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GOOD FORMAL STRUCTURES

FOR FLAT MEROMORPHIC CONNECTIONS, II:

EXCELLENT SCHEMES

KIRAN S. KEDLAYA

Introduction

The Hukuhara-Levelt-Turrittin decomposition theorem gives a classification of
differential modules over the field C((z)) of formal Laurent series resembling the
decomposition of a finite-dimensional vector space equipped with a linear endo-
morphism into generalized eigenspaces. It implies that after adjoining a suitable
root of z, one can express any differential module as a successive extension of one-
dimensional modules. This classification serves as the basis for the asymptotic
analysis of meromorphic connections around a (not necessarily regular) singular
point. In particular, it leads to a coherent description of the Stokes phenomenon,
i.e., the fact that the asymptotic growth of horizontal sections near a singular-
ity must be described using different asymptotic series depending on the direction
along which one approaches the singularity. (See [45] for a beautiful exposition of
this material.)

In our previous paper [26], we gave an analogue of the Hukuhara-Levelt-Turrittin
decomposition for irregular flat formal meromorphic connections on complex an-
alytic or algebraic surfaces. (The regular case is already well understood in all
dimensions, by the work of Deligne [12].) The result [26, Theorem 6.4.1] states that
given a connection, one can find a blowup of its underlying space and a cover of
that blowup ramified along the pole locus of the connection, such that after pass-
ing to the formal completion at any point of the cover, the connection admits a
good decomposition in the sense of Malgrange [31, §3.2]. This implies that one gets
(formally at each point) a successive extension of connections of rank 1; one also
has some control over the pole loci of these connections. The precise statement
had been conjectured by Sabbah [38, Conjecture 2.5.1] and was proved in the alge-
braic case by Mochizuki [34, Theorem 1.1]. The methods of [34] and [26] are quite
different; Mochizuki uses reduction to positive characteristic and some study of p-
curvatures, whereas we use properties of differential modules over one-dimensional
nonarchimedean analytic spaces.

The purpose of this paper is to extend our previous theorem from surfaces to
complex analytic or algebraic varieties of arbitrary dimension. Most of the hard
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work concerning differential modules over nonarchimedean analytic spaces was al-
ready carried out in [26]; consequently, this paper consists largely of arguments of a
more traditional algebro-geometric nature. As in [26], we do not discuss asymptotic
analysis or the Stokes phenomenon; these have been treated in the two-dimensional
case by Sabbah [38] (building on work of Majima [30]), and one expects the higher-
dimensional case to behave similarly.

The paper divides roughly into three parts. In the remainder of this introduction,
we describe the contents of these parts in more detail, then conclude with some
remarks about what remains for a subsequent paper.

0.1. Birational geometry. In the first part of the paper (§§1–2), we gather some
standard tools from the birational geometry of schemes. One of these is Grothen-
dieck’s notion of an excellent ring, which encompasses rings of finite type over a
field, local rings of complex analytic varieties, and their formal completions. Using
excellent rings and schemes, we can give a unified treatment of differential modules
in both the algebraic and analytic categories, without having to keep track of formal
completions.

Another key tool we introduce is the theory of Krull valuations and Riemann-
Zariski spaces. The compactness of the latter will be the key to translating a local
decomposition theorem for flat meromorphic connections into a global result.

0.2. Local structure theory. In the second part of the paper (§§3–5), we con-
tinue the local study of differential modules from [26]. (Note that this part of the
paper can be read almost entirely independently from the first part, except for one
reference to the definition of an excellent ring.) We first define the notion of a
nondegenerate differential ring, which includes global coordinate rings of smooth
algebraic varieties, local rings of smooth complex analytic varieties, and formal
completions of these. We prove an equivalence between different notions of good
formal structures, which is needed to ensure that our results really do address a
generalization of Sabbah’s conjecture. We then collect some descent arguments to
transfer good formal structures between a power series ring over a domain and the
corresponding series ring over the fraction field of that domain. We finally translate
the local algebraic calculations into geometric consequences for differential modules
on nondegenerate differential schemes and complex analytic varieties.

It simplifies matters greatly that the numerical criterion for good formal struc-
tures established in the first part of [26] is not limited to surfaces, but rather applies
in any dimension. We incorporate that result [26, Theorem 4.4.2] in a more geo-
metric formulation (see Theorem 3.5.4 and Proposition 5.2.3): a connection on a
nondegenerate differential scheme admits a good formal structure precisely at points
where the irregularity is measured by a suitable Cartier divisor. In other words,
there exist a closed subscheme (the turning locus) and a Cartier divisor defined
away from the turning locus (the irregularity divisor) such that for any divisorial
valuation not supported entirely in the turning locus, the irregularity of the con-
nection along that valuation equals the multiplicity of the irregularity divisor along
that valuation.

0.3. Valuation-theoretic analysis and global results. In the third part of the
paper (§§6–8), we attack the higher-dimensional analogue of the aforementioned
conjecture of Sabbah [38, Conjecture 2.5.1] concerning good formal structures for
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connections on surfaces. Before discussing the techniques used, let us recall briefly
how Sabbah’s original conjecture was resolved in [26], and why the method used
there is not suitable for the higher-dimensional case.

As noted earlier, the first part of [26] provides a numerical criterion for the ex-
istence of good formal structures. In the second part of [26], it is verified that
the numerical criterion can be satisfied on surfaces after a suitable blowing up.
This verification involves a combinatorial analysis of the variation of irregularity
on a certain space of valuations; that space is essentially an infinitely ramified tree.
(More precisely, it is a one-dimensional nonarchimedean analytic space in the sense
of Berkovich [5].) Copying this analysis directly in a higher-dimensional setting
involves replacing the tree by a higher-dimensional polyhedral complex whose ge-
ometry is extremely difficult to describe; it seems difficult to simulate on such spaces
the elementary arguments concerning convex functions which appear in [26, §5].

We instead take an approach more in the spirit of birational geometry (after
Zariski). Given a connection on a nondegenerate differential scheme, we seek to
construct a blowup on which the turning locus is empty. To do this, it suffices to
check that for each centered valuation on the scheme, there is a blowup on which
the turning locus misses the center of the valuation. The same blowup then satisfies
the same condition for all valuations in some neighborhood of the given valuation
in the Riemann-Zariski space of the base scheme. Since the Riemann-Zariski space
is quasi-compact, there are finitely many blowups which together eliminate the
turning locus; taking a single blowup which dominates them all achieves the desired
result.

The obstruction in executing this approach is a standard bugbear in birational
geometry: it is very difficult to classify valuations on schemes of dimension greater
than 2. We overcome this difficulty using a new idea, drawn from our work on
semistable reduction for overconvergent F -isocrystals [22, 23, 24, 27], and from
Temkin’s proof of inseparable local uniformization for function fields in positive
characteristic [43]. The idea is to quantify the difficulty of describing a valuation
in local coordinates using a numerical invariant called the transcendence defect.
A valuation of transcendence defect zero (i.e., an Abhyankar valuation) can be
described completely in local coordinates. A valuation of positive transcendence
defect cannot be so described, but it can be given a good relative description in
terms of the Berkovich open unit disc over a complete field of lower transcendence
defect. This constitutes a valuation-theoretic formulation of the standard algebro-
geometric technique of fibering a variety in curves.

By returning the argument to the study of Berkovich discs, we forge a much
closer link with the combinatorial analysis in [26, §5] than may have been evident
at the start of the discussion. One apparent difference from [26] is that we are
now forced to consider discs over complete fields which are not discretely valued,
so we need some more detailed analysis of differential modules on Berkovich discs
than was used in [26]. However, this difference is ultimately illusory: the analysis
in question (from our book on p-adic differential equations [25]) is already used
heavily in our joint paper with Xiao on differential modules on nonarchimedean
polyannuli [28], on which the first part of [26] is heavily dependent.

In any case, using this fibration technique, we obtain an analogue of the
Hukuhara-Levelt-Turrittin decomposition for a flat meromorphic connection on an
integral nondegenerate differential scheme, after blowing up in a manner dictated
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by an initial choice of a valuation on the scheme (Theorem 7.1.7). As noted above,
thanks to the quasi-compactness of Riemann-Zariski spaces, this resolves a form of
Sabbah’s conjecture applicable to flat meromorphic connections on any nondegener-
ate differential scheme (Theorem 8.1.3). When restricted to the case of an algebraic
variety, this result reproduces a theorem of Mochizuki [35, Theorem 19.5], which
was proved using a sophisticated combination of algebraic and analytic methods.

0.4. Further remarks. Using the aforementioned theorem, we also resolve the
higher-dimensional analogue of Sabbah’s conjecture for formal flat meromorphic
connections on excellent schemes (Theorem 8.2.1); this case is not covered by
Mochizuki’s results even in the case of a formal completion of an algebraic variety.
We obtain a similar result for complex analytic varieties (Theorem 8.2.2), but it
is somewhat weaker: in the analytic case, we only obtain blowups producing good
formal structures which are locally defined. That is, the local blowups need not
patch together to give a global blowup. To eliminate this defect, one needs a more
quantitative form of Theorem 8.1.3, in which one produces a blowup which is in
some sense functorial. This functoriality is meant in the sense of the functorial reso-
lution of singularities for algebraic varieties, where the functoriality is defined with
respect to smooth morphisms; when working with excellent schemes, one should
instead allow morphisms which are regular (flat with geometrically regular fibres).
We plan to address this point in a subsequent paper.

We mention in passing that while the valuation-theoretic fibration argument
described above is not original to this paper, its prior use has been somewhat
limited. We suspect that there are additional problems susceptible to this technique,
e.g., in the valuation-theoretic study of plurisubharmonic singularities [9].

1. Preliminaries from birational geometry

We begin by introducing some notions from birational geometry, notably includ-
ing Grothendieck’s definition of excellent schemes.

Notation 1.0.1. For X an integral separated scheme, let K(X) denote the function
field of X.

1.1. Flatification.

Definition 1.1.1. Let f : Y → X be a morphism of integral separated schemes.
We say that f is dominant if the image of f is dense in X; this is equivalent to
requiring that the generic point of Y must map onto the generic point of X. We
say that f is birational if there exists an open dense subscheme U of X such that
the base change of f to U is an isomorphism Y ×X U → U ; this implies that f is
dominant. We say that f is a modification (of X) if it is proper and birational.

Definition 1.1.2. Let f : Y → X be a modification of an integral separated
scheme X, and let g : Z → X be a dominant morphism. Let U be an open dense
subscheme of X over which f is an isomorphism. The proper transform of g under
f is defined as the morphism W → Y , where W is the Zariski closure of Z ×X U
in Z ×X Y ; this does not depend on the choice of U .

We will use the following special case of Raynaud-Gruson flatification [36, pre-
mière partie, §5.2].
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Theorem 1.1.3. Let g : X → S be a dominant morphism of finite presentation
of finite-dimensional noetherian integral separated schemes. Then there exists a
modification f : T → S such that the proper transform of g under f is a flat
morphism.

1.2. Excellent rings and schemes. The class of excellent schemes was introduced
by Grothendieck [18, §7.8] in order to capture the sort of algebro-geometric objects
that occur most commonly in practice, while excluding some pathological examples
that appear in the category of locally noetherian schemes. The exact definition is
less important than the stability of excellence under some natural operations; the
impatient reader may wish to skip immediately to Proposition 1.2.5. On the other
hand, the reader interested in more details may consult either [18, §7.8] or [32, §34].

Definition 1.2.1. A morphism of schemes is regular if it is flat with geometrically
regular fibres. A ring A is a G-ring if for any prime ideal p of A, the morphism

Spec( ̂Ap) → Spec(Ap) is regular. (Here ̂Ap denotes the completion of the local ring
Ap with respect to its maximal ideal pAp.)

Definition 1.2.2. The regular locus of a locally noetherian scheme X, denoted
Reg(X), is the set of points x ∈ X for which the local ring OX,x of X at x is
regular. A noetherian ring A is J-1 if Reg(Spec(A)) is open in A. We say A is J-2
if every finitely generated A-algebra is J-1; it suffices to check this condition for
finite A-algebras [32, Theorem 73].

Definition 1.2.3. A ring A is catenary if for any prime ideals p ⊆ q in A, all
maximal chains of prime ideals from p to q have the same finite length. (The
finiteness of the length of each maximal chain is automatic if A is noetherian.) A
ring A is universally catenary if any finitely generated A-algebra is catenary.

Definition 1.2.4. A ring A is quasi-excellent if it is noetherian, a G-ring, and
J-2. A quasi-excellent ring is excellent if it is also universally catenary. A scheme
is (quasi-)excellent if it is locally noetherian and covered by open subsets iso-
morphic to the spectra of (quasi-)excellent rings. Note that an affine scheme is
(quasi-)excellent if and only if its coordinate ring is.

As suggested earlier, the class of excellent rings is broad enough to cover most
typical cases of interest in algebraic geometry.

Proposition 1.2.5. The class of (quasi-)excellent rings is stable under formations
of localizations and finitely generated algebras (including quotients). Moreover, a
noetherian ring is (quasi-)excellent if and only if its maximal reduced quotient is.

Proof. See [32, Definition 34.A]. �
Corollary 1.2.6. Any scheme locally of finite type over a field is excellent.

Proof. A field k is evidently noetherian, a G-ring, and J-2. It is also universally
catenary because for any finitely generated integral k-algebra A, the dimension of
A equals the transcendence degree of Frac(A) over k, by Noether normalization
(see [13, §8.2.1]). Hence k is excellent. By Proposition 1.2.5, any finitely generated
k-algebra is also excellent. This proves the claim. �
Corollary 1.2.7. Any modification of a (quasi-)excellent scheme is again
(quasi-)excellent.
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Remark 1.2.8. The classes of excellent and quasi-excellent rings enjoy many addi-
tional properties, which we will not be using. For completeness, we mention a few
of these. See [32, Definition 34.A] for omitted references.

• If a local ring is noetherian and a G-ring, then it is J-2 and hence quasi-
excellent.

• Any Dedekind domain of characteristic 0, such as Z, is excellent. However,
this fails in positive characteristic [32, 34.B].

• Any quasi-excellent ring is a Nagata ring, i.e., a noetherian ring which is
universally Japanese. (A ring A is universally Japanese if for any finitely
generated integral A-algebra B and any finite extension L of Frac(B), the
integral closure of B in L is a finite B-module.)

Remark 1.2.9. It has been recently shown by Gabber using a weak form of local
uniformization (unpublished) that excellence is preserved under completion with
respect to an ideal. This answers an old question of Grothendieck [18, Remar-
que 7.4.8]; the special case for excellent Q-algebras of finite dimension had been
established previously by Rotthaus [37]. However, we will not need Gabber’s re-
sult, because we will establish excellence of the rings we consider using derivations;
see Lemma 3.2.5.

1.3. Resolution of singularities for quasi-excellent schemes. Upon intro-
ducing the class of quasi-excellent schemes, Grothendieck showed that it is in some
sense the maximal class of schemes for which resolution of singularities is possible.

Proposition 1.3.1 (Grothendieck). Let X be a locally noetherian scheme. Suppose
that for any integral separated scheme Y finite over X, there exists a modification
f : Z → Y with Z regular. Then X is quasi-excellent.

Proof. See [18, Proposition 7.9.5]. �

Grothendieck then suggested that Hironaka’s proof of resolution of singularities
for varieties over a field of characteristic zero could be adapted to check that any
quasi-excellent scheme over a field of characteristic zero admits a resolution of
singularities. To the best of our knowledge, this claim was never verified. However,
an analogous statement has been established more recently by Temkin, using an
alternative proof of Hironaka’s theorem due to Bierstone and Milman.

Definition 1.3.2. A regular pair is a pair (X,Z), in which X is a regular scheme,
and Z is a closed subscheme of X which is a normal crossings divisor. The latter
means that étale locally, Z is the zero locus on X of a regular function of the
form te11 · · · tenn , for t1, . . . , tn a regular sequence of parameters and e1, . . . , en some
nonnegative integers.

Theorem 1.3.3. For every noetherian quasi-excellent integral scheme X over
Spec(Q), and every closed proper subscheme Z of X, there exists a modification
f : Y → X such that (Y, f−1(Z)) is a regular pair.

Proof. See [39, Theorem 1.1]. �

Remark 1.3.4. One can further ask for a desingularization procedure which is func-
torial for regular morphisms. This question has been addressed by Bierstone,
Milman, and Temkin [7, 41, 42]. We will need this in a subsequent paper; see
Remark 8.2.5.



GOOD FORMAL STRUCTURES FOR FLAT MEROMORPHIC CONNECTIONS, II 189

1.4. Alterations. It will be convenient to use a slightly larger class of morphisms
than just modifications.

Definition 1.4.1. An alteration of an integral separated scheme X is a proper,
dominant, generically finite morphism f : Y → X with Y integral. If X is a scheme
over Spec(Q), this implies that there is an open dense subscheme U of X such that
Y ×X U → U is finite étale. If X is excellent, then so is Y by Proposition 1.2.5.

Remark 1.4.2. Alterations were introduced by de Jong to give a weak form of
resolution of singularities in positive characteristic and for arithmetic schemes; see
[11, Theorem 4.1]. Since here we only consider schemes over a field of characteristic
0, this benefit is not relevant for us; the reason we consider alterations is because
the valuation-theoretic arguments of §7 are easier to state in terms of alterations
than modifications. Otherwise, one must work not just with the Berkovich unit
disc, but also with more general one-dimensional analytic spaces, as in Temkin’s
proof of inseparable local uniformization [43].

Lemma 1.4.3. Let g : Z → X be an alteration of a finite-dimensional noetherian
integral separated scheme X. Then there exists a modification f : Y → X such that
the proper transform of g under f is finite flat.

Proof. By Theorem 1.1.3, we can choose f so that the proper transform g′ of g under
f is flat. Since g′ is flat, it has equidimensional fibres by [32, Theorem 19]. Hence
g′ is locally of finite type with finite fibres, i.e., g′ is quasifinite. Since any proper
quasifinite morphism is finite by Zariski’s main theorem [19, Théorème 8.11.1], we
conclude that g′ is finite. �

1.5. Complex analytic spaces. We formally introduce the category of complex
analytic spaces, and the notion of a modification in that category. One can also
define alterations of complex analytic spaces, but we will not need them here.

