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Abstract

In layered networks, a single failure at the lower (physical) layer may cause multiple
failures at the upper (logical) layer. As a result, traditional schemes that protect
against single failures may not be effective in layered networks. This thesis studies
the problem of maximizing network survivability in the layered setting, with a focus
on optimizing the embedding of the logical network onto the physical network.

In the first part of the thesis, we start with an investigation of the fundamental
properties of layered networks, and show that basic network connectivity structures,
such as cuts, paths and spanning trees, exhibit fundamentally different characteristics
from their single-layer counterparts. This leads to our development of a new cross-
layer survivability metric that properly quantifies the resilience of the layered network
against physical failures. Using this new metric, we design algorithms to embed
the logical network onto the physical network based on multi-commodity flows, to
maximize the cross-layer survivability.

In the second part of the thesis, we extend our model to a random failure setting
and study the cross-layer reliability of the networks, defined to be the probability
that the upper layer network stays connected under the random failure events. We
generalize the classical polynomial expression for network reliability to the layered
setting. Using lonte-Carlo techniques, we develop efficient algorithms to compute
an approximate polynomial expression for reliability, as a function of the link fail-
ure probability. The construction of the polynomial eliminates the need to resample
when the cross-layer reliability under different link failure probabilities is assessed.
Furthermore, the polynomial expression provides important insight into the connec-
tion between the link failure probability, the cross-layer reliability and the structure
of a layered network. We show that in general the optimal embedding depends on the
link failure probability, and characterize the properties of embeddings that maximize
the reliability under different failure probability regimes. Based on these results, we
propose new iterative approaches to improve the reliability of the layered networks.
We demonstrate via extensive simulations that these new approaches result in em-
beddings with significantly higher reliability than existing algorithms.
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Chapter 1

Introduction

Layering is a fundamental concept in modern network design. It describes the de-

composition of the network's functions into separate logical components. The way

the functions are divided, as well as the interactions among these logical compo-

nents, define the network architecture. In modern communication networks, these

components, called layers; are often organized as a stack, where each layer relies on

the services provided by the layer below to implement the services used by the layer

above. Common network models based on stacked layering include the OSI Reference

Model 11271 and the TCP/IP model 123]. The decomposition of network function-

alities allows each layer to hide much of its internal complexity and provide a clean

interface to the client of its services. For instance, in the OSI Reference Model, the

physical layer is responsible for providing a "pipe" with a certain amount of bandwidth

to the layer above. The actual physical medium that implements the pipe, however,

is opaque to the upper layer. Similarly, the data link layer is responsible for framing,

multiplexing and demultiplexing data that is sent over the physical layer. It defines

the protocol for reliable data transmission over the physical link. This transforms

the raw bandwidth provided by the physical layer into channels that allow the upper

layer to reliably access and share the physical bandwidth. Such a layering approach

greatly simplifies the network design and makes it possible to implement and operate

the network in a modularized and evolvable manner.

A pertinent example of a multi-layer network is the IP-over-WDM network, as



shown in Figure 1-1. At the lower layer is a Wavelength Division Multiplexing (WDM)

network which consists of the optical switches connected by the physical fibers. On

top of the WDM network is an IP network where the IP routers are connected using

(WDM) lightpaths. Each lightpath is realized by setting up a physical connection

using one of the wavelength channels in the optical fibers. In this IP-over-WDM

architecture, the network topology in the upper layer, called the logical topology, is

defined by the set of IP routers and the lightpaths connecting them. On the other

hand, the physical topology is defined by the (possibly different) set of optical switches

and the fibers connecting them. In this thesis, we will discuss our results in the

context of IP-over-WDM networks; as such, we will use the terms "logical links" and

"lightpaths" interchangeably. However, the concepts discussed are equally applicable

to other layered architectures, such as IP over ATM, ATM over SONET, etc.

Logical (electronic) topology

7

IPP

Physical (optical) topology

Figure 1-1: An IP-over-WDM network where the IP routers are connected using optical lightpaths.
The logical links (arrowed lines on top) are formed using lightpaths (arrowed lines at the bottom)
that are routed on the physical fiber (thick gray lines at the bottom). In general, the logical and
physical topologies are not the same.

In multi-layer networks, the design of the logical topology is often decoupled from

the physical topology. For example, it is very possible that two logical nodes that

are connected by a logical link are not directly connected by a physical fiber. In this

case, the logical link can be created by setting up a lightpath that traverses multiple

physical hops. This, however, involves selecting the physical route taken by the

lightpath. The choice of physical routes taken by the lightpaths in the logical topology,

called the lightpath routing, has significant implication on capacity requirement and

network survivability. As an illustrative example, Figures 1-2(a) and 1-2(b) show



the physical and logical topologies of a layered network, and Figures 1-2(c) and 1-

2(d) show two different lightpath routings. In Figure 1-2(c), the two logical links

between s and t are routed over the same physical path. From a capacity standpoint,

this means that the physical fiber must have the capacity to support two lightpaths

within the same fiber. From a survivability standpoint, this means a single fiber cut

can cause both of the logical links to fail simultaneously, thereby disconnecting the

logical nodes s and t. As a result, the logical network is susceptible to a single physical

failure. In contrast, in Figure 1-2(d), the logical links are routed disjointly over the

physical network. In this case, the physical fibers only need the capacity to support

one wavelength channel, and any single fiber cut will only result in failure of at most

one logical link.

s 
2 

t7

3......

(a) Physical Topology (b) Logical Topology

4- -..- - - - --- - s 2 t
s 2 2 t ..........

..................-.. 3.. .. . .-NN

(c) Non-Disjoint Routing (d) Disjoint Routing

Figure 1-2: Routing logical links differently can affect capacity requirement and survivability.

Therefore, by routing the lightpaths intelligently over the physical network, one

can increase utilization, as well as improve survivability of the network. While the

impact on the utilization has been quite extensively studied [3,14,15, 52, 69,85,95,

115, 126], the survivability aspect is relatively unexplored. The main focus of this

thesis is to develop a deeper understanding on how multi-layer survivability can be



achieved by a good lightpath routing. We will consider the following model for a

two-layer network:

" A physical topology at the lower layer, modelled by a network graph Gp =

(Vp, Ep);

e A logical topology at the upper layer, modelled by a separate network graph

GL = (VL, EL), where VL C Vp;

" A lightpath routing, which maps each logical link (s, t) E EL to a physical (s, t)-

path in Gp.

Associated with the layered network is a survivability measure x, which maps

the lightpath routing to a non-negative real number that quantifies its survivability

performance. Throughout the thesis, we will consider different definitions for x, and

study two classes of problems:

1. Survivability Measurement: Given the physical and logical topologies, as

well as the lightpath routing R as input, compute N(R).

2. Survivable Lightpath Routing: Given the physical and logical topologies,

find the lightpath routing R that maximizes x(R).

In the rest of this section, we will provide background on network survivability

in Section 1.1, and discuss existing works in cross-layer survivability in Section 1.2.

Then in Section 1.3, we will present an outline of the thesis and highlight our major

contributions.

1.1 Background on Network Survivability

The two main approaches to providing network survivability are protection and restora-

tion. Protection refers to rapid and preplanned recovery mechanisms where in the

event of a failure, traffic is switched over to back-up paths. On the other hand,



restoration refers to recovery mechanisms whereby back-up paths are found dynam-

ically in the event of a failure 150]. Network survivability at a single layer has been

studied extensively and the literature on protection and restoration is extremely

rich [5, 30, 38, 44, 49-51, 58, 68, 71, 78, 88, 92, 93, 104, 109, 117, 118]. Here we provide

a brief overview of protection and restoration in single layer networks; highlighting

the issues that are key to this thesis.

Protection can be provided at the various layers [45, 51, 99]. Protection mecha-

nisms are classified into link protection and path protection. Link protection recovers

from a link failure by rerouting the traffic around the failed link (e.g., using loop-

back protection [30,44, 88, 92,93]). In contrast, path protection reroutes traffic using

a back-up end-to-end path for each traffic stream [58, 78, 92, 93, 104]. For example,

SONET rings employ either link-based or path-based protection switching [50, 51],

to guarantee recovery within 60ms. For path protection, SONET reserves primary

and back-up paths in opposite directions around the ring; while link protection is

accomplished by rerouting the traffic around the ring from the one end of the failed

link to the other [49,117]. Similarly, both path and link protection can be employed

in general mesh network topologies (e.g., ATM, WDM4, etc.). Path protection is ac-

complished by establishing disjoint primary and back-up paths from the source to the

destination; where the two paths must be disjoint to ensure that they do not fail si-

multaneously [92,93]. Link protection in mesh networks can be accomplished through

the use of protection cycles that provide a path from the source to the destination of

the failed link [38,104].

In contrast, restoration does not involve preplanning of back-up paths, and is typi-

cally provided at the electronic (or logical) layers. The simplest example of restoration

is that of packet traffic in the Internet where the Internet Protocol (IP) automati-

cally recovers from link failures by rerouting packets, using its standard routing al-

gorithms (e.g., OSPF, etc.) 157,68,71]. Restoration can also be done for connection

traffic, on an end-to-end basis; where after a failure, a new path is established dy-

namically 15,93,109]. However, since restoration does not utilize preplanned back-up

paths, it typically takes longer to recover from failures. Moreover, failure recovery



is not guaranteed as a back-up path may not exist or back-up capacity may not be

available.

Different network technologies use either protection or restoration for failure recov-

ery, and the choice is driven by the service being provided. The distinction between

protection and restoration is important because they each impose different require-

ment on the network design. For example, protection is typically done using disjoint

primary and back-up paths. Hence network topologies must be able to easily ac-

commodate disjoint paths. For this reason SONET uses a ring architecture where

disjoint paths can be easily established around the ring. In contrast, restoration

reroutes traffic by finding an alternative path after the failure. This imposes a some-

what less stringent requirement in that the network merely has to remain connected

in order to reroute traffic, subject to sufficient capacity.

Typically, protection or restoration is provided at the electronic (logical) layer,

because it is needed to recover from electronic layer failures (e.g., line card failure).

Although physical layer protection is also possible, it is often very costly in terms

of additional protection capacity and is often incompatible with the electronic layer

protection mechanism (e.g., SONET protection switching is initiated within a few

milliseconds; not nearly enough time for optical layer protection to take effect) 150,
511. Moreover, since the electronic layer typically offers protection or restoration

mechanisms, protection at the physical layer is often redundant [57]. Hence, in this

thesis we focus on network architectures where the protection and/or restoration is

provided at the electronic layer only.

1.2 Previous Work on Cross-Layer Survivability

While protection and restoration have been extensively studied in single-layer net-

works, their applicability to cross-layer networks is not well understood. For example,

protection mechanisms rely on finding disjoint paths in the network, a well under-

stood problem in single-layer graphs. However, in multi-layer networks, once the

logical topology is embedded on the physical topology, a physical fiber link may



carry multiple logical links. Therefore, disjoint paths at the logical layer may not

be disjoint at the physical layer, rendering the logical layer protection ineffective.

Similarly, restoration mechanisms require the network to remain connected after a

failure. While connectivity in single-layer graph is well understood, in a multi-layer

network, a physical layer failure can lead to multiple logical link failures, which makes

it possible to disconnect the logical network even if the logical topology is designed

to have high connectivity.

Cross-layer survivability has received relatively limited attention in the litera-

ture. Most previous works on cross-layer survivability have been in the context of

WDM-based networks and consider very specific objectives, such as routing light-

paths to survive single link failures in optical networks or finding disjoint paths that

do not share a common network failure, generally called a Shared Risk Link Group

(SRLG) [8,18,19,28, 35,37,56, 72,84,91,100, 103, 105,113,120-122,1251.

The impact of physical layer failures on the connectivity of the logical topology

was first studied by Crochat et at. [6, 33, 34] in the context of WDM-based networks.

The authors proposed heuristic algorithms for routing the lightpaths that consti-

tute the logical topology, on the physical topology, so as to minimize the number

of disconnected node pairs on the logical topology in an event of single physical link

failure. Modiano and Narula-Tam [761 first introduced the notion of Survivable Light-

path Routing, which is defined to be a routing of the logical links over the physical

topology so that the logical topology remains connected in the event of a single fiber

failure. The same paper developed mathematical conditions for routing lightpath on

the physical topology so that the logical topology remains connected even if one of the

fibers fails and formulated the problem as an Integer Linear Program (ILP). In [36],

Deng, Sasaki and Su developed a Mixed Integer Linear Program (MILP) for the sur-

vivable routing problem with polynomial number of constraints. Todimala et al. [113]

generalized the problem definition to cover single SRLG failures, and developed an

ILP as well as heuristic algorithms. The problem of routing logical rings survivably

on the physical network was studied in [76,81,101,102]. In particular, [81] considered

the physical network design problem and proposed several special physical topologies



that guarantee the existence of survivable lightpath routings for logical rings. In [67],

Kurant et al. introduced the notion of piecewise survivable mapping and developed

an algorithm to compute survivable lightpath routings based on piecewise survivable

components. The same technique was extended to compute lightpath routings that

are survivable against k failures, for a fixed value of k 1661. In [1121, Thulasiraman et

al. introduced the idea of adding protection edges to the logical topology in the case

where survivable lightpath routing cannot be found by the Kurant's algorithm. Based

on this idea, the authors enhanced Kurant's algorithm to always return a survivable

lightpath routing, at the expense of the extra protection edges.

The related issue of SRLG failures was introduced in the Generalized Multi-

Protocol Label Switching (GMPLS) standard in the IETF for failure management [28,

91,100]. A SRLG is a group of lightpaths that fail simultaneously upon a single phys-

ical failure. For example, for a particular optical fiber, all the lightpaths that traverse

the same fiber form a SRLG. Thus, in order to provide rapid protection, two SRLG-

disjoint paths, i.e., paths that do not share a common SRLG, must be used. This

SRLG-Disjoint Path Problem (SDPP) was first studied in [18] and subsequently in

the book written by the same author 119]. In [56] the problem was shown to be NP-

complete; and heuristic algorithms for different variations of the SDPP problem were

proposed in [8, 72,84, 103,120-122]. Various aspects of network design under SRLG

constraints were also studied in [35, 37,105,113,125].

1.3 Contributions

1.3.1 Theoretical Underpinnings of Cross-Layer Survivability

Problems

As discussed in the previous section, all existing works in cross-layer survivability

consider very specific objectives and the primary focus is to design algorithms for

these problems. This thesis attempts to develop a more rigorous treatment of cross-

layer survivability in order to provide the foundation for quantifying and optimizing



survivability in layered networks. We will start with the questions of why, and to what

extent, existing protection and restoration mechanisms do not work in the multi-layer

setting. Section 2.2 offers answers to these questions by exposing the structural dif-

ferences between single-layer and multi-layer networks. More specifically, we propose

a model for multi-layer networks that generalizes the classical network graph model

for single-layer networks. We will show that connectivity structures in this general-

ized setting, such as paths, cuts, and spanning trees, exhibit fundamentally different

properties from their single-layer counterparts; as such, special graph properties that

constitute the foundation of single-layer survivability, such as the max-flow min-cut

relationship, do not carry over to multi-layer networks. In addition, we prove several

results that reveal the new max-flow min-cut relationship in multi-layered networks,

as well as NP-Hardness for computing various basic graph structures in the multi-

layer setting, such as maximum disjoint paths, minimum cuts and minimum spanning

trees. This collection of results suggest a fundamental structural difference between

single-layer and multi-layer networks, which has the following profound implications:

1. Protection and restoration mechanisms designed for single-layer networks may

not be effective in the multi-layer setting.

2. Common metrics, such as connectivity, that are used to quantify survivability

for single-layer networks lose much of their meanings if applied blindly to multi-

layer networks.

3. Existing algorithms for assessing and maximizing survivability for single-layer

networks are not easily extendable to the multi-layer setting, due to the funda-

mental differences between the two types of networks and the inherent hardness

of computing multi-layer connectivity structures.



1.3.2 Metrics and Algorithms for Survivable Layered Network

Design

The observations from Section 2.2 motivate us to reinvestigate basic issues in surviv-

ability for multi-layer networks, starting with the definition of cross-layer survivabil-

ity. In order to understand the survivability performance of a multi-layer network

design, it is important to define metrics that properly capture multi-layer survivabil-

ity. Unfortunately, due to the inherent complexity of cross-layer structures, defining a

meaningful cross-layer survivability metric is non-trivial. Therefore, in Section 2.3 we

propose guidelines for cross-layer survivability metric design, defining several prop-

erties that a metric must satisfy in order to be a suitable cross-layer survivability

metric. Based on these guidelines, we define two cross-layer survivability metrics,

called Min Cross Layer Cut and Min Weighted Load Factor. We will explain their

physical meanings and discuss how these metrics can be computed. We will also

investigate their mathematical properties, which reveal certain inherent connections

between the metrics and provide insight into our development of ILP formulations

for the Survivable Lightpath Routing problem.

In Section 2.4 we will formulate the Survivable Lightpath Routing problem as

a survivability maximization problem, using Min Cross Layer Cut (MCLC) as the

optimization objective. Due to the inherent difficulty in maximizing the metric di-

rectly, in Section 2.4 we consider ILP approximations for the MCLC maximization

problem. We run extensive simulations comparing the survivability performance of

these formulations with the existing Survivable Lightpath Routing algorithm in the

literature. The results show that our approach to maximize an approximation of

the MCLC can often lead to lightpath routings with significantly better survivabil-

ity performance than existing algorithms. In addition, our simulation results also

suggest that a formulation that closely approximates the MCLC maximization, com-

bined with the randomized rounding technique, provides an efficient way to design

multi-layer networks with good survivability performance.



1.3.3 Extension to Random Physical Failures

In the second part of the thesis, we will extend our investigation to the random

physical failure model, where all physical links are assumed to fail independently

with certain probability. Similar to the deterministic model, a physical link failure

will affect all the logical links that use that physical link. The metric of interest

under this model is the cross-layer reliability, which is the probability that the logical

topology stays connected under the random physical failures.

Computing reliability was shown to be #P-complete in single layer networks [1141,

and even approximating the reliability to within a constant factor cannot be done

in polynomial time [87]. Although there are works aimed at exact computation of

reliability through graph transformation and reduction [27,73,83,86,98,106,107,111],

the applications of such methods are limited to specific topologies. Because of the

difficulty in assessing network reliability, most previous works in this context focused

on estimating the network reliability, either by deterministic "best-effort" approaches

without accuracy guarantee [24, 31, 53, 89, 94], or by Monte Carlo simulations [41, 62,

63,82] with probabilistic accuracy guarantee.

Although there has been a large body of works on estimating single-layer net-

work reliability, cross-layer reliability has not been explored previously. Our main

contributions in this area are new algorithms for cross-layer reliability estimation and

maximization, as well as theoretical results that lead to a deeper understanding of

structures in layered networks that contribute to high reliability. In Chapter 3, we

develop an algorithm that yields a polynomial expression [121 for the reliability of a

given multi-layer network. This expression provides a formula for cross-layer reliabil-

ity as a function of the physical link failure probability. In contrast to many existing

reliability estimation methods for single-layer networks 141,62,631, our method is not

tailored to a particular probability of link failure, and consequently, it does not re-

quire resampling in order to estimate reliability under different values of link failure

probability. That is, once the polynomial is estimated, it can be used for any value

of link failure probability without resampling.



The polynomial expression given by the algorithm also reveals important struc-

tural information of the underlying layered network, which provides clear insights

into how lightpath routing should be designed for better reliability. In Chapter 4,

we investigate the relationship between the link failure probability, the cross-layer

reliability and the structure of a layered network. We show that the structures of the

optimal lightpath routings depend on the link failure probability. In particular, light-

path routings that are optimal in the regime where the link failure probability is low,

is structurally different from lightpath routings that are optimal in the regime where

the link failure probability is high. The investigation culminates in characterizations

of optimal lightpath routings in the two probability regimes. These characterizations

reveal the criteria for maximizing the cross-layer reliability of lightpath routings under

the respective probability regimes, which provides important insights into developing

survivable lightpath routing algorithms to maximize cross-layer reliability.

Based on the insights developed in Chapter 4, Chapter 5 explores different meth-

ods for maximizing cross-layer reliability of a given lightpath routing in the low prob-

ability regime. Specifically, we study two different approaches to improve the relia-

bility of a layered network. The first approach is lightpath rerouting, which involves

incrementally choosing a new physical route for an existing lightpath, so that the

cross-layer reliability can be improved by such a reroute. The second approach is

logical topology augmentation, where a new lightpath is added to the logical topology

to improve reliability. For each approach, we formulate the reliability improvement

achieved by a rerouting/augmentation step, and develop algorithms to maximize the

reliability improvement. By iteratively applying the algorithm, one can incrementally

improve the reliability of the network until no further local improvement is possible.

This gives us effective ways to generate lightpath routings with better reliability than

all lightpath routing algorithms previously considered. Finally, in Section 5.3, we

carry out a case study on a real-world IP-over-WDM network, and apply the tech-

niques discussed in this thesis to study reliability in a real-world setting.



Chapter 2

Fundamentals of Cross-Layer

Survivability

2.1 Introduction

A key aspect that is new in the layered network setting is the sharing of physical fibers

by multiple logical links. Because of this, a single physical failure will propagate to the

logical layer and cause logical links to fail in a correlated fashion. This correlation is

implicitly determined by the lightpath routing, and this phenomenon fundamentally

changes the connectivity structures of a network. Algorithms designed to effectively

assess or enhance survivability of a multi-layer network must therefore take into ac-

count such dependencies. Most existing protection and restoration mechanisms for

single-layer networks assume uncorrelated failures in the network, and therefore may

no longer be effective in this multi-layer setting.

In this chapter, we will develop a more rigorous treatment of fundamental issues

in cross-layer survivability. In Section 2.2, we will first study basic connectivity

structures, such as cuts, paths and trees, in the multi-layer network model, and

highlight the key differences from their single-layer counterparts, both in terms of

combinatorial properties and computation complexity. As a result of this, common

survivability metrics such as the connectivity of a network topology lose much of their

meaning in multi-layer networks. These findings lead us to propose new survivability



metrics for multi-layer networks, and algorithms to improve cross-layer survivability

based on these new metrics in Sections 2.3 and 2.4. Simulation results for these

algorithms will be presented in Section 2.5.

2.2 Graphs Structures in Multi-Layer Networks

In this section, we study various connectivity structures such as flows, cuts, trees and

paths in multi-layer graphs in order to develop insights into cross-layer survivability.

We will highlight the key difference in combinatorial properties between multi-layer

graphs and single-layer graphs. In particular, we will show that fundamental surviv-

ability results, such as the Max Flow Min Cut Theorem, are no longer applicable to

multi-layer networks. Consequently, metrics such as "connectivity" have significantly

different meanings in the cross-layer setting. This motivates our reinvestigation in

the following sections of fundamental issues such as quantifying and maximizing sur-

vivability in the multi-layer setting.

2.2.1 Max Flow vs Min Cut

For single-layer networks, the Max-Flow Min-Cut Theorem [4] states that the max-

imum amount of flow passing from the source s to the sink t always equals the

minimum capacity that needs to be removed from the network so that no flow can

pass from s to t. In addition, if all links have integral capacity, then there exists an

integral maximum flow. This implies that the maximum number of disjoint paths

between s and t is the same as the minimum cut between the two nodes. Hence, the

term connectivity between two nodes can be used unambiguously to refer to different

measures such as maximum number of disjoint paths or minimum cut, and this makes

it a natural choice as the standard metric for measuring network survivability.

Because of its fundamental importance, we would like to investigate the Max-Flow

Min-Cut relationship for multi-layer networks. We first generalize the definitions of

Max Flow and Min Cut for layered networks:



Definition 2.1 In a multi-layer network, the Max Flow between two nodes s and t

in the logical topology is the maximum number of physically disjoint s - t paths in the

logical topology.

Definition 2.2 In a multi-layer network, the Min Cut between two nodes s and t in

the logical topology is the minimum number of physical links that need to be removed

in order to disconnect the two nodes in the logical topology.

We model the physical topology as a network graph Gp = (Vs, Es), where Vp and

Ep are the nodes and links in the physical topology. The logical topology is modelled

as GL (VL, EL), where VL C VP. The lightpath routing is represented by a set of

binary variables ft where a logical link (s, t) uses physical fiber (i, j) if and only if

fg =1. For any pair of logical nodes x and y, let Px be the set of all x - y paths in

the logical topology. For each path p E cPy, let L(p) be the set of physical links used

by the logical path p, that is, L(p) = U(s,Ep {(i, j)|f 1}. Then the Max Flow

and Min Cut between nodes s and t can be formulated mathematically as follows:

MaxFlow,: Maximize E fp, subject to:
pEPst

f< < 1 V(i.j) E Er (2.1)
p:(i j) E L(p)

fp E {O, 1} Vp t

MinCutst : Minimize y j. subject to:
(ij)CEp

y Vp ET (2.2)
(i,j)EL(p)

y-J E {o, 1} V(i. j) E

The variable f, in the formulation MaxFlowst indicates whether the path p is

selected for the set of (s., t)-disjoint paths. Constraint (2.1) requires that no selected



logical paths share a physical link. Similarly, in the formulation MinCutst, the variable

yij indicates whether the physical fiber (i. j) is selected for the minimum (s, t)-cut.

Constraint (2.2) requires that all logical paths between s and t traverse some physical

fiber (i,j) with y,= 1.

Note that the above formulations generalize the the Max Flow and Min Cut for

single-layer networks. In particular, the formulations model the classical Max Flow

and Min Cut of a graph G if both Gp and GL are equal to G, and fP = 1 if and only

if (s, t) = (,j).

Let MaxFlows, and MinCutst be the optimal values of the above Max Flow and Min

Cut formulations. We also denote MaxFlowR and MinCutR to be the optimal values to

the linear relaxations of above Max Flow and Min Cut formulations. The Max-Flow

Min-Cut Theorem for single-layer networks can then be written as follows:

MaxFlows= MaxFlowR = MinCutR - MinCutst.

The equality among these values has profound implications on survivable network

design for single-layer networks. Because all these survivability measures converge to

the same value, it can naturally be used as the standard survivability metric that is

applicable to measuring both disjoint paths or minimum cut. Another consequence

of this equality is that linear programs (which are polynomial time solvable) can be

used to find the minimum cut and disjoint paths in the network.

It is therefore interesting to see whether the same relationship holds for multi-layer

networks. First, it is easy to verify that the linear relaxations for the formulations

MaxFlows, and MinCuts, maintain a primal-dual relationship, which, by Duality Theo-

rem [171, implies that MaxFlows=MinCutt. In addition, since any feasible solution to

an integer program is also a feasible solution to the linear relaxation, we can establish

the following relationship:

Observation 1 MaxFlowst < MaxFlow = MinCut' < MinCutst.

Therefore, like single-layer networks, the maximum number of disjoint paths be-



tween two nodes cannot exceed the minimum cut between them in a multi-layer

network.

However, unlike the single-layer case, the values of MaxFlowst, MaxFlowsR and

MinCutst are not always identical, as illustrated in the following example. In our

examples throughout the section, we use a logical topology with two nodes s and

t that are connected by multiple lightpaths. For simplicity of exposition, we omit

the complete lightpath routing and only show the physical links that are shared by

multiple lightpaths. Theorem 2.1 states that this simplification can be made without

loss of generality.

Theorem 2.1 Let GL be a logical topology with two nodes s and t, connected by n

lightpaths EL {e1, e2,.  C}, and let R = { R 1. R 2 , ... , Rk} be a family of subsets

of EL, where each |Rj| > 2, that captures the fiber-sharing relationship of the logical

links. There exist a physical topology Gp = (Vp, Ep) and lightpath routing of GL over

Gp, such that:

1. there are exactly k fibers in Ep, denoted by F ={ f1, f2.., fk}, that are used

by multiple lightpaths;

2. for each fiber f, c F, the set of lightpaths using fi is Ri.

Proof. See Appendix 2.7.1. LI

Theorem 2.1 implies that for a two-node logical topology, any arbritrary fiber-

sharing relationship R can be realized by reconstructing a physical topology and

lightpath routing. Therefore, in the following discussion, we can simplify our examples

by only giving the fiber-sharing relationship of our two-node logical topology without

showing the details of the lightpath routing.

In Figure 2-1, the two nodes in the logical topology are connected by three light-

paths. The logical topology is embedded on the physical topology in such a way

that each pair of lightpaths share a fiber. It is easy to see that no single fiber can

disconnect the logical topology, and that any pair of fibers would. Hence, the value



of MinCuts, is 2 in this case. On the other hand, the value of MaxFlows, is only 1,

because any two logical links share some physical fiber, so none of the paths in the

logical network are physically disjoint. Finally, the value of MaxFlowR is 1.5 because

a flow of 0.5 can be routed on each of the lightpaths without violating the capacity

constraints at the physical layer. Therefore, all three quantities are different in this

example. We will study the integrality gaps for the formulations more carefully.

s: Fibr 1 Fiber 2 Fiber 3 t

Figure 2-1: A logical topology with 3 links where each pair of links shares a fiber in the physical
topology.

Integrality Gap for MaxFlows,

The above example can be generalized to show that the ratio between MaxFlow,

and MaxFlows is 0(n), where n is the number of paths between s and t. Consider an

instance of lightpath routing where the two nodes in the logical network are connected

by n logical links, and every pair of logical links share a separate fiber. In this case,

the value of MaxFlows, will be 1, and the value of MaxFlowR will be -, using the

same arguments as above. Therefore, the ratio , is 0(n). Note that this is anMaxFlowst

asymptotically tight bound since MaxFlowst > 1 and MaxFlowR < n for all lightpath

routings.

Integrality Gap for MinCuts,

The ratio between MinCut, and MinCutR can be shown to be at most 0(logn) as

a direct application of the result by Lovasz [741, who showed that the integrality

gap between integral and fractional set cover is 0(logn). We can construct a light-

path routing where the gap between the two values is 0(log n), thereby showing the

tightness of the bound.

Consider a layered network consisting of a two-node logical topology, and a set of



k fibers F {f ... , fk} that are shared by multiple logical links. For every subset

T of [l + 1 fibers in F, we add a logical link between the two logical nodes that uses

only the fibers in T. Hence, for every set of [k] - 1 fibers, there is a logical link that

does not use any of the fibers. This implies the Min Cut is at least [ ].
On the other hand, since each logical link uses exactly [J +1 fibers, the assign-

ment where each y 1 satisfies Constraint (2.2), and is therefore a feasible

solution to MinCutR. The objective value of this solution is , which is at most

2. Therefore, the integrality gap MinCutst is at least (.Min CUtR 4.

Therefore, for the two-node logical network with n - (L ) logical links, the

ratio between the integral and relaxed optimal values for the Min Cut is 0(k) -

0(log n). We summarize our observation as follows:

Observation 2 In a layered network, the values of MaxFlowst. MaxFlowR and MinCut,

can be all different. In addition, the gaps among the three values are not bounded by

any constant.

Therefore, a multi-layer network with high connectivity value (i.e. that tolerates

a large number of failures) does not guarantee existence of physically disjoint paths.

