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Closed timelike curves (CTCs) are trajectories in spacetime that effectively travel backwards in time: a

test particle following a CTC can interact with its former self in the past. A widely accepted quantum

theory of CTCs was proposed by Deutsch. Here we analyze an alternative quantum formulation of CTCs

based on teleportation and postselection, and show that it is inequivalent to Deutsch’s. The predictions or

retrodictions of our theory can be simulated experimentally: we report the results of an experiment

illustrating how in our particular theory the ‘‘grandfather paradox’’ is resolved.

DOI: 10.1103/PhysRevLett.106.040403 PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.�a, 04.62.+v

Although time travel is usually taken to be the stuff of
science fiction, Einstein’s theory of general relativity ad-
mits the possibility of closed timelike curves (CTCs) [1].
Following these paths through spacetime, a time traveler
can go back in time and interact with her own past. The
logical paradoxes inherent in time travel make it hard to
formulate self-consistent physical theories of CTCs [2–6].
CTCs appear in many solutions of Einstein’s field equa-
tions and any future quantum version of general relativity
will have to reconcile them with the requirements of quan-
tum mechanics. This Letter presents one particular route
for resolving those paradoxes and analyzes a quantum
description of CTCs by demanding that a CTC behaves
like an ideal quantum channel. This self-consistency re-
quirement gives rise to a theory of closed timelike curves
via entanglement and postselection, P-CTCs. P-CTCs are
based on the Horowitz-Maldacena ‘‘final state condition’’
for black hole evaporation [7], and on the suggestion of
Bennett and Schumacher that teleportation could be used
to describe time travel [8,9]. This Letter explores the
consequences of this theory, showing (at a theoretical
level) its inequivalence to Deutsch’s quantum model for
CTCs [2]. (There are also classical models for CTCs that
we shall briefly discuss later in the article.) Elsewhere, we
show that P-CTCs are consistent [10] with path-integral
approaches to CTCs [6,11,12]. Moreover, because they are
based on postselection [8,9], which can be probed experi-
mentally, certain features of our P-CTC proposal are ame-
nable to laboratory simulation. We present an experiment
to simulate how the grandfather paradox might develop in a
P-CTC: the postselected results are indistinguishable
from what would happen when a photon is sent a few
billionths of a second back in time to try to ‘‘kill’’ its
former self. However, we cannot test whether a general
relativistic CTC obeys our theory or not, nor can we
experimentally discriminate between our theory and

Deutsch’s: it is currently unknown whether CTCs exist in
our Universe.
Deutsch’s elegant quantum treatment of closed timelike

curves [2] provides a self-consistent resolution of the vari-
ous paradoxes of time travel by requiring simply that a
system that enters such a curve in a particular quantum
state �, emerges in the past in the same state [Fig. 1(a)]
even after interacting with a ‘‘chronology-respecting’’ sys-
tem in a state �A through a unitary U. This translates into
the consistency condition,

� ¼ TrA½Uð� � �AÞUy�: (1)

A � satisfying (1) exists: the term on the right is a com-
pletely positive map and has at least one fixed point [2].
Deutsch’s self-consistency condition preserves the state

of the time traveler, but not her correlations with the rest of
the Universe [13]: the time traveler may (and almost
certainly will) emerge into a different ‘‘past’’ from the
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FIG. 1. (a) Deutsch’s quantum description of CTCs is based on
the consistency condition of Eq. (1), where the unitary U
describes an interaction between a chronology-respecting system
A, initially in the state �A, and a system B in a CTC. Deutsch
demands that the state � of B at the input and output of U be
equal. Time goes from bottom to top in this and in the following
diagrams. (b) P-CTC: postselected quantum teleportation is
employed as a description of the closed timelike curve. The
bottom curve [ represents the creation of a maximally entangled
state of two systems and the upper curve \ represents the
projection onto the same state.
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one she remembers. Instead our P-CTC forces time trav-
elers to travel to the past they remember. In fact,
we demand that a generalized measurement made on the
state entering the curve yields the same results, including
correlations with other measurements, as would occur if
the same measurement were made on the state emerging
from it: the CTC should behave like an ideal quantum
channel (even though, as we shall see, inside a CTC a
proper definition of state cannot be given). Deutch’s CTCs
do not exhibit this particular feature.

