takes as input either an Equal Partners or a Leader and Assistant plan, as

well as a description denoting which of the agents are human.

The system also takes as input a time sequence of implicit cues, cimplicit, directed at

the self-agent. As an example, consider the following implicit command time sequence

directed at the Robot for the Equal Partners plan in Figure 6-3:- cimplicit ={t = 2, Do
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Activity fg}.

Output

The output of the system is the same as described in Chapters 4 and 5, with the

following additional property: the execution strategy includes a primary preference

for task assignments and synchronizations that address incoming implicit cues in the

near future, within 1-3 steps, and secondary preference for executions with low ht,,.

The Chaski execution strategy makes task assignment and scheduling decisions

consistent with the feasible component solution that performs the implicitly cued

activity as one of the next three activities, and minimizes cost ht,.

The execution strategy generated by Chaski must be correct in that any complete

task assignment and execution sequence generated by the dispatcher also satisfies the

constraints of the plan. Also, the execution strategy must be deadlock-free, in that

any partial execution generated by the dispacther can be extended to a complete

execution that satisfies the constraints of the plan. Finally, the execution strategy

must also satisfy the preference for component solutions that (1) perform the cued

activity within the next three steps, and (2) minimize cost ht,.

6.4.2 Dispatching With a Preference to Address Implicit Cues

in the Near Future

This section describes how Chaski is extended to respond to implicit cues. As de-

scribed in Section 6.2.3, the Chaski dispatcher orders enabled events and their time

windows according to the human idle time bound ht,. The dispatcher then iterates

through the ordered lists of enabled events and time windows, attempting to first

assign and schedule enabled events with low ht,,.

Once the dispatcher receives an implicit cue to perform an activity v, the dis-

patcher must give precedence to performing activity v within the next 1-3 steps.

First, the dispatcher must identify which task assignments and synchronizations are

consistent with performing activity v within the next 1-3 steps. Based on this infor-
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mation, the dispatcher then orders enabled events and their time windows on priority

queues such that the dispatcher favors execution sequences generated by these task

assignments and synchronizations.

Imagine that the Robot's dispatcher executes the Equal Partners presented in

Figure 6-3. The Robot executes activity bc first, starting at time t = 1, and then at

t = 2 the Robot receives an implicit cue from the Human to execute activity fg. The

Robot interprets this implicit cue to mean that the Robot must give precedence to

performing the activity fg within the next 1-3 steps.

Once the Robot finishes activity bc at t = 7, the dispatcher iterates through

each feasible task assignment and synchronization to assemble the list of events that

are currently enabled. At this time, the enabled list contains only the event d, since

activity de must be completed before either the Human or Robot may execute activity

fg.

The Chaski dispatcher identifies and annotates the enabled events that support

executing the cued activity within the next 1-3 steps. For example, the event d in

the enabled list is annotated d* to denote that there exists a feasible task assignment

(Robot is assigned to activity fg) and synchronization (Robot activities ordered bc,

de, fg) where the Robot executes activity fg within the next 3 steps. Similarly, the

dispatcher must annotate the time windows for enabled events that support executing

the cued activity within the next 1-3 steps.

The annotated events and time windows are added to the top of the appropriate

priority queue and are secondarily ordered according to ht,,. The queue orderings

ensure that the dispatcher fulfills the secondary objective to favor executions with

low ht,8 .

If there does not currently exist a feasible task assignment and synchronization

where the self-agent may execute activity v within the next 1-3 steps and still satisfy

the logical and temporal constraints of the plan, then the dispatcher disregards the

implicit cue and continues execution with the preference to minimize ht,8.
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Summary: Functions delivered by the Chaski Executive for

Human-Robot Teaming

In Chapters 4-6 I described the development of Chaski, a task-level executive that

enables a robot to (1) robustly adapt to other team members, and (2) emulate a

human's response to implicit communications, including verbal and gestural cues,

and explicit commands.

In Chapters 4 and 5 I described how the Chaski enables a human and a robot to

execute a shared plan collaboratively under two different styles of teamwork. In this

chapter, I described how the system can act in ways that seem natural and similar

to our interactions with another person. I described how Chaski acts to fulfill the

following three goals: (1) minimize the human's idle time, (2) respond immediately

to explicit commands, and (3) respond to implicit communications in flexible time. I

formulated each of these goals as preferences over plan execution sequence, and then

provided one possible implementation for each of these preferences within the Chaski

Executive.

In the next chapter, I report on human subject experiments in which a person

works with a mobile and dexterous robot to collaboratively assemble structures using

building blocks. I measure team performances outcomes for robots controlled by

Chaski compared to robots that are verbally and explicitly commanded step-by-step

by the human teammate. I show that Chaski reduces the human's idle time by 85%,

a statistically significant difference. This result supports the hypothesis that human-

robot team performance is improved when a robot emulates the effective coordination

behaviors observed in human teams.
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Chapter 7

Human-Robot Teaming

Experiments

In previous chapters, I described the design of Chaski, a robot plan execution system

that uses insights from human-human teaming to make human-robot teaming more

natural and fluid. Chaski is a task-level executive that enables a robot to robustly

anticipate and adapt to other team members. The system also emulates a human's

response to implicit communications, including verbal and gestural cues, and explicit

commands. In this chapter I test the hypothesis that human-robot team performance

is improved when a robot teammate uses Chaski to emulate the behaviors and team-

work strategies observed in human teams.

