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Abstract

A key feature of relational database applications is managing plural relationships-one-
to-many and many-to-many-between entities, be they customers and invoices, parts and
suppliers, or meetings and conference rooms. However, since it is often infeasible to adopt
or develop a new database application for any given schema at hand, information workers
instead turn to spreadsheets, a general and more familiar data management tool which,
unfortunately, lends itself poorly to schemas requiring multiple related entity sets. In
this thesis, we propose to reduce the cost-usability gap between spreadsheets and tailor-
made relational database applications by extending the spreadsheet paradigm to let the user
establish relationships between rows in related worksheets as well as view and navigate
the hierarchical cell structure that arises as a result. We present Related Worksheets, a
spreadsheet-like prototype application, and evaluate it with a study involving 36 regular
Excel users. First-time users of our software were able to solve most lookup-type query
tasks without instruction, in one case 40% faster than on Excel.
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Chapter 1

Introduction

Structured data is everywhere, and information workers need to manage it. On the storage

side, the problem has largely been solved through the advent of relational databases; an off-

the-shelf relational database management system will serve as a back-end for any database

application. Yet, a back-end alone provides no user interface, and a database without a user

interface is a database without users (see the commentary in The Lowell Database Research

Self-Assessment [2]).

Certain kinds of task-specialized database applications may be useful to a large number

of people and organizations. For these, high-quality free or commercial GUI implementa-

tions are likely to be available. Examples include Personal Information Managers (PIMs),

Customer Relationship Management (CRM) software, and business accounting software.

Other applications are far more domain-specific, and have to be developed from scratch,

possibly by an organization's IT department or an external consulting firm. Real-world

examples include oddities such as software used by Norwegian immigration authorities to

manage applications for political asylum1 , software used by the Tunisian National Order of

Pharmacists to manage documents and member affiliations 2, and software used by a small

seafood trading business to keep track of sales and inventory of perishable goods3 . In such

cases, and even in less extreme ones, development costs may be very high relative to the

'Unique Flyktning by Visma AS. http: / /www . vi sma. com
2http://netbeans.dzone.com/news/tunisian-national-order
3WinFish, a piece of software encountered by the author. Like many of these applications, it is not publicly

available.



number of potential target users.

1.1 Spreadsheets as Database Tools

When the effort required to either adopt or develop a new tailor-made relational database

application is too high, information workers instead turn to a general and more familiar

tool: the spreadsheet. One survey [8] shows that "sorting and database facilities" are the

most commonly used spreadsheet features, with 70% of business professionals using them

on a frequent or occasional basis. In contrast, less than half use "tabulation and summary

measures such as averages/totals"-one of the original design goals of the original VisiCalc

spreadsheet-or more advanced features. Furthermore, spreadsheet users "shun enterprise

solutions" [10] and "do not appear inclined to use other software packages for their tasks,

even if these packages might be more suitable" [3]. Presumably these ostensibly suit-

able software packages include specialized database applications; after word processors,

database software is the second kind of software most commonly encountered by spread-

sheet users, with 60% of spreadsheet users reporting some use of them [8].

Once it is established that spreadsheets are being used for database tasks, we should

ask what functionality is lost when we compare them to corresponding tailor-made re-

lational database applications. In this thesis we focus on the ability to maintain plural

relationships-one-to-many and many-to-many-between different kinds of entities in a

dataset, a key feature of any relational database application [4]. The world of tailor-made

database applications has seen some fairly standard user interface paradigms for viewing

and editing such relationships (see Related Work). We consider two aspects of these user

interfaces to be crucial to their relationship management capabilities. First, they can pro-

vide the user with joined views of related tables in the database (albeit hard-coded for the

particular schema in question). Second, tailor-made interfaces are not restricted to simple

tabular views, but can expose relationships in a hierarchical fashion. This is, in particular,

crucial for being able to visualize entities related to other entities through multiple dis-

tinct relationships; we will give an example of this in the next section. Neither joins nor

hierarchical views are present in spreadsheets.



1.2 Joined Hierarchical Views

Figure 1.1: Simplified schema of an academic course management system (Entity-
Relationship diagram).

As a running example, we consider a dataset derived from a real-world deployment

of PeopleSoft Enterprise Campus Solutions, a database application for academic course

management. The schema is shown in Figure 1.1. Here, each Course entity has multiple

Sections (lectures, precepts, labs, etc.), each Section has multiple Instructors, and so on. In the

original application, a web-based interface exposes many different views of the underlying

data, for instance, "a list of sections by instructors, each section showing its associated

course", or "a list of courses, each course showing its reading list, grading scheme, and

sections, each section showing its meetings and assigned instructors". As described above,

both of these views are hierarchical, since they call for lists contained within lists. The first

view could just as easily be displayed as a flat table, like that returned by a simple join

query in SQL. This is not the case for the second view, however. Since the second view

involves parallel joins on multiple unrelated relationships, i.e. Grading Scheme and Reading

List, such joins would produce an extremely large number of rows of mostly repeated data.

Whenever we wish to represent an entity together with related entities from two or more
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plural relationships, hierarchical views become a necessity.

Because traditional spreadsheet Uls provide no easy way to create joined views of

related tables, it becomes impractical to follow good practices of schema normalization,

which call for tables of redundantly represented data to be decomposed into multiple

smaller ones. This in turn exposes all the usual problems associated with managing im-

properly normalized data [5].

While hierarchical views can often be represented in spreadsheets using clever format-

ting tricks (e.g. indentation, skipped cells, or comma-separated lists-in-cells), this strategy

has a number of problems. First, such views must be manually created and, if more than

one view of the same data is desired, kept in sync with the original data. Second, it does

not generalize well, with the sheet structure quickly growing unwieldy as relationships fan

out and cascade. For instance, while a comma-separated list in a cell might be easy enough

Seminar Wisdom.
3 CLG 214 EC Sophistry Philosophy
4

6
7

GER 520 Topics in Literary and
AT 58 Cultural Theory

15 KOR 107 Intermediate Korean If

10

191
20 MAE 332 Aircraft Design
21
22
2C3 MAT 554 Algebraic Geometry

1 4 , 1\Sheet1s Sheet2 /Sheet3/
Ready

Kirk Raven
Schofield
Plato
Kerferd
Lloyd

Robert Vischer
Niklas Luhmann
Walter Benn
Mary Ann Doane
Richard Powers
Melanie Klein

Klear
Klear

The Presocratic Philosophers
Rival Lovers Theages
The Sophistic Movement
Magic Reason and

On the Optical Sense of Form
The Reality of the Mass Media
The Shape of the Signifier
The Emergence of Cinematic
Galatea 2 2
Notes on Some Schizoid

Integrated Korean
Integrated Korean Workbook

D P Raymer Aircraft Design A Conceptual
T H G Megson. Aircraft Structures for

Col T 1330 FIRES B06M
Col Th 13 30 FIRES B06M

Sol M 13 30 MCCKH 363

11 00 FRIST 207
11 00 FRIST 207
11 00 FRIST 207
12.30 FR1ST 205

13 30 FRIEN 008
13:30 FRIEN 008

13 30 FINEH 601

Figure 1.2: A particular hierarchical view of a dataset with the schema shown in Figure 1.1,
simulated in a traditional spreadsheet using various formatting tricks.