Definition 1.5.1. For X a locally ringed space, a closed subspace of X is a subset
of the form Supp(OX/I) for some ideal sheaf I on X, equipped with the restriction
of the sheaf OX/I.

Definition 1.5.2. A complex analytic space is a locally ringed space X which
is locally isomorphic to a closed subspace of an affine space carrying the sheaf of
holomorphic functions. We define morphisms of complex analytic spaces, and closed
subspaces of a complex analytic space, using the corresponding definitions of the
underlying locally ringed spaces.

Definition 1.5.3. A modification of irreducible reduced separated complex ana-
lytic spaces is a morphism f : Y → X which is proper (as a map of topological
spaces) and surjective, and which restricts to an isomorphism on the complement
of a closed subspace of X. For instance, the analytification of a modification of
complex algebraic varieties is again a modification; the hard part of this statement
is the fact that algebraic properness implies topological properness, for which see
[20, Exposé XII, Proposition 3.2].

Definition 1.5.4. In the category of complex analytic spaces, a regular pair will
denote a pair (X,Z) in which X is a complex analytic space, Z is a closed subspace
of X, and for each x ∈ X, OX,x is regular (i.e., X is smooth at x) and the ideal
sheaf defining Z defines a normal crossings divisor on Spec(OX,x).
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The relevant form of resolution of singularities for complex analytic spaces is due
to Aroca, Hironaka, and Vicente [1, 2].

Theorem 1.5.5. For every irreducible reduced separated complex analytic space X
and every closed proper subspace Z of X, there exists a modification f : Y → X
such that (Y, f−1(Z)) is a regular pair.

2. Valuation theory

We need some basic notions from the classical theory of Krull valuations. Our
blanket reference for valuation theory is [44].

2.1. Krull valuations.

Definition 2.1.1. A valuation (or Krull valuation) on a field F with values in a
totally ordered group Γ is a function v : F → Γ ∪ {+∞} satisfying the following
conditions.

(a) For x, y ∈ F , v(xy) = v(x) + v(y).
(b) For x, y ∈ F , v(x+ y) ≥ min{v(x), v(y)}.
(c) We have v(1) = 0 and v(0) = +∞.

We say that v is trivial if v(x) = 0 for all x ∈ F×. A real valuation is a Krull
valuation with Γ = R.

We say that the valuations v1, v2 are equivalent if for all x, y ∈ F ,

v1(x) ≥ v1(y) ⇐⇒ v2(x) ≥ v2(y).

The isomorphism classes of the following objects associated to v are equivalence
invariants:

value group: Γv = v(F×),

valuation ring: ov = {x ∈ F : v(x) ≥ 0},
maximal ideal: mv = {x ∈ F : v(x) > 0},
residue field: κv = ov/mv.

Note that the equivalence classes of valuations on F are in bijection with the val-
uation rings of the field F , i.e., the subrings o of F such that for any x ∈ F×,
at least one of x or x−1 belongs to o. (Given a valuation ring o, the natural map
v : F → (F×/o×) ∪ {+∞} sending 0 to +∞ is a valuation with ov = o.)

Definition 2.1.2. LetR be an integral domain, and let v be a valuation on Frac(R).
We say that v is centered on R if v takes nonnegative values on R, i.e., if R ⊆ ov.
In this case, R ∩mv is a prime ideal of R, called the center of v on R.

Similarly, letX be an integral separated scheme with function fieldK(X), and let
v be a valuation on K(X). The center of v on X is the set of x ∈ X with oX,x ⊆ ov;
it is either empty or an irreducible closed subset of X (see [44, Proposition 6.2],
keeping in mind that the hypothesis of separatedness is needed to reduce to the
affine case). In the latter case, we say that v is centered on X, and we refer to
the generic point of the center as the generic center of v. In fact, we will refer so
often to valuations on K(X) centered on X that we will simply call them centered
valuations on X.

If X = SpecR, then v is centered on X if and only if v is centered on R, in which
case the center of v on R is the generic center of v on X.
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Lemma 2.1.3. (a) Let F be a field and let v be a valuation on F . Then for
any field E containing F , there exists an extension of v to a valuation on
E.

(b) Let f : Y → X be a proper dominant morphism of integral separated
schemes. For any centered valuation v on X, any extension of v to K(Y )
is centered on Y . (Such an extension exists by (a).)

Proof. We may deduce (a) by applying to ov the fact that every local subring of
E is dominated by a valuation ring [44, §1]. Part (b) is the valuative criterion for
properness; see [16, Théorème 7.3.8]. �

2.2. Numerical invariants. Here are a few basic numerical invariants attached
to valuations.

Definition 2.2.1. Let v be a valuation on a field F . An isolated subgroup (or
convex subgroup) of Γv is a subgroup Γ′ such that for all α ∈ Γ′, β ∈ Γv with
−α ≤ β ≤ α, we have β ∈ Γ′. In this case, the quotient group Γv/Γ

′ inherits a total
ordering from Γv, and we obtain a valuation v′ on F with value group Γv/Γ

′ by
projection. We also obtain a valuation v on κv′ with value group Γ′. The valuation
v is said to be a composite of v′ and v.

Let ratrank(v) = dimQ(Γv ⊗Z Q) denote the rational rank of v. For k a subfield
of κv, let trdeg(κv/k) denote the transcendence degree of κv over k.

The height (or real rank) of v, denoted height(v), is the maximum length of a
chain of proper isolated subgroups of Γv; note that height(v) ≤ ratrank(v) [44,
Proposition 3.5]. By definition, height(v) > 1 if and only if Γv admits a nonzero
proper isolated subgroup, in which case v can be described as a composite valuation
as above. On the other hand, height(v) ≤ 1 if and only if v is equivalent to a real
valuation [44, Proposition 3.3, Exemple 3].

There is a fundamental inequality due to Abhyankar (generalizing a result of
Zariski), which gives rise to an additional numerical invariant for valuations centered
on noetherian schemes. This invariant quantifies the difficulty of describing the
valuation in local coordinates.

Definition 2.2.2. Let X be a noetherian integral separated scheme. Let v be a
centered valuation on X, with center Z. Define the transcendence defect of v as

trdefect(v) = codim(Z,X)− ratrank(v)− trdeg(κv/K(Z)).

We say that v is an Abhyankar valuation if trdefect(v) = 0.

Theorem 2.2.3 (Zariski-Abhyankar inequality). Let X be a noetherian integral
separated scheme. Then for any centered valuation v on X with center Z,
trdefect(v) ≥ 0. Moreover, if equality occurs, then Γv is a finitely generated abelian
group, and κv is a finitely generated extension of K(Z).

Proof. We may reduce immediately to the case where X = Spec(R) for R a local
ring, and Z is the closed point of X. In this case, see [47, Appendix 2, Corollary,
p. 334] or [44, Théorème 9.2]. �

These invariants behave nicely under alterations, in the following sense.

Lemma 2.2.4. Let f : Y → X be an alteration of a noetherian integral separated
scheme X. Let v be a centered valuation on X.
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(a) There exists at least one extension w of v to a centered valuation on Y .
(b) For any w as in (a), we have height(w) = height(v), ratrank(w) =

ratrank(v), and trdefect(w) ≤ trdefect(v) with equality if X is excellent.

Proof. For (a), apply Lemma 2.1.3. For (b), we may check the equality of heights
and rational ranks at the level of the function fields. To check the inequality of
transcendence defects, let Z be the center of v on X, and let W be the center of w
on Y ; then

trdefect(v)− trdefect(w)

= codim(Z,X)− codim(W,Y ) + trdeg(κw/K(W ))− trdeg(κv/K(Z))

= codim(Z,X)− codim(W,Y ) + trdeg(κw/κv)− trdeg(K(W )/K(Z)).

We may check that trdeg(κw/κv) = 0 at the level of function fields; see [44, §5] for
this verification. After replacing X by the spectrum of a local ring, we may apply
[18, Théorème 5.5.8] or [32, Theorem 23] to obtain the inequality

codim(Z,X) + trdeg(K(Y )/K(X)) ≥ codim(W,Y ) + trdeg(K(W )/K(Z)),

with equality in case X is excellent. Since f is an alteration, K(Y ) is algebraic over
K(X) and so trdeg(K(Y )/K(X)) = 0. This yields the desired comparison. �

Here is another useful property of Abhyankar valuations.

Remark 2.2.5. Let R be a noetherian local ring with completion ̂R. Let v be a

centered real valuation on R. Then v extends by continuity to a function v̂ : ̂R →
Γv ∪ {+∞}. This function is in general a semivaluation in that it satisfies all of
the conditions defining a valuation except that p = v̂−1(+∞) is only a prime ideal,
not necessarily the zero ideal.

For instance, choose a = a1x + a2x
2 + · · · ∈ k�x� which is transcendental over

k(x). Put R = k[x, y](x,y), and let v be the restriction of the x-adic valuation of
k�x� along the map R → k�x� defined by x 
→ x, y 
→ a. Then v is a valuation on
R, but p = (y − a) �= 0.

On the other hand, suppose v is a real Abhyankar valuation. Then v̂ induces a

valuation on ̂R/p with the same value group and residue field as v. By the Zariski-

Abhyankar inequality, this forces dim( ̂R/p) ≥ dimR; since dimR = dim ̂R [13,
Corollary 10.12], this is only possible for p = 0. That is, if v is a real Abhyankar

valuation, it extends to a valuation on ̂R.

2.3. Riemann-Zariski spaces. We need a mild generalization of Zariski’s original
compactness theorem for spaces of valuations, which we prefer to state in scheme-
theoretic language. See [40, §2] for a much broader generalization.

Definition 2.3.1. For R a ring, the patch topology on Spec(R) is the topology
generated by the sets D(f) = {p ∈ Spec(R) : f /∈ p} and their complements. Note
that for any f ∈ R, the open sets for the patch topology on D(f) are also open
for the patch topology on R. It follows that we can define the patch topology
on a scheme X to be the topology generated by the open subsets for the patch
topologies on all open affine subschemes of X, and this will agree with the previous
definition for affine schemes. The resulting topology is evidently finer than the
Zariski topology.

Lemma 2.3.2. Any noetherian scheme is compact for the patch topology.
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Proof. By noetherian induction, it suffices to check that if X is a noetherian scheme
such that each closed proper subset of X is compact for the patch topology, then
X is also compact for the patch topology. Since a noetherian scheme is covered by
finitely many affine noetherian schemes, each of which has finitely many irreducible
components, we may reduce to the case of an irreducible affine noetherian scheme
Spec(R).

Given an open cover of Spec(R) for the patch topology, there must be an open
set covering the generic point. This open set must contain a basic open set of the
form D(f)\D(g) for some f, g ∈ R, but this only covers the generic point if D(g) is
empty. Hence our open cover includes an open set containing D(f) for some f ∈ R
which is not nilpotent. By hypothesis, the closed set X \D(f) is covered by finitely
many open sets from the cover, as then is X. �
Definition 2.3.3. LetX be a noetherian integral separated scheme. The Riemann-
Zariski space RZ(X) consists of the equivalence classes of centered valuations on
X. If X = Spec(R), we also write RZ(R) instead of RZ(X).

We may identify RZ(X) with the inverse limit over modifications f : Y → X,
as follows. Given v ∈ RZ(X), we take the element of the inverse limit whose
component on a modification f : Y → X is the generic center of v on Y (which
exists by Lemma 2.1.3(a)). Conversely, given an element of the inverse limit with
value xY on Y , form the direct limit of the local rings OY,xY

; this gives a valuation
ring because any g ∈ K(X) defines a rational map X ��� P1

Z, and the Zariski
closure of the graph of this rational map is a modification W of X such that one
of g or g−1 belongs to OW,xW

.
We equip RZ(X) with the Zariski topology, defined as the inverse limit of the

Zariski topologies on the modifications of X. For any dominant morphism X →
W of noetherian integral schemes, we obtain an induced continuous morphism
RZ(X) → RZ(W ) using proper transforms.

Theorem 2.3.4. For any noetherian integral separated scheme X, the space RZ(X)
is quasicompact.

Proof. For each modification f : Y → X, Y is compact for the patch topology by
Lemma 2.3.2. If we topologize RZ(X) with the inverse limit of the patch topologies,
the result is compact by Tikhonov’s theorem. The Zariski topology is coarser than
this, so RZ(X) is quasicompact for the Zariski topology. (Note that we cannot check
this directly because an inverse limit of quasicompact topological spaces need not
be quasicompact.) �
Proposition 2.3.5. Let f : Y → X be a morphism of finite-dimensional noetherian
integral separated schemes, which is dominant and of finite presentation. Then the
map RZ(f) : RZ(Y ) → RZ(X) is open.

Proof. By Theorem 1.1.3, there exists a modification g : Z → X such that the
proper transform h : W → Z of f under g is flat. The claim now follows from the
fact that a morphism which is flat and locally of finite presentation is open [18,
Théorème 2.4.6]. �

3. Nondegenerate differential schemes

We now explain how the notion of an excellent scheme interacts with derivations,
and with our discussion of good formal structures in [26].
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Definition 3.0.1. Let R ↪→ S be an inclusion of domains, and let M be a finite
S-module. By an R-lattice in M , we mean a finite R-submodule L of M such that
the induced map L⊗R S → M is surjective.

3.1. Nondegenerate differential local rings. We first introduce a special class
of differential local rings.

Definition 3.1.1. A differential (local) ring is a (local) ring R equipped with an
R-module ΔR acting on R via derivations, together with a Lie algebra structure on
ΔR compatible with the Lie bracket on derivations.

Definition 3.1.2. Let (R,ΔR) be a differential local ring with maximal ideal m
and residue field κ = R/m. We say that R is nondegenerate if it satisfies the
following conditions.

(a) The ring R is a regular (hence noetherian) local Q-algebra.
(b) The R-module ΔR is coherent.
(c) For some regular sequence of parameters x1, . . . , xn of R, there exists a

sequence ∂1, . . . , ∂n ∈ ΔR of derivations of rational type with respect to
x1, . . . , xn. That is, ∂1, . . . , ∂n must commute pairwise and must satisfy

(3.1.2.1) ∂i(xj) =

{

1 (i = j),

0 (i �= j).

The existence of such derivations for a single regular sequence of param-
eters implies the same for any other regular sequence of parameters; see
Corollary 3.1.9.

Remark 3.1.3. Note that (3.1.2.1) by itself does not force ∂1, . . . , ∂n to commute
pairwise. For instance, if R = C(t)�x1, x2�, we can satisfy (3.1.2.1) by taking

∂1 =
∂

∂x1
+

∂

∂t
, ∂2 =

∂

∂x2
+ t

∂

∂t
.

Example 3.1.4. The following are all examples of nondegenerate local rings.

(a) Any local ring of a smooth scheme over a field of characteristic 0.
(b) Any local ring of a smooth complex analytic space.
(c) Any completion of a nondegenerate local ring with respect to a prime ideal.

(By Lemma 3.1.6 below, we may reduce to the case of completion with
respect to the maximal ideal, for which the claim is trivial.)

We insert some frequently invoked remarks concerning the regularity condition.

Remark 3.1.5. Let R be a regular local ring. Let ̂R be the completion of R with

respect to its maximal ideal; then the morphism R → ̂R is faithfully flat [33, The-
orem 8.14]. Moreover, since étaleness descends down faithfully flat quasicompact

morphisms of schemes [20, Exposé IX, Proposition 4.1], any element of ̂R which

is algebraic over R generates a finite étale extension of R within ̂R with the same
residue field.

Lemma 3.1.6. Let (R,ΔR) be a nondegenerate differential local ring with maximal
ideal m. For any prime ideal q contained in m, the differential ring (Rq,ΔR⊗RRq)
is again nondegenerate.
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Proof. By [32, Theorem 45, Corollary], Rq is regular, and any regular sequence
of parameters of R contains a regular sequence of parameters for Rq. From these
assertions, the claim is evident. �

The following partly generalizes [26, Lemma 2.1.3]. As the proof is identical, we
omit the details.

Lemma 3.1.7. Let (R,ΔR) be a nondegenerate differential local ring. Suppose
further that for some i ∈ {1, . . . , n}, R is xi-adically complete.

(a) For e ∈ Z, xi∂i acts on xe
iR/xe+1

i R via multiplication by e.
(b) The action of xi∂i on xiR is bijective.
(c) The kernel Ri of ∂i on R[x−1

i ] is contained in R and projects bijectively
onto R/xiR. There thus exists an isomorphism R ∼= Ri�xi� under which ∂i
corresponds to ∂

∂xi
.

Corollary 3.1.8. Let (R,ΔR) be a nondegenerate differential local ring which is
complete with respect to its maximal ideal m. Then there exists an isomorphism
R ∼= k�x1, . . . , xn� for k = R/m, under which ∂i corresponds to

∂
∂xi

for i = 1, . . . , n.

Corollary 3.1.9. Let (R,ΔR) be a (not necessarily complete) nondegenerate dif-
ferential local ring. Then condition (c) of Definition 3.1.2 holds for any regular
sequence of parameters.

Proof. Let y1, . . . , yn be a second regular sequence of parameters. Define the matrix
A by putting Aij = ∂i(yj); then det(A) is not in the maximal ideal m of R, and so
is a unit in R. We may then define the derivations

∂′
j =

∑

i

(A−1)ij∂i (j = 1, . . . , n),

and these will satisfy

∂′
i(yj) =

{

1 (i = j),

0 (i �= j).

It remains to check that the ∂′
i commute pairwise; for this, it is harmless to pass to

the case where R is complete with respect to m. In this case, by Corollary 3.1.8,
we have an isomorphism R ∼= k�x1, . . . , xn� under which each ∂i corresponds to
the formal partial derivative in xi. That isomorphism induces an embedding of k
into R whose image is killed by ∂1, . . . , ∂n and hence also by ∂′

1, . . . , ∂
′
n. We thus

obtain a second isomorphism R ∼= k�y1, . . . , yn� under which each ∂′
i corresponds

to the formal partial derivative in yi. In particular, these commute pairwise, as
desired. �

3.2. Nondegenerate differential schemes. We now consider more general dif-
ferential rings and schemes, following [26, §1]. We introduce the nondegeneracy
condition for these and show that it implies excellence.