I conducted human subject experiments in which a person worked with Nexi, a

Mobile - Dexterous- Social (MDS) robot pictured in Figure 7-1. The human-robot

team performed a synthetic task developed to recreate aspects of tasks performed

by teams in space, military, and medical domains. The task required collaboratively

assembling structures using building blocks, subject to partial ordering constraints,

resource constraints, and a sense of time pressure. I measured team performances out-

comes for robots controlled by Chaski (Implicit Teaming group) compared to robots

that were verbally and explicitly commanded step-by-step by the human teammate

(Explicit Teaming group).
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Figure 7-1: Mobile-Dexterous-Social (MDS) Robot

Key Results

My results show that human subjects in the Implicit Teaming group spent 85% less

time idling, on average, than human subjects in the Explicit Teaming group, a sta-

tistically significant difference (p = 0.02). Human idle time was reduced from 44 s to

6 s, on average. The Implicit Teaming groups also performed the task approximately

10% faster, on average, than the Explicit Teaming groups. Although this result is

not statistically significant, the trend is promising and warrants further investigation.

Finally, people in the Implicit Teaming group agreed with the statement "the robot

is trustworthy" more strongly a five point scale, than people in the Explicit Teaming

group, a statistically significant difference (p=0.02). These results support the hy-

pothesis that human-robot team performance is improved when a robot emulates the

effective coordination behaviors observed in human teams.
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7.1 Experiment Hypotheses

My purpose in conducting the experiments was to test the following two hypotheses

about human-robot team performance.

Hypothesis 1: Chaski improves objective measures of team performance.

I hypothesize that human subjects working with a robot controlled by Chaski will

exhibit less idle time and take less time to complete the task than subjects that

verbally command the robot step-by-step.

This hypothesis is founded in human teamwork studies, mine and others', showing

that improved performance is correlated with increased use of implicit coordination

behaviors (Orasanu, 1990; Stout et al., 1999; Shah and Breazeal, 2010). In my human-

robot teaming experiments, Chaski emulated implicit coordination behaviors (e.g.

adapting on-the-fly to other teammates, offering frequent updates on the status of

the task, and acting to minimize the human's idle time).

Hypothesis 2: Chaski improves subjective measures of teaming quality.

I hypothesize that human subjects working with a robot controlled by Chaski will

agree more strongly that the team worked fluently together, the robot performed well,

the team members shared common goals, and the robot was trustworthy, compared

to subjects that verbally command the robot step-by-step.

This hypothesis is informed by results reported in (Hoffman and Breazeal, 2007)

that anticipatory action within a human-robot team positively impacted subjective

measures of team performance and fluency.

7.2 Method

Participants

The participants consisted of 16 subjects (10 men and 6 women) recruited from the

MIT and Greater Boston area. The average age was 29.4 years (SD = 16.1). The

209



participants were randomly assigned to either the Implicit or Explicit teaming group.

Experiment Task

I developed an experimental task in which teams, each composed of one person and

one robot, built pre-defined structures (presented in Figure 7-2) using a commercially

available building block set.

Structure 1 Structure 2 Structure 3

Figure 7-2: Three Structures for Teamwork Task

The team was tasked with building the structures as fast as possible according

the step-by-step build instructions illustrated in Figure 7-3.

The base materials for each of the three structures were provided in hand to the

human subject at the start of the task. The materials for the middle and top of

the structures were located in bags distributed on the floor within the experiment

workspace. The human was pre-assigned the job of physically assembling the struc-

tures. However, either the human or robot was permitted to retrieve the bags with

materials.

The team was tasked with collecting the building materials and assembling the

three structures subject to the following four rules. The first two rules were developed

to address the disparity in the humans' and robot's physical capabilities: (1) each

team member may retrieve only one bag at a time, and (2) the human teammate is

allowed to retrieve up to one bag between building each structure. The effect is that

collaboration is required to complete the task; the robot must retrieve at least three

bags.
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The third rule is that a teammate must follow through with an activity once he has

communicated a commitment to perform the activity. This rule is required since, at

this time, Chaski does not support the re-planning required when an agent changes its

mind mid-activity. The fourth rule is that the human teammate must finish gathering

materials for and building Structures 1 and 2 before starting to build Structure 3.

This rule imposes ordering constraints among the plan activities, and allows all bags

to be placed within the limited dimensions of the experiment workspace.

Independent Variable

Sixteen human-robot teams performed the experimental task. Eight human team-

mates were randomly chosen to explicitly command the robot's actions step-by-step

(Explicit Teaming Group). The other eight human teammates worked with a robot

controlled by Chaski under the Equal Partners model of teamwork (Implicit Teaming

Group). Chaski chose and scheduled the robot's actions based on the human subject's

communications, as described in Chapter 4, and also acted to minimize the human's

idle time, as described in Section 6.2.

Teams in the Implicit Teaming group coordinated their actions by communicating

when they started and completed each activity. Each team member then relied on

their partner to adapt based on these communications. This means that, within the

Implicit Teaming group, the robot took the initiative to choose and schedule its own

activities. The list of plan activities and the human's and robot's capabilities are

listed in Table 7.1. The durations for each activity were chosen empirically based on

team performance data from a pilot study.