.. . ..... .... ............... ... ............................. ::.: :::: .......................................................... ..



to maintain, a list of lists is not. Third, when the data representation deviates from the

standard tabular format, also known as first normal form (1NF), key spreadsheet features

such as sorting, inserting, charting, filtering, or even simple navigation between individual

units of data become hard or impossible to apply correctly. For instance, the structure of

the spreadsheet shown in Figure 1.2 makes it hard to properly delete or insert items in the

Reading List subtables, impossible to automatically sort courses by department or distribu-

tion area, and dangerous to hide columns from the view as it might make the user unaware

of layout constraints that must be preserved when the data is updated. In the end, spread-

sheet users are forced to choose between long-term manageability, achieved by storing data

in properly normalized form, and short-term productivity, achieved by accepting whatever

compromises are necessary to be able to view related data in one place.

While spreadsheets fall short when it comes to managing multiple related tables of

data, they are great for managing individual ones. Spreadsheets afford a large range of

streamlined facilities for working with any data that can be arranged in a grid of cells,

including multiple selection, copy/paste, find/replace, undo/redo, inserting and deleting,

extending data values, sorting and filtering on arbitrary fields, navigating and selecting

cells with the keyboard, and so on. Tailor-made database Uls seldom reach this level of

sophistication and maturity, due to the limited resources available to develop an application

for only one specific schema. When it comes to general editing tasks on tabular data,

spreadsheet systems have an advantage even over most tailor-made applications.

1.3 Our Contribution

In this thesis, we propose to reduce the cost-usability gap between spreadsheets and tailor-

made relational database applications by extending the spreadsheet paradigm to let the user

establish relationships between rows in related worksheets as well as view and navigate

the hierarchical cell structure that arises as a result. Implementing this idea, we present

Related Worksheets, a spreadsheet-like desktop application which provides relationship

editing facilities similar to those often developed with tools like FileMaker or Microsoft

Access, but which work from a single generic user interface rather than requiring a new one



Each rawthisCAMnantais: conenmoftheselectedcel
Text ce5s AR T 587

cmirsm Reav&,p Severane meebw IritRead GraLit CSgmres QareCompone ts io

Canine DidI. Title Reading Liet Sections
L~d Cas Air.a

CLG 214 EC Seminar Wisdom Sophistry. Philosophy: Kirk. Raven,
Exploits of Reason before Plato Schrofield

Plato
Kerferd
Lloyd

rGE _ Topics in Literary and Cultural Theory Robert Vischer
Niklas Luhmann
Walter Benn
Michaels
Mary Ann Doane
Richard Powers
Melanie IKlein

kOR 107 Intermediate Korean II Klear
Hear

MAE 332

MAT 554

SPA 317 LA

s.wh

Aircraft Design

Algebraic Geometry

Topics in the Cultural Expression of
Protest and Dissent in Spain

D.P. Raymer
TH G Megson. T
U. G. Megson

Carr Raymond
and Joan Patlo
Fusi

The Presocratic Philosophers COt

Rival Lovers, Theages, Clitoph
The Sophistic Movement
Magic, Reason and Expeneric

On the Optical Sense of Form S01
The Reality of the Mass Media
The Shape of the Signifier

The Emergence of Cinematic
Galatea 2.2
Notes on Some Schizoid Mec

Integrated Korean (Intermediat COt
Integrated Korean Workbook (

C02

Aircraft Design: A Conceptual L01
Aircraft Structures for Enginee

C01
Spain Dictatorship to Democr L01

Pot

T 13:30 FIRES 806M Adam
Th 13:30 FIRES 806M

M 13:30 MCCKH 363 Nellie

11:00 FRIST 207
11:00 FRIST 207
11:00 FRIST207

12:30 FRIST205

13:30 FRIEN 008
13:30 FRIEN008

13:30 FINEH 601

11:00 MCCOH 60

11:00 MCCOH60

Velma

Velma

Loretta

Steven

Robert

Robert

Dig reaCoe

Merwin ^ JTAff

E] May AuckV
iteadeeus(

t Orrese

Mcdougal Rrae
- Section

El Om uner

Emax. 8imobwnt

Wicks

Wicks Ptam
Sitrucion;re

LaPst Ness
Roy

El Section

GraliiSdre
Burkhalter E1c&X"

Mettoft1 Grd. &atrCafmy
Mellot M-Desyita,

Mellott ElC-
2 cacad

Figure 1.3: A hierarchical
Worksheets system.

view similar to that of Figure 1.2, as presented by the Related

to be developed for every conceivable database schema. Unlike in a regular spreadsheet, the

user can model complex database schemas in their proper normalized form without losing

the ability to view and edit related data in one place, ensuring long-term managebility of

the data. Figure 1.3 shows one of the hierarchical views mentioned earlier, as handled by

Related Worksheets. While -our prototype provides a simple Excel-style search function,

future designs should include more sophisticated selection and filtering capabilities. Future

versions should also be able to present hierarchical views using alternative layouts such as

the record views often found in tailor-made database applications.

We evaluate our Related Worksheets system through a user study on 36 regular Mi-

crosoft Excel users. First-time users of our software were consistently able to solve lookup-

type query tasks with the same or higher accuracy than subjects using Microsoft Excel, in

one case 40% faster on average.

In Chapter 2, we give an overview of several categories of related work in commer-

cial as well as academic contexts: the user interface tradition associated with tailor-made

database applications, tools that have been created to ease development of such applica-

tions, and previously proposed spreadsheet approaches. In Chapter 3, we describe our

1 5



Related Worksheets system in detail. In Chapter 4, we present the user study we designed

to evalute the system and discuss its results. We provide our final conclusions in Chapter 5.
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Chapter 2

Related Work

We observe two general strategies for helping the average information worker solve highly

domain-specific database tasks. The first assumes that a new application must be built for

every unique database schema, and aims to reduce this effort by providing better devel-

opment tools. The second aims instead to improve the functionality of generic data man-

agement applications-spreadsheets, for instance-such that these can replace tailor-made

software in a larger number of cases. While the system presented in this paper follows

the latter strategy, it is worthwhile to first mention how traditional database Uls have been

shaped by the development tools that are used to make them.

2.1 Database UI Builder Tools

Visual tools for development of tailor-made database applications first emerged in the early

1980s, and have since become a standard genre of office productivity software on par with

spreadsheets, word processors, and presentation software. These tools provide visual form

designers, wizards, and such to help speed up the development process. Among the first

such tools were 4th Dimension' (1984) and FileMaker2 (1985); Microsoft Access3 ap-

peared later (1992). These three applications are still on the market and are maybe the

most well-known examples of their kind today. They are all very similar in design and op-

lhttp://www.4d.com
2http: //www. filemaker.com
3http://office.microsoft.com/access



eration (see [1]). There also exist open source clones such as Kexi4 and OpenOffice Base5 ,

as well as Software-as-a-Service (SaaS) products like App2You [7] and Intuit QuickBase6 ,

which provide similar functionality in a web-based interface.

