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Abstract

In this thesis, an iterative nonlinear beam propagation method is introduced and

applied to optical devices. This method is based on Hamiltonian ray tracing and the

Wigner distribution function. First, wave propagation simulation using Hamiltonian
ray tracing is illustrated and verified with different examples. Based on this, the

iterative method is presented for beam propagation in nonlinear media, which is vali-

dated with common Kerr effect phenomena such as self-focusing and spatial solitons.
As the application to the analysis of nonlinear optical devices, this method is applied
to nonlinear Lineburg lens. It is found that the nonlinear Liineburg lens is able to

compensate the focal shift caused by the diffraction of Gaussian illumination.
The iterative nonlinear beam propagation method is computationally efficient and

provides much physical insights into the wave propagation. Since it is based on Hamil-
tonian ray tracing, a ray diagram can be easily obtained which contains the evolution
of generalized radiances. Besides bulk nonlinear media, this method provides a sys-

tematic approach to beam propagation problem in complex media such as nonlinear

photonic crystals and metamaterials. Also, it is applicable to both coherent and par-
tially coherent illumination. Therefore, this method has potential applications in the
design and analysis of nonlinear optical devices and systems.
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Chapter 1

Introduction

Hamiltonian optics is widely used in optical design and analysis. Hamiltonian ray

tracing, a geometrical ray tracing technique based on Hamilton's equations, is very

useful in analysis of optical devices and also efficient in computation. In this thesis,

we introduce Hamiltonian ray tracing, take wave effects into account, and include

Kerr nonlinearity by iterations with updating refractive index distribution.

1.1 Kerr nonlinearity

The Kerr effect, discovered by John Kerr in 1875, is a change in refractive index due

to an applied electric field (optical intensity) [16]. All materials exhibit Kerr effect,

but the main difference is their extent of the nonlinear response to the applied field.

Kerr effect usually refers to two kinds of Kerr nonlinearity: the Kerr electro-optic

effect and the optical Kerr effect. In this thesis, we refer to the latter.

For general nonlinearity, while applied with electric field E(t), the material polar-

ization should be written as

P(t) = coyX'E(t) + x(2)E 2 (t) + X(3)E 3 (t) + ...), (1.1)

where co is the permittivity of free space, xM is the linear susceptibility, and X(2) and

X(3) are the second- and third-order nonlinear optical susceptibilities, respectively.



Kerr nonlinearity corresponds to the third-order susceptibility, where the refractive

index changes according to the optical intensity

n = no + ri2 (E2 ), (1.2)

where no is the usual refractive index and ri 2 is the second-order index of refraction,

or

n = no + n 21, (1.3)

where I denotes the optical intensity.

Kerr nonlinearity results in intensity-dependent refractive index. Several phenom-

ena are of practical importance as a result of Kerr effect. Self-focusing, self-trapping

and laser beam breakup are three famous processes due to Kerr effect. Self-focusing

happens when the beam intensity is so intense that the beam self-creates a waveguide

and comes to focus [52]. When self-focusing and diffraction of the beam cancel each

other while propagating, the beam creates a stable waveguide and is trapped in it

[22]. Laser beam breakup appears as a consequence of the imperfections of the laser

wavefront. Other Kerr nonlinearity phenomena include solitons [54], optical phase

conjugation [109], optical bistability [42], two beam coupling [88], and so on.

In this thesis, Kerr nonlinearity is assumed for the iterative nonlinear beam prop-

agation method. In addition, we show that Kerr nonlinearity adds one more element

of design flexibility into optical devices, and nonlinearity is a parameter worth design

attention.

1.2 Beam propagation

Beam propagation is an important tool in analysis of optical devices. It generally

solves the Maxwell's equation [64, 55] with specific illumination under various physical

objects and environment. Computational solvers and tools for the beam propagation

problem include boundary element method (BEM) [8], finite-difference time-domain



method (FDTD) [57], finite element method (FEM) [95], finite integration technique

(FIT) [27], uniform theory of diffraction (UTD) [56], and so on.

Nonlinearity adds one more element of design flexibility into the optical devices.

Methods for beam propagation in nonlinear optical media include the split-step beam

propagation method [2, 99, 90], self-consistent multimode theory [68], coherent density

method [23], mutual coherence function method [86], the Wigner distribution function

based method [29, 45], and so on.

1.3 Photonic crystals and metamaterials

Photonic crystals and metameterials are two hot research topics currently. Photonic

crystals are periodic nanostructures which are able to modify the behavior of light

just like the affection of electron motion in semiconductor crystals [50]. It is generally

classified as one-, two- and three-dimensional crystals, depending on different types

of periodicity enclosed. The periodicity of the photonic crystal structure is about

the same scale as half the wavelength of the light. Attractive properties of photonic

crystals include three-dimensional bandgap [14], slow light [102], self-collimation [53],

etc. Lots of applications have been presented so far, such as photonic crystal fibers

[13], resonators [6], and omnidirectional reflectors [32].

Metamaterials [30] aim at design of artificial materials which have properties not

found in the nature. It usually refers to materials with periodicity much smaller

than the working wavelength of light. Metamaterials use small periodic structures

to mimick large effective macroscopic behavior. Metamaterials have attracted atten-

tion from many disciplines and fields such as electromagnetics, photonics, material

sciences, nanosciences, etc. Interesting applications have been reported, including

superlens [60], negative refraction and perfect lens [91, 77], cloaks [84, 101, 35, 31],

antennas [108], and so on.

In this thesis, Hamiltonian ray tracing for photonic crystals and metamaterials is

presented. Lhneburg lens, both in 2D and 3D, is designed and verified in terms of

metamaterials. Since the iterative nonlinear beam propagation method is based on



Hamiltonian ray tracing, it can be extended to the investigation of nonlinear photonic

crystals and metamaterials.

1.4 Outline of the thesis

This thesis presents an iterative method for solving the nonlinear beam propagation

problem. The method is based on Hamiltonian ray tracing, which makes the method

physically intuitive and easy to have a radiance evolution picture. The initial condi-

tion of the ray tracing is defined by the Wigner distribution function, including the

wave effects into the geometric ray tracing. The nonlinearity is used to iteratively

calculate the Kerr contribution to the refractive index. This method has potential

applications to nonlinear photonic crystals and metamaterials. As an example of the

analysis of nonlinear optical devices, this method is applied to nonlinear Liineburg

lens. It is found that the nonlinear Lineburg lens can compensate the focal shift

caused by the diffraction of Gaussian illumination.

In Chapter 2, general Hamiltonian ray tracing is introduced. It is extended to 3D

Hamiltonian ray tracing based on the optical path length. In addition, an introduction

to Hamiltonian ray tracing applied to photonic crystals and metamaterials has been

made. What's more, effective medium theory for analysis of metamaterials is briefly

described and applied to the design of Liineburg lens.

In Chapter 3, Hamiltonian ray tracing is applied to the analysis of wave propaga-

tion, by defining its initial condition through the Wigner distribution function. This

method includes wave effects into geometrical ray tracing. It is verified with examples

such as single and double-slit diffraction, and the propagation of Gaussian beams and

rotating beams.

In Chapter 4, the iterative nonlinear beam propagation method is presented in

detail. A comparison to the split-step beam propagation method has been made.

In addition, the method is validated with common Kerr effect phenomena such as

self-focusing, spatial soliton and Gaussian-Schell model propagation.

In Chapter 5, the iterative method is applied to nonlinear Lineburg lens. The



compensation of focal shift due to the competition between nonlinearity and diffrac-

tion is discussed. Also, a modified Lineburg lens is designed to minimize the spherical

aberration caused by the nonlinearity.
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Chapter 2

Introduction to Hamiltonian ray

tracing

Ray tracing is a general path generation method for waves or particles through media

or systems with a conservative (Hamiltonian) potential. It has been widely used in

research fields such as under water acoustics [41], seismology [100], plasma physics

[20], radio physics [65], optics [93], and so on. In optics, especially in optical design

and engineering, ray tracing is widely used. For example, optical design software

such as ZEMAX is based on ray tracing for design of optical systems. Ray tracing is

especially helpful in design and analysis of GRadient-INdex (GRIN) optical devices.

GRIN lens [70] has a gradually changing refractive index distribution such that optical

rays will follow curves instead of straight lines. Ray tracing provides an approximate

solution to the Maxwell's equations, under the assumption that the dimensions of the

objects are much greater than the wavelength.

Assuming that GRIN has a refractive index profile n(r), the path of rays is gov-

erned by the ray equation [15, 85]

+ [n(r)- = Vn(r), (2.1)
ds ds

where n(r) denotes the refractive index at position r, s parameterizes the ray tra-

jectory. Many ray tracing techniques have been presented and applied, including



ray tracing in cylindrical coordinates [79], analytical ray tracing method [62, 63],

polynomial solution of the differential equation method [69] and so on. For most

of the existing methods, derived ray tracing equations are solved through standard

numerical techniques such as the Runge-Kutta method [82].

Hamiltonian ray tracing [19, 107] is based on Fermat's extremal principle [46]. Ray

trajectories satisfy Hamiltonian equations originated from Lagrangian and Fermat's

principle. The Hamiltonian expresses momentum conservation in this case. This type

of ray tracing has been chosen as a main topic in the discussions of this Chapter.

With the research and application development in photonic crystals and metama-

terials, beam propagation in these media is of great importance [73, 1]. A conven-

tional treatment for this problem is finite-difference time-domain (FDTD) method

[104]. However, ray tracing is usually computationally more efficient than FDTD

[49]. Hamiltonian ray tracing has been extended to photonic crystals [81, 49] for fast

and reliant beam propagation analysis.

As for metamaterials, they are always treated as effective media since the oper-

ational optical wavelength is much larger than the unit cell, thus the corresponding

effective refractive index distribution can be generated. In this way, an analogy is

made between metamaterials and the corresponding GRIN media [58, 110]. GRIN

media ray tracing sheds light on the analysis of metamaterials.

In this Chapter, Hamiltonian ray tracing is briefly introduced in terms of screen

and 3D Hamiltonian ray tracing. Due to their numerical limitations, 3D Hamiltonian

ray tracing method based on optical path length is introduced as an extension. Also,

Hamiltonian ray tracing equations applicable for photonic crystals are presented and

proved that they are equivalent to the original 3D Hamiltonian equations. Finally, ef-

fective medium theory for analysis of metamaterials is briefly described and examples

are given as 2D and 3D Liineburg lens.
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Figure 2-1: Geometry for screen and 3D Hamiltonian ray tracing.

2.1 Screen and 3D Hamiltonian ray tracing

Hamiltonian ray tracing [19, 107] originates from Fermat's extremal principle and is

applicable to both isotropic and anisotropic media [80]. Conventionally it has two

forms, namely screen Hamiltonian and three-dimensional (3D) Hamiltonian. In this

section a brief introduction to both of them will be made.