Human team members in the Explicit Teaming group explicitly commanded the

robot to perform the "retrieve materials" activities. The full list of commands is

presented in Table 7.2. The robot began each activity immediately after receiving

the command, and did not perform any activities outside of those commanded by

the person. As with the Implicit Teaming group, both the human and robot also

communicated when they started and completed each activity.
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Table 7.1: Team Capabilities
Activity

Build the Base of Structure #1
Build the Middle of Structure #1
Build the Top of Structure #1
Build the Base of Structure #2
Build the Top of Structure #2
Build the Base of Structure #3
Build the Middle of Structure #3
Build the Top of Structure #3_
Retrieve the Blue Squares

Agent

Human
Human
Human
Human
Human
Human
Human
Human
Human
Robot

Duration(s)

45-80
90-145
15-50
45-90
45-90
5-70

35-95
25-70
15-30

65-120
Retrieve the Green Rectangles Human 15-30

Robot 65-120
Retrieve the Pink Squares Human 15-30

Robot 65-120
Retrieve the Yellow Triangles Human 15-30

Robot 65-120
Retrieve the Blue Open Squares Human 15-30

Robot 65-120
Retrieve the Red Squares Human 15-30

Robot 65-120

Table 7.2:
"Nexi, bring me
"Nexi, bring me
"Nexi, bring me
"Nexi, bring me
"Nexi, bring me
"Nexi, bring me

Activity Commands
the Blue Squares."
the Green Rectangles."
the Pink Squares."
the Yellow Triangles."
the Blue Open Squares."
the Red Squares."
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Dependent Measures Variable

Two team performance outcomes, time to complete the task and human idle time,

were measured for each team. Both these measures were extracted from video record-

ings of the experiment trials. The human idle time was computed separately by two

analysts: an independent analyst and myself. Agreement between the two analysts

was found to be high, with a coefficient alpha of 0.98 (Cronbach, 1970). Human idle

time was defined as the cumulative amount of time a subject spent watching the ac-

tions of the robot, while not manipulating building materials. This definition of idle

time is the same used in the human teamwork experiments presented in Chapter 2.

At the completion of the experiment, human subjects were administered the Likert

scale questionnaire presented in Figure 7-4. The questionnaire asks subjects to rate

their agreement with a set of statements on a five point Likert scale: 1 for strongly

disagree and 5 for strongly agree. In this work, the questionnaire provides a subjec-

tive evaluation of teaming quality and is similar to those used in (Hinds et al., 2004;

Hoffman and Breazeal, 2007). Subjects rate their level of agreement to statements

about the robot's performance, the robot's contribution to the team, shared goals,

team fluency, trust in the robot, and attribution of credit and blame. Subjects were

also asked to share their thoughts and comments in three open ended questions ad-

dressing the robot's performance, the robot's contribution to the team effort, and the

fluency of the teamwork.

7.3 Experiment Setup and Robot Platform

The experiment setup, pictured in Figure 7-5, consists of a work table where the

person builds the experiment structures, and a floor area where the bags with building

materials are initially placed.

The human subject works with Nexi, a Mobile-Dexterous-Social robot pictured in

Figure 7-5. Nexi is a mobile robot platform capable of simple object manipulation

and non-verbal social expression. The robot is approximately 48 inches tall, with

a strength-to-mass ratio that allows it to interact safely with humans. Nexi has
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sNexi's performance was an
important contribut.on to the success
of the team.

-Nexi performed well as part of the
team.

-Nexi contributed equally to the team
performance.

-1 felt like Nexi was committed to the
success of the team.

'Next perceives accurately what my
goals are.

'Nexi does not understand what I am
trying to accomplish.

'Nexi and I are working towards
mutually agreed upon goals.

'The team worked fluently together.

*Nexi contributed to the fluency of the
interaction.

-1 trusted Nexi to do the right thing at
the right time.

'Nexi was trustworthy.

-Our success on the task was largely
due to the things I said or did.

'1 am responsible for most of the
things that we did well on this task

-Our success on this task was largely
due to the things Nexi said or did.

-Nexi should get credit for most of
what we accomplished on this task.

*I hold Nexi responsible for any errors
that we made on this task

-Nexi is to blame for most of the
problems we encountered in
accorp.ishing this task.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4

1 2 3 4 5

1 2 3 4

1 2 3

1 2 3 4

Figure 7-4: Likert Questionnaire
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two manipulator arms, each with 6 degrees of freedom, and two hands, each with

2 degrees of freedom, to support pointing gestures and simple object manipulation.

Nexi's 4 degree of freedom neck and 17 degree of freedom face supports a wide range

of expressions and postures. Within the experiment, Nexi used the mobile base to

drive to and from the bags and work table. The robot used its left manipulator arm

and hand to pick up the bags. It used a previously developed saliency-based attention

system to intermittently gaze towards nearby bags and the work table. The robot

also nodded its head each time it received a verbal command from the person.

An off-board Vicon motion capture system was used for sensing of the experiment

workspace. The Vicon system tracked the robot's position and orientation, and the

locations of the bags and work table. The robot autonomously navigated around

workspace using a map generated by Vicon data.