Especially in the more recent web-based development tools, we see some potentially

significant usability improvements on the application developer's side, in particular with

respect to how well the development environment manages to hide technical details such

as join queries, foreign key relationships, and the underlying relational schema. For in-

stance, the application design processes of both AppForge [13] and App2You are form-

driven rather than schema driven, that is, the systems use the forms (pages) designed by

the developer to derive the underlying relational schema rather than requiring them to be

defined explicitly upfront. Another innovation is a blurring of the traditional distinction

between editable forms and read-only reports; in both of the above systems it is possible

to produce multi-level hierarchical tables that support at least limited editing of the data

originally used to generate them. AppForge has a particularly flexible visual interface for

defining such hierarchical views. However, these systems are application builders rather

than general data manipulation tools: a new application must be built for every schema,

and the actual applications produced are just as schema-dependent as any other tailor-made

database application. Furthermore, neither project attempts to create a spreadsheet-like

environment; these are purely form- and widget-based user interfaces.

2.2 Traditional Database Uls

While we have seen both improvements and increased diversity among the tools used to

develop tailor-made database Uls, the class of Uls produced has itself remained quite ho-

mogeneous. Again and again we see the same paradigm, outlined in Figure 2.1. A main

menu (switchboard) or tab row allows the user to navigate to one of several table views,

each usually corresponding to a table in the underlying relational database schema or an

entity set in the schema's entity-relationship diagram [4]. The table views typically have

4http://www.kexi-project.org
5http://www.openoffice.org/product/base.html
6http://quickbase.intuit.com
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Figure 2.1: The stereotypical user interface of a database application made with FileMaker,
Microsoft Access, or similar software development tools. (The screenshots are from a
Norwegian CRM system for public music schools.)

a very limited set of editing facilities relative to those found in a spreadsheet, if they are

editable at all. From the table view, the user can enter a search form to restrict the displayed

results, or enter a record view to edit and display more detailed information about a single

item in the table. The search form and the record view typically include a hard-coded se-

lection of fields corresponding to the columns of the underlying relational table and some

of its directly or indirectly related tables. Plural relationships are typically edited through

one or more small table views contained within a record view-subforms or portals. De-

pending on the capabilities of the development tool used, it may or may not be possible to

view and edit data more than a single level away from the currently viewed table or record.

For instance, neither FileMaker nor Access allow subforms to contain other subforms; ef-

fectively, the hierarchical views that can be created are limited to a depth of one. This is not

the case for 4th Dimension, which nevertheless limits editing to the top level. Still, each

.... ........ ..........



system allows its applications to provide a basic mechanism for viewing and editing plural

relationships.

2.3 Spreadsheet Approaches

It is now widely acknowledged that user errors in spreadsheets are as ubiquitous as spread-

sheets themselves, and that these ultimately lead to costly mistakes in organizations world-

wide [9]. Much of existing spreadsheet research is motivated by a desire to eliminate such

errors.

There is an increasing tendency among commercial spreadsheet applications to encour-

age users to organize data in simple, flat tables like those found in a relational database.

Such tables can then be processed in various mechanical ways with less of a chance of

errors caused by misinterpreted data (e.g. sorting only part of a table due to a skipped

column). In Microsoft Excel7 (versions 2007 and later), the user can create designated ta-

ble areas within a spreadsheet by selecting a range of tabular data an invoking a Format as

Table command. Specifying a table in such an explicit manner improves the visual format-

ting of the table and, more importantly, enables a number of affordances for sorting and

filtering the table as well as for selecting entire columns or rows of data in the table. If

the user scrolls down while the cursor is inside the table area, the labels in the table head-

ing (first row) will replace the standard column letters (A B C etc.) that are usually shown

immediately above the worksheet. A number of other table-related features are similarily

enhanced by the presence of explicitly defined table areas. The spreadsheet application in

Google Docs8 enables a single frozen header row by default in new spreadsheets, suggest-

ing that the user should fill the sheet with simple tabular data starting with a heading for

each column in the first row. This enables features like sorting and automatic survey-style

form generation without any further configuration. Apple iWork Numbers9 changes the

spreadsheet paradigm more radically by adding a level of indirection. Whereas in Excel

and Google Docs, each spreadsheet document (workbook) consists of one or more work-

7http://office.microsoft.com/excel
8http://docs.google.com
9 http://www.apple.com/iwork/numbers



sheets of infinite extent, iWork Numbers documents consist of pages that may each contain

multiple independent tables. As in Google Docs, each table has a designated header row

by default, and the user is encouraged to enter data in a consistent, machine-interpretable

fashion.

The concept of pivot tables, pioneered in Lotus Improv (1993), exists today both in

spreadsheets like Microsoft Excel as well as Online Analytical Processing (OLAP) tools

10such as Tableau [11] (formerly Polaris) and Oracle Business Intelligence Discoverer .

Pivot tables are interactive user interfaces for producing cross-tabulated views of data, that

is, views showing data points grouped and aggregated in categories along two different

axes. Conceptually, both the input and the output of a pivot table interface is a single flat

table of data. Starting with an empty output table, the user can drag one or more attributes

originally found in the input table from a palette onto each of three axes on the output table.

Attributes dropped onto the row or column axes of the output table are used to group and

aggregate the attributes dropped onto the third measure axis. The former attributes become

dimensions and the latter become measures. If more than one attribute is dropped onto

either the row or the column axis, the groups become more specific, and may be labeled in

a hierarchical fashion in the axis label. The data in the output table, however, remains in

its flat table form; pivot tables do not have the ability to provide hierarchical views of the

user's data.

Depending on the tool used, the input data to a pivot table may be stored as a table

in a spreadsheet, as one or more tables in a relational database, or as a data cube in an

OLAP database. If the data is stored across multiple tables in a relational datbase, the user

must select the tables and configure the appropriate join conditions before the pivot table

interface can be used, possibly through a custom SQL query, but usually through some sort

of wizard provided by the analysis tool.

As an example of a pivot table interface, consider the Tableau system, shown in Fig-

ure 2.2. In the configuration shown, sales and profit measures are aggregated in groups

along the sub-divided time dimension on the horizontal axis and along the Region and Product

Category dimensions on the vertical axis. The axis labels appear hierarchical, but the actual

10http://www.oracle.com/technetwork/developer-tools/discoverer
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Figure 2.2: A typical pivot table interface and use case, as exposed by the Tableau system.
Data is cross-tabulated along two axes. While the group labels are hierarchical, the actual
data is presented in a standard, flat table.

data is in flat table form. Like any query system that limits its results to flat tables, pivot

tables are thus insufficient for presenting entities relating to other entities through multi-

ple parallel one-to-many relationships. This is illustrated in Figure 2.3, where we have

attempted to recreate the course catalog view of Figures 1.3 and 1.2 using a pivot table in

Tableau. The view may appear hierarchical, but is in fact simply a flat table with adjacent

duplicate values hidden; this does not prevent duplicates from appearing elsewhere. In the

example given, the entire section list of each course is repeated once for every item in the

course's reading list, and vice versa.

Another class of proposed spreadsheet extensions relaxes the restriction that worksheets

must be simple two-dimensional grids of cells in rows and columns (first normal form). In

IceSheets [12], cells in a worksheet can recursively contain entire new worksheets, allowing

data to be addressed and organized in a hierarchical fashion. However, the content of the

hierarchy is static and must be built manually by the user, and the system has no concept of

joins or relationships, making it unsuitable for the kind of database tasks we are interested

in.

PrediCalc [6] approaches the problem of maintaining consistency between multiple
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presented in a flat table.

tables in a spreadsheet when the items in the tables are related by plural relationships,

including the case where there are temporary or partial inconsistencies in the constraints.