This is in sharp contrast to single-layer networks where the number of disjoint paths

is always equal to the minimum cut.

It is thus clear that network survivability metrics across layers are not trivial

extensions of the single layer metrics. New metrics need to be carefully defined in

order to measure cross-layer survivability in a meaningful manner. In Section 2.3, we

will specify the requirements for cross-layer survivability metrics, and propose two

new metrics that can be used to measure the connectivity of multi-layer networks.

2.2.2 Minimum Survivable Path Set

In this section, we introduce another graph structure, called Survivable Path Set,

that is useful in describing connectivity in layered networks. A survivable path set

for two logical nodes s and t is a set of s - t logical paths such that at least one of the



paths in the set survives for any single physical link failure. The Minimum Survivable

Path Set, denoted as MinSPSst, is the size of the smallest survivable path set. For

convenience, MinSPSst is defined to be oo if no survivable path set exists.

In a single layer network, the value of MinSPSs, reveals nothing more than the

existence of disjoint paths, as its value is either 2 or oc, depending on whether disjoint

paths between s and t exist. However, for multi-layer networks, MinSPSst can be any

integer between 2 and o0. For example, in Figure 2-1, the minimum survivable path

set for s and t has size three because any pair of logical links can be disconnected by

a single fiber failure. In fact, it is easy to verify that:

" MinSPSst = 2 if and only if MaxFlowst > 2;

* MinSPSst = oc if and only if MinCutst = 1.

Therefore, the value of MinSPSst provides a different perspective about the con-

nectivity between two nodes in the cross-layer setting. It is particularly interesting

in the regime where MaxFlowst =1 and MinCutst > 2, i.e., there is a gap between

the Max Flow and the Min Cut. The following theorem reveals a connection between

survivable path sets and the relaxed Max Flow MaxFlow .

Theorem 2.2 MinSPSst < L I +l .

Proof. See Appendix 2.7.2 l

It is worth noting that the theorem provides a sufficient condition for the existence

of disjoint paths in the layered networks, in terms of the optimal value of MaxFlow :

Corollary 2.3 Disjoint paths between two nodes s and t exist in a layered network

if the relaxed Max Flow, MaxFlow , is greater than Ep|.

Proof. By Theorem 2.2, a survivable path set of size two exists if MaxFlows > Fp.

This implies the existence of s - t disjoint paths in the layered network. 0

'An instance with MinSPSst = k can be easily constructed using the 2-node, k-link logical topology
similar to Figure 2-1, in which every set of k - 1 logical links share a common physical fiber.



Therefore, survivable path sets not only are interesting graph structures that

describe connectivity of layered networks, they can also be useful in revealing the

relationship between integral and fractional flows in the layered network.

2.2.3 Spanning Trees

For a single-layer graph G = (V, E), a spanning tree can be defined as a minimal set of

edges in E that keeps all nodes in V connected. Since all spanning trees of the graph

have the same number of edges, constructing, counting and sampling spanning trees

in a single-layer network can be done in polynomial time 146,47,61,82,96. These nice

properties about spanning trees in single-layer networks allow construction of efficient

algorithms for reliable single-layer networks design 139,82,1081.

For multi-layer networks, however, the characteristics of spanning trees is vastly

different. We define a cross-layer spanning tree as follows:

Definition 2.3 In a multi-layer network, a Cross-Layer Spanning Tree is a minimal

set of physical fibers whose survival will keep the logical topology connected.

Unlike single-layer networks, the number of edges in a cross-layer spanning trees

can vary significantly. Consider Figure 2-2, which shows the lightpath routing of a

two-node logical topology over the physical network with three links. In the example,

{1, 2} and {3} are two minimal sets of physical links that keep the logical topology

connected. Therefore, not all cross-layer spanning trees have the same cardinality. In

fact, the example can be easily modified such that one of the logical links traverses

an arbitrary number of physical fibers. This means that cross-layer spanning trees in

a multi-layer network can have significantly different sizes.

a (L, L2)

b (L3)

Figure 2-2: {L 1 , L2 } and {L 3 } are cross-layer spanning trees with different cardinalities.



The minimum cross-layer spanning tree of a layered network, defined to be the

cross-layer spanning tree with the minimum number of physical fibers, is of particular

importance for cross-layer survivability. Intuitively, this is the minimum number of

physical fibers that need to survive in order to keep the logical topology connected.

In Chapter 4, we will investigate in greater details the role of minimum cross-layer

spanning trees in cross-layer survivability. The following theorem gives a lower bound

on the size of the minimum cross-layer spanning tree in a network:

Theorem 2.4 The size of the minimum cross-layer spanning tree is at least \VL - 1,

where VL is the set of the logical nodes.

Proof. For a set of physical links S to be a cross-layer spanning tree, all nodes in VL

must be connected in the underlying physical subgraph induced by S. For S to span

a set of |VLI nodes, it must contains at least |VL| - 1 edges. l

2.2.4 Computational Complexity

The structures discussed in the previous sections are basic building blocks for many

survivability algorithms for single layer networks 14, 39, 43, 62, 82, 1081. These algo-

rithms are effective for single-layer networks because these basic structures can be

computed efficiently. However, in multi-layer networks, such structures become sig-

nificantly more difficult to compute, making network survivability measurement and

design much more difficult in the multi-layer setting. In this section, we will prove

several complexity results for the graph structures introduced in the previous sections.

Max Flow and Min Cut

For single-layer networks, because the integral Max Flow and Min Cut values are

always identical to the optimal relaxed solutions, these values can be computed in

polynomial time [4]. However, computing and approximating their cross-layer equiv-

alents turns out to be much more difficult. Theorem 2.5 describes the complexity of

computing the Max Flow and Min Cut for multi-layer networks.



Theorem 2.5 Computing Max Flow and Min Cut for multi-layer networks is NP-

hard. In addition, both values cannot be approximated within any constant factor,

unless P=NP.

Proof. The Max Flow can be reduced from the NP-hard Maximum Set Packing prob-

lem 1481:

Maximum Set Packing: Given a set of elements E - {C1 , e2. c. en and a

family F = {C 1 ,C 2,. .. , C,} of subsets of E, find the maximum value k such that

there exist k subsets {Ci 1 ,CsJ . Cjk} C F that are mutually disjoint.

Given an instance of Maximum Set Packing, we construct a 2-node logical topology

connected by multiple lightpaths as described in Theorem 2.1, so that the optimal

value of the Maximum Set Packing instance equals the maximum number of physically

disjoint paths in the 2-node logical topology. This means that Maximum Set Packing

is polynomial time reducible to the 2-node disjoint path problem. Theorem 2.1 implies

that any instance of the 2-node disjoint path problem is polynomial time reducible

to an instance of the multi-laver Max Flow problem. It follows that Maximum Set

Packing is polynomial time reducible to the multi-layer Max Flow problem. Therefore,

computing the multi-layer Max Flow is NP-Hard.

Given an instance of Maximum Set Packing with ground set E and a family F

of subsets of E, we construct a logical topology with two nodes, s and t, connected

by IF logical links, where each logical link corresponds to a subset in F. The logical

links are embedded on the physical network in a way that two logical links share a

physical fiber if and only if their corresponding subsets share a common element in

the Maximum Set Packing instance. It immediately follows that a set of physically

disjoint s - t paths in the logical topology corresponds to a family of mutually disjoint

subsets of E.

Similarly, the Min Cut can be reduced from the NP-hard Minimum Set Cover

problem 1481:

Minimum Set Cover: Given a set E {e e2 ,.-. en} and a family F



{C 1 , C2 , ... Crn} of subsets of E, find the minimum value k such that there exist k

subsets {Ci-, C) .... C} C F that cover E, i.e., U() . , = E.

Given an instance of Minimum Set Cover with ground set E and family of subsets

Y, we construct a logical topology that contains two nodes connected by a set of |El

logical links, where each logical link l corresponds to the element ei. The logical

links are embedded on the physical network in a way that exactly [FJ fibers, namely

{ fi . ., fj }, are used by multiple logical links, and the logical link 1i uses physical

fiber fj if and only if ei E Cj. It follows that the minimum number of physical fibers

that forms a cut between the two logical nodes equals the size of a minimum set cover.

The inapproximability result follows immediately from the inapproximabilities of

the Maximum Set Packing and Minimum Set Cover problems [11,54, 75]. 0

Minimum Survivable Path Set

As discussed in Section 2.2.2, the size of Minimum Survivable Path Set for single-layer

networks is either 2 or oc, depending on whether the network graph is bi-connected.

Therefore, the Minimum Survivable Path Set can be easily computed in single-layered

networks. In multi-layer networks, the Minimum Survivable Path Set can take on

many different sizes, and computing its value becomes NP-Hard and inapproximable,

just like the cross-layer Max Flow and Min Cut:

Theorem 2.6 Computing Minimum Survivable Path Set for multi-layer networks is

NP-hard. In addition, it cannot be approximated within any constant factor, unless

P=NP.

Proof. The NP-Hardness for the Minimum Survivable Path Set problem can be proved

by a reduction from the Minimum Set Cover problem similar to Theorem 2.5.

Given an instance of Minimum Set Cover with ground set E and family of subsets

_, we construct a logical topology that contains two nodes connected by a set of YIJ

logical links, where each logical link 1i corresponds to the set Ci E F. The logical

links are embedded on the physical network in a way that exactly |E| fibers, namely

{ f1,... f1, are used by multiple logical links, and the logical link li uses physical



fiber fy if and only if ej ( C. In this case, a set of logical links form a survivable

path set between s and t if and only if, for any fiber fy, there exists a logical link 1i

in the path set that does not use fy. This implies element e is covered by the set

C, in the corresponding Minimum Set Cover instance. This proves the NP-Hardness

and inapproximity of Minimum Survivable Path Set.

Minimum Spanning Tree

Since all spanning trees in a single-layer network have the same number of edges,

computing a minimum spanning tree is trivial. In multi-layer networks, finding a

minimum (cadinality) spanning tree becomes an intractable problem, as described

in Theorem 2.7:

Theorem 2.7 Given the lightpath routing for a multi-layer network g = (Gp. GL),

finding its Minimum Cross-Layer Spanning Tree is NP-hard.

Proof. We prove the theorem by constructing a reduction from the NP-Hard Mini-

mum Label Spanning Tree problem [261:

Minimum Label Spanning Tree: Given a graph G = (V, E), and a set of labels

£C { L1,..., Lr}. Each edge e c E is associated with a set of labels Ce C C. Find

a spanning tree T of G with minimum number of labels, that is, the value \ UeT Le|

is minimized.

Given an instance of the Minimum Label Spanning Tree problem, we will con-

struct an instance of the Minimum Cross-Layer Spanning Tree problem, such that

the optimal value of the two instances are preserved. The details of the reduction are

described in Appendix 2.7.3.

In summary, multi-layer connectivity exhibits fundamentally different structural

properties from its single-layer counterpart. Because of that, it is important to rein-

vestigate issues of quantifying, measuring as well as optimizing survivability in multi-

layer networks. In the rest of the chapter, we will focus on designing appropriate



metrics for layered networks, and developing algorithms to maximize the cross-layer

survivability.

2.3 Metrics for Cross-Layer Survivability

The previous section demonstrates the new challenges in designing survivable lay-

ered network architectures. Insights into quantifying and optimizing survivability are

fundamentally different between the single-layer and multi-layer settings. In this sec-

tion, we focus on the issue of quantifying survivability in multi-layer networks. Not

only should such metrics have natural physical meaning in the cross-layer setting,

they should also be mathematically consistent and compatible with the conventional

single-layer connectivity metric. Hence, we first define formal requirements for metrics

that can be used to quantify cross-layer survivability:

" Consistency: A network with a higher metric value should be more resilient

to failures.

" Monotonicity: Any addition of physical or logical links to the network should

not decrease the metric value.

" Compatibility: The metric should generalize the connectivity metric for single-

layer networks. In particular, when applied to the degenerated case where the

physical and logical topologies are identical, the metric should be equivalent to

the connectivity of the topology.

A metric that carries all the above properties would give us a meaningful and consis-

tent measure of survivability in the multi-layer setting. We propose two metrics, the

Min Cross Layer Cut and the Weighted Load Factor, that can be used to quantify

survivability for multi-layer networks. It is easy to verify that both metrics satisfy

the above requirements.



2.3.1 Min Cross Layer Cut

In Section 2.2, we defined MinCuts, to be the minimum number of physical failures

that would disconnect logical nodes s and t. One can easily generalize this by taking

the minimum over all possible node pairs to obtain a global connectivity metric. We

define the Min Cross Layer Cut (MCLC) to be the minimum number of physical

failures that would disconnect the logical topology.

A lightpath routing with high Min Cross Layer Cut value implies that the net-

work remains connected even after a large number of physical failures. It is also a

generalization of the survivable lightpath routing definition in 1761, since a lightpath

routing is survivable if and only if its Min Cross Layer Cut is greater than 1.

Let S be a subset of the logical nodes VL, and 6(S) be the set of the logical links

with exactly one end point in S. Let Hs be the minimum number of physical links

failures required to disconnect all links in 6(S). The Min Cross Layer Cut can be

defined as follows:

MICLC = min Is.
SC VL

For each S, computing Hs can be considered as finding the Min Cut between

the two partitions S and VL - S. In the proof of Theorem 2.5, we have shown that

computing the value of MinCuts, is NP-Hard even if the logical topology contains

just two nodes. This immediately implies that computing the global MCLC value is

NP-Hard:

Theorem 2.8 Computing the MCLC for a layered network is NP-Hard.

In practice, however, the MCLC is bounded by the node degree of the logical

topology, which is usually a small constant d. In that case, the MCLC can be com-

puted in polynomial time by enumerating all physical fiber sets with up to d fibers.

To compute the MCLC of a layered network in a general setting, it can be modelled

by the following integer linear program.

Given the physical and logical topologies (Vp. Ep), and (VI. EL), let fJ be binary



constants that represent the lightpath routing, such that logical link (s, t) uses phys-

ical fiber (i, j) if and only if fA = 1. The MCLC can be formulated as the integer

program below:

MMCLC : Minimize yij, subject to:
(ij)E Ep

dt - ds < yff. V(s, t) E EL (2.3)
(i~j)E Ep

da ;> 1, do - 0 (2.4)
nEVL

d y, yiE {O, 1} Vn E VL. (i, j) E Ep

The integer program contains a variable yij for each physical link (i, J), and a

variable dk for each logical node k. Constraint (2.3) maintains the following property

for any feasible solution: if dk =1, the node k will be disconnected from node 0 after

all physical links (i, j) with yij - 1 are removed. To see this, note that since dk = 1

and do = 0, any logical path from node 0 to node k contains a logical link (s. t) where

d' = 0 and dt = 1. Constraint (2.3) requires that such a logical link traverse at least

one of the fibers (i. j) with yij = 1. As a result, all paths from node 0 to node k must

traverse one of these fibers, and node k will be disconnected from node 0 if these fibers

are removed from the network. Constraint (2.4) requires node 0 to be disconnected

from at least one node, which ensures that the set of fibers (i, J) with yi1 = 1 forms

a global Cross Layer Cut.

In Section 2.4, we will use MCLC as the objective for the survivable lightpath

routing problem, and develop algorithms to maximize this objective.

2.3.2 Weighted Load Factor

Another way to measure the connectivity of a layered network is by quantifying the

"impact" of each physical failure. The Weighted Load Factor (WLF), an extension of

the metric Load Factor introduced in 1601, provides such a measure of survivability.

Given the physical topology (Vp, Ep) and logical topology (VL, EL), let fl be



binary constants that represent the lightpath routing, such that logical link (s, t) uses

physical fiber (Z. j) if and only if f< = 1. The WLF can be formulated as follows:

1
MWLF : Maximize -, subject to:

z -11)wt ;> P tr,"
(,t)-(s) (S't)C6(S)

VS C VL. ( Ci) E Ep

> 0 VS C VL
(st)E6(S)

05 z, wa 1 V(st) E EL,

where 6(S) is the cut set of S, i.e., the set of logical links that have exactly one end

point in S.

The variables wt are the weights assigned to the lightpaths. Over all possible

logical cuts, the variable z measures the maximum fraction of weight inside a cut

carried by a fiber. Intuitively, if we interpret the weight to be the amount of traffic in

the lightpath, the value z can be interpreted as the maximum fraction of traffic across

a set of nodes disrupted by a single fiber cut. The Weighted Load Factor formulation,

defined to maximize the reciprocal of this fraction, thus tries to compute the logical

edge weights that minimize the maximum fraction. This effectively measures the

best way of spreading the weight across the fibers for the given lightpath routing. A

lightpath routing with a larger Weighted Load Factor value means that it is more

capable of spreading its weight within any cut across the fibers.

The Weighted Load Factor also generalizes the survivable lightpath routing defined

in [76], since its value will be greater than 1 if and only if the lightpath routing is

survivable.

Although the formulation MWLF contains the quadratic terms Zw7.,t, the optimal

value of z can be obtained by iteratively solving the linear program with different

fixed values of z. Using binary search over the range of z, we can find the minimum

z where a feasible solution exists.



Computing the Weighted Load Factor is easier than computing MCLC in certain

cases. For example, when the logical topology contains only two nodes with multiple

logical links between them, finding the Weighted Load Factor can be formulated as a

linear optimization problem:

Maximize wt. subject to:
(s,t) EE

w,3ft K 1 V(i. j) E,
(s,t)EEL

0 < Wst I V(s.t) EL,

by replacing 1 in the formulation MWLF by wa. It can be easily verified that the
(s,t)EE'E

two formulations are equivalent when the logical topology contains only two nodes.

Therefore, for certain special cases such as the two node logical network, com-

puting the Weighted Load Factor appears to be easier than Min Cross Layer Cut.

However, in general, the formulation MWLF contains an exponential number of con-

straints, and may not be polynomial time solvable. In fact, Theorem 2.9 states that

finding the objective value for MWLF is NP-Hard, even if the weights of the logical

links wu- are given.

Theorem 2.9 Computing the Weighted Load Factor for a lightpath routing is NP-

Hard even if the weight assignment wat for the logical links is fixed.

Proof. The NP-Hardness proof is based on the reduction from the NP-Hard Uniform

Sparsest Cut [7] problem. For details, see Appendix 2.7.4. El

Finally, Theorem 2.10 describes the relationship between the WLF and the

MCLC. Given a lightpath routing, let MMCLC be the ILP formation for its Min Cross

Layer Cut, and let MCLC and AICLCR be the optimal values for MMCLC and its

linear relaxation respectively. In addition, let W1 LF be the Weighted Load Factor of

the lightpath routing. Then we have the following relationship:



Theorem 2.10 ACLCR < W LF < MCLC.

Proof. See Appendix 2.7.5. l

Therefore, although the two metrics appear to measure different aspects of network

connectivity, they are inherently related. In fact, as we will see in Section 2.5, the

two values are often identical. The connection between the two metrics thus provides

insights into the development of the lightpath routing formulation MCFLF, to be

introduced in Section 2.4.2.

As a concluding remark of this section. The two metrics introduced in this section

are both NP-hard to compute. It remains an interesting open question whether

any meaningful cross-layer survivability metrics that is polynomial time computable

exists.

2.4 Lightpath Routing Algorithms for Maximizing

MCLC

In this section, we consider the survivable lightpath routing problem using the Min

Cross Layer Cut as the objective. At an abstract level, the optimal lightpath routing

can be expressed as the following optimization problem:

max min MFC(f, S),, eT SCVr'

where F is set of all possible lightpath routings, VL is the logical node set, and

MFC(f, S) is the minimum number of fibers whose removal will disconnect all log-

ical links in the cut set 6(S) given the lightpath routing f. This is a Max-Min-Min

problem that may not have a simple formulation. In Section 2.4.1, we first present an

ILP formulation that maximizes the MCLC for the lightpath routing. However, the

formulation has a large number of variables and is diffcult to solve in practice. There-

fore, in Section 2.4.2 we will present several simpler formulations that approximate

MCLC maximization.



2.4.1 ILP for MCLC Maximization

We first present a survivable lightpath routing ILP that maximizes the MCLC value:

1. Parameters:

" Gp = (Vp, Ep): Physical topology.

" GL (VL, EL): Logical topology.

" d: The minimum cut of the logical topology.

" C: The family of all possible subsets of physical fibers with size at most d.

" Wj: A weight associated to each fiber set with size i:

1,

1 + (
i+-1

if i - |Ep|,

if 1 < i < |Ep| - 1.

2. Variables:

* fg e {0, 1} for (s, t) E EL. (i, J) E Ep: Represents the lightpath routing,

where f j= 1 if and only if logical link (s, t) uses fiber (i, j).

" YC E [0, 1 for C C C: Represents whether the fiber set C is a cross-layer

cut. The fiber set C is a cross-layer cut if and only if its value is 1.

" C [0, 1], for (s. t) C EL. E VL - {0} .C C C: Flow variable on the

surviving logical topology when fibers in C fail. This is used to express the

connectedness of the surviving logical topology under this set of physical

failures.



3. Formulation:

d

MCLC_MAX: Minimize wI yc, subject to:
=1 cEc:Icl~i

x?;" 1 -fI;, V(ij) e C, (st) e EL, e VL - {0}.C E C

(2.5)

1- yc, ifs =0
Z ;< - vc 0 c - 1. if s= v. VV E VL - {0}, C E C

t:(S I)EEL 141,s)CEL 0, otherwise.

(2.6)

{fst : (i, j) E Ep} forms an (s, t)-path, V(s, t) E EL

f t E{0. 1} , . " > 0, O < Yc 1.

The objective of the formulation is to minimize the total weighted sum of the

cross-layer cuts. Since W is defined in a way that the weight of a cross-layer cut with

size i dominates the total weights of all cross-layer cuts with size greater than i, the

formulation will avoid creating a lightpath routing with small cross-layer cuts. As a

result, the optimal solution will have a maximum MCLC value. In addition, since the

connectivity of the logical topology is d, the MCLC value of any lightpath routing is

at most d. Therefore, it is sufficient to have the objective consider physical fiber sets

with size up to d.

By Constraints (2.5) and (2.6), the variable " represents the amount of flow

sent from logical node 0 to node o along the logical link (s. t), under the scenario

where fibers in C fail, causing all logical links that use these fibers to fail. Specifi-

cally, Constraint (2.5) makes sure that a positive flow can be assigned to logical link

(s, t) only if the logical link (s, t) does not use any of the physical fiber (c.) E C.

In other words, only the surviving logical links under the failure event C can be

used. Constraint (2.6) is the flow conservation constraint on the logical topology with

flow value 1 - yc. If the logical topology remains connected under the failure event

C, a positive flow can be sent from node 0 to any other node v, and yc can therefore



be set to 0. On the other hand, if the logical topology is disconnected, node 0 will be

disconnected to some logical node v, in which case yc has to be set to 1 since no flow

can be sent between the two nodes. Since the objective is to minimize the weighted

sum of yc, the variable yc will be set to 0 unless the logical topology is disconnected.

Therefore, the variable yc represents whether C is a cross-layer cut. This is true even

if the binary constraint on yc is relaxed.

2.4.2 Approximate Formulations

Although MCLC_MAX gives us an exact formulation to maximize MCLC, the formu-

lation may have a large number of variables and constraints, and is therefore infeasible

to solve in practice, even if all the integer variables are relaxed. Therefore, for the rest

of the section, we consider approximate formulations whose objective values are lower

bounds to the MCLC. These formulations are much simpler than MCLCMAX. This

makes it possible to develop survivable lightpath routing algorithms based on these

simpler formulations. In particular, in Section 2.4.3 we discuss how to use random-

ized rounding [901 based on these formulations as a heuristic to approximate MCLC

maximization. Note that since MCLC is O(logn) inapproximable, polynomial time

algorithms with approximation guarantees within this factor are unlikely to exist.

Therefore, we will instead evaluate the performance of our algorithms via simulation

in Section 2.5.

All of the formulations introduced in this section are based on multi-commodity

flows, where each lightpath is considered a commodity to be routed over the phys-

ical network. Given the physical network Gp = (Vp, Ep) and the logical network

GL = (VL. EL), the multi-commodity flow for a lightpath routing can be generally

formulated as follows:

MCFx : Minimize X(f). subject to:

fsE {0, 1}

{fJ : (i.j) E Ep} forms an (s. t)-path, V(s.t) E EL, (2-7)



where f is the variable set that represents the lightpath routing, such that fI - 1

if and only if lightpath (s. t) uses physical fiber (i, j) in its route; and the objective

X(f) is a function of the lightpath routing f that captures the survivability of the

layered network.

For WDM networks where the wavelength continuity constraint is present [29,110],
the above formulation can be extended to capture the wavelength assignment aspect.

In that case, the wavelength assignment can be modelled by replacing the variable set

f[J! by f$ , which equals 1 if and only if lightpath (s. t) uses wavelength A on physical

link (i, J). Constraint (2.7) can be easily extended to restrict that, for each logical

link (s, t), {fA = I} forms an (s, t) physical path along one of the wavelengths. To

make sure that any wavelength A on a physical fiber is used by at most one lightpath,

the following constraint will be added:

fsl < 1 V(ij) E , VA. (2.8)

Similar formulations based on multi-commodity flows with wavelength continuity

constraint have been proposed to solve the Routing and Wavelength Assignment

(RWA) problem of WDM networks [14,85], where the objective is to minimize the

number of lightpaths that traverse the same fiber. The key difference in the problem

studied in this chapter is in the objective function X, which should instead describe

the survivability of the lightpath routing. To focus on the survivability aspect of the

problem, the wavelength continuity constraint will be omitted in the formulations

below. However, in cases where the wavelength continuity constraint is necessary, all

these formulations can be extended as discussed above.

Simple Multi-Commodity Flow Formulations

Ideally, to ensure that the lightpath routing is survivable against the largest number of

failures, the objective function X(f) should express the MCLC value of the lightpath

routing given by f. However, since simple formulations to maximize the MCLC

directly are difficult to find, we use an objective that approximates the MCLC value.



In our formulation, each lightpath is assigned a weight w. The objective function

P. measures the maximum load of the fibers, where the load is defined to be the

total lightpath weight carried by the fiber. The intuition is that the multi-commodity

flow formulation will try to spread the weight of the lightpaths across multiple fibers,

thereby minimizing the impact of any single fiber failure.

We can formulate an integer linear program with such an objective as follows:

MCFW : Minimize pa,, subject to:

P ; > w(s, t)f V(i,j) E Ep
(s~t)CEL

fgE {O, 1}

{fg :(ij) E Ep} forms an (s t)-path, V(st) E EL

As we will prove in Theorem 2.11, with a careful choice of the weight function w, the

value g gives a lower bound on the MCLC. Therefore, a lightpath routing with a

low p,. value is guaranteed to have a high MCLC.

The routing strategy of the algorithm is determined by the weight function w.

For example, if w is set to 1 for all lightpaths, the integer program will minimize the

number of lightpaths traversing the same fiber. Effectively, this will minimize the

number of disconnected lightpaths in the case of a single fiber failure.

In order to customize MCF, towards maximizing the MCLC of the solution, we

propose a different weight function wunct1 L that captures the connectivity structure

of the logical topology. For each edge (s, t) E EL, we define wAincut(s, t) to be

where MinCutL(s. t) is the minimum (s. t)-cut in the logical topology.

Therefore, if an edge (s, t) belongs to a smaller cut, it will be assigned a higher weight.

The algorithm will therefore try to avoid putting these small cut edges on the same

fiber.

If WAlincut is used as the weight function used in MCFW, we can prove the following

relationship between the objective value p., of a feasible solution to MCF, and the

Weighted Load Factor of the associated lightpath routing:



Theorem 2.11 For any feasible solution f of MCF, with wjnc1, as the weight func-

tion, g < WLF.

Proof. By definition of the weight function wUinant, given any S c VL, every edge in

6(S) has weight at least 1 . Therefore, we have:

w(s, t) > (2.9)
(s.t)E6(S) (st)G6(S)

Now consider the lightpath routing associated with f. For any logical cut 6(S),

the maximum fraction of weight inside the cut carried by a fiber is:

? w(S. t) f '
(s't)E5(S)max

(iJ)EP w(s.t)
(s t)C(S)

max w(s. t)fJ, by Equation (2.9)
(jE_ P(S' 0)E6 (S)

< max w(s, t)f
(ij)CEp 41

Ep( )E EE

In other words, no fiber in the network is carrying more than a fraction pv of the

weight in any cut. This gives us a feasible solution to the Weighted Load Factor

formulation MWLF, where each variable wat is assigned the value of wvIncut(s. t), and

the variable z is assigned the value of p.,. As a result, the Weighted Load Factor,

defined to be the maximum value of I among all feasible solutions to MWLF, must bez

at least g .I
Pu

As a result of Theorems 2.10 and 2.11, the MCLC of a lightpath routing is lower

bounded by the value of 1g, which the algorithm will try to maximize.

Enhanced Multi-Commodity Flow Formulation

As we have discussed in Section 2.3.2, the Weighted Load Factor provides a good

lower bound on the MCLC of a lightpath routing. Here we propose another multi-



commodity flow based formulation whose objective function approximates the Weighted

Load Factor of a lightpath routing. The formulation, denoted as MCFLF, can be writ-

ten as follows:

MCFLF : Minimize 7, subject to:

- o(S)| > f j V(i,) Ep, S c V
(s,t)E(S)

fc {O, 1}

{ft :(i,j) Ep} forms an (s, t)-path, V(s, t) e EL

Essentially, the formulation optimizes the unweigthed Load Factor of the lightpath

routing, (i.e., all weights equal one), by minimizing the maximum fraction of a logical

cut carried by a single fiber. As this formulation provides a constraint for each

logical cut, it captures the impact of a single fiber cut on the logical topology in

much greater detail. The following theorem shows that for any lightpath routing, its

associated Load Factor value i gives a tighter lower bound than -L, given by the
Pw

MCF, formulation.

Theorem 2.12 For any lightpath routing, let p, be its associated objective value in

the formulation MCFw with WAin2C7Lt as the weight function, and let -Y be its associated

objective value in the formulation MCFLF. In addition, let WLF be its Weighted Load

Factor. Then:
1 1

-< - <WLF.

Proof. The value I is the objective value for the formulation MWLF in Section 2.3.2

when all logical links have weight 1. This gives a feasible solution to MWLF, and

implies that WLF> .

To prove that - < , we consider the physical link (f.j) and logical cut set 6(S)

where (i, j) carries a fraction -y of the logical links in s(S). Let Lu be the set of logical

links in EL carried by (i,j). Therefore, we have y L= .()l In addition, by the



definition of pw, we have

(S u'(s~t
AW~ ~ s t)(S,

(s,L)cLjjo8(S)

1

(s,t)ELjjn6(S)

|Lij n 6(s)\I
|6 o(S)

This implies < <l
PW

Therefore, the formulation MCFLF gives a lightpath routing that is optimized for a

better lower bound on the MCLC. However, this comes at the cost of a larger number

of constraints and solving such an integer program may not be feasible in practice.

Therefore, we next introduce a randomized rounding technique that approximates

the optimal lightpath routing by solving the linear relaxation of the integer program.