Geometry for Hamiltonian ray tracing is shown above in Fig. 2-1. The main differ-

ence between the two representations is the parameter to represent the ray trajectory.

While screen Hamiltonian uses the optical axis z and leaves x and y as coordinates

on the "screen", 3D Hamiltonian uses on-trajectory parameter s and keeps all three

coordinate directions as the representation of positions and momenta.

Fermat's principle defines the optical path length (OPL) as

j = n(q)dl, (2.2)

where F is the ray path and dl is the elemental arc length along F. Note that

q = (qx, q, q) is used as a symbol for position and p = (px, py, pz) is used as a

symbol for momentum.

For screen Hamiltonian, position and momentum are defines on x - y screens thus

they are a function of z:

q(z) = (qx(z), qy(z)); p(z) = (P(Z), Py(Z)). (2.3)

... .......... ... . ......... ..M5 X ... . .............. . ...... ..........



In this way, OPL can be written as

Sjz
2 L(q, 4, z)dz = n(q, z) 1/4|2 + 1dz, (2.4)

where L(q, 4, z) is optical Lagrangian, q(z) = (dx/dz, dy/dz) and z1, z2 denote the

initial and final z "screens" for the trajectory.

As for all Lagrangians, optical Lagrangian should satisfy Euler's equation

OL d OL = 0. (2.5)aq dz O4

From here, by using Legendre transform

H = p .4 - L (2.6)

to substitute Lagrangian L by Hamiltonian H, finally we can get the screen Hamil-

tonian equations

. H p . OH non
q= -= -- p = --- --- 279p H' Dq H(.q'

where

H - /n 2 (q, z)- Ip 2 =-pz. (2.8)

Physical meaning for screen Hamiltonian H is negative value of the z component

of momentum p. With Hamiltonian equations on hand, ray trajectory could be

solved by numerical method such as "ODE45" in MATLAB@ which uses the explicit

Runge-Kutta (4,5) formula.

However, a potential drawback makes this method a bit troublesome. By default,

ODE45 calculates towards +z direction. If there is any chance the ray should go

around and travel backwards at -z direction, this method might fail. For example,

Fig. 2-2 shows ray tracing results from screen Hamiltonian with cylindrically sym-

metric refractive index distribution n(r) ~ 1/r. Theoretically the ray should rotate



-3

-6 - - ------ -------

4 02 04 06 08
z fa.u.] x 10

Figure 2-2: Stiffness problem with screen Hamiltonian ray tracing numerical solver
when ray direction is almost vertical to the optical axis. Here refractive index distri-
bution follows n(r) ~ 1/r.

but it can be seen in Fig. 2-2 that when ray is almost vertical to optical axis, the

method crashes since numerical solver needs infinite small calculation step in z. This

is called stiffness problem [94] of "ODE" solver.

This problem can be avoided when 3D Hamiltonian ray tracing equations are used.

3D Hamiltonian uses s to parameterize the ray trajectory so

q(s) = (qx(s), q,(s), qz(s)); p(s) = (px(s),py (s),p.(s)). (2.9)

Thus optical Lagrangian in this case is

L(q, q, s) = n(q)|q| (2.10)

where 4(s) = (dx/ds, dy/ds, dz/ds) and (ds)2 = (dx)2 + (dy)2 + (dz)2 .

By following the similar derivation as previous, 3D Hamiltonian equations can be

given as

dq _H p dp OH _ On

ds Op |p|' ds - Bq -q'
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Figure 2-3: Ray tracing with 3D Hamiltonian ray tracing numerical solver. Here
refractive index distribution follows n(r) ~1/r.

where

H -- |pl - n(q). (2.12)

Again, this method is applied to the "black hole" refractive index distribution

and results are shown in the following Fig. 2-3. As expected, the ray rotates as it

approaches the "potential center". With this ray tracing method, stiffness problem

as mentioned above is solved. The very reason 3D Hamiltonian ray tracing does not

have this problem is that ray is always propagating towards the +s direction. This

is how s is defined and it exactly meets the need of the numerical solver.

2.2 3D OPL Hamiltonian ray tracing

In this section, the 3D Hamiltonian ray tracing has been extended to 3D OPL Hamil-

tonian ray tracing, in order to facilitate the generation of wavefronts and provide

more physical insight. As has been introduced in the previous section, 3D Hamilto-

nian ray tracing uses s to parameterize the actual ray path. However, the optics, a

. .... ........ ..................
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more intuitive way to denote the ray path is to use OPL. With OPL, the wavefronts

can be easily generated numerically based on the ray tracing results. The governing

equations of 3D OPL Hamiltonian ray tracing are derived as follows.

Instead of using s, s' = n(q)s is used to parameterize the ray path. The OPL

becomes

(2.13)
( d-

1C n dSly + (L (dz )2ds' ds' ds'.

The optical Lagrangian changes into

( dx dy dzq =

Therefore

The momentum can be expressed as

(2.18)

(2.19)P ~ 4 _ P
rn nip|'

using Eq. 2.16 and Eq. 2.18.

3D Hamiltonian under OPL is defined through Legendre transformation:

H -L p 1 I 1
n1pl n

(2.20)

using Eq. 2.16.

where

L = ne|, (2.14)

(2.15)
dy dz
ds' ds

1In =-,n

=1 (d
n ds '

L = 1. (2.16)

from which

PL
p =

q
Ku' (2.17)

Thus

|pl = n.



Thus Hamiltonian equations are:

dq OffH 1 p
d-- - ---- -iI~ (2.21)ds' Op n 1p|'

dp OH IOn
ds' Oq nOq(

The 3D OPL Hamiltonian ray tracing is different with original 3D Hamiltonian

ray tracing only in the scaling factor 1/n, since s' has been scaled by n(q). The

advantage of using this method is for easier generation of wavefronts. Besides, the

numerical results are physically more intuitive.

Here a Lineburg lens with radius 1 and refractive index distribution n = V2 - 2

is taken as an example. Ambient material refractive index no = 1. Lineburg lens

could focus a plane wave to an ideal geometric point at the opposite of the lens [61].

The ray tracing results (blue lines) as well as the wavefronts (green lines) obtained

with ODE45 in MATLAB@ are shown in Fig. 2-4. It can be observed that a plane

wave is focused at the right edge and all the rays hitting the focus point are of the

same OPL. This is exactly the property of a Lineburg lens. Here wavefronts are

easily generated by connecting all the points in all the rays with the same s' value.

2.3 Hamiltonian ray tracing for photonic crystals

Solving the two coupled differential Hamiltonian equations is very fast with standard

numerical solvers such as Runge-Kutta. Therefore ray tracing is very promising if

it could be applied to photonic crystals with adiabatically variant periodicity. Con-

ventional treatment of beam propagation in photonic crystal is the FDTD method.

However, it is not computationally efficient. It has been proven that Hamiltonian

optics can be applied to photonic crystals by incorporating the dispersion relation

of the unit cells [81, 49]. Hamiltonian ray tracing is computationally more efficient

comparing with FDTD method and also ray tracing provides more physical insights

into the beam propagation and energy evolution in photonic crystals.



Luneburg Raytracing with 3D Hamiftonian with OPL=1.+5+/2

Figure 2-4: Rays and wavefronts in Lineburg lens with 3D OPL Hamiltonian ray
tracing method. Plane wave is illuminating from the left. Blue lines are rays and
green lines are wavefronts.

2.3.1 Hamiltonian ray tracing equations applied to dispersive

media

For photonic crystals, Hamiltonian ray tracing equations can be written as [49]

Ow(q, k) dk

k 'dt
Ow(q, k)

aq'
(2.23)

where w(q, k) is the dispersion relation, k is the wave vector, q is position, and t is

time.

In this subsection, the relationship between Eq. 2.23 and 3D Hamiltonian ray

tracing equations (Eq. 2.11) is discussed. Throughout this subsection, when the

equations from Ref. [9] and Ref. [10] are cited, a notation change has been deployed

to make them consistent with the notation used in this thesis:

n W
r -+ q, p -* s, k -4 -W, q -+ -p,

C C

. . ..... ............. .- -.- : 1 M M- , .. .. ... :::::: - ' -". -... , , I , - I .. ., I .. ...................................................



while Hamiltonian H = |pl - n = 0.

We begin the discussion from the transport equation for the Wigner distribution

function. It has been shown by Bastiaans that the Wigner distribution function fol-

lows the ray tracing path governed by the Hamiltonian equations (Eq. 29 of Ref. [9]):

dq p

ds n

dp an
ds Oq' (2.24)

which are 3D Hamiltonian equations.

Also, from Eq. 24 of Ref. [9]:

dq p
dz V/42 - ip2'

n Bn-an
-n p12a9 (2.25)

which are screen Hamiltonian equations.

For photonic crystals, the medium is inhomogeneous and dispersive, meaning that

refractive index can be expressed as n = n(q, p, t, w). From Eq. 30 and Eq. 42 of

Ref. [10],

dq 8Q dk
Ok' dt

8Q dw 8Q

aq' dt at (2.26)

where w = Q(q, k, t). These equations are consistent with Eq. 2.23.

Equivalently in Eq. 42 of Ref. [10]:

dq c OQ (p
dt w n

w dp
c dt

Op c
q n c

aq ap (

When the medium under investigation is homogeneous in time and does not ex-

hibit dispersion for spatial frequency variable, refractive index is n = n(r, W). In this

case, Eq. 2.27 can be reduced to (Eq. 43 of Ref. [10])

p n
n c

w On
+ .aw (2.29)

wxOn
+ CW

+ C W .
c ao

(2.27)

(2.28)-



This is equivalent to (Eq. 45 of Ref. [10])

dq p dp _ Dn
d - - (2.30)ds n' ds 84'

by parameterize using s instead of t. This is exactly 3D Hamiltonian ray tracing

equations.

Therefore, it has been shown that Hamiltonian equations used for photonic crys-

tals are equivalent to 3D Hamiltonian equations.

2.3.2 2D aperiodic nanostructured Lineburg lens

Liineburg lens [61] is a gradient-index device with refractive index distribution n(r)

no V/2 - (r/R)2, where no is the refractive index of the medium outside the lens, R is

the radius of lens, and r is the distance to the center of the lens. It can focus a plane

wave illumination to a perfect geometric focus point at the opposite edge of the lens.

In this subsection a 2D aperiodic nanostructured Lineburg lens [97] is used as an

example of application of the Hamiltonian ray tracing method for photonic crystals.

The lens structure is similar to the one shown in Fig. 2-9(a), which consists

of unit cells with silicon rods embedded in air (See Fig. 2-5(a)). Its dispersion

relation is shown in Fig. 2-5(b). The rod radii profile of the Liineburg lens is

a(r) = ai /2 - (r/R)2 + a2 , where ai = 0.367ao, a2 =-0.101ao and R = 30ao.

The free space wavelength used is A = 1550 nm.

