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Abstract

Current underwater acoustic channel estimation techniques generally apply linear MMSE
estimation. This approach is optimal in a mean square error sense under the assumption

that the impulse response fluctuations are well characterized by Gaussian statistics, leading

to a Rayleigh distributed envelope. However, the envelope statistics of the underwater

acoustic communication channel are often better modeled by the K-distribution. In this

thesis, by presenting and analyzing field data to support this claim, I demonstrate the need

to investigate channel estimation algorithms that exploit K-distributed fading statistics.

The impact that environmental conditions and system parameters have on the resulting

distribution are analyzed. In doing so, the shape parameter of the K-distribution is found

to be correlated with the source-to-receiver distance, bandwidth, and wave height. Next,
simulations of the scattering behavior are carried out in order to gain insight into the

physical mechanism that cause these statistics to arise. Finally, MAP and MMSE based

algorithms are derived assuming K-distributed fading models. The implementation of these
estimation algorithms on simulated data demonstrates an improvement in performance over

linear MMSE estimation.
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Chapter 1

Introduction

Since electromagnetic waves experience high levels of attenuation in the ocean, electro-

magnetic communication systems have had very limited applicability to the underwater

environment. Instead, acoustic systems have become the dominant means by which wire-

less signals are transmitted in the ocean. However, designing efficient underwater acoustic

communication systems is a challenging task due to the inherent nature of sound wave

propagation and the unforgiving ocean environment.

There are many aspects of the ocean that hinder the development of efficient underwater

acoustic communication systems. Scattering from the sea surface results in multi-path and,

along with the motion of the source and receiver, causes the channel to have a large Doppler

spread. Furthermore, the rapidly varying dynamics of the ocean surface decrease the chan-

nel's coherence time. Another fundamental property that differentiates the underwater

acoustic channel from typical electromagnetic communication channels is its propagation

speed. Since sound propagates in the ocean at a speed of approximately 1500 m/s (compared

to the 300,000,000 m/s speed of propagation for electromagnetic waves), the channel's state

may fluctuate faster than it can be updated and recognized by the receiver. The perfor-

mance of an underwater acoustic communication system relies on the ability of the receiver

to estimate the channel's time-varying impulse response. For this reason, the effect of scat-

tering from the ocean surface presents one of the biggest challenges to underwater acoustic

communication [11].



1.1 Motivation

The underwater acoustic channel impulse response is often assumed to exhibit Rayleigh

or Rician fading behavior. This corresponds to the complex valued channel taps following

a complex normal distribution. A common justification for such an assumption is that

each resolvable "arrival" in the impulse response is comprised of a sufficient number of

independently scattered signals for the central limit theorem to hold. However, it has been

shown in the case of sonar, that non-Rayleigh reverberation can occur when the central limit

theorem is violated. This typically results in probability distributions for the envelope of

the channel impulse response that are characterized by heavier tails. One such distribution,

the K- distribution, is widely used to model radar clutter and has also proven accurate in

analysis of sonar reverberation [1].

It can be shown that the K-distribution provides a more accurate statistical description

of fading in certain underwater channels. The goal of this thesis is to explore the benefits of

utilizing this description in underwater acoustic communication applications and to discover

connections it may have with the environmental conditions.

1.2 Review of the Literature

The K-distribution has probability density function

f (X; v, a) -x K, (-) (1.1)
al'(v + 1) 2a a

which has shape parameter, v, and scale parameter, a. This distribution first garnered

attention in the 1970's as a statistical model for scattering in radar applications after the

advent of high resolution radar [8]. After widespread success in this field, it was also adopted

as a statistical scattering model by the sonar community [1]. More recently, interest in the K-

distribution has resurfaced in the context of mobile and underwater acoustic communication

systems.

Jakeman and Pusey [8] first introduced the K-distribution as a computationally conve-

nient representation of amplitude statistics in their model of the scattered field:



N

E(r, t) = ejwt 3 a1 (r, t)ej<i(rt) = A(r, t)ej(<b(rt)+wt) (1.2)
i=1

In this model, the random variables a (r, t) and #i(r, t) are the amplitude and phase of

the radiation from the ith scatterer at time t and position r. Each element of {ai} and {# }

is assumed independent of all other elements contained in both sets. The {#i} are assumed

uniformly distributed between 0 and 27r, which inherently assumes that the position of the

scatterers are such that the induced path difference is larger than the incident radiation

wavelength.

The authors noted that if the amplitudes were distributed in such a way that only a

small portion of the total number of scatterers contributed significantly to the field at any

given point, the resulting envelope could be non-Rayleigh, even for large N. The "effective"

number of scatterers were identified as

Neff N E[a(r)]2  (1.3)
E[a4 (r)]

Jakeman and Pusey suggested modeling the {ai} as K-distributed random variables,

since this led to analytically feasible expressions for the distribution of the squared envelope

and its corresponding moments. While they did not offer a physical justification for this

choice, they eluded to work done by Valenzuela and Laing [14], claiming that non-Rayleigh

sea clutter could be explained by the composite scattering model. In their model, the

return from a single "patch" on the sea surface could be represented as the product of

two variables: one for small scale roughness, the other for large-scale roughness. Jakeman

and Pusey suggested that the K-distribution could fit a model of this form if the energy

spectral density of the small-scale roughness were exponential (corresponding to a Gaussian

amplitude) while that of the large-scale roughness followed the Chi-square distribution.

Equation 1.2 can be interpreted as a two dimensional random walk at its Nth step. That

is, the step sizes are represented by independent complex random variables. Jakeman [8] was

able to relate the overall amplitude of this random walk to the K-distribution. He noted that

for constant N, A will be Rayleigh distributed in the limit of large N as a consequence of

the central limit theorem. If the {ai} are each Rayleigh distributed, the resulting amplitude

will also be Rayleigh distributed for any N. However, if N is a random variable governed by



the negative binomial distribution, the distribution of A will approach the K-distribution

as the mean of N gets very large. Jakeman also states that if the step sizes {ai} are each

K-distributed, A will also be K-distributed for any fixed N. As the number of step sizes is

increased, the shape parameter increases linearly with N [7]. Consequently, as the number

of steps is taken to infinity, the K-distributed amplitude becomes Rayleigh distributed as

the central limit theorem requires.

Ward [16} expanded on the compound scattering theory in his representation of K-

distributed clutter. He claimed that the amplitude of K-distributed clutter could be modeled

as the product of two components with different correlation times. Through the use of

frequency agility, he was able to de-correlate the returns, isolating the component with

a slow correlation time. Experimental data suggested that the slowly varying component

was well fit by a chi distribution [16], and then more generally, its square root by the

gamma distribution [17]. The second component was assumed to be a result of the changing

interference pattern, and it was assumed to be Rayleigh distributed. Ward et. al. [17]

related the gamma distributed component to the local power, which depends on the current

sea state.

Abraham [1] later examined the K-distribution in the context of match-filtered Sonar

clutter. The envelope of the match-filter output was approximated by a two dimensional

random walk of the same form as (1.2). He was then able to show that exponentially

distributed amplitudes in the random walk also result in K-distributed envelopes. The use of

the exponential distribution was justified, as it is often used to describe the size distribution

of natural objects and could therefore be considered a valid model for the scatterer size.

It was also noted that other amplitude distributions could yield a K-distributed envelope,

such as the Gamma distribution. His model suggested that the scale parameter of the

K-distribution would be proportional to the number of scatterers, and consequently, the

beam-width of the the Sonar's array. This prediction was verified experimentally.

In communications literature, the time-varying nature of the amplitude and phase of a

transmitted signal are referred to as the "fading statistics", and have been of great interest

since the introduction of wireless communication systems. Fading is generally characterized

as either slow or fast. Fast fading quickly de-correlates from pulse to pulse, and is gener-

ally associated with multi-path. Slow fading has a longer correlation time, and is usually

attributed to shadowing effects. The K-distribution also has connections to previous and



current research in this field, as it is one example of a spherically invariant random pro-

cess (SIRP). It may also be considered a good approximation to the Rayleigh/lognormal

fading model, which is a composite model consisting of lognormal shadowing and Rayleigh

multi-path [13].

1.3 Scope of the Thesis

A discrete-time received signal y(n) can be expressed as the convolution of the channel taps

with the transmitted signal, plus a noise term.

M-1

y(n) hk(n)d(n - k) + w(n) (1.4)

i=O

The channel taps are denoted hk(n), where k denotes the kth tap and n represents the

time dependence of the channel impulse response. If hk(n) = hk is time-invariant, the

channels taps can be treated as parameters and estimated accordingly. However, time-

varying channel taps (as in the underwater channel) are generally modeled as random

processes which must be tracked by the receiver. Further complication is introduced to the

system when the parameters of the distributions used to model the time-varying channel

taps also fluctuate in time. A receiver must then jointly estimate the channel coefficients

and the parameters of its fading statistics.

When the complex valued channel taps are modeled as Gaussian random processes, the

estimators take on particularly simple, linear forms that depend solely on the first and

second order statistics. Adaptive algorithms can then be employed to track the channel

fluctuations.

Chapter 2 of this thesis will investigate the fading statistics of a shallow water acoustic

communication channel with source to receiver distances of 80, 250, 500, and 1000 meters.

It will demonstrate that the underwater acoustic channel's fading behavior is not always

Gaussian, and can often be better characterized by the K-distribution. The fading param-

eters will be tested for dependence on environmental conditions (i.e. wind speed, wave

height) and the bandwidth of the system. In Chapter 3, an empirical study of the scatter-

ing model will be done, in an attempt to better understand the physical mechanisms which

cause the channel to exhibit K-distributed fading.



Finally, in Chapter 4, Bayesian estimation will be applied to simple channel models in

the form of MAP and MMSE estimators. While this work will unrealistically assume that

the channel taps are i.i.d. and of a relatively low order, it will provide some insight into the

benefit of incorporating K-distributed fading models in more advanced channel estimation

algorithms.



Chapter 2

Statistical Analysis of

Experimental Data

2.1 Introduction

Before pursuing estimation procedures utilizing K-distributed fading statistics, the need for

such estimators must be demonstrated. The first goal of this chapter is to present an un-

derwater acoustic communication channel which exhibits K-distributed fading. The second,

is to relate the parameters of the fading statistics to the environmental conditions and the

physical parameters of the system. This will illustrate the need to analyze algorithms that

can exploit this additional knowledge of the channel statistics.

2.2 Parameter Estimation

2.2.1 Maximum Likelihood

The maximum likelihood (ML) estimate of a distribution's parameter 0 is the estimate

which maximizes the likelihood of the observed data. Given the vector x of independent

realizations of the variable x, the Likelihood function is given by

L(6|x) = p(x; 0), (2.1)



The ML estimate of 0 is then

o arg max L(O|x). (2.2)
6

Often, the function ln(L(O|x)) is maximized in place of (2.2). Since the natural logarithm

is a monotonically increasing function, this is equivalent to maximizing L(6ix), and often

leads to computationally simpler maximization problems.

2.2.2 Method of Moments

The method of moments is a parameter estimation technique based on sample moments

from a set of observations. The sample moments are equated to the theoretical expressions

for the corresponding moments, producing a set of equations that can be solved for the

distribution parameters. Although this technique has no optimality properties, it is easy to

implement and, given a large enough data set, tends to be fairly consistent [10]. The kth

sample moment of the observation set {Xi, X2 , -- XN-N is given by

Nmk = 7 Zxi. (2.3)
i=1

The sample moments are equated to the calculated moments,

MUk =E[Xk], (2.4)

where the expectation is taken with respect to p(x; 0). This results in the necessary equa-

tions. For the purpose of this thesis, only the necessary moments required to obtain a

closed-form solution are used.

2.2.3 Rayleigh Distribution

If many scatterers contribute to the intensity of the arrival at a given delay, the central

limit theorem can be applied. In this case, a single tap of the channel impulse response,

denoted by h, is modeled as a zero-mean complex Gaussian random variable. The resulting

envelope, x = |h, is Rayleigh distributed with the probability density function

X -x 2

p(Xi; o-) = 2 C 2-,. (2.5)



The parameter of the Rayleigh distribution, 2 , is half the variance of the complex Gaussian

random variable.

Given a vector x of independent observations, the estimate of o- can be made by use of

the maximum likelihood method.

arg max p(x; a) = arg max ln(p(x; c)) (2.6)
0-

N -

=arg max In H 2 }(2.7)
=arg max -2N In o + Inx - x2 (2.8)

Taking the derivative with respect to o and setting equal to zero yields

d -2N 1N
- (In p(x; C)) - + I x2 = 0 (2.9)

i=1

F = (2.10)
2N

2.2.4 Rician Distribution

When the arrival process has a nonzero mean, the Rayleigh distribution can be generalized

to the Rician distribution. This distribution is commonly observed in fading channels that

consist of a direct line of sight component that is combined with many weaker signals. The

probability distribution function is

X (x 2 +1,2 ) /X1
p (X; y, 0-) = - e 2_ Io 2 (2.11)

where 1o is the zeroth order modified Bessel function of the first kind, o.2 is again half

the variance of the complex Gaussian random variable, and p is the mean of the complex

random variable. Since there is no closed form solution to the maximum likelihood estimate

of the parameters p and o-, the method of moments was applied. The kth moment of the

Rician random variable x can be expressed as [12),



E [zk] = 2 e0 2,2k0+I (2.12)

= (2o2)k/ 2 , I + 1F1  ; 1; -/t2 (2.13)

where 1F1 is the confluent hypergeometric function. From (2.13) the second moment is [12]

E[2] 2 + 2o-2 . (2.14)

Moment estimates can be made using the k h sample moment as in (2.3), Estimates of a

can be made by using the 4 th moment in conjunction with (2.14)

E[X4] = P4 + 8o.2 P 2 + 8a-4. (2.15)

However, if observations of the real and imaginary parts of the signal are available, the

method of moments can be applied to them instead. Given real R~N(p cos 0, o.2) and

imaginary Z~N(p sin 0, o 2), the magnitude X = vR 2 + Z 2 will be Rician with variance

a2 . An unbiased estimate of o2 can be made using both the real and imaginary parts of

the signal.

N

o- = N(r, - mR)2 (2.16)
R N - Ii=1

N
0=N - 1 (zi - mz) 2  (2.17)

i=1

Here ma and mz are sample means of R and Z, respectively. Equations (2.16) and (2.17)

use N - 1 instead of N. Although these values are very similar for large N, the former

results in an unbiased estimate of the variance. The estimates obtained by Z and R are

then averaged together to form the final estimate.