Definition 3.2.1. A differential scheme is a scheme X equipped with a quasi-
coherent OX -module DX acting on OX via derivations, together with a Lie algebra
structure on DX compatible with the Lie bracket on derivations. Note that the
category of differential affine schemes is equivalent to the category of differential
rings in the obvious fashion.
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Definition 3.2.2. We say that a differential scheme (X,DX) is nondegenerate if
X is separated and noetherian of finite Krull dimension, DX is coherent over OX ,
and each local ring of X is nondegenerate. We say that a differential ring R is
nondegenerate if Spec(R) is nondegenerate; this agrees with the previous definition
in the local case.

Remark 3.2.3. Let (R,ΔR) be a differential domain. For several types of ring
homomorphisms f : R → S with S also a domain, there is a canonical way to
extend the differential structure on R to a differential structure on S, provided we
insist that the differential structure be saturated. That is, we equip S with the
subset of ΔFrac(R) ⊗R S consisting of elements which act as derivations on Frac(S)
preserving S.

To be specific, we may perform such a canonical extension for f of the following
types:

(a) a generically finite morphism of finite type;
(b) a localization;
(c) a morphism from R to its completion with respect to some ideal.

If R is nondegenerate, it is clear in cases (b) and (c) that S is also nondegenerate.
In case (a), one can only expect this if S is regular, in which case it is true but not
immediate; this is the content of the following lemma.

Lemma 3.2.4. Let X be a nondegenerate differential scheme, and let f : Y → X
be an alteration with Y regular. Then the canonical differential scheme structure
on Y (see Remark 3.2.3) is again nondegenerate.

Proof. What is needed is to check that every local ring of Y is nondegenerate, so
we may fix y ∈ Y and x = f(y) ∈ X. Since the nondegenerate locus is stable under
generalization by Lemma 3.1.6, it suffices to consider cases where y and x have the
same codimension, as such y are dense in each fibre of f .

Choose a regular system of parameters x1, . . . , xn for X at x. Since OX,x is
nondegenerate, we can choose derivations ∂1, . . . , ∂n acting on some neighborhood
U of x which are of rational type with respect to x1, . . . , xn. By Lemma 3.1.7,

we can write ÔX,x
∼= k�x1, . . . , xn� in such a way that ∂1, . . . , ∂n correspond to

∂
∂x1

, . . . , ∂
∂xn

.
Choose a regular system of parameters y1, . . . , yn for Y at y. By our choice of y,

the residue field � of y is finite over k. We may thus identify ÔY,y with ��y1, . . . , yn�

for the same n in such a way that the morphism ÔX,x → ÔY,y carries k into �.
Using such an identification, we see (as in the proof of Corollary 3.1.9) that if we
define the matrix A over OY,y by Aij = ∂i(yj), then put ∂′

j =
∑

i(A
−1)ij∂i, we

obtain derivations of rational type with respect to y1, . . . , yn. Hence OY,y is also
nondegenerate, as desired. �

Lemma 3.2.5. Let (X,DX) be a nondegenerate differential scheme.

(a) The scheme X is excellent.
(b) For each x ∈ X, the differential local ring OX,x is simple.
(c) If X is integral, then the subring of Γ(X,OX) killed by the action of DX is

a field.
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Proof. For (a), see [33, Theorem 101]. For (b), note that for mX,x the maximal ideal
of OX,x and κx the residue field, the nondegeneracy condition forces the pairing

(3.2.5.1) ΔOX,x
×mX,x/m

2
X,x → κx

to be nondegenerate on the right. The differential ring OX,x is then simple by [26,
Proposition 1.2.3]. For (c), note that the nondegeneracy condition prevents any
r ∈ Γ(X,OX) killed by the action of DX from belonging to the maximal ideal of
any local ring of X unless it vanishes in the local ring. �

Corollary 3.2.6. Every local ring of an algebraic variety over a field of character-
istic 0, or of a complex analytic variety, is excellent. Moreover, the completion of
any such ring with respect to any ideal is again excellent.

Proof. By Proposition 1.2.5, it is enough to check both claims when the variety in
question is the (algebraic or analytic) affine space of some dimension. In partic-
ular, such a space has regular local rings, so Lemma 3.2.5(a) applies to yield the
conclusion. �

Corollary 3.2.7. Let X be a smooth complex analytic space which is Stein. Let
K be a compact subset of X. Then the localization of Γ(X,OX) at K (i.e., the
localization by the multiplicative set of functions which do not vanish on K) is
excellent, as is any completion thereof.

Proof. The localization is noetherian by [21, Theorem 1.1]; the claim then follows
from Lemma 3.2.5. �

Remark 3.2.8. The terminology nondegenerate for differential rings arises from the
fact we had originally intended condition (c) of Definition 3.1.2 to state that the
pairing (3.2.5.1) must be nondegenerate on the right. However, it is unclear whether
this suffices to ensure the existence of derivations of rational type with respect to
a regular sequence of parameters. Without such derivations, it is more difficult
to work in local coordinates. To handle this situation, one would need to rework
significant sections of both [26] and [28]; we opted against this approach because
it is not necessary in the applications of greatest interest, to algebraic and analytic
varieties.

3.3. ∇-modules. We next consider differential modules.

Definition 3.3.1. A ∇-module over a differential scheme X is a coherent OX -
module F equipped with an action of DX compatible with the action on OX . Over
an affine differential scheme with noetherian underlying scheme, this is the same as
a finite differential module over the coordinate ring.

Definition 3.3.2. For (X,DX) a differential scheme and φ ∈ Γ(X,OX), let E(φ)
be the ∇-module free on one generator v satisfying ∂(v) = ∂(φ)v for any open
subscheme U of X and any ∂ ∈ Γ(U,DX).

Lemma 3.3.3. Let X be a nondegenerate differential scheme. Then every ∇-
module over X is locally free over OX (and hence projective).

Proof. This follows from Lemma 3.2.5(b) via [26, Proposition 1.2.6]. �
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Remark 3.3.4. Let R be a nondegenerate differential domain, and let M be a finite
differential module over R. By Lemma 3.2.5, M is projective over R, and so is a
direct summand of a free R-module. Hence for any (not necessarily differential)
domains S, T, U with R ⊆ S, T ⊆ U , within M ⊗R U we have

(M ⊗R S) ∩ (M ⊗R T ) = M ⊗R (S ∩ T ).

3.4. Admissible and good decompositions. We next reintroduce the notions
of good decompositions and good formal structures from [26], in the language of
nondegenerate differential rings. Remember that these notions do not quite match
the ones used by Mochizuki; see [26, Remark 4.3.3, Remark 6.4.3].

Hypothesis 3.4.1. Throughout §§3.4–3.5, let R be a nondegenerate differential
local ring. Let x1, . . . , xn be a regular sequence of parameters for R, and put

S = R[x−1
1 , . . . , x−1

m ] for some m ∈ {0, . . . , n}. Let ̂R be the completion of R with

respect to its maximal ideal, and put ̂S = ̂R[x−1
1 , . . . , x−1

m ]. Let M be a finite
differential module over S.

Definition 3.4.2. Let Δlog
R be the subset of ΔR consisting of derivations under

which the ideals (x1), . . . , (xm) are stable. We say that M is regular if there exists

a free R-lattice M0 in M stable under the action of Δlog
R . We say that M is twist-

regular if End(M) = M∨ ⊗R M is regular.

Example 3.4.3. For any φ ∈ R, E(φ) is regular. For any φ ∈ S, E(φ) is twist-
regular.

Remark 3.4.4. In case R = ̂R, when checking regularity of M , we may choose
an isomorphism R ∼= k�x1, . . . , xn� as in Corollary 3.1.8 and check stability of the
lattice just under x1∂1, . . . , xm∂m, ∂m+1, . . . , ∂n, as then [26, Proposition 2.2.8]

implies stability under all of Δlog
R . This means that in case R = ̂R, our definitions

of regularity and twist-regularity match the definitions from [26], so we may invoke
results from [26] referring to these notions without having to worry about our extra
level of generality.

Proposition 3.4.5. Suppose R = ̂R. Then the differential module M is twist-
regular if and only if M = E(φ)⊗S N for some φ ∈ S and some regular differential
module N over S.

Proof. This is [26, Theorem 4.2.3] (plus Remark 3.4.4). �

Definition 3.4.6. An admissible decomposition of M is an isomorphism

(3.4.6.1) M ∼=
⊕

α∈I

E(φα)⊗S Rα

for some φα ∈ S (indexed by an arbitrary set I) and some regular differential
modules Rα over S. An admissible decomposition is good if it satisfies the following
two additional conditions.

(a) For α ∈ I, if φα /∈ R, then φα has the form ux−i1
1 · · ·x−im

m for some unit u
in R and some nonnegative integers i1, . . . , im.

(b) For α, β ∈ I, if φα − φβ /∈ R, then φα − φβ has the form ux−i1
1 · · ·x−im

m for
some unit u in R and some nonnegative integers i1, . . . , im.
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A ramified good decomposition of M is a good decomposition of M ⊗R R′ for some
connected finite integral extension R′ of R such that R′ ⊗R S is étale over S.
By Abhyankar’s lemma [20, Exposé XIII, Proposition 5.2], any such extension is

contained in R′′[x
1/h
1 , . . . , x

1/h
m ] for some connected finite étale extension R′′ of R

and some positive integer h. A good formal structure of M is a ramified good
decomposition of M ⊗RR′ for R′ the completion of R with respect to (x1, . . . , xm).

This is not the same as a ramified good decomposition of M ⊗R
̂R (since ̂R is the

completion with respect to the larger ideal m), but any such decomposition does in
fact induce a good formal structure (see Proposition 4.4.1).

Remark 3.4.7. In Definition 3.4.6, an admissible decomposition need not be unique
if it exists. However, there is a unique minimal admissible decomposition, obtained
by combining the terms indexed by α and β whenever φα − φβ ∈ R. The resulting
minimal admissible decomposition is good if and only if the original admissible
decomposition is good.

The following limited descent argument will crop up several times.

Proposition 3.4.8. Suppose that R is henselian, and that M ⊗S
̂S admits a filtra-

tion 0 = M0 ⊂ · · · ⊂ M� = M⊗S
̂S by differential submodules, in which each succes-

sive quotient Mj+1/Mj admits an admissible decomposition
⊕

α∈Ij
E(φα) ⊗̂S Rα.

Then the φα always belong to S + ̂R; in particular, they can be chosen in S if
desired.

Proof. For i = 0, . . . ,m, put ̂Si = ̂R[x−1
1 , . . . , x−1

i ]. We show that

(3.4.8.1) φα ∈ S + ̂Si (i = m, . . . , 0; α ∈
⋃

j

Ij)

by descending induction on i, the case i = m being evident and the case i =
0 yielding the desired result. Given (3.4.8.1) for some i > 0, we can choose a
nonnegative integer h such that

(3.4.8.2) xh
i φα ∈ S + ̂Si−1 (α ∈

⋃

j

Ij).

We wish to achieve this for h = 0, which we accomplish using a second descending

induction on h. If h > 0, write each xh
i φα as fα + gα with fα ∈ S and gα ∈ ̂Si−1.

Choose α ∈ Ij for some j. Let T and U denote the xi-adic completions of Frac(S)

and Frac(̂S), respectively. Put N = M ⊗S E(−x−h
i fα). We may then apply [26,

Theorem 2.3.3] to obtain a Hukuhara-Levelt-Turrittin decomposition of N ⊗S T ′

for some finite extension T ′ of T .
We claim that U ′ = T ′ ⊗T U is a field extension of U , from which it follows that

T ′ is the integral closure of T in U ′. It suffices to check this after adjoining x
1/m
i

for some positive integer m, so we may assume that T ′ is unramified over T . In
that case, we must show that the residue fields of T ′ and U are linearly disjoint
over the residue field of T , i.e., that for any finite extension � of Frac(R/xiR), � and

Frac( ̂R/xi
̂R) have no common subfield strictly larger than Frac(R/xiR). This holds

because by Remark 3.1.5, such a subfield would induce a finite étale extension of
R/xiR with the same residue field; however, any such extension must equal R/xiR
because the latter ring is henselian (because R is). This proves the claim.
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We may extend scalars to obtain a Hukuhara-Levelt-Turrittin decomposition
of N ⊗S U ′ in which the factors E(r) all have r ∈ T ′. However, since α ∈ Ij ,

(N ⊗S U ′)⊗U ′ E(−x−h
i gα) has a nonzero regular subquotient. This is only possible

if one of the factors E(r) in the decomposition of N ⊗S U ′ satisfies r ≡ x−h
i gα

(mod oU ′).

In particular, if we choose e1, . . . , ei−1 so that g′α = xe1
1 . . . x

ei−1

i−1 gα belongs to ̂R,

then the image of g′α in ̂R/xi
̂R is algebraic over Frac(R/xiR). We again use the

henselian property of R/xiR to deduce that the image of g′α in ̂R/xi
̂R must in fact

belong to R/xiR. This allows us to replace h by h−1 in (3.4.8.2), completing both
inductions. �
Remark 3.4.9. Proposition 3.4.8 implies that if R is henselian and M ⊗S

̂S admits
a good decomposition, then the terms φα appearing in (3.4.6.1) can be defined over
S. Using Theorem 3.5.3 below, we can also realize the regular modules Rα over S

provided that we can identify ̂R with k�x1, . . . , xn� in such a way that k embeds

into R. In such cases, M ⊗S
̂S admits a good decomposition in the sense of Sabbah

[38, I.2.1.5]. This observation generalizes an argument of Sabbah for surfaces [38,
Proposition I.2.4.1] and fulfills a promise made in [26, Remark 6.2.5].

On the other hand, Proposition 3.4.8 does not imply that any good decomposi-

tion of M ⊗S
̂S descends to a good decomposition of M itself. This requires two

additional steps which cannot always be carried out. One must descend the projec-
tors cutting out the summands E(φα)⊗̂S Rα of the minimal good decomposition.
If this can be achieved, then by virtue of Proposition 3.4.8, each summand can be

twisted to give a differential module Nα over S such that Nα ⊗S
̂S is regular. One

must then check that each Nα itself is regular. For a typical situation where both
steps can be executed, see Theorem 4.3.4.

3.5. Good decompositions over complete rings. We now examine more closely
the case of a nondegenerate differential complete local ring, recalling some of the
key results from [26]. Throughout §3.5, continue to retain Hypothesis 3.4.1.

Definition 3.5.1. Use Corollary 3.1.8 to identify ̂R with k�x1, . . . , xn� for k the
residue field of R, using some derivations ∂1, . . . , ∂n of rational type with respect
to x1, . . . , xn. For r = (r1, . . . , rn) ∈ [0,+∞)n, let | · |r be the (e−r1 , . . . , e−rn)-

Gauss norm on ̂R; note that this does not depend on the choice of the isomorphism
̂R ∼= k�x1, . . . , xn�. Let Fr be the completion of Frac( ̂R) with respect to | · |r. Let
F (M, r) be the irregularity of M ⊗S Fr, as defined in [26, Definition 1.4.8]. We say
that M is numerical if F (M, r) is a linear function of r.

The following is a consequence of [26, Theorem 3.2.2].

Theorem 3.5.2. The function F (M, r) is continuous, convex, and piecewise lin-
ear. Moreover, for j ∈ {m + 1, . . . , n}, if we fix ri for i �= j, then F (M, r) is
nonincreasing as a function of rj alone.

We have the following numerical criterion for regularity by [26, Theorem 4.1.4]
(plus Remark 3.4.4).

Theorem 3.5.3. Assume that R = ̂R. Then the following conditions are equiva-
lent.

(a) M is regular.
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(b) There exists a basis of M on which x1∂1, . . . , xm∂m act via commuting
matrices over k with prepared eigenvalues (i.e., no eigenvalue or difference
between two eigenvalues equals a nonzero integer), and ∂m+1, . . . , ∂n act via
the zero matrix.

(c) We have F (M, r) = 0 for all r.

We also have the following numerical criterion for existence of a ramified good
decomposition in the complete case.

Theorem 3.5.4. Assume that R = ̂R. The following conditions are equivalent.

(a) The module M admits a ramified good decomposition.
(b) Both M and End(M) are numerical.

Proof. This holds by [26, Theorem 4.4.2] modulo one minor point: since [26, The-
orem 4.4.2] does not allow for derivations on the residue field of R, it only gives a
good decomposition with respect to the action of ∂1, . . . , ∂n. However, if we form
the minimal good decomposition as in Remark 3.4.7, this decomposition must be
preserved by the actions of the other derivations. �

We will find useful the following consequence of the existence of a good decom-
position.

Proposition 3.5.5. Assume that R = ̂R and that M admits a good decomposition.
Then for some finite étale extension R′ of R, M⊗RR′ admits a filtration 0 = M0 ⊂
· · · ⊂ Md = M ⊗R R′ by differential submodules, with the following properties.

(a) We have rank(Mi) = i for i = 0, . . . , d.
(b) For i = 1, . . . , d− 1, there exists an endomorphism of ∧iM as a differential

module with image ∧iMi.

Proof. We reduce first to the case where M is twist-regular, then to the case where
M is regular. By Theorem 3.5.3, there exists a basis of M on which x1∂1, . . . , xm∂m
acts via commuting matrices over k with prepared eigenvalues, and ∂m+1, . . . , ∂n act
via the zero matrix. Let V be the k-span of this basis. Choose a finite extension k′

of k containing all of the eigenvalues of these matrices, and put R′ = k′�x1, . . . , xn�.
We can now split V ⊗k k

′ as a direct sum such that on each summand, each xi∂i
acts with a single eigenvalue; this splitting induces a splitting of M itself. After
replacing k with k′, we may now reduce to the case where each xi∂i acts on V with
a single eigenvalue. By twisting, we can force that eigenvalue to be zero.

By Engel’s theorem [14, Theorem 9.9], x1∂1, . . . , xm∂m act on some complete
flag 0 = V0 ⊂ · · · ⊂ Vd = V in V . The corresponding submodules 0 = M0 ⊂ · · · ⊂
Md = M of M have the desired property: for instance, M1 occurs as the image of
the composition of the projection M → M/Md−1, an isomorphism M/Md−1 → M1,
and the inclusion M1 → M . �

4. Descent arguments

In this section, we make some crucial descent arguments for differential modules
over a localized power series ring with coefficients in a base ring.