It does not, however, extend the structure of the spreadsheet itself beyond two-dimensional

cell grids, and thus does not support hierarchical views.

Place

Null

FIRES 606M

Null

FIRES B"M

Null

FIRES 506M

Null

FIRES B06M

Null

FIRES B06M

Null

FIRES 806M
Null

FIRES B06M1

Null

FIRES 606M

MCCKH 363

MCCKH 363

MCCKH 363

MCCKH 363

MCCKH 363

MCCKH 363

FRIST 207

FRIST 207

FRIST 207

FRIST 206

FRIST 207
ra-, ,

Abc 

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

Abc

.......... ......

0Tableau t- X

T40



26



Chapter 3

The Related Worksheets System

We now describe the Related Worksheets user interface and prototype implementation.

3.1 Worksheet Interface

Related Worksheets is a desktop application which, in its initial state, appears largely like a

regular spreadsheet. The user can create, open, and save documents known as workbooks,

and each workbook contains a number of infinitely sized worksheets that can be created

and selected through a row of tabs. Empty worksheets start out looking like those of Excel

or any other spreadsheet application, and can be navigated and edited using standard mouse

and keyboard commands (click cells to select, navigate cells with arrow keys, type to edit,

drag to resize columns etc.). Since our system's novel features depend on the creation of

multiple worksheets, and since worksheets are referred to by name in various parts of the

user interface, we force the user to create the first worksheet explicitly rather than providing

one by default when the application starts. See Figures 3.1 and 3.2.

Like Google Docs and Apple iWork Numbers, we intend the user to populate each

worksheet with a single table of items under a designated row of column headers. Thus,

the first row of each worksheet is automatically formatted as a heading (with a bolded font

and a thick border underneath) as well pinned to remain visible at the top of the worksheet

view during vertical scrolling of the rest of the worksheet. See Figure 3.3 for an example of

a properly entered table of simple, primitive values. Columns can be renamed at any time
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Figure 3.3: Related Worksheets after entering simple tabular data into a worksheet. Column
widths have been adjusted to fit the data in each column without wrapping.

by editing the contents of their respective header row cells, and can be deleted or moved

left or right through designated keyboard commands (an improved implementation would

expose these features through the menu system and/or drag-and-drop).

3.2 Column Data Types and Cardinalities

In our system, each column in a worksheet has an explicit preferred data type associated

with it. The user may change this type at any time using a drop-down menu in the toolbar

area. If the value of a cell does not conform to its column's selected data type-e.g. text

in a Number column or an invalid date in a Date column-the cell is rendered with a red

warning box similar to those used by PrediCalc [6] and Excel to indicate other kinds of

inconsistencies. See Figure 3.4. The user is always free to keep the default Text type, which
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Figure 3.4: Related Worksheets after adding more columns of primitive data and selecting
Number Cells and Yes-or-No Cells as the columns' preferred data types. Some of the values
entered do not conform to their columns' data types, and have been marked with a red
warning box by the software.

accepts any primitive value.

The system's weak form of type checking serves to allow temporary inconsistencies.

For instance, it is possible to paste data from Excel without first having to set the appro-

priate column types, and the data type of existing columns can be changed without special

conversion semantics. The type checking functionality applies not only to primitive data

types, but also to reference types and column cardinalities, which we discuss next. Note

that in the header row, cells always behave as they would in a Text column.

In addition to a preferred data type, each column also has a preferred cardinality, se-

lected by a pair of radio buttons next to the data type drop-down. Columns preferring

individual cells per row behave just like columns in a traditional spreadsheet; this is the

default. The multiple cardinality, however, indicates that the column accepts multiple cells
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Figure 3.5: Related Worksheets after the Code column has been set to allow multiple inner
cells and some additional course codes have been entered. The outer cell containing the
currently selected inner cell is rendered with a blue border, and with one extra blank inner
cell as an affordance for adding additional entries.

per row. This situation is illustrated in Figure 3.5. It now becomes necessary to distinguish

between outer and inner cells; in general, outer cells are defined by the intersection of a

row and a column, while inner cells are contained within outer cells. Data values are con-

tained in inner cells, and the cursor moves left/right/up/down between the inner cells that

are visible on the screen at any time. Outer cells are always rendered to show the contents

of each of their non-blank inner cells, and always with at least one inner cell visible, even

if blank. For better scalability, large collections of inner cells might be rendered in a scrol-

lable pane, though we did not implement this. In columns of multiple cardinality, a light

gray border is added around inner cells as a visual indicator of the special behavior of these

cells. When the cursor enters such a cell, the border is highlighted in blue and an extra

blank inner cell is rendered within the same outer cell as an affordance to enter additional
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Figure 3.6: Terminology for describing worksheets in the Related Worksheets system.

values. See Figure 3.6.

3.3 Reference Types and Relationships

Besides the primitive column data types, our system provides reference types. For each

worksheet in the open workbook, including the currently selected one, a reference type

Items from (name of worksheet to be referenced) is available in the column data type drop-down,

below the standard primitive types. Each inner cell in a column of such a type is allowed to

contain, instead of a primitive value, a reference to a row in the target worksheet specified

by the column type. When the cursor enters an inner cell in a reference column, the user

can select a reference value from another drop-down list. The drop-down shows one entry

per non-blank row in the referenced worksheet, plus an option to reset the cell to its default

empty state.

As an example, suppose the user is modeling an academic course management system

like that of Figure 1.1. In two separate worksheets, the user may have created tables of

Courses and Readings, respectively, and now wishes to establish a relationship between the

two in order to maintain a reading list for each course. The user can do this by creating
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a column Course of type Items from Courses to the Readings worksheets. This column will

then contain, for each reading, the course containing the reading in its reading list, and the

user can select the appropriate course from the reference selection drop-down. See Fig-

ure 3.7. Alternatively, the user can create a column of type Items from Readings in the Courses

worksheet-we will explain this symmetry later. Note that creating a column simply means

making use of one of the infinitely many available empty columns, or reusing an existing

one, like in a regular spreadsheet.

When an inner cell in one worksheet contains a reference to a row in another, a repre-

sentation of the referenced row is itself rendered within the referencing cell. This repre-

sentation is a recursive selection of columns from the referenced row which the user can

configure through the Show/Hide Columns tree of checkboxes, similar to the Schema Navi-
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gation Menu found in AppForge [13]. For instance, in Figure 1.3, each row in the Courses

worksheet contains a list of references in the inner cells of the Sections column to the rows of

the Sections worksheet. Each section reference is then rendered just like the corresponding

row would be in the Sections table, except with some otherwise visually distracting bor-

ders removed, and with some of its columns hidden according to the user's selection in the

Show/Hide Columns tree. Since each section also has a list of references to Meetings as well

as to Instructors, this process is applied recursively until primitive values are rendered in the

base case. Effectively, the user is able to perform arbitrary nested joins on the relationships

between the worksheets, starting from any given worksheet as a base table. Note that each

worksheet has its own recursive Show/Hide Columns configuration; for instance, a course can

be shown with its full title when viewed under the Courses worksheet, while only showing its

six-letter course code when viewed through several levels of references from the Instructors

worksheet.