2 2 + o (
aa= 2 (2.18)



The value of p is then estimated using the second sample moment of x, via (2.14).

j = m 2 U-2  (2.19)

Due to the square root operation, the estimator in (2.19) can produce an imaginary

result that falls outside the range of admissible values for p. In this case, the absolute value

of the estimate will be taken. Should a more accurate estimate be needed, a method for

numerically finding the maximum likelihood estimator is discussed in [12].

2.2.5 K-Distribution

Repeated from (1.1), the K-distribution is

P(X V 2 x v+1 x (.0
p~ va a(v + 1) 2a K a 2.0

No closed form solution exists for the maximum likelihood estimate of v and a, thus the

method of moments can be applied once again. The kth moment of a K-distributed random

variable is
F i+ 1) F (v, + 1 + 0) (2a )k

mng = (+)~~±)2~ (2.21)
Tnk (2 ~F (v + 1) 2(.1

The simplest parameter estimates can be obtained from the second and fourth moments,

which lead to closed form expressions.

m4 2(v + 2) (2.22)
(m2) 2  V + 1

S m-4 (2.23)
2M-r

+ =(2.24)

Alternatively, as higher order moments tend to have a higher variance, a better estimate

might be expected using the first and second moments. However, there is no closed form

solution in this case. Even better performance could be obtained by numerically evaluating

the maximum-likelihood solution [9].



2.3 Experimental Procedure

2.3.1 Experimental Setup

The data analyzed in this thesis were collected in 2002 as part of the SPACE02 (Surface

Processes and Acoustic Communication Experiment 2002) conducted by the Woods Hole

Oceanographic Institution. During this experiment, an acoustic transmitter was placed off

the coast of Edgartown, Massachusetts in the vicinity of the Marthas Vineyard Coastal

Observatory (MVCO). Vertical receiver arrays were placed southwest of the transmitter at

distances of 80, 250, 500, and 1000 meters. Another receiver comprised of both a vertical

and horizontal array was placed 80 meters southeast of the transmitter.

The experiment was conducted in a shallow water environment (16 meters), with the

source located 6.25 meters above the sea floor. The receivers were located at distances of

80, 250, 500, and 1000 meters from the source, positioned 3.3 meters above the sea floor.

Assuming perfect reflectance from both the ocean bottom and sea surface, the arrival times

of the scattered signals can be estimated using the "method of images". In this method, the

sound reflected from the boundary is assumed to originate in a location that corresponds

to the mirror image of the source. Trigonometry gives us the distance of each propagation
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Figure 2-1: Channel geometry: the method of images

path, and the arrival time is determined by dividing this by the sound speed, c=1450 rn/s.
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Table 2.1 summarizes the relative arrival times. That is, the direct arrival (Td) has been

subtracted from each arrival as calculated above.

Table 2.1: Relative arrival times

L (m) ib (ms) -T (ms) Fb (ms) Tbs (ms)

80 0.354 2.09 3.49 4.99
250 0.114 0.682 1.15 1.66
500 0.0569 0.341 0.576 0.835
1000 0.0284 0.171 0.288 0.418
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Figure 2-2: Environmental conditions: wind and wave data



Environmental conditions were monitored by the MVCO. The significant wave height,

dominant wave period, wind speed, and wind direction were recorded throughout the course

of the experiment. The experiment spanned the length of a passing storm, creating a broad

range of environmental conditions. The wind and wave data are summarized in Figure 2-2,

where vertical green lines mark the epochs chosen for the analysis in this thesis. Epoch will

be labeled by its Julian Day number.

2.3.2 Data Processing

At the start of each epoch, pulses were sent out over a carrier frequency of fc 14kHz in

seven segments. In each segment, there were 1307 pulses, with a pulse transmitted every

0.04 seconds. The received signals were sampled at a rate of f, = 5 x 106/112 kHz. The

discrete-time received signals, ri(n), were shifted to baseband and then passed through

discrete moving-average filters with filter lengths of 4, 8, 16, 32, 64, 128, and 256 samples.

The low pass filter of length L is defined as

1 0<n<L-1
g (n),= L2 -0

0 otherwise

and has discrete-time Fourier transform

Gj)=sin(WL/
2 )e jw(L-1/

Gj) - sin(w/2) (2.31)

The 3dB bandwidth of the filter in Hz is approximately

B f 8 (2.32)
L

The baseband, low-pass filtered, complex-valued received signal for the 4th pulse is denoted

fi (n) and is given by the equation

ri(n) = g(n) * (ri(n)e j27rnfc/fs), (2.33)

and its real-valued envelope, xi(n), is defined as

xi(n) = |Iri(n). (2.34)



High intensity spikes spanning the length of the pulse were present in the majority of

the data. These anomalies were most likely due to noise associated with equipment motion,

such as the rattling of chains. To analyze the channel statistics accurately, the majority of

these spikes needed to be culled from the data. For each segment, the normalized difference

in magnitude for the ith pulse was calculated as

Axi(n) = Xi+1(n) - xi(n) (2.35)
maxj,k(xj (k))

The ith pulse was then flagged as abnormal and removed from the data set if

Axi(n) > 0.3 and Axi+1(n) < -0.3. (2.36)

To determine the characteristics of the channel statistics, histograms and moments were

calculated at each time in delay, using the retained "good" pulses. Figure 2-3 displays a plot

of the average and maximum intensity values at each time in delay. The histograms and

statistics were averaged over a 0.2016 millisecond window in delay about the designated

single surface bounce arrival time (the local peak in average intensity). This window is

marked by vertical green lines in the figure.
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Figure 2-3: Maximum (blue dotted line) and average (red solid line) intensity, epoch 3330000

From this, parameter estimates were made either using maximum likelihood estimation



or the method of moments. Finally, a Matlab algorithm was run to find the "best fit"

distribution. This algorithm was initialized with the parameter estimates and then refined

them by conducting a local 11x11 grid search to minimize total absolute error between

the histogram and the estimated distribution. When trying to match a given histogram,

hist(x), to a distribution parametrized by s and g, the algorithm is as follows:

Grid Search Algorithm

" Initialize As - 0.1

" While As > 0.001 Do:

o s(k) sopt k kspt A s, for k ± k1, 2, ... 5

g(i) gopt i igopA As, i =1, 2, ...5

o (kopt, iopt) = arg mink,i Ex lhist(z) -- p(z; sk, gi)

o if 5-Ikopt| < 2 and 5-1Iopt| < 2 then As := As

o sot : s~opt), gapt = g*Opt)

The Matlab code implementing the procedure outlined in this section can be found in

Appendix A.

2.4 Results

2.4.1 80 Meter Data Analysis

The data obtained from the receiver positioned 80 meters from the source are particularly

interesting because the reflected signal paths portrayed in Figure 2-1 can each be individu-

ally identified. The channel impulse response from epoch 3310000, 3331600, 3340200, and

3341200 are shown in Figure 2-4. Epoch 3310000 corresponds to a particularly calm day,

while epoch 3340200 represents a day with both high waves and strong wind activity. Epochs

3331600 and 3341200 correspond to days of moderate wind with high waves and high wind

with moderate waves, respectively. A change in environmental conditions is evident in the

nature of the scattering behavior. Higher wind and wave activity has a "smearing" effect on

the delay spread, causing scattered arrivals to be less distinct and spread further in delay.

It is common in acoustic modeling to express the acoustic surface loss as a function of wave



height. A rougher sea state will increase the scattering effect that the surface has on the

incident wave, thereby causing the coherent received signal to have a smaller amplitude [4].

An arrival at a specific time in delay will, on average, experience a reduction in amplitude

during high wind and wave activity. However, large peaks in amplitude may be present,

due to wave focusing.
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Figure 2-4: Channel impulse response: 80 meters

Envelope probability distribution functions for the arrivals with a single surface inter-

action are plotted in Figure 2-5. The parameters of the envelope distributions for the 12

epochs are summarized in Tables 2.4(a) and 2.5. For all filter lengths, the largest value of

v was consistently observed at epoch 3310000, under the calmest weather conditions. Con-

versely, the minimum values were obtained at either epoch 3340200, 3331600, or 3341400,

all epochs of high wind and/or wave activity.Qualitatively, this is expected because of the

"smearing" effect discussed earlier. These results suggest that the size of the shape param-

eter is correlated with the surface conditions.
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Figure 2-5: Envelope distributions: 80 meters

Further evidence for this correlation can be obtained by observing the sample partial

4



correlation coefficients between v and the significant wave height. Partial correlation co-

efficients were evaluated in place of ordinary correlation coefficients in order to isolate the

dependence on wind speed, wave height, and wave period. Note that the partial correlation

falls between -0.8 and -0.9 for small filter lengths in the first column of Table 2.6(a). This

implies that the shape parameter decreases as wave activity increases. Abraham showed

that the shape parameter was directly proportional to the number of scatterers. [1]. This

observation is therefore in agreement with the physical description of the channel.

Table 2.2: Envelope distribution parameters for varying filter length: 80 meters

(a) K-distribution paramters

Filter Length Maximum Minimum Average
v a v a V a

4 6.87 0.00726 -0.427 0.00345 0.665 0.00547
8 137 0.00579 -0.107 0.000715 11.1 0.00401

16 123 0.00229 1.98 x 10-13 0.000539 11.6 0.00229
32 123 0.00147 0.924 0.00028 18.2 0.000869
64 133 0.000715 1.06 0.000132 20.1 0.000373
128 136 0.000246 5.09 6.21 x 10-5 43.3 0.000145
256 131 0.000131 4.11 1.96 x 10-5 47.2 7.42 x 10-5

(b) Rician parameters

Filter Length Maximum Minimum Average

yt (7 A yr P p

4 0.00303 0.0136 2.33 x 10-11 0.00217 0.000826 0.00743
8 0.0103 0.0092 1.44 x 1011 0.0028 0.000984 0.00667
16 0.00803 0.00651 1.14 x 1011 0.00219 0.000677 0.00507
32 0.00391 0.00388 3.71 x 10-12 0.0017 0.000301 0.0031
64 0.00199 0.00199 3.28 x 10-12 0.000941 0.000153 0.0016

128 0.00125 0.00102 1.87 x 10-12 0.000551 0.00019 0.000852
256 0.000601 0.000514 5.13 x 1013 0.000292 8.35 x 10-5 0.00043

(c) Rayleigh parameters

Filter Length Maximum Minimum Average

4 0.0136 0.00226 0.0075

8 0.0119 0.0028 0.00686
16 0.00845 0.00245 0.00507
32 0.00439 0.0017 0.0032
64 0.00216 0.000943 0.00164
128 0.00132 0.000551 0.000905

256 0.000643 0.000292 0.000453



The dependence on wave height seems to diminish as the filter length increases. The

value of the shape parameter (and consequently the number of scatterers) also increases

on average with increasing filter length. There is a similar correlation between wave height

and the value of o in the Rician/Rayleigh distributions. Additionally, the error caused by

assuming Rayleigh/Rician fading increases with wave height, while the error obtained using

a K-distribution remains relatively constant. This is shown in Figure 2-6(a), along with the

associated sample partial correlation coefficients. Conversely, the average distribution errors

associated with Rayleigh and Rician assumptions decrease with increasing filter length as

seen in Figure 2-6(b). All of these observations indicate that the channel is becoming

more Rayleigh-like as the filter length increases, and therefore the bandwidth decreases.

Essentially, this corresponds to a larger "patch" on the surface, and consequently more

scatterers, contributing to each resolvable arrival.

2.4.2 250, 500, and 1000 Meter Data Analysis

Receivers were also placed at source-to-receiver distances of 250, 500, and 1000 meters. The

channel impulse response for each of these scenarios during epoch 3310000 and 3340200 is

displayed in Figure 2-7 and Figure 2-8, respectively. As the receiver is moved further from

the transmitter, the scattered arrivals experience higher attenuation levels. The difference

between scattered arrivals also becomes less significant, and at 1000 meters it is no longer

possible to individually distinguish each combination of scatterers.

Interestingly, the first scattered arrival begins to exhibit isolated episodes of Rician fad-

ing behavior at a distance of 250 meters, and then predominantly Rician fading at 500

meters. At 1000 meters, the channel is well characterized by Rayleigh fading, and conse-

quently, also by the K-distribution with a large shape parameter. However, it should be

noted that the "first" scattered arrival at 1000 meters is actually due to the surface-bottom

reflection, whereas in both the 250 and 500 meter cases it is due to the first single surface

reflection. The surface-bottom reflection in the 1000 meter case experiences more attenua-

tion and is subject to more scattering from the second boundary interaction. By observing

the absolute error in Figure 2-9, one can see that these Rician fading characteristics do not

seem to be related to wave activity. However, they do occur more frequently and cause

more severe differences in error at low wind speeds as seen in Figure 2-10.

As the K-distribution of a signal's envelope does not account for a process with non-zero
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mean, the Rician distribution provides a better fit in the presence of a dominant arrival.

This discrepancy could potentially be circumvented by using a generalized version of the K-

distribution that relies on a Rician distribution in place of the Rayleigh distribution in the

compound representation. Also, the K-distribution parameter estimate fails (i.e. returns an

imaginary number) in the presence of a strong mean value. In this case, the estimate of v

is set to 100, where the distribution essentially becomes Rayleigh. Better initial parameter

estimates could be obtained by subtracting out the mean prior to forming the envelope and

making the estimate of the shape parameter.
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Table 2.3: Partial correlation coefficients between environmental conditions and distribution
parameters: 80 meters

(a) K-distribution

Filter Wave Height (in) Wave Period (in) Wind Speed (m/s)
Length v a v a V a

4 -0.880 0.200 0.795 -0.252 -0.464 0.662
8 -0.824 0.595 0.776 -0.533 -0.537 0.726
16 -0.842 0.712 0.785 -0.335 -0.528 0.392
32 -0.843 0.700 0.726 -0.267 -0.332 -0.0507
64 -0.862 0.539 0.809 -0.411 -0.453 -0.0572

128 -0.571 0.389 -0.0535 -0.00508 0.0073 0.315
256 -0.215 0.146 0.0467 0.0696 -0.474 0.504

(b) Rician distribution

Filter Wave Height (in) Wave Period (in) Wind Speed (m/s)
Length p op op a-

4 0.267 -0.958 -0.53 0.854 0.263 0.702
8 -0.792 -0.961 0.717 0.783 -0.509 0.910
16 -0.798 -0.907 0.767 0.455 -0.589 0.895
32 -0.818 -0.810 0.774 0.327 -0.538 0.874
64 -0.818 -0.749 0.774 0.217 -0.538 0.896
128 -0.499 -0.660 0.222 -0.197 0.0731 0.895
256 -0.516 -0.718 -0.183 0.0882 0.0397 0.861

(c) Rayleigh distribution

Filter Wave Height (in) Wave Period (in) Wind Speed (m/s)
Length o- o- 0-

4 -0.963 0.860 0.736
8 -0.966 0.879 0.767
16 -0.954 0.841 0.762
32 -0.928 0.790 0.826
64 -0.919 0.772 0.85
128 -0.724 0.0839 0.727
256 -0.736 0.189 0.68
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Table 2.4: Envelope distribution parameters: 250, 500, and 1000 meters

(a) 250 meter

K-dist Rician Rayleigh
V a t U

Maximum 127 0.00191 0.00307 0.00452 0.00503
Minimum 2.21 1.41 x 10-4 3.19 x 10- 0.00112 0.00224

Average 41.5 8.51 x 10-4 0.00112 0.003 0.0033

(b) 500 meter

K-dist Rayeigh Rician
v a pr a

Maximum 170 0.000394 0.00384 0.0022 0.00364

Minimum 2.04 6.29 x 10-5 1.32 x 10-12 0.000507 0.00088
Average 114 0.000128 0.0013 0.00103 0.00155

(c) 1000 meter

K-dist Rayeigh Rician
v a P 0 U

Maximum 165 0.0019 0.00268 0.00124 0.00236
Minimum -0.0879 1.4 x 10-4 8.02 x 10-13 0.000371 0.000371
Average 14.7 8.95 x 10-4 0.000302 0.000554 0.00065

Table 2.5: Total absolute distribution errors: 250, 500, and 1000 meters

Receiver K-distribution Rician Rayleigh
Distance Max Min Avg. Max Min Avg. Max Min Avg.

