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Abstract
We present several general, broadly applicable mechanisms
that enable computations to execute with reduced resources,
typically at the cost of some loss in the accuracy of the result
they produce. We identify several general computational pat-
terns that interact well with these resource reduction mech-
anisms, present a concrete manifestation of these patterns
in the form of simple model programs, perform simulation-
based explorations of the quantitative consequences of ap-
plying these mechanisms to our model programs, and relate
the model computations (and their interaction with the re-
source reduction mechanisms) to more complex benchmark
applications drawn from a variety of fields.

Categories and Subject Descriptors D.2.11 [Software Ar-
chitectures]: Patterns; D.2.4 [Software/Program Verifica-
tion]: Statistical Methods; D.3.1 [Formal Definitions and
Theory]: Semantics

General Terms Design, Measurement, Performance, Reli-
ability, Verification

Keywords Reduced Resource Computing, Discarding Tasks,
Loop Perforation, Cyclic Memory Allocation, Statistical
Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Onward! 2010, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0236-4/10/10. . . $10.00

1. Introduction
The amount of available resources is a central factor in the
existence of virtually all living organisms. Mechanisms that
adapt the operation of the organism to variations in resource
availability occur widely throughout nature. For example,
during prolonged starvation, the human body preserves mus-
cle mass by shifting its fuel source from proteins to ke-
tone bodies [3]. Peripheral vasoconstriction, which mini-
mizes heat loss by limiting the flow of blood to the ex-
tremeties, is a standard response to hypothermia. The nasal
turbinates in dehydrated camels extract moisture from ex-
haled respiratory air, thereby limiting water loss and enhanc-
ing the ability of the camel to survive in dessicated environ-
ments [31]. All of these mechanisms take the organism away
from its preferred operating mode but enable the organism
to degrade its operation gracefully to enhance its survival
prospects in resource-poor environments.

The vast majority of computer programs, in contrast, exe-
cute with essentially no flexibility in the resources they con-
sume. Standard programming language semantics entails the
execution of every computation the program attempts to per-
form. If the memory allocator fails to return a valid reference
to an allocated block of memory, the program typically fails
immediately with a thrown exception, failed error check, or
memory addressing error. This inability to adapt to changes
in the underlying operating environment impairs the flexi-
bility, robustness, and resilience of almost all currently de-
ployed software systems.

Reduced resource computing encompasses a set of mech-
anisms that execute programs with only a subset of the
resources (time and/or space) that the standard program-
ming language semantics and execution environment pro-
vides. Specific reduced resource computing mechanisms in-
clude:



• Discarding Tasks: Parallel computations are often struc-
tured as a collection of tasks. Discarding tasks produces
new computations that execute only a subset of the tasks
in the original computation [23, 24].

• Loop Perforation: Loop perforation transforms loops to
execute only a subset of the iterations in the original com-
putation [16, 20]. Different loop perforation strategies in-
clude modulo perforation (which discards or executes ev-
ery nth iteration for some fixed n), truncation perforation
(which discards either an initial or final block of itera-
tions), and random perforation (which discards randomly
selected iterations).

• Cyclic Memory Allocation: Cyclic memory allocation
allocates a fixed-size buffer for a given dynamic alloca-
tion site [21]. At each allocation, it returns the next ele-
ment in the buffer, wrapping back around to the first el-
ement when it reaches the end of the buffer. If the num-
ber of live objects allocated at the site is larger than the
number of elements in the buffer, cyclic memory alloca-
tion produces new computations that execute with only
a subset of the memory required to execute the original
computation.

1.1 Resource Reduction in Practice
Unsurprisingly, these mechanisms almost always change the
output that the program produces. So they are appropriate
only for computations that have some flexibility in the out-
put they produce. Examples of such computations include
many numerical and scientific computations, sensory appli-
cations (typically video and/or audio) that involve lossy en-
coding and decoding, many machine learning, statistical in-
ference, and finance computations, and information retrieval
computations. The relevant question is whether these kinds
of computations are still able to deliver acceptable output
after resource reduction.

Interestingly enough, our empirical results show that
many of these computations contain components that can
successfully tolerate the above resource reduction mecha-
nisms — the computation still produces acceptably accurate
outputs after the application of these mechanisms to these
components. And these resource reduction mechanisms can
often endow computations with a range of capabilities that
are typically otherwise available only through the manual
development of new algorithms. Specifically, discarding
tasks has been shown to enable computations to tolerate task
failures without retry [23], to produce accuracy and per-
formance models that make it possible to purposefully and
productively navigate induced accuracy versus performance
trade-off spaces (for example, maximizing accuracy subject
to performance constraints or maximizing peformance sub-
ject to accuracy constraints) [23], and to eliminate barrier
idling at the end of parallel loops [24]. Cyclic memory al-
location has been shown to eliminate otherwise potentially
fatal memory leaks [21]. Loop perforation has been shown
to reduce the overall execution time of the computation and

to enable techniques that dynamically control the compu-
tation to meet real-time deadlines in the face of clock rate
changes and processor failures [16].

A key to the successful application of these mechanisms
in practice is identifying the components that can success-
fully tolerate resource reduction, then applying resource re-
duction only to those components. This empirical fact leads
to usage scenarios in which the resource reduction mecha-
nisms generate a search space of programs close to the orig-
inal programs. An automated (or semiautomated) search of
this space finds the components that can tolerate resource
reduction, with resource reduction confined to those compo-
nents when the computation executes. The remaining com-
ponents execute with the full set of resources with which
they were originally designed to operate. The resulting effect
is conceptually similar to the mechanisms that biological or-
ganisms use to deal with reduced resources, which direct the
delivery of scarce resources to those critical functions most
necessary for survival.

1.2 Inherent Redundancy
The success of reduced resource computing shows that
many computations, like biological organisms, have inherent
sources of redundancy that enable them to operate success-
fully in the face of reduced resources. Note, however, that
these sources of redundancy were not explicitly engineered
into the computation — they emerge as an unintended con-
sequence of the way the computation was formulated. In this
paper we analyze various sources of redundancy that enable
these computations to tolerate resource reduction.

The result of this analysis is several general computa-
tional patterns that interact in very reasonable ways with the
different resource reduction mechanisms. Viewing our com-
putations through the prism of these patterns helped us un-
derstand the behavior we were observing; we anticipate that
recognizing these patterns in other computations will facili-
tate the prediction of how these other computations will react
to resource reduction.

In the future, trends such as the increasing importance of
energy consumption, the need to dynamically adapt to com-
puting platforms with fluctuating performance, load, and
power characteristics, and the move to more distributed, less
reliable computing platforms will increase the need for com-
putations that can execute successfully across platforms with
a range of (potentially fluctuating) available resources. Ini-
tially, we expect developers to let automated techniques find
and exploit patterns in existing applications that interact well
with resource reduction. They may then move on to deploy-
ing such patterns into existing applications to enhance their
ability to function effectively in a range of environments. Ul-
timately, we expect developers to engineer software systems
from the start around patterns that interact well with resource
reduction in much the same way that developers now work
with more traditional design patterns [12] in all phases of the
engineering process.