As we will see in Section 2.5, the randomized rounding technique significantly speeds

up the running time of the algorithm without observable degradation in the MCLC

performance. This offers a practical alternative to solving the integer program for-

mulations introduced in this section.

2.4.3 Randomized Rounding for Lightpath Routing

While the multi-commodity flow integer program formulations discussed in the pre-

vious section introduce a novel way to route lightpaths in a survivable manner, such

an approach may not scale to large networks, due to the inherent complexity of solv-

ing integer programs. In order to circumvent the computational difficulty, we apply

the randomized rounding technique, which is able to quickly obtain a near-optimal

solution to the integer program. Randomized rounding has previously been used

to solve multi-commodity flow problems to minimize the link load [14, 90], and its

performance guarantee is studied in 1901.



Given any multi-commodity flow based integer formulation, the following algo-

rithm RANDOMk describes the randomized rounding algorithm that computes a light-

path routing based on the formulation.

Algorithm 1 RANDOMk
1: Compute the optimal fractional solution f to the linear relaxation of the multi-

commodity flow integer program. For each lightpath (s, t), the values of F
represent a flow from s to t with a total flow value of 1.

2: For each lightpath (s, t), decompose the solution fJ into flow paths, each with
weight equal to the flow value of the path.

3: for i = 1, 2,..., k, do:
Create a random lightpath routing Ri: For each lightpath (s, t), randomly pick
one path from the set of flow paths generated in Step 2, using the path weights
as the probabilities.

4: Return the Ri with the highest Min Cross Layer Cut value.

The parameter k specifies the number of trials in the process of random lightpath

routing generation. The higher the value of k, the more likely the algorithm will

encounter a lightpath routing with a high MCLC value.

Although the last step requires the MCLC computation of the lightpath rout-

ings, the integer program MMCLC contains only |EpJ binary variables, which is much

fewer than the |Ep||ELI variables contained in the multi-commodity flow formula-

tions. Therefore, the randomized algorithm runs considerably faster than the integer

program algorithm. In the next section, we will compare the performance of the two

algorithms, both in terms of running time and quality of the solution.

2.5 Simulation

In this section, we discuss our simulation results for the algorithms introduced in Sec-

tion 2.4. We first compare the lightpath routing algorithms by solving the ILP di-

rectly and by randomized rounding. Next, we compare the survivability performance

among different formulations. Finally, we investigate the different lower bounds of

MCLC, and their effects on the MCLC value of the lightpath routing when used as

an optimization objective.



ILP vs Randomized Rounding

In this experiment, we use the NSFNET (Figure 2-3) as the physical topology. The

network is augmented to have connectivity 4, which makes it possible to study the

performance of the algorithms where a higher MCLC value is possible. We generated

350 random logical topologies with connectivity at least 4, and size ranging from 6 to

12 nodes. Using the formulation MCF, with weight function WMainCut(s. t) introduced

in Section 2.4.2 as our benchmark, we compare the performance of RANDOM10 against

solving the ILP optimally.

1014

13

83)

Figure 2-3: The augmented NSFNET. The dashed lines are the new links.

Table 2.1 compares the average running time between the algorithms ILP and

RANDOM 10 on various logical topology size. All simulations are run on a Xeon

E5420 2.5GHz workstation with 4GB of memory, using CPLEX to solve the integer

and linear programs. As the number of logical nodes increases, the running time for

the integer program algorithm ILP increases tremendously. On the other hand, there

is no observable growth in the average running time for the algorithm RANDOM 10,

which is less than a minute. In fact, our simulation on larger networks shows that

the algorithm ILP often fails to terminate within a day when the network size goes

beyond 12 nodes. On the other hand, the algorithm RANDOM 10 for MCF., is able to

terminate consistently within 2 hours for very large instances with a 100-node physical

topology and 50-node logical topology. This shows that the randomized approach is

a much more scalable solution to compute survivable lightpath routings.

In Figure 2-4, the survivability performance of the randomized algorithm is com-

pared with its ILP counterpart. Each data point in the figure is the MCLC average

of 50 random instances with the given logical network size. As our result shows, the



Logial opolgy izeAverage Running Time (seconds)
Logical Topology Size ILP RANDOM1 O

6 33.2 31.9

7 50.5 33.9

8 660.0 30.1
9 1539.0 26.4

10 3090.6 32.3
11 8474.5 32.0

12 15369.7 29.7

Table 2.1: Average running time of ILP and RANDOM 10.

lightpath routings produced by RANDOM10 have higher MCLC values than solving

the ILP optimally. This is because the objective value for ILP MCFW is a lower bound

on MCLC. As we will see in Section 2.5, this lower bound is often not tight enough to

accurately reflect the MCLC value, which means that the optimal solution to the ILP

does not necessarily yield a lightpath routing with maximum MCLC. On the other

hand, the randomized algorithm generates lightpath routings non-deterministically

based on the optimal fractional solution of MCF,. Therefore, it approximates the

lightpath routing given by the ILP, with an additional randomization component to

explore better solutions. When the randomized rounding process is repeated many

times, the algorithm often encounters a solution that is even better than the one given

by the ILP.

6 7 8 9 10 11

Virtual Topology Size

Figure 2-4: MCLC performance of randomized rounding vs ILP.

RANI 5
OM

RAN DOO
ILP



To sum up, randomized rounding provides an efficient alternative to solving integer

programs without observable quality degradation. This allows us to experiment with

more complex formulations in larger networks where solving the integer programs

optimally is infeasible. In the next section, we will compare the different formulations

introduced in Section 2.4.2, using randomized rounding to compute the lightpath

routings.

Lightpath Routing with Different Formulations

In this experiment, we study the survivability performance of the lightpath routings

generated by the formulations introduced in Section 2.4. We use the 24-node USIP

network (Figure 2-5), augmented to have connectivity 4, as the physical topology. We

generate 500 random graphs with connectivity 4 and size ranging from 6 to 15 nodes

as logical topologies.

2 6

9 1
3 7 9

4 31

8 8 -

1

Figure 2-5: The augmented USIP network. The dashed lines are the new links.

We compare the MCLC performance of the lightpath routings generated by the

randomized rounding algorithm, RANDOM 100 , on the following formulations:

1. Multi-Commodity Flow MCFW, using identity function as the weight function,

i.e., w(s. t) =1 for all (s, t) E EL (Identity);

2. Multi-Commodity Flow MCF , using the weight function wmfinCcua; introduced

in Section 2.4.2 (MinCut);

3. Enhanced Multi-Commodity Flow MCFLF (LF).



For comparison, we also run randomized rounding on the Survivable Lightpath

Routing formulation (SURVIVE), introduced in [76], which computes the lightpath

routing that minimizes the total fiber hops, subject to the constraint that the MCLC

must be at least two.

Figure 2-6 compares the average MCLC values of the lightpath routings computed

by the four different algorithms. Overall, the formulations introduced in this chapter

achieve better survivability than SURVIVE. This is because these formulations try to

maximize the MCLC in their objective functions, whereas SURVIVE minimizes the

physical hops. Therefore, even though SURVIVE does well in finding a survivable

routing (i.e. MCLC>2), the new formulations are able to achieve even higher MCLC

values, which allow more physical failures to be tolerated.

To further verify the survivability performance of the lightpath routings from a

different perspective, for each lightpath routing, we simulated the scenario where each

physical link fails independently with probability 0.01. Figure 2-7 shows the average

probability that the logical topology becomes disconnected under this scenario. The

result is consistent with Figure 2-6, as lightpaths routings with higher MCLC values

can tolerate more physical failures, and the logical topologies are thus more likely to

stay connected.

4
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Figure 2-6: MCLC performance of different lightpath routing formulations.
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Figure 2-7: Probabilty that logical topology becomes disconnected if physical links fail independently
with probability 0.01.

The quality of the lightpath routing also depends on the graph structures captured

by the formulations. Compared with MCFdentity, the formulation MCFMinCut uses a

weight function that captures the connectivity structure of the logical topology. As

a result, the algorithm will try to avoid putting edges that belong to smaller cuts

onto the same physical link, thereby minimizing the impact of a physical link failure

on these critical edges. This allows the algorithm MCFMinCut to produce lightpath

routings with higher MCLC values than MCFidentity.

The enhanced formulation MCFLF captures the connectivity structure of the logical

topology in much greater detail, by having a constraint to describe the impact of a

physical link failure to each logic cut. As a result, the algorithm based on this

formulation is able to provide lightpath routings with the highest MCLC values.

Lower Bound Comparison

In Theorem 2.12 we establish different lower bounds for the MCLC. In this experi-

ment, we measure these lower bound values for 500 different lightpath routings, and

compare them to the actual MICLC values.

As Figure 2-8 shows, the Weighted Load Factor is a very close approximation of



the Min Cross Layer Cut. Among the 500 routings being investigated, the two metrics

are identical in 368 cases. This suggests a tight connection between the two metrics,

which also justifies the choice of such metrics as survivability measures.

The figure also reveals a strong correlation between the MCLC performance and

the tightness of the lower bounds given by the multi-commodity flow formulations

in Section 2.4.2. Compared to MCFW, the formulation MCFLF provides an objective

value that is closer to the actual MCLC value of the lightpath routing. This translates

to better lightpath routings, as we saw in Figure 2-6. Since there is still a large gap

between the MCFLF objective value and the MCLC value, this suggests room for

further improvement with a formulation that gives a better MCLC lower bound.

To summarize this section, a good formulation that properly captures the cross-

layer connectivity structure is essential for generating lightpath routings with high

survivability. Combined with randomized rounding, it gives a powerful tool for de-

signing highly survivable layered networks.
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Figure 2-8: Comparison among Min Cross Layer Cut (MCLC), Weighted Load Factor (WLF) , and

the optimal values of ILPLF and ILPMincut.



2.6 Conclusion

In this chapter, we introduce the problem of maximizing the connectivity of layered

networks. We show that survivability metrics in multi-layer networks have signifi-

cantly different meaning than their single-layer counterparts. We propose two surviv-

ability metrics, the Min Cross Layer Cut and the Weighted Load Factor, that measure

the connectivity of a multi-layer network, and develop linear and integer formulations

to compute these metrics. In addition, we use the metric Min Cross Layer Cut as the

objective for the survivable lightpath routing problem, and develop multi-commodity

flow formulations to approximate this objective. We show, through simulations, that

our algorithms produce lightpath routings with significantly better Min Cross Layer

Cut values than existing survivable lightpath routing algorithms.

Our simulations show that a good formulation, combined with the randomized

rounding technique, provides a powerful tool for generating highly survivable layered

networks. Therefore, an important direction for future research is to establish a better

formulation for the lightpath routing problem that maximizes the Min Cross Laver

Cut. The multi-commodity flow formulation introduced in this chapter approximates

the Min Cross Layer Cut by using its lower bound as the objective function. However,

this lower bound is often not very close to the actual Min Cross Layer Cut value.

A better objective function, such as the Weighted Load Factor, would significantly

improve the proposed lightpath routing algorithms.

The similarity between the Min Cross Layer Cut and the Weighted Load Factor is

also intriguing. Our simulation results demonstrated a very tight connection between

the two metrics. This observation might reflect certain property of cross-layer network

connectivity that are yet to be discovered and formalized. A better understanding of

how these metrics relate to each other will possibly lead to important insights into

the cross-layer survivability problem.



2.7 Chapter Appendix

2.7.1 Proof of Theorem 2.1

Theorem 2.1: Let GL be a logical topology with two nodes s and t, connected by n

lightpaths EL = {ei, e2 , . . . en}, and let R = {R 1, R2 , . ... Rk} be a family of subsets

of EL where each IR4 ;> 2. There exists a physical topology Gp = (Vp, Ep) and

lightpath routing of GL over Gp, such that:

1. there are exactly k fibers in Ep, denoted by F k{fi, f2.fk}, that are used

by multiple lightpaths;

2. for each fiber fi E F, the set of lightpaths using the fiber fi, is Ri.

Proof. Given a logical topology GL (VL, EL) with two nodes s and t connected

by n lightpaths EL = {1 , c2 -... C,} and R = {R 1. ?2, ... , Rk} be the family of

subsets of EL, we construct a physical topology and lightpath routing that satisfy the

conditions specified in the theorem.

" Physical Topology:

The physical topology contains the two end nodes s and t in the logical network.

In addition, between the two end nodes, there are n groups of nodes. Each group

i containing k + 1 nodes, namely xxi, .X . .,xt For any i E {1,. . . ,n},j E

{1,.. . k}, there is an edge connecting nodes X' and x'. In addition, s is

connected to x8 and 4i is connected to t for all i E {1.n}. In other words,

in the physical network we have constructed so far, there are n edge disjoint

paths connecting s and t, and each path has k + 2 edges.

Next, we add k pairs of nodes {(y1, zi),. . ., (yk, Zk)} to the physical network,

where each node pair (yj, zj) is connected by an edge. Finally, we connect x)_1

toy1 and z1 towx, for all i{. n},jE{l,..., k}.

" Lightpath Routing:

We will define a route in the physical topology for each lightpath e1 . Each route



1i will contain k + 2 segments:

Segments s - xi and xi t will take the direct edges s -x x and x -+ t

respectively as their routes. The routes for other segments depend on whether

c is in Rj:

- If e. E Rj, the route for x*_ x, is X_ yj --+ zj - x;

- If c, V Rj, the route for xj_1 ~4 X' is X'_, X.

Figure 2-9 shows the physical topology and lightpath routing constructed from a

two-node logical topology with R = {{1, 2}, {2} .{1, 3}, {1}}.

By construction, all fibers except {(y1, zi) ... , (Yk, Zk)} are used by at most one

lightpath. Also, a lightpath ej uses fiber (yi, z;) if and only if ej is in Ri. In other

words, there are exactly k fibers, (y1, Z1) . (y, zk), that are used by multiple light-

paths, and each fiber (yi, zi) is used by the lightpaths in Ri.

2.7.2 Proof of Theorem 2.2

Let MinSPSs, be the size of the minimum survivable path set between the logical

nodes s and t. Theorem 2.2 describes the relationship between the value of MinSPSst

and the relaxed Max Flow, MaxFIowR, between the two nodes:

Theorem 2.2: MinSPSst < log +EpI 1.
[log MaxFlowRJ

Proof. Let P, and Ep be the set of logical s - t paths and the set of physical links

respectively. For each s - t path p c TPt, denote the set of physical links used by p

as L(p). We first construct a bipartite graph on the node set (Ps, Ep). There is an

edge (p, 1) E Pt x Ep if and only if the s - t path p does not use physical link 1, i.e.,
I ( L(p). In other words, the edge (p, 1) is in the bipartite graph if and only if the

path p survives the failure of physical link 1.
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Figure 2-9: The physical topology and lightpath routing on three lightpaths between two logical
nodes s and I, and lightpath-sharing relationship R? = {{1, 2} ,{2} ,{1, 3} ,{1}}.



We prove the theorem by explicitly constructing a survivable path set with size

at most lglEpt RJ + 1, using the bipartite graph. Algorithm SPSGREEDY describes

a greedy algorithm that constructs the path set by repeatedly selecting s - t paths

and removing physical links whose failures the selected path can survive. When the

algorithm terminates, every physical link failure is survived by a selected path in the

output. Therefore, the algorithm gives a survivable path set.

Algorithm 2 SPSGREEDY

1: P := 0, S := EP
2: while S $ 0: do:

- Select p C Pst with the largest node degree in the bipartite graph.
- P:= P U {p}, S := S\L(p)
- Remove nodes p and L(p) from the bipartite graph.

3: Return P

The key observation for this algorithm is that, every iteration of the algorithm

removes a constant fraction of remaining nodes in Ep. We state this result as the

following lemma:

Lemma 2.13 Let B' be the bipartite graph at the beginning of the i" iteration of the

algorithm, where the remaining node sets for Ep and 'Pt are E, and Pj respectively.

There exists a node in Pi with node degree at least \Ep|(a-1) where a' is the optimal

value for the formulation MaxFlow .

Proof. Suppose {f*lp E Pt} is the optimal solution for MaxFIowR, such that:

For the purpose of analysis, for each edge (p, 1) E P, x E, in the bipartite graph, we

assign the edge a weight f,*.
For each node v in the bipartite graph, let d(v) be its node degree, and we define

its weight w(i) to be sum of the weight of its incident edges. Then we have:

df]* <;f . (2.10)

Pa P pER,'S



For each node / in E},, its neighbors in Pt are the same as its neighbors in 'Pj,

since otherwise it should have already been removed from the bipartite graph. Its

node weight is:

w(l)=~
PEPS t:lL(p)

= fp* -

PE'Pst

f* =
pEPst :IVL(p)

pEPst:lEL(p)

> a - 1 since E fp* < 1, by Equation (2.1).
p:IEL(p)

Therefore the total weight for the nodes in E' is at least |Ep|(a - 1), which

implies:

w (p) > E (a-1).

Let dmjax be the largest node degree among the nodes in P.. We have:

(2.11)

drrax > w S(P)>- pepi W(P)
|E' I(a - 1)( .by Equations (2.10) and (2.11).

Therefore, the set 'Pi, contains a node with degree at least I~Ia1'Sa

As a result of Lemma 2.13, every iteration of the algorithm removes a fraction of

nodes of E' from the bipartite graph. Therefore, after the ith path is selected, the

number of nodes in Ep that remain in the bipartite graph is at most (1 - >1)?JEp.
The algorithm will terminate as soon as:

(I a - 1 log |Ep|( 1 a 1 ) Ep < 1. which implies i > .
log a

Therefore, the algorithm returns a survivable path set with size [log, Epj +I. El



2.7.3 Proof of Theorem 2.7

Theorem 2.7: Given the lightpath routing for a multi-layer network g - (Ge, GL),

finding its Minimum Cross-Layer Spanning Tree is NP-hard.

Proof. We prove the theorem by constructing a reduction from the NP-Hard Mini-

mum Label Spanning Tree problem [261:

Minimum Label Spanning Tree: Given a graph G = (V, E), and a set of labels

L ={L 1 ,.. , Lm}. Each edge e E E is associated with a set of labels Le C L. Find

a spanning tree T of G with minimum number of labels, that is, the value | erC 12e|

is minimized.

Given an instance of the Minimum Label Spanning Tree problem, we will construct

an instance of the Minimum Cross-Layer Spanning Tree problem, which consists the

the physical topology GO = (Vs, Ep), logical topology GL = (VL, EL) and lightpath

routing.

Logical Topology: The logical topology GL is the same as the graph G in the

Minimumm Label Spanning Tree problem.

Physical Topology: The physical topology contains all the nodes in the logical

topology. In addition, for each label Li E L, we add a pair of nodes pi and qj, with a

physical link (pi, qj) connecting the two nodes.

Next, for each logical link (s, t) e EL, we denote hJt = s and hsi t. Between hst

and h', we insert a sequence of 2* E - 1 physical nodes {<j, hit .... ht 1 z ,

and construct a physical path between the two nodes: h8' -+ xo -1 hs'... -

hs.

Finally, for each label Li E C, (s, t) E G and logical link (s. t) & EL, we add two

physical links (hsli, pi), (q. hts).

Lightpath Routing: For each logical link (s. t), the lightpath routing for (s, t)

consists of ILI segments s -lj hs h ... ~ h_1 ~

For each i e {1,..L}, the route for each segment h 31 ~4 hit depends on

whether the edge (s, t) has label Li in the original Minimum Label Spanning Tree



instance. If the edge has label Li, then the segment hI " h( takes on the route

1 -+ qi -+ h". Otherwise, h' 1 ' h takes on the route h 1 -+ o -h'.

Under this lightpath routing, only physical links of the form (pi. qi) can be shared

by mutilple logical links. Other physical links can be used by at most one logical link.

We call the first kind of physical links non-exclusive physical links, and the others

exclusive physical links.

Therefore, each segment h8L1 - h9 traverses exactly two exclusive physical links,

and in addition one non-exclusive link if the edge (s, t) has label Li in the correspond-

ing Minimum Label Spanning Tree problem. In other words, each logical link (s, t)

traverses 21LI exclusive physical links and |EStj non-exclusive physical links, where

E4t is the set of labels associated with (s, t).

An example of the reduction is shown in Figures 2-10 and 2-11.

We prove the following lemma, which implies that finding the minimum label

spanning tree reduces to finding the minimum cross-layer spanning tree.

Lemma 2.14 Let a be the number of labels associated with the optimal solution for

the Minimum Label Spanning Tree instance, and let 13 be the number of physical

links in Minimum Cross-Layer Spanning Tree instance under the reduction. Then

13= 2(n - 1)|Ec + a.

Proof. Since at least n - 1 logical links must survive if a cross-layer spanning tree

survives, and each logical links uses exactly 2[L| exclusive fibers, every cross-layer

spanning tree contains at least 2(n - 1)|L exclusive fibers.

First, suppose T is the minimum label spanning tree in the Minimum Label Span-

ning Tree problem with a labels. In the corresponding Minimum Cross-Layer Span-

ning Tree problem, T is also a spanning tree for the logical topology where each

logical link (s, t) e T traverses 2|LI exclusive physical links and |EAt1 non-exclusive

physical links. Note that the logical link (s, t) uses the non-exclusive link (pi, q1) if

and only if the edge (s, t) is associated with label Li in the Minimum Label Spanning

Tree problem. Therefore, the set of non-exclusive links used by (s, t) corresponds to

the set of labels associated with the edge (s, t) in the Minimum Label Spanning Tree



instance. This implies that the set of non-exclusive links used by all logical links in

T is exactly the set of labels associated with T in the Minimum Label Spanning Tree

problem. Therefore, the logical links in T use a total of 2(n - 1)|E| exclusive links

and a non-exclusive links. Since T is a logical spanning tree, this set of physical links

contains a cross-layer spanning tree. As a result, we have 13 < 2(n - 1)| L I + a.

a (L,, L2)

b (L3)

Figure 2-10: Minimum Label Spanning Tree instance.

Now, assume that 13 < 2(n - 1)I|L + a. The minimum cross-layer spanning tree

S therefore contains less than a non-exclusive links. Let W be the set of logical

links that survive if only the phyiscal links in S survive. Since W is a connected

subgraph of EL, it contains a logical spanning tree T that uses less than a non-

exclusive links. Since the set of non-exclusive links used by T corresponds to the set

of labels associated with the spanning tree T in the Minimum Label Spanning Tree

problem, this contradicts the fact that the minimum label spanning tree has a labels.

Therefore, we have 3 > 2(n - 1) L + a. El

Because of Lemma 2.14, finding the minimum label spanning tree can be reduced

to finding the minimum cross-layer spanning tree under the reduction. O

2.7.4 Proof of Theorem 2.9

Theorem 2.9: Computing the Weighted Load Factor for a lightpath routing is NP-

Hard even if the weight assignment w.t for the logical links is fixed.

Proof. We construct a reduction from the NP-Hard Uniform Sparsest Cut [7J problem:

* Uniform Sparsest Cut:

Given an undirected graph G (V, E), compute the value of min ( .
SCVL NIs /l-



(a) Logical Topology

(b) Physical Topology

(c) Lightpath Routing

Figure 2-11: Minimum Cross-Layer Spanning Tree instance.

Given the graph G = (V, E) in an instance of Uniform Sparsest Cut problem,

we construct an instance of the Weighted Load Factor problem, with the weight

assignment w8L fixed, such that the optimal values of the two problems are identical.

Without loss of generality, we assume G is connected. We will construct a physical

topology, logical topology, lightpath routing fLi and weight assignment wa, of the

logical links based on the graph G = (V, E) in the Uniform Sparsest Cut instance.

" Logical Topology: The logical topology is a complete graph on the vertex set

V = V. Each logical link (s, t) has weight wt = 1.

" Physical Topology: The physical topology is a complete graph on the vertex

set Vp = V U {u, v}, where u and v are two new vertices not in V.



* Lightpath Routing: For each logical link (s. t), if (s. t) is an edge of G in

the Uniform Sparsest Cut instance, the logical link takes on the physical route

s -+ u -+ v - t. Otherwise, it takes on the physical route s -+ t.

Let S be an arbitrary subset of V. Let osc(S) be the cut set of S with respect

to graph G of the Uniform Sparsest Cut instance, and let oL(S) be the cut set of S

with respect to the logical topology GL, which is a complete graph on VL = V. We

claim the following equality:

S Slosc (S)|1 (8 -) G 6L(S)
= max S, - L(S) . (2.12)

|S||V - S| (i,j)Epr 5 ~
(St)EL (S)

This is because every physical link not attached to u or v is used by at most one logical

link. In addition, any logical link that uses a physical link in the form (x, u) or (v, x),
for any x in Vp, also uses (u. v) in the lightpath routing. Since G is connected, for each

S C V, there is at least one logical link in 3sc(S) that uses the physical link (a, v).

Therefore, for any S c VL, the physical link (u. v) carries the largest number of logical

links in 6L(S). Since a logical link uses (u. v) if and only if the corresponding edge

exists in G, the number of logical links in 6L (S) using (U. v) is losc(S)|. Therefore,

the fraction of weight carried by the physical link (u, v) is 's(l . This

implies the sparsest cut value equals the Weighted Load Factor value. I

2.7.5 Proof of Theorem 2.10

Let MCLC and MCLCR be the optimal objective values for formulation MMCLC and

its linear relaxation MMCLC respectively. And let WLF be the Weighted Load Factor

of the lightpath routing. Theorem 2.10 declares the following:

Theorem 2.10: MCLCR < WLF < AICLC.



Proof. Recall that the ILP formulation for MCLC is:

MMCLC: Minimize
(i.j)EEp

dt - ds < y ft,
(ij)EEp

dZ >1
nt GYL

do = 0, dn. yij E {o, 1},

yij. subject to:

V(s. t) E EL

Vn E VL, (i, j) E Ep

where f gt are binary constants such that logical link (s, t) traverses physical noer

(i,j) if and only if 1.

For the rest of the proof, for any subset S of the logical nodes VL, we denote 6(S)

to be the cut set of S, i.e., the set of logical links with exactly one end point in S.

We first prove that AICLCR < WLF. To do this, we construct the dual [171 of

MMCLC:

MDMuClC: Maximize q, subject to:

8 fJ ' < 1 V(i, j) c E P
(5.t)E Et

q+ 9t g< - 3g<_0, Vs#0
(s.)EEL (t,s)CEL

q, gst > o V(s, t) e EL

(2.15)

(2.16)

The variables yi, in the primal MRCLC correspond to Constraint (2.15) in the

dual. Similarly, the variables ds, where s f 0, in the primal correspond to Constraint

(2.16) in the dual. For Constraints (2.13) and (2.14) in the primal, the corresponding

variables in the dual are gst and q respectively. We can interpret the variable g't as

the flow value assigned to logical link (s, t). Then Constraint (2.15) requires that the

total flow on each physical fiber be at most 1. Constraint (2.16) requires at least q

units of incoming flow for all nodes other than node 0. Intuitively, the dual program

(2.13)

(2.14)



tries to maximize the value q such that the node 0 sends at least q units of flow to

every other node, subject to the capacity constraint for each fiber.

We first prove Lemma 2.15, which will be used to establish the lower bound on

WLF.

Lemma 2.15 Let (q, g) be a feasible solution for M I.R and let

g(S) = Z gst - gst

(s't)E EL s4SJES (s't)E EL:sGS,tgS

be the net flow into the cut set S. Then g(S) > kq, for any S C VL\ {0} with k = |S|.

Proof. Consider an arbitrary node set S C VL\ {0}, and let k = |S|. We prove by

induction on k that g(S) > kq.

* Base case: k = 0: In this case, S is an empty set and g(S) > kq trivially.

" Inductive case: Suppose for some 0 < k < IVLI - 1, g(S) > kq for all S with

|S| k and 0 0 S. Now let S' be any subset of k + 1 nodes that does not

contain node 0, let b be an arbitrary node in S', and let Sb = S'\ {b}. Since

S, is a set of k nodes, by induction hypothesis, we have g(S.) > kq. It follows

that:

g(S') = g(S±) + gib Z gbt
(t.b)EEL (b,t)cEL

> g(S ) + q, by Constraint (2.16)

> (k + 1)q.

By induction, g(S) > kq VS C VL\ {0} and k =|S|. El

Now we are ready to prove that MCLCR < WLF. Given an optimal solution

(q* g*) to the formulation MDualR, the value of g'* is a feasible assignment of thevMCLoC

variable w.t in the Weighted Load Factor formulation MWLF. The corresponding



objective value for this assignment is:

E gs'
m. (SL)E6(S)

SCV 1 ,(ij)EEp Z g5L' fQ
(s,1)ES(S)

> Z qst*frt by Lemma 2.15

(s~t)E6(S)

>q*, by Constraint (2.15)

which implies WLF > q*. On the other hand, by Duality Theorem [17], the optimal

value for MRcLc is exactly q*. Therefore we have MCLCR < WLF.

Next, we prove that WLF < MCLC. Let C be the set of physical fibers that

constitute a Min Cross Layer Cut, and let a be an arbitrary node in the logical

network. Let Sc C VL be the set of nodes reachable from a after C has been removed

from the physical network. It follows that all logical links in 6(Sc) use fibers in C.

Let w be the weight function on EL that achieves the optimal Weighted Load

Factor, and let w(Sc) be the total weight of the logical links in 6(Sc). Also, let

(i*j*) be the physical fiber that carries the most weight for lightpaths in 6(Sc). The

definition of WLF implies that:

wst

WLF = min. (s t)E(S)

SCV,(i.J)CEP Z wst fs
(s,t)E6(S)

(2.17)
- wstf

(6jt)G6(Sc)

Next, since all logical links in 6(Sc) use fibers in C, we have:

W; t < >S wr
(s)EoSc)(ij)EGC (S' t)EG6(Sc)

C\ (3 wSt fiJ . (2.18)
(s,t)E6(Sc)



Finally, combining inequalities (2.17) and (2.18), we have:

WLF < < |C = AICLC.
(s,)E(SC)

El
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Chapter 3

Assessing Reliability for Layered

Network under Random Physical

Failures

3.1 Introduction

The study of cross-layer survivability in Chapter 2 is based on a deterministic failure

model, where survivability is defined by one (smallest) set of physical failures that

disconnect the logical topology. In this chapter, we extend our study to the random

physical failure model where all physical links fail independently with probability

p. This probabilistic failure model represents a snapshot of a network where links

fail and are repaired according to some Markovian process. Hence, p represents the

steady-state probability that a physical link is in a failed state. The cross-layer

reliability of the network, defined to be the probability that the logical topology

stays connected under the random physical failures, is a natural generalization of the

single-layer all-terminal reliability, which has been extensively studied in the literature

(see [32] for example). However, as shown in the previous chapter, the structural

properties in layered networks are significantly different from single-layer networks.

This makes many of the existing approaches either inapplicable or inefficient in the



multi-layer setting. In particular, in additional to the physical and logical topologies,

the underlying lightpath routing of a layered network determines the way the logical

network is affected by the physical failures, and therefore plays an important role in

the overall reliability of the network.