Teleportation [14] implements a quantum channel
through the transfer of an unknown quantum state jc i
between two parties (Alice and Bob) using a shared en-
tangled state, the transmission of classical information, and
a unitary transformation V on Bob’s side. A curious feature
of teleportation is that, whenever Alice’s Bell measurement
gives the same result it would when measuring the initial
shared state, then Bob’s unitary V is the identity. In this
case, Bob possesses the unknown state even before Alice
implements the teleportation. Causality is not violated
because Bob cannot foresee Alice’s measurement result,
which is completely random. But, if we could pick out only
the proper result, the resulting ‘‘projective’’ teleportation
would allow us to travel along spacelike intervals, to
escape from black holes [7], or to travel in time. We
call this mechanism a projective or postselected CTC, or
P-CTC.

The P-CTC [Fig. 1(b)] starts from two systems prepared
in a maximally entangled state j�i or ‘‘[’’, and ends by
projecting them into the same state h�j or ‘‘\’’.
Probabilities for events in the presence of a P-CTC are
obtained by using ordinary quantum mechanics to calcu-
late the conditional probabilities of the events given that a
measurement on the final part of the CTC yields the state
j�i. The probabilities for events in a P-CTC thus depend
on the past and on the future.

If the probability for the outcome j�i is zero, then the
P-CTC cannot occur: our mechanism embodies in a natural
way the Novikov principle [15] that only logically self-
consistent events occur in the Universe. Note that also a
classical version of our method can be easily described: it
uses correlated classical states and postselection, and simi-
larly obeys the Novikov principle. It is also easy to see that
any measurement yields the same statistical results, includ-
ing correlations with chronology-respecting systems,
whether it is made on the time-traveling system entering
the P-CTC or exiting from it. Because they are constructed
by projecting out part of a pure state, P-CTCs take pure
states to pure states. Deutsch’s CTCs typically take pure
states to mixtures.

Because they rely on postselection, P-CTCs share some
properties with the weak value interpretation of quantum
mechanics [16], notably that there is no unique way
to assign a definite state to the system in a CTC at a
definite time. Moreover, Hartle [12] showed that quantum

mechanics on closed timelike curves is nonunitary (indeed,
it allows cloning) and requires events in the future to affect
the past. He noted that the Hilbert space formalism for
quantum mechanics might be inadequate to capture the
behavior of closed timelike curves, and suggested a path-
integral approach instead. In contrast to Deutsch’s CTCs,
P-CTCs are consistent with the ‘‘traditional’’ path-integral
approaches to CTCs (e.g., see [5,6,11,12,17]): this can be
shown using the normal path-integral self-consistency re-
quirement that the classical paths that make up the path-
integral have the same values of all variables (e.g., x and p)
when they exit the CTC as when they enter [10]. Our
approach coincides with Politzer’s [11] path-integral treat-
ment of fermions.
We now analyze how P-CTCs deal with time travel

paradoxes. In the grandfather paradox, the time traveler
goes back in time and kills her grandfather, so she cannot
be born and cannot kill anyone: a logical contradiction.
This paradox can be implemented through a quantum
circuit where a ‘‘living’’ qubit (i.e., a bit in the state 1),
goes back in time and tries to ‘‘kill’’ itself, i.e., flip to the
state 0, see Fig. 2(a). There are many possible variants: i.e.,
any circuit in which the time travel gives rise to a logical
contradiction. Deutsch’s consistency condition (1) requires
that the state is � ¼ ðj0ih0j þ j1ih1jÞ=2, the only fixed
point of the corresponding map. Note that if the CNOT

before the bit flip measures a 0 then the CNOT afterwards
measures a 1, and vice versa: the time traveler really
manages to kill her grandfather. However, to preserve
self-consistency, the 1 component (time traveler alive)
that enters the loop emerges as the 0 component (time