1.3 Contributions
This paper makes the following contributions:

• Computational Patterns: It identifies computational
patterns that interact well with resource reduction mech-
anisms such as discarding tasks, perforating loops, and
dynamically allocating memory out of fixed-size buffers.
Understanding these patterns can help developers de-
velop a conceptual framework that they can use to reason
about the interaction of their applications with various
resource reduction mechanisms.

• Model Computations: It presents concrete manifesta-
tions of the general patterns in the form of simple model
computations. These model computations are designed
to capture the essential properties of more complex real-
world applications that enable these applications to op-
erate successfully in the presence of resource reduction
mechanisms.
In this way, the model computations can give developers
simple, concrete examples that can help them think pro-
ductively about the structure of their applications (both
existing and envisioned) and how that structure can affect
the way their applications will respond to the application
of different resource reduction mechanisms.
The model computations can also serve as the founda-
tion for static analyses that recognize computations that
interact well with resource reduction mechanisms. Such
analyses could produce statistical models that precisely
characterize the effect of resource reduction mechanisms
on the application at hand, thereby making it possible
to automatically apply resource reduction mechanisms to
obtain applications with known statistical accuracy prop-
erties in the presence of resource reduction.

• Simulations: It presents the results of simulations that
use the model computations to quantitatively explore the
impact of resource reduction on the accuracy of the re-
sults that the computations produce. The simulation re-
sults can help developers to better estimate and/or ana-
lyze the likely quantitative accuracy consequences of ap-
plying resource reduction mechanisms to their own ap-
plications.

• Relationship to Applications: It relates the structure of
the model computations and the simulation accuracy re-
sults back to characteristics of specific benchmark appli-
cations. Understanding these relationships can help de-
velopers better understand the relationships between the
model computations and their own applications.

• A New Model of Computation: Standard models of
computation are based on formal logic [11, 14]. In these
models, the computation is rigidly fixed by the applica-
tion source code, with formulas in discrete formal logic
characterizing the relationship between the input and out-
put. This paper, in contrast, promotes a new and fun-

damentally different model in which the computation is
flexible and dynamic, able to adapt to varying amounts
of resources, and characterized by (conceptually) contin-
uous statistical relationships between the input, output,
and amount of resources that the computation consumes.
Of course, almost every program has some hard logical
correctness requirements — even a video encoder, for
example, must produce a correctly formatted video file
(even though it has wide latitude in the accuracy of the
encoded video in the file). We therefore anticipate the de-
velopment of new hybrid analysis approaches which ver-
ify appropriate hard logical correctness properties using
standard program analysis techniques but use new statis-
tical techniques to analyze those parts of the computation
whose results can (potentially nondeterministically) vary
as long as they stay within acceptable statistical accuracy
bounds.

2. The Mean Pattern
Consider the following computations:

• Search: The Search computation [7] from the Jade
benchmark suite [28] simulates the interaction of electron
beams with solids. It uses a Monte-Carlo simulation to
track the paths of electrons, with some electrons emerg-
ing back out of the solid and some remaining trapped in-
side. The program simulates the interaction for a variety
of solids. It produces as output the proportion of elec-
trons that emerge out of each solid. Each parallel task
simulates some of the electron/solid interaction pairs.

• String: The String computation [13] from the Jade
benchmark suite [25] uses seismic travel-time inversion
to compute a discrete velocity model of the geology be-
tween two oil wells. It computes the travel time of rays
traced through the geology model, then backprojects the
difference between the ray tracing times and the exper-
imentally observed propagation times back through the
model to update the individual elements in the velocity
model through which the ray passed. Each parallel task
traces some of the rays.

The core computations in both Search and String generate
sets of numbers, then compute the mean of each set. In
Search, each number is either one (if the electron emerges
from the solid) or zero (if the electron is trapped within
the solid). There is a single set of ones and zeros for each
solid; the output is the mean of the set. In String there is
one set of numbers for each element of the discrete velocity
model. Each number is a backprojected difference from one
ray that traversed the element during its path through the
geology model. String combines the numbers in each set by
computing their mean. It then uses these numbers to update
the corresponding elements of the velocity model.

The resource reduction mechanism for both computa-
tions, discarding tasks, has the effect of eliminating some



of the numbers from the sets. It is possible to derive empir-
ical linear regression models that characterize the effect of
this resource reduction mechanism on the output that these
two computations produce [23]. These models show that dis-
carding tasks has a very small impact on the output that the
computation produces. Specifically, the models indicate that
discarding one quarter of the tasks changes the Search out-
put by less than 3% and the String output by less than 1%;
discarding half of the tasks (which essentially halves the run-
ning time) changes the Search output by less than 6% and the
String output by less than 2%.

2.1 The Model Computation
Our model computation for these two computations simply
computes the mean of a set of numbers:

for (i = 0; i < n; i++) {
sum += numbers[i];
num++;

}
mean = sum/num;

The resource reduction mechanism for this model compu-
tation executes only a subset of the loop iterations to com-
pute the mean of a subset of the original set of numbers. The
specific mechanism we evaluate (loop perforation) simply
discards every other number when it computes the sum by
executing only every other iteration in the model computa-
tion:

for (i = 0; i < n; i += 2) {
sum += numbers[i];
num++;

}
mean = sum/num;

We evaluate the effect of this resource reduction mecha-
nism via simulation. Our first simulation works with floating
point numbers selected from a continuous probability distri-
bution. Each trial in the simulation starts by filling the ar-
ray numbers with the values of n independent pseudoran-
dom variables selected from the uniform distribution over
the interval [0, 1]. It then computes the difference between
the computed mean values with and without resource reduc-
tion — i.e., the difference between the mean of all n values
in the numbers array and the mean of every other value in
the numbers array. For each even value of n between 10 and
100, we perform 1,000,000 such trials.

Our second simulation works with integers selected from
a discrete probability distribution. Each trial fills the ar-
ray numbers with the values of n psuedorandom variables
selected from the uniform discrete distribution on the set
{0, 1}. We then perform the same simulation as detailed
above for the continuous distribution.

Figure 1 presents the results of these trials. This figure
presents four graphs. The x axes for all graphs range over
the sizes (values of n) of the sets in the trials. The upper

left graph plots the mean of the differences between the re-
sults that the standard and resource reduced computations
produce (each point corresponds to the mean of the ob-
served differences for the 1,000,000 trials for sets of the cor-
responding size) for the continuous distribution. The upper
right graph plots the variances of the differences for the con-
tinuous distribution. The lower left graph plots the mean of
the differences for the discrete distribution; the lower right
graph plots the corresponding variances.