250 0.394 0.0159 0.102 0.142 0.065 0.103 0.391 0.0668 0.143

500 0.655 0.0117 0.312 0.283 0.0320 0.132 0.653 0.0320 0.32

1000 0.375 0.0154 0.138 0.241 0.111 0.158 0.376 0.117 0.178
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Table 2.6: Sample partial correlation coefficients between environmental conditions and
distribution parameters: 250, 500, and 1000 meters

(a) K-distribution

Receiver Wave Height (m) Wave Period (in) Wind Speed (m/s)
Distance (in) v a v a V a

250 0.0782 -0.396 0.497 0.0199 -0.942 0.803
500 -0.42 -0.0967 0.315 0.314 -0.457 0.134

1000 -0.806 -0.0299 0.752 0.346 -0.51 -0.14

(b) Rician distribution

Receiver Wave Height (in) Wave Period (m) Wind Speed (m/s)
Distance (in) p a p a y a

250 -0.177 -0.914 0.563 0.776 -0.879 0.869
500 0.554 -0.76 0.548 0.722 -0.655 0.172
1000 -0.848 -0.863 0.816 0.856 -0.479 -0.374

(c) Rayleigh distribution

Receiver Wave Height (in) Wave Period (in) Wind Speed (m/s)
Distance (in) a a

250 -0.897 0.786 0.58
500 -0.893 0.874 -0.6

1000 -0.852 0.829 -0.487



Chapter 3

An Empirical Study of the

Scattering Model

3.1 Introduction

Both the amplitude and arrival time of the surface scattered signals vary in time. It is this

fluctuation that leads to the delay spread of the channel and the overall statistics of the

envelope. By examining these fluctuations more closely, perhaps more insight can be gained

into the phenomena that govern the channel statistics.

3.2 Modeling the Channel Statistics

The received signa is comprised of three main components: the part of the signal that varies

due to the physical path taken, the transmitted waveform that has been processed, and the

phase of the signal. The received signal due to a single scatterer can be expressed as

ri(t) = Ai(t) s(t - T) e-j(W-+Oi () (3.1)

path waveform phase

With a model for the amplitude and arrival time statistics, a crude simulation of the

scattering process can be constructed. For the purpose of the simulation, the waveform is

modeled as a Gaussian pulse with a pulse-width (1/vG) of 0.1 milliseconds. If the signal's



surface scattered component were due to just one scatterer, the envelope would be given by

r(t)[I = AC (t-) 
2 (3.2)

where T and A are random variables denoting the fluctuating amplitude and arrival time.

It turns out that this is not a very realistic model. Upon closer examination of the

received signal, it becomes clear that several scatterers contribute to the received signal at

each instance in time. This is demonstrated in Figure 3.2. The resulting received signal can

be expressed as the sum of N independent, complex-valued random variables reminiscent of

the "discrete scatterer model" explained by Jakeman and Pusey {8]. As in [8] and [1), the

phase of each scattered component is assumed uniformly distributed between 0 and 27.

N

r (t) = LA e-a(t-i)2
ej

i=1

Epoch 3330200

(3.3)

1 2 3 4 5 6 7 8 9

Delay (ms)

Figure 3-1: Detailed view of a received signal: epoch 3330200



3.2.1 Peak Amplitude Fluctuations

The peak amplitude and arrival time fluctuations were analyzed using the data from

SPACE02, described in Section 2.3. For now, only the arrivals whose nominal propaga-

tion path includes one surface interaction and no bottom interactions are considered. The

dominant single surface scattered arrival for each pulse was identified by searching for the

maximum value of intensity over the extent of the delay spread for the scattered return.

Figure 3-2(b) shows the channel impulse response with each pulse shifted, such that the

peak single surface scattered arrivals are aligned in delay. The "straightened" impulse re-

sponse was processed as discussed in Section 2.3.2. However, histogram and statistics for

the envelope were averaged over a smaller window of 0.112 ms in delay. A plot of the average

and maximum intensity values at each time in delay for the straightened channel impulse

response of epoch 3330000 can be found in Figure 3-3. Again, vertical green lines mark the

window over which the statistics are averaged.

20 20____________________________________
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(a) Impulse response (b) "Straightened" around first surface reflection

Figure 3-2: Channel fluctuations: 80 meters, epoch 3341200

With the effect of the changing arrival time removed, the amplitude statistics of the

scattered signal can be evaluated. Figure 3-4 contains the histograms of the peak amplitudes

from epochs 3330000 and 3340200. Several distributions were tested as fits, the best of

wich were log-normal and gamma distributions. The log-normal distribution parameters

were obtained through maximum likelihood, as discussed in Chapter 2. However, since no

closed-form solution exists for both parameters of the gamma distribution, these parameters

were found by the method of moments, which is described in Section 2.2.2

The log-normal distribution results when the natural logarithm of the variable is nor-
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Figure 3-3: Maximum (blue dotted line) and average (red solid line) intensity: 80 meters,
epoch 3330000 "straightened"

mally distributed. It has probability density function

1 (In - )2

p(z; yJ, a) e 27 ,X > 0, (3.4)

where y and u are the mean and standard deviation of In x. The parameters of the lognormal

distribution are estimated as follows:

y = arg max f(x; y, a) = arg maxln(f (x; y, u)) (3.5)

= arg max H e iu2 (3.6)

= arg max ln(27ra2 2) Inui (3.7)
2 2G2  Z1-i= -



Taking the derivative with respect to y and setting equal to zero gives

Sn nxi - Np

i21

y = n X

iN1

Repeating this procedure for o yields

aln(f (x; pw
N 2 N)

=1 2

1- =1(ln xi -
N

(3.10)

(3.11)

The gamma probability density function is given by

p(z) =
Ok,(k) (3.12)

where k is the shape parameter and 0 is the scale parameter. The parameters of the gamma

distribution are found by equating the sample moments to the moments of the distribution.

N

(3.13)

(3.14)

Solving these equations yields the estimates:

2

T'2
m2-

m2 - 2

(3.15)

(3.16)

As demonstrated in Figure 3-4, the data are best characterized by the gamma distribution.

The corresponding shape and scale parameters for each epoch are given in Table 3.1.

(3.8)

(3.9)

m= xi E[x] = kO
i=1

N

m2 = E[x21 = k0 2 (1 + k)
i=1
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Figure 3-4: "Peak amplitude" histogram: 80 meters, epoch 3330000

Table 3.1: Ganma "peak" amplitude parameters: 80 meters

Epoch k (shape) 0 (scale)
3310000 6.3841 0.0033
3330000 3.7900 0.0038
3330200 5.0211 0.0033
3330400 5.0992 0.0035
3331600 2.8226 0.0044
3331800 3.8021 0.0032
3340200 3.6120 0.0026
3341200 4.8721 0.0037
3341400 3.3334 0.0040
3370000 5.1042 0.0034
3370200 4.7741 0.0039
3370800 5.0716 0.0039
3371400 4.6702 0.0033

3.2.2 Arrival Time Fluctuations

The time in delay at which the peak amplitude arrives is fluctuating due to the motion of the

sea surface. This fluctuation is highly correlated and even appears somewhat sinusoidal.

However, for simplicity the arrival times were analyzed as independent realizations of a

random variable. Figure 3-5 contains histograms of the arrival times for epoch 3330000

---. . . .. . .- - . . . . .- .

- .. .- - ...- - .

-.. . ... . .- ...-. ..- - .

-. .- ..- .- ..-

---



along with normal distributions fit to the data using maximum likelihood estimates for the

mean and variance. This is not a particularly good fit, however it will suffice for the purpose

of the simulation. The corresponding parameters are given in Table 3.2.
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Figure 3-5: Arrival time histograms: 80 meters



Table 3.2: Arrival time parameters: 80 meters

Epoch pr or
3330000 2.78746 0.18113
3331600 2.93277 0.235705
3340200 2.73522 0.00354509

3.3 Simulation Results

The scattering process was simulated using the model in (3.3), with the Matlab code found

in Appendix B. The simulations presented in the following section were run with statistics

chosen to represent epoch 3330000, such that the Ai were gamma distributed with k = 3.79

and 0 = 0.0038. A histogram was created for the simulated data using 9149 simulated

pulses and averaging the statistics over 0.1120 ms in delay (5 samples). For the simulation

in 3.3, the number of scatterers is set to one. This simulation clearly does not represent

the behavior of the actual system. However, the resulting simulation histogram bears some

resemblance to a gamma distribution. When used as the step-size statistic in the random

walk model discussed earlier, the gamma distribution is known to produce a K-distributed

envelope [1]. This suggests that the summation of these variables might produce a histogram

which resembles the K-distribution.

Figure 3.3 contains the histogram from a simulation with N=6. The arrival times were

formed such that ri was normally distributed with pT = 2.787 and o- = 0.18113. For

all i > 1, the arrival times were given by an independent interval processes such that

rT = 7,- 1 + A-r, where the Ar, were uniformly distributed. For this simulation, AT was

uniformly distributed between 0 and 0.3136 ins. The simulated histogram fits very closely

with the actual histogram. This suggests that the dynamics assumed in the simulation

model result in statistics which mimic that of the experimental data.

The model was analyzed for its sensitivity to changes in the parameters. For this test,

each parameter was varied while the others were held constant in order to observe the

change in mean square error associated with a fractional change in the parameter. The

results are displayed in Figure 3-8. The parameters with the largest influence on error are

the interval range of the independent interval process and the number of scatterers. The

shape parameter of the amplitude has a relatively significant impact on the resulting mean



0.2

0.18

0.16

0.14

0.12

0

2 0.1

2 0.08

0.06

0.04

0.02

0
0 0.04 0.05 0.

Figure 3-6: Scatterer simulation histogram with N=1 scatterer

O 0.04
0

0.03
O
C.

Intensity

Figure 3-7: Scatterer simulation histogram with N=6 scatterers

square error, however the scale parameter does not. The standard deviation of the initial

arrival time also has an impact on the error, while its mean has no apparent influence. The

latter is expected, since a change in mean simply changes the location of the arrivals.

These results imply that this model could provide a reasonable representation of the
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Figure 3-8: Scatterer model sensitivity to change in parameters

scattering statistics. However, it is not a realistic model for several reasons. Perhaps most

importantly, it does not take into account the correlation structure of the arrival times. Fur-

thermore, the independent interval process and the number of scatterers were chosen by trial

and error and consequently have no physical justification. The parameters that ultimately

provided the matching histogram of Figure 3.3 were not unique, and by tuning both param-

eters simultaneously other acceptable matches could be found. Additional matches could

be produced by using other distributions to represent the independent interval process.



Chapter 4

Bayesian Estimation in

K-Distributed Fading Models

4.1 Introduction

The dynamics of the ocean surface cause the underwater acoustic communication channel

to fluctuate rapidly and suffer from a significant delay spread. For effective communication,

the time-varying channel impulse response must be both estimated and tracked. Channel

estimation errors will degrade the performance of any communication system, and it is

therefore our goal to reduce these errors whenever possible.

Estimation problems are typically approached from either a classical or Bayesian view-

point. While classical estimation assumes that the unknown parameters are deterministic

but unknown, Bayesian estimation seeks to estimate a particular realization of a random

variable. The Bayesian approach uses a-priori statistics of the parameters to formulate esti-

mates optimized for a given cost criterion. If these statistical models are accurate, Bayesian

estimation offers an improvement over classical methods, which do not consider any a-priori

statistics.

Most channel estimation techniques in use today assume that the underwater acoustic

channel exhibits Rayleigh or Rician fading behavior. However, as was demonstrated in

Chapter 2, this is not always accurate. The question remains: what, if any, performance

gains can be achieved by incorporating K-distribution fading models into channel estimation

algorithms?



4.1.1 The Complex Bayesian Linear Channel Model

The complex Bayesian linear channel model will be used throughout this work for the

analysis of estimator performance. The N x 1 output vector y is given by

y = Dh +w, (4.1)

where D is a known N x M matrix of transmitted data values, h is the channel impulse

response, and w is a zero-mean, complex Guassian noise vector, which is independent of h.

In the standard model, h is generally assumed to be a complex Guassian random process

with mean yh and covariance matrix Rh. With this assumption, the envelope of the channel

response is Rician distributed (or Rayleigh distributed for a zero-mean process). This work

will explore the implications of assuming that the channel envelope is K-distributed.

4.1.2 Bayesian Estimators

Minimum Mean Square Error Estimation

It is often desirable to minimize the mean square error (MSE) of the estimate.

mse(E) = E[|h - E0j] (4.2)

The estimate that minimizes this cost function is the mean of the posterior distribution and

is known as the Minimum Mean Square Error Estimate (MMSE).

hMMSE = E[hjy] (4.3)

Consequently, the minimum MSE obtained by this estimate is given by the conditional

variance.

mse(h) = Var(hly) (4.4)

Maximum A Posteriori Estimation

A popular alternative to the MMSE estimate is the Maximum A Posteriori (MAP) estimate.