The entries in the reference selection drop-down are string representations of each po-

tential target row, also built from the fields selected to be visible in the Show/Hide Columns

tree, including nested ones, or whatever portion of the string there is horizontal space

enough to display. Though. not implemented in our prototype system, users should be

able to pick items from this drop-down list by typing the first letters of this string repre-

sentation, using a combo box instead of a list box. Thus, for instance, users could choose

to pick a reference to the Course table either by starting to type in a course code, a course

title, or even a related field such as the instructor of the course (in cases where there is only

one instructor per course). See again Figure 3.7. An alternative design of the drop-down

menu could be to render each entry as it would appear in the actual reference cell. The

string representation, however, has the advantage that each entry in the drop-down list can

be displayed in the space of a single line of text. Thus, the list can display more items at

a time, and will behave like the standard list or combo box widgets that users are already

familiar with.

Relationships are bidirectional. When the user creates a reference column in one work-

sheet in order to maintain a relationship with another worksheet, a corresponding reference

column is automatically created in the referenced worksheet, refering back to the original
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worksheet. For instance, if each Reading is assigned to a Course, then each Course has a set of

Readings. When the type Items from Courses is selected for the Course column of the Readings

worksheet, this automatically creates a corresponding column of type Items from Readings in

the Courses worksheet. See Figure 3.8.

When a reverse reference column is first created, it is assigned a default name of the

form (name of the other worksheet) (via "(name of the corresponding reference column in the other work-

sheet)"). In our example, the name would be Readings (via "Course"). This name is only an

initial default and, as for any other column, can be changed at any time. Like any other col-

umn, the reverse reference column can be hidden from the view using the Show/Hide Columns

tree. Deleting the reverse reference column deletes the original referencing column as well.

Note that the system itself makes no distinction between what we have been referring to as
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forward and reverse reference columns; we are simply using these terms to distinguish be-

tween the columns explicitly created by the user versus those automatically made available

in the other direction.

By setting the cardinalities of a related pair of forward and reverse reference columns,

the user can choose between one-to-one, one-to-many, many-to-one, and many-to-many

relationships. By default, an automatically created reverse reference column is set to have

the multiple cardinality, resulting in a one-to-many relationship if the forward reference

column was of the individual cardinality, or a many-to-many relationship if the forward

reference column was of the multiple cardinality. Note that our system is able to model

many-to-many relationships directly, without an intermediate join table, as long as no at-

tibutes are required on the relationship itself. This is an important usability feature, as the
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reverse direction as well. However, since the Course column has been set to allow only a
single entry per row, a red warning box is shown for the incorrect assignment of Aircraft
Design to both courses MAE 332 and KOR 107.

concept of join tables is abstract and may make little sense to a spreadsheet user without

experience in schema design for relational databases.

Updates made to a reverse reference column are reflected back to the original refer-

encing column. See Figures 3.9 and 3.10. One-to-many relationships may be violated

by selecting the same reference more than once in the column of multiple cardinality. In

this case, the reverse column with the individual cardinality marks the references beyond

the first with the red warning box seen before, see Figure 3.10. In future versions of the

software it would also make sense to show a warning in the forward reference cell, and to

explain such warnings in a tooltip pop-up.



For the purposes of selecting columns to display in the Show/Hide Columns tree, forward

and reverse references can be followed indefinitely. For instance, it is possible to show,

for each instructor, the courses taught by that instructor (via the Sections worksheet), then

for those courses, what other instructors teach the course, then for those instructors, the

complete set of courses taught by those instructors, and so on. Infinite recursion is avoided

by expanding the Show/Hide Columns tree lazily and hiding, by default, columns that have

already been instantiated as an ancestor in the tree. Like any other column, these can be

shown or hidden again by checking or unchecking the appropriate checkbox in the tree.

While references are rendered recursively and the user can easily see across many cas-

cading and parallel relationships simultaneously, we note that the cell cursor moves across

the top level only. This means that in order to edit a particular value, whether it be a

primitive or a reference, the user must first select the worksheet that actually contains that

value directly, that is, the worksheet that contains the value in one of its inner cells. For

instance, in Figure 3.7, it is not possible to edit the course code or title of a course without

first switching to the Courses worksheet tab. This is a similar restriction to those found in

tailor-made database applications made with FileMaker or Microsoft Access. However,

generalizing a standard idiom often found in such applications, we introduce a teleport

feature to make such navigation quick and convenient.

The teleport feature allows the user to quickly jump between multiple related work-

sheets via the references that exist between them. With the cursor located on a cell contain-

ing a reference to a row in another worksheet, the user can press Ctrl+Space to switch to

the related worksheet, with the cursor placed on the inner cell containing the corresponding

reverse reference in the referenced row. After teleporting, the user is free to move the cur-

sor around in the newly selected worksheet, for instance to edit values that were previously

too deep in the hierarchy to select with the cursor, or even to teleport another degree away

from the original worksheet. To get back to the original point, the user can move the cursor

back to the original reverse reference that was selected after the teleport, and teleport again.

Consequently, teleporting twice without changing the cursor location will always lead back

to the original cell. We believe a regular set of back/forward buttons, not implemented in

our prototype, would complement this feature well. Moreover, the teleport feature should



be accessible through a mouse-driven affordance as well as the existing keyboard shortcut.

As an example of the teleport feature, consider the situation in Figure 3.7. A user who

wishes to edit the title of the course CLG 214 can press Ctrl+Space to get to the state shown

in Figure 3.8. The user can now move the cursor to and edit the cell containing the Wisdom,

Sophistry, Philosophy primitive value. When done, the user can move the cursor back to the

cell containing the Lysias / Selected Speeches reference and teleport to get back to the original

location in Figure 3.7.

Last, we provide a simple search feature accessible from a search bar similar to that

found in the Mozilla Firefox' web browser. By entering a text string and clicking the Search

button, the cursor will move to the next cell whose string representation contains the search

term. The string representation is the same as that used by the reference selection drop-

down item, minus special characters; it contains the primitive values of all the columns that

have been recursively selected for display in the Show/Hide Columns tree.

3.4 Refactorization Features

We now consider the problem of converting data between the flat table format used in

relational databases and the reference-based format preferred in the Related Spreadsheets

system. We used the techniques described below to convert a sample MySQL database to

the Relational Spreadsheets format in preparation of our user study.

In a relational database, data is stored in multiple flat tables of primitive values, and

relationships are represented by foreign key relationships, where primitive values in one

table identify rows in another. It is trivial to import such tables from a relational database

as worksheets in Related Worksheets; however, the system will not be aware of any rela-

tionships between these tables until foreign keys have been converted to reference values.

To perform this conversion, in either direction, we have implemented two special column

manipulation commands which seem likely to have significant utility beyond testing and

development of the software itself. One command, Detect References, replaces each value in

a column with a reference to a row in a target worksheet that contains the value in question

lhttp://www.mozilla.com/firefox



in its first visible column (as selected in the Show/Hide Columns tree), if a unique such row

exists. This is typically used to convert a column of primitive values to a column of ref-

erence values, for instance after having imported two flat tables related through a foreign

key relationship from a relational database. The other command, Replace References, works

oppositely; it replaces each reference value in a column with the value of the first visible

column in the referenced row. Besides flattening existing Related Worksheet databases,

the Replace References can be used to convert the join tables commonly found in relational

database schemas into natively supported many-to-many relationships.

