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We develop a diagrammatic representation of the Casimir energy of a multibody configuration. The

diagrams represent multiple reflections between the objects and can be organized by a few simple rules.

The lowest-order diagrams (or reflections) give the main contribution to the Casimir interaction which

proves the usefulness of this expansion. Among some applications of this, we find analytical formulae

describing the interaction between edges, i.e. semi-infinite plates, where we also give a first example of

blocking in the context of the Casimir energy. We also find the interaction of edges with a needle and

describe analytically a recent model of the repulsion due to the Casimir interaction.

DOI: 10.1103/PhysRevD.83.045004 PACS numbers: 03.70.+k, 12.20.�m

I. INTRODUCTION

In 1948, Casimir predicted an attractive force between
metal plates arising from quantum fluctuations [1]. The
advent of experimental measurements of Casimir forces
has stimulated a large interest in this field [2–5]. There
have been extensive studies of the Casimir force both
analytically [6–9] and numerically [10–12]. Specifically,
a multipole scattering method has been developed and used
to compute this force between multiple objects of various
shapes and electromagnetic properties [8,13]. This formal-
ism allows one to compute the Casimir interaction in a
multiple scattering scheme based on the scattering matrix
of each object. The conceptual foundations of this ap-
proach can be traced back to earlier multiple scattering
formalisms [14,15].

Within this formalism, we should compute the logarithm
of the determinant (the ln det formula) of a certain matrix
in order to compute the energy [7,8]. This can be expanded
in a series of multiple reflections. This is a particularly
useful expansion in the Casimir-Polder limit for small-
sized objects. In this limit, the first reflection gives the
leading order contribution while higher reflections (and
partial waves) are suppressed by higher powers of the
objects’ length scale divided by the separation distance.
It is not immediately clear that this would be a useful, or
even sensible, expansion for a more general configuration
far from this limit. However, a recent work [16] on the
Casimir force between noncompact objects (cones, wedges
and plates) necessitated the use of such expansion: in this
application the partial waves are labeled by a continuous
set of quantum numbers and thus it is not convenient to use
the ln det formula, which involves the determinant of a
continuously labeled matrix, in its general form. The mul-
tiple reflections captures the ln det formula as a sum over
the trace of certain operators which is well-defined for
continuous indices. Remarkably, this expansion enjoys a
rapid convergence in the number of multiple reflections
regardless of any geometrical limit. This observation has

motivated this work in which we elaborate in detail on the
derivation and applications of multiple-reflection expan-
sion for multibody configurations.
This paper is organized as follows. In Sec. II, we derive a

diagrammatic expansion of the multibody Casimir interac-
tion which is shown to be organized by a few simple rules.
The convergence behavior of this expansion is discussed in
Sec. III. Finally in Sec. IV, we propose some applications.
As an example, we consider the interaction between edges
and find very accurate analytical formulae in Sec. IVA. We
study the interaction between edges and a needle in
Sec. IVB where we again find explicit analytical formulae.
This is used to describe a repulsive Casimir interaction for
a specific configuration of the edges and the needle.

II. MULTIPLE REFLECTIONS:
DERIVATION AND DISCUSSION

The Casimir interaction energy between two objects can
be computed by using functional integral methods. In this
approach, the interaction can be described by charge and
current multipoles which exist on each object, and are later
integrated out to obtain an expression for the energy only in
terms of the scattering properties of the objects. For ex-
ample, for two objects [7,8]

E ¼ ℏc
2�

Z 1

0
d� tr lnðI � T1U12T2U21Þ; (1)

where we replaced the logarithm of the determinant (ln det)
by the trace of the logarithm (tr ln) for the sake of conve-
nience in the following discussion. Here T1 and T2 are the
scattering matrices or the T-matrices which encode all
properties of the objects including their shape (and their
electromagnetic properties in the case of electrodynamics).
The matrices U12 and U21 are the translation matrices
which capture the appropriate translations and rotations
between the scattering bases for each object. Equation
(1) in this form is exact and can be used to compute the
Casimir forces between any two objects. However,
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as outlined in the Introduction, there are cases where
we have to expand the tr ln formula as a power series in
N ¼ T1U12T2U21

E ¼ � ℏc
2�

Z 1

0
d�

�
trN þ 1

2
trN 2 þ 1

3
trN 3 þ � � �

�
:

(2)

This finds a simple interpretation by noting that each term
includes one more reflection (back and forth) between the
two objects. Diagrammatically this can be represented as in
Fig. 1. The number in front of each diagram is the coeffi-
cient of this term in expanding the logarithm.