These numbers show that our model computation exhibits
good accuracy properties in the presence of resource reduc-
tion. Specifically, for all but the smallest sets of numbers,
resource reductions of a factor of two cause (in most cases
substantially) less than a 10% change in the result that the
computation produces. We attribute this robustness in the
face of resource reduction to a diffuse form of partial re-
dundancy that arises from the interaction of the computation
with the data on which it operates. Because the numbers in
the reduced resource computation are a subset of the com-
plete set of numbers and because the numbers are all drawn
from the same probability distribution, the two mean values
are highly correlated (with the correlation increasing as the
size of the sets increases).

We note that the graphs show that the accuracy of the
resource reduced computation depends on the size of the set
of numbers, with larger sets producing smaller differences
and variances than larger sets of numbers. This phenomenon
is consistent with our redundancy-based perspective, since
smaller sets of numbers provide our model computation with
less redundancy than larger sets of numbers.

The discrete distribution has higher mean differences and
variances than the continuous distribution, which we at-
tribute to the concentration of the weight of the discrete
probability distribution at the extremes. We also note that
all of our simulation numbers are for resource reductions
of a factor of two, which is much larger than necessary for
many anticipated scenarios (for example, scenarios directed
towards tolerating failures).

2.2 Relationship to Search and String
The model computation provides insight into why the appli-
cations tolerate the task discarding resource reduction mech-
anism with little loss in accuracy. While discarding tasks
may, in principle, cause arbitrary deviations from the stan-
dard behavior of the application, the underlying computa-
tional patterns in these applications (although obscured by
the specific details of the realization of the patterns in each
application) interact well with the resource reduction mech-
anism (discarding tasks). The final effect is that the resource
reduction mechanism introduces some noise into the com-
puted values, but has no other systematic effect on the com-
putation. And in fact, the results from our model compu-
tation show that it is possible to discard half the tasks in
the computation with (depending on the size of the set of
numbers) single digit percentage accuracy losses. This result
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Figure 1. Means and Variances of Differences Between Standard and Resource Reduced Mean Computations

from our model computation is consistent with the results
from both the Search and String applications. The larger
mean differences and variances for the discrete distribution
show that the Search application (in which each number is
either 0 or 1) needs to work with larger sets than the String
application (in which each number is a floating point num-
ber) to obtain similar accuracies under similar resource re-
duction factors.

3. The Sum Pattern
Consider the following computations:

• Water: Water evaluates forces and potentials in a sys-
tem of molecules in the liquid state [25]. Although the
structure is somewhat obscured by the application mod-
els the interactions between the water molecules, the core
computations in Water boil down to computing, then tak-
ing the sum of, sets of numbers. For example, a key in-
termolecular force calculation computes, for each wa-
ter molecule, the sum of the forces acting on that water
molecule from all of the other water molecules. Water is
coded as a Jade program [25], with each task computing,
then taking the sum of, a subset of the corresponding set
of numbers.

• Swaptions: Swaptions uses a Monte-Carlo simulation to
solve a partial differential equation to price a portfolio of
swaptions [5]. The core computation takes the sum of the
results from the individual simulations. The application
computes the final result by dividing the sum by the
number of simulations.

The resource reduction mechanism for Water is discard-
ing tasks [23, 24]; the resource reduction mechanism for
Swaptions is loop perforation [16, 20]. In both cases the
effect is a reduction in the result proportional to the num-
ber of discarded tasks or loop iterations. Unlike the Search
and String computations discussed in Section 2, for Water
and Swaptions discarding many tasks or loop iterations can
therefore induce a large change in the overall result that the
computation produces.

3.1 The Model Computation
The model computation for Water and Swaptions computes
the sum of a set of psuedorandom numbers.

for (i = 0; i < n; i++) sum += numbers[i];

As for the mean model computation, the resource reduction
mechanism is to discard every other iteration of the loop:

for (i = 0; i < n; i += 2) sum += numbers[i];

The effect is to divide the result (the value of the sum vari-
able) by approximately a factor of two. It is possible, how-
ever, to use extrapolation to restore the accuracy of the com-
putation [16, 23] - simply multiply the final result by two, or,
more generally, the number of tasks or loop iterations in the
original computation divided by the number of tasks or loop
iterations in the resource reduced computation. Note that the
former number (the number of tasks or loop iterations in the
original computation) is typically available in the resource
reduced computation as a loop bound (for our model com-
putation, n) or some other number used to control the gener-
ation of the computation. After extrapolation, the accuracy



picture is essentially similar to the accuracy picture for the
computations with the mean pattern (see Section 2) — the
extrapolated sum is simply the mean multiplied by the ap-
propriate ratio.

3.2 Relationship to Water and Swaptions
Water and Swaptions tolerate resource reduction for essen-
tially the same reason that Search and String tolerate re-
source reduction — all of these computations combine a
set or sets of partially redundant numbers together into a fi-
nal result or results, with addition as the basic combination
mechanism. In all of the applications the resource reduction
mechanism has the effect of eliminating some of the num-
bers from the combination, with the redundancy present in
the numbers enabling the computations to tolerate the elim-
ination with small accuracy losses.

4. The Minimum Sum Pattern
x264 is an H.264 video encoder from the Parsec benchmark
suite [5]. It encodes a sequence of frames, with each frame
encoded as a collection of blocks (rectangular regions of the
frame). One way to encode a block is to reference a block
in a previously encoded frame, then specify the contents of
the block as a set of differences relative to the referenced
block. The more similar the blocks are, the more efficient
the encoding. The search for a similar block in a previously
encoded frame is called motion estimation [18]. x264 spends
the majority of its time in motion estimation.

The following code fragment implements a comparison
between an encoded block and a reference block. It com-
putes the sum of a set of numbers designed to character-
ize the visual difference between the two blocks (the vari-
able value holds the sum). This code block executes for a
variety of potential reference blocks, with the computation
choosing to use the block with the smallest sum as the final
reference block for the relative encoding (if that encoding is
more compact than the standard discrete cosine transforma-
tion encoding).

for (i = 0; i < h; i += 4) {
for (j = 0; j < w; j += 4) {
element_wise_subtract(temp, cur,

ref, cs, rs);
hadamard_transform(temp, 4);
value += sum_abs_matrix(temp, 4);

}
cur += 4*cs; ref += 4*rs;

}
return value;

For this application, we consider the loop perforation
resource reduction mechanism [16, 20]. In this example loop
perforation coarsens the comparison by changing the loop
increments from 4 to 8. Note that because of the loop nesting
there is a multiplicative effect on the running time — the
loop nest runs four, not just two, times faster.

for (i = 0; i < h; i += 8) {
for (j = 0; j < w; j += 8) {
element_wise_subtract(temp, cur,

ref, cs, rs);
hadamard_transform(temp, 4);
value += sum_abs_matrix(temp, 4);

}
cur += 4*cs; ref += 4*rs;

}
return value;

We measure the quality of the encoder using two mea-
sures: the peak signal to noise ratio and the bitrate of the en-
coded video. Perforating the outer loop alone produces an
encoder that runs 1.46 times faster than the original. The
peak signal to noise ratio decreases by 0.64% and the bi-
trate increases by 6.68%. Perforating the inner loop alone
makes the encoder run 1.45 times faster, the peak signal to
noise ratio decreases by 0.46%, and the bitrate increases by
8.85%. Finally, perforating both loops makes the encoder
run 1.67 times faster, the peak signal to noise ratio decreases
by 0.87%, and the bitrate increases by 18.47%. All versions
of the encoded videos are visually indistinguishable.