Although this estimate may lead to a larger MSE than the former, it is often simpler to



compute. The MAP estimate is the mode of the posterior distribution.

hMAP(Y) = argimaxphly(hly) (4.5)
h

This is equivalent to maximizing the logarithm of the posterior distribution, which is often

easier to compute.

hMAP(y) = arg max p(ylh)p(h) (4.6)
h p(y)

= arg max{ln p(yIh) + In p(h)} (4.7)
h

= arg max{ J(y, h)} (4.8)
h

The problem reduces to maximizing the objective function, J(y, h).

4.1.3 Optimization Methods

The maximizations in (4.5) and (4.8) sometimes lead to expressions that are difficult, or

impossible, to compute in closed form. In this case, standard numerical optimization meth-

ods can be applied. Although there are many methods available, this work will consider

only Coordinate Descent and Newton's Method.

Coordinate Descent

Coordinate descent is a simple descent algorithm for finding extrema of a convex objective

function. The function is iteratively optimized along each coordinate axis. For example,

a two dimensional function of x and y could be iteratively minimized by the following

algorithm:

" Initialize xk = z0, yk = Yo

* xk+1 = arg minx f (x, yk)

" yk+1 = arg miny f (Xk+1, Y)

This is naturally extended to convex functions of higher dimension. Coordinate descent

converges linearly to the optimal solution. A similar approach can be applied to vectors



variables x and y, and will be termed the Grouped Coordinate Descent. The Grouped

Coordinate Descent also converges linearly in both variables[2].

Newton's Method

Newton's Method is a hugely successful iterative algorithm for minimization and maximiza-

tion. It is well known for its very fast convergence rate, which is locally quadratic. At each

iteration, the estimate is advanced in a direction given by the Newton Step, Ah.

Ah -V 2f(h)~1 Vf(h) (4.9)

A line search (either exact or inexact) is conducted to find the optimal step length. The

Newton Decrement, A(h), provides a measure of the estimate's proximity to the optimal

solution and is used as a stopping criterion in the algorithm.

A(h) A (Vf(h)"V 2 f(h)--Vf(h))i/ 2
(4.10)

The method can be summarized as follows:

" Initialize h = ho E domf(h), choose tolerance e > 0

" Compute Ah and A2

" Quit if A2 <

" Line search for t

" Update h := h + tAh

Complex Gradient and Hessian of a Real Function

In order to compute the optimal solution, the gradient and hessian of a real function, J(n),

must be computed with respect to a complex vector, n. Although such a function is not

differentiable in the traditional sense, a complex gradient operator can be used to achieve



the same optimality criteria [3].

dJ
dn*

dJ

V, J~n r) dn 2" (4.11)

dJ
_ dn,*1  .

Similarly, the Hessian is defined as [151:

dJ dJ
dn*dn1 ... dn*dn1

V 2J(n, r)A - (4.12)

dJ dJ
dn*dnm ' dn7 1dn m

4.2 Scalar Estimation in K-distributed Fading

Suppose h is corrupted by complex Gaussian noise such that

y = dh + w, (4.13)

where d is a known (possibly complex) constant, w is a complex normal random variable

with variance 2o, and h is a complex random variable with a K-distributed envelope. The

channel is said to exhibit K-distributed fading when the envelope of its impulse response

follows a K-distribution. In channel estimation, the complex-valued channel tap is the

parameter to be estimated, and consequently its probability density function (PDF) must

be derived.

4.2.1 The PDF of a Variable with K-distributed Envelope

Let h be the complex-valued variable with an envelope, x = |hi, which is K-distributed.

This variable can be represented in component form by the product of a zero-mean, unit

variance complex Gaussian random variable and the square root of a gamma distributed

variable. Equivalently, this can be interpreted as a zero-mean, complex Gaussian random

variable with a random variance that follows a gamma distribution [17].

h = vG(nR + jni) = rn (4.14)



The Gamma distribution is given by

zk-Ie- Z

p(z) = kF(k) , (4.15)

where F(-) is the Gamma function, k the shape parameter, and 0 the scale parameter. The

Gamma distribution has mean,

E[z) = kO, (4.16)

and variance,

Var(z) = k02 . (4.17)

Both nR and nj follow a unit-variance, zero mean Gaussian distribution,

1 4?
p(nR) = e 2

v2w
(4.18)

such that p(hRIz) and p(hijz) are i.i.d Gaussian distributions with variance z.

Thus,

p(hR~z) =1 e-v2e

1 |hI
2

p(hRz) =7--e 22
2,rz

(4.19)

(4.20)

The component form in (4.14) can be shown to produce the desired K-distributed enve-

lope by first noting that the amplitude of h is simply Rayleigh distributed when conditioned

on z.

x = IhI (4.21)
x _2

poIz(xIz) = e 2 (4.22)
z

Using this conditional distribution to calculate the unconditional probability density

function of x with 0 = 2a 2 and k = v + 1 yields the familiar form of the K-distributed



random variable.

px (x) = PxIz(xz)pz(z)dz

-zv f
JO (2a 2)v+1F(v + 1)

2 (X v+1 K()

aF(v + 1) \2a/ " a/

(4.23)

(4.24)

(4.25)

The pdf of r = z, which will be of use later, can be found by derived distributions.

Since zf is a monotonically increasing function, this can be done by applying the following

formula:

PR(r) =p Z(r 2) (r)

2r 2k- 1 -2

Okr(k)

(4.26)

(4.27)

The PDF of the complex-valued h is defined as the joint distribution of its real and

imaginary parts. Defining the random variables v and u as

v =znR and u = /Tni, (4.28)

which are independent and identically distributed when conditioned on z, the distribution

of h becomes

Ph (h) pu, v(u, v)

p(ulz)p(vlz)p(z)dzJ00 1 i
2 _v2  zIe 2;7z

+ 2 +1)dz
J 27 z ±VI( 1)

1 f00  Ihi2

S2z(vx1) z-le ~Odz
27r (2a2)v+1F(V + 1) Jo

1 (|h| "V

2ra2 F(v + 1) 2a2) a

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)



4.2.2 MAP Estimation of a Scalar

Direct implementation of the MAP estimator in (4.5) requires the maximization of the

function p(yjh)p(h), or equivalently the maximization of

|y - dh|2 ± l~i±lKJ(y, h) = 2o.2 + vlnlhl + In K, hl)+
+ c, (4.34)

where c is a constant that does not depend on y or h.

While there may exist techniques to maximize such a function, the MAP estimate can

be simplified by considering the component representation in (4.14) and instead estimating

the parameter y.

(4.35)

The posterior distribution is again a complex normal distribution with mean h = drn.

y-drn
2

p(y|7y) = 2e 232 2-_

1 Y12 rd*n* y-rdny*+r
2 

Idn1
2

= 2 e W%
27ror.

Since n and r are independent, the log-posterior function becomes

J(y, y) ln p(y1-y) + In p(r) + ln p(n)

|y12 - rd*n*y - rdny* + r 2|d| 2ri 2

The Jacobian of the log-posterior function is

n12

2
+ (2k - 1) Inr -

V - ( 2k-1 _ 2r 2rjd|2 Inl2 _d*n*y-dny* d*ry-r 2 dI2 n _ n
r 0 2o2 2a 2

and the Hessian is

\djn|2

V2J(
2k-1 2

- 2
_ - j

d*y-2rld| 2n
2o,2

d*y-2rld\2n

r2 |d| 2 1

(4.36)

(4.37)

(4.38)

(4.39)
2
- + c

(4.40)

(4.41)

n



It follows from (4.40) that the optimal n and r satisfy the following criteria:

d*ry (4.42)
o, + |d|2r2

- d*n*y+ dny* -r+ 2k- 10. (4.43)
4(2o + 6|d|2jnj2) 2

The estimate of n, assuming r is known, is simply the MAP estimate (also the MMSE

estimate) of a complex Gaussian random process, as expected. The estimate Y could be

found by substituting (4.42) into (4.43) and solving for r. However, as a simpler approach,

the solution is found iteratively using coordinate descent (described in Section 4.1.3).

4.2.3 MMSE Estimation of a Scalar

The complicated form of the K-distributed variable leads to computationally cumbersome

expressions. However, the calculation of the MMSE estimate for h can be simplified via the

law of iterated expectations.

hMMSE= E[hly] (4.44)

= Ezly [E[hly, z]] (4.45)

where the expectation, Ezly[-], in (4.45) is with respect to p(zly).

The posterior distribution, p(hly, z) can be calculated using Baye's rule

p(hlylZ) -p(ylh, z)p(hlz)
pph~, z =) (4.46)

where

p(ylh, z) p(ylh) (4.47)

1 -y-dhI
2

= e 2 - . (4.48)
27rna

The mean of the conditional posterior in (4.45) can be found without explicitly calculating



the distribution by recognizing that its form is that of another complex Gaussian.

p(hy, z) exp y- dh 2

=-ex( zjdl2 +co
z1d2 + or

~ exp 2zo

The conditional mean is therefore

exp ( hJ2)
( 2z

hi 2 + zidi2  (d*h*y + dhy*)

d*z 2

zjd|2 + 0.2

- g(y, z) ))

d*zyE[hly, z] = zd
zjdj2 + o0, (4.52)

This is exactly as one would anticipate, since given z, h is a complex Gaussian process. The

expression derived in (4.52) is merely the Wiener filter.

Applying Baye's Rule once more yields

p(zly) -p(ylz)p(z)
p(y)

1 (
27r(92+ld z) exp

=- W

fC zk1 expZ+'

2(o0,+d7z) J OkF(k)

- dz,

where = ol/|d12 and J - jyI 2/21d 12. The estimate becomes

hMMSE = Ezlyz1 (4.56)
k Z+1

Y foo -exp ( n dz (4.57)
d -10

d Jloo zkexp -d

The value of il can be interpreted as inverse SNR, scaled by the variance of h. It

represents the ratio of energy in the noise to energy in the transmitted signal. The value of

# is the ratio of total instantaneous energy in the received signal to energy in the transmitted

(4.49)

(4.50)

(4.51)

(4.53)

(4.54)

(4.55)

001lyPl zk-le--
foo 27r(,2 +1dl2z) e 2(-2 +ldl~z okr(k)

exp



signal. Defining the integral in the numerator of (4.57) as ((3, r; k, 0), we obtain

J ( z k )

- je z/O i- +kz1

The expression in (4.59) is found by applying integration by parts:

g'(z)f (z)dz = lim f (z)g(
0 c-+oo -1

f'(z)g(z)dz,

1 --
g'(z) = e z+rl

(z + 7)2

f (z) zke-. 6

(4.61)

(4.62)

Assuming the energy of the transmitted signal is much greater than the energy of the noise,

a 2 nd order Taylor series expansion about q = 0 is a reasonable approximation.

e +7 e [7 (4.63)

Substituting this into (4.59) yields

C(3, r; k, 0) ~ 0 e-z/O-O/z [Zk - kzk-l + Or/zk-2 - k/3rzk~3 dz
0 J.0 0

(4.64)

Since 3 and 0 are both guaranteed to be greater than zero, this integral can be computed

as [5]:

C(13,j; k,0)~ 2(30)k/2 [ j 0 Kk+1 (2V/0/0) - Kk (2 //0)

+ 'q Kk 1 (2// - -Kk- 2 (2 //0)]. (4.65)

The function, K,(.), is the pth order modified Bessel function of the 2 "d kind. The integral

0
Zk] dz.

(4.58)

(4.59)

with

(4.60)

( (0, T); k,1 0)

-c o
z) 10- 

f



in the denominator of (4.57) can also be written in terms of the function ((3, ,; k, 0):

zk 1  3() z

z e e- dz (4.66)

e Zk (y) z o zk- 1  (Y)

0 2 z+'e )dz+ 2 z+ne -- dz (4.67)

- ((#, r; k, 0) + ((3, 'q; k - 1, 0). (4.68)

Finally, the MMSE estimate of h is

y/ ((#,TI; k, 0) (-9
d ((#, r; k, 0) + I((3, q; k - 1, 0)

4.2.4 Results

The MAP and MMSE estimators derived above were evaluated in Matlab with the sim-

ulation in Appendix C. Realizations of the random variable h were generated using the

component form in (4.14). The variance of h was held constant throughout each simu-

lation, while the variance of the noise was adjusted to evaluate the performance of each

estimator as a function of the Signal to Noise Ratio (SNR). For the purpose of these sim-

ulations, the value of the input parameter, d, was set to one. The MSE of each estimator

was approximated by a sample average over 2000 trials.

The K-distribution approaches a Rayleigh distribution as v -* oo. Likewise, the largest

discrepancies between the two distributions occur as v -+ -1. The smallest value of the

shape parameter observed in Table 2.4(a) was v = -0.3447, accompanied by a scale pa-

rameter of a = 0.0062. Since the Rayleigh parameter estimates are based on second order

statistics, the value of the Rayleigh o parameter was chosen such that the variance of the

two distributions were equivalent. The corresponding distributions that were used in the

channel simulation are shown in Figure 4-1.

The K-distribution MAP estimate was made using the coordinate descent outlined in

Section 4.1.3. The MMSE estimate was implemented with both a first and second order

Taylor approximation. The Raleigh MMSE estimate is also its MAP estimate, as well as

the Linear Minimum Mean Square Error (LMMSE) estimate of the K-distribution. These

are compared with the error obtained by taking the output y as the estimate of h. The

resulting sample MSEs are plotted in Figure 4-4.
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The results are displayed in Figure 4-4. The 2nd order K-distribution MMSE estimate

outperforms all other estimates, while the 1st order approximation performs comparably,

except at very low SNR. A maximum improvement in MSE of 0.5 dB is observed using



the 2nd order K-distribution MMSE in place of the Rayleigh estimate. The MAP estimate

offers an improvement of 0.26 dB over the Rayleigh estimate.

Although there is some advantage in utilizing the K-distribution for the estimation, it is

not incredibly significant. In order to illustrate a maximal performance gain obtainable by

using the K-distribution in place of the Rayleigh model, we will consider extreme parameters

that produce a larger disparity between the two distributions. The distributions in Figure

4-3 are obtained with v = -0.95, and a chosen such that the variance is the same as those

in Figure 4-1.

0.005 0.01 0.015 0.02

Intensity
0.025 0.03 0.035 0.04

Figure 4-3: Envelope PDFs used in channel simulations for v = -0.95, a = 0.0224

The results for this model are shown in Figure 4-3. This time, the K-distribution esti-

mates perform significantly better than the Rayleigh estimate. The 2nd order K-distribution

MMSE performs substantially better than the others, while the 1st order MMSE and the

MAP estimates have similar performance. A maximum improvement in MSE of 3.64 dB is

obtained by the 2nd order MMSE and 2.30 dB by the MAP estimate.
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Figure 4-4: K-distribution channel estimate MSE: v = -0.95, a = 0.0224

4.3 Vector Estimation in K-distributed Fading

Now suppose the variable to be estimated is a vector of independent complex random

variables with K-distributed envelopes. The received signal is given by

y = Dh + w. (4.70)

In this representation D is a known N x M matrix of transmitted data values, w is a N

x 1 complex normal random vector, and each element of the M x 1 vector h is a complex

random variable with a K-distributed envelope. In component form, this can be represented

as

y=DRn+w

= DNr + w,

(4.71)

(4.72)

..........