Figure 7-5: Experiment Workspace and Setup

The robot used an open source speech recognition system, Sphinx-4 1, to recog-

nize a simple grammar designed specifically for the experiment task. The grammar

included pre-defined phrases for when the person began and finished each activity in

Figure 7-1, and also included the command phrases in Figure 7-2. Subjects wore a

1http://cmusphinx.sourceforge.net/sphinx4/
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microphone headset and read phrases from a script to communicate with the robot.

Software was developed to bypass the speech recognition system if necessary, so that

experiment outcomes were not affected by erroneous speech recognition.

7.4 Procedure

The experiment was divided into two phases: a familiarization and a test phase.

Upon arrival, subjects were seated at a table next to the robot. The table surface

provided the workspace used to build the structures during both the familiarization

and test phases. Prior to the familiarization phase, the subject was provided pictorial

instructions for building the structures and a script with phrases for communicating

with the robot.

During the familiarization phase, an independent experiment proctor read the

subject instructions describing the experiment task, including the roles of the human

and robot and the rules of the task. Subjects were also informed that they would be

video taped during the test phase of the experiment.

Subjects were instructed that the experiment task involves building the three

structures pictured in Figure 7-2 as fast as possible. Subjects were also given the

benchmark "best completion time to-date," calculated approximately 15% lower than

the pilot study best completion time. Subjects were told they must build each struc-

ture from the bottom up according to the build instructions presented in Figure 7-3.

The subject starts with the correct number of base materials for each structure al-

ready on the table. The building materials for the upper parts of the structures

are located in black bags on the floor. Each bag contains a certain type of building

material, indicated by the colored shape beneath each bag.

Subjects were instructed that assembly of the structures is solely the human's

responsibility. However either the human or the robot may retrieve the bags with

building materials. Also, the human subject and robot must work together to build

the structures subject to the four rules described previously.

Next, subjects were instructed to practice building the structures and communi-
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cating with the robot. Subjects choose one structure and then practiced building it as

fast as possible. Subjects also practiced communicating updates to the robot while

building the structure. Finally, subjects in the Explicit Teaming group practiced

commanding the robot to retrieve a bag.

In the test phase, each human-robot team performed the experiment task twice.

At the end of each trial, subjects were told their completion time and were reminded

of the "best completion time to-date." Finally, at the completion of the experiment,

subjects were administered the Likert scale and open-ended questionnaires.

7.5 Results

In this section, I compare human idle time, time to complete the task, and subjective

measures of teaming quality for the Implicit and Explicit Teaming groups. I interpret

and discuss these results in the next section.

Idle Time

Table 7.3 shows that human subjects in the Implicit Teaming group spent 5 seconds

idling in the first trial and 8 seconds idling in the second trial, on average. In com-

parison, human subjects in the Explicit Teaming group spent on average 45 and 43

seconds idling in the first and second trials, respectively. Two-tailed, unpaired t-tests

with unequal variance found the difference in idle time within each trial to be statis-

tically significant (df=8, alpha=0.5, p=[0.01-0.02]). Within each group, no statistical

difference was found between the means of the first and second trials.

Time to Complete Task

Table 7.4 shows that teams in the Implicit group performed the task on average 12%

and 7% faster in the first and second trials, respectively, than teams in the Explicit

group. Two-tailed, unpaired t-tests with unequal variance found the difference in

completion time within each trial to not be statistically significant (df=8, alpha=0.5,
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Table 7.3: Human Idle Time (seconds)

Explicit Group Implicit Group

First Trial
Mean 45 s 5 s
Stdev 34 s 10 s

Second Trial
Mean 43 s 8 s
Stdev 33 s 11 s

p=[0.30-0.57]). Also, within each group, no statistical

the means of the first and second trials.

difference was found between

Table 7.4: Time to Complete Task (seconds)

Explicit Group Implicit Group

First Trial
Mean 924 s 816 s
Stdev 221 s 116 s

Second Trial
Mean 726 s 674 s
Stdev 174 s 157 s

Subjective Measures

Table 7.5 presents the mean score for each of the Likert questions. The table also

shows the p-values computed using two-tailed, unpaired t-tests with unequal variance

(df=8, alpha=0.5). The only statistically significant result is that people in the

Implicit Teaming group agreed with statement #11, "the robot is trustworthy," more

strongly than people in the Explicit Teaming group.

Interestingly, there is a moderate correlation (r=-+/-[0.4-0.5]) between a number

of the Likert question scores and the objective measures of team performance. Table

7.6 shows a moderate, negative correlation between time to complete the task and

Likert responses for robot performance and team fluency. Table 7.7 shows a moderate,

positive correlation between human idle time and Likert responses addressing attri-
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bution of credit to the robot. Also, on average, subjects in the Implicit Group rated

Nexi more favorably than subjects in the Explicit Group for 14 out of 17 statements

in Table 7.5 (all statements except #6, 9 and 14).

Sample of Open-ended Responses

The open-ended responses for the two groups provide insight into the subjects' ex-

perience of team fluency, robot performance, and common goals. The sample of

open-ended responses provided in this section suggest that the experiences of sub-

jects in the two groups may have differed along these dimensions, even though the

Likert questionnaire results do not report statistically significant differences for these

measures.

Explicit Group:

"It seems as though Nexi should be able to bring the materials I re-

quired without explicit orders based on which structure I was working on.