Ray tracing is numerically implemented by solving Eq. 2.23 with the Runge-Kutta

method. For every position of the lens, the dispersion relation is known and Eq. 2.23

can be solved. The results are shown in Fig. 2-6 with a comparison to results obtained

from conventional FDTD method. A good agreement can be seen. The illuminating

plane wave is focused on the opposite edge of the lens. Therefore, Hamiltonian ray

tracing is applicable to photonic crystals.



Dispersion Diagram of 2D rod structure

ky (ka/2x) 0 0 k, (ka/2x)

Figure 2-5: Unit cell of 2D aperiodic nanostructured Liineburg lens (a) and its dis-
persion diagram.

Nonlinear Subwavelength Luneburg

700

Figure 2-6: Comparison between Hamiltonian ray tracing and FDTD results for 2D
nanostructured Liineburg lens. Red circle encloses the lens. Blue lines are ray tracing
results. Red and dark blue color shading denotes the electric field distribution.
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2.4 Effective medium theory for metamaterials

Research in metamaterials is fast-developing and beam propagation analysis is be-

coming more and more important. Ray tracing again can be very useful in analysis

of metamaterials. Most metamaterials are operated under wavelength which is much

longer than the size of unit cell of the metamaterials. Therefore, these metamate-

rials can be treated as a GRIN lens, homogeneous or inhomogeneous, isotropic or

anisotropic. Ray tracing can be calculated according to the effective GRIN lens. In

this way, the key problem is: given a unit cell and operation wavelength, what is the

effective refractive index of the unit cell?

In this section, different methods for effective refractive index calculation have

been presented and compared. Two examples, aperiodic subwavelength nanostruc-

tured Lineburg lenses both in 2D and in 3D, are designed with effective medium the-

ory. For illustration purposes, our examples are solely inhomogeneous and isotropic.

Extending this method to anisotropic metamaterials are straight-forward since Hamil-

tonian equations have been extended to anisotropic media [80].

2.4.1 Example I: 2D subwavelength Liineburg lens

Lineburg lens as a GRIN lens is not achievable as a bulk medium. Here an aperiodic

subwavelength nanostructure is designed to mimick the refractive index profile. Here

we assume transverse-electric (TE) wave where electric field is perpendicular to the

2D plane.

We revisit the subwavelength Liineburg lens mentioned in the previous section.

The unit cell consists of a silicon rod (n = 3.46) in air (n = 1). Free space wavelength

is A = 1550 nm = 8a. Two methods are used to generate the effective refractive

index.

(1) Analytical method.

For TE mode, effective refractive index could be expressed analytically as [87]

eeff = f .1 + (1 - f) -CO, (2.31)



where f is the filling factor of the silicon rod in terms of area, ei and co correspond

to the permittivity of the rod and air, respectively.

(2) Dispersion diagram method.

According to the dispersion diagram for this unit cell described in the previous

section, group velocities at different wave vector k can be calculated with group

velocity definition

Vg =aOw(k) (2.32)
v k

The results are shown in Fig. 2-7(a). Iso-group-velocity contours are also illus-

trated as in Fig. 2-7(b). For the wavelength chosen in this case, |kla/27r = 1/8. For

such a small k, iso-group-velocity contour is almost a circle, meaning that this struc-

ture should be isotropic. Based on these, the effective refractive index is calculated

by

neff = c/|vg|, (2.33)

where c is the free space speed of light.

Effective indices for different radii of rods calculated from both methods above

are illustrated in Fig. 2-8. Two methods give close effective indices.

A 2D Liineburg lens has been designed and verified based on method (1). Here,

based on the effective refractive indices, a 2D subwavelength Lineburg lens is designed

with effective refractive index ranging from 2 to 2v/2. The structure and FDTD results

are show in Fig. 2-9. It can be seen that a plane wave is focused at the opposite of

the lens.

2.4.2 Example II: 3D subwavelength Liineburg lens

Effective refractive index calculation for three-dimensional unit cell is a more inter-

esting topic. A typical unit cell structure is shown in Fig. 2-10, where a spherical

silicon ball (n = 3.46) is embedded at the very center of a cubic air (n = 1) cell.
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Figure 2-7: Group velocity as a function of wave vector k (a) and iso-group-velocity
diagram (b) for the unit cell of aperiodic subwavelength nanostructured Liineburg
lens.
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Figure 2-8: Effective refractive indices at different radii of rods for the unit cells of
aperiodic subwavelength nanostructured Lineburg lens.

Many methods have been developed to calculate the effective refractive index,

namely effective medium approximations. Among them, there are:

(1) Maxwell-Garnett equations [40].

Maxwell-Garnett equations, as well as Bruggeman equations which will be intro-

duced later, are two kinds of effect medium theory which are widely used [481. They

relate the effective permittivity eff of a unit cell which consists of two materials, to

the permittivities of the two materials. Maxwell-Garnett equations have two forms:

(E-E1 Eo (0-l
= E o ,O26 ) (2.34)

E + 2ei Eo + 2e1

E O -7 Eo__ l - Co , (2.35)

c + 2EO c1 + 2co

where EO and ei are the permittivities of air and silicon, and rqO and m1 are the filling

factors in volume of air and silicon, respectively.

Eq. 2.34 treats air as an ambient material and silicon sphere as inclusion, while for
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Figure 2-10: Sample unit cell of the 3D aperiodic subwavelength nanostructured
Liineburg lens, where size of the unit cell is ao = 32.

Eq. 2.35, it treats silicon as ambient material and air as inclusion. Maxwell-Garnett

equations are expected to be valid when the volume faction q is small, since it is

assumed that the two materials are spatially separated.

(2) Bruggeman equations [18].

Bruggeman equations are another way to make an approximation of effective re-

fractive index. Bruggeman equations take the form of

1 -E + T2 (E 2 -C = 0, (2.36)
(Ei + 2E E2 + 2E

where ei and e2 are the permittivities of air and silicon, and 71 and q2 are the filling

factors in volume of air and silicon, respectively.

Unlike Maxwell-Garnett equations, Bruggeman equations make no assumptions

on the filling factor thus they treat air and silicon equally. While the permittivities

of two materials are close to each other, it is assumed that Bruggeman equations

provide a valid approximation.

(3) Dispersion diagram method.

The same as in the 2D case, dispersion diagram method can also be applied to

3D case. Dispersion diagram relating the frequency w(k) to the wave vector k for

the different unit cells can be calculated. For a particular silicon sphere radius and

operation wavelength, group velocity can be found. Since here we again assume that

wavelength is much longer than the size of the unit cell, the material could be treated

as isotropic. Effective refractive index for certain unit cell can be found from the

group velocity.

: X - I - -SI__ - - I . . .. ....... . ..... . .... zuvmz:



Figure 2-11: The diagram for the index retrieval method. First row is the simulation
setup. Second row shows a Gaussian pulse illumination. Third row gives the Gaussian
pulse hitting on the metamaterial layer. Last row shows one transmission and one
reflection Gaussian pulse. See text for details.

(4) Index retrieval method [92, 21].

Index retrieval method has been widely used as a reliable way to calculate the

effective permittivity and permeability of metamaterials. It takes advantage of the

reflection and transmission data, i.e. Su1 and S21 in transmission matrix. The dia-

gram for index retrieval method is illustrated in Fig. 2-11. A Gaussian pulse is passing

through a layer of the metamaterial, resulting into a transmission pulse and a reflec-

tion pulse. Assuming that this layer consists of homogeneous material, with effective

permittivity and permeability we are seeking, instead of layer of metamaterial, the

transmission pulse and reflection pulse should be the same with metamaterial case.

In this way, scattering parameters Sul and S21 could be expressed as

Ro1(1 - ei2nkod )
Sn 1 - R2 ei2nkod (23-

01

(1 - Roi)einkod
S21 = 1 - R?1ei2nkod (2.38)

01

where Roi = (z - 1)/(z + 1). Here z is the characteristic impedance, n is the effective

refractive index, ko is the free-space wave vector and d is the thickness of slab.
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In this way, index retrieval method can be performed as following. Firstly, the slab

of metamaterial we are investigating is placed with illumination of the Gaussian pulse.

Simulation such as FDTD is applied to obtain the transmission and reflection pulses.

Scattering parameters are thus calculated. Effective impedance and refractive index

is calculated by the following equations obtained by reverting Eq. 2.37 and Eq. 2.38:

(1 + S11 )2 - S
z 1 = t S 1 '(2.39)

(11-S)2 _ S21

eod - X i W1 - X 2, (2.40)

where X = 1/2S 21(1 - S21 + S21 ). Thus effective permittivity and permeability can

obtained from the retrieved values of z and n.

In order to design a 3D Lineburg lens, relationship between the radius of silicon

sphere in Fig. 2-10 and effective refractive index is calculated and shown in Fig. 2-12.

From the figure it can be seen that two types of Maxwell-Garnett equations offer

upper and lower limits for the effective refractive index of a typical unit cell. They

almost overlap when radius of silicon sphere is small enough, which matches our

discussion above. Results provided by Bruggeman does not make any sense; for radius

of sphere smaller than 0.32, the refractive index does not exist. This is because the

refractive indices of air and silicon have a huge difference. Dispersion relation diagram

and index retrieval method give mostly the similar results.

Three-dimensional Lineburg lens is designed with effective refractive index cal-

culated from index retrieval method, with effective refractive index ranging from 1.1

to 1.1 x v/2. Due to memory limit, only one layer of unit cells is simulated. A slice

along the plane is made to show the sphere ball distribution (Fig. 2-13(a)). From

Fig. 2-13(b) it can be seen that a plane wave has been focused at the right edge of

the lens.



Comparison between different methods
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Figure 2-12: Effective refractive index of unit cell of 3D Liineburg lens regarding
to the radius of silicon sphere. Four methods are used, including Maxwell-Garnett
equations (Types I and II), Bruggeman equations, dispersion relation diagram, and
index retrieval method. See text for more details.
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Figure 2-13: Structure (a) and FDTD results (b) of 3D aperiodic subwavelength
nanostructured L .ineburg lens, whose effective refractive indices are calculated from
index retrieval method .Effective refractive index ranges from 1.1 to 1.1 x v2. Red

and blue lines denote the Liineburg lens. Red and dark blue color shading denotes

the electric field distribution calculated from FDTD.
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2.5 Conclusion

In this Chapter, Hamiltonian ray tracing method has been introduced and its ex-

tension to complex media such as photonic crystals and metamaterials has been ad-

dressed. Traditional Hamiltonian equations are based on screen Hamiltonian or 3D

Hamiltonian. For easy wavefronts generation and physical insights, 3D OPL Hamil-

tonian ray tracing is derived and applied to Liineburg lens. Hamilton equations for

photonic crystals are presented and it has been proven that they are equivalent to

conventional Hamiltonian equations. Hamiltonian optics provide a faster solution to

the beam propagation analysis of photonic crystals comparing with FDTD method.