-50 k .-

. - - - .- .- - -

... . . . . . . . . . . . . . . . .

-60



0 0 0

r2 0 0

0 ... rM

and N=

ni 0 0 0

0 n2  0 0

0 0 ... nAI

(4.73)

For the vector h with independent components the joint distribution becomes

1 (|)h i

(vi + 1) 2a2 (4.74)

M

I= 27a 2F
2z=1 1

4.3.1 MAP Estimation of a Vector

The new parameter, -y, contains the parameterization from (4.14) for each element of h.

r
7 = (4.7

Its MAP estimate can be found by maximizing the log-posterior function.

= argmax{lnp(yh(-y)) + Inp(r) + lnp(i)} (4.7

Defining the moment matrix of the noise vector as half the covariance matrix,

A = EwwH(47

the distributions in the vector case become:
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5)

6)

7)

where

0

0

Ph (h) =



exp(-!wHAw-1w)
p(w) = 2

(2r)NI det(Aw)

exp(-InHn)
p(n) = (27r)M

M 2k-1
p(r) = o 2r k)

i=1

= (I k2)

p(ylh(-y)) -

exp ( r Tr r 2k-1

Subsituting these into (4.76) yields the objective function for the vector case,

- DRn)HAw~-(y - DRn) - rTr +

M
(2k - 1) In ri - nH2

(4.83)

(4.84)arg max {J(r, n)}
-r

In order to compute the optimal solution, the gradient is computed with respect to r

and n. Although r is a real variable, J(r, n) is also a real function of the complex-valued

variable n. Therefore, the complex gradient operator, described in Section 4.1.3, must be

applied. Using this definition of the gradient,

VnJ(n, r) = 2RHDHAw -(DRn - y) - n.2 2.
(4.85)

Setting (4.85) to zero, the optimal n will satisfy

fn = (RHD HAw_ DR + I) lRHDHAw- y_ (4.86)

The gradient with respect to r yields

VrJ(n, r) = Re{NHDH Aw ly} - Re{NHDH AwDN} + I r - (2k - 1)ri,

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)
exp(- (y - Dh)HAW 1(y - Dh))

(27r)m det(Aw)

= arg max - (y
Y 2

(4.87)



where r1 is defined as

1/r1

r = 1/r 2  (4.88)

1/rM

The set of multivariate polynomial equations resulting from (4.87) is non-trivial to solve.

Consequently, the coordinate descent approach as applied in the scalar case will not suffice.

Instead, an inexact maximization via Newton's Method is applied to optimize r in the

coordinate descent. Even with this additional step, local linear convergence is preserved. In

fact, only a small number of Newton Method iterations are necessary [6]. To apply Newton's

Method, the Hessian with respect to r is required.

VrJ(n, r) =Re{NHD HAwDN} - - +(1 - 2k)R- 1R- 1  (4.89)

Combining coordinate descent with Newton's method for r results in the "Grouped Co-

ordinate Descent with Newton's Method" described bellow. This method was implemented

by Bezdek [6] and shown to preserve the linear convergence of the traditional coordinate

descent with only one or two Newton iterations (P=1 or 2).

Grouped Coordinate Descent with Newton's Method

* Initialize rk = ro, r > 0, choose tolerance e > 0

* nk+1 = (R HDHAw~-DRk + I)-' R HDHAw- y

" Set r, = rk. While A2 < E or p < P, Do:

o Compute Ar - (V2J(nk+1, rp)< (V J(nk+1, rp))

o Compute A2 - (VJ(nk+l, rp)) T (V 2 J(nk+l, rp)) -1 (VJ(nk+l, rp))

o Line search for t

o Update rp+1 := rp + tAr

" Update rk+1 = rp



4.3.2 MMSE Estimation of a Vector

Following the same method used in the scalar estimation problem, the MMSE estimate of

the vector h is

hMMSE= E[hly) (4.90)

- Ezy [E[hly, z]], (4.91)

where the conditional posterior distribution is now:

p(hlyz) p(ylh, z)p(hlz) (4.92)
p(y~z)

_ exp(-1(y - Dh)HAw - 1(y - Dh) - 'hHpz -h) (4.93)
(27r)2M det(A,) det(Fz)p(yIz)

exp('(-yHAw 1y yHAw Dh + hHDH Aw y - hH(DHAw-lD + rz ')h))

(27r)21 det(Aw) det(L2)p(ylz)

(4.94)

Again, this is recognized as a complex normal distribution,

p(hly, z) ~ CNr((D Aw-D+Tz)DH l,2 H -1+ )-, (4.95)

from which the MMSE estimate becomes

fiMMSE = EzIy [(DHAw 'D + z l)-DHAwly] (4.96)

= Ezly [LzDDH(DFzDH + Aw)-'] y. (4-97)

The estimate suggested by (4.97) requires a multidimensional integral of a complicated

function. To avoid this, an iterative method for estimating the vector h will be employed.

Each element, h,, can be estimated separately, assuming the set of all other elements, {hio},

is known. Once each channel tap has been estimated, the process is repeated, until some

convergence criteria is met. This is an implementation of coordinate descent, where the

objective function being minimized is the Bayesian MSE cost function.



For convenience, the elements of the matrix D will be denoted as

d11  d12  ... dim

d2 1 d22 ... d2M

dN 1 dN2 ... dNM

di T

d 2T

dNT

d2 ... dM , (4.98)

where dig is the element of D in the ith row and jth column, di is the ith row vector, and

di is the ith column vector.

The MMSE estimate of hl, assuming all other tap values are known, is

The conditional posterior distribution is then:

p(hIy, zj, , {hig}) = p(ylhl, zi, {h#ig})p(hjzj, {hjgz})
p(yIzz, {h#ig})

p(yh)p(htjzi)
p(yI z, {h i})

~ exp ly - DhJ2

2o72

1|~ yi - diTh| 2
= exp - 2oi

2t~j

EIj=1 |yi - E', dighj - dihiI2

2a2

hl -

h2z )

zI I d*1yi - i$ d1 Zj:
o2 + z, [ 1|diI2

Defining DI as the matrix D with the 1th column removed and hl as the vector h with the

hi = E[hjjy, {h#ig}]

= Ezy [E [hily, zi, {hiz}1]] .

(4.99)

(4.100)

Ih 2)

(4.101)

(4.102)

(4.103)

(4.104)
hi 

)2zl

exp

exp

(4.105)

diih 1) )

(4.106)

EN + dii|2
2i=o1



1th element removed, we have

zij (V d*z yj j= djlj X(j: dulhi

N22
(4.107)

(4.108)d,'(y - UA ) z/ I
~d 12 Z, + o,2/|d;|2'

When estimating a scalar h, 1 and h1 are empty, reducing the expression in (4.108) to the

one in (4.52).

p(z ly, {h i}) = p(ylzl, {h#ig})p(ziI{hii}) (4.109)
p (ylIfhj:gz} )

Making the observation that

M

y = dil pziln + dijhj + wi

jyd +

y~ ,/zlnd 1+Dhi-+ w,

(4.110)

(4.111)

where n; is a complex normal random variable with o = 2, the conditional posterior of zj

can be computed as

exp (-(y - Olyl)H(2zldzdfI + 2,2IN k-1 exp(-zl/O)

p(zz ly, {hi}) =
p(yj {hjy })7N det(2zdjd ± 2or IN)gkP(k)

(4.112)

Next, noting that

det (2zi<di + 2o72IN) (22 N det ( d

(2ow)

+ IN ) (4.113)

(4.114)
Id, 2)

and applying the well-known Woodbury matrix identity,

(A + UCV) = A - A-'U(C- 1 + VA-'U<-VA- 1 , (4.115)

-

E [hily, zi, {hjgz}] =



with

(4.116)

to obtain

(2zldzdfH + 20N, 1 2 (IN2o (

12 {IN
20 a(N

zi + o2/ _d4|2 _d 2

didfH o.2 / 1112 !jjdH
Il12 Z U2 d 12 I 12

leads to an expression of the same form as (4.57).

p(zzjy, {h=1U})
I exp -\ z-

k-i d

0 ,1 exp 0 Z±7 zl
(4.119)

However, the parameters are now

H 2

2| |4 d .( - i~1 ' 1 2

2fd~j2

(4.120)

(4.121)

(4.122)

Finally, the MMSE estimate of hl given {hz 1} is

h (= E z

1!d1|2 ((1', 17' ; k, 0

(4.123)

(4.124)
(/3', r'; k, 0)
) + j( (0', 77'; k - 1, 0) .

4.3.3 Results

The Matlab code used to implement the vector channel simulation and estimation techniques

can be found in Appendix C. The channel taps and noise were assumed to each have

independent components. The random variable realizations were calculated in the same

manner as the scalar case, and the MSE was estimated from a sample average over 5000

(4.117)

(4.118)

A W oIN, U =d , V = di, C zIN



trials. The matrix D was assumed to be the identity matrix.

The MAP estimate was calculated using the grouped coordinate descent algorithm de-

scribed in Section 4.3.1. The convergence of Newton's Method was analyzed for different

initial values of ro. Figure 4-5 displays the error as measured from the current estimate

to the final estimate over each iteration. Quadratic convergence begins immediately when

the initial point is set to \i-, where pz is the mean of the Gamma distribution. This

corresponds to the left most curve in the figure with ro = 0.0071. The convergence of

the grouped coordinate descent is dependent upon the number of iterations allocated to

Newton's Method in each iteration of the coordinate descent (CD). This is demonstrated

in Figure 4-6. Ultimately, a maximum of 20 iterations of the coordinate descent were

performed, with one Newton iteration at each step.

10 !

r0=0.0071

- r0-0.05;
1 0. .. . . .. . . . . . .......... ....................... :... .=. 05. . . . . .. . .. . . . .

NI

10 1010 nso5 100 150

Newton Iterations

Figure 4-5: The convergence of Newton's method in estimating r for different initial values

The MMSE estimate was calculated via the coordinate descent approach outlined in

section 4.3.2, using 20 iterations. As in the scalar case, the estimators were tested on

channel simulations governed by statistics that corresponded to realistic parameters seen in

the data of Chapter 2, as well as extreme values of the K-distribution parameters.

The distributions that were observed in the SPACE02 data are displayed in Figure 4-1.

When the estimators derived in this chapter were implemented with M=4 and N=4, the



rOf.O0071
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10-
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103,10
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CD iterations

Figure 4-6: Coordinate descent convergence rates for various Newton iterations

MSE behavior seen in Figure 4-7 was obtained. The resultant MSE curves for v = -0.95

can be seen in Figure 4-8. There is a maximum improvement in MSE of 1.54 dB by using

the MAP estimate, and 2.96 dB using the MMSE estimate. The probability distributions

associated with this simulation can be found in Figure 4-3.
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Figure 4-8: K-distribution vector channel estimate MSE: v -0.95, a = 0.0224



78



Chapter 5

Conclusions

Analysis of data from the SPACE02 experiment confirms that the channel taps associ-

ated with reflections from the ocean surface can exhibit fading that is better modeled as

K-distributed than Rayleigh or Rician. The reflections from a single surface interaction

were analyzed in detail. The results suggested that these channel taps became more K-

distributed, with smaller shape parameters, during periods of high wind and wave activity.

The channel taps became more Rayleigh-like at lower bandwidths and longer source-to-

receiver distances. Both of these scenarios were attributed to more scatterers contributing

to a resolvable arrival in delay.

The components of the scattering process were empirically examined. The "peak arrival"

amplitude was determined to be well fit by a gamma distribution. Simulations of the

scattering process were conducted, and it was possible to recreate the envelope statistics

observed in the data. The simulation results also indicated that, under a discrete scatterer

model, the resulting distribution is most sensitive to the number of scatterers used and their

arrival's separation in delay.

Although there is a substantial performance improvement using the K-distribution es-

timates with certain distribution pairs, there is no evidence that such extreme distribu-

tion disparities exist in a realistic environment. The performance gained by using the

K-Distribution model with realistic parameters was small compared with the increased

computational complexity of the estimates. However, should fading models or other es-

timation scenarios arise with distributions comparable to those shown in Figure 4-3, this

approach might prove advantageous.
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Appendix A

MATLAB Code: Fading Statistics

A.1 Histogram Calculations

1 %adapted from code writen by Dr. James C. Preisig

2 curdir = pwd;

3 rxsigdir =['/Users/aisonlaferriere/Document s/WHOl/Summer-Resear ch/ ' . . .

4 ' SPACE02-Pu1 se-Dat a/ ];

5 savedir = uigetdir

6

7 fs = 5e6/112;

8 siglen = 56;

9 fc = 14e3;

10 numpulsereps = 1307;

ii Nr = 1786;

12 Tb = 0.5;

13 numsampperfile = fs*siglen;

14

15 chnum = 18;

16

17 Acycles = Nr/fs*fc;

18 Acycles = Acycles - floor(Acycles);

19 Aomega = 2*pi*Acycles;

20 phaseadjust = repmat (exp(-sqrt (-1) *Aomega*[0:numpulsereps-1]) ,Nr, 1);

22 numblank = round(fs*Tb); clear Tb



expvec exp( sqrt( ( 1)*2*pi*fc/fs) * [0:numsampperfile-11 -9;

daxis - ([O:Nr-l-59)*1000/fs;

sdi = min(find(daxis 1));

edi = max(find(daxis 18));

epochvec = [3310000 3330000 3330200 3330400 3331600 3340200

3341200 3341400 3370000 3370200 3370800 33714001;

segnumvec = [13:19];

numsegs = length(segnumvec);

taxis = [0:numpulsereps-i]*Nr/fs;

ita = length (taxis);

numbins = 80;

dB-range = 30;

for epoch = epochvec

ror system-number = [1 2 4]

if (system-number==1)

startindex = 7404; 6f

esif (system-number==2)

if (chrum>160

startindex 14508;

lse4

startindex =4472;i

eurolus in tront of peak t arr va

elatif (system-number-=4)

startindex = 28029;

else

end

for ipfiltlen = [4 8 16 32 64 128 2561

desired-baseband = ones (lpfiltlen,1) /lpfilt-len;

numprior = 0;



62 mv-abs = 0;

63 numgoodpulses = zeros(1,numsegs);

64 suspectpulses-saved = ones(numsegs,lta);

65 impresp =,complex(zeros(Nr,numpulsereps,numsegs));

66

67 for segnum = segnumvec

68 fname = ['svs',int2str(system-number), 'chint2str(chnum) ...