For example, in Figure 3-1, the logical topology consists of two parallel links be-

tween nodes s and t. Suppose every physical link fails independently with probability

p. The first lightpath routing in Figure 3-1(c) routes the two logical links using

link-disjoint physical paths (s., 1, 2, t) and (s, 2, 3, t). Under this routing, the logical

network will be disconnected with probability (1 - (1 -p) 3 )2 . On the other hand, the

second lightpath routing in Figure 3-1(d), which routes the two logical links over the

same shortest physical route (s, 2, t), has failure probability 2p - p2 . While disjoint

path routing is generally considered more reliable, it is only true in this example for

small values of p. For large p (e.g. p > 0.5), the second lightpath routing is actually

more reliable. Therefore, whether one lightpath routing is better than another may

depend on the value of p. In some cases, there may exist a lightpath routing with

lower failure probability over all values of p, as shown in Figure 3-1(e).

Therefore, in order to design a reliable layered network, it is important to de-

velop a better understanding of the role of lightpath routings in cross-layer reliability.

To achieve this, we will extend the polynomial expression for single-layer network

reliability to the layered setting. In Section 3.3 we define the cross-layer failure poly-

nomial, which provides a formula for network reliability as a function of the link

failure probability. Hence, the cross-layer reliability can be estimated by approxi-

mating the coefficients of the polynomial. Exploiting this relationship, in Sections

3.4-3.7 we develop Monte Carlo based estimation methods that approximates cross-

layer reliability with provable accuracy. Our method is not tailored to a particular

probability of link failure, and consequently, it does not require resampling in order

to estimate reliability under different values of link failure probability. That is, once

the polynomial is estimated, it can be used for any value of link failure probability

without resampling. Our approach is immediately applicable to single-layer networks

as well.



(a) Physical Topology (b) Logical Topology

(c) Disjoint Routing (d) Shortest Routing (e) Optimal Routing
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Figure 3-1: Example of disjoint, shortest and optimal routings: Non-disjoint routings can sometimes
be more reliable than disjoint routings. Optimally reliable routings over all values of p sometimes
exist.

Another interesting property of the polynomial expression for reliability is that

its coefficients contain the structural information of the cross-layer topology, espe-

cially lightpath routing. Consequently, it gives clear insights on how lightpath routing

should be designed for better reliability. This, together with our estimation algorithm,

enables us to revisit the network design problem from the viewpoint of network relia-

bility. In Section 3.8 we will investigate the connection between cross-layer reliability

.4 . . . .



and Min Cross Layer Cut, the survivability metric used in Chapter 2, and study the

performance of the lightpath routing algorithms presented in Chapter 2 under this

random failure model. We will briefly discuss several extensions to our failure model

in Section 3.9, and how the reliability estimation algorithms can be applied to these

new settings. The insights developed in this chapter, in particular, the study of the

failure polynomial, lays the groundwork for our studies in the next two chapters,

which focus on designing networks to maximize reliability.

In Appendix 3.11.3, we briefly discuss an alterative approach based on importance

sampling [971 to assess reliability of layered networks, and constrast it with our failure

polynomial approach.

3.2 Previous Work

The network reliability estimation problem has been extensively studied in the single-

layer setting. Valiant 11141 first showed that computing reliability in the single-layer

setting is #P-complete'. Provan and Ball 1871 later showed that it is #P-complete

even to approximate the reliability up to c relative accuracy. Due to the inherent

complexity, most of the previous works in this context focused on approximating

the actual reliability. Although there are some works aimed at exact computation

of reliability through graph transformation and reduction [27, 73, 83, 86, 98, 106,107,

111], the applications of such methods are highly limited since they are targeted to

particular topologies. Furthermore, those methods cannot be used for estimating

cross-layer reliability because they assume independence between link failures, while

failures are often correlated in multi-layer networks.

Monte Carlo simulation was also used for estimating the single-layer reliability

for some fixed link failure probability. Using simulation, the reliability can be ap-

1 The complexity class #P is the counting equivalent of NP. While a decision problem in NP asks

about whether a feasible solution exists subject to certain constraints, its corresponding problem in

#P asks about how many of such feasible solutions exist.
A problem is #P-complete if and only if it is in #P, and every problem in #P can be reduced

to it in polynomial-time. An algorithm that solves a #P-complete problem in polynomial time will

imply P=NP, and is therefore unlikely to exist.



proximated to an arbitrary accuracy, but the number of iterations required by direct

simulation tends to be very large when the failure probability is small. There are

various algorithms designed specifically to optimize for this case [41,42,62,63]. How-

ever, each run of these algorithms only estimates the reliability for a given link failure

probability; and the algorithm must be repeated for a different failure probability.

Another approach is to use a polynomial expression for reliability 1121 and es-

timate every coefficient appearing in the polynomial; where the reliability can be

approximated using the estimated coefficients. The advantage of this approach over

simulation is that once every coefficient is estimated, they can be used for any value

of failure probability. Most of the works in this context have focused on bounding

the coefficients by applying subgraph counting techniques and results from combi-

natorics [24, 31, 53,89, 94]. This approach is computationally attractive, but its esti-

mation accuracy is not guaranteed. Some previous works studied the regime of low

failure probability by focusing on small cut sets [2,16]. In [82], a random sampling

technique is used to enhance those bounding results. In particular, [82] considers

another form of the polynomial used in [13], and estimates some of the coefficients

by enumerating spanning trees in the graph. These estimates are used to improve

the algebraic bound in [13]. This approach is relevant to our work in that it tries to

approximate the coefficients in the polynomial through random sampling. However,

the algorithm proposed in [82] is based on sampling spanning trees in the network,

which is not immediately applicable to our multi-layer setting because the properties

of cross-layer spanning trees is vastly different from their single-layer counterparts;

and sampling minimum spanning trees in layered networks becomes a much more

difficult problem, as discussed in Section 2.2.3.

In this chapter, we take a different approach from [82] by sampling cross-layer

cuts. Even though finding minimum cross-layer cuts is an NP-Hard problem, our

cut-based approach is feasible in the cross-layer setting due to the following reasons:

1. The size of minimum cross-layer cut is bounded above by the minimum logical

node degree, which is usually a constant. In practice, it is often easier to find

or enumerate minimum cross-layer cuts than spanning-trees, which is lower



bounded by the number of logical nodes, as shown in Theorem 2.4.

2. Except for cross-layer cuts of small size, it can be shown that cross-layer cuts are

abundant in a layered network in general. This makes cut sampling a promising

approach.

In Section 3.4, we will develop a reliability estimation algorithm based on the

above insight. Before that, we first formally describe our model and provide some

mathematical background.

3.3 Model and Background

A multi-layer network is modelled by a logical topology GL = (VL, EL) built on top

of the physical topology Gp = (Vp, Ep) through a lightpath routing, where V and

E are the set of nodes and links respectively. The lightpath routing is denoted by

f = [fE, (i, j) Ep, (s, t) E ELI, where fg takes the value 1 if logical link (s, t) is

routed over physical link (i, J), and 0 otherwise.

We consider a random failure model where the state of each physical link (i, J) E

Ep is represented by the 0-1 random variable oi, which equals 0 if and only if the

physical link (i, j) fails. Let R - 2 EP be the family of all subsets of the physical links

Ep. We define a network state S E H as the set of physical links that fail, that is,

S - {(i, j) : zO 0}.

Each physical link fails independently with probability p. If a physical link (i, j)

fails, all the logical links (s, t) carried over (i, j) (i.e., (s. t) such that ft 1) also

fail. A network state S is called a cross-layer cut if and only if the failure of the

physical links in S causes the logical network to be disconnected. Let R be a 0-1

random variable on H such that R(S) = 1 if and only if S is not a cross-layer cut.

Then, the reliability of the layered network is defined to be Pr(R = 1). Similarly, the

unreliability is defined to be Pr(R = 0).



3.3.1 Cross-Layer Failure Polynomial

Since cross-layer reliability generalizes all-terminal reliability in single-layer networks,

the results by Valiant [114] and Provan et. al. 187] immediately imply that approx-

imating cross-layer reliability within a constant factor is #P-Complete. Hence, our

goal in this chapter is to develop a probabilistic algorithm that can accurately esti-

mate the reliability with high probability. As we discussed in Section 3.1, the relative

reliability performance among lightpath routings depend heavily on the value of p.

Therefore, when comparing lightpath routings, it is often necessary to assess the reli-

ability at different link failure probabilities in order to obtain better insight from the

comparison. For this purpose, it is useful to develop an estimation method such that

once an estimation is made, the result can be used for every value of p. Therefore, we

will develop an algorithm that outputs the reliability approximation as a polynomial

in p, so that comparing different lightpath routings at different link failure proba-

bilities is trivial. As we will see in Section 3.8, the failure polynomial also provides

important insights to the design of lightpath routings for better reliability.

The polynomial expression for reliability presented here is a natural extension of

the single-layer polynomial [12] to the cross-layer setting. Assume that there are m

physical links, i.e., |Ep| = m. The probability associated with a network state S

with exactly i physical link failures (i.e., |SI = i) is p"(1 - p)"i. Let Ni be the

number of cross-layer cuts S with |SI i, then the probability that the network gets

disconnected is simply the sum of the probabilities over all cross-layer cuts, i.e.,

F(p) = N&,p (1 - p)" . (3.1)

Therefore, the failure probability of a multi-layer network can be expressed as a

polynomial in p. The function F(p) will be called cross-layer failure polynomial or

simply the failure polynomial. The vector [NO, . ., Nad plays an important role in

assessing the reliability of a network. In particular, one can simply plug the value of

p in the above failure polynomial to compute the reliability if the values of Nj are

known.



Intuitively, each Ni represents the number of cross-layer cuts of size i in the net-

work. Clearly, if Ni > 0, then Nj > 0, Vj > i (because any cut of size i will still

be a cut with the addition of more failed links). The smallest i such that Nj > 0 is

of special importance because it represents the Min Cross Layer Cut (MCLC) of the

network, i.e., it is the minimum number of physical link failures needed to disconnect

the logical network. Although computing the MCLC is NP-Hard [70], for practi-

cal purposes, the MCLC of a network is typically upper bounded by some constant,

such as the minimum node degree of the logical network. Therefore, for the rest of

the chapter, we denote the MCLC value of the network by d, and assume that it is

a constant independent of the physical network size. It is important to note that

N = 0, Vi < d, and the term Ndpd( -- p) m -d in the failure polynomial dominates for

small values of p. Consequently, if a lightpath routing tries to maximize MCLC, i.e.,

make d as large as possible, it will achieve good reliability in the low failure probabil-

ity regime. On the other hand, its reliability performance is not guaranteed in other

regimes. This will be further discussed in Section 3.8, where we study the reliability

performance of the lightpath routing algorithms presented in Chapter 2. A similar

observation was made for single-layer networks in 1201.

In this chapter, we focus on approximating the failure polynomial. We will use

the following notions of approximation.

Definition 3.1 (Relative Approximation) A function F(p) is an E-approximation

for the failure polynomial F(p) if

|F(p) - F(p) < cF(p). for all p G [0, 1].

This relative error is typically the measure of interest in the literature of reliability

estimation. However, as mentioned above, it is also #P-complete to approximate the

reliability to E accuracy [87]. Hence, it is not likely that there exists a deterministic

c-approximation algorithm requiring reasonably low computation. For this reason,

our estimation focuses on the following probabilistic approximation.

Definition 3.2 ((e, 6)-approximation) A function F(p) is an (c, 6)-approximation



for the failure polynomial F(p) if

Pr [IF(p) - F(p)I < EF(p)] > (1 - 5), for all p E [0. 1].

In other words, an (6, 6)-approximation algorithm approximates the polynomial to

c relative accuracy with high probability. In Sections 3.4 and 3.5, we will present

randomized (e, 6)-approximation algorithms for the failure polynomial.

3.3.2 Monte Carlo Simulation

Our estimation algorithm is based on Monte Carlo simulation techniques. The central

theme of such Monte Carlo techniques is based on the Estimator Theorem, presented

below. Let U be a ground set defined as the set of all possible events (e.g., all

network states), and G be a subset of U (e.g., cross-layer cuts). Suppose that we

want to estimate |G|. To do this, the Monte Carlo method samples an element e from

U uniformly at random for T times. For each iteration i, let Xi be the 0-1 random

variable that equals 1 if and only if the sampled element e E G. Then the random

variable Y = is an unbiased estimator of |G|. The Estimator Theorem

states that:

Theorem 3.1 (Estimator Theorem [77]) Let p = . Then Y -=X, is an

(E, 6)-approximation to G, provided that

4 2
T > In-

62p 6

In other words, if we sample from the ground set U frequently enough, we can

estimate |G| accurately with high probability. According to Theorem 3.1, the ratio p,

called the density of the set G, is inversely proportional to the required sample size

T. This is because the squared coefficient of variation of Y, defined as "() , equals
(.-o) Therefore, a sample size T in the order of 1 is needed, so that the squaredTp p

coefficient of variation will not grow with I, which is necessary to keep the relative
p

error small 197].



In the following sections, we will define the sets G and U in various ways to

ensure high p value, and propose polynomial-time Monte Carlo methods to compute

approximations of the failure polynomial.

3.4 Estimating Cross-Layer Reliability

The most straightforward Monte-Carlo method to estimate network reliability is via

direct simulation, that is, collect T samples from the universe of network states R,

where each sample is obtained by simulating each physical link failure with probability

p. For each sample Si, compute the value Ri of the random variable R(Si). An

unbiased estimator for the reliability is then given by T . However, such an

approach has the following drawbacks:

1. The output of the algorithm is the reliability value for a particular link failure

probability p. To assess reliability at a different link failure probability p, a new

round of sampling is required.

2. The unreliability of the network R can be arbitrarily small if the link failure

probability p is sufficiently small. Therefore, the number of samples required to

keep relative error small, which is in the order of , can be arbitrarily large.

Our approach to approximating the cross-layer failure polynomial is to estimate

the values of Ni in Equation (3.1) separately. If we can estimate each Ng with suffi-

cient accuracy, we will obtain an approximate failure polynomial for the multi-layer

network. The idea is formalized in the following theorem.

Theorem 3.2 Let N, be an (-approximation of Ni for all i e {1,...m}, then the

function F(p) = 7 Npi(1 - p)'- is an e-approximation for the failure polyno-

mial.



Proof. For all 0 < p < 1,

|F(p) - F(p)| I < 7 (N - N) |p'(1 - p)"l-i
i=0

i~O
<( eN ,p'(1 - p)'-

'i=0

= eF(p).

Corollary 3.3 Let A be an algorithm that computes an (e, )-approximation for

each Ni. Then A gives an (c, 6)-approximation algorithm for the failure polynomial.

Proof. By the union bound, the probability that all the N estimates are -approximate

is at least 1 - Z7O -= 1 - 6. By Theorem 3.2, A gives an (c, 6)-approximation

algorithm for the failure polynomial. F1

Note that this approach can be considered as a form of stratified sampling [97],

where the sample space 'H is partitioned into multiple subgroups Ni and the con-

ditional expectations E[R|I-] are estimated independently. The expectation of the

random variable R is thus given by:

E[R] = E E[R|I]Pr(i).

For the cross-layer reliability estimation problem, we define each subgroup Hi to

be all possible subsets of Ep with size i, that is, Hi = {S c Ep : IS|= i}. It follows

that Pr(1) - (7)pi(1-p)'-, and the conditional expectation, E[R(S) = 0|S E Rj),
is simply (NI. The key observation is that the conditional probability and variance

is independent of the link failure probability p. As a result, the confidence interval

obtained by simulating the conditional events within a subgroup is independent of p.

This ensures the effectiveness of the algorithm even if p is small.

As a result of Corollary 3.3, it suffices to obtain a (, 4 )-approximation for each

N1 . In the remainder of this section, we will discuss how this can be achieved.



3.4.1 Estimating Ni

Let N, be the family of all subsets of Ep with exactly i physical links. Clearly, Ni

is the number of subsets in Ri that are cross-layer cuts. Hence, one can compute

the exact value of N, by enumerating all subsets in Ni and counting the number of

cross-layer cuts. However, the number of subsets to enumerate is ("), which can be

prohibitively large.

An alternative approach to estimating N is to carry out Monte Carlo simulation

on NR. Suppose we sample uniformly at random from Ri for T times, and count the

number of cross-layer cuts W in the sample. The Estimator Theorem guarantees that

(m){ Wis an (E, 6 )-approximation, provided that:

4 2(m + 1)
T> In ~. . (3.2)

-62 pi '

where p1 = - is the density of cross-layer cuts in Ni. The main issue here is
(")

that the exact value for pi, which depends on N, is unknown to us. However, if we

substitute pi in Equation (3.2) with a lower bound of pi, the number of iterations will

be guaranteed to be no less than the required value. Therefore, it is important to

establish a good lower bound for pi in order to keep the number of iterations small

while achieving the desired accuracy.

3.4.2 Lower Bounding pi

Given a layered network, suppose its Min Cross Layer Cut value d is known, Theo-

rem 3.4 gives a lower bound on pi:

Theorem 3.4 For Z' > d, pi > d

( 7)

Proof. Since d is the Min Cross Layer Cut value, there exists a cross-layer cut S with

size d. Any superset of S with i physical links is therefore also a cross-layer cut.

Since there are a total of (7_~<) such supersets, we have Ni > ('"f), and the theorem

follows immediately. L



( )

Therefore, we can use #i - as the lower bound for pi in (3.2) to estimate

Nj, with the following observations:

1. The MCLC value d needs to be known in advance.

2. The number of iterations can be very large for small values of i. For example,

when i = d, the number of iterations T required is In " which is no

better than enumerating all sets in Hd by brute force.

3. The lower bound ij increases with i. In particular, Pt = 1+ d Therefore,
i i+1-d

the number of iterations required to estimate Ni decreases with i.

In the next subsection, we will present an algorithm that combines the enumera-

tion and Monte Carlo methods to take advantage of their different strengths. In Sec-

tion 3.5, we will present enhanced versions of the algorithm which significantly reduces

the number of iterations by establishing a much tighter lower bound on pi. The final

outcome is an (6, 6)-approximation algorithm for the failure polynomial F(p) that

requires only a polynomial number of iterations.

3.4.3 A Combined Enumeration and Monte Carlo Approach

Recall that Ni can be estimated with two different approaches, brute-force enumer-

ation and Monte Carlo. The two approaches can be combined to design an efficient

(e, 6)-approximation algorithm for the failure polynomial.

The key observation for the combined approach is that brute-force enumeration

works well when i is small, and the Monte Carlo method works well when i is large.

Therefore, it makes sense to use the enumeration method to find the Min Cross Layer

Cut value d, as well as the associated value Nd. Once we obtain the value of d, we

can decide on the fly whether to use the enumeration method or the Monte Carlo

method to estimate each N, by comparing the number of iterations required by each

method.



3.4.4 Time Complexity Analysis

The total number of iterations of this combined approach will be:

min (rn"~
'\iJ

4( 71)

i2 (m-d)

ln 1)

where the terms inside the min operator are the number of iterations required by

enumeration and Monte Carlo methods respectively. The total number of iterations

can be upper bounded as follows:
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where the first inequality is implied by the following lemma:
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Therefore, the algorithm only needs a polynomial number of iterations overall.

The improvement in running time of this combined approach is illustrated by Figure 3-

2.
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Figure 3-2: Monte-Carlo vs Enumeration: Number of iterations for estimating Ni, for a network

with 30 physical links, c = 0.01, = -1, d = 4. The shaded region represents the required iterations

for the combined approach.

Proof.



3.5 Improved p, Lower Bounds for Reliability Esti-

mation

The running time performance of the algorithm introduced in the previous section

hinges on the tightness of the lower bounds pi used for the algorithm. In this section,

we discuss ways to tighten the lower bounds.

The idea behind these improved bounds is based on the observation that any

superset of a cross-layer cut is also a cross-layer cut. Let F = {C 1, ... , C,} be a

collection of cross-layer cuts. For each Cj c F, let &i(Cj) C 'Hi be the family of

supersets of CJ with i physical links. Similarly, let i(.F) UCJEFa2 (C) be the union

over all Oi(Cj). Using the terminology in 122], the family of subsets Bi(F) is called

the ith upper shadow for F. The following theorem provides a lower bound on pi in

terms of &8:

Theorem 3.6 Let F be a collection of cross-layer cuts with size less than i, then

Proof. Every set S E 0, (F) is a superset of the some cross-layer cut in F, and is

therefore a cross-layer cut with size i. Therefore, 8i(F) is a collection of cross-layer

cuts with size i, which implies |I&(F)I < N. It follows that )< = P.
(i) ( il)

Therefore, if we know the value of 18(F)|, we can use as the lower bound

for pi in the Monte Carlo method to estimate Ni. Note that if F contains only

a Min Cross Layer Cut of the network, the value of is equal to the bound

given by Theorem 3.4. Therefore, Theorem 3.6 generalizes the lower bound result

in Section 3.4.2.

Although the value of each |Bi(Cj)l - (7 ) can be computed easily, finding

the size of the union Oi(F) = UcE-Ei(Cj) can be difficult because the sets di(C)

are not disjoint. Instead of computing 182(F)| precisely, we introduce techniques for

lower-bounding I1i(F)I. The first technique, introduced in Section 3.5.1, is based

on importance sampling for the Union of Sets problem [64]. The second technique,



introduced in Section 3.5.2, is to bound the size of Bi(F) with a recursive formula,

based on the Kruskal-Katona Theorem 122].

3.5.1 Lower Bound by Approximating Union of Sets

Given a set of cross-layer cuts F, the problem of estimating the size of its upper

shadow i(F), can be formulated as the Union of Sets Problem [64], for which a

Monte-Carlo based approach exists using the technique of importance sampling. We

summarize the result in this section and leave the detailed proofs in Appendix 3.11.1.

Theorem 3.7 Let F - {C 1, ... , C} be a collection of cross-layer cuts of the layered

network. For each C c F, let Oi&(Cj) be the ith upper shadow of Cj. There exists a

Monte Carlo method that produces an (Eb, 61b)-approximation, Li, for Li = |1(_F)|,
provided that the number of samples is at least:

Ti = 4 1 2 (3.3)
~lb ~1

Proof. Let U = {(S,j) :j E 1,. .. , |7} . S E &,(CjI)} be the ground set for the Monte

Carlo algorithm, and let G {(S,j) S E a(7), j = inin {k : SE (C)}} be the

events of interest. We show in Appendix 3.11.1 that the ground set U can be sam-

pled uniformly at random. Since |G| = |91(F)| and ;> 1, Theorem 3.7 follows

immediately from the Theorem 3.1.

Theorem 3.7 implies pA = L is a lower bound on pi with probability at

least 1 - 61b. The following theorem describes how such a probabilistic lower bound

can be used to estimate Ni,.

Theorem 3.8 Let Li be an (Eb 61b)-approximation for |B(F)|. Then, the Monte

Carlo method described in Section 3.4.1 yields an (emeb -61 oe)-approximation for



Ni, provided that the number of samples is at least:

4(1 + elb) () 2
Tmc - Li In (3.4)

Proof. By definition of Li, the probability that p i) is not a lower bound

on pi is at most 6 1b. Given that [S is a lower bound for pi, by the Estimator Theorem,

the probability that Ni is not an Emc-approximation for Ni is at most omc. Hence, by

the union bound, the probability that none of these "bad" events happen is at least

1 - (6 1b+ 6mc), and the theorem follows. F-1

To apply this result to reliability estimation, we can modify our algorithm pre-

sented in Section 3.4.3 to also maintain the collection F of cross-layer cuts as we carry

out the enumeration or Monte Carlo methods. Specifically, as we discover a cross-

layer cut Cj with size i when estimating Ni, we will add the cut C to our collection

F. When we move on to estimate Ni+1, we will have a collection F of cross-layer

cuts with size i or smaller. We can therefore apply Theorem 3.6 to obtain a lower

bound for Ni+. Note that the size of Bi(F) is monotonic in F. Therefore, the more

cross-layer cuts that are included in F, the better the lower bound is.

3.5.2 Lower Bound based on Kruskal-Katona Theorem

We can also derive a lower bound on p, based on the values of Nj for j < i, using

the Kruskal-Katona theorem. Let [m] {1,..., m}, i.e., [m] is the enumeration of

physical links. Let H"" = {S C [m] : |St = i} be a family of subsets of [m] with size

i. For any F C H" with j < i, we denote &7n(F) to be the ith upper shadow over [m)

for F.

We define the lexicographic ordering on H' as follows: Given any two subsets S1

and S2 in RL;", S1 is lexicographically smaller than S2 if and only if min {i : i e S1 AS2} G

S1, where A denotes the symmetric difference between the two sets, i.e., S1 AS 2 =



S1 U S2 - Si n S2. For example, the set {1. 2, 4} is lexicographically smaller than

{ 1. 3, 4} because the smallest element where the two sets differ, 2, is in the first set.

Given 7HT, the family of all subsets with size i, let N7"(k) C 'H' be the first k

elements of H"' under the lexicographical ordering. The Kruskal-Katona theorem

states that 7"r(k) yields the smallest upper shadow among all k-subset of R":

Theorem 3.9 ( [221) For any I <j and F C H"

|8;"1M("(|I)) < |j"(FT)|. (3.5)

In other words, for a fixed value of k, the upper shadow for _F with |T = k is

minimized if _F consists of the first k subsets of /Rr in lexicographical order. Therefore,

suppose a multi-layer network has a Ni cross-layer cuts with size i, Theorem 3.9

implies that Nj > |j"(7jr"(Ni))| for all j > i. We prove the following recursive

formula for j"(Hm(Ni))|:

Theorem 3.10 For i < j m and 1 < k (7), letv = max {0 r < i (7 ) > k}.

Also, let t = m - (w + 1), u =j (w + 1) and v i - (w + 1). Then:

if k = 1
| "( "(k))|
17 M It() + |B + ( G ( ')| otherwise.

Proof. See Appendix 3.11.2. l

When estimating Ny in the J"h round of the algorithm presented in Section 3.4.3,

the algorithm has already discovered a collection of cross-layer cuts with size i for

each i < j, either by sampling or exhaustive enumeration. Let Ni be the number

of cross-layer cuts with size i seen by the algorithm. Then Nj is lower bounded by

max |OJ"(Hi"(Ni)) , where each term |d(Ni())| can be computed easily using the
1<i<j

recursive formula in Theorem 3.10. Notice that the original lower bound in Theorem

3.4 is a special case where a single MCLC is assumed and (according to Theorem

3.10) Nj is lower bounded by |"((Nd = 1)) ("_d) for each j > d. Theorem

3.10 improves this bound by accounting for more cross-layer cuts, and therefore, it



can be used to further reduce the number of iterations required by the

algorithm. We note however that the enhanced lower bounds obtained

3.7 and 3.10 may still result in the same order of O(nd log n) iterations.

simulation studies in Section 3.6 show that these enhanced bounds can

reduce the number of iterations.

Finally, a probabilistic lower bound for Nj can also be established

estimated value Ni instead of Ni. In that case, the parameters 6 and

adjusted in a way similar to Theorem 3.8.

Monte Carlo

by Theorems

Nevertheless,

substantially

by using the

c need to be

3.6 Empirical Studies

We present some empirical results about the reliability estimation algorithms. We

compare the different lower bounds for Ni produced by the methods described in Sec-

tions 3.4 and 3.5, and look at the number of iterations required for different variants

of the estimation algorithm. In addition, we will compare the actual accuracy of

the failure polynomials computed by the algorithm with the theoretical guarantee

provided by the Estimator Theorem.

Figure 3-3: The augmented NSFNET.

We used the augmented NSFNET (Figure 3-3) as the physical topology. We

generated 350 random logical topologies with 6 to 12 nodes and created lightpath

routings using the MCF (Multi-Commodity Flow) algorithms described in Chapter 2.

For each lightpath routing, we ran four different reliability estimation algorithms to

compute their failure polynomials:

1. ENUM: Each value of Ni is computed by enumeration.



2. MIXEDoriginal: The original algorithm that combines the enumeration and Monte

Carlo methods, introduced in Section 3.4.3, with 6 = 6 = 0.01.

3. MIXEDKK: The algorithm that combines the enumeration and Monte Carlo

methods, using Theorem 3.10 to derive the lower bound for pi.

4. MIXEDsample: The algorithm that combines the enumeration and Monte Carlo

methods, using the importance sampling technique in Section 3.5 to derive the

lower bound for pi. In this case, we have picked em, = 0.01, 6 1b = 0.1, 6 mc -

6 1b 0- 03. For the collection C of cross-layer cuts, we only keep the 100 smallest

cross-layer cuts.

Table 3.1 shows the average number of iterations required for each algorithm to

compute the failure polynomial. The result shows that the combined enumeration

and Monte Carlo approach helps to significantly reduce the number of iterations.

In addition, the algorithms MIXEDKK and MIXEDsample is able to further reduce the

number of iterations by exploiting the knowledge of the discovered cross-layer cuts.

Between the two enhanced algorithms, algorithm MIXEDsample in general achieves

a better lower bound, as shown in Figure 3-4, because of the the additional impor-

tance sampling step. However, for small regimes of i where the number of iterations

dominates, the lower bounds from the two algorithms are close enough that the dif-

ference in the number of iterations is small. In addition, since algorithm MIXEDsample

requires the additional importance sampling step, the overall number of iterations

required by the two algorithms are close to each other.

Algorithm Monte Carlo Iterations
N, Estimation p3 Estimation Total

ENUM 536,870,912 N/A 536,870,912
MIXEDoginal 46,900,857 N/A 46,900,857

MIXEDKK 15,467,815 N/A 15,467,815
M IXEDsample 11,968,535 2,485,477 14,454,012

Table 3.1: Number of iterations for each algorithm.

Finally, we compare the actual accuracy of the failure polynomial generated by

algorithm MIXEDsample with the theoretical guarantee given by the Estimator Theo-
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rem. Figure 3-6 shows the accuracy results on two sets of failure polynomials, with

Monte Carlo parameters c 0.01 and 0.05. For each set of failure polynomials, we

compute the maximum relative error among them for various values of p. Therefore,

each curve shows the upper envelope of relative errors by the failure polynomials. In

both cases, the relative error is much smaller than the theoretical guarantee. This

is because by using a lower bound for pi, the algorithm over-samples in each Monte
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Carlo approximation for Ni. In addition, the errors for the Ni estimates are inde-

pendent and may cancel out each other. Therefore, in practice, the algorithm would

provide much better estimates than theoretically guaranteed.

0.009 1 1 1 1 1 1 1 I
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Figure 3-6: Relative error of the failure polynomial approximation.

3.7 Estimating Cross-Layer Reliability with Abso-

lute Error

We have considered computing relative approximation for the failure polynomial F(p).

However, in certain contexts, it may make sense to describe the error in absolute

terms. A function F(p) is E-absolute-approximate to F(p) if:

|F(p) - F(p)| <.

For example, if our goal is to design a network with a certain reliability target

(say five 9s), it is sufficient to present a network whose associated failure polynomial

has absolute error in the order of 10-6. Constructing a failure polynomial with such

relative error, however, may be overly stringent.

A function that is e-approximate to F(p) immediately implies that it is E-absolute-
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approximate. As it turns out, using a similar approach of probabilistically estimating

each Ni requires a much smaller number of samples to achieve c-absolute accuracy.