t
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FIG. 2. (a) Grandfather paradox circuit. If we take 1 to repre-
sent ‘‘time traveler exists,’’ and 0 to represent ‘‘she doesn’t
exist,’’ then the NOT (�x) operation implies that if she exists,
then she ‘‘kills her grandfather’’ and ceases to exist; conversely,
if she does not exist, then she fails to kill her grandfather and
so she exists. The difference between Deutsch’s CTCs and our
P-CTCs is revealed by monitoring the time traveler with two
controlled-NOTs (CNOT): the two controlled bits are measured to
determine the value of the time-traveling bit before and after the
�x. Opposite values mean she has killed her grandfather; same
values mean she has failed. Using Deutsch’s CTCs, she always
succeeds; using P-CTCs she always fails. (b) Unproved theorem
paradox circuit. The time traveler obtains a bit of information
from the future via the upper CNOT. She then takes it back in time
and deposits a copy an earlier time in the same location from
which she obtained it (rather, will obtain it), via the lower CNOT.
The circuit is unbiased as to the value of the ‘‘proof’’ bit, so it
automatically assigns that bit a completely mixed value, as it is
maximally entangled with the one emerging from the CTC.
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traveler dead), and vice versa. Thus, Deutsch’s CTC pre-
serves the mixed state, but not the identity of the compo-
nents: measurements at the input and output yield different
results.

The grandfather paradox is resolved differently by
P-CTCs: the probability amplitude of the projection onto
the final entangled state \ is always null, namely, this event
(and all similar logically contradictory ones) cannot
happen. In any real-world situations, the �x transformation
is not perfect. Then, replacing �x with e�i��x ¼ cos�2 1�
i sin�2�x (with � ’ �), the nonlinear postselection ampli-

fies fluctuations of � away from �. This eliminates the
histories plagued by the paradox and retains only the self-
consistent histories where the kill fails (the unitary is 1
instead of �x), and the two output qubits have equal value:
P-CTCs fulfill our self-consistency condition. No matter
how hard the time traveler tries, her grandfather is tough to
kill.

P-CTCs are based on postselected teleportation, so we
can experimentally simulate certain features of their be-
havior (see also [18]): the necessary nonlinearity is intro-
duced through postselection. To simulate the grandfather
paradox we store two qubits in a single photon: one in the
polarization degree of freedom, representing the ‘‘forward-
traveling qubit,’’ and one in a path degree of freedom,
the ‘‘backward-traveling qubit’’; see Fig. 3. Our single
photons, with a wavelength of 941.7 nm, are coupled into
a single-mode fiber from an InGaAs=GaAs quantum
dot cooled to 21.5 K by liquid helium [19] and sent to
the circuit. Using a Hanbury-Brown-Twiss interferometer,

the gð2Þ (0) of the quantum dot emission was measured to
be 0:29� 0:01, confirming the single-photon character of
the source. At the start of the circuit ( [ ) we entangle the
path and polarization qubits using a beam displacer (BD1),

generating the Bell state j�þi ¼ ð1= ffiffiffi

2
p Þðj00i þ j11iÞ. To

close the simulated CTC ( \ ), we postselect on cases
where j�þi is detected: we use a CNOT with polarization
(forward traveler) acting on path (backward traveler), fol-
lowed by postselection on the now-disentangled qubits.
The CNOT is implemented by a polarizing beam splitter
that flips the path qubit conditioned on the polarization
qubit. We then postselect on photons exiting the appropri-
ate spatial port using a polarizer at 45� and an Andor iDus
CCD camera cooled to 188 K. Within the loop, we imple-
ment a ‘‘quantum gun’’ ei��x with a wave plate that rotates
the polarization by an angle �=2. The accuracy of the gun
can be varied from � ¼ � (the photon ‘‘kills’’ its past self)
to � ¼ 0 (it always ‘‘misses’’ and survives).

The teleportation circuit forms a polarization interfer-
ometer whose visibility was measured to be 93� 3%
(see the inset in Fig. 4). To verify the operation of the
teleportation circuit, all four Bell states j��i, jc�i were
prepared and sent to the measurement apparatus: postse-
lection on j�þi behaved as expected yielding success
probabilities of 0:96� 0:08, 0:10� 0:11, 0:02� 0:05,