69 ,'',int2str(epoch),int2str(segnum),'.rsig']

70 cd(rxsigdir);

71 cd(int2str(epoch))

72 rsig = load-SPACE02_single-chan-rsig-fn(fname,

73 startindex+numblank,numsampperfile);

74 cd(curdir)

75 bbsigl = rsig.*expvec;

76 bbsig2 = freqdomainconv(desired-baseband,bbsigl);

77 bbsig3 = bbsig2 ([1:Nr*numpulsereps]);

78 bbsig3 = reshape (bbsig3,Nr,numpulsereps);

79 bbsig3 = bbsig3 .* phaseadjust;

80 % hi omesae for p'hase discontinuity in t i

81 % tteed )ec ulse Ccce

82

83 numprior = numprior + 1;

84

85 impresp(:,:,numprior) = bbsig3;

86 diffabs = diff(abs(bbsig3).').'/max(max(abs(bbsig3)));

87 temppos = zeros(size(diffabs));

88 tempneg = temppos;

89 temppos(find(diffabs>0.3)) = 1;

90 tempneg(find(diffabs<-0.3)) = 1;

91 nr = size(tempneg,2);

92 tempselect = max(temppos(:,1:nr-1).*tempneg(:,2:nr));

93 suspectpulses-saved(numprior,2:numpulsereps-1) = tempselect;

94

95 mv-abs=max([mv-abs,max(max(abs(bbsig3(:,find(tempselect==O)))))]);

96 numgoodpulses(numprior) = sum(tempselect==0);

97 end

98

99 max-abs = double(zeros(numsegs,Nr));

100 min-abs = double(zeros(numsegs,Nr));



101 mean-abs = double(zeros (numsegs,Nr));

102 std-abs = double(zeros (numsegs,Nr));

103 mean-abssq - double (zeros (numsegs,Nr));

104 std-abssq double (zeros (numsegs,Nr));

105 mean-dB = double (zeros (numsegs,Nr));

106 std-dB = double(zeros (numsegs,Nr));

107 mean-real = double(zeros (numsegs,Nr));

108 mean-imag = double(zeros (numsegs,Nr));

109 std-real = double (zeros (numsegs,Nr));

110 std-imag = double(zeros (numsegs,Nr));

111 mean-realsq = double (zeros (numsegs,Nr));

112 mean-imagsq = double (zeros (numsegs,Nr));

113 cc-real-imag = double (zeros (numsegs,Nr) ) ;

114

115 moment_2-abs = double (zeros (numsegs, Nr) ) ;

116 moment-2_dB = double (zeros (numsegs, Nr) ) ;

117 moment-4-abs = double (zeros (numsegs, Nr));

118 moment-4-dB = double (zeros (numsegs,Nr));

119 var-abs double (zeros (numsegs,Nr));

120 var-dB = double(zeros(numsegs, Nr));

121

122 mv-dB 20*loglO (mv-abs);

123 edgesabs = [O:numbins]*mv-abs*1.0001/(numbins);

124 edges-dB [-(numbins) :0]/(numbins)*dB-range + mv-dB+0.001;

125 Aabs = mv-abs*1.0001/(numbins);

126 A-dB = dB-range /(numbins);

127

128 hist-abs = zeros (numbins,Nr,numsegs);

129 hist-dB zeros (numbins,Nr, numsegs);

130

131 ii=1:numsegs

132

133 curresp = impresp(:,find(suspectpulses-saved(ii, :)==0) ,ii);

134 mean-real (ii,:) = mean (real (curresp) ) ;

135 mean-imag(ii,:) = mean (imag (curresp));

136 std-real (ii,:) = std(real(curresp) );

137 std-imag(ii,:) = std(imag(curresp));

138 mean-realsq(ii,:) = mean(real(curresp) .^2);

139 mean-imagsq(ii, :) = mean(imag(curresp).^2);



140 cc-real-imag = ..

141 mean((imag(curresp) - repmat(mean-imag(ii,:),...

142 numgoodpulses(ii),1)).* (real(curresp) -

143 repmat(mean-real(ii,:),numgoodpulses(ii),1)));

144

145 curresp = abs(curresp);

146

147 max-abs (ii,:) = max(curresp);

148 min-abs (ii,:) min (curresp);

149 mean-abs(ii,:) = mean(curresp);

150 std-abs (ii, :) std (curresp) ;

151 moment-2-abs (ii,:) - sum(curresp.^2)/numgoodpulses (ii);

152 moment_4_abs (ii,:) = sum(curresp.^4)/numgoodpulses (ii);

153 var-abs (ii,:) = var(curresp);

154 temphist = histc(curresp,edges-abs);

155 hist-abs(:,:,ii) = temphist(1:numbins,:);

156

157

158 curresp = curresp.^2;

159 mean-abssq(ii,:) = mean(curresp);

160 std-abssq(ii,:) = std(curresp);

161

162 curresp = 10*loglO(curresp);

163 mean-dB(ii,:) = mean(curresp);

164 std-dB(ii,:) = std(curresp);

165 moment-2-dB (ii,:) = sum(curresp. ^2) /numgoodpulses (ii);

166 moment-4-dB(ii,:) = sum(curresp. ^4) /numgoodpulses (ii);

167 var-dB(ii,:) = var(curresp);

168 temphist = histc(curresp,edges-abs);

169 hist-dB(:,:,ii) = temphist(1:numbins,:);

170

171

172 end

173 cd([savedir])

174 eval (['s7,ave hs dnOfl e'itsr(pite) _y

175 ,int2str(system-number),'-cha.nl',int2str(chnum),'-,...

176 int2str(epoch),' i edges.abs egdB maxabs

177 'mi...bsma sti S meani-a-ssCi tdabss7 m eancdB n B

178 stdldB 1 umdulsereps mv-abs mr..d B L s addB meanreal



men ma adir eal st.im me realnog mean..imgsq

o*rnal-.imag suspeclsesved numgoodpuses moet _bs

*moment-2.dXB moennoment@tmn.4IB })

cd (curdir)

pause (0 .5)

end

186 enTd

1 function rsig

2 load-SPACE-single-chan-rsig-f ile-function (filename, startindex, numsamp)

3 illrn code prOv7idetd by DI-JmsC rii

4 i e1.i t ' i*

5 **arind 1 inpUt ( statin apl inde'Kx (tirt sample inde c 0? )4 K,5K U P f J-.

7

8 numbuffersamp = 200000;

9 rsig = zeros (numsamp,1);

10

11 f id f open (f ilename, * r i',' l);

12

13 [endian.flag, count] - fread (f id,1, 1,inm32');

14 if (endian-flag == -402456576)

1 [fname,permission,fileformat] fopen(fid);

is if (fileformat == 'in-bel)

17 iostat = fclose(fid);

18 if (iostat 7 0)

19 error(lproble Jnlosing f :he')

20 end

21 fid= fopen(filename,'
4  

ioee )

22 (fid<O)

23 error (*problem wpenin I

24 end

25 [ a, count = fread (fid, 4,<t32);

26 endian-flag = a (1)

27 ii (endian-flag : 1000)

28 fclose(fid)

29 error ( [ In dos not urn proper eenin ag n



30 'big or li ttl endian forma ])

31 end

32 elseif (fileformat == iese-e')

33 iostat = fclose(fid);

34 if (iostat # 0)

35 error('problem ciosing file')

36 end

37 fid = fopen(filename,'r 'ieee-e');

38 if (fid(0)

39 error('problemopening file')

40 end

41 [a,count] = fread(fid,4, 'irt3.2');

42 endian-flag = a(1);

43 if (endian-flag # 1000)

44 fclose(fid)

45 error(['file does not return proper endian flag in either big'

46 'or little endian format'])

47 end

48 else

49 fclose(fid)

50 error( 'unknown file forinat returned.

51 end

52 elseif (endian-flag 0 1000)

53 error(['unknown endian 1lag va-riable: endian-fla = ',endian-flag])

54 end

55

56 numdatabyteskip = startindex*2; %uvr byt es to skio

57 skipstatus = fseek(fid,numdatabyteskip,'cof');

58

59 numsegs = ceil((numsamp-startindex)/numbuffersamp);

60 numdataread = numbuffersamp;

61

62 for mm=0:numsegs-2

63 [data,count] = fread(fid,numdataread,'int16');

64 e = 8.^(3-mod(data,4));

65 m = bitshift(data,-2);

66 rsig(mm*numbuffersamp+[l:numbuffersamp]) = m.*e;

67 end

68 mm= numsegs-1;



69 lastsamp = mm*numbuffersamp;

70 numbuffersamp = numsamp lastsamp - startindex;

71 numdataread = numbuffersamp;

72 {data,count = fread(fid,numdataread, 'irtl)

73 e = 8. - (3-mod (data, 4));

74 m = bitshift(data,-2);

75 rsig(lastsamp+[1:length(e)]) = m,*e;

76 rsig = rsig * (2.^ (-22));

77

78 fclose(fid);

1 funct4ion fout = freqdomainconv(inl,in2)

2 % lFa7ut.- A-edtacn ti2

3

4 foutlen = length(inl) + length(in2) -1;

5 fftlen = 2^nextpow2(foutlen);

6 fout = ifft(fft(inl,fftlen) .*fft(in2,fftlen));

7 fout = fout(1:foutlen);

1 funti'on [1s-s,1s-g,1lsx,1s-px=gridsearchfcn(data-hist,s,g,A-abs,type-dist)

2 P-tlit 'iIeemt compa. ,ire

.- - v .. i

A. I .

7

8 save-form-param=O; t olto creae .r f praOletrOf

9

10 num.x=length (data-hist);

11 A-scale=10; sa number ri, ,f d.Cta pids ordtib.tiona

12 x-scaled = ({0:2*num-x*A-scale-11+0.0001)*A-abs/A-scale;

13 1-sx = [0:2*num-x-11*A-abs;

14

s itype-dist== -%

16 px = k-dist-pdf (s, g, xscaled);

17 e.Ls e.-i.f t y pe-d is t==c' %nia -i.s =E



18 px = rician-pdf (s, g, x-scaled);

19 elseif type-dist=='r' (rayl a) sigma, m

20 px = rician-pdf(0,g,x-scaled);

21 elseif type-dist=='1' a, M

22 px=lognpdf (x-scaled, g, s);

23 else

24 error ('invalid distributin type')

25 end

26

27 %seeamrented integrati

28 int-px = zeros (1,2*num-x);

29 int-px(1)=(A-abs/A-scale)*(sum(px(1:A-scale-1))+

30 sum(px(2:A-scale)))/2;

31 index=0;

32 for ii=2:160

33 index=index+A-scale;

34 int-px(ii)=(A-abs/A-scale) *(sum(px(index:index+A-scale-1))+

35 sum(px(index+1:index+A-scale)))/2;

36 end

37

38 ls-S = S;

39 ls-g = g;

40 grid-spacing = 0.1;

41 num-grid = 11;

42

43 numiterations = 0;

44 if save-form-param==1

45 f ormer-parampx=zeros (10, 2) ;

46 former-error-px=zeros (10,1);

47 end

48 while (grid-spacing > 0.001)

49 old-s = ls-s;

50 oldg = ls-g;

51 g-grid = old-g*(1+[-(numgrid-1)/2:

52 (num-grid-1) /2] *grid-spacing);

53 s-grid = old-s* (1+[-(num-grid-1)/2: (num-grid-1) /2]*grid-spacing);

54

55

56 if type-dist=='k' '



57 cur-px = grid-k-dist-pdf (g-grid, s-grid, x-scaled);

58 elselif type-dist==2c' '.'(iian sima gm

59 cur-px = grid-rician-pdf (g-grid, s-grid, x-scaled);

6Q lsi f type dist=r %ay. cT i Q=

61 cur-px = grid-rician-pdf (g-grid, s-grid, x-scaled);

62 elself type-dist=='l g r ma-:, rg

63 cur-px = grid-log-pdf (qg-rid,s-grid,x-scaled);

64 else

65 error ( I lnva l -o dKtst butd n e i )

66 end

67

68 cur-int-px - zeros (11, 160,11);

69 index=0;

70

71 cur-int-px (,1, :)=A-abs/A-scale* (sum (curpx (:,1:A-scale-1, :),2

72 + sum(cur-px (:, 2:A-scale, :) ,2) )/
2 ;

73 for ii=2:160

74 index=index+A-scale;

75

76 curint-px (:, ii,:)

77 (A-abs/A-scale) *(sum (cur-px (:,index: index+A-scale-1, ) ,2)

78 + sum (cur-px(:, index+1: index+A-s cae,: ) , 2) )/2;

79 end

80

81 c a Kix .1 Z o l. au Of M and XO

82 cur-error-px -= squeeze (sum (abs (cur-int-px (:, 1: num-x, )

83 repmat (data-hist, 11 1 11])),2)

84 + sum (cur-int-px (:,numx+1:2*num-x, :,2));

85

86 {g-index, s-index I=find.(cur-error-px==min (nin (cur-error-px)));

87

88 g-index = g-index (round (length (g-index) /2));

89 s-index=s-index (round (length (s-index) /2));

90

91 is-px = cur-int-px (g-index, :, s-index);

92 ls-s = sgrid(s-index);

93 ls-g g-grid (g-index) ;

94

95 ls-error-px = cur-error-px (g-index, s-index);



96

97 if typedist ='

98 if abs(s-index-5) < 3

99 grid-spacing = grid-spacing-/ 2;

100 end

101 else

102 if abs(s-index-5) < 3 && abs(g-index-5) < 3

103 gridspacing = grid-spacing / 2;

104

105 end

106 end

107

108 numiterations = numiterations + 1;

109 %ecord former DaraSI

110 if save-form-param==1

111 f ormer-param-px (numiterat ions, 1) = ls-s;

112 former-param-px (numiterations, 2) = ls-g;

113 former-error-px (numiterat ions) = lserror-px;

114 end

115 end

A.2 Distribution Fitting

1 %ses abs error to find bs i

2 anchoose o o i arrivals a

3 Canc hoos e option o_ r-ning enirnmental pame/errr correlations

4 savefolderl=uigetdir;

5

6 epochvec = [3310000 3330000 3330200 3330400 3331600 3331800 3340200 ...

7 3341200 3341400 3370000 3370200 3370800 3371400];

8 lpfiltlen-vec =[4 8 16 32 64 128 256];

9

10 chnum =2;

11 dist = 80; %source to ece" sace

12 D=16; .water depth

13 c=1450; %speed of soundin . t.