The total number of iterations required to compute an c-absolute-approximation for

F(p) with high probability is O(m log m), in contrast to O(nd log m) in the case of

c-approximation.

The intuition behind the difference is that, computing an c-approximation for Ni is

difficult when the density pi is small. However, in that case, the absolute contribution

of the term Nnp(1 - p~m- )pi(i _ Pym-i will be small as well. Therefore, in

this case, even a large relative error for Ni will only account for a small absolute error.

More precisely, by the Estimator Theorem, the Monte Carlo method yields an

( )-approximation for Ni with ln m2(,+1) samples. In other words, if we run

the Monte Carlo method with O(log m) samples to estimate each Nj, we can obtain

C -approximations Ni for all Ni with probability at least 1 - 6. This implies:

($2 - Ni)pi( - p) m -l < Nip(1 - p) m -i

i-O i-O

< E Pi (1 - p)Im-i = E.

i=0

This means that we can compute c-absolute-approximation for the failure poly-

nomial F(p) with high probability with a total of O(mlog m) iterations. Unlike the

case for E-approximation, the number of iterations is independent of the Min Cross

Layer Cut value d. This makes the method efficient even in the settings where d can

be large.

3.8 Improving Reliability via MCLC Maximization

As illustrated in Section 3.1, lightpath routing in a layered network plays an impor-

tant role in the reliability. Designing a lightpath routing that maximizes reliability,

however, is a very complex problem. As we have seen in Figure 3-1, a lightpath rout-

ing that is optimal for a certain value of p may not perform as well for other values of
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p. This makes the network design aspect of cross-layer reliability a challenging and

interesting problem.

In this section, we study the reliability performance of several lightpath routing

algorithms presented in Chapter 2, whose objective is to maximize the Min Cross

Layer Cut (MCLC). As discussed in Section 3.3.1, maximizing the MCLC is closely

related to maximizing reliability, especially for small values of p. The relationship

between the two quantities is described by Theorem 3.11. We state the main result

relevant to this chapter here. The proof will be given in Chapter 4, where a generalized

version of the theorem is presented.

Assume that logical and physical topologies are given. Consider two lightpath

routings 1 and 2 for these topologies. Let d be the MCLC of lightpath routing 1, and

FI(p) be its failure polynomial. Similarly, let c and F2 (p) be the MCLC and failure

polynomial of lightpath routing 2, respectively. The failure polynomials F1 (p) and

F2 (p) are given by

F1(p) E'_dNip(1 - p)"

F2(p) = Mipi(1 p .

Theorem 3.11 Assume d > c. Then, there exists a positive number po such that

F1(p) < F2(p) for p < po. In particular,

(c + 1)Mc
PO 2m('")

Motivated by Theorem 3.11, we will investigate the reliability performance of the

lightpath routing algorithms studied in Chapter 2, whose objectives are to maximize

the MCLC.

3.8.1 Simulation Studies

In Chapter 2, we showed that the multi-commodity flow algorithm, MCFMinCut, and

its enhanced version, MCFLF, outperform the existing survivable lightpath routing

algorithm, SURVIVE [76], in terms of MCLC performance. Since MCLC is closely tied

to cross-layer reliability, it is therefore interesting to see whether a similar observation
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holds in terms of reliability to random failures.

We used the augmented NSFNET (Figure 3-3) as the physical topology, and gen-

erated 350 random logical topologies with size from 6 to 12 nodes and connectivity

at least 4. We study the reliability performance of the three lightpath routing algo-

rithms: MCFLF, MCFMinCut and SURVIVE. For each lightpath routing generated by

the algorithms, we compute an approximate failure polynomial using the technique

proposed in Section 3.5, and evaluate its reliability.

Figure 3-7 shows the cumulative distributions of reliability for the lightpath rout-

ings generated by the three algorithms, with p = 0.1. The multi-commodity flow

based algorithms, which try to maximize the MCLC of the lightpath routings, were

able to generate more lightpath routings with higher reliability than SURVIVE, whose

objective is to find a lightpath routing with MCLC at least two. For small p, the

term Ndpd(1 - p)m-d, where d is the Min Cross Layer Cut, dominates other terms

in the failure polynomial. Therefore, maximizing d has the effect of maximizing the

reliability of the network.

350 0

300MinCut 300 / ~SURVIVE
0

250

% 200

150

100

50

0 
/

0 0.05 0.1 0.15 0.2 0.25 0.3
F(p)

Figure 3-7: Reliability CDF for different algorithms with p = 0.1, which shows the number of
instances with unreliability less than the value given by the x-axis.

The dependence of reliability on lightpath routing and link failure probability p is

further illustrated by Figure 3-8, which plots the ratio and absolute difference of av-

104



4

3.5

3

2.5

2

1.5

1

0.5

0
0.3 0.4 0.5 0

p
(a) Unreliability ratio

0 0.1 0.2 0.3 0.4 0.5 0.E
P

(b) Unreliability difference

.6 0.7 0.8 0.9

6 0.7 0.8 0.9 1

Figure 3-8: Ratio and absolute difference of average unreliabilities among different algorithms.

erage failure probabilities of the lightpath routings generated by the three algorithms,

using MCFMilCut as the baseline. When p is small, the multi-commodity flow routing

algorithms are clearly better than SURVIVE in terms of the average reliability. How-

ever, as p gets larger, the difference in reliability performance among the algorithms

diminishes. In fact, as seen in Figure 3-8(b), the reliability of all three algorithms

are very close. This is because for large p, the unreliability for any lightpath routing

105

SURVIVE/MinCut
MinCut/MinCut

LF/MinCut X

-- -- - ---- -

-- --- --

-_

0 0.1 0.2

0.05

0.04

0.03

0.02

0.01

0

-0.01

-0.02



would be very close to 1.

Figure 3-9 compares the average Ni values of the lightpath routings generated by

the algorithms. Again using MCFMincut as the baseline, Figure 3-9 shows that none

of the algorithms dominate the others in all Ni values. The multi-commodity flow

algorithms try to maximize the Min Cross Layer Cut at the expense of creating more

cross-layer cuts of larger size. The objective for SURVIVE, on the other hand, is to

minimize the total number of physical hops subject to the constraint that MCLC is

at least two. In an environment where p is high, minimizing the physical hops may

be a better strategy, as we have seen in Figure 3-1. This is reflected by the fact that

lightpaths routings produced by SURVIVE have smaller average Ni values when i is

large.

In the setting of WDM networks, we expect p to be typically small. Therefore,

maximizing the Min Cross Layer Cut appears to be a reasonable strategy. However,

it is important to keep in mind that the same insight may not apply to other settings

where physical links fail with high probability (e.g. Delay Tolerant Networks).
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3.9 Extensions to the Failure Model

In this section, We present a few extensions to the failure model and discuss the

application of the reliability estimation method to these extensions.

3.9.1 Non-uniform Failure Probabilities

In the non-uniform physical link failure model, each physical link (i, j) fails with

probability pij. The physical topology can be approximated by replacing each physical

link (i, j) by k = round (1-Pi<) physical links in series, where round() is the

rounding function and p' is a constant that represents the link failure probability of

the transformed network (Figure 3-10). In this case, the probability that none of the

replacements for (i, j) fail equals:

Iog (1 -Pi 3 )

(1 -p)k =' (1g --- p)03 ') (1 - p') = (1 - pil) (1 - p')Y

where 1e| = [round -log(- py) (ogU-pij) < 0.5. Therefore, this probability can(log(1-p') } k. og(1_'

be made arbitrarily close to 1 - pij by choosing a sufficiently small p', with the

tradeoff being a larger number of new links. In this case, the lightpath routing can

then be modified such that a logical link originally using (i, J) is now routed over its

replacements. This gives us an equivalent layered network where every physical link

fails independently with probability p'.

o ' - ... '

k links
Figure 3-10: A physical link with failure probability p is equivalent to k = log(1 - p)/ log(1 - p')
physical links in series with failure probability p'.

3.9.2 Random Node Failures

The reliability estimation method can be extended to a model where each physical

link fails with probability p and each physical node fails with probability q. We can
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model a network state as the set of failed physical nodes and links, and a logical link

will fail if any of the physical nodes and links it uses fail. In this case, a cross-layer

cut is a set of physical nodes and links whose failures would cause the logical topology

to be disconnected. The reliability of the layered network can then be expressed as

follows:

mJ n

i=0 j=0

where m, n are the numbers of physical links and nodes respectively, and Nij is the

number of cross-layer cuts with i failed physical links and j failed physical nodes.

Then we can estimate the reliability in a similar fashion, by approximating each Nij

separately via the Monte-Carlo method. To estimate Nij, network states with i fibers

and j nodes will be uniformly sampled. The methods in Sections 3.4.2 and 3.5.1

to establish lower bounds on Ni can be extended to establish lower bounds on Nij,

based on a similar observation in this setting that any network state that contains a

cross-layer cut is also a cross-layer cut.

3.10 Conclusion

We consider network reliability in multi-layer networks. In this setting, logical link

failures can be correlated even if physical links fail independently. Hence, conven-

tional estimation methods that assume particular topologies, independent failures,

and network parameters cannot be used for our problem. To that end, we develop

a Monte Carlo simulation based estimation algorithm that approximates cross-layer

reliability with high probability. We first extend the classical polynomial expression

for reliability to multi-layer networks. Our algorithm approximates the failure poly-

nomial by estimating the values of its coefficients. The advantages of our approach

are two fold. First, it does not require resampling for different values of link failure

probability p. Second, with a polynomial number of iterations, it guarantees the ac-

curacy of estimation with high probability. We also observe through the polynomial
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expression that lightpath routings that maximize the MCLC can perform very well

in terms of reliability. This observation leads to the development of lightpath routing

algorithms that attempt to maximize reliability.

While sampling failure states, our estimation algorithm naturally reveals the vul-

nerable parts of the network or lightpath routing. This information can be used to

enhance the current lightpath routing. In Chapter 5 we will explore different ap-

proaches of improving the reliability of a network using such information.

3.11 Chapter Appendix

3.11.1 Approximating Union of Sets

As seen in Section 3.5, given a set of cross-layer cuts F, the value gives a lower

bound for pi. We will discuss in this section how to estimate the size of i(F) =

UcgcY81 (C1 ) probabilistically.

Computing the value of |Bi(f)| can be formulated as the Union of Sets Prob-

lem [64], where Monte Carlo method exists to estimate the size of |Bi(F)| using the

technique of importance sampling. Here, we define the ground set U to be:

U := {(S. j) : j {1, .||, S E B'(Cy)}

and the events of interest G to be

G := {(S, j) : S e ,(.F),j min{k : S E 0i(Ck)}}.

In other words, the ground set U represents a multi-set where each set S in i(F)

is represented k times in U, where k is the number of elements in T that are subsets

of S. On the other hand, each set S in 0j(.F) is represented by exactly one element

(S, j) in G, where Cj is the first element in F that is a subset of S. As a result, for

each Sc i(F), I{(T.,j) c U : T = S}| < |F|, and I{(T.j) E G : T = S}| = 1. It

immediately follows that:
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|G| = |(.F)f,

CG| 1

Therefore, by the Estimator Theorem, if we sample from U uniformly at random

for T times, where:

T =62 Inb - >

Elb 61b

4 2
in -

E2KJ 
6 1b61b juj

the Monte Carlo method will yield an Elb-approximation for |G|, which is equal to

&r(F)|, with probability at least 1 - Slb.

Finally, the sample space U can be sampled uniformly at random as follows:

1. Select an element j from {1,. . ., T1}, where the probability of selecting j is

CkGT

Note that |Bi(C)|= (j7 I), which can be computed easily.

2. Given the selected value j, pick a set S E a1 (Cj) uniformly at random.

The probability of selecting each element (S, j) E U is therefore:

|Oi(Ci)I
E |81(Ck)I

ck E
8,(C )| E | k(Ck)| |U|

ck cE

This gives us a method to establish a probabilistic lower bound p) for pi.

3.11.2 Proof of Theorem 3.10

Let [m] {1, m} and let H"' - {S C [m] : S= i} be a family of subsets of [m]

with size i, and let 71"(k) be the first k subsets in 7H" under the lexicographical

ordering. In addition, for any family F of subsets of [m] and for any j > i, let 07(F)

be the jth upper shadow of F over [i]. Theorem 3.10 states that:
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Theorem 3.10 For i <j < n and K k < (', let w = max {0 < r < i: (") > k}

Also, let t =n - (w + 1),uj- ( + 1) and v=i-(w + 1). Then:

if k = 1
|8'N (k))| {+ 1; ±+& 1 (g+1(k - (')))I. otherwise.

The case for k - 1 follows from the fact that for a set with size i, it has (',-)
supersets with size j. We will prove the case where k > 1 in the rest of the section.

Let S be the lexicographically largest element in N7"(k). We first prove the fol-

lowing lemma:

Lemma 3.12 [w] C S and v + 1 ' S.

Proof. Suppose the lemma is not true. We have the following two cases:

1. S does not contain some element e E [w]. In this case, all subsets of H'" that

contains [w] are lexicographically smaller than S and thus belong to 7i"(k).

Therefore, k - I-n"(k)| > (_"). This contradicts with the fact that (r"-") >

k.

2. S contains [w + 1]. So any set T E ' that does not contain [w + 1] is

lexicographically greater than S, and therefore cannot be in 'H"(k). As a result,

k = |-g"(k)| < (r_- (1)). However, by definition of w, we have ('"- i) < k,

which is a contradiction.

Corollary 3.13 All elements in H"(k) must contain [w].

Proof. Any element in R'"(k) must be lexicographically at most S, and therefore

must contain [w]. F]

Corollary 3.14 All elements in 'H" that contain [w + 1] are in H'"(k).

Proof. Any element that contains (wv + 1J are lexicographically smaller than S, and

therefore belongs to H1"(k).
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We now partition the family 'H"(k) into two sub-families:

" :I(k)+ {T E 'H7(k) : w + 1 C T}

" :(k)-:= {T EN "(k) : w+1 T}

As a result of Corollaries 3.13 and 3.14, R"H(k)+ consists of all ("j ) elements

in HT" that contain [w + 1], and R"(k)- consists of the next k - (r_- )) elements

in the lexicographical order. We define a bijection g., on H"(k)- as follows:

gw(T) := {e - (w + 1) : e E T - [w)}, VT E cH"(k)-. (3.6)

In other words, for any T C H" (k)-, we construct gw(T) by first removing the

common subset [w] from T and then subtracting each remaining element by w + 1.

As a result, each g,(T) is a subset of [m - (i + 1)]. The image g,(H"(k)-) consists

of the first k -(7 )subsets of [m - (w + 1)] size i - in lexicographical order.

In other words, we have:

g.,(R;"(k)~) =N"_+ (k - .M (+ )). (3.7)2 ~~ -- (W + 1)

Now, consider 8&"(N"(k)), the .th upper shadow over [m] for N71 (k). As a result

of Corollary 3.13, all elements in B&n(N2 (k)) must contain [w). We can therefore

partition &j"(N 2"(k)) in a similar fashion:

* &."(N2(k))+ : {T C &7 (Nr(k)) : w + 1 E T}

" Oj"('Hm(k)) := {T E &r (N"(k)) : w + 1 V T}

We now prove the following properties of 9jr(Nr(k))+ and a "(H"(k))-, which

allow us to express the cardinality of the upper shadow in Theorem 3.10.

Lemma 3.15 D"('H"(k))+ - {T E : [w + 1] C T}.

Proof. Every element T in O(H" (k))+ must contain [w], by Corollary 3.13, and

w + 1, by definition. Therefore, T must contain [w + 1]. In addition, for any element
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T in 'HT that contains [w + 1], let U be the set with the i smallest elements in T.

Since i > w + 1, U contains [w + 1] and is in N'(k) by Corollary 3.14. As a result

the subset T, being a superset of U, is in the J'i upper shadow of 7-"(k). D

Corollary 3.16 |)7"(7-(k))+j ( (-I+)

Lemma 3.17

g,.(Bj"lQ7(ri"(k))-) = &r_ w+l( (g' "(k)-)).

Proof. For any element T E 07 ( A(k))~, there must exist an element U E R" (k)

such that U C T. Since wv + 1 V T, it follows that w + 1 V U, which implies

U E N-"(k). By applying the same bijection gw to Ojn(Hmn(k))-, g,(T) is a subset

of [m - (w + 1)] with size j - w, and is a superset of ge(U). In other words:

g,(Hf"N7 (k)) -) C w W+l)(g(m "(k)-)).

Now given T E "n jU1 )(g (H7 "(k)-)), there exists U C g,(H"1(k)-) such that

U c T. It follows that g1(U) c g- 1(T). Since g- 1 (U) (E Hi"(k)-, it follows that

g(T) E Bj(I"k)-). Therefore, T E g.(8T(H1(k)-)), which means

g9w'"N"()~ -_) 8 a w+1) (w(Ht"(k)~)),

which proves the lemma.

Corollary 3.18

|8;"(J"(k)-| = 8 +-( w+l (k-m - (w1 + 1

(k - w+1
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Proof.

j8j"('Hi(k))~| = gu (Oj"( "'(k))~)|

= 8y w1 (g.(W"(k)-))| i. w

in(w+1)(,Hr(w+1)(k - (w + 1
_W~ -- (w + 1) .

The second equality is due to Lemma 3.17, and the third equality is due to Equa-

tion (3.7). E

The expression for |8,"(H("(k))| for k > 1 follows immediately from Corollaries

3.16 and 3.18.

3.11.3 Estimating Reliability by Importance Sampling

As discussed in Section 3.4, estimating reliability by directly simulating physical link

failures requires a large sample size when the link failure probability p is small, due

to the large coefficient of variation of the estimator. In this section, we discuss how

importance sampling can be used to reduce the coefficient of variation.

Given the physical, logical topologies and a lightpath routing. Let H be the sample

space, that is, all possible subsets of the physical links Ep. Given a network state

S E H, the 0-1 random variable U(S) is defined to be 1 if and only if S is a cross-layer

cut. Suppose each physical link fails with probability p. Then the unreliability of the

layered network is simply the expected value, Ep(U), of U, where the subscript p

indicates that the expectation is taken over the probability distribution where every

physical link fails with probability p. It can be written as follows:
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Ep(U) = U(S)Pr(S)
SEH
m

= ( N p(1 -p)'"--
i=0

= N p'p -( p' P)t'" /-i

= p I(I - p) i P)

- E (U'). (3.8)

where Ni is the number of cross-layer cuts with size i, and U', called the likelihood

ratio estimator, is a random variable on 'H such that:

UP'S = p)?f . if S is a cross-layer cut, where |SI = i

0, if S is not a cross-layer cut.

Equation (3.8) implies that the expected value for U at link failure probability p

is equal to the expected value for U at link failure probability p'. Therefore, we can

sample the value for U' at link failure probability p' to obtain an unbiased estimate

on the unreliability of the network at link failure probability p. The variance of U' is

given by:

Varp,(U') E (U'2 ) -(E, (U')

i=0
= ZNyip'(1 - p')'". (E(U))2

p (1 - p)"

= E (U') - (EP(U)) 2 . (3.9)
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Estimating Unreliability at Small p With Importance Sampling

The major design decision involved in importance sampling is the choice of the new

sampling distribution, which, in our case, is the choice of p'. Since direct sampling is

less effective when the link failure probability p is small, it makes sense to choose p

to optimize for this case.

Consider a lightpath routing with Min Cross Layer Cut value d.

sufficiently small, the value of Ep(U) can be bounded as follows:

When p is

d < Npi(1 p)"771

i=d

- Ndpd(1 - p)t ( +

i=d+1

(3.10)

Np'(1 - p) M W

<(1 + e)Ndpd(1 Sn-d (3.11)

where e' is a small constant. Similarly, the value of Ep(U') can be bounded as follows:

N 2d( - p)2(r-d)

p'd(i - p')"md
< Np(1 - p)m-i

= Nd Pdi - )2(n(m-d)

pId (I p') d

( Z(l p On-i
p/i(1 - p )"n-

+d p p)2(i)
.p'i(l p')m

< (1 + E )Nd ,d(1 , .)
pd(1 - p )-da '

Therefore, the squared coefficient of variation for U' is bounded as follows:
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Varp, (U') _ Ep(U') 1 by (3.9)
E, (U') 2 EP (U) 2

< (1 + C')Ndp
2d(1 _ p)2(n-d)

p'd(i - p' t-a

1
Nj p2d(1 _ p)2(mnd) -

by (3.10) and (3.13)

< NIp1 +')rd
Najp' (1 - p')m7-a 1

and:

Varp,(U') E,(U') - by (3.9)
E, (U')2 E,(U)

2

> Nap 2d(1 p) 2 (m- 
I)

p'd( -p')r--d (1 + e') 2 NATp2d(1 p)2(r-d)
- 1,

by (3.11) and (3.12)

(1 + E')2 Ndp'd(1 - p')m-d
- 1.

The term 1 p is minimized when p' - y. Therefore, if the Monte Carlo

method samples network states at p'method~~~~~~~ smlsntoksaeatp , the squared coefficient of variation will be:

Varp, (U')

E, (U') 2

m-d )d
d m

= 8(md).

Therefore, the sample size to establish a (c,6)-approximation, which is propor-

tional to the squared coefficient of variation [97], is e(md) when p is small. Like the

algorithm introduced in Section 3.4, the knowledge of the Min Cross Layer Cut value

d is needed to carry out the Monte Carlo method efficiently. This gives us the follow-
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ing importance sampling algorithm IS to effciently estimate the cross-layer reliability

when p is small.

Algorithm 3 IS
1: Compute MCLC value d for the lightpath routing.
2: Simulate, for T - e(md) times, the event that each phyical link fails with prob-

ability p' = . Let C be the set of the T samples collected.
3: For each i E {,... , m}, count the number of cross-layer cuts in C with exactly i

physical links, and denote the count as Mi.
4: For any link failure probability p, the estimated unreliability is given by

MMi P i(l pf) M _
i=0

By setting p' to , the algorithm IS is maximizing the likelihood of sampling

network states with d fibers, thereby achieving the best estimate on the number of

small cross-layer cuts, which contribute to the majority of the unreliability when p is

small.

Compared to this importance sampling approach, the algorithm introduced in Sec-

tion 3.4 requires a total of Q(m.' log m) samples to estimate all values of Ni. However,

the output of the algorithm allows us, to estimate the cross-layer reliability accurately

for all values of p. Note that the majority of the computation is allocated to estimate

the values of Ni where i is close to d. In particular, similar to importance sampling,

the algorithm requires O(md) samples to compute the value of Nd, by enumerating all

O(md) possible network states with d fibers. In this regard, both algorithms require a

similar amount of computation to obtain a good estimate of Nd, in order to accurately

estimate the cross-layer reliability when p is small.

In IS, since the value of p' is chosen to optimize for small p , the relative error on

the reliability estimate for large p can be large if the same set of samples is used. For

instance, when p = , the variance of the estimator Var , (U') is given by:
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Varp9 (U') = E,(U') - (E,(U)) 2  by Equation (3.9)

((m - 1)/n) 2  2 (1/M) 2  M

E \\(d/m) 1 - (d/m)

md )(m-d)

(m 1)2 ( mt)I

md (m(m - d))

C)~ / (N my-3)

- 1

In other words, if the samples are collected with link failure probability p' = y
the algorithm IS will require at least O((-)(T 3) samples in order to approximate the

cross-layer reliability at p = 1 to a constant relative error. Therefore, to efficiently

estimate the cross-layer reliability accurately for all values of p, the algorithm IS needs

to be extended to collect samples at various link failure probabilities p'. In that case,

the sampling plan will become quite similar to the algorithm in Section 3.4, which

explicitly controls the collection of network states with different sizes by sampling

network states of each size separately.
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Chapter 4

Optimal Reliability Conditions for

Lightpath Routings

4.1 Introduction

In the previous chapter, we have defined the cross-layer reliability to quantify network

survivability under random physical failures; and developed an algorithm to estimate

the cross-layer reliability function. This allows us to assess the reliability of a layered

network under different link failure probabilities. One important observation we made

is that a lightpath routing that is good at one failure probability may not perform

as well as other lightpath routings under a different failure probability. As such,

optimal lightpath routings under different failure probabilities may have different

characteristics.

The goal of this chapter is to study the relationship between the link failure

probability, the cross-layer reliability and the structure of a layered network. The

understanding of such will shed light on desirable properties for a reliable layered

network in different failure probability regimes. The key to our study is the cross-layer

failure polynomial introduced in Chapter 3. The coefficients of the polynomial contain

the structural information about the cross-layer topology and lightpath routing. The

study of the polynomial allows us to formulate the optimality condition and provides

important insights on how lightpath routing should be designed for better reliability,
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which will be the focus of Chapter 5.

This chapter is organized as follows. In Section 4.2 we discuss the previous work

on designing reliable single-layer networks under random link failures, and discuss the

applicability of these results to our multi-layer models. We will review our network

and failure model in Section 4.3, and discuss some concepts that are important to

our study in the following sections. In Section 4.4, we identify the conditions for

optimal lightpath routings in different failure probability regimes. Namely, in the

low probability regime, maximizing the min cut of the (layered) network maximizes

reliability, whereas in the high probability regime, minimizing the spanning tree of the

network maximizes reliability. The results from Section 4.4 are extended in Section

4.5, in which additional information about the layered network is taken into account

in the analysis, which leads to a stronger result that unifies the results in the previous

sections. Finally, in Section 4.6, we carry out empirical studies to examine various

attributes of lightpath routings optimized for the different failure probability regimes,

as well as compare the bounds developed in Section 4.5 with the actual values.

4.2 Related Work

The problem of designing reliable networks has been studied rather extensively in

the single-layer setting. In the single-layer network design problem, the goal is to

construct the most reliable graph topology, given the number of nodes and the number

of edges. An important concept here is that of uniformly optimally reliable (UOR)

graph; a graph is uniformly optimally reliable if for all the values of link failure

probability it yields the best reliability among the graphs using the same numbers

of nodes and edges. The work in 121, 116] studied the conditions for a UOR graph

to exist. However, a UOR graph does not always exist 1791, and hence, it is also

important to study locally optimally reliable (LOR) graphs. In 1161, the authors

characterized the class of LOR graphs for different failure probability regimes. More

details on the class of UOR graphs and LOR graphs can be found in 19,10, 20,801.

The reliable network design problem in a layered setting consists of three compo-
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nents: logical topology design, physical topology design, and lightpath routing design.

In layered networks, careful design of the physical and logical topologies alone does

not immediately translate to high reliability, as the lightpath routing also plays a cru-

cial role. In this chapter, we focus on reliable lightpath routing design assuming that

the logical and physical topologies are given. As we will see in the following sections,

some of the important insights behind reliable topology design in the single-layer can

be adopted to our lightpath routing design problem.

4.3 Failure Polynomial and Connectivity Parameters

We consider the same network and failure model as in Chapter 3, where a layered

network consists of the logical topology GL - (VL, EL) built on top of the physical

topology Gp = (Va, Ep) through a lightpath routing. The number of physical links

|Epf is denoted by m, and each physical link fails independently with probability

p. When a physical link fails, all logical links that use the physical link also fail.

The reliability of the layered network is defined to be the probability that the logical

toplogy remains connected.

Recall that the reliability of the lightpath routing can be expressed as the failure

polynomial (Section 3.3.1):

F(p) Nipi(1 - p)m (4.1)
i=O

Each coefficient N. represents the number of cross-layer cuts of size i in the net-

work. Define a Min Cross Layer Cut (MCLC) as a smallest set of physical links

needed to disconnect the logical network. Denote by d the size of MCLC, then d is

the smallest i such that N > 0, meaning that the logical network will not be discon-

nected by fewer than d physical link failures. As discussed in Chapter 2, the MCLC

is a generalization of single-layer min-cut to the multi-layer setting.

Define a Max Cross Layer Non-Cut (MCLNC) as a largest set of physical links

whose failure would not disconnect the logical network. Denote by c the size of

123



MCLNC, then c is the maximum number of fiber failures that the logical network can

possibly survive. Since Ni < (7), by definition, c is the largest i such that Ni < (7),
and we have Ni = (7), Vi > c, meaning that more than c failures would always

disconnect the logical network.

The Cross Layer Non-Cuts are closely related to the Cross-Layer Spanning Trees,

defined in Section 2.2.3 as a minimal set of fibers whose survival keeps the logical

network connected. Hence, if T is a cross-layer spanning tree, then the survival of

just T \ {(i, j)} renders the logical network disconnected for any fiber (i, j) e T.

Note that this is a generalization of the single-layer spanning tree. However, unlike

a single-layer graph where all spanning trees have the same size, in a layered graph,

spanning trees can have different sizes. Thus, we define a Min Cross Layer Spanning

Tree (MCLST) as a cross-layer spanning tree with minimum number of physical links.

Each Max Cross Layer Non-Cut corresponds to a Min Cross Layer Spanning Tree,

and vice versa. That is, for an MCLNC S, Ep \ S is an MCLST because the survival

of Ep \ S keeps the logical network connected, yet the removal of any additional

link would disconnect the network. Consequently, the value b = m - c is the size

of Min Cross Layer Spanning Tree (MCLST), and any result with MCLNC directly

translates into a result with MCLST, and vice versa. In the following, we will use

both terms interchangeably.

Note that for given logical and physical topologies, MCLC and MCLST are all

determined by the lightpath routing. Consider again the examples in Figure 3-1.

The disjoint routing in Figure 3-1(c), which has better reliability for small p, has

d = 2 and b = 3. On the other hand, the shortest routing in Figure 3-1(d), which

has better reliability for large p, has d = 1 and b - 2. Furthermore, the optimal

routing in Figure 3-1 (e) has d = 2 and b = 2. This example suggests that maximizing

MCLC may lead to better reliability for small p, while minimizing MCLST may lead

to better reliability for large p. It turns out that this is true in general, and this will

be further discussed in Section 4.4.
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4.4 Properties of Optimal Lightpath Routings

Based on the failure polynomial of a lightpath routing, and its associated connectivity

parameters, one can develop inights into optimal lightpath routing under different

probability regimes. In Section 3.8 we have mentioned that a lightpath routing with

a higher MCLC value will have higher reliability for sufficiently small link failure

probability p. In this section, we will discuss in greater details the optimal lightpath

routings in different failure probability regimes.

4.4.1 Uniformly and Locally Optimal Lightpath Routings

We start with a discussion of routings that are most reliable for all failure probabilities.

The observations in this section will motivate a local (in p) optimization approach to

the design of lightpath routing, which is relatively easy compared with an optimization

over all the values of p. We begin with the following definition:

Definition 4.1 For given logical and physical topologies, a lightpath routing is said

to be uniformly optimal if its reliability is greater than or equal to that of any other

lightpath routing for every value of p.

Therefore, a uniformly optimal lightpath routing yields the best reliability for any

value of p C [0, 1]. Based on the failure polynomial of a lightpath routing, one can

immediately develop a sufficient condition for a uniformly optimal lightpath routing:

Theorem 4.1 Given a lightpath routing R, let N/ be the number of cross-layer cuts

with size i. Then R is a uniformly optimal lightpath routing if, for any other lightpath

routing R', N < N' for all i G {0 . . . m}, where m is the number of physical links.