This expansion has been used to obtain analytical for-
mulae for the interaction of wedges and cones with plates
[16]. Indeed the rapid convergence required only the com-
putation of the lowest few reflections. We study the con-
vergence in a variety of cases in the next sections, but in
the following discussion we focus on the derivation of
multiple-reflection expansion in general. In principle, for
three or more objects, we can find a tr ln expression which
involves the scattering matrices of all objects but in a
somewhat complicated form. An expression for the
Casimir energy for three objects, for example, is given in
Eq. (III.27) of Ref. [8]. For more objects, the expression for
the energy will be increasingly more complicated.

Nevertheless, the tr ln formula can be expanded and
organized in multiple reflections. For three objects, for
example, the first few diagrams are listed in Fig. 2.

One can see that the diagrammatic expansion is organ-
ized by a few simple rules. First we state the rules for the
Casimir interaction of an arbitrary number of objects. Later
in this section we derive these rules systematically.

Let us suppose that there are M objects which are
separated from each other in the vacuum. Each diagram
forms a closed loop which consists of a certain number
of insertions of the objects, and these are drawn by the
wavy lines. The links between the objects denote the trans-
lation matrix. We are interested in the interaction of mul-
tiple objects, so we ignore the diagrams with a single
insertion of the T-matrix. To define our set of rules, we
introduce a more abstract notation. Consider a diagram
with N insertions of the objects: we designate the objects
by i1; i2; . . . ; iN in the order that they appear in the diagram
and represent the latter by ½iN . . . i2i1�. Since the diagrams

are closed loops, they have cyclic symmetry. So, for ex-
ample, ½iN . . . i2i1� and ½iN�1 . . . i1iN� are identical. Note
that the order that the objects are listed is important. In
general ½iNiN�1 . . . i1� is different from ½i1i2 . . . iN�. The
multiple-reflection expansion is organized by the following
rules:
(1) Only different objects are connected by a link; an

object index is not succeeded by the same index.
So, for a diagram defined by ½iN . . . i2i1�, ik � ikþ1

where N þ 1 is identified with 1.
(2) A diagram defined by ½iN . . . i2i1� is symmetric if it

is identical to ½i1i2 . . . iN� up to a cyclic transforma-
tion. The diagrams which are symmetric in both
directions (of the loops) do not have an arrow and
appear only once while those which are not, appear
in pairs of opposite directions.

(3) Let us define a subdiagram as a subset of the dia-
gram which is interconnected. A diagram which is
made from n copies of the same subdiagram comes
with a combinatoric factor of 1=n. For example, a
diagram represented by ½i2i1i2i1 . . . i2i1� with n cop-
ies of i2i1 should be multiplied by 1=n.

In short, a diagram defined by ½iN . . . i2i1� corresponds to
the following term in the expansion of the energy

E½iN ...i2i1� ¼�ℏc
2�

S½iN ...i2i1�

�
Z 1

0
d� trðUi1iNTiNUiNiN�1

. . .Ti2Ui2i1Ti1Þ; (3)

where the T andU represent the scattering and translation
matrices, respectively. The constant S is the symmetry
factor of the corresponding diagram and is determined by
Rule 3.

1
2

1
3

. . .

FIG. 1. Diagrammatic expansion of the Casimir energy for two
objects. The vertices label the objects and the links represent the
translation matrices between them. A diagram with n insertions
of 1 and 2 comes with a factor of 1=n. The dots represent higher-
order diagrams.