Consider the task of converting a column of primitive values to a column of references

to another worksheet, as we did ourselves to convert the foreign key relationships of a

flat MySQL database into the relationships naturally supported by Related Worksheets.

We first change the data type of the column from the primitive type to the appropriate

reference type, e.g. from Text to Items from Courses. This does not not have any immediate

effect on the data in the column, except for the appearance of red warning boxes in the cells

containing primitive values to indicate that these values have not yet been converted to the

new preferred data type. However, as for any reference column, it now becomes possible

to choose a selection of subcolumns from the target table, e.g. Courses, in the Show/Hide

Columns selection tree. The Detect References command uses the first visible column from

the related worksheet as a field to join on, so the user should now make the primary key

column of the target table the first visible one, and then apply the command. At this point,

the command goes through each inner cell of the column to be converted and replaces the

existing primitive values with reference values by looking for a unique matching value in

the related worksheet's first visible column. If no value or multiple values are found, the

original value is left as it is, with the warning box still showing. Otherwise, it is replaced

by a reference to the row in the related worksheet containing the matching column value.

The Replace References command works oppositely: to convert a column of reference

values to a column containing the contents of one of the referenced rows' values, we first

select the column to remain in the Show/Hide Columns selection tree, then invoke the com-

mand, and finally change the type of the column to the appropriate new one. Depending on

the column selected to remain, the values can be of either a primitive type or a reference



type. As an example of a use case for the Replace References command, other than simply

reversing the effect of a previously applied Detect References command, consider the prob-

lem of eliminating a join table Instructors-Sections(Instructor Name, Section Number) representing

a many-to-many relationship between the Instructors(Name, Email, Salary) and Sections(Number,

Course, Status) tables, after having imported these tables from a relational database as three

separate worksheets. First, we would convert the primitive values in each of the columns of

the Instructors-Sections table into reference values using the Detect References command.

The Instructors and Sections tables would now each have a reverse reference column

called Instructors-Sections (via "Instructor Name") and Instructors-Sections (via "Section Number"), re-

spectively. By invoking the Replace References command on one of these reverse reference

columns, all references to the join table are replaced by references to the actual Sections

and Instructors worksheet, respectively. As a side-effect of this, the command results in a

new reverse reference column in the worksheet opposite of the one to which the command

was applied; this column contains the appropriate references in the reverse direction. The

join table worksheet can now be deleteted in its entirety without loss of information.

More general versions of the Detect References and Replace References commands should

allow references to be detected and replaced using more than one column, though we did

not implement this in our prototype. For instance, a worksheet might have a First Name and

a Last Name column, and it would be desireable to be able to combine these two columns

into a single column of references to another worksheet by joining on both of these fields,

since a single field may not be sufficient to uniquely identify a row in the referenced table.

Likewise, the Replace References command should be able to convert a single column of

references into multiple columns containing values from a selection of columns originally

found in the referenced table.



Chapter 4

User Study

We wish to demonstrate that databases containing a multitude of plural relationships can be

more efficiently managed in our system than in a regular spreadsheet. That is, we hypoth-

esize that users will be able to perform common database tasks faster when the database,

in its appropriate normalized form, is made available through our proposed user interface.

Furthermore, we would like to evaluate the learnability of the system; we wish to show that

typical spreadsheet users are able to figure out how to perform such tasks without special

instructions. We have not studied the process of setting up a new spreadsheet database from

scratch.

4.1 Study Design

To test our claims, we conducted an online user study using Amazon Mechanical Turk' and

the User Study Console, a Java-based tool we developed to allow test subjects to stream

timestamped recordings of their computer screens to our server with a minimum of effort.

The User Study Console would also automatically download and open sample spreadsheets

we had prepared as well as allow the user to submit changed versions of these in exchange

for a confirmation code to be pasted into the Mechanical Turk HIT (Human Intelligence

Task, a survey form). Depending on the stage and parameters of the experiment, sample

spreadsheets would be opened in either Microsoft Excel, assumed to be already installed

ihttp: //www .mturk. com



on the user's computer, or in our own Related Worksheets application, distributed as part

of the same Java Web Start executable.

Our study was a between-subjects design in two stages. The first stage was a recruiting

task offered to the general population of Mechanical Turk workers, intended to let us select

a group of workers who (1) were willing and able to successfully run the User Study Con-

sole on their machines, (2) happened to have Microsoft Excel or a compatible spreadsheet

application installed, (3) had demonstrated good faith in solving an otherwise unrelated

spreadsheet task, and (4) had provided us with answers to some background and demo-

graphic questions. We offered $0.25 for workers to launch the User Study Console, make

a chart based on sample data we provided in an Excel spreadsheet, and fill in our survey.

A previous HIT approval rate of 80% or greater was required to accept the HIT, as is the

default.

The survey part of the recruiting HIT included questions about gender, age, occupation,

previous spreadsheet experience, and previous experience with Microsoft Access, File-

Maker, or other database software, if any. Multiple-choice questions relating to previous

experience were accompanied by qualitative questions to encourage accurate answers; for

instance, people reporting previous experience with database software were asked to give

examples of tasks they had performed in this context. The actual data we provided for the

recruiting task was a collection of daily currency exchange rates for three currencies since

2006, formatted in a single table such that Excel's charting wizards would be able to pro-

duce a nice chart in about three clicks. Since we were not actually interested in the charting

task itself, we told workers that "Just about any chart will be good!"

Once workers had submitted the recruiting HIT, we reviewed their submissions, in-

cluding screencasts, log files, and uploaded spreadsheet files, to ensure we had meaningful

answers to both the survey and the charting parts of the task, and to ensure that there had

been no technical problems with the User Study Console during the execution of the tasks.

In the second stage of our experiment, Mechanical Turk workers with complete and

technically unproblematic submissions for the recruiting task were divided randomly into

two groups of equal size, and invited by e-mail to do a longer follow-up HIT, worth $3.00.

Workers in the control group would be given a link to a HIT which, like before, asked them



to launch the User Study Console and solve tasks using a Microsoft Excel spreadsheet that

we provided. Workers in the treatment group would, on the other hand, be given a link

to a different HIT that would ask them to use our Related Worksheets application. From

a technical point of view we achieved this separation by assigning a custom Mechanical

Turk Qualification with a randomly chosen value between 1 and 99 to each worker, and

then setting specific ranges as requirements for both previewing and accepting the HIT

(<50 for the Related Worksheets version and >50 for the Excel version). The qualification

was labeled "Spreadsheet Study (randomly assigned qualification)" to reassure users that

the numerical value of the qualification was not a measure of their past performance. Since

Mechanical Turk does not support the creation of completely unlisted HITs, the metadata

(title, description, reward amount, etc.) for the two HITs was visible to the public, but this

data was identical for the two HITs (except for the qualification value range).

The tasks and instructions in the two main HITs were identical except in the description

of the tool used to solve the tasks. Most significantly, the treatment group HIT had the

following note added: "In this part of the study, we will not actually be using Microsoft

Excel, but instead a spreadsheet-like application which has some similarities with and some

differences from a regular spreadsheet." No actual instructions were provided on how to

perform the tasks, neither in the Excel nor the Related Worksheets versions of the HIT.

Workers from one group were unable to see the contents of the other HIT, and vice versa.