4.1. Hensel’s lemma in noncommutative rings. We need to recall a technical
tool in the study of differential modules over nonarchimedean rings, a form of
Hensel’s lemma for noncommutative rings introduced by Robba. Our presentation
follows Christol [10].
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Theorem 4.1.1 (Robba, Christol). Let R be a nonarchimedean, not necessarily
commutative ring. Suppose the nonzero elements a, b, c ∈ R and the additive sub-
groups U, V,W ⊆ R satisfy the following conditions.

(a) The spaces U, V are complete under the norm, and UV ⊆ W .
(b) The map f(u, v) = av + ub is a surjection of U × V onto W .
(c) There exists λ > 0 such that

|f(u, v)| ≥ λmax{|a||v|, |b||u|} (u ∈ U, v ∈ V ).

(Note that this forces λ ≤ 1.)
(d) We have ab− c ∈ W and

|ab− c| < λ2|c|.
Then there exists a unique pair (x, y) ∈ U × V such that

c = (a+ x)(b+ y), |x| < λ|a|, |y| < λ|b|.
For this x, y, we also have

|x| ≤ λ−1|ab− c||b|−1, |y| ≤ λ−1|ab− c||a|−1.

Proof. See [10, Proposition 1.5.1] or [25, Theorem 2.2.2]. �

4.2. Descent for iterated power series rings. Using Christol’s factorization
theorem, we make a decompletion argument analogous to [26, §2.6]. We use the
language of Newton polygons and slopes for twisted polynomials, as presented in
[26, Definition 1.6.1].

Hypothesis 4.2.1. Throughout §4.2, let h be a positive integer. Let A be a
differential domain of characteristic 0, such that the module of derivations on
K = Frac(A) is finite-dimensional overK, and the constant subring k ofA is also the
constant subring of K. (In particular, k must be a field.) Define the ring Rh(K) as

K((x1)) · · · ((xh)). Define the ring R†
h(A) as the union ofA((x1/f)) · · · ((xh/f))[f

−1]

over all nonzero f ∈ A. Equip Rh(K) and R†
h(A) with the componentwise deriva-

tions coming from A, plus the derivations ∂1, . . . , ∂h = ∂
∂x1

, . . . , ∂
∂xh

.

Lemma 4.2.2. The rings Rh(K) and R†
h(A) are fields.

Proof. This is clear for Rh(K), so we concentrate on R†
h(A). We proceed by induc-

tion on h, the case h = 0 being clear because R†
0(A) = K.

Given r ∈ R†
h(A), write r =

∑

i rix
i
h with ri ∈ R†

h−1(A). Let m be the smallest

index such that rm �= 0. By the induction hypothesis, rm is a unit in R†
h−1(A), so

we may reduce to the case where m = 0 and rm = 1. In this case, for some nonzero
f ∈ A we have

1− r ∈ (xh/f)A((x1/f)) · · · ((xh−1/f))�xh/f�[f−1];

by replacing f by a large power, we may force

1− r ∈ (xh/f)A((x1/f)) · · · ((xh−1/f))�xh/f�.

In that case, the formula r−1 =
∑∞

j=0(1− r)j shows that r−1 ∈ R†
h(A). �

Using Christol’s factorization theorem, we obtain the following.
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Proposition 4.2.3. Equip R†
h(A) with the xh-adic norm (of arbitrary normaliza-

tion) and the derivation xh∂h. Then any twisted polynomial P ∈ R†
h(A){T} factors

uniquely as a product Q1 · · ·Qm with each Qi having only one slope ri in its Newton
polygon, and r1 < · · · < rm.

Proof. Over Rh(K), such a factorization exists and is unique by [22, Lemma 1.6.2].

It thus suffices to check existence over R†
h(A). For this, we induct on the number

of slopes in the Newton polygon of P (T ) =
∑

i PiT
i. Suppose there is more than

one slope; we can then choose an index i corresponding to an internal vertex of the

Newton polygon. By Lemma 4.2.2, Pi is a unit in R†
h(A), so we may reduce to the

case Pi = 1.
Since i corresponds to an internal vertex of the Newton polygon, there exists a

positive rational number r/s such that − log |Pi−j | − j(r/s) log |xh| > 0 for j �= 0.

That is, the norm of x
jr/s
h Pi−j is less than 1 for each j �= 0. Since Pj ∈ R†

h(A) for
all j �= i, we can choose f ∈ A nonzero so that

Pj ∈ A((x1/f)) · · · ((xh/f))[f
−1] (j �= i).

We then have

x
(i−j)r/s
h Pj ∈ (xh/f)

1/sA((x1/f)) · · · ((xh−1/f))�(xh/f)
1/s�[f−1] (j �= i).

As in the proof of Lemma 4.2.2, by replacing f by a large power, we may force

(4.2.3.1) x
(i−j)r/s
h Pj ∈ (xh/f)

1/sA((x1/f)) · · · ((xh−1/f))�(xh/f)
1/s� (j �= i).

Let U be the set of twisted polynomials Q(T ) =
∑

j QjT
j ∈ R†

h(A){T} of degree

at most deg(P )− i such that

x
−jr/s
h Qj ∈ A((x1/f)) · · · ((xh−1/f))�(xh/f)

1/s� (j = 0, . . . , deg(P )− i).

Let V be the set of twisted polynomials Q(T ) =
∑

j QjT
j ∈ R†

h(A){T} of degree
at most i− 1 such that

x
(i−j)r/s
h Qj ∈ A((x1/f)) · · · ((xh−1/f))�(xh/f)

1/s� (j = 0, . . . , i− 1).

Let W be the set of twisted polynomials Q(T ) =
∑

j QjT
j ∈ R†

h(A){T} of degree

at most deg(P ) such that

x
(i−j)r/s
h Qj ∈ A((x1/f)) · · · ((xh−1/f))�(xh/f)

1/s� (j = 0, . . . , deg(P )).

Then U, V,W are complete for the |xh|−r/s-Gauss norm and UV ⊆ W . Put a =
1, b = T i, c = P , so that (u, v) 
→ av + bu is a surjection of U × V onto W , and
|ab− c| < |c|.

We now invoke Theorem 4.1.1 to obtain a nontrivial factorization Q1Q2 of P
in which all slopes of Q1 are less than −r/s while all slopes of Q2 are greater
than −r/s. (Condition (c) of Theorem 4.1.1 may be verified exactly as in [25,
Theorem 2.2.1].) We may then invoke the induction hypothesis to conclude. �

Proposition 4.2.4. Equip R†
h(A) with the xh-adic norm (of arbitrary normaliza-

tion). Let M be a finite differential module over R†
h(A). Then M admits a unique

decomposition M =
⊕

s≥1Ms as a direct sum of differential submodules, such that

for each s ≥ 1, the scale multiset of ∂h on Ms ⊗R†
h(A) Rh(K) consists entirely of s.

Proof. This is proven as in [26, Proposition 1.6.3], except using Proposition 4.2.3
in place of [26, Lemma 1.6.2]. �
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The following argument is reminiscent of [26, Lemma 2.6.3].

Lemma 4.2.5. Equip R†
h(A) with the xh-adic norm (of arbitrary normalization).

Let M be a finite differential module over R†
h(A) such that the scale of ∂h on

M ⊗R†
h(A) Rh(K) is equal to 1. Then M admits an R†

h−1(A)-lattice stable under

all of the given derivations on R†
h(A).

Proof. Put R = R†
h(A) and R′ = R†

h−1(A)((xh)). By [26, Proposition 2.2.10], we
can find a regulating lattice W in M ⊗R R′. By [26, Proposition 2.2.11], the char-
acteristic polynomial of xh∂h on W/xhW has coefficients in the constant subring of
R, which is k. (Note that in order to satisfy the running hypothesis [26, Hypoth-
esis 2.1.1], we need that the module of derivations on K is finite-dimensional over
K.)

Choose a basis of W/xhW on which xh∂h acts via a matrix over k. Since R is a
dense subfield of R′, we can lift this basis to a basis e1, . . . , ed of W consisting of
elements of M . Let N be the matrix of action of xh∂h on this basis. Then N has
entries in

R†
h(A) ∩ (k + xhR

†
h−1(A)�xh�).

We can thus choose f ∈ A to be nonzero so that N has entries in

k + (xh/f)A((x1/f)) · · · ((xh−1/f))�xh/f�.

Write N =
∑∞

i=0 Ni(xh/f)
i with Ni having entries in R†

h−1(A). As in [26, Lemma

2.2.12], there exists a unique matrix U =
∑∞

i=0 Ui(xh/f)
i over R†

h−1(A)�xh/f� with
U0 equal to the identity matrix, such that

NU + xh∂h(U) = UN0.

Namely, given U0, . . . , Ui−1, there is a unique choice of Ui satisfying

iUi = UiN0 −N0Ui −
i

∑

j=1

NjUi−j

because N0 has prepared eigenvalues. More explicitly, each entry of Ui is a certain

k-linear combination of entries of
∑i

j=1NjUi−j . By induction on i, it follows that

Ui ∈ A((x1/f)) · · · ((xh−1/f)) (i = 1, 2, . . . ).

That is, U has entries in A((x1/f)) · · · ((xh/f)) and thus in R†
h(A). The desired

result follows. �

Proposition 4.2.6. For any finite differential module M over R†
h(A), we have

H0(M) = H0(M ⊗R†
h(A) Rh(K)).

Proof. We induct on h with trivial base case h = 0. Suppose that h > 0. Put

R = R†
h(A). Pick any v ∈ M ⊗R Rh(K). Equip R with the xh-adic norm (of

arbitrary normalization). By Proposition 4.2.4, we can split M as a direct sum
M1⊕M2, in which the scale multiset of ∂h on M1⊗RRh(K) has all elements equal
to 1, while the scale multiset of ∂h on M2 ⊗R Rh(K) has all elements greater than
1. We must then have v ∈ M1 ⊗R Rh(K).

By Lemma 4.2.5, M1 admits an R†
h−1(A)-lattice N stable under all of the given

derivations on R. Write v formally as
∑

i∈Z vix
i
h with vi ∈ N ⊗R†

h−1(A) Rh−1(K).
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Since the action of xh∂h on N has prepared eigenvalues, the equality xh∂h(v) = 0
implies that vi = 0 for i �= 0. Hence v ∈ N ⊗R†

h−1(A) Rh−1(K), so the induction

hypothesis implies that v ∈ N , and the desired result follows. �
4.3. Descent for localized power series rings. Using the iterated power series
rings we have just considered, we obtain some descent results for localized power
series rings.

Hypothesis 4.3.1. Throughout §4.3, let A be a differential domain of character-
istic 0, such that the module of derivations on K = Frac(A) is finite-dimensional
over K, and the constant subring k of A is also the constant subring of K. For
integers n ≥ m ≥ 0, let R†

n,m(A) be the union of

A�x1/f, . . . , xn/f�[(x1/f)
−1, . . . , (xm/f)−1][f−1]

over all nonzero f ∈ A. Put Rn,m(K) = K�x1, . . . , xn�[x−1
1 , . . . , x−1

m ]. Equip
R†

n,m(A) and Rn,m(K) with the componentwise derivations on A plus the deriva-

tions ∂1, . . . , ∂n = ∂
∂x1

, . . . , ∂
∂xn

. Note that R†
n,0(A) is a henselian local ring which

is nondegenerate as a differential ring.

Proposition 4.3.2. For any finite differential module M over R†
n,m(A),

H0(M) = H0(M ⊗R†
n,m(A) Rn,m(K)).

Proof. Embed R†
n,m(A) into the ring R†

n(A) defined in Hypothesis 4.2.1. Then

within Rn(K), R†
n,m(A) is the intersection of Rn,m(K) and R†

n(A). By Remark
3.3.4, within M ⊗R†

n,m(A) Rn(K) we have

(4.3.2.1) (M ⊗R†
n,m(A) Rn,m(K)) ∩ (M ⊗R†

n,m(A) R
†
n(A)) = M.

Given any v ∈ H0(M ⊗R†
n,m(A) Rn,m(K)), we have v ∈ H0(M ⊗R†

n,m(A) R
†
n(A)) by

Lemma 4.2.5. By (4.3.2.1), this implies that v ∈ H0(M), proving the claim. �
We also need the following related argument in the regular case.

Proposition 4.3.3. Let M be a finite differential module over R†
n,m(A), such that

M ⊗R†
n,m(A) Rn,m(K) is regular. Then M is regular, in the sense that there exists

a basis of M on which x1∂1, . . . , xn∂n act via matrices over K.

Proof. Again, embed R†
n,m(A) into R†

n(A). We can construct bases of M ⊗R†
n,m(A)

Rn(K) having the desired property in two different fashions. One is to apply [26,
Theorem 4.1.4] to construct a suitable basis of M ⊗R†

n,m(A) Rn,m(K), and then

extend scalars to Rn(K). The other is to construct a suitable basis of M ⊗R†
n,m(A)

R†
n(A) by repeated application of Lemma 4.2.5, and then extend scalars to Rn(K).
The resulting bases must have the same K[x1, . . . , xn][x

−1
1 , . . . , x−1

m ]-span (as in
the proof of [26, Proposition 2.2.13]). They thus both consist of elements of the
intersection of M ⊗R†

n,m(A) Rn,m(K) with M ⊗R†
n,m(A) R

†
n(A). By (4.3.2.1), this

intersection equals M ; this yields the desired result. �
Putting these arguments together yields the following.

Theorem 4.3.4. Let M be a finite differential module over R†
n,m(A). Then any

admissible (resp. good) decomposition of M ⊗R†
n,m(A) Rn,m(K) descends to an ad-

missible (resp. good) decomposition of M .
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Proof. Given an admissible decomposition of M ⊗R†
n,m(A) Rn,m(K), the projectors

onto the summands are horizontal sections of End(M) ⊗R†
n,m(A) Rn,m(K). These

descend to End(M) by Proposition 4.3.2. With notation as in (3.4.6.1), the φα

can be chosen in R†
n,m(A) by Proposition 3.4.8. Hence the Rα can be defined over

R†
n,m(A); they are regular by Proposition 4.3.3. �

Corollary 4.3.5. Let M be a finite differential module over A�x1, . . . , xn�[x−1
1 , . . . ,

x−1
m ]. Then any admissible (resp. good) decomposition of K�x1, . . . , xn�[x−1

1 , . . . , x−1
m ]

descends to an admissible (resp. good) decomposition of Af �x1, . . . , xn�[x−1
1 , . . . , x−1

m ]
for some nonzero f ∈ A.

4.4. Good formal structures. One application of Theorem 4.3.4 is to relate ram-
ified good decompositions over complete rings to good formal structures over non-
complete rings.

Proposition 4.4.1. Let R be a nondegenerate differential local ring with com-

pletion ̂R. Let x1, . . . , xn be a regular sequence of parameters for R, and put
S = R[x−1

1 , . . . , x−1
m ] for some m. Let M be a finite differential module over S.

Then any ramified good decomposition of M ⊗R
̂R induces a good formal structure

of M .

Proof. We may assume from the outset that R is complete with respect to the ideal
(x1, . . . , xm). In addition, by replacing R with a finite integral extension R′ such

that R′ ⊗R S is étale over S, we may reduce to the case where M ⊗R
̂R admits a

good decomposition.
Choose derivations ∂1, . . . , ∂n ∈ ΔR of rational type with respect to x1, . . . , xn,

then identify ̂R with k�x1, . . . , xn� as in Corollary 3.1.8. Let Rm be the joint
kernel of ∂1, . . . , ∂m on R; then by Lemma 3.1.7, we have an isomorphism R ∼=
Rm�x1, . . . , xm�. Put K = Frac(Rm). By Theorem 3.5.4, for some finite extension
K ′ of K and some positive integer h,

MK′ = M ⊗S K ′�x
1/h
1 , . . . , x1/h

m �[x
−1/h
1 , . . . , x−1/h

m ]

admits a ramified good decomposition; by enlarging R, we may reduce to the case
h = 1.

Put L = Frac(k�xm+1, . . . , xn�), and let L′ be a component of L ⊗K K ′. By

Remark 3.3.4, combining the minimal good decompositions of M ⊗R
̂R and MK′

yields a good decomposition of

M ⊗S T �x1, . . . , xm�[x−1
1 , . . . , x−1

m ]

for T equal to the intersection k�xm+1, . . . , xn� ∩K ′ within L′. By Remark 3.1.5,
T is finite étale over R, yielding the desired result. �

5. Good formal structures

We collect some basic facts about good formal structures on nondegenerate dif-
ferential schemes, complex analytic varieties, and formal completions thereof.

Hypothesis 5.0.1. Throughout §5, let X be either a nondegenerate differential
scheme, or a smooth (separated) complex analytic space (see §1.5). For short, we
distinguish these two options as the algebraic case and the analytic case. Let Z be

a closed subspace of X containing no irreducible component of X. Let ̂X|Z be the
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formal completion of X along Z (in the category of locally ringed spaces). Let E
be a ∇-module over O

̂X|Z(∗Z).

5.1. Good formal structures.

Definition 5.1.1. Let x ∈ Z be a point in a neighborhood of which (X,Z) is a
regular pair. We say that E admits an admissible decomposition (resp. a good de-

composition, a ramified good decomposition) at x if the restriction of E to ÔX,x(∗Z)
admits an admissible decomposition (resp. a good decomposition, a ramified good
decomposition). Let Y be the intersection of the components of Z passing through

x; by Proposition 4.4.1, the restriction of E to ÔX,x(∗Z) admits a ramified good
decomposition if and only if the restriction of E to O

̂X|Y ,x
(∗Z) does so. We describe

this condition by saying that E admits a good formal structure at x.
Suppose (X,Z) is a regular pair. We define the turning locus of E to be the set of

x ∈ Z at which E fails to admit a good formal structure; this set may be equipped
with the structure of a reduced closed subspace of Z, by Proposition 5.1.4 below.

Remark 5.1.2. One might consider the possibility that the restriction of E to
O

̂X|Z,x
(∗Z) itself admits a ramified good decomposition, or in Sabbah’s language,

that E admits a very good formal structure at x. However, an argument of Sab-
bah [38, Lemme I.2.2.3] shows that one cannot in general achieve very good formal
structures even after blowing up. For this reason, we make no further study of very
good formal structures.

Remark 5.1.3. If E is defined over OX(∗Z) itself, one can also speak about good
formal structures at points outside of Z, but they trivially always exist.