Proof. The unreliability for the lightpath routings R and R' are given by:

Zi P) and
10

Pi( )n-
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respectively. It follows that:

fi P )i P

i=O i=0

(N, - N )pi(l p) M -i
i=O

<0

for any p E [0, 1], which implies that the reliability for R is always no less than any

other lightpath routings. D

The existence of a uniformly optimal lightpath routing depends on the logical

and physical topologies. For example, the lightpath routing shown in Figure 3-1(e)

is uniformly optimal for the topologies in Figure 3-1. In contrast, Figure 4-1 shows

two different lightpath routings that are optimal when p is sufficiently small and

sufficiently large, respectively. In this case, there is no single lightpath routing which

yields the highest reliability regardless of the link failure probability. Also note that

in Figure 4-1(a), all the logical links are routed with physically disjoint paths that

also happen to be physically shortest paths. Therefore, a lightpath routing that uses

both physically shortest and disjoint paths does not guarantee uniform optimality in

general. However, we conjecture that the following special class of single-hop lightpath

routing is uniformly optimal:

Conjecture 1 Given a physical topology Gp = (Vp, Ep), and logical topology GL =

(VL, EL) where EL C Ep, the single-hop lightpath routing, where each logical link (s, t)

takes on the physical fiber (s, t) as its physical route, is uniformly optimal.

Since uniformly optimal lightpath routings are not always attainable, this moti-

vates us to focus on non-uniformly (or locally) optimal routings, where the probability

regime of optimality is restricted to a subrange within [0, 1]. A locally optimal light-

path routing is defined as follows:

Definition 4.2 For given logical and physical topologies, a lightpath routing is said

to be locally optimal if there exists 0 < a < b < 1, such that its reliability is greater
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(a) Optimal
(LOW)

Routing in Low Regime (b) Optimal Routing in High Regime
(HIGH)

1

0.98

0.96

0.94

0.92

LOW -- +-
HIGH0.88 1

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Link Failure Probability (p)

(c) Unreliability of the two Lightpath Routings

Figure 4-1: Example showing that a uniformly optimal routing does not always exist. Physical
topology is in solid line, logical topology is the triangle formed by the 3 corner nodes and 3 edges,
and lightpath routing is in dashed line.

than or equal to that of any other lightpath routing for every value of p C [a, b]. In

addiiton, the interval [a, b] is called the optimality regime for the lightpath routing.

Note that a uniformly optimal lightpath routing is also locally optimal with op-

timality regime [0,1]. Theorem 4.2 below is a crucial result to this study; namely, it

reveals a connection between local optimality and uniform optimality.

Theorem 4.2 Consider a pair of logical and physical topologies (GL, Gr) for which

there exists a uniformly optimal lightpath routing. Then, any locally optimal lightpath
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routing for (GL, Gr) is also uniformly optimal.

Proof. Denote by F*(p) the failure polynomial of a uniformly optimal lightpath rout-

ing. By definition, F*(p) is no greater than any other failure polynomial for p E [0. 1].

Consider a locally optimal lightpath routing L, and let FL(p) be its failure polynomial.

Let [Pi. P21 be the interval over which the routing L is optimal.

The polynomial equation FL(p) - F*(p) = 0 has degree at most m and thus has

at most m roots unless the polynomial FL(p) - F*(p) is trivially zero. However,

by the definitions of local optimality and uniform optimality, the equation has an

infinite number of solutions over the interval [Pi, P21. Consequently, FL (p) is identical

to F*(p), which implies that lightpath routing L is also uniformly optimal. O

Motivated by this result, we study locally optimal lightpath routings. In particu-

lar, we develop the conditions for a lightpath routing to be optimal for both the low

failure probability regime (small p) and high failure probability regime (large p).

4.4.2 Low Failure Probability Regime

It is easy to see that in the failure polynomial, the terms corresponding to small cross-

layer cuts dominate when p is small. Hence, for reliability maximization in the low

failure probability regime, it is desirable to minimize the number of small cross-layer

cuts. We use this intuition to derive the properties of optimal routings for small p.

We begin with the following definition:

Definition 4.3 Consider two lightpath routings 1 and 2. Routing 1 is said to be

more reliable than routing 2 in the low failure probability regime if there exists a

positive number po such that the reliability of routing 1 is higher than that of routing

2 for 0 < p < po. A lightpath routing is said to be locally optimal in the low failure

probability regime if it is more (or equally) reliable than any other routing in the low

failure probability regime.

Let dj be the size of the MCLC under routing j(= 1, 2). Let Ni and Ml, be the

numbers of cross-layer cuts of size i under routings 1 and 2 respectively. We call the
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vector N = [N. Vi] the cut vector. The following is an example of cut vectors N and

A with di = 4 and d2 = 3:

i 0 1 2 3 4 5 --- m

A. 0 0 0 0 20 26 - -. 1

Mi 0 0 0 9 19 30 ... 1.

Using cut vectors of lightpath routings, we define lexicographical ordering as follows:

Definition 4.4 Routing 1 is lexicographically smaller than routing 2 if Ne < Mc

where c is the smallest i at which N and Mi differ.

In the above example, we have c = 3 and Nc < Mc, hence routing 1 is lexicographically

smaller. Therefore, if a lightpath routing is lexicographically smaller than another, it

has fewer small cross-layer cuts and thus yields better reliability for small p.

Theorem 4.3 Given two lightpath routings 1 and 2 with cut vectors [N11i = 0, ..... m]

and [Ai i = 0, ... , m] respectively, where r is the number of physical links, if routing 1

is lexicographically smaller than routing 2, then routing 1 is more reliable than routing

2 in the low failure probability regime. In particular, let c = min {i : Mj | Ni} be the
O<i<m

index where the elements in the cut vectors first differ. There exists po > (c+1)A. N.)
2m (-Cn

such that lightpath routing 1 is more reliable than routing 2 for p < po.

Proof. This is implied by Theorem 4.11, which will be proved in Section 4.5. El

Clearly, Theorem 4.3 leads to a local optimality condition; that is, if a lightpath

routing minimizes the cut vector lexicographically, then it is locally optimal in the

low failure probability regime. An interesting case is when routing 1 has larger MCLC

than routing 2 (as in the above example). In this case, routing 1 is lexicographically

smaller than routing 2 and implies Theorem 3.11, which we restate here as a corollary:

Corollary 4.4 If d1 > d2 , then routing 1 is more reliable than routing 2 in the low

failure probability regime.
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Consequently, a lightpath routing with the maximum size MCLC yields the best

reliability for small p. Similarly, routing 1 is also lexicographically smaller than

routing 2 when they have the same size of MCLC but routing 1 has fewer MCLCs.

This leads to the following result:

Corollary 4.5 If d1  d2 and N, < Aid, then routing 1 is more reliable than routing

2 in the low probability regime.

The expression for po given in Theorem 4.3 also provides some insight into how

the difference of the cut vectors affects the guaranteed regime. For example, if c is

small and Mc - Nc is large, the guaranteed regime is larger. In other words, if one

lightpath routing has fewer small cross-layer cuts than the other, it will achieve higher

reliability for a larger range of p in the low probability regime.

Therefore, for reliability maximization in the low failure probability regime, it is

desirable to maximize the size of the MCLC while minimizing the number of such

MCLCs. This condition will be used to develop lightpath routing algorithms in Chap-

ter 5.

Finally, Theorem 4.3 also implies that all lightpath routings that are locally opti-

mal in the low failure probability regime have the same failure polynomial. In other

words, from the reliability standpoint, all locally optimal lightpath routings in the

low failure probability regime are equivalent.

Corollary 4.6 Let A and B be two different locally optimal lightpath routings in the

low failure probability regime. Then the reliability of the two lightpath routings are

identical, for all link failure probability p.

Proof. We show that the failure polynomials of the two lightpath routings are identi-

cal. Suppose the failure polynomials are different. Then one of the lightpath routings

is lexicographically smaller than the other. Therefore, one of them cannot be locally

optimal in the low failure probability regime.
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4.4.3 High Failure Probability Regime

We have seen that when p is small, it is important to minimize the number of small

cuts. Analogously, for large p, large cuts are dominant, and hence, minimizing the

number of large cuts would result in maximum reliability. In other words, the cut

vector should be minimized for large cuts for better reliability in the high failure

probability regime. Similar to the case of low probability regime, we define the

following:

Definition 4.5 Consider two lightpath routings 1 and 2. Routing 1 is said to be more

reliable than routing 2 in the high failure probability regime if there exists a number

Po < 1 such that the reliability of routing 1 is higher than that of routing 2 for po < p.

An important parameter in this case is the Max Cross Layer Non-Cut (MCLNC),

because logical networks with large MCLNC may remain connected even if only a

small number of physical links survive. For high failure probability regime, the colex-

icographical ordering of the lightpath routings can be used to compare reliability per-

formance. A cut vector [Nili = 0, .. m] is colexicographically smaller than another

cut vector [Mli = 0,. . . , n] if and only if the vector [.Nmili = 0, .. ., rn] is lexico-

graphically smaller than [Ai, i 0,...m]. In other words, rather than based on

the first element in the vectors that differ, the colexicographical ordering is based

on the last element in the vectors that differ. Therefore, if a lightpath routing has

a larger MCLNC, it is also colexicographically smaller. The following theorem is a

similar result to Theorem 4.3.

Theorem 4.7 Given two lightpath routings 1 and 2 with cut vectors [Nii = 0, .... m]

and [AMi1 = 0,... , m] respectively, where m is the number of physical links, if routing

1 is colexicographically smaller than routing 2, then routing 1 is more reliable than

routing 2 in the high failure probability regime. In particular, let c = max {i : MI |
0<i<mn

Ni} be the index where the elements in the cut vectors last differ. There exists Po <

1 - 4c-Nc) such that lightpath routing 1 is more reliable than routing 2 for

P > Po.
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Proof. This is implied by Theorem 4.13, which will be proved in Section 4.5. El

Let c3 be the size of MCLNC for routing .(= 1, 2). We can develop the following

corollaries similar to the low regime case:

Corollary 4.8 If c1 > c2 , then routing 1 is more reliable than routing 2 in the high

failure probability regime.

Corollary 4.9 If c1 = c2 and N, < NI then routing 1 is more reliable than routing

2 in the high failure probability regime.

Corollary 4.10 Let A and B be two different locally optimal lightpath routings in

the high failure probability regime. Then the reliability of the two lightpath routings

are identical, for all link failure probability p.

Therefore, for reliability maximization in the high failure probability regime, it is

desirable to find a lightpath routing that maximizes the size of MCLNC (or equiv-

alently, minimizes the size of MCLST) and minimizes the number of MCLNCs (or

maximizes the number of MCLST). This observation is similar to the single-layer

setting where maximizing the number of spanning trees maximizes the reliability for

large p [161. The major difference in the multi-layer case is that, since spanning trees

may have different sizes, minimizing the size of the Min Cross-Layer Spanning Tree

becomes the primary objective. As shown in Section 2.2.3, computing the size of

the MCLST is NP-hard. Therefore, designing a lightpath routing that minimizes the

MCLST is likely to be a difficult problem. In Appendix 4.8.1, we present an ILP that

formulates the survivable lightpath routing problem with an objective to minimize

the MCLST.

4.5 Extension of Probability Regimes

In the previous sections we have shown that a lightpath routing with a cut vector

that is lexicographically (or colexicographically) smaller will have a higher reliability

when link failure probability is sufficiently small (or high). However, the guaranteed
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regimes established in Theorems 4.3 and 4.7 are usually rather conservative, since

the expressions only consider the the first element in the two cut vectors that are

different. For instance, the expression fails to capture the uniform optimality for a

lightpath routing that satisfies the condition in Theorem 4.1. In this section, we will

develop a more general expression for the regime bounds that includes other elements

in the cut vectors.

Consider two lightpath routings 1 and 2. Let F(p) be the failure polynomial of

routing.j (= 1.2), and Ni's and Mi's be the coefficients in F1(p) and F2(p) respectively.

Define the following two vectors of partial sums:

k~~

N = Njjk =0,.., m and N = Njjk = 0,...,m .
i=0 -i =m- k

The vectors M and M are defined similarly. Note that the i-th element Ni of vector

N is the total number of cross-layer cuts of size at most i. Likewise, Ni is the total

number of cross-layer cuts of size at least i. We will use these vectors to develop

the conditions that incrementally include larger cuts and thus extend the probability

regime where one lightpath routing is more reliable than any other. We first extend

the defintion of lexicographical ordering as follows:

Definition 4.6 Lightpath routing 1 is said to be k-lexicographically smaller than light-

path routing 2 if

k = max j:Ni < Mi, Vi < d +3 and k > 1,

where d is the position of first element where the two cut vectors differ.

Therefore, a lightpath routing is lexicographically smaller (in the original sense) if

and only if it is k-lexicographically smaller for some k > 1. The k-lexicographical or-

dering thus compares two lightpath routings based on structures beyond the smallest

cuts, making it possible to establish a larger optimality regime. Roughly speaking,

the value of k reflects the degree of dominance of a lightpath routing in the low prob-

ability regime: a k-lexicographically smaller lightpath routing means that it has fewer
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"csmall" cuts, where the definition for "small" is broader if k is larger.

Similarly, for the high failure probability regime, the colexicographical ordering

defined in Section 4.4.3 can be extended to compare cuts beyond only the largest

cuts:

Definition 4.7 Lightpath routing 1 is said to be k-colexicographically smaller than

lightpath routing 2 if

k = max j : Ni Mi., Vi > c - j and k > 1.

where c is the position of last element where the two cut vectors differ.

In contrast to the k-lexicographical ordering, this colexicographical ordering starts

from the largest cuts, and incrementally includes the smaller cuts.

It is obvious that when p < 0.5, the failure probability of a cross-layer cut is a

non-increasing function of the cut size, because pi(1 - p)"71-i > pi+1(i - p)m-(+) for

p < 0.5. Suppose that routing 1 has smaller total number of cuts of size up to i than

routing 2, i.e., NA < M1 . To compare cross-layer cuts of size at most i + 1, suppose

further that the relative increment Ni+1 - A+ 1 in the number of larger cuts does
-_4 -4 -4 4not exceed the surplus Mi - Ni from smaller cuts, i.e., Ni+1 < Mi+j. Then, with

respect to cut size at most i + 1, routing 1 will have smaller failure probability than

routing 2, provided that the same was true for cut size up to i. This observation

leads to the following theorem on the relationship between lexicographical ordering

and probability regime.

Theorem 4.11 Given two vectors N [Nii = 0.m] and M [Mii 0,... .m].

For any j, let A = (AI - Ni) and 6 = max Nv-I Al. If the vector N is
iO+1<im (" )

k-lexicographically smaller than M, then:

NipZ(1 - p)"-i < E Mipi(1 - p)
i=0 i=0

134



for P < p1 = min 0. 5, max B , where d min {i: Ni < Mi} and:
0 d<j<d+k-1

0.5. ifj = M
B =

I j + ( /71  )/. otherw ise.

Proof. See Appendix 4.8.2. l

Therefore, the probability regime in Theorem 4.11 is a non-decreasing function of

k, which means that a lightpath routing with smaller number of cuts over a larger size

range will be guaranteed to be more reliable over a larger regime. This is consistent

with the conclusion in Section 4.4.2, that the lightpath routing design should minimize

the lexicographical ordering of the cut vector.

Theorem 4.3 is a direct result from Theorem 4.11. For a lexicographically smaller

lightpath routing, the term Bd in Theorem 4.11 is given by:

1 1

d + 6 n 1dl)/|d d±1 + 6 d( ) /(AId - Nd)

(d + 1)(Ma-Nd ) ->
> -M since d

m(MAd - Nd) + (d + 1)( 1)'

> (d +1)(Md - N)

m("±) + (m - d)(')

> (d + 1)(MAd - Nd)

2m,(m)d

An interesting special case is when d + k - 1 = m, that is, M1 > Nj for all

j 0..., m. In that case, the term Bd+k-1 = Bm = 0.5, implying that the optimality

regime is [0, 0.5]. We summarize this as the following corollary:

Corollary 4.12 If Nj < M for allj = 0,..m, then lightpath routing 1 is at least

as reliable as lightpath routing 2 for p < 0.5, i.e., F1(p) < F2 (p) for p < 0.5.

Note that the condition in Corollary 4.12 requires every partial sum in the vector

M to be at least the corresponding partial sum in the vector N, which is a much
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stronger condition than the lexicographic comparison in Theorem 4.3. This stronger

condition allows the better optimality regime to be established in Corollary 4.12.

For the high failure probability regime, the result is similar to Theorem 4.11:

Theorem 4.13 Given two vectors N=[1

For any j, let Ay = E (Mi - N) a
m-Jf

colexicographically smaller than M, then:

Ni 0 .m] and M=[Mjii = 0...,m].

nd 6.j max ^- { 1j}. If N is k-
' < 0<rm-.- 1 ("

Nip(1 - p)n i5M pi (1 - p)m-
i -i-0

for p > po =- 1 - max 0.5, min Cy}, where c = min {i : Nm i < Mmi} and:
cij~c+k-1 c

0.5, if j = m

1 Iotherwise.( s's)/A~ f ~

Proof. The proof for Theorem 4.13 is based on Theorem 4.11

between the k-lexicographical and k-colexicographical orderings.

for details.

and the symmetry

See Appendix 4.8.3

El

The following corollary is analogous to Corollary 4.12 for the high failure regime:

Corollary 4.14 If N1 K M. for all J 0,. m, then routing 1

as routing 2 for p > 0.5, i.e., F1 (p) < F2 (p) for p > 0.5.

is at least as reliable

Finally, combining Corollaries 4.12 and 4.14, this gives us a condition for uniformly

optimal lightpath routing:

Corollary 4.15 If Nj < M1 and N < AlIM for allj = 0,..., m, then lightpath

routing 1 is uniformly optimal.

Theorems 4.11 and 4.13 unify Theorems 4.1, 4.3, and 4.7 to provide a single

optimality regime expression for lightpath routings that exhibit different degrees of

dominance. Note that the conditions of (co)lexicographical ordering in Corollaries

4.12 and 4.14 are satisfied by the uniform optimality condition Ni < Mi, Vi discussed
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in Theorem 4.1. Therefore, this unified theorem allows for a broader class of uniformly

optimal lightpath routings.

4.6 Empirical Studies

In this section, we conduct empirical studies to verify the results presented in the

previous sections. In Section 4.6.1, we study two sets of lightpath routings, optimized

for the low and high failure probability regimes respectively, and compare their various

attributes, in order to illustrate the structural difference between optimal lightpath

routings for different regimes. We will also compare their reliability performance over

the link failure probability regime [0, 1]. In Section 4.6.2, we compare the optimality

regimes among the two sets of lightpath routings, and evaluate the tightness of the

bounds given by Theorems 4.11 and 4.13.

All simulations in this section are based on the augmented NSFNET (Figure 4-2)

with 14 nodes and 29 links as the physical topology, and 350 random logical topologies

with size ranging from 6 to 12 nodes and connectivity at least 4. For our study of

lightpath routings, we use the ILP-based rerouting algorithm that we will present

in Section 5.1 to generate a set of lightpath routings, called LPRLow, that are optimized

for the low regime. Similarly, we use the formulation MCLST in Appendix 4.8.1 to

generate a set of lightpath routings, called LPRHigh, optimized for the high failure

regime.

10 4e

13

Figure 4-2: The augmented NSFNET.

137



4.6.1 Lightpath Routings Optimized for Different Probability

Regimes

We first compare the structures of lightpath routings that are optimized for different

failure probability regimes. Figures 4-3(a), 4-3(b) and 4-3(c) show the average values

of MCLC, MCLST and the number of physical hops in the lightpaths for the two

sets of lightpath routings LPRLow and LPRHigh. For lightpath routings optimized for

the high failure regime, the focus is to minimize the size of the minimum cross-layer

spanning tree (MCLST), so it is not surprising that the size of the MCLST for LPRHigh

is consistently smaller. As a side effect, minimizing the size of the MCLST often leads

to shorter physical paths for the logical links, so the average number of physical hops

for the logical links is consistently smaller for LPRHigh as well. On the other hand,

the key to optimizing reliability for low failure regime is to maximize the MCLC, for

which the lightpath routings in LPRLow are able to achieve better. Overall, there are

noticeable differences in the structures between the two sets, suggesting that the two

objectives can lead to vastly different lightpath routings.

In terms of reliability, this means that uniformly optimal lightpath routings may

not always exist. In Figure 4-4, the survivability, both in terms of reliability and

unreliability (i.e., 1 - reliability), of the pair over different link failure probabilities is

shown. As expected, when the link failure probability is small, the lightpath routings

in LPRLow achieve higher reliability. In particular, when the link failure probability

approaches 0, there is an order of magnitude difference in terms of unreliability,

meaning that maximizing the size of MCLC can have significant impact in the network

reliability. As the link failure probability increases, it becomes more important to

minimize the size of MCLST, so LPRHigh is able to achieve higher reliability in that

regime.

Another interesting observation from the figure is that the difference in reliability

is less prominent in the high failure probability regime. This is partly because the

algorithm used to generate lightpath routings in LPRLow, which tries to maximize

the MCLC as well as minimize the number of MCLCs, is more sophisticated than
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Figure 4-3: Lightpath routings optimized for different probability regimes have different properties.
LPRLow are lightpath routings optimized for MCLC, and LPRHigh are lightpath routings optimized
for MCLST.
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Figure 4-4: Reliability (or Unreliability) of lightpath routings optimized for different probability
regimes.

the algorithm used to generate the lightpath routings in LPRHigh. In addition, since

the size of a MCLC is usually smaller than the size of a MCLST, the contribution

of an MCLC to the unreliability in the low failure regime is generally greater than

the contribution of a MCLST in the high failure regime. Therefore, the difference in

reliability tends to be greater in the low failure probability regime.

In practical settings, the failure probability of individual physical links is typically

very small. Therefore, our simulation result suggests that minimizing the lexico-

graphic ordering of the lightpath routings can often lead to meaningful improvement

in network survivability.

4.6.2 Bounds on Optimality Regimes

Next, we evaluate the bounds on optimality regimes, PO and po, given by Theorems

4.11 and 4.13. For each pair of physical and logical topologies, we consider the

corresponding lightpath routings in LPRLw and LPRHigh. The values of pi and ph

given by the theorems are compared with the actual crossing points of the failure

polynomials, that is, the points where the (co)lexicographically smaller lightpath

routings start to have lower reliability.
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Figure 4-5: Tightness of optimality
by Theorems 4.11 and 4.13 vs the
lightpath routings.

regime bound. Each data point corresponds to the bound given
actual crossing point of the reliability polynomials of the two

Each comparison corresponds to a data point in Figures 4-5(a) and 4-5(b), which
plot the computed bounds against the actual crossing points for the two failure
regimes. Since the bounds given by theorems are at most 0.5, for illustrative purpose
the actual crossing points are also capped at 0.5.

In the low failure probability regime, there is a strong correlation between the
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value of p' and the actual crossing point, suggesting that the bound provides a strong

signal about the dominance of the lexicographically smaller lightpath routing in the

low failure probability regime.

On the other hand, the correlation between the value of po and the actual crossing

point is not as prominent in the high failure regime, meaning that the bounds are not

as tight in this case. One possible explanation for this asymmetry is the difference

in effectiveness between the algorithms used to generate the lightpath routings in

LPRLow and LPRHigh. As discussed before, the algorithm used to generate the light-

path routings in LPRLow is more sophisticated, and is able to generate solutions that

are closer to the optimal. As a result, the lightpath routings in LPRLw generally

exhibit a stronger dominance in the low failure probability regime, which results in

tighter bounds given by Theorem 4.11. On the other hand, the lightpath routings in

LPRHigh are less dominant in the high failure regime, which results in weaker bounds

given by Theorem 4.13. This is confirmed by Figure 4-6, which shows the distribu-

tion of k in the k-(co)lexicographical ordering comparisons. Excluding the instances

with total dominance, about 25% of the lightpath routings in LPRHigh are only 1-

colexicographically smaller than their counterparts. In contrast, all the lightpath

routings in LPRLow are at least 4-lexicographically smaller than their counterparts, so

the bounds are tighter in general.

4.7 Conclusion

In this chapter, we study the relationship between the link failure probability, the

cross-layer reliability and the structure of a layered network. The key to this study

is the polynomial expression for reliability which relates structural properties of the

network graph and the lightpath routing to the reliability. Using this polynomial, we

show that reliable routings depend on the link failure probability, and identify opti-

mality conditions for reliability maximization in different failure probability regimes.

In particular, we show that a lightpath routing with the maximum size of Min Cross

Layer Cuts (MCLC) and the minimum number of MCLCs is most reliable in the low
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Figure 4-6: Histogram of k in k-(co)lexicographical ordering comparisons. Lightpath routings that
dominate in every partial sum are put into the A = 30 bucket.

failure probability regime. On the other hand, in the high failure probability regime,

a routing with the minimum size of Min Cross Layer Spanning Tree (MCLST) and

the maximum number of MCLSTs maximizes reliability. This observation provides

useful insights for designing reliable layered networks, which we will focus on in the

next chapter.

4.8 Chapter Appendix

4.8.1 Lightpath Routing ILP to Minimize Minimum Cross

Layer Spanning Tree (MCLST) Size

As discussed in Section 4.4.3, lightpath routings with smaller MCLST size will be

more reliable in the high failure probability regime. In this section, we present an ILP

for the lightpath routing formulation that minimizes the MCLST. This ILP is used

in Section 4.6 to generate the set of lightpath routings, LPRHigh, that are optimized

for the high failure probability regime. We first define the following variables:

e {f|tl(s. t) C EL, (i, j) E Ep}: Flow variables representing the lightpath routing.
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* {ygj|(i, j) E Ep}: 1 if fiber (i, j) survives, 0 otherwise.

* {z.1 (s, t) E EL}: 1 if lightpath (s, t) survives, 0 otherwise.

* {x8f (s, t) E EL}: Flow variables on the logical topology.

MCLST: Minimize E yij, subject to:
(ij)EEp

IVLJ - 1, if s=0
S - E xL = f (4.2)

teVL tEVL -1. ifs E VL - {0}

(VL - 1) ' zs st, V(s, t) E EL (4-3)

Yij > z' + ff - 1 V(s, t) E EL- V(i, .j) E Ep (4.4)

{(i.j) ff" = 1} forms an (s t)-path in Gp, V(s, t) E EL

0y 1  < 1: 0 < x"t; ziyf[E{0,1}

The variables xst represent a flow on the logical topology where 1 unit of flow is sent

from logical node 0 to every other logical node, as described by Constraint (4.2). Con-

straint (4.3) requires these flows to be carried only on the surviving logical links, which

implies that the surviving links form a connected logical subgraph. Constraint (4.4)

ensures the survival of physical links that are used by any surviving logical links.

Since the objective function minimizes Z yij, the optimal solution will repre-
(ij)EEp

sent a minimum set of physical links whose survival will allow the logical link to be

connected.

Therefore, the set of physical links (i, J) with yij 1 forms a cross-layer spanning

tree. As a result, the optimal solution to the above ILP yields a lightpath routing

that minimizes the size of the MCLST.

4.8.2 Proof of Theorem 4.11

Theorem 4.11: Given two vectors N=[Nili = 0. m] and M=[Mjii = 0,..

For any j, let A Z = l(M, N ) and 6 j= max N If the vector N isi=o +)
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k-lexicographically smaller than M, then:

Np(1 - p)" <

i=0 i=0

=min 0.5, max Bj
d<j<d+k-1

where d = min {d: Nd < MA} and:

if j =m

otherwise.

Proof. We first prove the following lemma.

Lemma 4.16 If vector N is k-lexicographically smaller than vector M, then for all

j < d + k - 1, where d = min {d : Ad < AId}:

- Ni )pi(1 - p)"7-- ; p - p)mi for 0 < p < 0.5.

Proof. We prove, by induction on j, that (4.5) holds for all j < d + k - 1. First, if

j = 0,

J ( - N I)p(1 - p)"i = (Mo - No)(1 - p)"
i=O

= A 0 (1 -p)" .

Therefore, (4.5) holds for j = 0.

j < d + k - 1. Then, we have:

Now suppose (4.5) holds for all i < j for some
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- p)"

i= (
(4.5)

0.5,

+- 6 (j I)/Aj,



- Nj)p (1 - p)"I

i

(i -j N )p (1 - p)'
i=O

+ (M)+ 1 - N7+1)P (1 - p)n-(j+1)

ZAsp'(1 - p)" + (Mj+ 1 - Nl+ 1)PNu1 (1 - p)rn1l(j+1) by induction hypothesis

- _)n -(j+1) +- (Mj+1 - N- 1)P'+1 (i - )n-(j+1) since P 1

=EAj+1pj+1( _prl (j+1)

Therefore, by induction, (4.5) is true for all j < k. l

Lemma 4.17 Given a fixed k, if A > 0 for all i < d + k - 1, then for any d j<

d + k - 1:

F1(p) < F2(p),

for 0 < p < min {0.5. Bj }, where:

0.5, ifj=mifU
B = { otherwise.

Proof. First, note that by definition of 6 j, for any i > j:

6 . > N - A 1 . (4.6)

If k = m - d + 1, then Lemma 4.16 implies that, for p < 0.5:

Tri

((M - N )p'(1 - p)" A ; ip"m
i=O

> 0.

Therefore, the lemma is true for k = i - d + 1. Now suppose k < m - d + 1. If
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6 0 for some j < k, this implies for any d + k < 1 5 m:

A1  dk- + (i -- N )
i=d+k

> A d+k-1 - by Equation (4.6)
i-d+k

> 0.

This last inequality is due to the fact that 6 j < 0, and that Ad+k-1 > 0, since N

is k-lexicographically smaller than M. Therefore, in this case, the vector N is also

(m - d+ 1)-lexicographically smaller than M, and the lemma is true as proved above.

Therefore, in the rest of the proof, we assume that 6 j > 0.

Since p < 0.5 and Ai > 0 for all i < d + k - 1, by Lemma 4.16 we have, for all

j d + k - 1:

(Mi - N)pi(1 - p)"- ; Zp(1 p)m'-i (4.7)

Next, we will use the following result to bound the tail probability of the Binomial

distribution:

Lemma 4.18 For r > mp,

m

p (1n - p)"'i5 p') p (1 - p) 7(r/ F

r(1 - p)
r - rnp

Proof. See [401.