FIG. 2. Diagrammatic expansions of the Casimir energy for
three objects. The dots represent either a permutation of the
objects in the same diagrams or higher-order reflections. Each
diagram is accompanied with a numerical factor (1 if not stated
explicitly). The diagrams are listed in the order of the number of
reflections. The diagrams [321] and [231], for example, are not
identical, so they are both included while [3121] is identical to
[2131] (after a cyclic transformation) and is therefore omitted.
Furthermore the loop in [2131] can be run either way without
changing the diagram (up to cyclic permutations), thus the
corresponding diagram does not have an arrow.
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These can be proved in general. We start from the
partition function whose logarithm is proportional to the
energy.1 Using path-integral techniques, it is possible to
express the partition function as a functional integral over
charge-current multipoles,Q�. This has been done in great
detail in Ref. [8]. The translational invariance in time
allows one to express the partition function as a product
of all frequencies, �,2

Z ¼ Y
�>0

YN
�¼1

Z
½DQ�DQ�

�� exp
�
��

2

t0
ℏ

X
�

Q�
�½T���1Q�

þ �

2

t0
ℏ

X
���

Q�
�U��Q�

�
; (4)

where it is evaluated in a time interval t0. Note that T� is
the scattering matrix of the object � and U�� is the

translation matrix between the objects � and �. When
integrated over the multipoles, the logarithm of the last
equation gives the tr ln formula (up to a normalization
factor). Instead of performing the functional integral, we
will proceed as follows. The action (or the exponent of the
integrand of the functional integral) defines a natural set of
Feynman rules—by which we can organize the diagram-
matic structure of the Casimir energy.

Heretofore, we consider the T-matrices to represent the
vertices in the diagrams as they naturally describe the
interaction (of the electromagnetic waves) with the objects.
Similarly, the translation matrices are represented by the
links or the propagators which connect separate objects.
For the sake of derivation of the diagrammatic rules, we
consider a different set of conventions in the following
discussion. In the rest of this paper, we use the same
conventions as we defined earlier.

Note that the first term in Eq. (4) is diagonal in the object
indices. So, from a mathematical point of view, it is natural

to consider it as a Feynman propagator. The propagator is
the inverse kernel, hence we must attribute a factor of T� to
any propagating line.3 Also, the multipoles are complex, so
we must associate a direction—or an arrow—to the propa-
gator. The second term in the exponent only connects the
multipoles on separate objects (it is off diagonal in the
object indices) and so can be more appropriately consid-
ered as an interaction vertex. These rules are depicted in
Fig. 3(a). A typical diagram made from the latter rules is
given in Fig. 3.
These diagrams are dual to the diagrams in Figs. 1 and 2,

i.e., the objects are represented by lines and the translation
matrices by the dashed external lines due to the different
choice of conventions. The three rules which were stated
earlier follow straightforwardly. Rule 1 follows trivially
because the translation matrix is off-diagonal. Rule 2 holds
because there is an arrow on the lines. Therefore the two
triangular diagrams in Fig. 2, for example, are not equiva-
lent.4 The same arrow can be drawn on the symmetric
diagrams, however, the two directions of the arrow gener-
ate the same diagram and must be counted only once. For
these diagrams, the arrow is irrelevant and can be dropped.
Finally Rule 3 follows because the cyclic symmetry of
diagrams requires a symmetry factor of 1=n.
After discussing the convergence of the expansion in the

following section, we will give some applications of the
multiple-reflection expansion. To show the strength of this
method, we consider the interaction of edges among them-
selves and with a needle. The analytical results we will find
should be of both theoretical and experimental interest.

III. CONVERGENCE

In the previous section, we showed that, at least for-
mally, the Casimir energy can be expanded in a series of

FIG. 3. Feynman rules for the Casimir energy. The diagram on the right corresponds to the term � ℏc
2� �R

d� trðT3U31T1U13T3U32T2U21T1U13Þ in the expansion of the tr ln formula.

1We set the temperature to zero for convenience. The general-
ization to finite temperature is straightforward.

2The exponent, or the action, is always real because the
scattering matrix Tði�Þ and the translation matrix Uði�Þ are
Hermitian for imaginary frequency.

3Factors of �t0
2ℏ can be absorbed in the definition of the multi-

poles Q� and do not play a role here.
4By hermiticity of the T-matrices and the translation matrices,

one can easily see that the two triangular diagrams are related by
complex conjugation. The energy is real because it involves the
sum of these diagrams.
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multiple reflections, or diagrams, which can be organized
by a few simple rules. In this section, although lacking a
general proof, we argue that under very generic circum-
stances the lowest orders of reflections dominate the
Casimir energy.