Proposition 5.1.4. Suppose (X,Z) is a regular pair. Then the turning locus of
E is the underlying set of a unique reduced closed subspace of Z, containing no
irreducible component of Z.

Proof. We first treat the algebraic case. Suppose W is an irreducible closed subset
of Z not contained in the turning locus. By the numerical criterion from Theo-
rem 3.5.4, the generic point of W also lies outside the turning locus. Corollary 4.3.5
then implies that the intersection of W with the turning locus is contained in some
closed proper subset of W . By noetherian induction, it follows that the turning lo-
cus is closed in Z; it thus carries a unique reduced subscheme structure. Moreover,
the turning locus cannot contain the generic point of any component of Z, because
at any such point we may apply the usual Turrittin-Levelt-Hukuhara decomposi-
tion theorem (or equivalently, because the numerical criterion of Theorem 3.5.4 is
always satisfied when the base ring is one-dimensional). Hence the turning locus
cannot contain any whole irreducible component of Z.

We next reduce the analytic case to the algebraic case. Recall that X admits
a neighborhood basis consisting of compact subsets of Stein subspaces of X. Let
K be an element of this basis, let U be a Stein subspace of X containing K, and
let V be an open set contained in K. By Corollary 3.2.7, the localization R of
Γ(U,OU ) at K is noetherian, hence a nondegenerate differential ring. Let I be the
ideal of R defined by Z, and put M = Γ(U, E)⊗Γ(U,OU ) R as a differential module
over R. By the previous paragraph, the turning locus of M may be viewed as a
reduced closed subscheme of Spec(R/I) not containing any irreducible component.
Its inverse image under the map V → Spec(R) is then a reduced closed subspace of
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V ∩ Z not containing any irreducible component. Since we can choose V to cover
a neighborhood of any given point of X, we deduce the desired result. �

5.2. Irregularity and turning loci. It will be helpful to rephrase the numerical
criterion for good formal structures (Theorem 3.5.4) in geometric language. For
this, we must first formalize the notion of irregularity.

Definition 5.2.1. Let E be an irreducible component of Z. We define the irregu-
larity IrrE(E) of E along E as follows.

Suppose first that we are in the algebraic case. Let η be the generic point of
E. Let L be the completion of Frac(OX,η), equipped with its discrete valuation
normalized to have value group Z. We define IrrE(E) as the irregularity of the
differential module over L induced by E , in the sense of [26, Definition 1.4.9].

Suppose next that we are in the analytic case; in this case, we use a “cut by
curves” definition. We may assume that (X,Z) is a regular pair by discarding its
irregular locus (which has codimension at least 2 in X). Let T be the turning locus
of E ; by Proposition 5.1.4, T ∩E is a proper closed subspace of E, so in particular
its complement is dense in E. We claim that there exists a nonnegative integer m
with the following property: for any curve C in X and any isolated point z of C∩E
not belonging to T , the irregularity of the restriction of E to C at the point z is
equal to m times the intersection multiplicity of C and E at z. Namely, it suffices
to check this assertion on each element of a basis for the topology of X, which may
be achieved as in the proof of Proposition 5.1.4. We define IrrE(E) = m.

Definition 5.2.2. An irregularity divisor for E is a Cartier divisor D on X such
that for any normal modification f : Y → X and any prime divisor E on Y , the
irregularity of f∗E along E is equal to the multiplicity of f∗D along E. Such
a divisor is unique if it exists. Moreover, any Q-Cartier divisor satisfying the
definition must have all integer multiplicities, and so must be an integral Cartier
divisor.

Proposition 5.2.3. Suppose that (X,Z) is a regular pair. Then the following
conditions are equivalent.

(a) The turning locus of E is empty.
(b) Both E and End(E) admit irregularity divisors.

Proof. Given (b), (a) follows by Theorem 3.5.4. Given (a), we may check (b)
locally around a point x ∈ Z. We make a sequence of reductions to successively
more restrictive situations, culminating in one where we can read off the claim.
Namely, we reduce so as to enforce the following hypotheses.

(a) There exists a regular sequence of parameters x1, . . . , xn ∈ OX,x for X at
x (by shrinking X).

(b) We have Z = V (x1 · · ·xm) (by shrinking X).
(c) The module E admits a good decomposition at x (by shrinking X, then

replacing X by a finite cover ramified along Z).
(d) With notation as in (3.4.6.1), the φα belong to OX,x[x

−1
1 , . . . , x−1

m ] (by
applying Proposition 3.4.8).

In this case, we claim that in some neighborhood of x, the irregularity divisor
of E is the sum of the principal divisors − rank(Rα) div(φα) over all α ∈ I with
φα /∈ OX,x, while the irregularity divisor of End(E) is the sum of the principal
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divisors − rank(Rα) rank(Rβ) div(φα − φβ) over all α, β ∈ I with φα − φβ /∈ OX,x.
This may be checked as in the proof of Proposition 5.1.4. �

5.3. Deligne-Malgrange lattices. In the work of Mochizuki [35], the approach
to constructing good formal structures is via the analysis of Deligne-Malgrange
lattices. Since we use a different technique to construct good formal structures, it
is worth indicating how to recover information about Deligne-Malgrange lattices.

Definition 5.3.1. Let F be a coherent sheaf over OX(∗Z) (resp. over O
̂X|Z(∗Z)).

A lattice of F is a coherent OX -submodule (resp. O
̂X|Z-submodule) F0 of F such

that the induced map F0 ⊗OX
OX(∗Z) → F (resp. F0 ⊗O

̂X|Z
O

̂X|Z(∗Z) → F) is

surjective. We make the following observations.

(a) Let F be a coherent sheaf over OX(∗Z) and put ̂F = F⊗OX (∗Z)O ̂X|Z(∗Z).

Then the map

F0 
→ ̂F0 = F ⊗OX
O

̂X|Z

gives a bijection between lattices of F and lattices of ̂F , as in [31, Propo-

sition 1.2]. Moreover, F0 is locally free if and only if ̂F is, because the
completion of a noetherian local ring is faithfully flat (see Remark 3.1.5).

(b) In the analytic case, a coherent sheaf over OX(∗Z) or O
̂X|Z(∗Z) need not

admit any lattices at all. See [31, Exemples 1.5, 1.6].

By contrast, even in the analytic case, a ∇-module always admits a lattice which
is nearly canonical. It only depends on a certain splitting of the reduction modulo
Z map.

Definition 5.3.2. In the algebraic case, letK0 be a field containing each connected
component of the subring of Γ(X,OX) killed by the action of all derivations. (Each
of those components is a field by Lemma 3.2.5(c).) In the analytic case, putK0 = C.
Let K0 be an algebraic closure of K0. Let τ : K0/Z → K0 be a section of the
quotient K0 → K0/Z. We say that τ is admissible if τ (0) = 0, τ is equivariant for
the action of the absolute Galois group of K0, and for any λ ∈ K0 and any positive
integer a, we have

(5.3.2.1) τ (λ)− λ =

⌈

τ (aλ)− aλ

a

⌉

.

Such a section always exists by [26, Lemma 2.4.3]. For instance, if K0 = C, one
may take τ to have image {s ∈ C : Re(s) ∈ [0, 1)}.

For the remainder of §5.3, fix a choice of an admissible section τ .

Definition 5.3.3. Suppose that (X,Z) is a regular pair. A Deligne-Malgrange
lattice of the ∇-module E over O

̂X|Z(∗Z) is a lattice E0 of E such that for each

point x ∈ Z, the restriction of E0 to ÔX,x is the Deligne-Malgrange lattice of the

restriction of E to ÔX,x(∗Z), in the sense of [26, Definition 4.5.2] (for the admissible
section τ ). Such a lattice is evidently unique if it exists.

Theorem 5.3.4. Suppose that (X,Z) is a regular pair and that E has empty turning
locus. Then the Deligne-Malgrange lattice E0 of E exists and is locally free over
O

̂X|Z .
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Proof. It suffices to check both assertions in caseX is the spectrum of a local ring R,
Z is the zero locus of x1 · · ·xm for some regular sequence of parameters x1, . . . , xn

of R, and R is complete with respect to the (x1 · · ·xm)-adic topology (but not
necessarily with respect to the (x1, . . . , xm)-adic topology). For i = 1, . . . ,m, let Fi

be the xi-adic completion of Frac(R), put Ei = E ⊗i Fi, and let E0,i be the Deligne-
Malgrange lattice of Ei. We define E0 to be the R-submodule of E consisting of
elements whose image in Ei belongs to E0,i for i = 1, . . . ,m. As in [26, Lemma 4.1.2],

we see that E0 is a lattice in E and that E0 ⊗R
̂R is the Deligne-Malgrange lattice

of E ⊗R[x−1
1 ,...,x−1

m ]
̂R[x−1

1 , . . . , x−1
m ]. In particular, E0 ⊗R

̂R is a finite free ̂R-module

by [26, Proposition 4.5.4], so E0 is a finite free R-module by faithful flatness of
completion (Remark 3.1.5 again). �

Remark 5.3.5. Let U be the open (by Proposition 5.1.4) subspace of X on which
(X,Z) is a regular pair and E has no turning locus. Malgrange [31, Théorème 3.2.1]
constructed a Deligne-Malgrange lattice over U ; this construction is reproduced by
our Theorem 5.3.4. Malgrange then went on to establish the much deeper fact that
this lattice extends over all of X [31, Théorème 3.2.2]. We will only reproduce this
result after establishing the existence of good formal structures after blowing up;
see Theorem 8.2.3.

The following property of Deligne-Malgrange lattices follows immediately from
Proposition 4.4.1; we formulate it to make a link with Mochizuki’s work. See
Remark 5.3.7.

Proposition 5.3.6. Suppose that (X,Z) is a regular pair and that E has empty
turning locus. Choose any x ∈ Z. For U an open neighborhood of x in X, f :
U ′ → U a finite cover ramified over Z, and y ∈ f−1(x), put Z ′ = f−1(Z) and let Y
denote the intersection of the irreducible components of Z ′ passing through y. Then
we can choose U and f so that for any y ∈ f−1(x), any admissible decomposition

of the restriction of f∗E to ÔU ′,y(∗Z ′) induces a corresponding decomposition of
the restriction to O

Û ′|Y ,y
of the Deligne-Malgrange lattice E ′

0 of f∗E .

Remark 5.3.7. Suppose that (X,Z) is a regular pair and that both E and End(E)
have empty turning locus. (The restriction on End(E) is needed to overcome the
discrepancy between our notion of a good decomposition and Mochizuki’s definition
of a good set of irregular values; see [26, Remark 4.3.3, Remark 6.4.3].) The conclu-
sion of Proposition 5.3.6 asserts that E ′

0 is an unramifiedly good Deligne-Malgrange
lattice in the language of Mochizuki [35, Definition 5.1.1].

By virtue of the definition of Deligne-Malgrange lattices in the one-dimensional
case [26, Definition 2.4.4], it is built into the definition of Deligne-Malgrange lattices
in general that f∗E ′

0 = E0. Hence E0 is a good Deligne-Malgrange lattice in the
language of Mochizuki; that is, Proposition 5.3.6 fulfills a promise made in [26,
Remark 4.5.5].

6. The Berkovich unit discs

In [26, §5], we introduced the Berkovich closed and open unit discs over a com-
plete discretely valued field of equal characteristic 0, and used their geometry to
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make a fundamental finiteness argument as part of the proof of Sabbah’s conjec-
ture. Here, we need the analogous construction over an arbitrary complete nonar-
chimedean field of characteristic 0. To achieve this level of generality, we must
recall some results from [27, §2], and make some arguments as in [27, §4].
Hypothesis 6.0.1. Throughout §6, let F be a field complete for a nonarchimedean
norm | · |F , of residual characteristic 0. Define the real valuation vF by vF (·) =
− log | · |F . Let CF denote a completed algebraic closure of F , equipped with the
unique extensions of | · |F and vF .

Notation 6.0.2. For A a subring of F and ρ > 0, let | · |ρ denote the ρ-Gauss norm
on A[x, x−1] with respect to | · |F . For α ≤ β ∈ (0,+∞), define the following rings.

• Let A〈α/x〉 denote the completion of A[x−1] under | · |α.
• Let A〈x/β〉 denote the completion of A[x] under | · |β.
• Let A〈α/x, x/β〉 denote the Fréchet completion of A[x, x−1] under | · |α and
| · |β (equivalently, under | · |ρ for all ρ ∈ [α, β]).

For β = 1, we abbreviate A〈x/β〉, A〈α/x, x/β〉 to A〈x〉, A〈α/x, x〉. Note that none
of these rings changes if we replace A by its completion under | · |F .
6.1. The Berkovich closed unit disc. We first recall a few facts about the
Berkovich closed unit disc over the field F . The case F = C((x)) was treated
in [26, §5], but we need to reference the more general treatment in [27, §2.2]. (Note
that the treatment there allows a positive residual characteristic, which we exclude
here.)

Definition 6.1.1. The Berkovich closed unit disc D = DF consists of the mul-
tiplicative seminorms α on F [x] which are compatible with the given norm on
F and bounded above by the 1-Gauss norm. For instance, for z ∈ oCF

and
r ∈ [0, 1], the function αz,r : F [x] → [0,+∞) taking P (x) to the r-Gauss norm
of P (x + z) is a seminorm; it is in fact the supremum seminorm on the disc
Dz,r = {z′ ∈ CF : |z − z′| ≤ r}.
Lemma 6.1.2. For any complete extension F ′ of F , the restriction map DF ′ → DF

is surjective.

Proof. See [5, Corollary 1.3.6]. �
Definition 6.1.3. For α, β ∈ D, we say that α dominates β, denoted α ≥ β, if
α(P ) ≥ β(P ) for all P ∈ F [x]. Define the radius of α ∈ D, denoted r(α), to be the
infimum of r ∈ [0, 1] for which there exists z ∈ oCF

with αz,r ≥ α.

As in [26, Proposition 5.2.2], we use the following classification of points of D.
See [5, §1.4.4] for the case where F is algebraically closed, or [27, Proposition 2.2.7]
for the general case.

Proposition 6.1.4. Each element of D is of exactly one of the following four types.

(i) A point of the form αz,0 for some z ∈ oCF
.

(ii) A point of the form αz,r for some z ∈ oCF
and r ∈ (0, 1] ∩ |C×

F |F .
(iii) A point of the form αz,r for some z ∈ oCF

and r ∈ (0, 1] \ |C×
F |F .

(iv) The infimum of a sequence αzi,ri in which the discs Dzi,ri form a decreasing
sequence with empty intersection and positive limiting radius.

Moreover, the points which are minimal under domination are precisely those of
types (i) and (iv).
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By [27, Lemma 2.2.12], we have the following.

Lemma 6.1.5. For each α ∈ D and each r ∈ [r(α), 1], there is a unique point
αr ∈ D with r(αr) = r and αr ≥ α. (By Proposition 6.1.4, if r �= r(α), we can
always write αr = αz,r for some z ∈ oC.)

Corollary 6.1.6. If α ∈ D is of type (iv) and is the infimum of the sequence αzi,ri ,
then for any r ∈ (0, 1) with α0,r ≥ α and any P ∈ F 〈x/r〉, there exists an index i0
such that αzi,ri(P ) = α(P ) for i ≥ i0.

Proof. The case P ∈ F [x] follows from the proof of [27, Proposition 2.2.7]. The
general case follows by choosing Q ∈ F [x] such that α0,r(P − Q) < α(P ) and
applying the previous case to Q. �

Except for some points of type (i), every point of D induces a valuation on F (x).
These valuations have the following numerical behavior [27, Lemma 2.2.16].

Lemma 6.1.7. Let α be a point of D of type (ii) or (iii). Let v(·) = − logα(·) be
the corresponding real valuation on F (x).

(a) If α is of type (ii), then

trdeg(κv/κvF ) = 1, dimQ((Γv/ΓvF )⊗Z Q) = 0.

(b) If α is of type (iii), then

trdeg(κv/κvF ) = 0, dimQ((Γv/ΓvF )⊗Z Q) = 1.

6.2. More on irrational radius. Let us take a closer look at the case of Propo-
sition 6.1.4 of type (iii), i.e., a disc of an irrational radius.

Hypothesis 6.2.1. Throughout §6.2, in addition to Hypothesis 6.0.1, choose r ∈
(0, 1) \ |C×

F |F , so that α0,r ∈ D is a point of type (iii). (The case where α0,r is of
type (ii) is a bit more complicated, and we will not need it here.)

Lemma 6.2.2. Suppose g ∈ F 〈r/x, x/r〉 is such that α0,r(g−1) < 1. Then g can be
factored uniquely as g1g2 with g1 ∈ 1 + xF 〈x/r〉×, g2 ∈ F 〈r/x〉×, α0,r(g1 − 1) < 1,
and α0,r(g2 − 1) < 1. In particular, g is a unit in F 〈r/x, x/r〉.

Proof. Apply Theorem 4.1.1 with U = xF 〈x/r〉, V = F 〈r/x〉, W = F 〈r/x, x/r〉,
a = b = 1, and c = g. (Compare the proof of Proposition 4.2.3 or [25, Theo-
rem 2.2.1].) �
Lemma 6.2.3. Any nonzero g ∈ F 〈r/x, x/r〉 can be factored (not uniquely) as
g = xig1g2 for some i ∈ Z, g1 ∈ F 〈x/r〉×, and g2 ∈ F 〈r/x〉×.

Proof. (Compare [27, Lemma 2.2.14].) Write g =
∑

i∈Z gix
i with |gi|F ri → 0 as

i → ±∞. Since r /∈ |C×
F |F , there exists a unique index j which maximizes |gj |F rj .

Lemma 6.2.2 implies that g−1
j x−jg factors as a unit in F 〈x/r〉 times a unit in

F 〈r/x〉, yielding the claim. �
Corollary 6.2.4. The completion of F (x) under α0,r is equal to F 〈r/x, x/r〉.

Proof. The complete ring F 〈r/x, x/r〉 contains F [x, x−1] as a dense subring and is
a field by Lemma 6.2.3. This proves the claim. �
Lemma 6.2.5. Suppose F is integrally closed in the complete extension F ′. Then
F 〈r/x, x/r〉 is integrally closed in F ′〈r/x, x/r〉.
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Proof. We may reduce to the case where both F and F ′ are algebraically closed.
Let f =

∑

i∈Z fix
i ∈ F ′〈r/x, x/r〉 be an element which is integral over F 〈r/x, x/r〉.