14 del-delay=4; %wil avg stti coer +- 1ael -s aples



15

16 segnumvec = [13:191;

17 system-vec = [1 2 41;

is numsegs = length(segnumvec);

19

20 fs=5e6/112;

21 Nr=1786;

22 daxis=([O:Nr-1]-59)*1000/fs;

23

24 start-Jand-vec=zeros (length (epochvec) ,1);

25 end.band-vec=zeros (length (epochvec) , 1);

26 band-length-vec=zeros(length(epochvec) ,1);

27

28 idx=O;

29 for lpfiltlen=lpfiltlen-vec

30 idx=idx+1;

31 close all

32 clear out, clear intervals, clear output

33 mkdir(savefolderl, {' /lp fit *,num2str(lpfiltlen)])

34 savefolder=[savefolderl, */rpflt 2I ,num2str (lpfiltlen) ];

35

36 taud=1000*sqrt(dist^2+(6.25-3.3)^2)/c;

37 taus=1000*sqrt(dist^2+(D-6.25+D-3.3)^2)/c-taud;

38 taub=1000*sqrt(dist'2+(6.25+3.3)^2)/c-taud;

39 taubs=i000*sqrt(dist"2+(D-3.3+D+6.25) ̂ 2)/c-taud;

40 tausb=1000*sqrt (dist'2+(D+3.3+D-6.25)^2)/c-taud;

41

42 curdir = pwd;

43 out =[;

44 intervals = [ ];

45

46 for ep=l:length(epochvec)

47 epoch=epochvec (ep);

48 for system.number = system-vec

49 savedir [ ' srs/isn r D/WHODI

50 'Re-e~vluated/' istoras ];

51 fname = [h -it.edsino.l plten!,int2str (lpfiltlen) s

52 int2str (system-number), channe , int2str (chnum)

53 - int2str(epoch)];



54 cd(savedir)

55 load(fname)

56 cd(curdir)

57

58 numbins = length(edges-abs)-1;

59 numtaps = length(mean-abs);

60

61 centers-abs = (edges-abs (1:numbins)+edges-abs (2:numbins+l) )/2;

62 max-x = max(centers-abs);

63 min-x = min(centers-abs);

64 num-x = length(centers-abs);

65 sample-rician = [0:2*num-x-l]*A-abs;

66

67 combined-mean-abssq = numgoodpulses*mean-abssq/...

68 sum(numgoodpulses);

69 combined-mean-imag = numgoodpulses*mean-imag/...

70 sum(numgoodpulses);

71 combined.mean-real = numgoodpulses*mean-real/...

72 sum(numgoodpulses);

73 combinedamean-abs = numgoodpulses*mean-abs/...

74 sum(numgoodpulses);

75 combinedanax-abs = max(max-abs);

76 combined-abs-pdf = sum(hist-abs,3) /sum(numgoodpulses);

77 combined-std-imag = sqrt(numgoodpulses*(std-imag.^2 +...

78 mean-imag.^2)/sum(numgoodpulses) - combined-mean-imag.^2);

79 combined-std-real = sqrt(numgoodpulses*(std-real.^2 +...

80 mean-real.^2)/sum(numgoodpulses) - combined-mean-real.^2);

81 combined-std-abs = sqrt(numgoodpulses*(std-abs.^2+...

82 meanabs. ̂ 2) /sum(numgoodpulses) -combined-mean-abs. ^2);

83 combined-moment_2-abs = numgoodpulses*moment_2_abs/.

84 sum(numgoodpulses);

85 combined-moment-4-abs = numgoodpulses*moment_4-abs/.

86 sum(numgoodpulses);

87

88 data-plot=figure(l); clf, hold on, grid on

89 [minerr,zerdel]=min(abs(daxis));

90 plot (daxis, 10*loglO (combined-nax-abs. ^2))

91 plot (daxis, 10*loglO (combined.nean-abssq),

92 aa = axis;



axis([daxis(zerdel) daxis(600) aa(3:4)]) % 0

xlabel at.ti'e DeIav (m i iS'ec s) 9)

ylabel ( 'Int ns it ( d) 

figure (data-plot)

if idx==1

-,, k* -A-~ -A'.

*** *'* * *~'* * * ****.* ****

unconente tne5. '79 >A gue ort 2cn wil nrxt
%a c lt e ar.-iva -. 3es I,

%t u Uac i n'' ' i .in ear1abs. . .....i....

sG a ~ n, S...

% ao x s lura tai e )) aD ei

%plot~~~~~~~~~~ 4 [ tu4ai as)(asta~-es)],a

J..

9'e, 3li ew dt ' ,2)

.' '. . . .

pause

%- ;.

a e 9 9..a '

+9au9m9a9 ,aa

[delay-band,y, next]=ginput (2); xuer l

[err, start-band] =min (abs (daxis-delay-band (1)));

[err, end-band] =min (abs (daxis-delay-band (2) ) );

127



132 maxmeanpoint=find (combinedmean-abs==. . .

133 max (combined-mean-abs (start-band: end-band)));

134 start-band-vec (ep) =maxmeanpoint-del-delay;

135 end-bandvec (ep)=maxmeanpoint+del-delay;

136 CI

137

138 start-band=start-band-vec (ep);

139 end-band=endband-vec (ep) ;

140 band-length=length(start-band:end-band);

141

142 bandmean-abssq=.

143 sum (combined-mean-abs sq (start-band: end-band) ) /band-length;

144 bandmean-imag = ... .

145 sum (combinedrmean-imag (start-band: end-band) ) /band.length;

146 band-mean-real = ...

147 sum (combined-mean-rea1 (start-band:end-band) ) /band-length;

148 band-max-abs = ..,

149 sum (combined-max-abs (start-band: end-band) ) /band-length;

150 band-abs-pdf = ...

151 sum (combined-abs-pdf (:, startband: end-band) ,2) . /band-length;

152 band-std-imag = ...

153 sum (combined-std-imag (start-band: end-band) ) /band-length;

154 band-std-real = ...

155 sum (combined-st d-real (start-band: end-band) ) /band-length;

156 band-std-abs = ...

157 sum(combined-std-abs (start-band:end-band) ) /band-length;

158 band-moment_2_abs = . . .

159 sum (combined-moment-2-abs (start-band: end~band) ) /band-length;

160 band-moment_4.abs = ...

161 sum (combined-moment _4 -abs (start _band: end-band) ) /band-length;

162

163 m= band-moment-4-abs/ (band-moment_2-abs^2);

164 band-nu= (m-4) / (2-m);

165 i band-nu<-1

166 epoch

167 band-nu

168 warning('K parmter estimate invaid, set t-oas

169 band-nu=100;

170 el seif band-nu>100



171 warning('. (Kpameter estimiate exeds thr-shld, seL to 100)

172 band-nu=100;

173 d

174 band-a=sqrt (band-moment-2_abs/ (4* (1+band-nu)));

175

176 band-raysigma = sqrt (band-moment2abs/2);

177

,178 cur-abs-pdf = band-abs-pdf';

:179

180

181 band-sigma = sqrt ( (band-std-imag^2 + band-std-real^2) /2);

182 band-mu=abs (sqrt (band-moment -2abs-2*band-sigma. -2));

183 rp = rician-pdf (band-mu, band-sigma, sample-rician);

184 kp = kdi stpdf (band-nu, band-a, samplerician) ;

185 ray = rician-pdf (0, band-raysigma, sample-rician);

186

187 rp-total-prob = sum(rp)*A-abs;

188 kp-totaliprob = sum(kp)*A-abs;

189 ray-total-prob = sum(ray)*A-abs;

190

191 cap-total-prob = sum(cur.abs-pdf);

192

193 [ls-raysigma,ls raymu,-, ls.ray l..

194 grid-search-fcn (cur-abs-pdf,band-raysigma,O,A-abs, * r ');

195 [ls-sigma,1s-mu,-,, s-rp] =..-

196 grid-search-fcn (cur-abs-pdf,band-sigma, band-mu,A-abs, l ' );

197 [ls-nu,ls-a,ls-x,ls-kp]=...

198 grid-search-fcn (cur-abs-pdf,band-nu,band-a,A-abs, *k');

199

200

201 pdf-plot=figure (2) ;clf;grid on;hold on;

202 figure (pdf-plot);

203 plot (centers-abs, cur-abs-pdf ,

204 grid on;hold on

205 plot (sample-rician,rp*A-abs, -r, 'linewidth1,1)

206 plot (sample-rician,kp*A-abs, -k, ' h 1)

207 plot (sample-rician, ray*A-abs, ,i width' ,1)

208 plot (ls-x, 1srp,YlnewidtK,1)

209 plot (ls-x, ls-kp, * ' 'inewidtb-_' , 1)



plot (s-x,ls-ray, .'','linewidt',1)

legend('histogram', Rician Teory', 'K Theory ', . . .

alhTheory','Rician Best Fit','K Best

'Rayligh Best Fit')

xlabel ( intensi y ')

ylabel('Pr:bability Density')

title({['Ch' num2str(chnum) ' System ' num2str(sysnum)],

['Ep : ' num2str(epoch) ]})

printfile =[savefolder, '/ch',num2str(chnum),'sys',...

num2str(sysnum),'-pdf_',num2str(epoch)];

print ('-dpd',printfile)

saveas(pdf-plot,printfile, 'ig')

figure (data-plot)

[minerr,zerdel]=nin(abs(daxis));

plot (daxis,10*loglO (combined-max-abs. ^2))

plot (daxis, 10*loglO (combined-mean-abssq),'r')

aa = axis;

plot([daxis(start-band) daxis(start-band) ,aa(3:4),'g'

'linewidth',2);

plot([daxis(end-band) daxis(end-band)],aa(3:4),'g',

'linewidth' ,2);

aa = axis;

axis([daxis(zerdel) daxis(600

xlabel ('Relativc Delay (mii

ylabel('nest d)'

title({['Ch' num2str(chnum)

('Epowch: ' num2str(epoch)

) aa(3:4)])

seconds) ' )

Sytm'num2str(sysnum)),

] })

printfile =[savefolder,'/cI',num2str(chnum),'sys',..

num2str(sysnum),'-sigal-',num2str(epoch)];

print ('-dp-df' ,printf ile)

saveas (data-plot,printfile,'

env-data=figure (3);



249 [h, p, s, d] =plot-wind-and-wave-data (epoch);

250 end

251 out= [out;epoch, ls-nu, 1s-a, min-error-kp, D-KL-kp, lsnu,

252 ls-sigma,min-error-rp, D-KL-rp, is-raysigma, min-error-ray,

253 D-Kliray, h,p,s,cur-abs-pdf;

254 intervals-[intervais; delay-band';];

255 nd

256 output = { Epoch , -Dt i , K-Di.. a', K U E r ,..

2&7 'K-D IQ K it5 ', Rician Mu", 'Rioin -igm.a', <ria ITEerr,

258 'Riciert K-t Dii R 'ay Sigma', 'Rayleigh Erro"r

250 'Dab -- I X 1 4f: };
260
261 'k - -k w -A: +x -- +*'' '''* *

262 22 y4rnted rhY 2llowing lines of odew sae eats t n Lie

263 t;'nd ru. the envroxstrtczi pararoete 'vI. (2o '7 an0 parmrU(.2 ' anals

266 a ~ ,'Id J. - if

264 1: fiSJnto t/lpiltS C le'intL, s~t(PZit. aCh6

265 %Rnt2otr (u-ttT, -Ay *,,t2,t C ($yst l-numb e I

266 4 s-co £22averOider filedat lo, ndt )

12 plotfesults 2' pat11. 3corr

269

270ond



Appendix B

MATLAB Code: Simulations

1 %scatterer simulat ion

2

3 close all

4

5 N=1307*7;

6 T=1786;

7 start = 149; %Cor tau

8 X=zeros(N,T);

9

10 fs=5e6/112;

11 Nr=1786;

12 daxis = ([0:Nr-1]-59)*1000/fs;

13

14

15 pulsewidth=0.1; %niLiscn

16 alpha=1/pulsewidth^2;

17 Rs=exp(-alpha*daxis.^2);

18 RsO=0.04*Rs;

20 %nor-maL t7.sigti ,i ms

21 tau-mu=2.787;

22 tau.sigma=0.18113;

23

24 Ganm amltu

25 z-shape = 14.4086;



z-scale= 0.008;

Ak-shape =3.79;

A-scale=0 .0 0 38;

di 90;bl-105;

Rs-center--60;

33 Rsd-il= [zeros(1, di-Rs-center) RsOJ;

,34 Rsdl(T±I:T~di-Rs-ceniter)=[1;

35

U~ Rsbi = zeros (1,b1-Rs-center) RsOl;

37 Rsbi (T+i: T~bi-Rs-center)[;

38

40 r 5;~. IJ'C~p..urae22e~~

41 Rst-z-eros (m, T);

42 FO( n 1:N

43

44 Ai~gamrnd(A ,shape,A-scaie,m, r); A

45

46 L r>i

47 cel-tau-randi([0 i41,1,r-1);

48 end

50 sigT-phas-unifrnd(0,,2-*pi,m~r);

52 tauiji - normrnd (tau-mu, tau-sigma,,m,i1)

53 tai-59+finid(abs(daxis(60: -nd)-tauii)==min(abs(daxis (60:c-,,-1 ) -tauii)))

54 n~i~: 'f unit: co sta

Lr ii-i:m tc Iuit 3eL.a ~nri 2 ii

if k>i

taui (ii, k) =taui (ii, k-i) +detau (k-i);

Rsti(k, :) =[zeros (1,taui (ii,k) -Rs-center)..