Hamiltonian equations can also be applied to metamaterials by incorporating effec-

tive medium theory. Aperiodic subwavelength nanostructured Lineburg lenses, both

in 2D and in 3D, are designed and verified as examples of this method.
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Chapter 3

Hamiltonian ray tracing for wave

propagation

Optical wave propagation in inhomogeneous materials has become an important prob-

lem in research fields such as photonic crystals [66] and metamaterials [28]. Conven-

tional treatment to this problem, the finite-difference time-domain (FDTD) method,

can simulate wave propagation in an inhomogeneous medium, but it is computation-

ally complex and physically less intuitive than ray diagrams. Therefore, up to now,

a lot of work has been done to employ the ray-tracing methods, such as Hamiltonian

ray-tracing, to analyze beam propagation in these materials. However, ray tracing,

as have been discussed in Chapter 2, is based on geometrical optics and thus does

not take the wave optics phenomena into account. Researchers keep on finding a ray-

tracing extension to account for wave optics effects. For example, Keller introduced

a theory of geometrical diffraction [51] and had extended it to inhomogeneous media

[34].

In this Chapter, we propose an alternate method [361, which has more physical

foundation, for simulation of wave optics effects in an inhomogeneous medium. Our

method uses the Wigner distribution function (WDF) as initial condition required for

Hamiltonian ray-tracing. We first start with a brief introduction of the WDF, with

its physical meanings and properties. Then the method is presented and the general

procedures are highlighted. A Gaussian beam propagation in free space is taken as



an example. Beside, as examples to validate the approach, we have simulated the

propagation of a Gaussian beam through an elliptical GRIN medium, and Lagurre-

Gaussian rotating beam propagation. At the very beginning, let us start with the

basics of the WDF.

3.1 Introduction to the Wigner distribution func-

tion

The Wigner distribution function was introduced by E. Wigner in quantum mechanics

in 1932 [105]. Later, it has been applied to optics by A. Walther [103]. It is a

mathematical tool for representing signals in phase space. It could simultaneously

provide information about the spatial properties and angular spectrum of a signal.

The WDF of a coherent optical signal f(x) is defined by

WV(x,u) Jf(x + )f*(x - ) exp (-i27rux')dx', (3.1)

where x is the position and u is the spatial frequency.

Also, if given a coherent optical signal with Fourier transform F(u), the WDF is

defined similarly by

W(x, U) ] F(u + U')F*(u - U') exp (i27rxu')du'. (3.2)

The WDF, as applied to optics, defined the generalized radiance for certain po-

sition and momentum [103, 106]. It has many interesting properties. Some of them

which are utilized in the thesis are listed below:

1. Realness. The WDF is always real:

W(x, u) = W*(x, u). (3.3)

This property is consistent with the physical meaning of WDF since generalized ra-

diance should not has imaginary part.



2. Region property. If f(x) = 0 for x < xo, W)(x, u) = 0 for x < xo, or vice

versa.

3. Projection property. Energy related quantities can be expressed as projec-

tions of the WDF.

" Intensity: A projection along momentum u direction.

1(x) = If(x)1 2 - JV(x, u)du. (3.4)

" Fourier spectrum intensity: A projection along position x direction.

Iu (u) = I F(u)|12 = JW (x, u) dx. (3.5)

" Total energy: a 2D integral on the WDF plane.

E = If(x)12dx = |F(u)|2 du = W(x, u)dxdu. (3.6)

It is also helpful to start with the WDF of some special optical signals listed below:

1. Point source. Assuming that a point source is located at position xO, the

signal is expressed as f(x) = 6(x - xo). The WDF takes the form:

W(x, u) = 6(x - Xo), (3.7)

which is a vertical line along the u direction at position xO.

2. Plane wave. Assuming that a plane wave is with spatial frequency uo (related

to the direction of propagation), the signal is expressed as f(x) = exp(i27ruox). The

WDF takes the form:

W(x, u) = 6(u - uo), (3.8)

which is a horizontal line along the x direction at spatial frequency uo.

3. Gaussian beam. Assuming that we have a Gaussian beam f (x) = exp(-1 (x-



Xo) 2 ), its WDF can be written as:

W(x, u) = exp { (X - Xo)2 + 2r 2 )}, (3.9)

which is Gaussian distribution in both x and u directions.

3.2 Wave propagation examples

Ray tracing method, such as Hamiltonian ray tracing, is computationally more effi-

cient and provides more physical insights into the radiance evolution for the beam

propagation. However, ray tracing is based on geometric optics so that wave effects

are lost during propagation. It will be very useful if wave phenomena could be in-

cluded in ray tracing. In this section, we show that wave effect can be considered in

ray tracing by defining the initial condition of rays with the WDF. Several examples

are implemented to validate this method.

The WDF provides a connection between rays and waves [98]. The local spatial

frequency (or momentum in Hamiltonian ray tracing language) corresponds to the

angle of a ray in geometric optics [43]. Huygens' principle states that for each point

of a wavefront, it has multiple rays emitting out. Each ray has different position

and momentum, and carries the generalized radiance defined by the WDF [103, 106,

98]. Therefore, each ray corresponds to one point as the WDF plane, with position,

momentum and generalized radiance defined (Fig. 3-1). Bastiaans has proven that

the value of WDF, i.e. the generalized radiance, keeps constant along the ray [9, 10].

From the discussions above, for this method combining the Hamiltonian ray trac-

ing and the WDF, three key points are worth emphasizing:

1. Each point on the WDF plane can be treated as a ray;

2. Ray path in the medium is governed by the Hamiltonian ray tracing equations;

3. The generalized radiance carried by each ray, as defined by the value of WDF,

keeps constant along the ray path.
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Figure 3-1: Relationship between the WDF and initial condition of rays defined.
Each ray corresponds to one single point on the WDF plane. (a) The WDF plane
with five points chosen at the same position but different momenta. (b) Five rays
emitting from the same position defined through the five points on the WDF plane.
The directions of them are related to the momenta in (a) and generalized radiances
are proportional to the values of WDF.

With the ray tracing results on hand, the optical intensity at certain position can

be calculated by summing up the generalized radiances carried by all the rays passing

through this point. This is equivalent to perform a projection along u direction on

the WDF plane.

In this way, the diffraction has been taken into account by simply using Hamilto-

nian ray tracing with initial conditions defined by the WDF.

3.2.1 Single and double-slit diffraction

As the first example, the fundamental wave effects, the single and double-slit diffrac-

tion, are performed to validate the method proposed in this Chapter.

For the two cases, the WDF of the input, either single slit or double slit, is

calculated. Then for each point on the WDF plane, one ray is defined accordingly.

For each ray, Hamiltonian ray tracing equations are solved to find the final position

of this ray at the output plane. Since currently the medium is free space so the

Hamiltonian ray tracing is not used in practice but rays are simply straight lines.

Finally, the intensity distribution of the output plane is generated by a projection on

the WDF plane.

. ......... ............... . ........... _ -- r., .........................
...... .... .



The results are shown in Fig. 3-2. Here the free space wavelength is chosen as

A = 1 mm and propagation length L = 1000 m. For the single-slit case, the slit width

is w = 0.1 m. The WDF and the calculated diffraction pattern at the output plane

are illustrated. From the intensity pattern, the distance between two neighboring

intensity minimum points is 10 m, which matches the result from analytical solution:

AL
Ax - 10 m. (3.10)

Also, for the double-slit case, the slit width is again w = 0.1 m and the distance

between the two slit centers is d = 0.4 m. The WDF shows that besides the patterns

of the two slits, there is another pattern with some negative generalized radiances

in between. This is the interference pattern of the WDF and it contributes to the

interaction between the two slits, namely interference. From the intensity pattern, the

distance between two neighboring intensity maximum points is 2.5 m, which matches

the result from analytical solution:

A L
Ax = - 2.5 m. (3.11)

From all the discussions above, this method is able to include the wave effects by

simply using geometric ray tracing.

3.2.2 Gaussian beams in free space

In this subsection, a Gaussian beam is generated with the method discussed in pre-

vious section and verified with analytical results in free space. For a 2D Gaussian

beam, the intensity distribution is

I(x, z) = Io exp ,-2 (3.12)
w(z) w2(z)
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Figure 3-2: Single and double-slit diffraction results calculated based on the method
discussed in this Chapter. (a) The WDF of the single-slit. (b) The diffraction pattern
of the single-slit at the output plane. (a) The WDF of the double-slit. (b) The
diffraction pattern of the double-slit at the output plane.
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where

Z 2 W2

w(z) = wo + - ) z = . (3.13)
zR A

For the case used in the simulation, the Gaussian beam illumination at the initial

input plane is chosen as:

E(x, z) = EO exp 2 , (3.14)
( 2o-

where EO 1 and o- = 0.02 m. Note that in this Chapter, Gaussian beams are

assumed to be two dimensional, meaning that there is only one transversal axis x.

The electric field profile as well as its WDF are illustrated in Fig. 3-3.

-50

0.8. 0.9
008

0.66
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0.4-

0.2. 0.3

0.2 - 0.2

011. ,.50 
0.1

-0.1 -0.05 0 0.05 0.1 -0.5 0 0.5
X

(a) (b)

Figure 3-3: Electric field distribution (a) and the WDF (b) for the input Gaussian
source.

Based on the WDF defined initial condition for rays, the Gaussian beam profile

propagating in free space can be generated as is shown in Fig. 3-4. In order to validate

this method, it is important to make a comparison of the generated beam profile with

that given by analytical results. To meet this goal, curve fitting is implemented to

make such a comparison.

First, for every z plane on the z axis, the intensity is obtained and curve-fitted

with the analytical expression of a Gaussian distribution since every z axis should be

a normal distribution for a Gaussian beam propagation. We include 2001 z planes

...... ............... ...... .............................. -- .... .... ... .. ........ .
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Figure 3-4: Gaussian beam profile while propagating in free space

from z = 0 m to z = 20 m with an interval of 0.1 m. The analytical formula used for

curve fitting is ai -exp(-((x - bi)/ci) 2 ).

Curve fitting results are shown in Fig. 3-5. From goodness of fit results, it can be

seen that every z plane keeps a very good Gaussian distribution. The sum squared

error (SSE) and root mean square error (RMSE) are almost zero. The coefficient

of determination (R2 ) and degree-of-freedom adjusted coefficient of determination

(adjusted R2 ) are almost one. The evolution of a1 and ci for curve fitting at different

z planes is also shown below in Fig. 3-6. A very good agreement can be seen between

curve-fitting data and analytical results. Therefore, the method discussed in this

Chapter provides a valid solution to the Gaussian beam propagation in free space.

3.2.3 Gaussian beams in elliptical GRIN medium

In this subsection, propagation of a Gaussian beam in elliptical GRIN medium is

investigated as another example. The illuminating Gaussian source is shown in Fig. 3-

7(a). The elliptical GRIN medium has a refractive index distribution of n(x) =

/ - 2x 2 where no = 1.5 and i = 0.45 m 1 , as shown in Fig. 3-7(b). It is invariant

along z direction and changes only in the transverse x direction.