Let P (T ) be the minimal polynomial of f over F 〈r/x, x/r〉. Then for each τ ∈
Aut(F ′/F ),

∑

i∈Z τ (fi)x
i is also a root of P . Hence each fi must have finite orbit

under τ and so must belong to F . �

Proposition 6.2.6. Let A be a subring of F . Let S be a complete subring of
F 〈r/x, x/r〉 which is topologically finitely generated over A〈r/x, x/r〉, such that
Frac(S) is finite over Frac(A〈r/x, x/r〉). Then there exists a subring A′ of F which
is finitely generated over A, such that Frac(A′) is finite over Frac(A) and S ⊆
A′〈r/x, x/r〉.

Proof. It suffices to check the claim in case S is the completion of A〈r/x, x/r〉[g] for
some g ∈ F 〈r/x, x/r〉 which is integral over Frac(A〈r/x, x/r〉), with minimal poly-
nomial P (T ). By Lemma 6.2.5, the coefficients of g must belong to the completion
of the integral closure of Frac(A) within F . Consequently, for any ε > 0, we can
choose a finitely generated A-subalgebra A′ of F with Frac(A′) finite over Frac(A),
so that there exists h ∈ A′〈r/x, x/r〉 with α0,r(g − h) < ε. For ε suitably small, we
may then perform a Newton iteration to compute a root of P (T ) in A′〈r/x, x/r〉
close to h, which will be forced to equal g. �

6.3. Differential modules on the open unit disc. We now collect some facts
about differential modules on Berkovich discs, particularly concerning their behav-
ior in a neighborhood of a minimal point. The hypothesis of residual characteristic
0 will simplify matters greatly; an analogous but more involved treatment in the
case of positive residual characteristic is [27, §4].

Hypothesis 6.3.1. Throughout §§6.3–6.4, let M be a ∇-module of rank d over
the open Berkovich unit disc

D0 = {α ∈ D : α0,r ≥ α for some r ∈ [0, 1)}.
That is, for each r ∈ [0, 1), we must specify a differential module Mr of rank d over
F 〈x/r〉, plus isomorphisms Mr ⊗F 〈x/r〉 F 〈x/s〉 ∼= Ms for 0 < s < r < 1 satisfying
the cocycle condition. (Note that α0,0 /∈ D0, contrary to the convention adopted in
[26, Definition 5.3.1].)

Definition 6.3.2. For α ∈ D0, put Iα = (0,+∞) if α is of type (i) and Iα =
(0,− log r(α)] otherwise. For s ∈ Iα, let αs be the unique point of D0 with αs ≥ α
and r(αs) = e−s (given by Lemma 6.1.5). Let Fα,s be the completion of F (x) under

αs. Define f1(M,α, s) ≥ · · · ≥ fd(M,α, s) ≥ s so that the scale multiset of ∂
∂x on

M ⊗ Fα,s consists of ef1(M,α,s)−s, . . . , efd(M,α,s)−s. Beware that this is a different
normalization than in the definition of irregularity; the new normalization is such
that

∣

∣

∣

∣

∂

∂x

∣

∣

∣

∣

sp,M⊗Fα,s

= ef1(M,α,s).

Put Fi(M,α, s) = f1(M,α, s) + · · ·+ fi(M,α, s).

Proposition 6.3.3. The function Fi(M,α, s) is continuous, convex, and piecewise
affine in s, with slopes in 1

d!Z. Furthermore, the slopes of Fi(M,α, s) are nonpositive
in a neighborhood of any s for which fi(M,α, s) > s.

Proof. As in [27, Proposition 4.6.4], this reduces to [25, Theorem 11.3.2]. �
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The following argument makes critical use of the hypothesis that F has residual
characteristic 0. The situation of positive residual characteristic is much subtler;
compare [27, Proposition 4.7.5].

Proposition 6.3.4. (a) Suppose α ∈ D0 is of type (i). Then in a neighborhood
of s = +∞, for each i ∈ {1, . . . , d}, fi(M,α, s) = s identically.

(b) Suppose α ∈ D0 is of type (iv). Then in a neighborhood of s = − log r(α),
for each i ∈ {1, . . . , d}, either fi(M,α, s) is constant, or fi(M,α, s) = s
identically.

Proof. Suppose first that α is of type (i). By Proposition 6.3.3, f1(M,α, s) =
F1(M,α, s) is convex, and it cannot have a positive slope except in a stretch where
fi(M,α, s) = s identically for all i. In particular, we cannot have fi(M,α, s)−s > 0
for all s; otherwise, the left side would be a convex function on (0,+∞) with all
slopes less than or equal to −1 and so could not be positive on an infinite interval.
We thus have fi(M,α, s0) = s0 for some s0; the right slope of fi(M,α, s) at s = s0
must be at least 1 because fi(M,α, s) ≥ s for all s. By convexity, the right slope of
fi(M,α, s) at any s ≥ s0 must be at least 1. If we ever encounter a slope strictly
greater than 1, then that slope is achieved at some point with fi(M,α, s) > s,
contradicting Proposition 6.3.3. It follows that fi(M,α, s) = s identically for s ≥ s0.

Suppose next that α is of type (iv). Pick some r ∈ (r(α), 1) such that α0,r ≥ α,
and put E = Frac(F 〈x/r〉). By the cyclic vector theorem [26, Lemma 1.3.3], there
exists an isomorphism M ⊗ E ∼= E{T}/E{T}P (T ) for some twisted polynomial
P (T ) =

∑

i PiT
i ∈ E{T} with respect to the derivation ∂

∂x . By Corollary 6.1.6,
for each i, αs(Pi) is constant for s in a neighborhood of − log r(α). Hence the
Newton polygon of P measured using αs is also constant for s in a neighborhood of
− log r(α). By [26, Proposition 1.6.3], we can read off fi(M,α, s) as the greater of s
and the negation of the i-th smallest slope of the Newton polygon of P . This implies
that in a neighborhood of − log r(α), fi(M,α, s) is either constant or identically
equal to s, as desired. �

6.4. Extending horizontal sections. We need some additional arguments that
allow us, in certain cases, to extend horizontal sections of ∇-modules over D0.
Throughout §6.4, retain Hypothesis 6.3.1.

Proposition 6.4.1. For α ∈ D0, the following conditions are equivalent.

(a) For i = 1, . . . , d, fi(M,α, s) is constant until it becomes equal to s and then
stays equal to s thereafter (see Figure 1).

(b) There exists s1 ∈ (0,− log r(α)) such that for i = 1, . . . , d, on the range
s ∈ (0, s1], fi(M,α, s) is either constant or identically equal to s.

(c) There exists a direct sum decomposition M =
⊕

t Mt of ∇-modules over
D0, such that fi(Mt, α, s) is equal to a constant value depending only on t
(not on i) until it becomes equal to s and then stays equal to s thereafter.

Proof. It is clear that (a) implies (b) and that (c) implies (a). Given (b), we have
(c) by [25, Theorem 12.4.1]. �

Definition 6.4.2. We say that M is terminal if the equivalent conditions of Propo-
sition 6.4.1 are satisfied. Note that condition (b) does not depend on α. For
s0 ∈ [0,− log r(α)), if condition (a) only holds for s > s0, we say that M becomes
terminal at s0; this condition depends on α, but only via the point αs0 .



GOOD FORMAL STRUCTURES FOR FLAT MEROMORPHIC CONNECTIONS, II 215

y

s

y = s

y = fi(M,α, s)

Figure 1. Graph of a function satisfying condition (a) of Proposition 6.4.1.

For I a closed subinterval of Iα ∪ {0}, we say that M becomes strongly terminal
on I if for i = 1, . . . , d, over the interior of I, fi(M,α, s) is either everywhere
constant, or everywhere equal to s. By Proposition 6.4.1, this implies that M
becomes terminal at the left endpoint of I.

We have the following criterion for becoming strongly terminal.

Proposition 6.4.3. Suppose that for some j ∈ {0, . . . , d + 1} and some values
0 < s1 < s2 < s3 < − log r(α), we have

fi(M,α, s1) = fi(M,α, s2) = fi(M,α, s3) (i = 1, . . . , j),

fi(M,α, s1)− s1 = fi(M,α, s2)− s2 = fi(M,α, s3)− s3 = 0 (i = j + 1, . . . , d).

Then M becomes strongly terminal on [s1, s3]. In particular, M becomes terminal
at s1.

Proof. The given conditions imply that for i = 1, . . . , d, Fi(M,α, s) agrees with a
certain affine function at s = s1, s2, s3. Since it is convex by Proposition 6.3.3, it
must be affine over the range s ∈ [s1, s3]. This proves the claim. �

Lemma 6.4.4. Suppose that f1(M,α, s) = s identically. Then M admits a basis
of horizontal sections.

Proof. This follows from Dwork’s transfer theorem [25, Theorem 9.6.1]. �

Proposition 6.4.5. Suppose that for some s0 ∈ (0,− log r(α)), M becomes strongly
terminal on [0, s0]. Then for any s ∈ (0, s0), H

0(M) = H0(M ⊗ Fα,s).

Proof. The hypothesis implies that M is terminal. By Proposition 6.4.1, there is
a direct sum decomposition M = M0 ⊕ M1 such that fi(M0, α, s) > s for s near
0 for i = 1, . . . , rank(M0), and fi(M1, α, s) = s identically for i = 1, . . . , rank(M1).
Since M becomes strongly terminal on [0, s0], we must have fi(M0, α, s) > s for
s ∈ (0, s0) and i = 1, . . . , rank(M0).
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Pick s ∈ (0, s0) and v ∈ H0(M ⊗ Fα,s). Since fi(M0, α, s) > s for i =
1, . . . , rank(M0), the projection of v onto M0 ⊗ Fα,s must be zero; that is, v ∈
H0(M1⊗Fα,s). However, by Lemma 6.4.4, M1 admits a basis of horizontal sections.
If we write v in terms of this basis, the coefficients must be horizontal elements of
Fα,s, but the only such elements belong to F . Hence v ∈ H0(M1) ⊆ H0(M), as
desired. �
Remark 6.4.6. The restriction that fi(M,α, s) ≥ s is in a certain sense a bit arti-
ficial. Recent work of Baldassarri (in progress, but see [3, 4]) seems to provide a
better definition of fi(M,α, s) that eliminates this restriction, which would lead to
some simplification above. (Rather more simplification could be expected in the
analogous but more complicated arguments in [27, §5].)

7. Valuation-local analysis

We now make the core technical calculations of the paper. We give a higher-
dimensional analogue of the Hukuhara-Levelt-Turrittin decomposition theorem, in
terms of a valuation on a nondegenerate differential scheme. It will be convenient
to state both the result and all of the intermediate calculations in terms of the
following running hypothesis.

Hypothesis 7.0.1. Throughout §7, let X be a nondegenerate differential integral
scheme, let Z be a reduced closed proper subscheme of X, and let E be a ∇-module
over X \Z, identified with a finite differential module over OX(∗Z). (Note that we
do not pass to the formal completion.) Let v be a centered valuation on X, with
generic center z.

7.1. Potential good formal structures. We introduce the notion of a potential
good formal structure associated to the valuation v and state the theorem we will
be proving over the course of this section. In order to lighten notation, we phrase
everything in terms of “replacing the input data”.

Definition 7.1.1. Given an instance of Hypothesis 7.0.1, the operation of modify-
ing/altering the input data will consist of the following.

• Let f : Y → X be a modification/alteration of X. Replace v with an
extension v′ of v to a centered valuation on Y ; such an extension exists
by Lemma 2.1.3. Since the scheme X is excellent by Lemma 3.2.5(a), we
have height(v′) = height(v), ratrank(v′) = ratrank(v), and trdefect(v′) =
trdefect(v) by Lemma 2.2.4.

• ReplaceX with an open subschemeX ′ of Y on which v′ is centered. Replace
Z with Z ′ = X ′ ∩ f−1(Z) (viewed as a reduced closed subscheme of X ′).

• Replace E with the restriction of f∗E to OX′(∗Z ′).

Note that composing operations of one of these forms gives another operation of
the same form.

Lemma 7.1.2. Given any instance of Hypothesis 7.0.1, after modifying the input
data, we can enforce the following conditions.

(a) The field κv is algebraic over the residue field k of X at z.
(b) The pair (X,Z) is regular.
(c) The scheme X = SpecR is affine.
(d) There exists a regular system of parameters x1, . . . , xn of R at z, such that

Z = V (x1 · · ·xm) for some nonnegative integer m.
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(e) There exists an isomorphism ÔX,z(∗Z) ∼= k�x1, . . . , xn�[x−1
1 , . . . , x−1

m ] for k

as in (a), and derivations ∂1, . . . , ∂n ∈ ΔR acting as ∂
∂x1

, . . . , ∂
∂xn

.

Proof. To enforce (a), we may decrease trdeg(κv/k) by picking g ∈ ov whose image
in κv is transcendental over k, then blowing up to force one of g or g−1 into OX,z.
This condition persists under all further modifications, so we may additionally
enforce (b) using Theorem 1.3.3. We can enforce the other conditions by shrinking
X, and in the case of (e) invoking Corollary 3.1.8. �

Proposition 7.1.3. The following conditions are equivalent.

(a) After modifying the input data, E admits a good formal structure at z (or
equivalently a ramified good decomposition, by Proposition 4.4.1).

(b) After altering the input data, E admits a good decomposition at z.
(c) After altering the input data, E admits an admissible decomposition at z.

(d) After altering the input data, the restriction of f∗E to ÔX,z(∗Z) admits a
filtration with successive quotients of rank 1.

Proof. Given (a), we see that (b) is evident. Given (b), let f : Y → X be an
alteration such that f∗E admits a good decomposition at the generic center of
some extension of v. By Lemma 1.4.3, we can find a modification g : X ′ → X such
that the proper transform h of f under g is finite flat. By Theorem 1.3.3, we can
choose X ′ so that (X ′, Z ′) is a regular pair, for Z ′ the union of g−1(Z) with the
branch locus of h. Then g∗E admits a ramified good decomposition at the generic
center of v on X ′, yielding (a).

Given (b), then (c) is evident. Given (b), then (d) holds by Proposition 3.5.5.
It remains to show that each of (c) and (d) implies (b); we give the argument for
(d), as the argument for (c) is similar but simpler.

Given (d), set notation as in Lemma 7.1.2. By Proposition 3.4.5, each quotient

of the filtration has the form E(φα)⊗Rα for some φα ∈ ÔX,z(∗Z) and some regular

differential module Rα over ÔX,z(∗Z). By Proposition 3.4.8, we can choose the φα

in OX,z(∗Z).
After altering the input data, we can ensure that the φα obey conditions (a)

and (b) of Definition 3.4.6. This does not give a good decomposition directly,
because we do not have a splitting of the filtration. On the other hand, if M is the

restriction of E to ÔX,z(∗Z), and M ss denotes the semisimplification of M , then
F (M, r) = F (M ss, r) and F (End(M), r) = F (End(M ss), r) for all r, and M ss does
admit a good decomposition. Using Theorem 3.5.4, we deduce that M admits a
good formal structure, yielding (b). �

Definition 7.1.4. Under Hypothesis 7.0.1, we say that E admits a potential good
formal structure at v if any of the equivalent conditions of Proposition 7.1.3 are
satisfied.

Remark 7.1.5. Note that E admits a potential good formal structure (as a mero-
morphic differential module over X) if and only if Ez does so (as a meromorphic
differential module over Spec(OX,z)). Thus for the purposes of checking the exis-
tence of potential good formal structures, we may always reduce to the case where
X is the spectrum of a local ring and z is the closed point.

On the other hand, we may not replace Spec(OX,z) by its completion, because
not every alteration of the completion corresponds to an alteration of Spec(OX,z).
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For instance, if X = Spec(k[x1, x2, x3]) and z is the origin, then blowing up the
completion of X at z at the ideal (x1 − f(x2), x3) fails to descend if f ∈ k�x2� is
transcendental over k(x2).

Remark 7.1.6. Note that if Z ′ is another closed proper subscheme of X containing
Z, and the restriction of E to OX(∗Z ′) admits a potential good formal structure at
v, then E also admits a potential good formal structure at v. This is true because the
numerical criterion for good formal structures (Theorem 3.5.4 or Proposition 5.2.3)
is insensitive to adding extra singularities.

The rest of this section is devoted to proving the following theorem.

Theorem 7.1.7. For any instance of Hypothesis 7.0.1, E admits a potential good
formal structure at v.

Outline of proof. We prove the theorem by induction on the height and transcen-
dence defect of v, as follows.

• We first note that Theorem 7.1.7 holds trivially for v trivial. This is the
only case for which height(v) = 0.

• We next prove that Theorem 7.1.7 holds in all cases where height(v) = 1
and trdefect(v) = 0. See Lemma 7.2.2.

• We next prove that for any positive integer e, if Theorem 7.1.7 holds in
all cases where height(v) = 1 and trdefect(v) < e, then it also holds in all
cases where height(v) = 1 and trdefect(v) = e. See Lemma 7.3.3.

• We finally prove that for any integer h > 1, if Theorem 7.1.7 holds in all
cases where height(v) < h, then it also holds in all cases where height(v) =
h. See Lemma 7.4.1. �

7.2. Abyhankar valuations. We begin the proof of Theorem 7.1.7 by analyzing
valuations of height 1 and transcendence defect 0, i.e., all real Abhyankar valuations.
This analysis relies on the simple description of such valuations in local coordinates.

Lemma 7.2.1. Suppose that height(v) = 1 and trdefect(v) = 0. After modifying
the input data, in addition to the conditions of Lemma 7.1.2, we can ensure that
the following conditions hold.

(f) The value group of v is freely generated by v(x1), . . . , v(xn).
(g) The valuation v is induced by the (v(x1), . . . , v(xn))-Gauss valuation on

ÔX,z.

Proof. This is a consequence of the equality case of Theorem 2.2.3. See [29] for the
details. (See Lemma 7.3.2 for a similar argument.) �
Lemma 7.2.2. For any instance of Hypothesis 7.0.1 in which height(v) = 1 and
trdefect(v) = 0, E admits a potential good formal structure at v.