4.1 The Model Computation
The model computation starts with a collection of m sets of
n numbers. It finds the set with the smallest sum.

min = DBL_MAX;
index = 0;
for (i = 0; i < m; i++) {
sum = 0;
for (j = 0; j < n; j++) sum += numbers[i][j];
if (min < sum) {
min = sum;
index = i;

}
}

We consider two resource reduction mechanisms for this
computation. The first transforms the inner loop (over j)
so that it performs only a subset of the iterations. The spe-
cific transformation is loop perforation, which executes ev-
ery other iteration instead of every iteration. The resource
reduced computation increments i by 2 after each loop iter-
ation instead of 1.

The resulting computation takes the sum of only a subset
of the numbers in each set (in this case the sum of every
other number) rather than the sum of all of the numbers.
The computation may therefore compute the index of a set
in which the sum of the remaining unconsidered numbers in
the set may add up to a value large enough to make the sum
of all of the numbers of the set larger than the sum of the set
with the minimum sum. Conceptually, this transformation
corresponds to the application of loop perforation to the
x264 application as described above.
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The second resource reduction mechanism transforms the
outer loop (over i) so that it performs only a subset of the
iterations, once again using loop perforation so that the loop
executes every other iteration. The resulting computation
does not consider all of the sets of numbers; it instead con-
siders only every other set. In this case the algorithm may
not consider the set with the minimum sum and may com-
pute the index of a set with a larger sum.

Each trial in the simulations fills each of the m sets with
n numbers psuedorandomly selected from the uniform dis-
tribution on [0, 1/n]. Note that for any n, the maximum pos-
sible value for the sum of the numbers in the set is 1; the
minimum possible sum is 0. Each simulation runs 10,000
trials for each combination of m and n such that m and n are
both a multiple of 4 between 4 and 44 (inclusive).

4.2 Absolute Differences
Our first set of simulations applies resource reduction to each
set by perforating the inner loop in the model computation.
Figure 2 presents, as a function of the number of sets m and
the size of sets n the mean difference (over all trials) be-
tween the sum of the set that the resource reduced computa-
tion finds and the sum of the set that the original computation
finds. The mean differences grow as the size of the sets de-
creases and (more slowly) as the number of sets increases.
The variance of the differences (in Figure 3) exhibits a sim-
ilar pattern. We attribute this pattern to the fact that as the
size of the sets decreases, the difference depends on fewer
numbers. The variance in the sum of the numbers in the
set is therefore larger, as is the difference between the re-
source reduced set and the original set. For larger set sizes
the mean differences and variances are quite small. This phe-
nomenon reflects that fact that there is a significant correla-
tion between the sum of half of the numbers in the set and
the sum of all of the numbers in the set. So while choosing
a set based only on a subset of the numbers in the set may
cause the algorithm to make a suboptimal choice, the sum of
the selected suboptimal set will still be reasonably close to
the sum of optimal set.

Our next set of simulations applies resource reduction
to the number of sets by perforating the outer loop in the
model computation. In this case both the mean differences
(in Figure 4) and variances (in Figure 5) both decrease as the
number of sets and size of the sets increases. We attribute
this behavior to the fact that increasing the size of the set
decreases the variance of the sum of the numbers in the
set and that increasing the number of sets also decreases
the variance in the sums of the sets. So if the resource
reduced computation discards the minimum set, increasing
the size and/or number of the sets increases the chances
that the resource reduced computation will find another set
with a minimum close to the minimum found by the original
computation. Note that the resource reduced computation for
a given number of sets considers the same number of sets as
the original computation for half of the number of sets. For

larger set sizes and numbers of sets the mean differences are
very small.

4.3 Scaled Differences
We next consider not the absolute difference between the
minimum values that the resource reduced and original com-
putations find, but the scaled differences — that is, the abso-
lute difference divided by the observed range in the sums of
the sets (here the range is the difference between the maxi-
mum and minimum sums). Figure 6 presents the mean max-
imum sum in the collection of sets; Figure 8 presents the
mean minimum sum. Note that the two graphs are symmet-
rical. Note that the distance of the minimum and maximum
sums from the expected value of the sum (0.5) increases
as the number of sets increases and the size of the sets de-
creases.

Figure 7 presents the scaled difference for the resource
reduced computation on each set (in effect, Figure 2 di-
vided by the difference between Figure 6 and Figure 8). Note
that this scaled difference is essentially constant at approx-
imately 15% across the entire range. The scaled differences
for the resource reduced computation on the number of sets,
on the other hand, decreases as the number of sets increases,
with a range between approximately 25% and 7%.

4.4 Application to x264
The model computation provides insight into why x264 tol-
erates the loop perforation resource reduction mechanism.
This mechanism produces a new, more efficient, but less
precise metric for evaluating potential matches between ref-
erence blocks and the current block to encode. This cor-
responds to the first resource reduction mechanism in our
model computation (which causes the computation to con-
sider only a subset of the numbers in each set). The result-
ing reduction in the precision of the metric can cause the
algorithm to choose a suboptimal reference block for the en-
coding. But because of redundancy present in the reference
blocks (which manifests itself in redundancy in the sums of
the numbers used to measure the match at individual points),
this suboptimal choice causes only a small reduction in the
overall effectiveness of the encoding.

x264 has also been manually coded to work with re-
source reduction mechanisms that correspond to the sec-
ond resource reduction mechanism in our model computa-
tion (which causes the computation to consider only some
of the sets of numbers). Specifically, considering every pos-
sible reference block is computationally intractable, so x264
has been manually coded to consider only a subset of the
reference blocks. The robustness of the video encoder to
considering only a subset of the possible reference blocks
corresponds to the robustness of the model computation (see
Figures 4 and 9) to considering only some of the sets of num-
bers.



5. Linked Data Structures
Linked data structures are pervasive in modern software sys-
tems. If the nodes in the data structure are allocated dynam-
ically, it is typically impossible, with standard language se-
mantics, to bound the amount of memory the data structure
may consume. In extreme cases, the data structure may have
memory leaks, typically because it contains references that
make nodes reachable even though the data structure will
never access the nodes in the future.

5.1 SNMP in Squid
The SNMP module in Squid implements a mapping from
names to objects. It stores the mapping in a search tree, with
the nodes dynamically allocated as the SNMP module stores
new mappings.