(I'm going to go ahead and assume other trials are testing this.)"

"[Fluency of teamwork] largely depended on my foresight and ability

to multi-task. If I asked for material out of order, it was my fault."

Implicit Group:

"Nexi understood everything that I said and she knew what materials

I needed, and in what order, to build all the structures. I think it was

great (and helpful) that I didn't have to ask for specific materials."

"Nexi understood what needed to be done and helped retrieve the

materials necessary to build the structures. When I gave status updates

and when I communicated if I had or hadn't all the materials, Nexi proved

to know what needed to be done next. It was a big help having her work

with me."

"Nexi was helpful in making sure that I got all of the materials for the

tasks and made sure that the building process was not delayed."
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Table 7.5: Mean Response Scores and P-values for Likert Questions

Explicit Group Implicit Group p-value
1. Nexi's performance was an important
contribution to the success of the team. 4.5 4.5 1
2. Nexi performed well as part of the team. 4.25 4.25 1
3. Nexi contributed equally to the team
performance. 3.38 3.75 0.55
4. I felt like Nexi was committed to the
success of the team. 4 4.63 0.12
5. Nexi perceives accurately what my
goals are. 3.75 4.5 0.12
6. Nexi does not understand what I am
trying to accomplish. 2.5 2.63 0.84
7. Nexi and I are working towards
mutually agreed upon goals. 3.88 3.88 1
8. The team worked fluently together. 4.13 4.38 0.58
9. Nexi contributed to the fluency of
the interaction. 4.13 4 0.76
10. I trusted Nexi to do the right thing
at the right time. 4.13 4.38 0.58
11. Nexi was trustworthy. 3.88 4.88 0.02
12. Our success on the task was largely
due to the things I said or did. 4.38 3.75 0.11
13. I am responsible for most of the
things that we did well on this task. 3.5 3.5 1
14. Our success on this task was largely
due to the things Nexi said or did. 3.13 2.88 0.64
15. Nexi should get credit for most of
what we accomplished on this task. 2.5 2.5 1
16. I hold Nexi responsible for any errors
that were made on this task. 1.88 1.75 0.72
17. Nexi is to blame for most of the
problems we encountered in accomplishing
this task. 2 1.88 0.78
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Table 7.6: Correlation between Likert responses and Task Completion Time
Correlation coefficient r

1. Nexi's performance was an important
contribution to the success of the team. -0.5
2. Nexi performed well as part of the team. -0.5
8. The team worked fluently together. -0.4

Table 7.7: Correlation between Likert responses and Human Idle Time
Correlation coefficient r

14. Our success on this task was largely due
to the things Nexi said or did. 0.5
15. Nexi should get credit for most of what
we accomplished on this task. 0.4

7.6 Discussion

The results presented in this chapter provide the first evidence that human-robot

teamwork is improved when a robot emulates the behaviors and teamwork strategies

observed in human teams. In this section, I interpret and discuss the results within

the context of the two experiment hypotheses.

Human subjects in the Implicit Teaming group spent 85% less time idling, on

average, than human subjects in the Explicit Teaming group, a statistically significant

difference (p = 0.02). Human idle time was reduced from 44 seconds to 6 seconds,

on average. This result supports the hypothesis that human subjects working with a

robot controlled by Chaski exhibit less idle time than subjects that verbally command

the robot step-by-step. Of the reported results, this data most strongly supports my

hypothesis that human-robot team performance is improved when a robot emulates

the effective coordination behaviors observed in human teams.

Analysis also indicates that Implicit Teaming groups performed the task 7-12%

faster, on average, than Explicit Teaming groups. This result is not statistically sig-

nificant, therefore the hypothesis that Implicit group teams take less time to complete

the task than Explicit group teams remains unconfirmed. This is in part due to a
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large variance in time to complete the task and the low number of subjects. However,

there is a trend towards lower task completion time for Implicit Group that warrants

further investigation.

Subjects in the Implicit Teaming group agreed with the statement "the robot

is trustworthy" more strongly than people in the Explicit Teaming group, a statis-

tically significant result (p=0.02). However, Implicit group subjects did not agree

more strongly than Explicit group subjects that the team worked fluently together,

the robot performed well, or that the team members shared common goals. These

results are surprising considering previously reported results (Hoffman and Breazeal,

2007) that anticipatory action within a human-robot team positively impacted these

subjective measures.

There are a number of differences between the (Hoffman and Breazeal, 2007) study

and this study that may have contributed to differing results. First, the (Hoffman

and Breazeal, 2007) experiment task was shorter and more quickly-paced than the

construction task. This is primarily due to the different capabilities of the robots

used in each study. The robotic lamp used in the (Hoffman and Breazeal, 2007)

study was tasked with lighting different targets, and each action took on the order

of seconds. In contrast, Nexi required approximately one minute to retrieve a bag

with materials. It is possible that interaction on a shorter time-scale elicits stronger

responses from subjects. Second, the quick pacing of the (Hoffman and Breazeal,

2007) task resulted in instances where the robot would anticipate and begin to perform

a correct action, even as the human subject moved to perform an incorrect action.

This type of correcting behavior may play an important part in confirming for the

human teammate that the robot performed well.