Casimir computed the force between two perfectly re-
flecting parallel plates [1]. A simple extension to D spatial
dimensions generalizes the Casimir force to

F ¼ �aDℏcA
dDþ1

�½Dþ 1�: (5)

In this equation, A is the area of the plates, d is their
separation distance, �ðDþ 1Þ is the zeta function and aD
is a constant which depends on the dimensionality. It is
instructive to compute the force order by order in multiple
reflections. The contributing diagrams are given in Fig. 1.
The T-matrix for the (perfectly reflecting) plates is
TM=Eði�Þ ¼ �1 where � is the imaginary frequency, and

the T-matrix of the magnetic (M) and the electric (E)
polarizations correspond to the upper and lower signs,
respectively. One can then easily see that a diagram with
n insertions of plate 1 and n insertions of plate 2 contrib-
utes to the energy by

Fn ¼ �aDℏcA
dDþ1

1

nDþ1
: (6)

This result was noted earlier in the application of the
optical approximation to parallel plate geometry, where
the ‘‘reflections’’ are literally the specular reflections of
ray optics [17]. So the contribution of the higher reflections
to the force falls off in a power-law fashion. In three
dimensions, the latter converges as 1=n4. If the plates are
dielectric as opposed to perfect reflectors, the multiple-
reflection expansion of the force converges even more
rapidly. Note that the T-matrix of a plate remains diagonal
(in the planar wave basis) at finite conductivity. The abso-
lute value of the eigenvalues of the T-matrix can be shown
to be less than (or equal to) unity for any dielectric re-
sponse, i.e., jTM=Eði�Þj � 1 at imaginary frequency. The

latter can be used to find a bound on the contribution of the
nth order diagram as expanded in Fig. 1,

jFnj � 1

nDþ1
jF1j: (7)

Casimir’s computation of perfectly reflecting plates can
also be altered by changing the geometry while keeping the
perfect reflectivity intact. Let us consider a wedge opposite
a plate in three dimensions, which was extensively studied
in Ref. [16]. The expansion in multiple reflections is found
to be governed approximately by a power law 1=n4þ� for a
positive � which is a function of the opening angle and the
orientation of the wedge. So the convergence is more rapid
than parallel plates. The perfectly reflecting plate-plate and
wedge-plate configurations are both scale invariant, i.e.,
their only length scale is the separation distance between

the two objects. Therefore, the convergence in multiple
reflection is not controlled by any dimensionless factor and
is purely numerical. Now we consider a geometry which
provides an internal length scale. The interaction of a
sphere of radius R with a plate at a distance d in three
dimensions can be studied in various regimes. If the sepa-
ration distance is small (d � RÞ, proximity force approxi-
mation (PFA) can be used to compute the force [18]. This
approximation is based on treating the objects locally as
parallel plates and integrating over the surfaces facing each
other by using Eq. (5). In the close proximity limit, PFA
becomes exact. So by analogy with parallel plates, the
convergence is governed by 1=n4 series in the limit of
small sphere-plate separation. In the opposite limit where
the sphere is small (d 	 R), the energy is dominated by
the dipole interaction [19]. In fact, the lowest reflection in
the leading order of partial waves gives a force which is
proportional to R3=d3. The contribution of the higher
reflections is exponentially suppressed: the nth order dia-
gram as expanded in Fig. 1 becomes proportional to
ðR3=d3Þn in the leading order of partial waves.
In summary, the expansion in multiple reflections ap-

pears to converge rapidly: in close proximity (the absence
of a small parameter), the convergence is governed by a
power law and is purely numerical whereas in the opposite
limit, the convergence is exponential and is controlled by
the ratio of the object’s length scale divided by the sepa-
ration distance. Intuitively, the convergence in reflections
can be understood as follows. More reflections typically
travel over a larger optical path. Note that in the nth
reflection, the length of a typical path traveled by the waves
between two parallel plates is ‘path 
 2nd. The force in

the nth reflection is, in fact, proportional to the 1=‘4path (see

Eq. (6)) [17]. In general, the optical path increases for
higher reflections. This intuition serves as our guiding
principle in deciding which reflections contribute the
most. The Casimir interaction of a multibody configuration
can be organized by a similar expansion of multiple re-
flections as discussed in Sec. II. In various examples that
we study in the following section, we consider the reflec-
tions which correspond to the shortest optical paths and
compute the Casimir interaction. We confirm the latter
criterion by computing the higher orders in reflections
and show that their contribution is indeed much smaller
than the lowest reflections.