It is possible to use cyclic memory allocation to reduce
the amount of memory required to store the tree (and elimi-
nate any memory leaks). This allocation strategy sets aside a
fixed-size buffer of nodes, then cyclically allocates the data
structure nodes out of that buffer [21]. If the data structure
requires more nodes than are available in the buffer, this ap-
proach will allocate two logically distinct nodes in the same
physical node, with the values from the two nodes overwrit-
ing each other in the same memory.

In general, the effect of this memory allocation strategy
depends on the specific characteristics of the computation.
For the SNMP module in Squid, the empirical results show
that the computation degrades gracefully. Specifically, forc-
ing the data structure to fit in a fixed-size buffer with node
overlaying makes the SNMP module unable to respond suc-
cessfully to some search queries. But the module contin-
ues to execute and successfully respond to a subset of the
queries. Moreover, the remainder of the computation re-
mains unaffected and able to continue to provide service to
its users.

5.2 The Model Computation
The SNMP search tree is a linked, null-terminated, acyclic
data structure. We use a simple example of such a data
structure, a singly-linked list, to explore the potential con-
sequences of subset memory allocation strategies that real-
locate live memory. The linked list implements a set of val-
ues, with the allocation taking place when the list inserts a
new value into the set. We consider two implementations of
this operation: one that inserts the value at the front of the
list and one that inserts the value at the end of the list. The
usage scenario has the client repeatedly inserting values into
the set, interspersing the insertions with lookups.

typedef struct node {
int value;
struct node *next;

};
struct node *first, *newNode();

void prepend(int v) {
struct node *n = newNode();
n->value = v; n->next = first;
first = n;

}
void append(int v) {
struct node *n = newNode();
if (first == NULL) first = n;
else {
l = first;
while (l->next != NULL) l = l->next;
l->next = n;

}
n->value = v; n->next = NULL;

}
int lookup(int v) {
struct node *l = first;
while (l != NULL)
if (l->value == v) return 1;

return 0;
}

We consider various reduced resource allocation mech-
anisms, all of which allocate new list nodes out of a fixed
buffer of nodes. We note that all of the mechanisms we con-
sider may cause newNode to return a node that is already in
the list. Because a prepend operation applied to a node al-
ready in the list creates a cyclic list and causes subsequent
lookups of values not already in the list to infinite loop, our
further analysis only considers append operations.

5.2.1 Least Recently Allocated Allocation
The first allocation mechanism is cyclic allocation, which
returns the least recently allocated node in the buffer in re-
sponse to each node allocation request (in other words, the
allocator always returns the least recently allocated node).
When presented with a sequence of append operations, this
mechanism builds up a standard list. When the allocation
mechanism wraps around, it returns the first element in the
list and the assignment n->next=NULL truncates the list.
The result is a list containing only the most recently inserted
element. Successive append operations build up a list con-
taining the most recently inserted elements. Over time, given
an unbounded number of insertions, the list contains, on av-
erage, the most recently inserted b/2 values (where b is the
number of nodes in the buffer).

5.2.2 Most Recently Allocated Allocation
The next allocation mechanism always returns the most re-
cently allocated node (i.e., the last node in the buffer) once
all of the nodes in the buffer have been allocated once. With
a sequence of append operations, the effect is simply to re-
place the last value in the list (the one most recently inserted)
with the new value. After b insertions, the list contains the



first b− 1 inserted nodes and the last inserted node (where b
is the number of nodes in the buffer).

5.2.3 Random Allocation
The next allocation mechanism returns a random node in
the buffer. Over time, given an unbounded number of in-
sertions, the list contains, on average, approximately 0.125b
nodes (where b is the number of nodes in the buffer). We
obtained this number through a simulation which repeatedly
inserts nodes into the list, psuedorandomly selecting one of
the nodes in the buffer as the node to insert, then measur-
ing the length of the list after each insertion to compute the
mean length of the list during the simulation (which is ap-
proximately 0.125b). Note the relatively low utilization of
the available nodes in the buffer — ideally, the list would
contain all b of the nodes in the buffer. The reason for the
low utilization is that when the allocation algorithm selects
a node that is already in the list, the insertion truncates the
list at that node. So as the list grows in length, insertions that
shorten the list become increasingly likely.

5.2.4 Discussion
Data structure consistency is a critical acceptability prop-
erty [10, 26]. Reduced resource allocation strategies and
null-terminated linked data structures work best with algo-
rithms that append null-terminated nodes to the leaves of the
data structure — other strategies may cause cycles that leave
the data structure inconsistent. The linked list data structure
in our model computation is one example of a data structure
that appends at the leaves (in this case, simply at the end
of the list). More complex examples include binary search
trees and separately-chained hash tables that store all ele-
ments that hash to the same location in the table together in
a linked list. Like linked lists, these data structures can be
used to implement a variety of abstractions such as sets and
maps.

We note that for linked lists and data structures (like
separately-chained hash tables) that incorporate linked lists,
inserting only at the leaves can complicate strategies that at-
tempt to reduce lookup times by keeping the lists sorted —
standard insertion algorithms for sorted lists involve inser-
tions in the middle of the list.

5.3 Usage Scenarios
To date, the most compelling usage scenarios for reduced
resource allocation involve the elimination of memory leaks,
which can threaten the survival of the entire system [21].
The primary drawback of the resource reduction mechanism
is the inadvertent elimination of elements that would, with
standard allocation mechanisms, remain present in the data
structure. We next outline several scenarios in which the
benefits of reduced resource allocation can outweigh the
drawbacks.

One scenario occurs when the application does not need
the data structure to necessarily contain all of the inserted

elements — for example, the application may use the data
structure to cache previously fetched elements [21]. In this
case reduced resource allocation may degrade the effective-
ness of the cache, but will leave the application capable of
delivering its full functionality to its users. Another scenario
occurs when the computation can tolerate the loss of ele-
ments that typically occurs with reduced resource alloca-
tion. The use of reduced resource allocation in the SNMP
module, for example, degrades the delivered functionality of
the SNMP module (the SNMP module does not correctly
process some queries), but leaves the remaining Squid func-
tionality unimpaired. We see this general pattern, applying
reduced resource allocation to eliminate a problem within
one module that would otherwise threaten the survival of the
entire system, as a particularly compelling usage scenario.

5.4 Reduced-Resource Aware Implementations
We have so far assumed that the developer of the data struc-
ture manipulation algorithms is oblivious to the potential ap-
plication of resource reduction mechanisms and that the im-
plementation is therefore coded only to consider cases that
arise with standard semantics. But it is of course possible to
develop algorithms that are purposefully designed to work
with resource reduction mechanisms. Potential implementa-
tion strategies could include:

• Relaxed Invariants: Implementing the data structure
manipulation algorithms to work with data structures that
have a relaxed set of invariants. For example, a data struc-
ture implementation coded to operate in the presence of
cycles would enable the use of resource reduction algo-
rithms that insert items at internal points in lists and trees
(as opposed to at the leaves).