The results are shown in Fig. 3-7(c)(d). Sampled ray tracing results clearly show

........ .........................
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Figure 3-5: Curve fitting results for Gaussian beam propagation in free space. (a)
One example of curve fitting at z = 10 m. Blue dots are the original intensity data
and red curve is the curve fitting result. (b) Parameters for the goodness of fit at
different z planes: SSE and RMSE. (c) Parameters for the goodness of fit at different
z planes: R 2 and adjusted R2
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Figure 3-6: Curve fitting results for Gaussian beam propagation in free space. (a) a1
distribution along different z planes. Blue line is the analytical result and red line is
the curve-fitting result. (b) ci distribution along different z planes. Blue line is the
analytical result and red line is the curve-fitting result.

the periodic focusing of rays in the region under investigation. This matches the

intensity profile where periodic focusing can be located at the same spots as ray

tracing. Diffraction has been taken into account since one initial point has multiple

rays emitting and some of them focus away from the center.

3.2.4 Rotating beams

Rotating beam [89, 83] is an intensity distribution which gradually and continuously

rotates with respect to its optical axis as it propagates. This property has attracted

much research attention and a lot of works have been done on rotating beams, in-

cluding highly efficient rotating PSFs [75], fluorescence imaging beyond the diffraction

limit [76] and optical manipulation of particles [4].

Rotating beam can be achieved through a combination of different Laguerre-

Gaussian (LG) modes. LG mode is written as [83]

Un,m(r) = Cn,mG(p, z)Rn,m(p/W(Z))<bm(<p)Zn(z). (3.15)
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Figure 3-7: Gaussian beam propagation in elliptical GRIN medium. (a) The input

Gaussian beam in free space. (b) Refractive index profile of the elliptical GRIN

medium. (c) Sampled rays from ray tracing results for Gaussian beam propagation.

(d) Beam propagation results in this elliptical medium.

The terms on the right-hand side are

(3.16)

(3.17)

Cp,m = [ 2m ] exp [n2 exp ! ;

G(p, z) = WOexp - () exp ip2 - exp -- i arctan - ,
w (z) w[)2 2w(z)2R(z)] zo _

where w(z) - wotl+ (z/zo) 2]1/2 is the Gaussian spot size, zo = Irwo/A is the Rayleigh

length, arctan(z/zo) is the Gouy phase, and R(z) = z[1 + (zo/z) 2] is the radius of

curvature of the wavefront;

Rnm(p/W(Z)) = (z) Llmiy2 W(z)2 (3.18)

where Limi-/2 are the generalized Laguerre polynomials with integers n and m
(n-Im , + m 4

following ni =ml, Iml +F 2, Iml +-1- 4...;

<Dm(<p) = exp[imtp];

. - -44A

-0.5

0

0.5a- - - "** *** **

0 5 10 15 20

au 10

(3.19)
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Figure 3-9: The intensity profiles of rotating beam at different propagation lengths.
A superposition of (0 0) and (2 2) LG modes is used as the illumination. The unit
for z is meter.

beam propagates. Rotating beam is a superposition of different LG modes. Assuming

free space illuminated by a superposition of (0 0) and (2 2) modes, the beam intensity

profiles at different propagation lengths are calculated based on the analytical results

in Eq. 3.15. The results are shown in Fig. 3-9. In this case, for convenience, free

space wavelength is chosen as A = 500 pm and wo = 1 m.

It is interesting to investigate the reason for the rotation of beam from the WDF

perspective. The WDF of LG mode is obtained through either analytical derivation

[89) or numerical evaluation of the definition of WDF applied to LG mode. Since for

the LG mode discussed in this section, it is 2D so that the WDF of it is 4D. It is

difficult to plot 4D WDF so a compromise has been made to illustrate the WDF as in

Fig. 3-10. The middle figure is the projection on the (x, y) plane so it is the intensity

profile. By investigating the (u, v) profiles at four different positions of the mode,

it can be seen that the positions of positive generalized radiances are always at the

rotating direction of that specific point, and vice versa. Since (u, v) is an indication

of ray directions, the beam is rotating based on the WDF picture.

The rotating beam is investigated with the method discussed in this Chapter, with

. ................

Z =1000
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Figure 3-10: The WDF of (2 2) mode. The middle figure shows the WDF with
a projection of (u, v) on the (x y) plane. Four small figures illustrated the (u, v)
distribution for a specific (x, y). Here (x, y) is certain position and u,v are the spatial
frequencies (ray directions) along x and y directions, respectively.

the same parameter as in Fig. 3-9. The illumination is again a combination of (0 0)

and (2 2) modes. According to the results shown in Fig. 3-11, beam rotation can be

clearly seen. Some artifacts occur along the edge of the beam profile, which is due to

the low resolution of WDF used limited by the computer memory.

(a) Z= 0 (b) z =400 (c) z =800 (d) z =1200 (e) z =1600

Figure 3-11: Rotating beam profile evolution as the beam propagates based on the
method discussed in this Chapter.

In addition, the rotating beam is also analyzed in the elliptical GRIN medium

with refractive index distribution n(x, y) = V/n;2- K2 (x 2 + y2 ). Based on the results

shown in Fig. 3-12, the beam rotates as it propagates, while at the same time, the

beam size oscillates as a result of the GRIN medium.

..... ....... ...... .... .. .. .. .. . .



(a) z = 0 (b) z = 400 (c) z = 800 (d) z = 1200 (e) z = 1600

Figure 3-12: Rotating beam profile evolution as the beam propagates in elliptical
GRIN medium based on the method discussed in this Chapter.

3.3 Conclusion

In this Chapter, a method for including wave effects into ray tracing has been intro-

duced by defining the initial conditions of Hamiltonian ray tracing using the WDF.

This method is physically intuitive and offers more physical insights into the gen-

eralized radiance evolution in certain media. Examples are given to validate this

method, including single and double-slit diffraction, Gaussian beam propagation in

free space and elliptical GRIN medium, and rotating beam propagation in these me-

dia. In addition, this method is also useful in nonlinear media. Nonlinear media

are very important in many cases and beam propagation in nonlinear optical media

should be very beneficial. In the following chapter, the method presented here will be

extended to the iterative nonlinear beam propagation method. It will not only solve

the nonlinear beam propagation problem but also preserves the intuitive ray tracing

perspective.

.....................



Chapter 4

Iterative nonlinear beam

propagation method

Nonlinear beam propagation plays a very important role in investigation of nonlinear

optical devices and systems, such as integrated optical systems [47], optical fiber com-

munication systems [2], etc. With the development of research on photonic crystals

and metamaterials, their properties with nonlinearity have been investigated [26, 17].

Many methods for nonlinear beam propagation have been introduced in literature.

Three categories of typical methods are briefly presented as follows.

(1) Split-step beam propagation method (BPM). BPM [2, 99, 90] is a conventional

treatment of nonlinear beam propagation, providing a step-wise solution of nonlinear

Schr6dinger (NLS) equation in coherent regime. The NLS equation is written as [54]

1 V92E 1 2p
2E - - - -- - (4.1)

c2 Ot2  cC2 at2

where E is the electric field, P is the induced polarization, c is the speed of light and

co is the permittivity in vacuum. Assuming that the beam is propagating along z di-

rection (optical axis), electrical field could be expresses as E(r, t) = A(r) exp(ikonoz),

where A is certain amplitude, no and ko are refractive index and wavenumber in vac-

uum. Under paraxial approximation, in nonlinear Kerr effect medium, NLS equation



becomes

OA 82A 82A
2inoko +( + -) + 2k non 2 IA = 0. (4.2)

Oz 8X2 Oy 2 0

where n2 is Kerr effect coefficient and I is optical intensity. Thus the evolution of

optical field along z direction is governed by two factors: the diffraction term (second

term of Eq. (4.2)) and the nonlinear term (third term of Eq. (4.2)). BPM solves the

beam propagation solution step by step along z direction. For each smaller enough z

step Az, BPM assumes that effects due to diffraction and nonlinearity can be treated

as independent. Therefore, optical fields on the two neighboring z slides are related

by [78]

i(k + k )Az
E(x, y, z + Az) = exp(-ikon2 I)F exp I{ 2ko ] I{E(x, y, z)}. (4.3)

In each calculation step, BPM takes the current optical field, performs Fourier trans-

form and adds the diffraction term exp[i(k + k )Az/(2ko)], which is the transfer

function for beam propagation in linear media. Then it performs the inverse Fourier

transform and adds the nonlinear term exp(-ikon 2I) in the space domain. The whole

beam propagation profile can be generated based on the step-wise solution.

(2) Partially coherent regime methods. With the discovery of partially coher-

ent solitons [67], several methods aiming at nonlinear beam propagation in partially

coherent regime have been presented. Among them, one method is based on the

propagation of mutual coherence function and accounts for refraction [86]. In self-

consistent multimode theory [68], the incoherent beam is treated as a multimode

waveguide which in turn guides the beam itself. Analysis of this multimode waveg-

uide is carried out by multiply populating the guided modes. For coherent density

method [23], an infinite set of coupled nonlinear Schr6dinger-like equations are pro-

vided from incoherent angular spectrum of the illumination. Later, Christodoulides

et al. have proved that these methods are equivalent [24].

(3) Wigner distribution function approaches. It is physically intuitive if ray di-



agrams are generated in the nonlinear beam propagation investigation. With ray

diagrams, radiance evolution for the beam propagation profile is obvious. In order to

achieve this goal, methods based on the Wigner distribution functions (WDF) have

been introduced [29, 45]. These methods derive a set of differential equations govern-

ing the transport of radiance. However, due to the coupling between optical intensity

and refractive index, solving these equations is not straight forward.

In this Chapter, an iterative nonlinear beam propagation method [39] is proposed

to provide ray diagrams which are physically more intuitive. At the same time, wave

effects and coherent properties are preserved, meaning that this method not only takes

the wave effects, such as diffraction and interferences into account, but also works in

both coherent and partially coherent regime. With Kerr nonlinearity, this iterative

method is verified in coherent regime with self-focusing and spatial solitons, and is also

validated by Gaussian-Schell model propagation in partially coherent regime. This

iterative nonlinear beam propagation method provides a recipe for the investigation

of nonlinear metamaterials and devices. In the next Chapter, a nonlinear Lineburg

lens is taken as example for this application.

4.1 Iterative nonlinear beam propagation method

The proposed iterative nonlinear beam propagation method is based on Hamiltonian

ray tracing [107] and the WDF [103, 106, 11, 5]. Throughout this Chapter, without

loss of generality, bulk media with Kerr effect nonlinearity [16] are used to demonstrate

the method. The common phenomenological Kerr index dependence on the optical

intensity as n = no + n2I is used, where no is the linear component of the refractive

index, n 2 is the Kerr coefficient and I is the optical intensity.