IV. APPLICATIONS

A. Interaction of edges

In this section, we consider the interaction between
the edges of half-plates. In Sec. IVA1, we find an analyti-
cal expression for the interaction of two edges which
can be studied in various limits and configurations. In
Sec. IVA2, we consider three half-plates and point to
some of its interesting physical behaviors, including the
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nonmonotonic dependence of the force on the separation
distance. In Sec. IVA3, we study a first example of block-
ing in the context of the Casimir energy.

1. Two half-plates

This study of the interaction between two semi-infinite
plates reproduces same results reported in Ref. [20]. We
assume that the two half-plates are parallel along their edge
and define the angle that they make with the edge-to-edge
axis to be �1 and �2 (see Fig. 4). The half-plates are
separated by a distance D, and their extent along the axis
z (perpendicular to Fig. 4) is L 	 D. The scattering matrix
of a half-plate depends only trivially on the axial wave-
vector, the component of the wave vector parallel to the
edges which we denote by kz. It depends on the wave

vector of the incoming plane wave ~k as well as the scattered

plane wave ~k0. Both the incoming and scattered waves are
defined at imaginary frequency �. The T-matrix is given
explicitly in terms of the wave vectors by [16]

TD=N

� ~k0;� ~k
¼ 1

2

�
� sec

�
a0� � a

2

�
� sec

�
a0� þ a

2

��
2��ðkz � kz0 Þ;

(8)

where a is the angle that the incident plane wave makes
with the half-plate while a0 is the angle of the scattered

wave, i.e., a ¼ sin�1ð kx

i
ffiffiffiffiffiffiffiffiffiffi
�2þk2z

p Þ and a ¼ sin�1ð k0x
i
ffiffiffiffiffiffiffiffiffiffi
�2þk2z

p Þ. The
upper and lower signs correspond to Dirichlet (D) and
Neumman (N) boundary conditions, respectively.

The wave number is imaginary so the angles are in
general complex. Let us choose the line which connects
the two edges to be the vertical axis. We then define a ¼
i���j and a0 ¼ i�0 ��j where j ¼ 1, 2 labels the first

or the second half-plate, respectively. Note that i� and i�0
are the (imaginary) angles that the waves make with the
vertical axis.

The T-matrix in Eq. (8) was constructed in Ref. [16] to
find the interaction of a half-plate and an infinite perfectly
conducting plate. By incorporating the T-matrices into the
translation matrices [13], we can find the Casimir energy

through Eq. (1). Since the indices of the T-matrices are
continuous, it is more convenient to expand the tr ln
formula. We compute the Casimir energy in the first re-
flection (i.e., the first diagram in Fig. 1). An analytical
expression can be obtained for Dirichlet, Neumann or
electromagnetic boundary conditions

ED=N ¼ � ℏcL
128�3D2

�
��

2
ðcos2�1ð�� � cos�1

þ gdði�1Þ þ gdð�i�1ÞÞ þ�1 ! �2Þ
þ 8

3
� 4 csc�1 csc�2 þ 4ð�1csc

2�1 þ�2csc
2�2Þ

� cscð�1 þ�2Þ
�
þ � � � ; (9)

where the dots represent corrections from higher reflec-
tions. In this equation, gd is the Gudermannian function.
Because of the translational symmetry in one direction, the
electromagnetic Casimir energy is simply the sum of
Dirichlet and Neumann results. The range of validity of
this expression is all j�1j, j�2j � �=2 but it can be ana-
lytically continued to the regime where one of the angles or
both exceed �=2.
The first reflection computation gives a very good

approximation to the exact result. This has been studied
in some detail in Ref. [20] for various limits and
configurations.