• Data Structure Repair: Instead of coding every data
structure manipulation operation to work with relaxed
data structure invariants, it is possible to instead simply
use data structure repair [8–10] to restore the desired in-
variants at appropriate points (typically the beginning or
end of data structure operations). This approach would
make it possible for the vast majority of data structure
operations to be coded to operate on data structures that
satisfy all of the stated data structure consistency proper-
ties.

• Explicit Removal: Instead of simply reusing allocated
data structure nodes (which introduces the possibility of
conceptually dangling references to and/or from the pre-
vious location of the node in the data structure), the data
structure implementation could be coded to explicitly re-
move all reused nodes from their previous location be-
fore inserting them into the new location. This approach
would preserve all of the standard invariants and elimi-
nate the inadvertent deletion of nodes originally reach-
able via the reallocated node when it was in its original
position. This strategy would also maximize the achiev-



able utilization of the available space — for most linked
data structures at capacity, this strategy would leave all
of the nodes linked into the data structure and accessible
via standard data structure operations. Specifically for the
linked list in our model computation, the list would (af-
ter the insertion of at least b values) always contain the
maximum b values.

5.5 Fixed-Size Tables
In this section we have focused on linked data structures,
which are often deployed because they enable applications
to adjust their memory usage to the characteristics of dif-
ferent inputs as different inputs elicit different memory us-
age behavior from the application (the application typically
uses less memory to process small inputs and more mem-
ory to process large inputs). But it is also possible to apply
resource reduction mechanisms to fixed-sized tables. These
data structures are typically implemented as a single block of
memory allocated at the start of the computation. They are
designed to store at most a fixed number of items determined
by the size of the memory block. If the computation attempts
to insert an item into a table that is already full, it typically
halts with an error indicating that a larger-sized table is re-
quired to process the current input. One example of such a
data structure is an open-addressed hash table (which stores
all of the values or key/value pairs directly in the hash table
buckets, using probing techniques to resolve collisions).

One resource reduction mechanism overwrites old values
with new values or discards new values when it is impossible
or inconvenient to store them both. For example, one strategy
would simply overwrite the least recently used or inserted
table entry with the new entry when the client attempts to
insert a new entry into a table that is already full. In some
circumstances it may be convenient to apply such mecha-
nisms even when the table is not full. For example, if two
values or key/value pairs hash to the same bucket, the imple-
mentation may simply discard one of the values or key/value
pairs rather than apply techniques such as linear probing,
quadratic probing, double hashing, or converting the bucket
in question into a separately-chained bucket. The potential
advantages of avoiding these more complex techniques in-
clude simplicity, convenience, efficiency, and even correct-
ness (a simpler implementation provides the developer with
fewer opportunities to introduce errors). For example, an out
of bounds addressing error introduced during an attempt to
implement a more sophisticated response to events such as
hash table collisions can (depending on how the application
uses the table) easily have more serious consequences than
overwriting existing table entries or discarding new table en-
tries.

Note that such mechanisms eliminate the requirement
that the fixed-size table be able to store all of the items that
client attempts to insert into the table. They may therefore
make it possible to make the table smaller because it does
not need to be sized for the largest anticipated usage scenario

— it can instead be sized for more common-case scenarios
while providing successful execution with reduced function-
ality for less common scenarios that exceed the table size.
We note that current approaches often involve the use of
fixed-size tables that (if they abort when the client attempts
to take them beyond their capacity) threaten the survival of
the entire computation. Resource reduction mechanisms can
therefore enhance the robustness and resilience of the system
by enabling the table to execute successfully through other-
wise fatal events such as attempting to insert a new item into
a table that is already full.

6. Redundancy and Correlation
All of our resource reduction mechanisms exploit redun-
dancy in the values that they manipulate. One way to see
this redundancy is to examine correlations between the val-
ues. Resource reduction works well with the mean pattern
because (for most probability distributions) the mean of a
subset of numbers is highly correlated with the mean of the
set of numbers itself. Similarly, the sum of a subset of num-
bers is correlated (after extraplotation) with the sum of the
set. And, the minimum of a subset of numbers is correlated
with the minimum of the set. The correlations in all of these
examples are relatively easy to see because all of the exam-
ples perform an aggregation or reduction operation. The re-
dundancy that appears in the original set of values is the root
cause of the correlation between the results of computations
on subsets of the original set of values.

Of course, there are other forms of redundancy and corre-
lation that make computations amenable to resource reduc-
tion. Consider, for example, standard iterative computations
(such as differential equation solvers), that converge to an
acceptably accurate answer. As the computation converges,
successive iterations compute highly correlated values. This
correlation is the reason that the standard resource reduction
mechanism for converging iterative computations (terminat-
ing the iteration before it converges) works well in practice.

Internet search engines also compute correlated values —
the results for a given query are highly correlated, which en-
ables resource reduction mechanisms (for example, search-
ing only a subset of the documents [6]) that cause the search
engine to return only a subset of the results that the original
computation would have returned. This example generalizes
to virtually all information retrieval computations.

As another example, the sets of moves that automated
game-playing algorithms consider are often of roughly
equivalent quality – in other words, the effects that the dif-
ferent moves have on the outcome of the game are highly
correlated. This correlation enables the successful applica-
tion of resource reduction mechanisms that force the algo-
rithm to execute with reduced memory by allocating con-
ceptually distinct data in the same memory. While the re-
duced resource version does not generate the same moves as
the original version, it exhibits roughly equivalent compe-
tence [21].



Finally, the values that applications communicate over a
network are often correlated. One simple way to exploit this
fact is to use short-circuit communication — instead of per-
forming a standard request/response interaction, memoize
the results of previous interactions and return the response
whose request most closely matches the current request. It
is also possible to similarly memoize direct communica-
tions that do not occur as part of a request/response inter-
action [26].

7. Finding New Patterns
We anticipate that, as the field progresses, researchers and
practitioners will find other computational patterns that work
well with reduced resource computing mechanisms. We pro-
pose several strategies for finding such patterns:

• Empirical Testing: We obtained our current set of
patterns by applying resource reduction mechanisms
broadly across selected benchmark applications, empiri-
cally finding computations that responded well to these
mechanisms, then analyzing the computations to under-
stand the reasons why they responded so well. We antic-
ipate that applying existing and new resource reduction
mechanisms across a broader set of benchmark applica-
tions would reveal additional patterns that work well with
such mechanisms.

• Analytical Analysis: Another approach reverses the pro-
cess — it starts with simple computations (such as the
mean, sum, and minimum computations) that compute
correlated values when applied to correlated data sets
such as subsets of values drawn from the same set or
probability distribution. As the results in this paper show,
such computations often respond well to resource reduc-
tion mechanisms. The next step would be to find in-
stances of such computations in existing applications,
then evaluate (either empirically or analytically) the suit-
ability of resource reduction as applied to these compu-
tations in the context of the application.