Therefore, since p <
±+_I + (;)/Aji

< :, by Lemma 4.18, we have:

pJ-+1 (1 p ynt

Py P)fl-J

0+0 (0 + 1)(1 -p)
.+1-mp

(j + 1)p
j + 1 - mp
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In addition, since p <
jmh - mw e have:

(j + 1)p
j + 1 - mp

1

p ji1

1n
K +M T

Ali J1 i +1

(4.9)
(j+1)

It follows that:

NIj)p (1 -p)"E(M -
i=0

E>(M1 - Nj)p (1 - p)" + E (Al, -
i=O i=j+1

- Ni)p
t
(1 - p)rf t - T (p (1 p)"

i=+l

by Equation (4.6)

tl j 0 + 1)p
- P' by Equations (4.7) and (4.8)

Aj (i )6 j + 1

(j+1)p
j + - p

.1 +1-'

-4 (i+,) )
- 43 

by Equation (4.9)

As a result of Lemma 4.17, we can pick the d < j < d + k - 1 such that Bj is

maximized to obtain the largest upper bound for p, and Theorem 4.11 follows. El
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4.8.3 Proof of Theorem 4.13

Theorem 4.13: Given two vectors N=

For any j, let Aj = E (MI - N?)
i-rn-j

=[Nidi= 0. .. ,M] and M=[lijj} 0, N

and 6jy max Ni --Mi .If N
0<i<<m+j_1 (7) J

colexicographically smaller than M, then:

S=0Np (1 - P)"-i < ip--

i=0

for p > p 1 - max 0.5. minl Cy ,where cIc<j<c+k - 1

C -
0.5,

1 J- -

= min {i : Nmi < Mm-} and:

if j =m

otherwise.

Proof. Let N;=

Al, = A 0 M.

Nrn-i and A/ = Mm-i, for i = 0 ... m; and let N = k_ Nj and

It follows that the vector

N : [Nj i 0.

is k-lexicographically smaller than the vector

Ml := [MAi;

By Theorem 4.11,

(0 - N)p(1
i=0

p)" (
i=0

N) )q(1 - q)"1"i where q - 1

> 0.
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for q < min 0.5, max
j<d+k-1

B =

Bj , where:

In the above expression, we have:

i=O

max
j+1<i<m

-N. = A, j

N') M'

Note that B, = 1 - C for d < j < d + k - 1. Therefore, lightpath routing 1 is at

least as reliable as lightpath routing 2 for

p =1 - q

>1 - min 0.5, max)
dj j <d+

= max 0.5, min
d<j~d+k-1

= max 0.5, in
d<]j<d+k-1

1By}
k-1j

1 - Bj

Ci .
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if j = M,

otherwise;
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Chapter 5

Algorithms to Improve Reliability in

Layered Networks

In the previous chapter, we have shown that when physical link failures are rare,

the lightpath routing that minimizes the lexicographical ordering will maximize the

cross-layer reliability. We have proposed a number of survivable lightpath routing

heuristics in Chapter 2 where the objective is to maximize the MCLC. Since a light-

path routing with a larger MCLC value is lexicographically smaller, these algorithms

can be considered as the first step towards maximizing the cross-layer reliability under

the low failure probability regime. In this chapter, we continue in this direction to

develop algorithms that not only maximize the MCLC, but also minimize the number

of MCLCs.

All algorithms developed in this chapter follow a common iterative pattern, where

"local" changes are incrementally applied to the given layered network to improve its

cross-layer reliability. In each iteration, some preprocessing is performed to construct

the set of MCLCs in the network, and a local change to the network is applied such

that at least some of these MCLCs will be eliminated after the change. The process

is repeated until no further improvement can be found, in which case the lightpath

routing reaches a local optimum lexicographically.

We will consider two different approaches under this framework. In Section 5.1, we

will first study the lightpath rerouting method in which an iteration involves changing
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the physical route of an existing lightpath. By rerouting lightpaths in the network,

one can possibly improve the reliability of a layered network without changing the

physical and logical topologies. We will formulate the lightpath rerouting as an op-

timization problem, where the objective is to find best way to reroute a lightpath so

that the reliability improvement is maximized. In Section 5.1.2, we will develop an

ILP to find the optimal lightpath to reroute. In Section 5.1.3, we will propose an

approximation algorithm that can compute a near-optimal solution in a much shorter

time. Simulation results on these algorithms will be presented in Section 5.1.4.

Conceivably, one can further improve the reliability of the network by adding

logical links to the network. Therefore, in Section 5.2, we will consider logical topology

augmentation to improve the reliability of a layered network. By iteratively adding

logical links to a network, one can eliminate some of the existing MCLCs of the

network, thereby reducing the number of MCLCs, or potentially increasing the size of

the MCLC. We will formulate the augmentation as an optimization problem, where

the objective is to find the placement of the new logical link that will eliminate

the largest number of MCLCs. Similar to the rerouting problem, an ILP and an

approximation algorithm will be presented. In addition, in Section 5.2.5, we develop

a lower bound on the minimum number of additional logical links required to increase

the MCLC value of the layered network. We will use this lower bound to evaluate

the effectiveness of our incremental augmentation algorithm.

Finally, to conclude this chapter, in Section 5.3 we will carry out a case study

on a real-world IP-over-WDM network. We will apply different techniques developed

throughout this thesis, including survivable lightpath routing, lightpath rerouting

and logical topology augmentation to study the reliability gain achieved by these

techniques in a real world setting.

5.1 Lightpath Rerouting

Given an existing lightpath routing of a layered network, the lightpath rerouting

method involves changing the physical route of certain logical links in order to reduce
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the number of small cross-layer cuts in the network. Figure 5-1 shows a simple exam-

ple of how rerouting can eliminate small cuts. In the figure, the solid lines depicts

the physical topology and the dashed lines depicts the logical topology. Initially, the

Min Cross Layer Cut size of the lightpath routing is 1 and there are three cross-layer

cuts of this size. The logical links are then rerouted sequentially so that the network

reliability is incrementally improved. At the end, the MCLC value of the lightpath

routing is increased to 2.

(a) d =1 NVd= 3 (b) d =1, N 1

4

(c) d = 2 N, = 5 (d) d = 2, N = 3

Figure 5-1: Improving reliability via lightpath rerouting. The physical topology is in solid lines, and
the lightpath routing of the logical topology is in dashed lines. The MCLC value and the number
of MCLCs in the lightpath routings are denoted by d and Nd.

Generally speaking, the rerouting framework can be described as follows. Given

any initial lightpath routing,

(1) Select a logical link, say (s, t), and reroute (s, t) to reduce the number of MCLCs.

(2) Repeat (1) until no further improvement is possible.

Therefore, each iteration will reduce the number of MCLCs, and possibly increase

the size of the MCLC if every MCLC is converted into a non-cut. When the rerouting

terminates, the final lightpath routing is locally optimal, in the sense that no further

improvement is possible by rerouting a single lightpath.
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Initial routing

Reroute a
lightpath

Reroute a
lightpath

Reroute a
lightpath

Cut vector
No V N

0 5

Reduce # MCLCs

0 1

Increase MCLC from I to 2 Lexi

0 0 7

Reduce # MCLCs

0 0 2

Figure 5-2: The lightpath rerouting framework.

In Chapter 2, we presented several formulations for routing the logical links jointly

to maximize the MCLC. The lightpath rerouting framework provides an alternative

approach for designing survivable lightpath routings. Instead of solving the formula-

tions that jointly route the logical links, we can construct an initial lightpath routing

using a fast algorithm such as the shortest path routing, and then iteratively apply

rerouting until the lightpath routing reaches a local optimum. Since each iteration

computes a physical route for only one logical link, this approach effectively breaks

down the joint lightpath routing problem into multiple smaller steps, which helps

improve the overall running time. As we will see in Section 5.1.4, this rerouting ap-

proach is very effective in obtaining lightpath routings with better reliability than the

formulations in Chapter 2.

5.1.1 Effects of Rerouting a Lightpath

Suppose that an initial lightpath routing is given, and let d be the size of the MCLC

under the initial routing. When the physical route of a logical link changes, some

of the cross-layer cuts will be converted into non-cuts, and some non-cuts will be
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converted into cross-layer cuts. In the low failure probability regime, the reliability

will be improved by the rerouting if the following is true:

1. The conversion of cross-layer cuts with size d to non-cuts outnumbers the con-

version in the opposite direction.

2. The MCLC value does not decrease.

Therefore, we can formulate the lightpath rerouting as an optimization problem

to maximize the reduction in the number of MCLCs, subject to the constraint that no

non-cuts of size smaller than d is converted to cross-layer cuts. Here we will formulate

such a reduction in the number of MCLCs by a lightpath rerouting, which will be

used as the basis of the ILP formulation.

Given the physical topology G F (Vp, Ep) and the logical topology GL

(VL, EL), we model a lightpath routing as a set of binary constants {f$}, where

fg = 1 if and only if logical link (s, t) uses physical link (i, j) in the lightpath rout-

ing. For a given set of physical links S, we define the logical residual graph for S,

denoted as GS, to be (s. t) EPEL : fg=0 . In other words, the residual graph

consists of logical links that use none of the physical links in S. By definition, the set

S is a cross-layer cut if and only if its logical residual graph is disconnected. Given a

cross-layer cut S, it is called a k-way cross-layer cut if its logical residual graph has

k connected components. In addition, given a cross-layer non-cut T for a lightpath

routing, we call a logical link (s., t) critical to T if (s, t) is a cut edge of the residual

graph G, that is, it is an edge in G whose removal will disconnect the residual

graph.

The following theorems describe the conditions for a lightpath rerouting that

results in conversions between cross-layer cuts and non-cuts.

Theorem 5.1 Let S be a cross-layer cut for a lightpath routing. Rerouting logical link

(s. t) from physical path P1 to P2 turns S into a non-cut if and only if the following

conditions are true:

1. S is a 2-way cross-layer cut.
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2. s and t are disconnected in the residual graph for S.

3. P2 does not use any physical links in S.

Proof. Let GS and Gs' be the residual logical graphs for S under the original and

new lightpath routings respectively. First, suppose all the above conditions are true.

Since S is a 2-way cross-layer cut under the original lightpath routing, the logical

residual graph GS consists of 2 connected components, each of which contains one

of s and t. All logical links that are in GS will remain in Gs', because none of their

physical routes have changed. In addition, since the new route P2 does not use any

physical links in S, the logical link (s, t) will be present in Gs', making Gs' connected.

This implies S becomes a non-cut under the new lightpath routing.

Conversely, if S is a k-way cross-layer cut with k > 2, or s, t belong to the same

connected component in GS, rerouting (s, t) will not connect the logical residual

graph, so S remains a cross-layer cut. In addition, if P2 uses some physical link in

S, (s, t) will not be present in the new residual graph Gs', so G' = Gs, which also

implies S remains a cross-layer cut. . l

Theorem 5.2 Let T be a cross-layer non-cut for a lightpath routing. Rerouting log-

ical link (s, t) from physical path P1 to P2 turns T into a cross-layer cut if and only

if the following conditions are true:

1. (s,t) is critical to T.

2. P2 uses some physical link in T.

Proof. Let GT and GT' be the residual logical graphs for T under the original and

new lightpath routings respectively. First, suppose both conditions are true. Since P2

uses some physical link in T, the logical link will be removed from GT under the new

lightpath routing. Since (s. t) is critical to the non-cut T, its removal will disconnect

the residual graph, which means that T will become a cross-layer cut.

Conversely, suppose any of the conditions are false. In this case, the logical residual

graph GT' will remain connected after rerouting logical link (s, t). So T remains a

non-cut.
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Therefore, the optimal rerouting should maximize the number of cross-layer cuts

satisfying Theorem 5.1 and minimize the number of non-cuts satisfying Theorem 5.2.

However, it is also important to ensure that none of the non-cuts with size smaller

than d is converted to cross-layer cuts by the rerouting, since otherwise the MCLC

value will decrease. The following theorem states that only non-cuts with size at least

d - 1 can be converted into a cross-layer cut by rerouting a single lightpath.

Theorem 5.3 Let d be the Min Cross Layer Cut value of a lightpath routing and let

AC be the set of cross-layer non-cuts that can be converted into cross-layer cuts by

rerouting a single logical link. Then |T| > d - 1 for all T AC.

Proof. Suppose A/C contains a convertible non-cut T with size less than d - 1. Since

T is convertible by rerouting a single logical link, by Theorem 5.2, there exists a

logical link (s, t) that is critical to T. Now let 1 be any physical link used by (s, t),

then the set of physical links T U {l} would disconnect the logical residual graph and

is therefore a cross-layer cut. However, such a set contains at most d - 1 physical

links, contradicting that d is the Min Cross Layer Cut. LI

Therefore, when rerouting a lightpath, we need to make sure that none of the non-

cuts with size d - 1 get converted into cuts in order to prevent the MCLC value from

decreasing. Based on these observations, we next develop an ILP for the lightpath

rerouting problem.

5.1.2 ILP for Lightpath Rerouting

Let (Vp, Ep) and (VL, EL) be the physical and logical topologies. For the given

lightpath routing, let d be the MCLC value, and let Cd. A/Cd and A/Cd-i be the sets

of 2-way cross-layer cuts with size d, non-cuts with size d, and non-cuts with size

d - 1 respectively. The lightpath rerouting problem can be formulated as an ILP that

finds the logical link, and its new physical route, that maximizes the net reduction in

MCLCs.

The ILP can be considered as a path selection problem on an auxiliary graph

- (V, Ep), where Vp = Vp U{u, v}, with u and v being the additional source and
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sink nodes in the auxiliary graph; and E = Ep U {(u, x), (x, v) : x E Vp}. Figure 5-3

illustrates the construction of the auxiliary graph.

0-
- - ;~~K4' ~. 4'

I I
/ ' I

I I
' I I

I 1
4' I

~ I 1 /
4'

4' I
4'' 1~

4' II, I

Figure 5-3: Construction of the auxiliary graph for the ILP. u and v are the additional source and
sink nodes, and the dashed lines are the additional links in the auxiliary graph.

We first define the following variables and parameters:

1. Variables:

" {g : (s, t) E EL}: 1 if logical link (s, t) is rerouted, and 0 otherwise.

" {fj : (i, j) C E',}: Flow variables describing a path in G' from node u to

node t.

" {yC : c E Cd}: 1 if the cross-layer cut c is converted into a non-cut by the

lightpath rerouting, and 0 otherwise.

* {zc : c E NCd}: 1 if the non-cut c is converted into a cross-layer cut by the

lightpath rerouting, and 0 otherwise.

2. Parameters:

o {h : c c Cd, (s, t) c EL}: 1 if logical nodes s and t are disconnected by

the 2-way cut c, and 0 otherwise.

e {qS : C A NCd U NCd_1, (s, t) E EL}: 1 if logical link (s, t) is critical to the

non-cut c, and 0 otherwise.

{li. : VC E Cd U NCd UNCd-l, (ij) E Ep}: 1 if physical link (i, j) is in set

c, and 0 otherwise.
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The lightpath rerouting can be formulated as follows:

REROUTE: Maximize E y - z. subject to:
cec'] cExrca

g5 ,t < (fu, + ftv)/2, V(s., t) c EL (5.1)

g( t 1 (5.2)

I+Vc E ACd_ (ij) E E (5.3)
(St)ETE

I fig + q' g t < z' + 1,Vc E A/Cd, .j) E E (5.4)

(s.t)E:EL

y" < h g t. Vc E Cd (5.5)
(8SI)cEL

yC < 1 - fi, V(i, j) e Ep, Vc c Cd (5.6)

{(i,j) : fi 1} forms an (u, v)-path in G' (5.7)

fig, gt E {o., 1}, 0 K y C z* K 1

The formulation can be interpreted as a path selection problem on the auxiliary

graph G'. Constraint (5.7), which requires that the variables fij describe a path

from a to v, can be expressed by the standard flow conservation constraints. As a

result, in a feasible solution to the formulation, the variables fij represent a path

U -+ s -s t -> v, which corresponds to the new physical route for the logical link (s. t)

after the rerouting.

Constraint (5.1) ensures that gst can be set to 1 only if fij represents the path

U -- s -+-- t -- V, and Constraint (5.2) makes sure that the chosen (s, t) is indeed a

logical link in EL. Therefore, exactly one logical link (s., t) can have gt = 1, and a

feasible solution to this ILP corresponds to a rerouting of the logical link.

In Constraint (5.3), the two terms correspond to the conditions in Theorem 5.3.

The constraint makes sure that at most one of the conditions is satisfied, thereby

disallowing the non-cuts of size d - 1 to be converted into a cross-layer cut. Simi-

larly, Constraint (5.4) makes sure I 1 for any non-cut c E ACd that is converted

into a cross-layer cut by the rerouting.
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Finally, Constraints (5.5) and (5.6) describe conditions 2) and 3) of Theorem 5.1

respectively. Therefore, y' can be 1 only if both conditions in the theorem are satisfied,

which implies that cross-layer cut c is converted into a non-cut.

Since the objective is to maximize y' and minimize z', in an optimal solution

y' = 1 if and only if cross-layer cut c is converted into a non-cut, and z' = 1 if and

only if non-cut c is converted into a cross-layer cut. As a result, the objective function

reflects the net reduction in the number of MCLCs.

Note that the variables y' and z' will take on binary values in an optimal solu-

tion even if they are not constrained to be integral. This observation significantly

reduces the number of binary variables in the formulation. There are O(|Epl +| EL)

binary variables in the rerouting formulation, which is significantly less than the

O(1Ep|ELD) binary variables in the Multi-Commodity Flow lightpath routing formu-

lations in Chapter 2. As we will see in the simulation section, this translates to faster

running time.

For larger networks, however, solving the rerouting ILP may still be infeasible

in practice. One way to speed up the time to solve the ILP is to relax the binary

variables ,fj in the formulation and use randomized rounding discussed in Section 2.4.3

to construct a (u, v)-path from the optimal solution of the relaxed formulation. In

the following section, we describe a polynomial time d-approximation algorithm for

the rerouting problem. This provides an alternative to apply rerouting in instances

that are too large to solve the ILP optimally. We will evaluate the performance of all

these approaches in Section 5.1.4.

5.1.3 An Approximation Algorithm for Lightpath Rerouting

We focus on the following question: Given the lightpath routing, and a logical link

(s. t), what is the best way to reroute (s, t) assuming the routes for all other logical

links are fixed? A solution to this problem will allow us to solve the lightpath rerouting

problem, since we can run the algorithm once for each logical link, and return the

best solution.

Similar to the previous section, let Cd, f NCd and KCd-l be the set of cross-layer
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cuts of size d, non-cuts of size d and non-cuts of size d - 1 respectively. Now suppose

Q is a new physical route for logical link (s, t). According to Theorem 5.2, a non-cut

T E A/Cd UACd-i, will be converted into a cross-layer cut if and only if the following

is true:

1. (s, t) is critical to T.

2. Q uses any physical links in T.

Let VC" and AC_1 be the subsets of A/Cd and NCd_1 that satisfy condition

(1). These two sets represent the non-cuts that can potentially be converted into

a cut by rerouting (s, t). It immediately follows that any (s, t) path that uses a

physical link in UreCsct T will create a cross-layer cut with size d - 1, which should

be forbidden for the new physical route. In addition, for any physical link (i, J), the

set - { T E A/C8j : (i, j) G T} represents the non-cuts with size d that will be

converted into cross-layer cuts if the new route Q for logical link (s, t) contains the

physical link (ij).

Similarly, for a cross-layer cut S E Cd, it will remain a cross-layer cut after the

reroute if and only if any of the following is true, according to Theorem 5.1:

1. S is a k-way cut with k > 2.

2. s, t belong to the same connected component in the logical residual graph G'.

3. Q uses any physical link that is contained in S.

Let Cs' C Cd be the set of cross-layer cuts that satisfy conditions (1) or (2).

This represents the set that will continue to be cross-layer cuts regardless of the new

physical route Q for (s, t). In addition, for each (, j)C E, the cross-layer cuts in

the set L = {S E Cd-C): (I, j) E S} will also continue to be cross-layer cuts if the

new route Q contains the physical link (i,j).

Now, for each physical link (i. j), let LIy = L% U LMc. If a physical link (i, j)

is used by the logical link (s, t) in the new route Q, it will cause the set Li U C"

to become cross-layer cuts. Since every set of physical links in C) will be cross-

layer cuts regardless of the physical route taken by (s, t), the lightpath rerouting
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problem for logical link (s, t) can be formulated as choosing the (s., t)-path Q in G'p =

(Vp, Ep -UTEcst T) that minimizes |U(i,.j)cQ |ij Although this is an instance of the

NP-Hard Minimum Color Path [1241 problem, a simple d-approximation algorithm

exists, as described below:

Algorithm 4 REROUTESP(s, t)

1: Construct a weighted graph on G'= (Vp. Ep - UrGerst T), where each edge
(i,j) is assigned with weight w(i,j) - |E|

2: Run Dijkstra's algorithm to find the shortest (s, t)-path in the weighted graph.

We prove that REROUTESP is a d-approximation algorithm.

Theorem 5.4 Let Q* be the optimal physical route for (s, t) that results in the

minimum number of MCLCs, and let QSP be the new route for (s, t) returned by

REROUTE_ SP. For any (s. t)-path Q, let Nd(Q) be the number of cross-layer cuts

with size d after rerouting (s. t) with Q, where d is the size of the MCLC. Then

Nd(QsP) < d - Nd(Q*).

Proof. Given any (s, t) path Q, define C(Q) = U(i,j)eQLij, it follows that Nd(Q)

|E(Q)| + |Cf| - |C(Q)| + K, where K = |C' is a constant. In addition, let

w(Q) be the total weight sum of the path Q in the weighted graph constructed

by REROUTESP(s, t).

Since each set of physical links S e E (Q) has size d, we have {(i. j) : S E IJ}| <

d, which implies:

W(Q) - E
(ij)fQ

SEcr(Q)

< d - 1(Q)| (5.8)

= d - (Nd(Q) - K) (5.9)
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Now, since QSP is the minimum weight (s, t) path in the graph, it follows that:

Nd(QsP) 1 (QSP) + K

<w(QsP) + K

<a(Q*) + K

<d (Nd(Q*) - K) + K, by Equation (5.9)

<d - Na(Q*).Q

Therefore, the number of cross-layer cuts of size d given by REROUTESP is

at most d times the optimal reroute. Note that if the optimal new route for (s, t)

eliminates every MCLC of size d, the approximation algorithm will find a new route

that achieves that as well. We state this observation as the following corollary.

Corollary 5.5 REROUTE_ SP(s, t) will return a new route for (s, t) that increases

the size of MCLC of the layered network, if such a new route exists.

We can extend algorithm REROUTE_SP, which is based on the Dijkstra's shortest

path algorithm, by using the k-shortest path algorithm 1123] to successively compute

the next shortest path in G', and keep track of the path Q with the minimum value

of |C(Q)|. The value k reflects a tradeoff between running time and quality of the

solution. As we will see in Section 5.1.4, by picking a good value of k, we can obtain a

lightpath routing within a much shorter time than solving the ILP without sacrificing

much in solution quality.

Finally, the following theorem provides a sufficient condition for encountering the

optimal route for (s, t) during the course of the successive shortest path algorithm.

Specifically, if the successive shortest path algorithm returns a path with a sufficiently

large weight, the algorithm can terminate right away.

Theorem 5.6 Let Qj be the ilh shortest path in the weighted graph G' , breaking ties

arbitrarily. Then, for any i > 1, if w(Qi±1 ) > d . min. L(Qj)l, then the path Qr,
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where j* = argmlin 1(Q) |, is an optimal route for (s. t).

Proof. Let R, = min. 1(Qj)| be the minimum value of 1(Q)| among the (s, t) paths

Qi,.. . , Qi. Suppose for some i, we have w(Qjai) > dR. This implies all (s, t) paths Q
not in {Q1 ... , Qi} have weight w(Q) > dRi. By Equation (5.8), 1(Q)| > L > Ri

for all such Q. This implies Qj- is an optimal route. E

5.1.4 Simulation Results

In this section, we present our simulation results on the lightpath rerouting approach.

We use the augmented NSFNET (Figure 2-3) as the physical topology, and the same

set of random logical topologies in Section 2.5 as input, and run the lightpath rerouting

algorithms on these instances. We will compare the reliability of the lightpath routings

produced by these algorithms with the best known ILP lightpath routing formulation

based on Multi-Commodity flow, presented in Section 2.4.2.

Performance of ILP-Based Rerouting

We first investigate the effectiveness of the ILP-based lightpath rerouting approach

introduced in Section 5.1.2 to improve cross-layer reliability. In particular, we use

the best known lightpath routing algorithm based on multi-commodity flows, MCFLF,

introduced in Section 2.4.2, to generate an initial set of lightpath routings. For each

lightpath routing, we repeatedly solve the ILP to improve its reliability, until a local

optimum is reached. We evaluate the gain in reliability achieved by this rerouting

approach.

The effectiveness of the rerouting approach to improve reliability is compared with

an alternative approach based on Simulated Annealing, which is a general random

search technique for optimization problems. In the Simulated Annealing approach,

the set of possible lightpath routings are modeled by a set of states, and the transition

between two neighboring states represents a rerouting of a logical link. Each state

is associated with a cost that reflects the reliability of the lightpath routing. In

particular, a lightpath routing with higher reliability is associated with a lower cost
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in its corresponding state. Therefore, the state with the lowest cost corresponds to

the globally optimal lightpath routing. The algorithm randomly walks over the state

space, with preference towards states with lower cost, to search for the state with the

lowest cost. Compared with the rerouting approach which stops at a local optimum,

the Simulated Annealing approach avoids getting trapped in a local optimum by

allowing non-zero probability of transitioning to neighboring states with higher costs,

and thus can find the global optimum if the number of iterations is sufficiently large.

Readers can refer to [65] for details about Simulated Annealing.

In this Simulated Annealing experiment, we use the constant temperature function

T(t) := 1, and set the cost of each lightpath routing to be Nd + 1 0 0 0 0 ,-d' where d

is the Min Cross Layer Cut value for the lightpath routing and Nd is the number

of cross-layer cuts with size d. Therefore, the cost of a lightpath routing is smaller

if it is lexicographically smaller. The Simulated Annealing algorithm starts with

the same set of initial lightpath routings generated by MCFLF, and iterates until no

better solution is found for 50000 iterations. The best lightpath routing encountered

is returned as the output.

Figure 5-4(a) illustrates the average MCLC of the lightpath routings generated

by the rerouting and Simulated Annealing algorithms. Both algorithms are able to

raise the average MCLC of the initial lightpath routings to almost 4, which is the

connectivity of the logical topologies and is therefore an upper bound of the MCLC

value. In other words, in terms of MCLC, both algorithms provide near-optimal

performance. Figure 5-4(b) illustrates the network failure probability of the lightpath

routings produced by the two algorithms in the low probability regime. Again, the

amount of reliability improvement achieved by both methods are very close.

Table 5.1 shows how long it takes for the two algorithms to reach their final so-

lution, both in terms of number of iterations and running time. Simulated Annealing

requires a much larger number of iterations to converge, where each iteration requires

evaluating the new cost, which involves counting the number of MCLCs and is non-

trivial to compute. This accounts for the long running time of Simulated Annealing.

On the other hand, even though the ILP-based algorithm solves an integer program

165



5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

Logical Topology Size
(a) Average MCLC

0.01

0.001

0.0001

1 e-05-

1e-06
0.01 0.02 0.03 0.04

Link Failure Probability (p)
(b) Network Failure Probability

Figure 5-4: Lightpath rerouting ILP vs Simulated Annealing. MCF is the original algorithm MCFLF
introduced in Section 2.4.2. MCF - ILP is the ILP-based lightpath rerouting algorithm. MCF - SA
is the Simulated Annealing algorithm.

in every iteration, the number of iterations is much smaller and is therefore able to

converge in a much shorter time.
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Number of Number of Iterations Running Time (seconds)
Logical Nodes ILP SA ILP SA

6 3.0 20677 164 7622
7 4.2 29559 257 11024

8 5.0 32418 365 12600

9 6.2 32809 525 27738
10 7.3 40591 824 15567

11 8.0 34933 1280 39325
12 8.2 35471 1104 27592

Table 5.1: Running time of the ILP and Simulated Annealing (SA) lightpath rerouting algorithms.

Robustness with Different Initial Lightpath Routings

As discussed in Section 5.1, we can repeatedly apply lightpath rerouting to any ini-

tial lightpath routing to obtain a locally optimal solution. Next, we investigate the

performance of rerouting using different initial lightpath routings. We apply the ILP-

based rerouting to two sets of initial lightpath routings generated by two different

lightpath routing algorithms: MCFLF introduced in Section 2.4.2 and Shortest Path,

which routes each lightpath with minimum number of physical hops.

Figures 5-5(a) and 5-5(b) show the average MCLC and reliability values of the

two sets of lightpath routings before and after the repeated rerouting steps. Initially,

the lightpath routings generated by Shortest Path have significantly lower MCLC

and reliability than the ones generated by MCFLF. However, the lightpath rerouting

algorithm is able to improve both sets of lightpath routings to similar MCLC and

reliability values. This illustrates the robustness of the lightpath rerouting approach

with respect to the initial choice of lightpath routing.

Table 5.2 shows the total number of iterations and running time for the lightpath

rerouting algorithm to reach the local optimum, starting with the two different sets

of initial lightpath routings. As the lightpath routings generated by the shortest path

algorithm generally have lower MCLC values, they require more iterations to reach

the local optimum compared to the lightpath routings produced by MCFLF. However,

the difference in total running time is less significant. This is because the size of the

rerouting ILP formulation is larger when the MCLC of the lightpath routing is large,
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Figure 5-5: Lightpath rerouting with different initial lightpath routings.

and thus takes longer to solve. Since the lightpath routings created by the shortest

path algorithm start with a lower MCLC value, most of the additional rerouting steps

consist of solving the smaller ILPs to bring up the MCLC value. Therefore, these

additional steps take much shorter time.
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Number of Number of Iterations Running Time (seconds)

Logical Nodes MCF SP MCF SP

6 3.0 7.0 164 265

7 4.2 8.9 257 314

8 5.0 10.3 365 500

9 6.2 11.6 525 745

10 7.3 14.1 824 1238

11 8.0 14.0 1280 1389

12 8.2 14.1 1104 1268

Table 5.2: Running time of iterative rerouting, with different initial lightpath routings. MCF cor-
responds to initial lightpath routings created by MCFLF and SP corresponds to initial lightpath
routings created by the shortest path algorithm.

Performance of Approximation Algorithm

Next, we compare the performance of the approximation algorithm introduced in Sec-

tion 5.1.3 with the ILP counterpart. As discussed, the approximation algorithm

is based on the k-shortest-path algorithm, where the parameter k reflects a trade-

off between running time and reliability performance. We evaluate this algorithm,

APPROXk, with k -1, 10 and 100. In addition, we also evaluate the performance

of the randomized rounding algorithm, RR, which solves the ILP REROUTE with the

binary variables fj relaxed, and uses the optimal relaxed solution to construct the

physical route by randomized rounding.

We use the lightpath routings generated by the Shortest Path algorithm as the

initial routings. Figures 5-6(a) and 5-6(b) show the reliability performance among the

algorithms. While APPROX1 brings in the majority of the improvement, increasing

the value of k is able to further improve the reliability. In particular, when k = 100,

the approximation algorithm performs almost as well as solving the ILP. Similarly, the

randomized rounding algorithm also performs almost as well as solving the original

ILP.