A third difference is that the robot execution system in (Hoffman and Breazeal,

2007) included a learning component. The robot anticipated the human's next action

using a naive bayesian estimator to compute the highest probability next action. Each

human-robot team performed ten trials of experiment task, and the robot updated

its probabilistic model of the action sequence between trials. As a result, subjects

experienced the robot learning with practice. In contrast, Chaski does not include a
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learning component. The Chaski execution algorithms are adaptive, in the sense that

the robot updates its actions and timings in real-time based on the human's choices

and actions. However, Chaski does not learn the human's likely action sequences. As

a result, subjects would not notice an improvement in the robot's performance from

Trial 1 to Trial 2. It is possible that subjects feel more strongly that the team works

fluently together and the robot performs well when the robot's performance improves

with practice.

Also, a moderate correlation was found between Likert question scores and ob-

jective team performance. Analysis shows a moderate, negative correlation between

time to complete the task and Likert responses for robot performance and team flu-

ency. This means that there is a correlation between finishing the task quickly and

agreement that the robot performed well and the team worked fluently together. It

is possible that this effect dominated the Implicit versus Explicit group effect in the

subjective evaluation. Analysis also shows a moderate, positive correlation between

human idle time and Likert responses addressing attribution of credit to the robot.

This means the subjects' idle time was related to their agreement that the robot

contributed to the success of the team.

In these experiments, I applied the Chaski executive to choose and schedule the

robot's actions (as described in Chapter 4), so as to minimize the human's idle time

(as described in Section 6.2). However, the system did not to respond to implicit

communications, including verbal and gestural cues, and explicit commands, as de-

scribed in Sections 6.3 and 6.4. In Section 7.9 I propose follow-on experiments using

the full Chaski capability, and discuss future research directions in the design and

evaluation of robot plan execution systems that are inspired by the way we work with

other people.

7.7 Related work in Human-Robot Teaming

Related research in human-robot teaming addresses the challenge of coordinating

actions among robots and humans both at the level of establishing joint attention and
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interpreting intent, and at the task-level of coordinating actions and task assignments.

Systems addressing joint attention and intent use expression, gesture, and gaze

to infer intention and maintain common understanding as the task proceeds (Lock-

erd and Breazeal, 2004; Sakita et al., 2004; Sidner et al., 2005). For example, in

(Lockerd and Breazeal, 2004) robot eye gaze is used to establish joint attention, and

nods are used to cement mutual understanding. In (Sakita et al., 2004) human gaze

information is used to interpret intent, such as hesitation or search for an object.

Task-level systems address the challenge of coordinating actions and task assign-

ments primarily through the use of explicit verbal exchange of information. In the

work (Trafton et al., 2005), a person verbally commands a robot capable of reasoning

about the world from the perspective of the human teammate. The robot effectively

acts in response to a person issuing commands using various frames of reference

(egocentric, object-centered, exocentric, etc.). Another system, the Human-Robot

Interaction Operating System (HRI/OS) (Fong et al., 2006) accomplishes collabora-

tion through a central Task Manager, which decomposes goals into high-level tasks,

and assigns tasks to either the human or robot. Coordination is accomplished through

verbal exchange of information regarding goals, abilities, plans and achievements.

Recently, systems have incorporated more implicit strategies for coordination.

(Hoffman and Breazeal, 2007) have designed a system to coordinate teaming be-

havior more fluently through practice by learning a model of the spatial-temporal

performance of the person. Other efforts have robots inferring mental states to co-

ordinate joint action, such as beliefs and intents, from observing non-verbal human

behavior (Breazeal et al., 2009).

There is also growing interest in designing systems for task-level coordination

based on observations from human studies. For example the work of (Trafton et al.,

2005) is grounded and motivated by studies of astronaut-to-astronaut interactions.

However, many of the current systems for task-level human-robot coordination rely

on explicit commands between the human and robot, or a central agent that explicitly

commands the actions of both the human and robot. Studies in human teamwork,

both mine and others' (see Chapter 2) suggest that these are not efficient strategies
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for team coordination. Instead, teams of people make use of implicit coordination

strategies, including verbal and non-verbal cues, to reduce communication and coor-

dination overhead.

In this thesis, I have provided the first evidence that human-robot team per-

formance is improved when a robot teammate emulates the implicit behaviors and

teamwork strategies observed in human teams. I have presented a body of human

teaming research that has not yet been applied to human-robot interaction: studies in

human teamwork under stress induced by uncertainty, ambiguity, and time pressure.

I have applied insights from these studies in order to design and evaluate Chaski,

a robot plan execution system that makes human-robot teaming more natural and

fluid. Results from my human-robot teaming studies indicate that team performances

outcomes are improved when robot teammates are controlled by Chaski, compared

to when robots are verbally commanded, step-by-step by the human teammate.

7.8 Thesis Contributions

I have designed and evaluated Chaski, a robot plan execution system that makes

human-robot teaming more natural and fluid, based on insights from human-human

teaming. I have described how Chaski enables a robot to robustly anticipate and

adapt to other team members, and to emulate a human's response to verbal and

gestural cues and explicit commands. Chaski makes decisions very quickly in response

to a human's actions using a compact represention of the robot's plan, and enables

collaboration with another teammate under two styles of teamwork: Equal Partners

and Leader & Assistant. I have empirically demonstrated that, compared to prior

work in this area, my methods increase the speed of online computation by one order

of magnitude on average.