2. Three half-plates

In this section, we study a three-body interaction; spe-
cifically a configuration of three half-plates. We will dem-
onstrate the convergence in multiple reflections and show
that to the lowest order in reflections, and for a wide range
of configurations, the sum of the leading diagrams domi-
nates the Casimir energy.
Let us take two half-plates aligned but extended in

opposite directions while keeping the third half-plate per-
pendicular to them along the axis midway between the two
(see Fig. 5). We find the force which is exerted on the
vertical half-plate. Obviously the force goes to zero at large
separation distance (large positive h). It also vanishes when

FIG. 4. The configuration of two half-plates.

2

3

1 2

FIG. 5. The configuration of three half-plates.
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the vertical half-plate goes far below the other two. The
latter is the limit that an infinite plate is inserted between
the two half-plates in which case the lateral force on the
infinite plate vanishes. Given the limits, the force cannot be
a monotonic function of h.

In order to compute the force, we first construct the
T-matrices. However, there are two different channels of
the T-matrix which come into play. When an incoming
wave impinges on the half-plate from one side, the scat-
tered wave propagates in two directions, i.e., back to the
same side and forward to the opposite side. We call the two
channels, the LL and RL channels for left-to-left and left-
to-right scattering5 (see Fig. 6).

The LL channel is similar to what we considered earlier:
the incident wave angle is a ¼ i�� ð�=2� �Þ while the
scattered wave angle is a0 ¼ i�0 � ð�=2� �Þ. This is a
special case of the setup in Fig. 4 where the axis y makes a
right angle with the half-plate and � is a small positive
number which is essential for the regularity of the solu-
tions. In the RL channel the scattered angle becomes a0 ¼
�i�0 þ ð�=2� �Þ. Putting these in Eq. (8), we find

TD=N
LL�0;� ¼ 1

2

�
�sech

�
�þ �0

2

�

� icsch

�
�� �0

2
þ i�

��
2��ðkz � kz0 Þ; (10)

TD=N
RL�0;� ¼ �TD=N

LL�0;�: (11)

Interestingly the two channels are related simply by a sign.
It can be shown that this holds for any planar geometries,
i.e., for any geometry which is part of a flat screen. This,
among other applications, is discussed in Ref. [21].

The force on the vertical half-plate is plotted in Fig. 7.
The solid (blue) curve gives the electromagnetic force
which is computed in the lowest reflection, i.e., as the
sum of the two-body forces between the vertical half-plate
and either of the two horizontal half-plates (the first two
diagrams in Fig. 8). The dotted curve shows the force
which is summed up to the first few orders shown in

Fig. 8 (including the two-body terms). The two dashed
curves give the energy in the first reflection for Dirichlet
and Neumann boundary conditions. The Neumann result is
smaller than Dirichlet by nearly 1 order of magnitude.
Interestingly, we see that the maximum of the force

happens before the vertical half-plate reaches the axis
along the horizontal ones, i.e., the force is not monotonic
even when the third half-plate is above the horizontal half-
plates.
It is clear that the convergence in multiple-reflection

expansion is remarkably good for a wide range of the
parameter h. Note that we have not taken advantage of
any geometrical approximation such as the Casimir-Polder
limit; nor have we ignored the nonadditivity of the Casimir
force by resorting to an approximation like PFA.
Nevertheless, we can find the force quite accurately.

3. Blocking

In the previous section, we computed the force on the
vertical semi-infinite plate. Here, we consider a similar

FIG. 6. The left-left and right-left channels of the T-matrix.

FIG. 7 (color online). The force on the vertical half-plate as a
function of the separation distance. The solid curve represents
the electromagnetic force computed by summing the two-body
diagrams ([21] and [31]) only. The dots include corrections from
higher reflections. The dashed curves represent the force corre-
sponding to the Dirichlet and Neumann boundary conditions.

FIG. 8. The lowest-order diagrams in reflections contributing
to the vertical force. The diagrams correspond to the shortest
optical paths between the objects. The first two diagrams (‘path 

2d) dominate the Casimir energy. The rest of these diagrams
(4d & ‘path & 6d) give small corrections to the leading order

contribution.