• Correlated Values: To date, every successful applica-
tion of reduced resource computing mechanisms has ex-
ploited a form of redundancy that shows up as correla-
tions in the values that various computations compute.
Looking for correlations between computed values may
therefore be a productive way to find other patterns that
interact well with resource reduction. This could be done
either empirically, by examining computed values to look
for correlations, or analytically.

• Reduction Operations: Three of our four patterns ap-
ply reduction operations (sum, mean, min) that reduce a
set of values to a single value. We anticipate that other
reduction operations would be good candidates for the
application of resource reduction mechanisms.

We also anticipate that, as the benefits of resource re-
duced computing become more widely known, developers
will begin to consciously engineer systems to use computa-
tion patterns that interact well with reduced resource com-
puting mechanisms. Over time, systems will become in-
creasingly engineered to work productively with these mech-
anisms and other modern program transformations that may
change the semantics of the program in return for benefits
such as increased robustness, resilience, security, memory
efficiency, and performance [4, 19, 21, 22, 26, 27, 32, 33].

8. Criticality Testing
In our experience, it is possible to apply resource reduc-
tion successfully to only a subset of the subcomputations
in a given computation. Indeed, the inappropriate applica-
tion of resource reduction can easily cause applications to
crash, take longer to execute, or produce wildly inaccurate
results [16, 20, 23]. Examples of unsuitable computations
that we have encountered in practice include tasks or loops
that allocate subsequently accessed objects, efficient pre-
filters that eliminate objects unsuitable for subsequent more
involved processing (applying resource reduction to the pre-
filter can decrease the overall performance of the applica-
tion), and tasks or loops that produce the output of the ap-
plication or drive the processing of input units (for exam-
ple, applying resource reduction to the loop that iterates over
the video frames in X264 unacceptably causes X264 to drop
frames).

We therefore advocate the use of criticality testing, which
automatically applies resource reduction across the applica-
tion, using a test suite of representative inputs and an ap-
propriate accuracy metric to automatically find subcomputa-
tions that work well with resource reduction [16, 20, 23].
One can view the resource reduction mechanisms as au-
tomatically generating a search space of applications sur-
rounding the original application, with the accuracy metric
enabling the search algorithm to explore the space to find
variants with more desirable performance/accuracy charac-
teristics for the current usage context than the original appli-
cation.

An alternative approach requires the developer to provide
multiple implementations of different subcomputations, po-
tentially with different performance and accuracy character-
istics [1, 2]. A search algorithm can then explore various
implementation combinations to find desirable points in the
performance/accuracy trade-off space. A claimed advantage
is that it is less likely to deliver applications that can pro-
duce unanticipated results. A disadvantage is the developer
effort required to find appropriate subcomputations and de-
velop alternate versions of these subcomputations.

We anticipate that, in practice, developers may often en-
counter some difficulty in finding and developing alternate
versions of subcomputations with good accuracy/performance
characteristics in large applications, especially if the op-



timization effort is separate from the initial development
effort and the developer starts out unfamiliar with the appli-
cation. In typical scenarios we believe the most productive
approach will involve the automatic application of resource
reduction mechanisms in one (or more) of three ways:

• Profiling: Automatically applying resource reduction to
subcomputations, then observing the resulting accuracy
and performance effects, to help developers identify suit-
able subcomputations (subcomputations with desirable
accuracy and performance characteristics after resource
reduction) that they then manually optimize [20].

• Developer Approval: Instead of manually optimizing
the identified suitable subcomputations, the developer
can simply examine the resource reduced subcomputa-
tions and approve or reject the resource reduced versions
for production use. This scenario preserves the devel-
oper involvement perceived to promote the safe use of
resource reduction, but eliminates the need for the devel-
oper to modify the application.

• Automatic Application: The direct application of re-
source reduction without any developer involvement with
the source code of the application. In these scenarios per-
formance and accuracy results from running the applica-
tion on representative inputs provide the primary mech-
anism for evaluating the acceptability of the resource re-
duction. This approach may be particularly appropriate
when developers that can work with the application are
unavailable, when developers are a scarce resource that
can be more productively applied to other activities, or
when the source code of the application is not available.
We note that it is relatively straightforward to apply the
specific resource reduction mechanisms presented in this
paper directly to compiled binaries, eliminating the need
for source code access.

• Static Analyses: We anticipate the development of static
program analyses that will automatically recognize pat-
terns (such as those identified in this paper), or, more
generally, computations, that interact well with resource
reduction mechanisms. In combination with either simu-
lations (such as those presented in this paper) or the de-
velopment of symbolic analytical models (or a combina-
tion of the two), these static analyses would make it pos-
sible to precisely characterize the impact on the accuracy
(and potentially the performance) of applying different
resource reduction mechanisms to the specific analyzed
application at hand. The simulations and models could
be tailored to the recognized pattern and its usage con-
text within the application. It would also be possible to
draw on an existing set of simulation results and/or ana-
lytical models. And of course combinations of these two
approaches are also possible.

9. Related Work
The resource reduction mechanisms discussed in this paper
were all developed in previous research [16, 20, 21, 23,
24]. This paper identifies general computational patterns
that interact well with these mechanisms, presents concrete
manifestation of these patterns in the model computations,
and uses simulation to quantitatively explore the impact of
resource reduction.

There is a long history of developing application-specific
algorithms that can execute at a variety of points in the per-
formance versus accuracy trade-off space. This paper, in
contrast, focuses on general, broadly applicable resource re-
duction mechanisms that can automatically enhance appli-
cations to productively trade off accuracy in return for per-
formance, even though the applications may not have been
originally designed to support these kinds of trade offs.

9.1 Memory Reduction Mechanisms
In this paper we have considered two kinds of resource re-
duction mechanisms: mechanisms that reduce the amount of
memory and mechanisms that reduce the amount of com-
putation. To the best of our knowledge, the first (and, to
date, only) proposal for a general memory reduction mecha-
nism was cyclic memory allocation [21]. It is also possible to
use out of bounds access redirection (cyclically or otherwise
redirecting out of bounds accesses back within the accessed
memory block) [27, 29, 30] to reduce the size of tables or
arrays (or, for that matter, any data structure allocated in a
contiguous block of memory). The out of bounds redirection
eliminates any cross-block memory corruption or memory
error exceptions that might otherwise threaten the survival of
the application after reducing the size of the memory block
holding the table or array.

9.2 Computation Reduction Mechanisms
To the best of our knowledge, the first proposal for a general
computation reduction mechanism was discarding tasks [23,
24]. The proposed uses included surviving errors in tasks,
eliminating barrier idling, and using the automatically de-
rived timing and distortion models to navigate the induced
performance versus accuracy space. The models make it pos-
sible to either maximize accuracy subject to specified per-
formance constraints, to maximize performance subject to
specified accuracy constraints, or to satisfy more complex
combinations of performance and accuracy optimization cri-
teria.