I have also evaluated Chaski in human subject experiments in which a person

works with a mobile and dexterous robot to collaboratively assemble structures using

building blocks. I measure team performances outcomes for robots controlled by

Chaski compared to robots controlled by the human teammate. I show that Chaski
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reduces the human's idle time by 85%, a statistically significant difference. This

result supports my hypothesis that human-robot team performance is improved when

a robot emulates the effective coordination behaviors observed in human teams.

7.9 Recommended Future Work

I discuss future research directions, building on the work presented in this thesis, in

the design and evaluation of robot plan execution systems that are inspired by the

way we work with other people. I propose follow-on experiments in human team-

work, extensions to the Chaski executive, and follow-on experiments in human-robot

teaming.

7.9.1 Human Teamwork Experimentation

Predict Human's Activities Using the Equal Partners Model

I have developed models for two styles of teamwork: Equal Partners and Leader &

Assistant. These models are informed by qualitative descriptions for two different

styles of teamwork observed in human teams (Anderson and Franks, 2003), but in-

clude modeling assumptions that are not yet empirically justified by human teamwork

studies. In my models, each teammate makes decisions that guarantee the team will

accomplish the task successfully within the plan deadlines. The benefit of this model

is that Chaski enables a robot to act in this way. The potential disadvantage is that

Chaski assumes the person will act in this way too.

I propose to conduct human teamwork studies to investigate whether two human

team members, working together with equal authority over decision-making, act as

the Equal Partners model predicts. I would like to compare model prediction for

tasks performed with perfect information compared to tasks performed without the

full information necessary to guarantee task success.

From these studies, I would like to understand under what circumstances a person

is likely to act in a way that does not guarantee the success of the team within the
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Equal Partners model. Results would provide insights into how to design a system

that makes decisions and communicates information to the human for the purpose of

increasing the likelihood of successfully completing the task.

Investigate Use of and Response to Communication and Cues in Leader

& Assistant Teamwork

The human teamwork studies I conducted and reported on in Chapter 2 investigate

how people use and respond to different types of communication. In these experi-

ments, the style of interaction between subjects closely resembled the Equal Partners

style of teamwork because team members had equal authority over decision-making.

I propose to conduct follow-on experiments to investigate whether these same

results are observed when the team members have an asymmetric decision-making

authority. In the proposed experiments, the style of interaction between subjects

would more closely resemble the Leader & Assistant model. I would like to understand

whether the style of interaction, Equal Partners vs. Leader & Assistant, has an

effect on the ways that people use and respond to verbal and non-verbal implicit

communications and explicit commands.

7.9.2 Extensions to the Chaski Plan Execution Capability

Execute Large Plans

In Chapters 4 and 5 I benchmarked Chaski on moderately-sized plans, containing

up to 17 activities and thousands of component solutions. One approach for fur-

ther scaling up the size of executable plans is to design Chaski to compile the subset

of feasible component solutions that are "most useful." The determination of "most

useful" solutions requires a preference ordering over component solutions. Two rea-

sonable approaches for choosing this ordering would be (1) based on a probabilistic

model of the human's most likely task assignment and synchronization decisions, or

(2) based on an analysis of where in the plan quick adaption is critical to the fluidity

of teamwork or the success of the task.
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The Chaski plan execution algorithms described in this thesis are complete in that

they encode all possible task assignments and scheduling policies for a given Equal

Partners or Leader & Assistant plan. This means that all feasible plan executions

are encoded in the Chaski compiled plan. However, this would no longer be the case

if Chaski compiles only a subset of solutions. This is a significant shortcoming since,

if the human makes a decision that is not encoded in the solution set, then plan

execution fails and the execution algorithms terminate. I propose two complemen-

tary approaches to address this challenge: Chaski may continue to compile feasible

solutions at execution time, and may perform incremental plan repair in case of plan

failure.

Compile Solutions at Execution Time

During plan execution, the number of feasible component solutions decreases

monotonically as plan commitments are made. Imagine that Chaski compiles 6000

of the "most useful" component solutions for a given plan. Half of these component

solutions specify the task assignment "robot performs activity A", and the other half

specify "robot performs activity B." Next imagine that the robot perform A right at

the plan start. Now 3000 of the compiled component solutions are no longer feasi-

ble. This provides an opportunity to compile 3000 more feasible solutions online, and

continue dispatching with approximately constant execution latency.

Incrementally Repair the Plan

Continuing to compile solutions at execution time may decrease the probability

of plan failure, but will not eliminate it entirely. One approach to address this issue

is to integrate Chaski with incremental methods to reduce the latency of plan repair.

Shu et al. (2005) and Effinger and Williams (2006) provide incremental methods

that improve execution latency of choice selection in temporal plans, and Shah et al.

(2007) provide a fast algorithm to incrementally compile plans modeled as simple

temporal problems (with and without uncertainty) to dispatchable form. One of the

key strengths of Chaski is that it applies the Stedl (2004) Dynamic-Back Propagation

Rules and Incremental Update Rules to compute a compiled plan, and would readily

support the Shah et al. (2007) capability for incremental compilation to dispatchable
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form.

Extend Chaski to More than Two Agents

I have described how Chaski was implemented and evaluated on two-agent plans.