Table 5.3 compares the running time of each algorithm. As shown in the ta-

ble, both the approximation algorithm and randomized rounding are at least several

times faster than the ILP-based algorithm; and the approximation algorithm is faster

overall, potentially because it does not involve solving any mathematical program
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Figure 5-6: Lightpath rerouting: performance of approximation algorithm.

at all. This result suggests that both the approximation algorithm and randomized

rounding are promising rerouting approaches to improve the reliability of lightpath

routings for large networks. As we will see in Section 5.3, these algorithms continue

to produce high quality solution for networks that are too large to solve the original

ILP optimally.
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Number of Running Time (seconds)
Logical Nodes APPROX1  APPROX 10  APPROX 100  RR ILP

6 12 14 24 117 265
7 20 26 43 136 314
8 32 43 79 174 500
9 45 55 123 222 744
10 68 91 199 330 1238
11 83 104 254 397 1389
12 113 135 344 465 1268

Table 5.3: Running times of the ILP, randomized rounding and approximation algorithms.

5.2 Logical Topology Augmentation

The basic idea of network augmentation is to add new links to the network in order to

improve the reliability of the network. Although adding new links should never hurt

reliability, the marginal improvement in reliability may conceivably diminish as more

links are added to the network. Thus there is a tradeoff between cost of the new links

and the reliability gain from them. In this section, we will investigate the effectiveness

of improving reliability of layered networks via augmentations to the logical topology.

A logical topology augmentation, or simply augmentation, to a layered network is

defined to be a set of new logical links to be added to the network, along with their

physical routes. The Single-Link Logical Topology Augmentation Probleln involves

finding the best way to augment the logical topology with a single logical link, in

order to maximize the reliability improvement.

The graph augmentation problem has been extensive studied in single-layer net-

works. Most of the existing work [25,43,55,59,1191 focuses on the problem of finding

the minimum (weighted or unweighted) set of edges added to the given graph in order

to satisfy a certain requirement (e.g. connectivity). Augmenting a layered network

not only involves deciding which logical edges to add, but also the physical routes

to take. The lightpath routing aspect of the augmentation problem makes it a much

harder problem than the single-layer case.

For example, consider a network with two nodes s and t connected by n parallel

edges. Suppose we would like to augment the graph so that the connectivity increases
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by 1. The solution in the single-layer setting would be trivial: simply add one more

edge between the two nodes. However, in the multi-layer setting, the minimum

number of additional logical links required to increase the MCLC depends on the

underlying physical topology as well as the lightpath routing. Therefore, augmenting

layered networks to improve reliability appears to be a more challenging problem.

In the following, we will study the single-link augmentation problem. We first

give a characterization of the problem in Section 5.2.1, and discuss its similarity with

the lightpath rerouting problem studied in Section 5.1. We next develop a similar

ILP formulation and approximation algorithm in Sections 5.2.2 and 5.2.3, and present

some empirical results from a case study of augmenting logical rings in Section 5.2.4.

We will look into the structure of the augmentation problem in Section 5.2.5, and

derive a lower bound on the minimum number of logical links required to increase the

MCLC of the network. The lower bound will be used in Section 5.2.6 to evaluate the

augmentation algorithm based on repeated single-link augmentations.

5.2.1 Effects of a Single-Link Augmentation

Given a lightpath routing for the physical topology Gp = (Vp, Ep) and logical topol-

ogy GL = (VL, EL), the Single-Link Logical Topology Augmentation problem is to

find two logical nodes s, t E VL, and a (s, t) path in Gp, such that the reliability

of the network is maximized by augmenting the network with the new logical link

using the specified physical path. Similar to the rerouting problem, such a logical

link should maximize the reduction in the number of MCLCs. In fact, since rerouting

a logical link can be considered as removing an existing logical link from the logical

topology, and then augmenting the logical topology with a new link between the two

nodes. It is thus not surprising that the characterizations for the single-link aug-

mentation problem is similar to the lightpath rerouting problem. However, unlike

rerouting, augmenting the logical topology with a new link never converts a non-cut

into a cross-layer cut. Therefore, in augmentation we only need to consider the effect

of the new logical link on the existing cross-layer cuts.

Suppose that an initial lightpath routing is given for the physical topology Gp
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(Vp, Ep) and the logical topology GL = (VL. EL). Let d be the size of the MCLC

under the initial routing. Let GS be the logical residual graph for any cross-layer cut

S, that is, the logical subgraph in which the logical links do not use any physical links

in S. The following theorem characterizes the effect of a single-link augmentation:

Theorem 5.7 Let S be a cross-layer cut for a lightpath routing. Augmenting the

network with a new logical link (s, t) over physical route P converts a cross-layer cut

S into a non-cut if and only if:

1. S is a 2-way cross-layer cut.

2. s and t are disconnected in the residual graph for S.

3. P does not use any physical links in S.

Proof. The proof is the same as Theorem 5.1. The new logical link will make the

residual graph connected if and only if the above conditions are true. 0

Note that the conditions in Theorem 5.7 are the same as Theorem 5.1. Therefore,

the algorithms presented in Sections 5.1.2 and 5.1.3 are mostly applicable here.

5.2.2 ILP for Single-Link Logical Topology Augmentation

The ILP for the single-link logical topology augmentation problem is similar to the

formulation in Section 5.1.2, and can be interpreted as a path selection problem

on the auxiliary graph G' = (Vj, E' ), where V = Vp U {u. v} and E' = Ep U

{(u, s), (s, v) : Vs E VL , as shown in Figure 5-3.

Let d be the size of the MCLC and Cd be the set of 2-way cross-layer cuts of size d

in the given lightpath routing. We first define the following variables and parameters:

1. Variables:

S{gst : (s, t) e VL X VL}: 1 if logical link (s, t) is added to the network, and

0 otherwise.
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S{fi : (i j) E E' }: Flow variables describing a path in G', from node U to

node v.

e {y' c E C}: 1 if the cross-layer cut c is converted into a non-cut by the

augmentation, and 0 otherwise.

2. Parameters:

e {h : c c Cd, (s, t) C EL}: 1 if logical nodes s and t are disconnected by

the 2-way cut c, and 0 otherwise.

{l : Vc E Cd, (i,j) E Ep}: 1 if physical link (i.,j) is in the set of physical

links c, and 0 otherwise.

The logical augmentation problem can then be formulated as the following ILP:

AUGMENT: Maximize Zy, subject to:
cECd

9st < (fas + fiv)/2. V(s, t) c VL x VL (5.10)

y' < h'tg t, VC E Cd (5.11)
(s.t)CVL X VL

yc < 1- l f 5, V(i.j) E EVc C Cd (5.12)

{(i,j) : fij 1} forms an (u, v)-path in G', (5.13)

fAj,g 5 t E {0, 1} .0 < yC <

In a feasible solution to the formulation, the variables fij represent a path u -+

s ~> t -+ v, as described by Constraint (5.13). This corresponds to the new logical link

to be added to the network, along with its physical route. Constraint (5.10) ensures

that gt = 1 if and only if (s, t) is the new logical link selected. Constraints (5.11)

and (5.12) describe the conditions in Theorem 5.7. The variable y' describes whether

the cross-layer cut c is converted into non-cut by the augmentation. Therefore, the

ILP maximizes the number of such conversions, which translates to maximizing the

improvement in reliability.
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5.2.3 An Approximation Algorithm For Logical Topology Aug-

mentation

One can also design an approximation algorithm similar to REROUTE_SP introduced

in Section 5.1.3 for the single-link logical topology augmentation problem. We will

again focus on the following question: Given a layered network, and a new logical link

(s, t), find the physical route for (s, t) such that the resulting number of cross-layer

cuts of size d is minimized. We can then apply the algorithm for this problem for

every possible pair of logical nodes s and t, to find out the new logical link that would

result in the maximum reliability improvement.

Let d be the size of the MCLC of the layered network and Cf be the set of 2-way

cross-layer cuts of size d that separate the logical nodes s and t. Then by Theorem 5.7,

the set Lij = {S E C6' : (i, J) E S} represents the sets in Cdt that will remain to

be cross-layer cuts if the physical link (i, J) is used by the (s, t) path Q. We can

then develop an approximation algorithm for the augmentation problem similar to

REROUTESP:

Algorithm 5 AUGMENT _SP(s,t)

1: Construct a weighted graph on Gp = (Vp, Ep), where each edge (i, j) is assigned
with weight w(i,j) LijL.

2: Run Dijkstra's algorithm to find the shortest (s, t)-path in the weighted graph.

Since each cross-layer cut S in Cf' has size d, there are exactly d physical links

(i, j) such that S c Lij. As a result, AUGMENTSP is a d-approximation algorithm,

with the same proof as Theorem 5.4.

5.2.4 A Case Study: Augmenting a Logical Ring

In this section, we consider augmenting logical rings of different sizes to study the

reliability improvement by the augmentation approach. We start with a 10-node and

14-node logical rings on the augmented NFSNET, as shown in Figure 5-7, and run

the single link augmentation algorithm repeatedly.

The cross-layer reliability of the networks after each augmentation step is shown
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(a) 10 Node Logical Ring

(b) 14 Node Logical Ring

Figure 5-7: Logical rings on extended NSFNET.

in Figure 5-8. With link failure probability p = 0.01, the unreliability declines as we

add more logical links to the rings. The key observation from these figures is that

the improvement in reliability is most prominent when the augmentation increases

the MCLC of the network. This further validates our approach to maximize the

MCLC as the primary objective. In the case where the additional link does not cause

an MCLC increase, the marginal reliability improvement decreases with the current

MCLC value. This means that augmentation is most effective when MCLC is low.

5.2.5 Minimum Augmenting Edge Set

Based on the observation from the case study, the Minimum Augmenting Edge Set,

defined to be the smallest set of new logical links required to increase the MCLC of

the layered network, is of particular interest. Clearly, the MCLC value for a layered

network is upper bounded by the the logical connectivity. Therefore, given a layered

network with MCLC value d, the number of new logical links needed to increase the

176



0.01
p=0. 0 1 - -

0.001

0.0001
MCLC=2 MCLC=3 MCLC=4

LL 1-05

1 e-06 -

1e-07
0 2 4 6 8 10 12 14 16 18 20

Number of Logical Links Added

(a) 10 Node Logical Ring

0.01
p=00 -

- 0.001

2
a- 0.0001

MCLC=2 MCLC=3 MCLC=4

LL 1e-05 -

0

W 1 e-06
Z7

1e-07
0 5 10 15 20 25

Number of Logical Links Added

(b) 14 Node Logical Ring

Figure 5-8: Impact on reliability by augmenting logical rings.

MCLC value is at least the number of edges required to augment the logical topology

to connectivity d + 1. This gives a simple lower bound on the size of the minimum

augmenting edge set.

In the case of logical rings of size n, this means at least [I] logical links are required

to increase the MCLC, which happens to be tight for the results in Figure 5-8. In other

words, augmenting the network incrementally using the single-link augmentation ILP
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performs optimally in this particular case.

In general, however, a logical topology with high connectivity can still have low

MCLC when embedded in a physical network, and this simple lower bound will not

be useful. In the next section, we present a method to establish a tighter lower bound.

Lower Bound on Minimum Augmenting Edge Set

We can develop a tighter lower bound on the size of the minimum augmentation

edge set by taking the structure of lightpath routing into account. Suppose we are

given the physical topology Gp = (Vs, Ep), logical topology GL = (VL, EL) and the

lightpath routing, we start with a few definitions.

Definition 5.1 Given the lightpath routing, a set of logical links L is covered by a

set of physical links C if all of the links in L use at least a physical link in C.

Definition 5.2 A subset of logical nodes S C VL is d-protected if and only if the

logical cut set 6(S) is not covered by any set of d physical links. In other words, given

any d-physical link failure, at least one of the logical links in 6(S) survives.

Definition 5.3 The d-deficit Ad(S) for a subset of logical nodes S C VL is the

minimum number of new logical links in (S, VL - S) that needs be added in order to

make S d-protected. If S cannot be made d-protected (because the connectivity of the

physical topology is less than d), Ad(S) is defined to be oc.

The following theorem relates the d-protectedness of the logical node sets to the

MCLC of the layered network.

Theorem 5.8 The MCLC of a layered network is at least d + 1 if and only if S is

d-protected for all S C VL.

Proof. Suppose there exists a set of logical nodes S C V that is not d-protected.

Then there exists a set of d physical links that cover all logical links in 6(S). As a

result, failure of this set of physical links will disconnect S from the rest of the logical

topology, implying that the MCLC is at most d.
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On the other hand, suppose the node set S is d-protected for all S C VL. Then

after removing any d physical links from the layered network, at least one logical link

in 6(S) survives for any S c VL, which implies that the MCLC is at least d + 1. D

The next theorem provides the framework in establishing the lower bound on the

size of the minimum augmenting edge set for a lightpath routing.

Theorem 5.9 Given a layered network, let d be the MCLC value. The minimum

augmenting edge set for the layered network is at least - E Ad(V), for any partition
VL CT

T ={V,..., VL} of the logical node set V.

Proof. Any augmenting edge set Y that increases the MCLC of the network to d + 1

must make VI d-protected, by Theorem 5.8. By definition of Ad, for all i, such an

augmenting edge set must contain Ad(VL) logical links with one end point in V/. This

implies that Y must contain at least -1 Ad(VL) logical links. l
V'Er

Theorem 5.9 suggests that we can choose any partition of VL and establish a lower

bound by computing the deficit Ad(VL) for each component in the partition. We will

discuss how the deficit can be computed in Appendix 5.5. In the rest of this section,

we will discuss how to choose a good partition of VL to establish a meaningful lower

bound.

Definition 5.4 Two logical nodes x and y are d-connected if they stay logically

connected to each other under any set of d - 1 physical failures.

The following theorem shows that d-connectedness is a transitive relation.

Theorem 5.10 Given logical nodes x, y, z in a layered network, if x is d-connected

to y, and y is d-connected to z, then x is d-connected to z.

Proof. Suppose x is not d-connected to z. Then there exists a set of d - 1 physical

links C whose removal will disconnect nodes x and z. Therefore, the node y will be

disconnected from either x or z on the removal of C, implying that either x, y are not

d-coniected or y, z are not d-connected, which is a contradiction. 0
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Given any partition T= {VJ,..., Vf} of VL, if there exist x and y that are d-

connected to each other such that they belong to different components Vi and Vj,

then Ad(V) = Ad(Vj) = 0. As a result AI(VL U Vj) > Ad(VL) + Ad(Vj). In other

words, the sum Z Ad(VL) in Theorem 5.9 will not decrease if the components VL

and V/ are merged. This motivates the following procedure:

Algorithm 6 MERGECOMPONENT(s,t)

1: Create an initial partition for VL: T := {V 1 ,... , , where each component

V contains a single logical node.
2: while 3x E V/, y E Vj, i / j, such that x and y are d-connected, do:

Replace V, V/ in T by V' U V.
3: Return T.

At the end of the procedure, each component V/ in the partition T output by

MERGECOMPONENT contains nodes that are d-connected to one another, and

nodes across different components are not d-connected. Therefore, this partitioning

exposes components among which logical links need to be added.

5.2.6 Simulation Results

In Section 5.2.2, we presented an ILP formulation for the single-link augmentation

problem to maximize the reliability improvement. One can repeatedly apply the

algorithm to incrementally augment the network to construct an augmenting edge

set. In this section, we will compare the solution provided by this approach with the

lower bound given in Section 5.2.5.

Using the augmented NSFNET (Figure 2-3) as the physical topology and the

same set of 350 random logical topologies as in Section 5.1.4, we considered lightpath

routings with MCLC values 3, and studied the number of new logical links needed by

the algorithm to raise the MCLC values to 4. This number is compared to the lower

bound given by Theorem 5.9. Note that the simple lower bound introduced at the

beginning of Section 5.2.5 based on logical connectivity would not be helpful in this

case, since the connectivity of the logical topologies is already 4.
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The number of new logical links needed by the algorithm, as well as the lower

bound given by Theorem 5.9, are shown in Figure 5-9. In 330 of the 350 instances,

the number of logical links required by the algorithm is able to meet the lower bound,

whereas in the other 20 instances the number is one larger than the lower bound.

This suggests that the incremental augmentation approach is able to come up with

an optimal or near-optimal augmenting edge set in each case. In addition, the result

shows that Theorem 5.9 gives us a good lower bound that can be used for evaluating

augmentation algorithms.
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Figure 5-9: Size of augmenting edge set generated by incremental single-link augmentation vs lower
bound.

Finally, we study the marginal benefit of augmenting the logical topology, us-

ing the lightpaths routings produced by the rerouting method in Section 5.1.4 as

the baseline. Figure 5-10 shows the improvement in reliability by augmenting the

network with different number of logical links. As the starting lightpath routings

already achieve the maximum possible MCLC value, the improvement shown in the

figure is due to the reduction in the number of MCLCs. Even though the marginal

improvement in reliability diminishes with more logical links added to the network,

overall, the reliability of the network can be further improved by augmentation.
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Figure 5-10: Improving reliability via augmentation.

5.3 Case Study: A Real-World IP-Over-WDM Net-

work

Most of the simulations presented in this thesis are on the14-node augmented NSFNET

as the physical topology. In this section, we will study the performance of various

algorithms on a large layered network based on a real-world IP-over-WDM network.

The physical and logical topologies, shown in Figure 5-11, are constructed based on

the network maps available from Qwest Communications [1].

The study on networks of larger size allows us to reevaluate the performance of

the lightpath algorithms, both in terms of scalability and solution quality. In this

study, we have attempted to run the various lightpath routing algorithms introduced

throughout the thesis, including:

1. SURVIVE: The existing survivable lightpath routing algorithm introduced in 176],
used as the benchmark for comparing with the algorithms introduced in this

thesis. The lightpath routing is computed using randomized rounding (Sec-

tion 2.4.3) on the optimal solution of the linear relaxation.

2. MCFmc : The simple multi-commodity flow formulation introduced in Sec-
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* Physical + Logical Node

o Physical Node only

(a) WDM (physical) network.

(b) IP/MPLS (logical) network. The numbers indicate the number of parallel logical
links between the logical nodes.

Figure 5-11: Physical and logical topologies.
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tion 2.4.2. The lightpath routing is computed using randomized rounding on

the optimal solution of the linear relaxation.

3. MCFLF: The enhanced multi-commodity flow formulation introduced in Sec-

tion 2.4.2, where each constraints captures the impact of a fiber failure on each

logical cut. The lightpath routing is computed using randomized rounding on

the optimal solution of the linear relaxation.

4. REROUTEILP: The iterative lightpath rerouting algorithm, based on the ILP

presented in Section 5.1.2.

5. REROUTERR: The iterative lightpath rerouting algorithm, based on the ILP

presented in Section 5.1.2, with the variables fj relaxed. The physical route

is obtained by choosing the best solution out of 1000 iterations of randomized

rounding on the optimal fractional solution to fj,

6. REROUTEApprox: The iterative lightpath rerouting algorithm, based on the k-

shortest path algorithm presented in Section 5.1.3, where k is set to 5000 in our

experiment.

7. AUGMENTILp: The logical topology augmentation algorithm, based on the ILP

presented in Section 5.2.2.

8. AUGMENTApprox: The logical topology augmentation algorithm, based on the

k-shortest path algorithm presented in Section 5.2.3, where A is set to 5000 in

our experiment.

Table 5.4 summarizes the results of the lightpath routing algorithms. In general,

algorithms that solve ILPs (such as REROUTEILP, and AUGMENTILP) or large linear

programs (such as MCFLF) are no longer feasible, due to the large memory requirement

of the ILP and LP solvers. This limitation of ILP-based solution justifies the design

of more scalable methods, such as the randomized rounding algorithm REROUTERR;

as well as the approximation algorithms REROUTEApprox and AUGMENTApprox. The

approximation algorithms, which are based on the successive shortest path algorithm,
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run in polynomial time and require a much smaller memory footprint than solving

the ILP, and are therefore able to finish successfully for networks of this scale.

Algorithm Terminates Successfully ?
SURVIVE Yes
MCFMinCut Yes

MCFLF No
REROUTEILp No

REROUTERR Yes

REROUTEApprox Yes
AUGMENTILp No

AUGMENTApprox Yes

Table 5.4: Scalability comparisons among different lightpath routing algorithms.

We next compare the quality of the lightpath routings produced by the algorithms

SURVIVE, MCFMinCut, REROUTERR, REROUTEApprox and AUGMENTApprox (with dif-

ferent number of new logical links). The MCLC values and the number of MCLCs

of the lightpath routings generated by each algorithm are shown in Table 5.5. These

numbers are compared against the-lower bound, which is computed by counting the

number of minimum sized physical fiber sets whose removal will physically disconnect

some logical nodes. These sets of hysical links are cross-layer cuts regardless of the

lightpath routing, and therefore will provide a lower bound on the number of MCLCs.

It was observed in Section 2.5 that the survivability performance of the multi-

commodity flow formulation MCFMinCut declines as the network size increases. In

this case, the MCLC value of the lightpath routing produced by MCFMnCut is no

better than SURVIVE, although by spreading the logical links over different physical

fibers, the algorithm manages to reduce the number of logical cuts that are covered

by a 2-fiber failure. On the other hand, the rerouting algorithms REROUTERR and

REROUTEApprox continue to be able to improve the MCLC to the maximum possible

value of 4 (limited by the physical connectivity). Augmenting the logical topology

can further improve the reliability of the layered network by reducing the number of

MCLCs, though the incremental effect declines as more logical links are added to the

network. The number of MCLCs hits the lower bound when the logical topology is
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augmented with 9 additional logical links.

Figure 5-12 compares the algorithms in terms of the cross-layer reliability in

the low failure probability regime. Consistent with Table 5.5, the iterative algo-

rithms presented in this chapter achieve significantly higher reliability than the joint

lightpath routing algorithms. In particular, the majority of the improvement is

achieved by the lightpath rerouting approach, especially by the approximation al-

gorithm REROUT EApprox- Therefore, even if adding new logical links is not an option,

the lightpath rerouting method allows us to obtain a lightpath routing that is close

to optimal. In summary, the approximation algorithms introduced in Sections 5.1.3

and 5.2.3 provide a good tradeoff between scalability and solution quality.

Algorithm MCLC Number of MCLCs
SURVIVE 2 26
MCFMinCut 2 5

REROUTERR 4 458
REROUTEApprox 4 216

AUGMENTApprox_1 4 84
AUGMENTApprox- 2  4 49
AUGMENTApprox- 3  4 34
AUGMENTApprox- 4  4 29
AUGMENTApprox-5 4 25
AUGMENTApprox- 6  4 23
AUGMENTApprox- 7  4 22
AUGMENTApprox-8 4 21
AUGMENTApprox-g 4 20

Lower Bound 4 20

Table 5.5: MCLC values and MCLC counts of different lightpath routings. The lightpath routing
on a logical topology augmented with k new logical links is denoted by AUGM ENTAppox-k.

5.4 Conclusion

In this chapter, we propose two methods to improve the reliability of a layered network

in the low failure probability regime. The main idea behind these methods is to

maximize the size of the MCLC, as well as minimize the number of MCLCs via
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Figure 5-12: Unreliability of different lightpath routings.

iterative local changes to the layered network. In the lightpath rerouting method,

each iterative step involves replacing the physical route of an existing logical link

by a new route that results in a smaller number of MCLCs. In the logical topology

augmentation method, each iteration augments logical topology with a new link that

eliminates the maximum number of MCLCs. By applying the methods iteratively to

a layered network, we can obtain a locally optimal lightpath routing in the low failure

probability regime.

For both the rerouting and augmentation problems, we develop an ILP, as well

as a polynomial time approximation algorithm, to compute a (near-)optimal solution

in each iteration. Simulation results show that through such iterative incremental

improvements, we can obtain a lightpath routing with significantly higher reliability

than any existing lightpath routing algorithms, including the algorithms introduced

in Chapter 2.

The iterative approach introduced in this chapter is also more scalable in general
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compared with the conventional lightpath routing algorithms, which compute the

physical route for all logical links jointly. By considering only local changes one logical

link at a time, the reliability optimization problem is broken down into smaller and

manageable subproblems, which can then be efficiently solved by the approximation

algorithm. This provides a viable approach to the design of reliable layered networks

of large scale in the real world.

5.5 Chapter Appendix: Computing Deficit of a Log-

ical Node Set

In Section 5.2.5, we define the d-deficit Ad(S) of a logical nodes set S to be the

minimum number of logical links that need to be added to make S d-protected, given

a layered network with MCLC d. In this section, we discuss how this value can be

computed.

First note that sometimes it is impossible to make the node set S d-protected. For

example, if there are only d physical fibers that connect S to other physical nodes,

the failure of these d links will disconnect all logical links that connect S to V - S.

In that case, Ad(S) is defined to be oo. In the rest of the section, we assume that the

physical topology is d + 1 connected, so that it is possible to make the node set S

d-protected.

We will present an ILP that computes the smallest set of new logical links to make

the node set S d-protected. The ILP relies on the following result:

Theorem 5.11 Ad(S) < d + 1.

Proof. Pick x E S and y E VL - S. Since the physical topology is (d + 1)-connected,

there exists d + 1 physically disjoint paths between x and y. Therefore, if we add

d + 1 copies of new logical links (x, y), each taking on one of the physically disjoint

paths, at least one of the links would survive against any d-fiber failure. Therefore,

Ad(S) < d+ 1. El
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As a result of the theorem, we can formulate an ILP to select up to d + 1 paths

between S and VL - S, such that for any cross-layer cut C of size d, at least one of

the paths do not use any fibers in C. Given the physical topology Gp (Vp, Ep),

we construct an auxiliary graph G' = (Vi, E'), where V = Vp U {u, v} and E'

Ep U{(u, x) : x E S} U {(x, v) : x E VL - S}, as shown in Figure 5-13. In the auxiliary

graph, a new source node u and a sink node v are added, and the source node is

connected to all nodes in S, and the sink node v is connected to all nodes in VL - S.

As a result, any (U, v) path in G'p corresponds to a logical link from S to V - S as

well as its physical route.

Figure 5-13: Auxiliary graph G' for the ILP.
and the dashed lines are the new edges.

A PI

Nodes u and v are the new source and sink nodes,

We first define the following variables and parameters for the ILP.

1. Parameters:

e S: the logical node set for which Ad(S) is to be computed.

" C': cross-layer cuts of size d that cover all logical links in 6(S, VL - S) in

the original logical topology GL.

P{ : Vc E C7, (ij) E Ep}: 1 if physical link (i.j) is in fiber set c, and 0

otherwise.
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2. Variables:

S{f5 : (i.j) E E'. 1 K k K d + 1}: Flow variables describing the kth path

in G', from node u to node v.

* {y' : c E C', 1 k < d + 1}: 1 if the k"' path uses any fiber in cross-layer

cut c, and 0 otherwise.

The deficit of the node set S can be computed by the formulation below:

Minimize p,

P

1<k<d+1

{(i, j) : f
fA k

subject to:

=E fk
1<k<d+1 xCS

;> l f, V(i,j) c Ep,cE CCC 1< k < d+ 1

p- 1 VcEC

= 1} is all 0, or forms an (u, v)-path in G', VI < k < d + 1

E {O,1}0 , 0 <ys 1

The formulation selects up to d + 1 paths from '1, to v. Each path represents a

new logical link that will be added to the logical topology. Constraint (5.14) counts

the number of new logical links selected. The variable y) indicates whether the k"h

logical link, if selected, will be disconnected by cross-layer cut c, by Constraint (5.15).

Constraint (5.16) then ensures that for any cross-layer cut c, at least one of the new

logical links will survive its failure. As a result, the solution given by the formulation

will make the node set S d-protected, and the optimal value equals the value of Ad(S).
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Chapter 6

Conclusion and Future Work

In this thesis, we consider a layered network model where the upper-layer logical

links share the lower-layer physical fibers via lightpath routing. As such, a single

physical failure will cause multiple logical links to fail in a correlated manner. This

phenomenon introduces new challenges in defining, measuring and optimizing surviv-

ability in the layered setting. This thesis investigates the new issues that arise under

this model, in an attempt to develop useful insights in survivable layered network

design.

We start with an investigation of the fundamental properties of layered networks,

and show that basic connectivity structures, such as cuts, disjoint paths and spanning

trees, exhibit fundamentally different characteristics from their single-layer counter-

parts. This necessitates the pursuit of new survivability metrics that properly quantify

the resilience of the network against physical failures. To this end, we define a new

metric, the Min Cross Layer Cut (MCLC), to be our primary cross-layer metric and

develop algorithms to design layered networks with high MCLC values.

We next extend our study to a setting where physical link failures are modelled

as random events. Under this model, we study the cross-layer reliability of layered

networks, defined to be the probability that the logical topology stays connected under

the random physical failures. The key to this study is the failure polynomial, which

expresses the cross-layer reliability of the network as a polynomial in the physical link

failure probability. The coefficients of the polynomial contain important structural
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information about the layered network. By exploiting the structures of cross-layer

cuts in a layered network, we develop an efficient algorithm to estimate the cross-

layer reliability.

Through the study of the failure polynomial, we also develop important insight

into the connection between the link failure probability, the cross-layer reliability and

the structure of a layered network. For the cases where the link failure probability is

sufficiently low or sufficiently high, we have characterized the optimality conditions

for lightpath routings, and developed bounds on the failure probability regimes where

these conditions apply. This result also leads to a non-trivial sufficient condition for

uniformly optimal lightpath routing.

Based on these insights, we develop new algorithms to design layered networks

that are optimized for the low failure probability regime. Based on the ideas of

iterative rerouting and augmentation, these algorithms are able to achieve locally

optimal solutions. Our simulation results show that lightpath routings produced by

these methods are significantly more reliable than the lightpath routings produced by

existing algorithms, and are more scalable to large networks.

Throughout the thesis, we have considered the connectedness of the logical topol-

ogy as the survivability requirement, and defined metrics, such as MCLC, based

on this. One natural extension to our study is to consider different survivability

requirements. For example, the ability to support protected traffic is an important

requirement for many applications. This requires setting up primary and backup con-

nections that are physically disjoint. As discussed in Chapter 2, a network with high

MCLC value does not guarantee the existence of physically disjoint paths. Therefore,

metrics based on maximum cross-layer disjoint paths or minimum survivable path set

(defined in Section 2.2) may be more appropriate in this setting. Lightpath routings

that are optimized for these metrics may potentially have different structures from

the ones observed in this thesis.

Another possible future direction is to extend the current network model to a

capacitated setting. Even though two different lightpath routings may tolerate the

same number of physical failures from the connectivity standpoint, the impact of
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such failures on the capacity of the logical topology can be different. Therefore,

an interesting problem is to design lightpath routing algorithms that also take the

network capacity and client traffic pattern into account. For example, in [60], an ILP

is developed to compute lightpath routings that allow the logical network to support

a given traffic matrix under single link failures. It would be interesting to study how

to extend the result in the context of multiple failures.

Finally, this thesis focuses on the design of lightpath routing that maximizes

survivability, assuming the physical and logical topologies are given. Conceivably, a

careful choice of the physical and logical topologies will make this lightpath routing

problem easier. Therefore, the design of physical and logical topologies is an equally

important problem. Conjecture 1 in Section 4.4.1, which describes a special condition

for the existence of uniformly optimal lightpath routing, would be a good starting

point to attack this problem area.
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