The block diagram of the method is shown in Fig. 4-1.

The method consists of three steps in one iteration: (1) Define the initial condi-

tion for each ray emanating from the input plane; the value of the radiance of each

ray is computed from the WDF of the input field; (2) Solve the Hamiltonian ray

tracing equations for each ray; (3) Generate the intensity distribution and update the



Start

Define initial rays

Hamiltonian ray-tracing

Generate mntensity and
refractive index distribution

No

Converges?

Yes

End

Figure 4-1: Block diagram of the iterative nonlinear beam propagation method.

refractive index distribution.

In the first step, the initial position and momentum of the rays for the input il-

lumination are defined based on the WDF, which is used as the initial condition for

Hamiltonian ray tracing in Step 2. The WDF [11, 5] defines the generalized radiance

of every position and momentum. Thus every discretized point on the WDF plane

corresponds to one ray, with the corresponding position and momentum defined. The

generalized radiance carried by the ray is defined by the value of WDF of the corre-

sponding point. Generalized radiance, as compared with classical radiance, includes

wave effects into ray tracing [5]. Therefore, each input position has multiple rays

emanating with different momenta, which is suggested by Huygens' principle; and

wave effects are taken into account through this consideration.

To better illustrate this point, a Gaussian beam propagation in free space is pre-

sented in Fig. 4-2. Fig. 4-2(a) shows the WDF of a Gaussian source computed at

the initial plane in one dimension, and Fig. 4-2(b) illustrates the Gaussian intensity

profile along the propagation direction. This is generated by solving the Hamiltonian

.............. _



equations for each ray with the initial condition defined by the WDF in Fig. 4-2(a).

The intensity profile matches well with the analytical solutions of Gaussian beam in

two dimension. Reader may want to refer to Chapter 3 for a detailed discussion on

Hamiltonian ray tracing applied to wave propagation using the WDF.

1 3

2 0.8

0..

-0.5 A B CA2 0.2

-1 .1
-2 0 2 - 50 100 150 200

x (wO) z (wO)

(a) (b)

Figure 4-2: The WDF of the Gaussian beam at the input plane in one dimension (a),
and Gaussian beam generated from rays with initial condition specified by the WDF
(b). Here x is position and p is momentum. All numbers are scaled according to the
waist wo. Free space wavelength is A = wo/20. Nine points on the WDF plane (white
dots in (a)) correspond to 9 rays (arrows in (b)). Three different ray directions are
shown for each of the 3 positions (A-C). The lengths of arrows are proportional to
the generalized radiance of the WDF.

What is more, the WDF can also describe partially coherent light [12]. Thus this

method is also applicable for simulation of the beam propagation in partially coherent

regime.

In the second step, Hamiltonian ray tracing is applied to each of the ray defined

in the previous step. Hamiltonian ray tracing solves the two differential equations

governing the ray trajectories [107]:

dq MH p dp -H on
- = - = - d - = - - = - (4.4)dao- p |p|' do- aq aq'

where q and p are position and momentum along the path, H = IpI - n is the

3D Hamiltonian, n is the refractive index and a parameterizes the ray trajectories.

Hamiltonian ray tracing is computationally efficient than the FDTD method. De-

tailed discussions on Hamiltonian ray tracing can be found at previous chapters.

. . . . ........................................................... ...........



In the third step, the optical intensity of each point of the nonlinear media is

calculated through the projection in the momentum direction on the WDF of the

corresponding plane, which is generated based on the Hamiltonian ray tracing results.

This is shown in Fig. 4-3. Also, an updated refractive index is calculated based on the

intensity through the Kerr effect relationship, where refractive index changes linearly

to the optical intensity.

p

Figure 4-3: Optical intensity generation based on the Hamiltonian ray tracing results.
Here x is position, z is optical axis and p is momentum. Blue dashed line is the
calculating plane and color shading is the WDF generated from all the rays (with
different positions and momenta) passing through this plane. Intensity distribution
along this plane is calculated through a projection along the momentum direction
(white arrows) on the WDF.

After one iteration, ray tracing is again applied to the new refractive index profile

and another updated version of refractive index is generated. Finally the iterations

converge and the final intensity profile is the beam propagation results we seek. The

convergence condition is:

S Icurrent - Ipre <e (4.5)
All points

where the difference between the intensities generated at two consecutive iterations

is expected to be below certain threshold.

This method provides a ray picture to the nonlinear beam propagation which is

physically more intuitive, offering an insight into the radiance evolution in the non-

.. ............... .. ...... ................



linear media. Also, it has the potential application in optical system design softwares

such as ZEMAX, where ray tracing is generally used. With this iterative method,

while dealing with nonlinear element, it could be consistent with the ray tracing

throughout the analysis, avoiding the transition between rays and waves. Further-

more, it has been proved that Hamiltonian ray tracing, under the locally periodic

assumption, is valid in photonic nanostructures [49, 81]. Thus, this iterative method

could also be applied to nonlinear metamaterials and nanophotonics devices, provid-

ing a systematic approach to nonlinear beam propagation simulation in these devices.

An example, nonlinear subwavelength nanostructured Lineburg lens, is investigated

in the next chapter.

4.2 Examples

The proposed iterative nonlinear beam propagation method is validated with self-

focusing [22, 52] and spatial soliton [54] phenomena in nonlinear Kerr effect media

with totally coherent illumination. In the partially coherent regime, Gaussian-Schell

model is investigated and the results agree with those provided in [96].

4.2.1 Self-focusing

Self-focusing is a well known phenomena [22, 52]. It results from the competition

between diffraction and nonlinearity. Diffraction expands the light beam while Kerr

nonlinearity creates a waveguide by itself and focuses the beam. In the case that the

focusing effect due to nonlinearity is stronger than the expansion effect due to the

diffraction, self-focusing happens. In a bulk Kerr effect medium with Gaussian beam

input, multiple foci occur in periodically spaced locations along the optical axis, as a

result of the interaction between the diffraction and the nonlinearity [16].

The first example is taken as the periodic self-focusing of a Gaussian beam in

a weak Kerr effect medium. In this example, the original linear refractive index of

medium is no = 1.5 and Kerr effect coefficient is n2= 2 x 10-13 (m/V)2 . The input

Gaussian beam has a waist of 2 mm and a peak amplitude of 250 V/m, which is



equivalent to intensity of 12.4 mW/cm 2. Length of propagation is 100 m. After

11 iterations, the intensity distribution estimates converge. Fig. 4-4(a) shows the

converged beam propagation results. As a comparison, the result produced by BPM

is shown in Fig. 4-4(b). They match well. Computation time for iterative method

is 2.1 minutes while for BPM it is 33 seconds.

33

2 2

11 0.8

X - 1 0.5 x ~ 0.4
-2 -2 0.2
-3 0 -3

0 20 40 60 80 100 0 20 40 60 80 100
z (m) z (m)

(a) (b)

Figure 4-4: Periodic self-focusing of Gaussian beam in Kerr medium produced by
the iterative method (a) and BPM (b). The white lines are a subset of all 10100
rays used in the simulation. The color shading represents intensity, computed as
projection along the momentum direction from the generated WDF.

For the second example a change of source is made from a single Gaussian beam

into two identical Gaussian beams located at different positions of the input plane.

They are parallel to each other and propagating into the Kerr effect medium. The

same medium is used in the simulation and each beam has a waist of 1 mm and a

peak amplitude 282 V/m, which is equivalent to intensity of 15.8 mW/cm2 . Distance

between their waist centers is 1.6 mm and propagation distance is 80 m. After 19 iter-

ations the resulting intensity profile is converged and results are shown in Fig. 4-5(c).

Periodic focusing and divergence of the two beams are again observed. Computation

time for the iterative method and BPM are 3.9 minutes and 43 seconds. By compar-

ing the results with the ones obtained by BPM, which is shown in Fig. 4-5(d), it can

be seen that they are in a good agreement.

In this second example, evolution of intensity difference between two consecutive

iterations is illustrated (Fig. 4-6). The difference becomes smaller when the iterations

........ .....
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Figure 4-5: Periodic self-focusing of two Gaussian beams in Kerr medium produced
by the iterative method (a) and BPM (b). The white lines are a subset of all 10100
rays used in the simulation. The color shading represents intensity, computed as
projection along the momentum direction from the generated WDF.

continue. The intensity converges after 19 iterations and the results provide the beam

propagation in nonlinear medium.

4.2.2 Spatial soliton

Spatial soliton happens when the effects as a result of diffraction and nonlinearity

cancel with each other and the beam neither expand nor focus. It keeps on its shape

as it propagates, resulting in a soliton. Analytical solution can be obtained for spatial

soliton from the (1 + 1)-dimensional NLS equation. Firstly (1 + 1)-dimensional NLS

equation is rewritten as

OA a 2A
2inoko + +2konon2IA =0. (4.6)

Dz Ox 2

One solution of the NLS equation [54] is

A(z, x) = VIosech (x/wo) exp (iz/2konow2) (4.7)

where wo is the waist of light beam and 1 = (k2non 2 w)- 1 is the peak intensity. This

is the solution for the spatial soliton. It can be seen from the analytical solution that

...... . ..... ....... . .. ............................................ . . . ........ .... . ...
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Figure 4-6: Total intensity difference between one iteration and its previous iteration.

it does not change its shape in x direction for different propagating position along

optical axis z.

In this example, the illuminating source is the spatial soliton profile along x di-

rection with w0 = 0.55 mm and a peak amplitude A = 281 V/m, which equivalent to

intensity of 15.7 mW/cm 2 . The material parameters are the same as in the previous

example. The estimates of the intensity profile converge after 16 iterations, and re-

sult is shown in Fig. 4-7 and Fig. 4-8(a). In Fig. 4-8(b)(c), the computed intensity

profile is compared with the analytical result, which shows good agreement of the two

results. Simulation time for iterative method is 3.1 minutes. A subset of rays used in

calculation is shown in Fig. 4-8(a) to give a ray picture of the soliton. Interestingly,

each ray follows an oscillating trajectory with different period. Rays with different

initial positions and momenta carry different generalized radiances, and their trajec-

tories are of different periods. They add up into a spatial soliton intensity profile.

This is a very interesting ray picture for the spatial soliton.

4.2.3 Gaussian-Schell Model

As have been mentioned above, iterative nonlinear beam propagation method is based

on the WDF, which means that it is also valid for partially coherent light illumination.

... ....... ...............
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Figure 4-7: Ray tracing results from iterative nonlinear beam propagation method
for spatial soliton. Lines are sampled from the ray tracing results and colors of rays
indicate the generalized radiances carried by them based on WDF.
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In order to validate this, Gaussian-Schell model is taken as an example for partially

coherent regime.

Gaussian-Schell model is an ideal partially coherent light model in which both the

intensity and the spatial coherent function follow the Gaussian distribution function.