The actual database tasks modeled in our user study were based on the course man-

agement system example introduced earlier. The data was a subset of an actual course

database, containing 37 courses and their complete set of related entities. See Figure 1.1.

Some attributes, like the lengthy course descriptions, were omitted.

In the Excel version of the tasks, the database was represented as a set of normalized

relations, each stored as a table in its own worksheet. See the Introduction for a discussion

of why this particular mapping is a natural one for our investigation. We used natural

rather than surrogate primary keys, e.g. course codes in the form "KOR 107", to identify

the various entities involved. The full normalized schema of the database is shown in

Figure 4.1.

For the Related Worksheets version of the task, we imported the same normalized



Courses(Course, Distribution Area, Title, Max. Enrollment, May Audit)
Readings(Course, Author Name, Title)
Sections(Class Number, Course, Status, Max. Enrollment, Section)
Meetings(Section Class Number, Day, Time, Place)
Instructors(First Name, Last Name, Email)
Grading Components(Course, Grading Category, Percentage)
Instructors-Sections(Instructor Name, Section Class Number)
Cross-Listings(Crosslisted Course Code, Primary Course Code)

Figure 4.1: The normalized schema as it appeared in the Excel version of the tasks. Primary
keys that participate in foreign key relationships are underlined, foreign keys are double-
underlined.

database tables into our system as individual worksheets, converted foreign key columns

into reference columns using the Detect References and Replace References operations described

earlier, and made default selections in the Show/Hide Columns tree corresponding to what we

believed would be seen in a real course management system. In particular, the Courses

worksheet was shown with all fields and subfields fully expanded, excluding reverse ref-

erence columns; this corresponds to the way entities would be displayed in a real course

catalog (each course showing its reading list, grading scheme, sections, meetings, instruc-

tors etc.). Each of the other worksheets were shown with all their immediate fields visible,

and some selection of important identifying subfields for each related entity (e.g. course

code, distribution area, and course title whenever a course was referenced). Effectively, it

would not be necessary for a user to show additional columns or subcolumns to solve the

tasks given, though depending on window size and screen resolution it might be necessary

to scroll horizontally or hide some columns to see the desired information.

The exact tasks given are listed in Table 4.1. The actual instructions given to users also

specified the exact form expected of the answers and gave an example of a correctly spec-

ified answer. These tasks are lookup (read-only) tasks of the kind we would imagine to be

frequently performed on a real-world course management database. We originally included

a number of update tasks as well; however, these uncovered a number of discoverability

bugs that would have to be fixed before realistic update performance could be measured.

After the expiration of the main HIT, we again reviewed workers' submissions and

associated screencasts, log files, and uploaded spreadsheet files. We graded each of the



# Description

1 Find a course that is taught by Harry Morrill.
2 In the course "MUS 105: Music Theory Through Performance and Com-

position", what percentage of the final grade is derived from the Midterm
Exam?

3 Find a course that satisfies the "LA" (Literature and the Arts) distribution
area, with a lecture (meetings belonging to a section denoted "LO 1") that
starts after noon (after 12.00).

4 What is the e-mail address of the instructor who teaches "KOR 107: In-
termediate Korean II"?

5 Who teaches the precept section of "HIS 383: The United States Since
1920" that meets on Wednesdays at l0am?

Table 4.1: Individual tasks given in the user study.

individual tasks on a pass/fail basis. Last, we manually reviewed all screencasts and esti-

mated the amount of time spent on each individual task using video frame timestamps and

observations of the subjects' actions.

4.2 Results

The recruiting stage of the -study yielded 54 subjects. The subjects were divided into two

groups of 26 subjects each and invited to participate in the main part of the study. Of

these, 18 recruits from the Excel group and 18 recruits from the Related Worksheets group

completed the main HIT. An additional 4 recruits from the Excel group and 4 recruits from

the Related Worksheets group started doing a few of the tasks in the HIT, but soon closed

the User Study Console and never submitted the HIT. The remaining recruits never opened

the User Study Console.

Of the 36 subjects participating in the main part of the study, 25 were male (69%).

Subjects were between 19 and 48 years of age, with first, second, and third quartiles at 26,

30, and 35 years, respectively. 16 subjects (44%) described having some prior experience

using "database software such as FileMaker or Microsoft Access". Most users had signifi-

cant previous spreadsheet experience; Table 4.2 shows the levels of typical spreadsheet use

as reported by subjects themselves. The subjects' self-reported occupations are categorized

in Table 4.3.



"How often do you typically use N
spreadsheet software?"

1 Never 1
2 Once a year or less 1
3 A couple of times per year 1
4 A couple of times per month 12
5 A couple of times per week 5
6 Almost daily 10
7 Multiple times per day 6

Total 36

Table 4.2: Number of subjects reporting particular levels of previous spreadsheet experi-
ence. The numbers in the left column are used to calculate averages in Table 4.3.

Occupation

Student, business/finance
Student, mechanical engineering
Student, unknown
Teacher
Business administration
Business process outsourcing (BPO)
Homemaker
Programmer
Other IT
Other technical
Other non-technical
Total

2
1
1
2
5
3
5
8
3
5
1

6.0
4.0
2.0
4.0
5.6
6.0
3.2
5.8
5.0
5.6
4.0

36 |

Table 4.3: Number of subjects and average level of previous spreadsheet
occupations reported. Averages are based on the 7-step scale in Table 4.2.

N

Excel
RS

Task #
2 |3 |

experience by

4 |5
18 18 18 14 17 12
18 18 18 14 17 15

Table 4.4: Number of subjects who solved each task correctly.

1 .)
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Excel Related Worksheets
Feature n | N ] n/N n [ N J n/N
Search 13 17 76% 9 17 53%
Mark Rows 3 15 20% 2 17 12%
Filter 11 15 73%
Sort 1 15 7%
Teleport 8 18 44%
Show/Hide Columns 3 17 18%

Table 4.5: Number of users observed to make use of specific features or techniques during
the user study.

Of the subjects who submitted the main HIT, the number who passed each task is shown

in Table 4.4. The average times taken to complete each task, for subjects who solved each

task in question correctly, are shown in Figure 4.2. Due to intermittent network problems,

5 screencasts from the Excel group and 2 screencasts from the Related Worksheets group

were incompletely streamed and could not be used for timing measurements. (With regards

to the User Study Console, we have workarounds planned to avoid such problems in future

studies.)

Using uploaded screencasts and event logs, we summarized the features used by sub-

jects during the study. This data is shown in Table 4.5. Some features are found in both

Excel and Related Worksheets, others are specific to one system. Except for the teleport

feature, the numbers are based on manual review of the screencast videos; the number of

data points is slightly less than the total number of users due to some incomplete screen-

casts. The teleport command was invoked 1, 1, 2, 5, 5, 7, 12, and 13 times by each re-

spective user. Of the Related Worksheets subjects making use of the search feature, 3

discovered it only after having progressed about halfway through the study. Of the Excel

subjects making use of the filter feature, 3 did not use the sort feature at all. "Mark Rows"

refers to subjects visibly working to keep track of rows in a worksheet; this was done in

various ways by different users. Two Excel users colored marked rows yellow with the

highlighting tool, one of these also at one point wrote down the primary keys of marked

rows in an external text editor. A third Excel user marked rows by typing an "x" in the

first empty column available next to the table. Two Related Worksheets users marked rows

as well; these both used an external editor. Note that we do not know how many of the



subjects may have taken notes on paper while working on the tasks.