Proof. Set notation as in Lemma 7.2.1. Normalize the embedding of the value
group of v into R so that v(x1 · · ·xn) = 1, and put α = (v(x1), . . . , v(xn)), so that
the components of α are linearly independent over Q (viewing R as a vector space
over Q).

By Theorem 3.5.2, F (E , r) and F (End(E), r) are piecewise integral linear in r.
Since α lies on no rational hyperplane, it lies in the interior of a simultaneous domain
of linearity for F (E , r) and F (End(E), r). Write this domain as the intersection of
finitely many closed rational halfspaces. We modify the input data as follows: for
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each of these halfspaces, choose a defining inequality m1r1 + · · · +mnrn ≥ 0 with
m1, . . . ,mn ∈ Z; then ensure that xm1

1 · · ·xmn
n becomes regular. (This amounts to

making a toric blowup in x1, . . . , xn.)
After this modification of the input data, F (E , r) and F (End(E), r) become linear

functions of r. By Theorem 3.5.4, E has a good formal structure at z, as desired. �

7.3. Increasing the transcendence defect. We now take the decisive step from
real Abhyankar valuations to real valuations of higher transcendence defect. For
this, we need to invoke the analysis of ∇-modules on Berkovich discs made in
§6. The overall structure of the argument is inspired directly by [27, §5], and
somewhat less directly by [43]; see Remark 7.3.6 for a summary in terms of the
relevant notation. (Note that this is the only step where we make essential use of
alterations rather than modifications.)

Lemma 7.3.1. Let r ≤ s be positive integers. Let c1, . . . , cs be positive real numbers
such that c1, . . . , cr form a basis for the Q-span of c1, . . . , cs. Then there exists a
matrix A ∈ GLs(Z) such that A−1 has nonnegative entries, and

s
∑

j=1

Aijcj > 0 (i = 1, . . . , r),

s
∑

j=1

Aijcj = 0 (i = r + 1, . . . , s).

Proof. The general case follows from the case r = s − 1, which is due to Perron.
See [46, Theorem 1]. �

The following statement and proof, a weak analogue of Lemma 7.2.1, are close
to those of [27, Lemma 2.3.5]. (Compare also [27, Lemma 5.1.2].)

Lemma 7.3.2. Suppose that height(v) = 1. After modifying the input data and
enlarging Z, in addition to the conditions of Lemma 7.1.2, we can ensure that the
following condition holds.

(f) We have m = ratrank(v), and v(x1), . . . , v(xm) are linearly independent
over Q.

Proof. Put r = ratrank(v). We first choose a1, . . . , ar ∈ ov whose valuations are
linearly independent over Q. We shrink X to ensure that a1, . . . , ar ∈ Γ(X,OX),
then enlarge Z to ensure that a1, . . . , ar ∈ Γ(X \ Z,O×

X).
Modify the input data as in Lemma 7.1.2, then change notation by replacing

the labels x1, . . . , xn with x′
1, . . . , x

′
n and the label m with s. In this notation,

each ai generates the same ideal as some monomial in x′
1, . . . , x

′
s. This implies that

v(x′
1), . . . , v(x

′
s) must also be linearly independent over Q. Since it is harmless to

reorder the indices on x′
1, . . . , x

′
s, we can ensure that in fact v(x′

1), . . . , v(x
′
r) are

linearly independent over Q.
Fix an embedding of Γv into R. Apply Lemma 7.3.1 with (c1, . . . , cs) =

(v(x′
1), . . . , v(x

′
s)), then put

yi =
s

∏

j=1

x
Aij

j (i = 1, . . . , s).

By modifying the input data (again with a toric blowup), we end up with a new
ring R with local coordinates y1, . . . , ys, x

′
s+1, . . . , x

′
n at the center of v. Note that

for i = r + 1, . . . , s, we have v(yi) = 0. Since trdeg(κv/k) = 0, yi must generate an
element of κv which is algebraic over k. Hence yi ∈ O×

X,z, so Z must now be the
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zero locus of y1 · · · yr. We may now achieve the desired result by taking m = r and
using any regular sequence of parameters starting with y1, . . . , ym. �

We now state the desired result of this subsection, giving the induction on the
transcendence defect.

Lemma 7.3.3. Let e > 0 be an integer. Suppose that for any instance of Hypoth-
esis 7.0.1 with height(v) = 1 and trdefect(v) < e, E admits a potential good formal
structure at v. Then for any instance of Hypothesis 7.0.1 with height(v) = 1 and
trdefect(v) = e, E admits a potential good formal structure at v.

We will break up the proof of Lemma 7.3.3 into several individual lemmata.
These will all be stated in terms of the following running hypothesis.

Hypothesis 7.3.4. During the course of proving Lemma 7.3.3, we will carry hy-
potheses as follows. Let e be a positive integer such that for any instance of Hy-
pothesis 7.0.1 with height(v) = 1 and trdefect(v) < e, E admits a good formal
structure at v.

Choose an instance of Hypothesis 7.0.1 in which height(v) = 1 and trdefect(v) =
e. Fix an embedding of Γv into R. Put d = rank(E). Set notation as in Lemma 7.3.2
(after possibly enlarging Z, which is harmless thanks to Remark 7.1.6).

In terms of this hypothesis, we may set some more notation.

Definition 7.3.5. Put Rn = R/xnR and let ̂R be the xn-adic completion of R;

note that by Lemma 3.1.7, we may identify ̂R with Rn�xn�. Extend v by continuity

to a real semivaluation on ̂R (see Remark 2.2.5); then let vn be the restriction to
Rn.

For any real semivaluation w on Rn, put pw = w−1(+∞), so that w induces a
true valuation on Rn/pw. Let �(w) denote the completion of Frac(Rn/pw) under
w, carrying the norm e−w(·). By extending scalars to �(w)�xn�, form the restriction
Nw of E to the Berkovich open unit disc D0,w over �(w).

Let zn be the center of vn on Spec(Rn/pvn). Let αv ∈ D0,vn be the seminorm

e−v(·). Define αs for s ∈ (0,− log r(αv)) as in Definition 6.3.2.

Remark 7.3.6. In terms of the notation from Definition 7.3.5, we can now give a
possibly helpful summary of the rest of the proof of Lemma 7.3.3. The basic idea is
to view the formal spectrum of Rn�xn� as a family of formal discs over Spec(Rn);
however, one can give a more useful description of the situation in Berkovich’s
language of nonarchimedean analytic spaces.

In Berkovich’s theory, one associates to a commutative nonarchimedean Ba-
nach algebra its Gel’fand transform, which consists of all multiplicative seminorms
bounded above by the Banach norm. For instance, for F a complete nonarchime-
dean field, this construction applied to F 〈x〉 (the completion of F [x] for the Gauss
norm) produces the closed unit disc DF as in Definition 6.1.1.

Equip Rn�xn� with the ρ-Gauss norm for some ρ ∈ (0, 1). The Gel’fand trans-
form of Rn�xn� then fibres over the Gel’fand transform of Rn for the trivial norm.
The fibre over a semivaluation w (or rather, over the corresponding multiplicative
seminorm e−w(·)) is a closed disc over �(w); taking the union over all ρ gives the
open unit disc over �(w).

Imagine a two-dimensional picture in which the Gel’fand transform of Rn is
oriented horizontally, while the fibres over it are oriented vertically. Using the
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analysis of ∇-modules on Berkovich discs from §6, we can control the spectral
behavior of ∂n on a single fibre. In particular, within the fibre over vn, we obtain
good control in a neighborhood of v. To make more progress, however, we must
combine this vertical information with some horizontal information. We do this by
picking another point in the fibre over vn at which we have access to the induction
hypothesis. This gives good horizontal control not just of the irregularity, but of
the variation of the individual components of the scale multiset of ∂n. (This is
needed because we may not have enough continuous derivations on �(vn) to control
the irregularity along the fibre over vn.) We ultimately combine the horizontal and
vertical information to control the behavior of E over a neighborhood of vn in the
Gel’fand transform of Rn�xn�. This control leads to a proof of Lemma 7.3.3.

We now set about the program outlined in Remark 7.3.6. We first give a refine-
ment of Definition 7.1.1 which respects the notation of Definition 7.3.5.

Definition 7.3.7. Given an instance of Hypothesis 7.3.4, by modifying/altering
the input data on Rn, we will mean performing a sequence of operations of the
following form.

• Let Rn → R′
n be a morphism of finite type to another nondegenerate dif-

ferential domain such that Frac(R′
n) is finite over Frac(Rn), pvn has a pos-

itive but finite number of preimages in Spec(R′
n), and the conclusion of

Lemma 7.3.2 holds for some extension v′n of vn. That is, there must exist a
regular sequence of parameters x′

1, . . . , x
′
n−1 in R′

n at the center of v′n, such
that for m = ratrank(v), the inverse image of Z in Spec(R′

n) is the zero
locus of x′

1 · · ·x′
m, and v(x′

1), . . . , v(x
′
m) are linearly independent over Q.

• Choose a finite list of generators y1, . . . , yh of R′
n over Rn. For each gener-

ator yj , choose a lift ỹj of yj in R′
n�xn� which is integral over Frac(R). Let

R′ be the ring obtained by adjoining ỹ1, . . . , ỹh to R; we may identify the
xn-adic completion of R′ with R′

n�xn�. Apply Lemma 6.1.2 to obtain an
extension v′ of the semivaluation v to R′

n�xn�. By restriction, we obtain a
true valuation on R′.

• Replace R with R′ and v with v′. Replace x1, . . . , xn−1 with any lifts of
x′
1, . . . , x

′
n−1 to R′.

We will distinguish this operation from modifying/altering the input data on R, as
the latter must be done carefully in order to have any predictable effect on Rn and
the other structures introduced in Definition 7.3.5.

We next collect some horizontal information, by extracting consequences from
the induction hypothesis on the transcendence defect.

Lemma 7.3.8. Assume Hypothesis 7.3.4. Choose s ∈ (0,+∞) \ (Γv ⊗Z Q). Let vs

be the valuation on R induced from the s-Gauss semivaluation on Rn�xn� (relative
to vn).

(a) There exists a finitely generated integral R-algebra Rs with Frac(Rs) finite
over Frac(R), such that vs admits a centered extension to Rs with generic
center zs, and E admits a good decomposition at zs.

(b) For a suitable choice of Rs, there exist ψ1, . . . , ψd2 ∈ Frac(Rs) such that
for any real valuation w on R admitting a centered extension to Rs with
generic center zs, the scale multiset of ∂n on End(E) computed with respect
to e−w(·) equals e−w(ψ1), . . . , e−w(ψd2 ).
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(c) For a suitable choice of Rs, the completion ̂Ezs of E at zs admits a filtration
whose successive quotients are of rank 1, such that for i = 1, . . . , rank(E)−1,
the step of the filtration having rank i has top exterior power equal to the

image of some endomorphism of ∧i
̂Ezs .

Proof. To deduce (a), note that height(vn) = 1 and ratrank(vn) = ratrank(v)
by Lemma 7.3.2, so trdefect(vn) = e − 1. Then note that height(vs) = 1 and
ratrank(vs) = ratrank(vn) + 1 by Lemma 6.1.7, so trdefect(vs) = e− 1. Hence the
induction hypothesis on transcendence defects may be invoked, yielding (a). To
deduce (b), use Proposition 3.4.8. To deduce (c), use Proposition 3.5.5. �

We next collect some vertical information from the analysis of ∇-modules on
Berkovich discs.

Lemma 7.3.9. Assume Hypothesis 7.3.4. After altering the input data,
End(∧jNvn) is terminal for j = 1, . . . , rank(E)− 1.

Proof. Note that trdefect(vn) < trdefect(v), so by Lemma 6.1.7, αv is a point
of D0,vn of type (i) or (iv). By Proposition 6.3.4, for some s0 ∈ [0,− log r(αv)),
End(∧jNvn) becomes terminal at s0 for j = 1, . . . , rank(E)− 1.

Choose s1 ∈ (s0,− log r(αv)). Write αs1 = αz,r for r = e−s1 and some z in a
finite extension of Frac(Rn) with vn(z) > 0. By altering the input data on Rn, we
can force z ∈ Rn. Note that R ∩ Rn is the kernel of ∂n on R, which is dense in
Rn with respect to vn because it contains x1, . . . , xn−1. Thus we can in fact choose
z ∈ R∩Rn, then modify the input data on R by replacing xn with xn − z. At this
point, we may now take z = 0.

After altering the input data on Rn, we can produce h ∈ R∩Rn with v(h) = s0.
We may then modify the input data on R, by replacing xn by xn/h, to achieve the
desired result. �

We now begin to mix the horizontal and vertical information. We first use vertical
information to refine our last horizontal statement (Lemma 7.3.8), as follows.

Lemma 7.3.10. Assume Hypothesis 7.3.4, and assume that End(Nvn) is terminal.
Choose s ∈ (0,+∞) \ (Γv ⊗Z Q) and an open neighborhood I of s in (0,+∞).
After altering the input data on Rn, we may choose Rs and ψ1, . . . , ψd2 as in the
conclusions of Lemma 7.3.8, satisfying the following additional conditions.

(a) We have ψ1, . . . , ψd2 ∈ (R ∩Rn) ∪ {xn}.
(b) For any centered real semivaluation wn on Rn with generic center zn, nor-

malized so that wn(x1 · · ·xn−1) = vn(x1 · · ·xn−1), there exists s′ ∈ I such
that

fi(Nwn
, s′) =

{

wn(ψi) (ψi ∈ R ∩Rn)

s′ (ψi = xn)
(i = 1, . . . , d2).

Proof. Set notation as in Lemma 7.3.8. After altering the input data on Rn, for
i = 1, . . . , d2, if fi(End(Nvn), αv, s) is constant, we can find an element φi of R∩Rn

such that vn(φi) = fi(End(Nvn), αv, 0). For i for which fi(End(Nvn), αv, s) = s
identically, we instead put φi = xn. By permuting the ψi appropriately, we may
ensure that vs(φi) = vs(ψi) for i = 1, . . . , d2. By replacing Rs by a suitable
modification, we can ensure that w(φi) = w(ψi) for all w ∈ RZ(Rs). We may thus
replace the ψi with the φi hereafter; this yields (a).
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By modifying Rs, we can ensure that for any centered real valuation wn on Rn

normalized such that wn(x1 · · ·xn−1) = 1, any centered real semivaluation w on
Rs extending wn satisfies w(xn) ∈ I. On the other hand, by Proposition 2.3.5, the
image of RZ(Rs) in RZ(Rn) is open. Hence by modifying the input data on Rn, we
may thus ensure that RZ(Rs) surjects onto RZ(Rn). These two assertions together
yield (b). �

We now turn around and use this improved horizontal information to refine our
last vertical assertion (Lemma 7.3.9), so that it applies not just at the semivaluation
vn but also in a neighborhood thereof.

Lemma 7.3.11. Assume Hypothesis 7.3.4. After altering the input data, for any
centered real valuation wn on Rn with generic center zn, End(∧jNwn

) is terminal
for j = 1, . . . , rank(E)− 1.

Proof. By Lemma 7.3.9, we may assume that End(∧jNvn) is terminal for j =
1, . . . , rank(E)− 1. Choose s0 ∈ (0,− log r(αv)) ∩ (Γv ⊗Z Q) such that α0,s0 ≥ αv.
Choose an open subinterval I of [0, s0] on which fi(End(Nvn), s) is affine for i =
1, . . . , d2. Choose three nonempty open subintervals I1, I2, I3 of I such that for any
sj ∈ Ij , we have s1 < s2 < s3.

For j = 1, 2, 3, choose sj ∈ Ij \ (Γv ⊗Z Q); this is possible because Γv has
finite rational rank. By Lemma 7.3.10, after altering the input data on Rn, for
any centered real valuation wn on Rn with generic center zn, normalized such that
wn(x1 · · ·xn−1) = vn(x1 · · ·xn−1), there exists s′j ∈ Ij such that fi(Nwn

, s′j) =

fi(Nvn , s
′
j) for i = 1, . . . , d2. By Proposition 6.4.3, Nwn

becomes terminal at s′1,

and hence also at s0. By a similar argument, ∧jNwn
also becomes terminal at s0

for j = 2, . . . , rank(E)− 1.
After altering the input data on Rn, we can produce h ∈ R∩Rn with v(h) = s0.

We may then modify the input data on R, by replacing xn by xn/h, to achieve the
desired result. �

We now combine horizontal and vertical information once more to obtain poten-
tial good formal structures.

Lemma 7.3.12. Under Hypothesis 7.3.4, suppose that for any centered real valua-
tion wn on Rn with generic center zn, End(∧jNwn

) is terminal for j =
1, . . . , rank(E)− 1. Then E admits a potential good formal structure at v.

Proof. Pick any centered height 1 Abhyankar valuation w on Rs with generic center
zs, such that the restriction wn of w to Rn has generic center zn. Normalize
the embedding of Γw into R so that wn(x1 · · ·xn−1) = vn(x1 · · ·xn−1); then let
αw ∈ D0,wn

be the point corresponding to w. Note that by Lemma 7.3.10, on some
closed interval containing − log r(αw) in its interior, End(∧jNwn

) becomes strongly

terminal for j = 1, . . . , rank(E)− 1. Let ̂Rn be the completion of Rn at zn, and let
̂Rs be the completion of Rs at zs. By Remark 2.2.5, w extends to a centered real

valuation on ̂Rs.
For j = 1, . . . , rank(E)− 1, let vj ∈ End(∧j

̂Ezs) be the horizontal element corre-

sponding to the endomorphism of ∧j
̂Ezs described in Lemma 7.3.8(c). By Propo-

sition 6.4.5, vj belongs to End(∧jE) ⊗ �(wn)〈xn/r〉. On the other hand, it also

belongs to End(∧jE) ⊗ ̂Rs; by Remark 3.3.4, we thus find it in End(∧jE) ⊗ S for
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S a complete subring of �(wn)〈r/xn, xn/r〉 which is topologically finitely gener-
ated over Rn〈r/xn, xn/r〉, such that Frac(S) is finite over Frac(Rn〈r/xn, xn/r〉)
(which may be chosen independently of j). By Proposition 6.2.6, vj belongs to

End(∧jE) ⊗ R′
n〈r/xn, xn/r〉 for some topologically finitely generated ̂Rn-algebra

R′
n such that Frac(R′

n) is finite over Frac(̂Rn) (again chosen independently of
j). By Remark 3.3.4, vj belongs to End(∧jE) ⊗ R′

n〈xn/r〉, and in particular to
End(∧jE)⊗R′

n�xn�.
This last conclusion is stable under altering the input data on Rn. By apply-

ing Proposition 4.3.2, we may alter the input data on Rn so that vj belongs to

End(∧jE) ⊗ ̂Rn�xn�[x−1
1 , . . . , x−1

n−1] for j = 1, . . . , rank(E) − 1. We obtain a filtra-

tion of E ⊗ ̂Rn�xn�[x−1
1 , . . . , x−1

n−1] with successive quotients of rank 1 by taking
the step of rank j to contain elements which wedge to 0 with the image of vj . By
Proposition 7.1.3, E admits a potential good formal structure at v, as desired. �

By combining Lemma 7.3.11 with Lemma 7.3.12, we deduce Lemma 7.3.3.