5By symmetry, the RR and RL channels are identical to LL
and LR channels, respectively.
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setup but focus on a different physical quantity, namely,
how the presence of the third object influences the inter-
action between the other two. Suppose that the horizontal
distances of half-plates 1 and 2 to the vertical half-plate are
d1 and d2 respectively. (We set these equal to d later on.)
The horizontal force exerted on 1 is F1 ¼ �@d1E where E
is the Casimir interaction energy. Following the line of
logic of the previous section, this force can be very well
described by the lowest-order diagrams. However here we
are interested in how the force on 1 changes upon changing
the position of 2 which we can define by I12 � @d2F1 ¼
�@d1@d2E.

Note that in the extreme case that the vertical half-plate
completely blocks the space between 1 and 2, I12 simply
vanishes. Depending on whether the blocking is partial or
complete, the interaction is partially or completely
screened. We will see that multiple-reflection expansion
provides a natural language to better understand this.

Let us first consider the extreme case where the vertical
half-plate is almost completely blocking the way from
1 to 2. The half-plate can be then regarded as an infinite
plate. Indeed, in this limit the total energy is just the sum of
the interaction of the infinite plate with either of the two
other objects. In the diagrammatic expansion, however,
there is a direct two-body interaction between 1 and 2.
But one can see that this diagram is canceled against the
three-body diagram which connects the three objects [see
Fig. 9(a)]: The mathematical expression for these diagrams
is given by

½21� ¼ � ℏc
2�

Z 1

0
d� trðU12T2U21T1Þ; (12)

½321� ¼ � ℏc
2�

Z 1

0
d� trðT1U12T2U23T3U31Þ: (13)

In the last equation we are concerned with the RL channel
of T3 (the T-matrix of the infinite plate). For an infinite
plate, this is negative unity matrix for both Dirichlet and
Neumann boundary conditions

TInfnite-plate
RL ¼ �I : (14)

By implementing this in Eq. (13) and noting that
U13U32 ¼ U12, we find that ½21� þ ½321� ¼ 0. The

cancellation between these types of diagrams can be
carried out to all orders of the diagrammatic expansion
(see Fig. 9).
When the vertical half-plate is far above the other two,

the higher-order diagrams do not contribute and thus there
is no screening. Therefore, it is conceivable that the sum of
the diagrams in Fig. 9 gives a first approximation to I12. We
will see that this intuition is qualitatively correct but higher
orders must be taken into account to improve the quanti-
tative result.
We compute the interaction I12 by including all the

diagrams shown in Fig. 10. This quantity is plotted in
Fig. 11 as the solid (red) curve. The dashed (black) curve
is the resultant interaction when only the diagrams in Fig. 9
are included. Again we see that the multiple reflections
enjoy a rapid convergence.
The interaction I12 monotonically decreases as the ver-

tical half-plate further blocks the two objects. Interestingly,
as it approaches them, the interaction falls off very rapidly.
Even before the vertical half-plate reaches the axis along
the horizontal half-plates, the interaction is substantially
suppressed. After reaching this point, I12 falls off sharply
to zero. This suggests that the interaction of two objects is

FIG. 9. In the extreme limit that the object 3 is an infinite plate, the interaction diagrams cancel each other in pairs. If the blocking is
partial, the interaction between objects 1 and 2 is partially screened.

FIG. 10. The lowest-order diagrams in reflections contributing
to the interaction between the horizontal half-plates. The dia-
grams are sorted by the typical optical paths that the waves travel
between the objects. The interaction is dominated by the dia-
grams in the first row. The rest of the diagrams only slightly
modify the leading order contribution.
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greatly affected by whether or not they are visible to each
other.

B. Interaction of edges and a needle

In this section, we study the interaction between edges
and a needle. In Sec. IVB 1, we consider an edge and a
needle in two dimensions and find that their interaction
exhibits some unusual features. Using these results, in
Sec. IVB 2, we will find analytical results for an example
of repulsion which was first proposed in Ref. [22].