Its correlation function could be written as [12]

F(z X2) = \2o exp 2 -[(Xi + X 2 )2 + (X1 - X 2 )2, (p >, 0 < < 1)(4.8)
p 2p2

where p is a scaling factor and a is a measure of coherence. While o = 1 corresponds

to completely coherent light, o -+ 0 leads to incoherent light. The WDF of the

Gaussian-Schell model has the analytical form which could be used in the iterative

method is

W(x, u) = 2o- exp [-o 2 + U2 ), (p >0 0 < 1), (4.9)

where u is the spatial frequency related to the optical momentum. Interestingly, the

WDF also follows the Gaussian distribution both in x and in u.

Eq. 4.8 could be rewritten by replacing x = (X1 + X2)/2 and Ax= Xi - x 2 and

further parameter manipulation into

F(, Ax) = Io exp (-a (Ac)2 , (4.10)
0 C

where ao and lc correspond to the width and correlation of the beam, respectively.

In this example, Gaussian-Schell model [96] with input beam width ao = 25 pm

and correlation length lc = 1.5 pm is examined. Fig. 4-9(a) shows the converged

intensity profile of Gaussian-Schell model propagation in weak Kerr effect medium

after 5 iterations. The beam width evolution is consistent with Eq. 4 of [96]. The

full width at half maxium (FWHM) change in the case of le = 1 pm and 2 pm is

illustrated in Fig. 4-9(b). The results show good agreement with Fig. 1 of [96].
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Figure 4-9: (a) Converged intensity profile for Gaussian-Schell model beam propaga-
tion in weak Kerr effect medium. (b) FWHM at different An for a fixed propagation
length.

4.2.4 Ray diagrams of spatial solitons

Based on the results shown in Section 4.2.2, rays in spatial solitons follow oscillating

patterns with different periods and they add up into solitons. It is interesting to

investigate more properties of the ray diagrams of spatial solitons in detail.

Here the governing equations for ray tracing are derived based on Hamiltonian

equations at the first place. Since the spatial soliton is stable so that the refractive

index distribution of the nonlinear medium is stable and totally determined by the

intensity profile of the soliton. Therefore, the index profile of the nonlinear medium

is given as: n = no ± n2 sech 2 (x/w). In this way, the ray tracing can also be found

by treating the medium as linear but with the index profile given above. Ray tracing

on the medium gives the right results.

Screen Hamiltonian equations are

dx O Oh p 4. px
d- -P -- (4.11)dz o9p, Vn2 _ p2 h'

dpx Oh n On nOn
dz Ox Vn2 _ p2 Ox h ax'

where the screen Hamiltonian is h - fn 2 - p2 P_
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Figure 4-10: Hamiltonian ray tracing description of spatial soliton. White lines are
sampled rays from the ray tracing results. Color shading denotes the distribution of
normalized nonlinear index change n 2 I(x), i.e. intensity profile. Yellow dashed lines
are the wavefronts for specific OPLs.

Therefore
d2 x 1 dp2 _ n an
dz2  h dz h2x (

Finally the equation governing the ray trace can be written as:

d2X nan nOn n
d- - n 2 - 2 - sech ()- tanh()- . (4.14)
dz2  h2 9X 2 OX pZ w w w

where no = 1.5, n2 = 2 x 10-13 x 2812 , w = 0.55 x 10-3, which is the same as the

soliton case above in Section 4.2.2. Numerically solving this equations gives out the

oscillation results with different periods too.

The ray tracing results are shown in Fig. 4-10, which are consistent which the

results obtained directly from the nonlinear beam propagation method (Fig. 4-8). In

addition, the wavefronts are shown as yellow dashed lines by connecting the points

with the same OPL. Wavefronts are vertical to the optical axis, which is in agreement

with the analytical expression of spatial soliton, i.e. Eq. 4.7, where the phase only

changes along z direction and keeps constant along x direction.

As expected, based on the ray tracing results, the generalized radiances of all the

rays add up to the correct intensity profile of spatial soliton, even though most of them

propagate in oscillatory fashion instead of straight lines parallel to the optical axis.

More investigation is done on the WDF generated at different z planes. In Fig. 4-

11, the calculated WDFs are illustrated. According to it, the WDF remains invariant

....... .......... ............. ..... .......... ....... .- --- - " a



along the optical axis, which matches the Hamiltonian ray tracing description and also

the analytical results. Furthermore, intensities at different z planes are calculated and

illustrated in Fig. 4-12. From this figure it can be observed that the intensity is also

invariant based on the iterative nonlinear ray tracing method results, maintaining the

shape of spatial soliton while propagating. This ray picture provides an alternative

description of soliton propagation with intuitive physical insight.
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Figure 4-11: (a) WDF at the input plane. (b) WDF
(c) The difference between (a) and (b).

2

0

at the plane where OPL= 250.

4.3 Conclusion

In this Chapter, iterative nonlinear beam propagation method is introduced and val-

idated with self-focusing and spatial soliton in coherent regime, and with Gaussian-

I ...... .... .......... .......... .
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Figure 4-12: (a) Intensity distributions at different z planes. (b) The intensity differ-
ence between input plane and OPL= 250 plane.

Schell model in the partially coherent regime. This method provides physically intu-

itive ray tracing results. Generated ray diagrams provide a good physical perspec-

tive of the generalized radiance evolution for beam propagation in nonlinear media.

Besides, this method is able to solve beam evolution in partilaly coherent regime.

Furthermore, it provides a systematic approach to the investigation of light prop-

agation in nonlinear photonic crystals and metamaterials. When applied to optical

system design software based on ray tracing, while dealing with nonlinear component,

it could keep the analysis solely on ray tracing, avoiding the transition between waves

and rays. This method is computationally efficient. Though the computation time is

a bit longer than BPM, in terms of all the advantages discussed above, it is a good

compromise.
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Chapter 5

Subwavelength Luneburg lens with

nonlinear Kerr effect compensation

Photonic crystals and metamaterials are two important research topics recently. Many

useful properties and applications have been investigated, such as complete three-

dimensional bandgap [14], slow light [102], self-collimation [53], optical cloak [101, 351,

and so on. Nonlinearity, as an addition parameter, has been added to many applica-

tions of photonic crystals and metamaterials, and a lot of new properties have been

reported, for example, nonlinear light propagation in photonic lattices using optical

induction [33, 25], nonlinear pulse propagation in optical fibers [7], microdevices with

bistability using nonlinear photonic crystal fabrication [26], and beam propagation in

nonlinear periodic potential with Wannier functions [3]. They show interesting opti-

cal properties introduced by nonlinearity. A systematic approach for investigation of

beam propagation in nonlinear photonic crystals and metamaterials is important.

In this Chapter, following the iterative method introduced in the previous chapter,

an aperiodic subwavelength Liineburg lens is used as a application for this method

[38, 37]. We show that this method provides a computationally efficient way to analyze

nonlinear devices as compared with FDTD method. In addition, it is emphasized

that nonlinear Kerr effect is able to compensate the focal point shift caused by the

diffraction of Gaussian beam. Properties of this nonlinear Lineburg lens on imaging

applications are investigated.



5.1 The lens equation of Liineburg lens

Liineburg lens was firstly proposely by R. K. Lineburg [61]. It is a spherically sym-

metric lens bearing the imaging property that it is able to focus an incoming plane

wave into a geometrical perfect focal point at the opposite edge of the lens. Due

to this property, it is widely used in applications such as antenna arrays [72], reflec-

tors [59], optical cloaks [71], etc. Liineburg lens has an inhomogeneous but isotropic

refractive index distribution, which can be expressed as

n(r) - no/2 - (r/R)2, (5.1)

where no is the ambient index outside the lens, R is the radius of the lens, and r is

the distance to the lens center.

It is helpful to derive the lens equation for Liineburg lens under paraxial approx-

imation. Following geometrical optics, the positions of first and second principle

planes should be located at the first place.

O a Object z R 0 R z' Image

PP

(a) (b)

Figure 5-1: Derivation of lens equation for Lineburg lens. (a) Determination of the
primary and secondary principle planes. (b) Derivation of lens equation. Black circles
enclose the Lineburg lens, green vertical lines are the principles planes, and blue lines
are sampled rays.

From Fig. 5-1(a), the principle planes (PP) could be determined. Blue line is a

typical ray trace through the lens, where left of it is parallel to the optical axis (plane

wave). It focuses at the right edge of the lens (Point B). Because of time reversal, if
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we trace the ray backward, this blue line is also a valid ray trace. Due to the spherical

symmetry of the Liineburg lens, this trace should be symmetric to the Line I shown

as the dashed line in Fig. 5-1(a). Thus the angles a and 0' are equal. Since ZO' = ZO,

La = ZO. By back extending the ray emanating out of the lens, it could be found

that the secondary PP is located at the center of the lens. Accordingly, the primary

PP is also located at the center of the lens.

With the positions of PPs on hand, lens equation can be derived. We assume

that a point object is located at distance z to the left of the left edge of the lens, and

image is located at distance z' to the right of the right edge of the lens. (Fig. 5-1(b))

The lens equation could be expressed as

1 1 1(5.2)
s s' f

where s=z R, s'= z'+ R and f R. This turns out to be

zz' =R 2 . (5.3)

This is the lens equation of Lineburg lens under paraxial approximation.

5.2 Aperiodic subwavelength Liineburg lens

Perfect Liineburg lens, as a GRadient-INdex (GRIN) structure, is not achievable in

bulk media. Thus, in this Chapter, a 2D aperiodic subwavelength nanostructured

Luneburg lens [97, 37] is studied (Fig. 5-2). This structure has been introduced

in Chapter 2 for the investigation of Hamiltonian ray tracing applied to photonic

crystals and metamaterials. It consists of silicon rods (n = 3.46) centered at each

square lattice with lattice constant ao = A/8, where A = 1550 nm is the free space

wavelength. The rod radii profile is a(r) = ai v/2 - (r/R)2 + a 2 , where ai = 0.367ao,

a 2 =-0.101ao and R = 30ao. The ambient medium is air (n = 1). In this structure,

each unit cell can be treated as an effective medium since the wavelength is much

larger than the lattice constant. Therefore, effective refractive indices are locally-



modulated by controlling the radii of the rods, mimicking the Lineburg lens index

profile. Throughout this Chapter, our discussions are based on this 2D subwavelength

aperiodic nanostructure example.
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Figure 5-2: Subwavelength aperiodic nanostructured Lineburg lens structure.

5.3 Nonlinear aperiodic subwavelength Liineburg

lens

As a lens, Lineburg lens could focus the incoming plane wave into a perfect geometric

focal point. However, in many cases, the object is not at infinity but at finite distance.

Besides, Gaussian beams are more realistic models than plane waves. But in these

two cases, the focal point will not be at the opposite edge but shifted outside the lens.

In this way, the good property of Liineburg lens vanishes. In this section, we claim

that nonlinearity is able to compensate the focal shift and drive the focal point back

................... .........



to the edge of the lens.