Many of the discarded tasks in the benchmark appli-
cations simply execute blocks of loop iterations. This fact
makes it obvious that discarding iterations of the correspond-
ing loops (i.e., loop perforation) would have the same ef-
fect on the performance and accuracy as discarding the cor-
responding tasks. One advantage of discarding loop itera-
tions instead of tasks is that it is possible to apply the cor-
responding loop perforation transformations directly to a



broad range of programs written in standard programming
languages [16, 20] (as opposed to programs written in lan-
guages with a task construct).

9.3 Manual Versus Automatic Techniques
The resource reduction mechanisms in this paper were all
initially developed for largely automatic application, with
criticality testing typically used to find subcomputations that
can profitably tolerate resource reduction. The PetaBricks
and Green systems, in contrast, require the developer to
create the trade-off space by designing and implementing
multiple implementations of the same subcomputation [1,
2]. As described in Section 8, the automatic application of
resource reduction can significantly reduce the developer
effort required to generate and find desirable points within
this trade-off space. Moreover, automatic mechanisms such
as loop perforation and discarding tasks can discover latent
desirable trade-offs that are simply unavailable to human
developers:

• the developer may not suspect that a profitable trade-off
exists in a given subcomputation,

• the developer may not understand the subcomputation
well enough to realize that a profitable trade-off may be
available,

• the developer may not have the time, expertise, or knowl-
edge required to provide another implementation of the
subcomputation, or

• the developer may simply be unaware that the subcom-
putation exists at all.

Finally, automatic techniques can even enable users with
no software development ability whatsoever to obtain new
versions of their applications that can execute at a variety
of different points within the underlying performance versus
accuracy trade-off space that resource reduction mechanisms
automatically induce.

9.4 Dynamic Control
It is possible to apply resource reduction mechanisms such
as loop perforation [16] and discarding tasks [23] dynam-
ically to move a running application to different points in
its underlying performance versus accuracy trade-off space.
It is also possible to convert static configuration parameters
into dynamic knobs — dynamic control variables stored in
the address space of a running application [17]. Like re-
source reduction mechanisms, dynamic knobs make it pos-
sible to move a running application to different points in the
induced performance versus accuracy trade-off space with-
out otherwise perturbing the execution.

These mechanisms make it possible for an appropriate
control system to monitor and dynamically adapt the exe-
cution of the application to ensure that the application meets
performance or accuracy targets in the face of fluctuations
in the amount of resources that the underlying computa-

tional platform delivers to the application [16, 17]. Such con-
trol systems typically work with a model that characterizes
how the application responds to different resource reduction
mechanisms or dynamic knob settings. Ideally, the control
system would guarantee good convergence and predictabil-
ity properties such as stability, lack of oscillation, bounded
settling time, and known overshoot [17]. We have developed
controllers with some or all of these properties [16, 17] —
in particular the PowerDial control system [17] has all of
these properties. These controllers are designed for applica-
tions (such as video encoders) that are intended to produce
a sequence of outputs at a regular rate with a target time be-
tween outputs. These controllers use the Application Heart-
beats framework [15] to monitor the time between outputs
and use either loop perforation [16] or dynamic knobs [17]
to control the application to maximize accuracy while ensur-
ing that they produce outputs at the target rate.

It would also be possible to combine manual techniques
(such as those supported by PetaBricks or Green) with dy-
namic controllers. PetaBricks does not have a dynamic con-
trol component [1]. Green uses heuristic control to man-
age accuracy but does not control or even monitor perfor-
mance [2]. Green’s control system is also completely heuris-
tic, with no guaranteed convergence or predictability prop-
erties whatsoever.

9.5 Unsound Program Transformations
Reduced resource computing mechanisms are yet another
example of unsound program transformations. In contrast to
traditional sound transformations (which operate under the
restrictive constraint of preserving the semantics of the orig-
inal program), unsound transformations have the freedom to
change the behavior of the program in principled ways. Un-
sound transformations have been shown to enable applica-
tions to productively survive memory errors [4, 27, 32], code
injection attacks [22, 27, 32, 33], data structure corruption
errors [8–10], memory leaks [21], and infinite loops [21].
Like some of the reduced resource computing mechanisms
identified in this paper, unsound loop parallelization strate-
gies have been shown to increase performance at the cost
of (in some cases) potentially decreasing the accuracy of
the computation [19]. Finally, reduced resource computing
mechanisms can help applications satisfy acceptability prop-
erties involving the amount of resources required to execute
the computation [26].

10. Conclusion
Dealing with limited resources is a critical issue in virtually
every aspect of life, including computing. The standard ap-
proach to dealing with this fact is to rely on developers to
produce algorithms that have been tailored by hand for the
specific situation at hand.

Over the last several years researchers have developed a
collection of simple, broadly applicable mechanisms that en-



able computations to execute successfully in the presence of
reduced resources. This development promises to dramati-
cally simplify the process of obtaining computations that can
operate successfully over the wide range of operating condi-
tions that will characterize future computing environments.

10.1 Value Systems
All of these resource reduction mechanisms go against the
basic value system of the field in that they may change
the result that the computation produces — in the tradi-
tional (and, in our view, outmoded) terminology, they are
unsound. Through its identification of general patterns and
model computations that interact well with these mecha-
nisms and the statistical properties of these mechanisms, this
paper attempts to enhance our understanding of the under-
lying computational phenomena behind the observed em-
pirical success of these mechanisms. In this way, this pa-
per transcends the traditional use of discrete formal logic
to characterize application behavior in terms of rigid, fixed
input/output relationships. It instead promotes a new, more
flexible model that incorporates continuous statistical rela-
tionships between not just the input and output, but also the
amount of resources that the computation consumes to pro-
duce the output.

10.2 Benefits
We anticipate several benefits that can stem from this en-
hanced perspective. The first is a greater comfort with and
acceptance of resource reduction mechanisms, which, in
turn, can make the benefits they provide more broadly avail-
able. The second is that it may enable developers to more
easily recognize and use computational patterns that interact
well with these mechansims. The third is that it may inspire
the development of additional resource reduction mecha-
nisms and the identification of both existing and new com-
putational patterns that work well with these mechanisms.

A final benefit is that it can broaden the scope of the field
itself and promote its movement away from an outmoded,
regressive value system that is increasingly hindering its de-
velopment. Specifically, this research promotes the develop-
ment and evolution of software systems via the automated
exploration of automatically generated search spaces rather
than full manual development. The evaluation mechanism is
empirical, based on observing the behavior of the system as
it executes on representative inputs, rather than theoretical
and based on an analysis of the text of the program before
it runs. The goal is to deliver flexible programs that usually
produce acceptably accurate output across a broad range of
operating conditions rather than attempting to develop rigid,
inflexible programs that satisfy hard logical correctness con-
ditions when run on perfect execution platforms. In this way
the research points the direction to software that can operate
successfully in the increasingly dynamic and unpredictable
computing environments of the future.
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