and 0:02� 0:05 for j�þi, j��i, jcþi, and jc�i inputs.
After this verification, beam displacers (BD2 and BD3)
were inserted, coupling the polarization qubit to two probe
qubits encoded in additional path degrees of freedom of the
photon. These probe qubits measure the state of the polar-
ization qubit before and after the quantum gun is ‘‘fired.’’
When the postselection succeeds (which simulates the time
travel occurring), the state of the qubits is measured. If they
are equal (00 or 11) the gun has failed to flip the polariza-
tion: the photon ‘‘survives,’’ otherwise (01 or 10) the
photon has ‘‘killed’’ its past self.
The state of the probe qubits, conditioned on the post-

selection succeeding, was measured for different values of
� (Fig. 4). The probes are never 01 or 10, which shows that
‘‘time travel cannot happen’’ unless the gun misfires, leav-
ing the polarization unchanged and the probes in 00 or 11.
Namely, suicidal photons in a CTC obey the Novikov
principle: they cannot kill their former selves.
Our P-CTCs always send pure states to pure states: they

do not create entropy. Hence, P-CTCs provide a distinct
resolution to Deutsch’s unproved theorem paradox, in
which the time traveler reveals the proof of a theorem to
a mathematician, who includes it in the same book from
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FIG. 3 (color online). Experiment to illustrate the P-CTC
predictions of the grandfather paradox. (a) Quantum circuit.
Using a CNOT gate sandwiched between optional Z and X gates,
it is possible to prepare all of the maximally entangled Bell
states. The Bell state measurement is implemented using a CNOT

and a Hadamard. Each of the probe qubits is coupled to the
forward qubit via a CNOT gate. (b) Experimental apparatus. The
polarization and path degrees of freedom of single photons from
a quantum dot are entangled via a calcite polarization-dependent
beam displacer (BD1), implementing the CNOT. Half-wave plates
(HWP) before and after BD1 implement the optional Z and X
gates. To complete the teleportation, the postselection onto j�þi
is carried out by recombining the path degrees of freedom on a
polarizing beam splitter (performing a CNOT gate between path
and polarization) and then passing the photons through a calcite
polarizer set to 45� and detecting them. A rotatable HWP acts as
a quantum gun, implementing the unitary Uð�Þ ¼ e�i��x .
Removable calcite beam displacers (BD2 and BD3) couple the
polarization qubit to two probe qubits encoded in additional
spatial degrees of freedom.
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which the traveler has learned it (rather, will learn it). How
did the proof come into existence? Deutsch adds an addi-
tional maximum entropy postulate to eliminate this para-
dox. By contrast, postselected CTCs automatically solve it
[Fig. 2(b)] through entanglement: the CTC creates a ran-
dom mixture of all possible ‘‘proofs.’’

A user that has access to a closed timelike curve might
be able to distinguish nonorthogonal states [20] and per-
form computations very efficiently: for pure state inputs,
Deutsch’s CTCs permit the efficient solution of all prob-
lems in PSPACE [21] (that can be solved with polynomial
space resources). (This may be useless for computation and
state discrimination, because CTCs decorrelate the outputs
of the computation from its inputs stored elsewhere [13].)
In contrast, Aaronson’s results on postselection in comput-
ing imply that the P-CTCs can solve efficiently problems in
the class probabilistic polynomial (PP) [22]. PP is puta-
tively less powerful than PSPACE. P-CTCs do not decor-
relate inputs from outputs, and can efficiently solve
NP-complete problems, as they can perform any computa-
tion on a circuit of depth one.

We thank C. Bennett and D. Deutsch for discussions and
suggestions. This work was supported by the Keck foun-
dation, Jeffrey Epstein, NSF, ONR, DARPA, JSPS,
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FIG. 4 (color online). Probability that the postselection simu-
lating time travel succeeds and the probes are found in the
same state (red circles) or in opposite states (blue diamonds).
As the accuracy � of the quantum gun increases from 0 to �,
the probability that the teleportation succeeds decreases.
Nonetheless, the probability that the probe qubits are found in
either the 10 or 01 state (i.e., the kill succeeds) is 0:01� 0:04.
Solid curves correspond to theoretical predictions. The theory-
experiment discrepancy is due to a 1:1� 0:1� mismatch between
polarizers used for teleportation. The error bars are due to photon
counting and background from the cooled CCD. Inset: the tele-
portation loop is a polarization interferometer with measured
visibility 93� 3%.
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