The compilation and dispatch of Equal Partners plans is readily extensible to more

than two agents. The key change is that the dispatcher must be modified to maintain

different lists of enabled events and executable time windows for each of the other

agents. The Leader & Assistant model generalizes naturally to teams with multiple

Assistants in the same way. However, the generalization to multiple Leaders is less

straightforward. Interesting questions arise, including, whether multiple leaders may

have authority over the same activity, and whether leaders should act so as not to

constrain the choices of other leaders. The model must be extended to address these

issues in decision-making authority and strategy.

Execute More General Models of Plans

The Multi-agent Disjunctive Temporal Constraint Network (MA-DTCN) introduced

in this thesis models the simplest type of plan choice: choice in task assignment.

However, many plans include more general types of choices. Imagine a plan where

an agent's possible activities depends on their previous choices; if the robot goes left

at the fork then it may perform Activity A, and if it goes right it may perform B.

These types of choices cannot be modeled within an MA-DTCN since they require

disjunctive constraints relating more than two events. Instead, this type of plan choice

may be modeled as a disjunctive temporal problem (DTP) or a conditional constraint

satisfaction problem (CSP).

Published results (Shah and Williams, 2008; Shah et al., 2009; Conrad, 2010)

indicate that the benefit in execution latency of dispatching a compact form, com-

pared to a component solution form, decreases with the generality of the plan model.

Shah and Williams (2008) show a three-order of magnitude improvement in execu-

tion latency for TCSPs. Shah et al. (2009) and the results presented in this thesis

show a one-order of magnitude improvement in execution latency for MA-DTCN(U)s
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. Conrad (2010) indicates that, on average, a compact form of the plan does not offer

a benefit in execution latency for DTP(U)s. These results also indicate there may

be a relationship between generalness of the plan representation, compactness of the

compiled solution, and execution latency. More investigation of the trade-offs along

these dimensions is necessary to understand how best to generalize to more complex

plans.

Generate Cues and Communications

In Chapter 6, I discussed how Chaski acts in response to implicit and explicit com-

munications. However, Chaski does not currently emit communications other than

the updates when beginning or finishing an activity.

Results from the human teamwork experiments I conducted provide starting guide-

lines for how a robot may choose to use different types of communications. In Chapter

2, I proposed that a robot should exhibit different types of coordination cues based on

an understanding of how the teammate will incorporate the cues into his/her action

planning. For example, I propose that a robot should use explicit cues when refer-

ing to one specific action and/or in situations that demand immediate response from

the teammate. Also, when possible, the robot should promote efficient coordination

by using implicit cues that offer the teammate flexibility on when to respond. For

example, the robot may use implicit cues to direct the teammates attention towards

unfinished work or a problem.

I propose to extend Chaski to emit implicit and explicit communications, accord-

ing to these guidelines, for the purpose of guiding the human's actions to increase a

task-relevant objective function. Two reasonable objectives would be to (1) finish the

task as quickly as possible, or (2) improve the likelihood of successfully completing

the task.
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7.9.3 Human-Robot Teaming Experimentation

In Chapter 7, I described human-robot teaming experiments I conducted to measure

performances outcomes for robots controlled by Chaski, compared to robots that

were verbally and explicitly commanded step-by-step by the human teammate. I

propose a set of follow-on experiments investigating (1) team performance outcomes

for Leader & Assistant teamwork, (2) human subjects' responses to a robot's commu-

nications, and (3) the effect of robot guidance on objective and subjective measures

of performance and teaming quality.

Compare Subjective Measures of Teaming Quality for Equal Partners and

Leader & Assistant Models

I propose to run the human-robot teaming experiments (described in Chapter 7)

under the Leader & Assistant model of teamwork'. The purpose would be to compare

objective measures of team performance and subjective measures of teaming quality

for Equal Partners and Leader & Assistant teamwork. I hypothesize that human idle

time and time to complete the task would be greater for the Leader & Assistant teams

than for the Equal Partner teams. This is because in the Leader & Assistant model,

the robot will spend more time idling to avoid constraining the human's activity

choices. I am also interested as to whether subjective measures of teaming quality

would indicate a preference for the robot in a subordinate role.

Investigate Human Response to Robot Cues

I would like to conduct experiments to investigate how people respond to a robot's im-

plicit and explicit communications. I hypothesize that the responses would be similar

to those observed in my human teamwork experiments, which indicated that explicit

commands nearly always elicited an immediate response and implicit communications

elicited a flexible time response. Results confirming my hypothesis would provide a

predictable model for a human's response to robot cues, and may potentially be use-

ful in designing a robot system that uses implicit and explicit communications to
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improve team performance.

Investigate the Effect of Robot Guidance

Finally, I am interested in conducting experiments to investigate the effect of robot

guidance on objective and subjective measures of performance and teaming quality. I

propose to empirically evaluate the ability of Chaski to guide a human's actions using

implicit and explicit communications. Results of my human teaming studies show that

increased use of implicit behaviors is correlated with improved team performance. I

hypothesize that performance and teaming quality is improved when a robot cues the

human using primarily implicit rather than explicit communications. I would also

like to investigate whether providing a rationale for the robot's implicit and explicit

cues impacts performance or subjective measures of teaming quality.
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