100,

lu



Rsti(k,1:T-taui(ii,k)+Rs-center)];

66

67

68 C'I

69 r>1

70 Rst(ii,:)=sum(Rsti);

71 eIse

72 Rst=Rsti;

73

74 ht

75

76 X(n,:)=Rsbl+Rsdl+Rst;

77

78 desired-baseband=ones (4,1) /4;

79 s=freqdomainconv(desiredbaseband,X(n,:)');

80 X(n,:)=s(1:T);

81 end

82

83 mean-real = mean (real (X));

84 mean-imag = mean(imag(X));

85 std-real = std(real(X));

86 std-imag = std(imag(X));

87 mean-realsq = mean(real(X) .2);

88 mean-imagsq = mean(imag(X).^2);

89

90 X=abs (X);

91

92 numbins=80;

93 mv=max(max(X));

94 edges-abs=[O:nmbins]*mv*1.0001/numbinS;

95 A-abs = mv*1.0001/(numbins);

96

97 pcolor(daxis,0:1299,X(1:1300,:));shading(' at')

98 axis([O 5 0 1300])

99

100 max-abs = max (X);

101 min-abs = min (X);

102 mean-abs = mean(X);

103 std-abs = std(X);

101



104 moment-2_abs = sum(X.^2)/size(X,1);

105 moment 4_abs = sum(X.^4) /size (X,1);

106 var-abs = var(X);

107 temphist = histc(X,edges-abs);

108 hist-abs temphist(1:numbins, :);

109 mean-abssq = mean(X);

110 std-abssq = std(X);

111

112 combined-mean-abssq mean-abssq;

113 combined-mean-imag mean-imag;

114 combined-mean-real = mean-real;

115 combined-mean-abs = mean-abs;

116 combined-max-abs = max-abs;

117 combined-abs pdf = hist-abs/N;

118 combined-std-imag = std-imag;

119 combined-std-real = std-real;

120 combined-std-abs = std-abs;

121 combined-moment_2_abs = moment_2_abs;

122 combined-moment_4_abs = moment_4_abs;

102



Appendix C

MATLAB Code: Channel

Estimation

1 clear all

%ksett ingq thIs to 1 wV, Il i

% for- eachtia

rand..off=0;

%set to zero to sutro s

plots.on=O;

cause random number generators to use same seed

l poUput

9 num...mmse...it=20; %nuber of iterations in coordinate descent, MMSE. estL.t-

10 M=4; inumber o chann;ei taps

11 Num=5000; %nsmber of t is

12 K=10; %number' of observations

13 CD.iterations=10; %number of iterations in coordinate descent, MAP estimate

14 Newton-it=l; % ub iterations in Newton's method for MAP esrimate

15

16

17 %K-dist arameer-s

18 thetax=2*0.0062^2*(1-0.3447)/0.05;

19 a=sqrt (thetax/2);

20 nu=-0.95;%

21 %nu=-0 .3447;

22 %a=!) .0 (1 ;
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23

25 theta-2 a^2;

26 knu±l;

27

28i d rit g a t

29 sig sqrt (k*theta);

30

32 sig-hK=sgrt (k wtheta);

331

34 variance Bstri o

35 Rh=2*sig"2*eye (M);

5s noise-lev;5V5;0;

319

41 hKkmse=zeros (1, length (noise-lev));

42 hKy-mse=zeros (1, length (noiselev));

43 hKr-mse=zeros (1, length (noise-1ev));

44

4-s hK-var=zeros (1, length (noise-lev) );

46

47 hak-mse=zeros (1, length (noise-lev));

4s hRyumse=zeros (1, length (noise-levf};

49 hRr-mse=zeros (1, length (noise-lev);

50

5' minJMSE~zeros (1, length (noise-lev));

52

53 for no ise-lev-index=1: length (noise-lev)

54

5s e

56 hKk-mse-look=zeros (4, Num)

57 hKymse-lookY=eros (M,Num);

58 hKr-mse-look=zeros (M, Num)

59

60 hRk-mse-loo k~zeros (M,Num);

61 hRy-mse-look=zeros (1,Num);
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62 hRr-mse-look=zeros(M,Num);

63

64 hK-var-look=zeros (M,Num);

65 D=2*(randn(K,M)>0)-1;%ey1(%,M);

66 Calut ice based on

67 %noise i c B

68 sig-u=sqrt((sig-hK^2)*10^(-noise-lev(noise-lev-index)/10));

69 Cuu=diag(sig-u^2*ones(K,1));

70 Cvu=O;

71 Cw=2* (Cuu+li*Cvu); %c-mex nCise v

72

73 %calcult MS expected usinc LMMSE estima

74 mindMSE(noise-lev-index)=trace( (eye(M) /Rh+D'/Cw*D)\eye(M));

75

76 for look-index = 1:Num

77

78 %generte omplex guassian noise

79 if randoff==1

80 randn('state',0);

81 end

82 u=mvnrnd(zeros(K,1),sig-u^2);

83 if randoff==1

84 randn('state',1)

85 end

86 v=mvnrnd(zeros(K,1),sig-u^2);

87 w=u+li*v;

88

89 %generate K ca

90 if randoff==1

91 randn('state',1);

92 end

93 [hK,z,nX,nY]=genKchannel(nu,a,M);

94 if rand-off==1

95 randn('state',0);

96 end

97 0 e Raei v1 cn

98 hR=genRayleighchannel(sig,M);

99

100 yK=D*hK+w;
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101

102

103 r1Ql*Ones (M, 1); k t

104 RO=diag(rO);

105 nO=(RO'* D'/-CwwD*RO+eye(M) /2)\ (RO
T*D'/Cw*yK);

106 =Y ,

107 y-yK ;

'109

109 if M== 1

110

iII betak=abs (yK) ^2/ (2*D2)

112 etakesig-u~2/D2;

11s Karg=c2*sqrt (betak/theta);

114

115 d

116 tllst=-kebesselk (kYKarg) /betak+sqrt (betak*theta) *.

117 besselk (k+1,Karg) / (theta*betak);

118 t2-1st=(l-k) *besselk(k-1,Karg) / (betak*sqrt(betak*theta) )+.

119 besselk (k, Karg) / (betak*theta);

120 hKanmse l=(y/D) tillt/,(ti dst +etsak*t 2 lst)i

121

122 2od tMtE sti

123 hKmmse-hat- (y/D) *t-,f cn (bet ak, etak, k, theta)

124 (t-fcn (betak,etakk,theta)+etak*t fcn (betak,etakk-1,theta));

125

126 else

127

128 hK-mmse -hat=zeros (M,1); % t daLI za

129 for hkhat-it=1:num-mmse-it

130for kidl:M

131 dk=D (:, kidx);

132 Dtilde=D;

133 Dt i lde ( :, k idx )=[];

134 htilde=hK-mmse-hat;

15ht ilde (i@(

136

137 etaksig-u~2/norm(dk) 2;

138

1a9 betak=norm(dk' * (y-Dtilde*htilde)) ̂2/ (2*norm(dk) 4};
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140

141 that=t-fcn (betak, etak, k, theta)/ ....

142 (t-fcn (betak,etak,k,theta)+...

143 etak*tfcn (betak,etak,k-1,theta));

144 hK.mmse-hat (kidx)=t-hat*dk'* (y-Dtilde*htilde) /.

145 norm(dk)^2;

146 end

147 end

148 end

149

150

151 r=rO;

152 R=diag(rO);

153 vals-CD=[];

154 for CD-index=1:CD-iterations

155

156

157 R=diag(r);

158 n(:,CD-index)=(R'*D'/Cw*D*R+eye(M)/2)\(R'*D'/Cw*y);

159 N=diag (n (:, CD-index));

160 val-CD=real( (y-D*N*r) '/Cw* (y-D*N*r) )+r'*r/theta-(2*k-1) *

161 sum (log (r) ) +n (:, CD-index) '*n (:, CD-index) /2;

162 vals-CD=[vals-CD, val-CD];

163

164 newton-opt; %st 12 r usin newton method

165

166 end

167 R=diag(r);

168 n(:,CD-index)=(R'*D'/Cw*D*R+eye(M)/2)\(R'*D' /Cw*y);

169 N=diag (n ( :, CDindex));

170 val-CD=real( (y-D*N*r) '/Cw*(y-D*N*r) )+r'*r/theta-(2*k-1) * ...

171 sum(log(r))+n(:,CD-index) '*n(:,CD-index)/2;

172 vals-CD=[valsCD, valCDJ;

173 optval=valCD;

174

175

176 r-khat=r;

177 n-khat=n (:, CD.index);

178 R-khat=diag (r-khat) ;

107



179

181 hK-khat-r-khat *n-khat;

182 hK-rhat (D /Cw*D+eye (M) /Rh) \D' /Cw*y,{g

183 hKk-err=hK-hK-khat;

184 hKy-err=hK-yK(1:M);

185 hKr-err=hK-hK-that;

186 hKmmse1err=hK-hK-mmsel;

187 hKmmsehat-err=ahK-hK-mmset-hat;

188

189

190 %Ra-yl e.iQ.gh ch anne l es Vth I e

191 yR-*hR+w;

192

193 y=yR;

194 r=rO;

195 valsCD= H;

196 for CD-index=l:CD-iterations

197 R-diag(r);

198 n(:,CD-index)=(R*D'/Cw*D*R+eye(M)/2)\(R'*D'/CW*y);

199 N=diaq (n (:, CD-index));

200 val-CD=real( (y-D*N*r) '/Cw* (y-D*N*r) )+r*r/theta-(2*k 1)*.

201 sum (log (if) ) +n (: , CDindex) '*n (:,CD-index) /2;

202 valsCD=[vals-CD, val-CD];

203

204 newton-opt; YsIs ot r gnton meth0d

208

206

207

208 r-rhat=r;

209 in-rhat=n (:, CD-index);

210 R-rhat=diag(r-rhat);

211

212 hRkhat=r-rhat- *n-rhat;

213 hR-rhat=(D'Cw*D+eye (M) /Rh)\D /Cw*yR;

214 hRk-err=hR-hR khat;

215 hRy-err~hR-yR (1:M) ;

216 hRr-err=hR-hR.rhat;

217
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218

219 hKk-mse-look (:, look-index)=abs (hKk-err) .^2;

220 hKy.mse-look (:, look-index)=abs (hKy-err) .^2;

221 hKr-mse-look (:, look-index)=abs (hKr-err) . ^2;

222 hKmmsel-mse.look (:, look-index)=abs (hKmmsel.err) .^2;

223 hKmmsehat-mse-look (:, look-index)=abs (hKmmsehat-err) .^2;

224

225 hRk.mse-look (:, look-index)=abs (hRk-err) .^2;

226 hRy.mse-look (:,look-index)=abs (hRy-err) .^2;

227 hRr-mse-look (:, look-index) =abs (hRr-err) .^2;

228

229 end

230 hKk-mse (noise-lev-index)=sum (sum (hKk-mse-look, 2) /Num) ;

231 hKy-mse (noise-lev-index)=sum (sum (hKy-mse-look, 2) /Num) ;

232 hKr-mse (noise-lev-index)=sum (sum (hKr-mse-look, 2) /Num) ;

233 hKmmsel-mse (noise-lev-index) =sum (sum (hKmmsel.mse-look, 2) /Num);

234 hKmmsehat-mse (noise-lev-index)=sum(sum(hKmmsehat-mse-look,2) /Num);

235

236 hK-var (noise-lev-index)=sum (sum (hK.var-look, 2) /Num);

237

238 hRk-mse (noise-lev-index)=sum (sum (hRk-mse-look, 2) /Num) ;

239 hRyamse (noise.lev-index)=sum (sum (hRy.mse-look, 2) /Num) ;

240 hRr-mse (noise-lev-index)=sum(sum (hRr-mselook, 2) /Num) ;

241 end

242

243 if plots-on ==1

244 figure, hold on, grid on

245 plot (noise-lev, 10*loglO (hKr-mse), 'r

246 plot (noise-lev, 10*loglO (hKk-mse) , 'k ')

247 plot (noise-lev, 10*loglO (hKy-mse) )

248 plot (noise-lev, 10*loglO (minMSE) , ' m' )

249 cplo ( isc--le v, +1g 0(Kv r ,c'

250 l v

251 plot (noise-lev, 10*log1O (hKmmsehat-mse), '-)

252

253 legend( 'Payleigh estimate', 'KIAP estimate', 'Output as estimate

254 'Linear MSE ( t , ' rder K-MMSE')

255

256 xlabel('SNR (dB) ')
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257 ylabel ( 'MSE (dE)')

258 title {I -dist Chrnel [ttes, ; ['.K var: num2str (2*sig-hK^2)

259 , ha num2str (2*sig^2)]})

260

261 figure, hold on, grid on

262 plot (noise-levr 10*logl0 (hRr-mse) , 'r )

263 plot (noise-lev, 10*loglO (hRk-mse) , 'K*)

264 plot (noise-lev, 10*loglO (hRy-mse)

265 plot (noise-lev, 10*log1O (minMSE), 'i)

266 legend ( P ayleigh et imate , K- esi

267 Outpt asestimate','MMS

268 xlabel ( ',"R (d)

269 ylabel(MSE (dB) )

270 title (('Rayleigh Charel Estima't-es, ; 'K var:

271 num2str(2*sig-hK^2), , h ar: num2str(2*sig'2)]})

272

273 end

2 c. Neno method

3 ity, taught b e

4 ALPHA 0.01;

5 BETA = 0.5;

6 MAXITERS =200;% Netn't;

7 NTTOL - le-9;

8 GRADTOL le-6;

9

10

11 vals = [];

12 steps =[];

13

14 for iter = l;MAXITERS

is val =real((y-D*N*r) '/Cw*(y-D*N*r))+r'*r/theta-(2*k-1)*sum(log(r))+

16 n(:,CD.index) **n(:,CD-index)/2;

17 vals = [vals, val];

18 grad= -2*real(N'*D'/Cw*y)+2*real (N'*D' /Cw*D*N)*r+2*r/theta-(2*k-l) ./r;

19 hess = 2*real(N*DO'/Cw*D*N)+2/theta+(2*k-i)*(diag(l./r.^
2 ));

20 v = -hess\grad;
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21 fprime = grad'*v ;

22 if abs(fprime) < NTTOL, break; end;

23 t = 1;

24 whlI (min(r+t*v) < 0)

25 t = BETA*t;

26 end;

27 while ((y-D*N*(r+t*v))'/Cw*(y-D*N*(r+t*v))+(r+t*v)'*(r+t*v)/..

28 theta-(2*k-1)*sum(log(r+t*v))+n(:,CD-index)'...

29 *n(:,CD-index)/2>val + ALPHA*t*fprime

30 t=BETA*t;

31 end;

32

33 r = r+t*v;

34 steps = [steps,t];

35

36 end;

37

38 optval = vals(length(vals));

39 steps []; % dn put

40 if isempty(steps)#1

41 figure(3)

42 semilogy([O:(length(vals)-2)], vals(1:length(vals)-1)-optval, -',

43 [0:(length(vals)-2)], vals(1:length(vals)-1)-optval, ',3');

44 xlabel('r'); ylabel('z');

45

46 figure(4)

47 plot([l:length(steps)], steps, ' [1:length(steps)], steps, 'o');

48 axis([0, length(steps), 0, 1.1]);

49 xlabel('r'); ylabel('z');

50 end

1 function t=t-fcn (betak,etak,k, theta)

2

3 Karg=2*sqrt(betak/theta);

4

5 t=2*(betak*theta) (k/2)*(-k*besselk(k,Karg)/betak+etak*besselk(k-1,Karg)/.

6 (theta*sqrt(betak*theta))-k*etak*besselk(k-2,Karg)/(betak*theta)+...

7 sqrt(betak*theta)*besselk(k+1,Karg)/(theta*betak));
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