4.3 Discussion

For each submission we watched the screencasts and measured the time taken to solve

each individual task. We then, for each individual task, applied Welch's unpaired two-

tailed t-test to the times taken to complete the tasks by those subjects who got them right

only. Only Task 4 showed a statistically significant (p<0.05) improvement in the Related

Worksheets case; it was 41% faster than Excel. Task 5 showed a 31% improvement but

was not statistically significant (p=0.09). In all other cases the results were insignificant.

4.3.1 Task Analysis

We can analyze the different tasks in terms of the joins involved and tables traversed in the

normalized database schema used in the Excel version of the database in each case. It is

useful for this purpose to refer back to the Entity-Relationship diagram that was shown in

Figure 1.1.

Task 2 involves only the Courses and Grading Components tables. Additionally, since only

the primary key is needed from the Courses table, it suffices to look at the normalized Grading

Components table to solve the task. Thus, Task 2 is expected to be the simplest one for the

Excel group, and not much difference would be expected between the Related Worksheets

and Excel groups. This was indeed the case.

Tasks 1 and 4 each involve the Courses, Sections, and Instructors tables. Because Sections

and Instructors are related through a many-to-many relationship, a join table Instructors-Sections

must also be traversed in the normalized Excel version of the database. In Task 1, only the

primary key is needed from the Instructors and Courses tables, so only two tables, Sections and

Instructors-Sections, must actually be consulted. In Task 4, the primary key from the Courses

table is sufficient, but the e-mail address of an instructor must be looked up, requiring the

same two tables to be used plus an additional lookup in the Instructors table. We believe

the fact that subjects spent a relatively large amount of time on Task 1 compared to, for

instance, Task 4 to be due to the learning time needed to get acquainted with the database



and, in the case of the Related Worksheets group, the software itself. For Task 4, we

saw a large performance gain for subjects using our system versus those using Excel. We

can attribute this to the manual join that must be done between the Sections and Instructors-

Sections tables followed by the lookup in the Instructors table in the Excel case. In the Related

Spreadsheets case, solving the task was a simple matter of finding the course in the Courses

worksheet, which showed all related entities in one place.

Like Task 4, Task 3 involved two joins and three tables. In Task 3, the tables involved

are Courses, Sections, and Meetings. Task 3 is harder than Task 4, since there are both multiple

meetings per section as well as multiple sections per course; in Task 4, only a single lookup

was required in the Instructors table. To solve Task 3 in Excel typically requires the user to

keep track of numbers of several sections to look for in the Meetings table while browsing the

Sections table. In Related Worksheets, one can simply browse for the appropriate course,

though since we do not provide any filter-like capabilities, the user must manually look

through the entire list of courses.

Task 5 involved the Sections, Meetings, and Instructors-Sections tables. Since there is often

only a single instructor per section, the task is simpler than Task 3. Like in Task 4, we

see indications of a performance advantage among users using the Related Worksheets

application over those using Excel. While we did not have enough timing data points for

the last task to show statistical significance, it seems that the advantage is large but slightly

smaller than that of Task 4. This effect could potentially be due to Excel users getting more

familiar with the manual process of joining tables.

4.3.2 User Behavior

The most frequently used feature in both the Excel and the Related Worksheets version of

the tasks was search, available in both systems. Typically, users of both systems would

use a combination of searching and manual browsing-scrolling back and forth, switching

between worksheets, and scanning the data visually-to complete the tasks. This was

anticipated: the chief advantage of the Related Spreadsheets system is, in this context, the

relevancy of the information seen on the screen at any time.



Among the Excel users, we were surprised to find that just about as many subjects

made use of the filter feature as made use of the search feature. The filter feature allows the

user to select individual items for exclusive display in the table by selecting values from a

drop-down list above each table column. Subjects used the filter feature both to search for

specific rows in each table and to mark multiple rows of potential interest for later review.

Since the drop-down list provided by the filter feature is always sorted, users could quickly

locate a specific item in an otherwise unsorted table without using the search feature. As

mentioned, three users even made extensive use of the filter function without ever making

use of the search feature. Given these observations, we consider a filter feature to be an

important potential addition to future versions of our system.

As predicted by the task analysis, users sometimes found it necessary to temporarily

mark rows of interest in order to solve tasks involving more than a single join between

tables. Some of the users did this in ways visible on the screencasts; see our observations

in the Results section. Two Related Worksheets users wrote down primary keys in an

external editor, despite this not being necessary for completing the tasks in our system. We

assume these users must have believed it would be faster to approach the problem in the

same way as they would in a standard spreadsheet rather than spending time learning to

understand how the hierarchical views worked.

In the Related Worksheets version of the tasks, it was not necessary to modify the

Show/Hide Columns configuration, and most users rightly ignored the feature. A few sub-

jects experimented with the feature, along with column resizing, to hide unnecessary data

from view. The teleport feature was tried by 8 of the 18 Related Worksheets subjects; at

least 5 of these subjects seemed to make productive use of it throughout the progression of

the study, indicating significant potential value in this feature.
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Chapter 5

Conclusion

Since the early years of database management systems, we have kept building a new

database application for every schema that came along. These resulting tailor-made database

applications are expensive to develop, hard to maintain, hard to use, and hardly much more

than graphical front-ends to their underlying database. By looking to the success of spread-

sheets as a general-purpose data management tool, and by developing new visual interfaces

to let end-users access the'relationship management capabilities traditionally offered only

by tailor-made relational database applications from a single unified interface, we can elim-

inate the pains of using either spreadsheets or tailor-made applications for database tasks,

and get the best of both worlds.

We have presented the Related Worksheets system, a spreadsheet-like application that

lets the user establish relationships between rows in related worksheets as well as view and

navigate the hierarchical cell structure that arises as a result. Notably, the system allows

cells in worksheets to contain multiple values, and allows bidirectional relationships to

be established between worksheets through the use of reference values. Reference values

are rendered using a user-definable recursive selection of visible fields. Together, these

features allow database schemas with a multitude of plural relationships to be modeled and

managed naturally from within a spreadsheet-like user interface.

Finally, we presented the results of a Mechanical Turk-based user study on 36 regular

Excel users in a between-subjects design. We found that first-time users of our system were

able to solve lookup-style query tasks with the same or better accuracy than subjects in a



control group using Excel, in one case 40% faster on average.

5.1 Future Work

In future work, we plan to extend the user interface paradigm presented in this thesis in

three aspects, in order to further approach the level of functionality found in traditional

tailor-made database Uls. First, the system must incorporate a more expressive visual query

language that allows a larger class of hierarchical views to be built by the user. This will

include the ability to apply arbitrary sorting, filtering, nesting, aggregation, and formulas to

the entity sets in the database. Second, the system must be able to render the hierarchical

views in question using a selection of different layout configurations beyond the simple

tabular one. In particular, it must be possible to produce the standard kind of record view

that is ubiquitous in FileMaker-style applications, in which entities are shown with their

attributes vertically arranged and labeled individually. Third, the system must provide a

more flexible interface for managing the views themselves; the current model of providing

a single view per entity set is insufficient and somewhat arbitrary.
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