5.3.1 Setup

To validate this claim, a simulation setup is proposed, with a Gaussian beam input

from the left of the lens and propagates out to the right, as illustrated in Fig. 5-3.

The radius of the lens is R, and distances between the waist of input/output Gaussian

beam and the left/right edge of the lens are z and z', respectively.

R

Figure 5-3: Simulation setup of nonlinear aperiodic subwavelength Liineburg lens

with a Gaussian source illumination. Black circle encloses the Lineburg lens, and the

red curved lines denote the profile of the Gaussian beam propagation. Blue dashed

lines denote the waist of input/output Gaussian beams.

5.3.2 Simulation results

Nonlinear aperiodic subwavelength nanostructured Liineburg lens is analyzed with

both iterative nonlinear beam propagation method introduced in the previous chap-

ter and FDTD. It has been shown in the previous chapters that the Hamiltonian

ray tracing results and FDTD results are in good agreement. In this section, more

emphasis is placed on the iterative method because this method is not only compu-

tationally efficient comparing with FDTD, but also provides ray diagrams which is

physically more intuitive. In the following discussions, the FDTD is performed by

the simulation software MIT Electromagnetic Equation Propagation (MEEP) [74].

First of all, we show that for a Gaussian beam illumination, the focal point will

be shifted outside the lens without nonlinearity. In this simulation, a Gaussian beam
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with beam width 36ao and peak intensity Io (normalized) at the middle of the waist

is illuminating the subwavelength Lineburg lens from the left. Results are shown in

Fig. 5-4. From it we see that in the linear Lineburg lens case, a focal point shift

to the right is obvious. The origin of the focal shift is the diffraction of the input

Gaussian source as compared with the ideal plane wave source case. Therefore, for a

Gaussian source input, the property of the Lineburg lens that it has the geometrical

focal point exactly at the opposite edge of the lens is invalid.
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0'
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(a) (b)

Figure 5-4: Linear aperiodic subwavelength Lineburg lens with a Gaussian source
illumination. (a) Intensity profile generated from nonlinear iterative beam propaga-
tion method (One iteration only). (b) Field distribution calculated based on FDTD
method. Red circle encloses the Lneburg lens.

Nevertheless, when taking Kerr nonlinearity into consideration, the results are

different and are illustrated in Fig. 5-5. In this simulation, nonlinear Kerr coefficient

for silicon is chosen as 2.7 x 10-14 cm2 /W [16]. For the iterative method simulation,

grid size used is 0.03ao x 0.03ao. After six iterations, the beam propagation profile

converges. For the FDTD simulation, grid size is 0.083ao x 0.083ao. By comparing

this with previous results of Fig. 5-4, it can be seen that focal point is shifted back

to the edge of the lens, thus the focal shift mentioned above has been compensated.

From all the discussions above, the Kerr nonlinearity could compensate the focal

shift, which is a result of the competition between nonlinearity and diffraction. It is

useful to discuss the reason why nonlinearity could counteract the diffraction in this

- - n ..... ................................
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Figure 5-5: Nonlinear aperiodic subwavelength Luneburg lens with a Gaussian source
illumination. (a) Intensity profile generated from nonlinear iterative beam propaga-
tion method. (b) Field distribution calculated based on FDTD method. Red circle
encloses the Liineburg lens.

subwavelength Liineburg lens case. In this lens, effective refractive index of certain

unit cell is determined by the radius and refractive index of the cylindrical rod in

it. Considering nonlinearity, the refractive index of the rod increases according to

the local optical intensity. Therefore, the effective refractive index of the unit cell is

higher than the linear case. The change of effective refractive index between linear

and nonlinear Liineburg lens is shown in Fig. 5-6, where two peaks can be clearly

observed. The peak at the center of the lens is due to the relative larger radii of rods

in these unit lattices. Assuming similar intensity, effective indices increase more for

inner part of the lens than the outer part, since the rods near the center occupy more

space in a unit cell. The other peak at the right edge of the lens is mainly caused by

the high optical intensity near the focal point, meaning the refractive indices of the

rods there are higher than others. In this way, effective refractive index gradient is

increased in the nonlinear lens, and the rays will bend more towards the center and

optical axis. Therefore, nonlinearity shifts the focal point by modifying the refractive

index distribution of the lens.

Gutman has proposed the "modified Lineburg lens" [44] which is able to change

the focal point position by changing the Lineburg profile, i.e. the refractive index

... .. ...... .
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Figure 5-6: Effective refractive index difference between nonlinear and linear sub-
wavelength aperiodic Liineburg lens.

distribution. Refractive index difference shown in Fig. 5-6 should be compared with

his "modified Lineburg lens". Here nonlinearity can be treated as a spherically

symmetric perturbation to the refractive index, similarly shifting the focal point to

the left (i.e. inside the lens.) The nonlinear refractive index change in our case is of

the same order of magnitude with Gutman's modified lens for the range of focal shifts

considered; however, in our case the change is obviously not spherically symmetric,

due to the high intensity in the focal region.

Based on this simple example, more cases are investigated to seek the relationship

between the focal point positions, type of sources and optical intensities. Three

types of sources, plane wave, point source and Gaussian source with various optical

intensities, are discussed. The results are shown in Fig. 5-7. In this figure, for different

types of sources considered, focal point position as a function of different source

intensities has been illustrated. For plane wave illumination, which is an extreme

case of Gaussian source with infinite large waist, as the intensity I approaches 0 (i.e.

linear Liineburg lens), focal point is at the opposite edge of the lens for the linear

Lineburg lens case. Increasing the intensity gradually shifts the focal point towards

the center of the Lineburg lens, as a result of higher Kerr nonlinearity. As the other

extreme case of Gaussian source, the point source where the waist approaches zero
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is also analyzed. Focal point without nonlinearity is at z' = 0.5R. This matches our

geometric lens law for the Lfineburg lens: zz' = R2, where z = 2R and z' = 0.5R.

As we increase the optical intensity, the focal point again moves towards the left,

which is the same as in the case of the plane wave. However, since diffraction is too

large to be compensated for this extreme case, it will not be back to the edge within

the intensity range investigated here. Between the two extremes, the case with a

Gaussian source of waist 9ao is also calculated. From the figure, when I = 2.81o,

focal position z' = 0, meaning that the nonlinear effect cancels the diffraction from

the Gaussian beam. Further increase in intensity drives the focal point inside the lens.

As a summary, for any Gaussian source illumination with a certain waist, diffraction

could be compensated by Kerr effect nonlinearity when a proper optical intensity is

chosen. Thus the focal point can be moved back to the edge of the lens.

5.4 Modified aperiodic subwavelength Liineburg

lens

One reason the iterative nonlinear beam propagation method is chosen is because it

is able to provide ray diagrams which provide more physical insights into the beam

evolution. Ray tracing results for the nonlinear Lineburg lens have been shown in

Fig. 5-8(a), where the input is a Gaussian source with waist size 125ao and peak

intensity 1o. Generalized radiance evolution could be clearly seen. However, one

problem appears. Fig. 5-8(a) shows a zoomed-in figure near the focal point and

spherical aberration caused by nonlinearity is obvious. This aberration is mainly due

to the intensity difference between the inner and outer part of the lens. For outer

part, the intensity is lower, thus the effective refractive index increase is smaller. It

results in low increase in refractive index gradient. For the inner part, refractive index

gradient is higher. This could be seen from Fig. 5-6. Therefore, rays away from the

optical axis bend less than those closer to the axis, causing the aberration. Focus

positions for outer rays are to the right comparing with those of inner rays.
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Figure 5-7: Relationship between focal point positions, source types and optical in-
tensities. (a) Geometric setup with beam envelopes. (b) Focal point position (z')
for different sources and intensities where z = 2R. Red dashed line: point source

case; red dash-dot line: ideal plane wave case; blue dashed line: Gaussian source with

waist 9ao. Horizontal blue line corresponds to the right edge of Lineburg lens. Focal

position z' is normalized to radius of lens R, optical intensity is normalized to 1.

... .. .. ...... I I I .



Spherical aberration should be minimized for imaging. In this section, a modified

aperiodic subwavelength Liineburg lens is designed to meet this goal. An optimiza-

tion method is used for the design. First a polynomial is used to describe the radii

distribution of the rods:

R(r) = ao + air + a2 r 2 + (5.4)

where R(r) is the radius of the rod at distance r from the center of the lens. The

coefficients of the terms for the polynomial are treated as parameters in need of

optimization in order to minimize the spherical aberration. Optimization results are

shown in Fig. 5-9. From it we see that the inner part of the modified Lineburg lens

is almost the same as the original structure, while for outer part the radii of rods are

lowered. This creates a higher effective refractive index gradient. Rays away from

the optical axis will bend more to meet the focal point of inner rays. The ray tracing

results generated from iterative nonlinear beam propagation method are illustrated

in Fig. 5-8(b), where the spherical aberration has been minimized.
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Figure 5-8: Spherical aberration minimization with the modified Liineburg lens. (a)
Ray tracing for nonlinear subwavelength Lineburg lens. Spherical aberration can be
clearly seen. (b) Ray tracing for the nonlinear modified Liineburg lens. Spherical
aberration has been minimized. The illuminating source is a Gaussian beam with
waist 125ao and peak intensity 1o.

Nonlinearity causes change in focal point profile. Intensity profile cross sections

at focal planes for the linear and nonlinear Lineburg lens (see Fig. 5-4 and Fig. 5-5)
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Figure 5-9: Rod radii distribution comparison for original and modified nonlinear
Liineburg lens.

have been shown in Fig. 5-10(a). The focal point is tightened a little. The change

is not too much since spherical aberration is introduced for the nonlinear case. In

addition, a comparison of focal points profiles for the original and modified Lineburg

lens (see Fig. 5-8) is illustrated in Fig. 5-10(b). It can be observed that the focal

point is tightened, since the spherical aberration is minimized. The quality of focus

is greatly improved.
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Figure 5-10: Change of focus point profile for original and modified subwavelength
Liineburg lens. (a) Comparison of focal point profile for linear and nonlinear subwave-
length Liineburg lens. (b) Comparison of focal point profile for original and modified
nonlinear subwavelength Liineburg lens.
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5.5 Conclusion

In this Chapter, the iterative nonlinear beam propagation method has been applied

to a nonlinear aperiodic subwavelength nanostructured Liineburg lens. This method

is emphasized because it is computationally more efficient than FDTD method. It has

been shown that focal shift caused by diffraction of Gaussian beam can be compen-

sated by nonlinearity. By proper choice of optical intensity, the property of Liineburg

lens that it has a focal point at the edge of the lens could be preserved. Nonlinearity

induces spherical aberrations. Here a modified Lineburg lens was designed to mini-

mize the aberration caused. Iterative nonlinear beam propagation method provides

an approach to analyze coherent or partially coherent beam propagation in nonlinear

photonic crystals and metamaterials.
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