Remark 7.3.13. Note that in the proof of Lemma 7.3.3, we arrive easily at the
situation where End(Nvn) is terminal, but it takes more work to reach the situation
where End(Nw) is terminal for any centered real valuation w on Rn with generic
center zn. This extra work is not needed in case vn itself extends to a real valuation
on the completion of Rn at zn, but this does not always occur; see Remark 2.2.5.

7.4. Increasing the height. We finally construct good potential formal structures
for valuations of height greater than 1. This argument is loosely modeled on [23,
Theorem 4.3.4].

Lemma 7.4.1. Let h > 1 be an integer. Suppose that for any instance of Hypothe-
sis 7.0.1 with height(v) < h, E admits a potential good formal structure at v. Then
for any instance of Hypothesis 7.0.1 with height(v) = h, E admits a potential good
formal structure at v.

Proof. Choose a nonzero proper isolated subgroup of Γv; then define v′, v as in
Definition 2.2.1. Note that height(v′) and height(v) are both positive and their
sum is height(v) = h, so both are at most h − 1. By the induction hypothesis,
E admits a potential good formal structure at v′; in particular, after altering the
input data, a good decomposition exists at the generic center of v′.

After altering the input data and possibly enlarging Z (which is harmless by
Remark 7.1.6), we may set notation as in Lemma 7.1.2 in such a way that for some
r, the center of v′ onX is the zero locus of xr+1, . . . , xn. Let R

′ be the completion of
R for the ideal (x1, . . . , xr). By Corollary 3.1.8, we may write R′ ∼= R1�x1, . . . , xr�,
where R1 is the joint kernel of ∂1, . . . , ∂r on R′. Put K = Frac(R1), so that by
construction

E ⊗K�x1, . . . , xr�[x
−1
1 , . . . , x−1

r ]

admits a minimal good decomposition. By Theorem 4.3.4, this decomposition de-
scends to a minimal good decomposition of

E ⊗R†
r,r(R1).

With notation as in (3.4.6.1), by the last assertion of Proposition 4.3.3, each Rα

admits a K-lattice stable under the action of x1∂1, . . . , xr∂r. This gives a collection
of instances of Hypothesis 7.0.1 with R replaced by R1 and v replaced by v. Again
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by the induction hypothesis, after altering the input data (and lifting from R1 to
R, as in Definition 7.3.7), we obtain good decompositions of each of these lattices.

Putting this all together, we obtain an admissible but possibly not good decom-
position of E at z. By Proposition 7.1.3, this suffices to imply that E admits a
potential good formal structure at v. �

8. Good formal structures after modification

To conclude, we extract from Theorem 7.1.7 a global theorem on the existence
of good formal structures for formal flat meromorphic connections on nondegener-
ate differential schemes, after suitable blowing up. We also give partial results in
the cases of formal completions of nondegenerate differential schemes and complex
analytic varieties.

8.1. Local-to-global construction of good formal structures. Using the com-
pactness of Riemann-Zariski spaces, we are able to pass from the valuation-local
Theorem 7.1.7 to a more global theorem on construction of good formal structures
after a blowup, in the case of an algebraic connection.

Hypothesis 8.1.1. Throughout §8.1, letX be a nondegenerate integral differential
scheme, and let Z be a closed proper subscheme of X. Let E be a ∇-module over
OX(∗Z).

Lemma 8.1.2. Let v be a centered valuation on X. Then there exist a modification
fv : Xv → X, a centered extension w of v to Xv, and an open subset Uv of Xv on
which w is centered, such that f∗

v E admits a good formal structure at each point of
Uv.

Proof. By Theorem 7.1.7, we can choose data as in the statement of the lemma so
that f∗

v E admits a good formal structure at the generic center of v on Uv. (Note
that Proposition 7.1.3 ensures that we can choose f to be a modification, not just
an alteration.) By Proposition 5.1.4, this implies that we can rechoose Uv so that
E admits a good formal structure at each point of Uv. �
Theorem 8.1.3. There exists a modification f : Y → X such that (Y,W ) is a
regular pair for W = f−1(Z), and f∗E admits a good formal structure at each point
of Y .

Proof. For each valuation v ∈ RZ(X), set notation as in Lemma 8.1.2. Since
v ∈ RZ(Uv) by construction, the sets RZ(Uv) cover RZ(X). Since RZ(X) is quasi-
compact by Theorem 2.3.4, we can choose finitely many valuations v1, . . . , vn ∈
RZ(X) such that the sets Ti = RZ(Uvi) for i = 1, . . . , n cover RZ(X). Put fi = fvi
and Xi = Xvi . By applying Theorem 1.3.3 to the unique component of X1 ×X

· · · ×X Xn which dominates X, we construct a modification f : Y → X factoring
through each Xi, such that (Y, f−1(Z)) is a regular pair.

We now check that this choice of f has the desired property. For any z ∈ Y ,
we may choose a valuation v ∈ RZ(X) with generic center z on Y . For some i, we
have v ∈ Ti, so f∗

i E admits a good formal structure at the generic center of v on
Xi. That point is the image of z in Xi, so f∗E admits a good formal structure at
z, as desired. �
Remark 8.1.4. For X an algebraic variety over an algebraically closed field of char-
acteristic 0, Theorem 8.1.3 reproduces a result of Mochizuki [35, Theorem 19.5].
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(More precisely, one must apply Theorem 8.1.3 to both E and End(E), due to the dis-
crepancy between our notion of good formal structures and Mochizuki’s definition.
See again [26, Remark 4.3.3, Remark 6.4.3].) Mochizuki’s argument is completely
different from ours: he uses analytic methods to reduce to the case of meromorphic
connections on surfaces, which he had previously treated [34, Theorem 1.1] using
positive-characteristic arguments.

8.2. Formal schemes and analytic spaces. From Theorem 8.1.3, we obtain
a corresponding result for formal completions of nondegenerate schemes. We also
obtain a somewhat weaker result for formal completions of complex analytic spaces.
We do not obtain the best possible result in the analytic case; see Remark 8.2.5.

Theorem 8.2.1. Let X be a nondegenerate integral differential scheme, let Z be a

closed proper subscheme of X, and let ̂X|Z be the formal completion of X along Z.
Let E be a ∇-module over O

̂X|Z(∗Z). Then there exists a modification f : Y → X

such that (Y,W ) is a regular pair for W = f−1(Z), and f∗E admits a good formal
structure at each point of W .

Proof. We first consider the case where X is affine. Put X = Spec(R) and Z =

Spec(R/I). Let ̂R be the I-adic completion of R, and put ̂I = I ̂R. Put ̂X =

Spec( ̂R) and ̂Z = Spec( ̂R/̂I). We can then view E as a ∇-module on O
̂X(∗ ̂Z) and

apply Theorem 8.1.3 to deduce the claim.
We now turn to the general case. Since X is integral and noetherian, it is covered

by finitely many dense open affine subschemes U1, . . . , Un. For i = 1, . . . , n, we
may apply the previous paragraph to construct a modification fi : Yi → Ui such
that (Yi,Wi) is a regular pair for Wi = f−1

i (Ui∩Z), and f∗
i E admits a good formal

structure at each point ofWi. By taking the Zariski closure of the graph of fi within
Yi ×Spec Z X, we may extend fi to a modification f ′

i : Y
′
i → X. By Theorem 1.3.3,

we may construct a modification f : Y → X factoring through the fibred product
of the f ′

i , such that (Y,W ) is a regular pair for W = f−1(Z). This modification
has the desired effect. �

Theorem 8.2.2. Let X be a smooth (separated) complex analytic space. Let Z be

a closed subspace of X containing no irreducible component of X. Let ̂X|Z be the
formal completion of X along Z. Let E be a ∇-module over O

̂X|Z(∗Z). For each

z ∈ Z, there exist an open neighborhood U of z in X and a modification f : Y → U
such that (Y,W ) is a regular pair for W = f−1(U ∩ Z), and f∗E admits a good
formal structure at each point of W .

Proof. We may reduce to Theorem 8.1.3 as in the proof of Proposition 5.1.4. �

In both the algebraic and analytic cases, we recover Malgrange’s construction of
canonical lattices [31, Théorème 3.2.2].

Theorem 8.2.3. Let X be either a nondegenerate integral differential scheme or
a smooth irreducible complex analytic space. Let Z be a closed proper subspace of

X, and let ̂X|Z be the formal completion of X along Z. Let E be a ∇-module
over O

̂X|Z(∗Z). Let U be the open (by Proposition 5.1.4) subspace of X over which

(X,Z) is a regular pair and E has empty turning locus. Then the Deligne-Malgrange
lattice of E|U extends uniquely to a lattice of E .
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Proof. Let j : ̂U |Z → ̂X|Z be the inclusion. Let E0 be the Deligne-Malgrange
lattice of EU ; it is sufficient to check that j∗E0 is coherent over O

̂X|Z . This may be

checked locally around a point z ∈ Z. After replacing X by a suitable neighborhood
of z, we may apply Theorem 8.2.1 or Theorem 8.2.2 to construct a modification
f : Y → X such that (Y, f−1(Z)) is a regular pair and f∗E has empty turning
locus. By Theorem 5.3.4, f∗E admits a Deligne-Malgrange lattice E1. We then
have j∗E0 = f∗E1, which is coherent because f is proper (by [17, Théorème 3.2.1]
in the algebraic case, and [15, §6, Hauptsatz I] in the analytic case). This proves
the claim. �

Remark 8.2.4. As noted in [31, Remarque 3.3.2], the lattice constructed in Theo-
rem 8.2.3 is reflexive and hence locally free in codimension 2.

Remark 8.2.5. In Theorem 8.2.2, we would prefer to give a global modification
rather than a local modification around each point of Z. The obstruction to doing
so is that while Theorem 8.1.3 gives a procedure for constructing a suitable mod-
ification, the procedure is not functorial for open immersions. Such functoriality
is necessary to glue the local modifications; we cannot instead imitate the proof of
Theorem 8.2.1 because the complex analytic topology is too fine to admit Zariski
closures.

In a subsequent paper, we plan to describe a modification procedure which is
functorial for all regular morphisms of nondegenerate differential schemes. For this,
one needs a form of embedded resolution of singularities for excellent schemes which
is functorial for regular morphisms. Fortunately, such a result has recently been
given by Temkin [42], based on earlier work of Bierstone, Milman, and Temkin
[7, 41].
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367–387. MR1369422 (97h:32060)
32. H. Matsumura, Commutative algebra, second edition, Math. Lecture Note Series 56, Ben-

jamin/Cummings, Reading, 1980. MR575344 (82i:13003)
33. H. Matsumura, Commutative ring theory (translated from the Japanese by M. Reid), second

edition, Cambridge Studies in Advanced Math. 8, Cambridge Univ. Press, Cambridge, 1989.
MR1011461 (90i:13001)

http://www.ams.org/mathscinet-getitem?mr=2426355
http://www.ams.org/mathscinet-getitem?mr=2426355
http://www.ams.org/mathscinet-getitem?mr=772749
http://www.ams.org/mathscinet-getitem?mr=772749
http://www.ams.org/mathscinet-getitem?mr=1423020
http://www.ams.org/mathscinet-getitem?mr=1423020
http://www.ams.org/mathscinet-getitem?mr=0417174
http://www.ams.org/mathscinet-getitem?mr=0417174
http://www.ams.org/mathscinet-getitem?mr=1322960
http://www.ams.org/mathscinet-getitem?mr=1322960
http://www.ams.org/mathscinet-getitem?mr=1153249
http://www.ams.org/mathscinet-getitem?mr=1153249
http://www.ams.org/mathscinet-getitem?mr=0121814
http://www.ams.org/mathscinet-getitem?mr=0121814
http://www.ams.org/mathscinet-getitem?mr=0217084
http://www.ams.org/mathscinet-getitem?mr=0217084
http://www.ams.org/mathscinet-getitem?mr=0217085
http://www.ams.org/mathscinet-getitem?mr=0217085
http://www.ams.org/mathscinet-getitem?mr=0199181
http://www.ams.org/mathscinet-getitem?mr=0199181
http://www.ams.org/mathscinet-getitem?mr=0217086
http://www.ams.org/mathscinet-getitem?mr=0217086
http://www.ams.org/mathscinet-getitem?mr=2017446
http://www.ams.org/mathscinet-getitem?mr=2017446
http://www.ams.org/mathscinet-getitem?mr=0393556
http://www.ams.org/mathscinet-getitem?mr=0393556
http://www.ams.org/mathscinet-getitem?mr=2360314
http://www.ams.org/mathscinet-getitem?mr=2360314
http://www.ams.org/mathscinet-getitem?mr=2422343
http://www.ams.org/mathscinet-getitem?mr=2422343
http://www.ams.org/mathscinet-getitem?mr=2480498
http://www.ams.org/mathscinet-getitem?mr=2480498
http://www.ams.org/mathscinet-getitem?mr=2576801
http://www.ams.org/mathscinet-getitem?mr=2216832
http://www.ams.org/mathscinet-getitem?mr=2216832
http://www.ams.org/mathscinet-getitem?mr=757897
http://www.ams.org/mathscinet-getitem?mr=757897
http://www.ams.org/mathscinet-getitem?mr=1369422
http://www.ams.org/mathscinet-getitem?mr=1369422
http://www.ams.org/mathscinet-getitem?mr=575344
http://www.ams.org/mathscinet-getitem?mr=575344
http://www.ams.org/mathscinet-getitem?mr=1011461
http://www.ams.org/mathscinet-getitem?mr=1011461


GOOD FORMAL STRUCTURES FOR FLAT MEROMORPHIC CONNECTIONS, II 229

34. T. Mochizuki, Good formal structure for meromorphic flat connections on smooth projective
surfaces, Algebraic analysis and around, Advanced Studies in Pure Math. 54, Math. Soc.
Japan, 2009, 223–253. MR2499558 (2010h:14027)

35. T. Mochizuki, Wild harmonic bundles and wild pure twistor D-modules, arXiv preprint
0803.1344v3 (2009).

36. M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de “platifica-
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Birkhäuser, Basel, 2000, 539–590. MR1748635 (2001i:13005)
45. V.S. Varadarajan, Linear meromorphic differential equations: A modern point of view, Bull.

Amer. Math. Soc. 33 (1996), 1–42. MR1339809 (96h:34011)
46. O. Zariski, Local uniformization on algebraic varieties, Ann. of Math. (2) 41 (1940), 852–896.

MR0002864 (2:124a)
47. O. Zariski and P. Samuel, Commutative algebra, volume II, reprint of the 1960 original,

Graduate Texts in Math. 29, Springer-Verlag, New York, 1976. MR0389876 (52:10706)

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachu-

setts Avenue, Cambridge, Massachusetts 02139

E-mail address: kedlaya@mit.edu

http://www.ams.org/mathscinet-getitem?mr=2499558
http://www.ams.org/mathscinet-getitem?mr=2499558
http://www.ams.org/mathscinet-getitem?mr=0308104
http://www.ams.org/mathscinet-getitem?mr=0308104
http://www.ams.org/mathscinet-getitem?mr=597830
http://www.ams.org/mathscinet-getitem?mr=597830
http://www.ams.org/mathscinet-getitem?mr=1741802
http://www.ams.org/mathscinet-getitem?mr=1741802
http://www.ams.org/mathscinet-getitem?mr=2435647
http://www.ams.org/mathscinet-getitem?mr=2435647
http://www.ams.org/mathscinet-getitem?mr=1748635
http://www.ams.org/mathscinet-getitem?mr=1748635
http://www.ams.org/mathscinet-getitem?mr=1339809
http://www.ams.org/mathscinet-getitem?mr=1339809
http://www.ams.org/mathscinet-getitem?mr=0002864
http://www.ams.org/mathscinet-getitem?mr=0002864
http://www.ams.org/mathscinet-getitem?mr=0389876
http://www.ams.org/mathscinet-getitem?mr=0389876

	Introduction
	0.1. Birational geometry
	0.2. Local structure theory
	0.3. Valuation-theoretic analysis and global results
	0.4. Further remarks

	1. Preliminaries from birational geometry
	1.1. Flatification
	1.2. Excellent rings and schemes
	1.3. Resolution of singularities for quasi-excellent schemes
	1.4. Alterations
	1.5. Complex analytic spaces

	2. Valuation theory
	2.1. Krull valuations
	2.2. Numerical invariants
	2.3. Riemann-Zariski spaces

	3. Nondegenerate differential schemes
	3.1. Nondegenerate differential local rings
	3.2. Nondegenerate differential schemes
	3.3. -modules
	3.4. Admissible and good decompositions
	3.5. Good decompositions over complete rings

	4. Descent arguments
	4.1. Hensel's lemma in noncommutative rings
	4.2. Descent for iterated power series rings
	4.3. Descent for localized power series rings
	4.4. Good formal structures

	5. Good formal structures
	5.1. Good formal structures
	5.2. Irregularity and turning loci
	5.3. Deligne-Malgrange lattices

	6. The Berkovich unit discs
	6.1. The Berkovich closed unit disc
	6.2. More on irrational radius
	6.3. Differential modules on the open unit disc
	6.4. Extending horizontal sections

	7. Valuation-local analysis
	7.1. Potential good formal structures
	7.2. Abyhankar valuations
	7.3. Increasing the transcendence defect
	7.4. Increasing the height

	8. Good formal structures after modification
	8.1. Local-to-global construction of good formal structures
	8.2. Formal schemes and analytic spaces

	Acknowledgments
	References