1. Edge vs needle

In a recent paper [22], a setup was proposed which gives
rise to a repulsive Casimir force. This setup consists of two
objects which can be separated by an imaginary plane. A
two dimensional model of the repulsion involves a small
elliptical perfect metal above a (perfect) metal line with a
gap (see Fig. 15). The Casimir force is then computed
based on 2d electromagnetism.

As formulated in the Appendix, the electromagnetism in
two dimensions (two spatial dimensions plus time) with a
perfectly-conducting boundary condition is equivalent to a
scalar field theory with Neumann boundary conditions. We
exploit this fact to compute the interaction between an
edge and a needle (Fig. 12).

The interaction can be expanded in multiple reflections
as in Fig. 1. The lowest order will suffice because the ellipse
(needle) is small compared to the separation distance [19].
In order to compute this diagram, we must know scattering
properties of these objects. The half-plate’s T-matrix is

given by Eq. (8). The T-matrix of the ellipse can be
described in the cylindrical coordinates where a natural

basis is Hð1Þ
m ðkrÞeim�. The scattering matrix is then labeled

in this basis, hence Tm;m0 . In the limit of a small ellipse with

Neumann boundary conditions we need a subset m, m0 2
f0;�1g of the scattering matrix. This is further simplified
by noting the inversion symmetry of the ellipse which
requires mþm0 to be even; so m, m0 ¼ 0 is decoupled
from m, m0 ¼ �1. Therefore, the only nonzero compo-
nents of the T-matrix in this subset are T00 and Tm;m0 for

m, m0 ¼ �1. Using parity, the latter components of the
T-matrix (with m, m0 ¼ �1) can be written as a superpo-
sition of Txx and Tyy where x and y are the symmetry axes

of the ellipse. For a small object, we need the T-matrix to be
expanded to the lowest order in the wave number �, in
which limit they all depend quadratically on �, that is T00 

�2T 00, Txx 
 �2T xx, Tyy 
 �2T yy. We leave the T ’s as

parameters without specializing to an ellipse—the discus-
sion applies to any geometry with the same symmetry
properties as an ellipse.
The T-matrix of the half-line is given in planar basis

while that of the needle is defined in the cylindrical basis.
We can convert the two bases by

eik:x ¼ e��r cosð��aÞ ¼ X1
m¼�1

ð�1ÞmImð�rÞeimð��aÞ; (15)

where � and a are the angles of x and k respectively.
So the conversion matrix is Da;m ¼ ð�1Þme�ima. The

T-matrix of the needle can then be cast in the planar basis
using the conversion matrix and the normalization factors
which are involved in the definition of these functions [13]

Ta0;a ¼ �
X
m;m0

ð�1Þmþm0
eim

0a0��imaTm;m0 : (16)

Now we can put everything together to compute the
Casimir interaction energy of a half-line and a needle.
The objects are separated by a distance D along the

needle-edge axis with respect to which the needle makes
an angle 	0 and the half-line is tilted at an angle �0 (see
Fig. 12). The energy finds contributions from different
components of the T-matrix. For each contribution to the
Casimir interaction, we can find exact analytical formu-
lae.6 The term proportional to T 00 is

FIG. 11 (color online). The interaction of the two horizontal
half-plates as a function of the position of the blocking half-
plate. The dashed curve is the resultant force by considering the
first few diagrams in the reflection expansion. The solid curve
includes the correction of higher orders in reflections. The
straight dashed line represents the constant to which the solid
curve approaches as h ! 1.

FIG. 12. The configuration of a needle versus a half-line.

6Higher orders are suppressed by higher powers of the needle
dimension divided by the separation distance.
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E 00 
� ℏc
64�

1

D3
T 00

�
� 4

3
þ csc3�0ð2�0 � sinð2�0ÞÞ

�
;

(17)

where 
 indicates that this result is exact in the limit of a
vanishing needle. It is not surprising that this expression
does not depend on 	0 since the lowest partial wave (which
is denoted by 0) does not detect the orientation of the
needle. The dependence on the separation distance is ob-
vious for dimensional reasons. The dependence on the tilt
angle, however, is nontrivial. Interestingly when the half-
line is aligned with the axis which connects it to the needle,
this term becomes zero—irrespective of the separation
distance. We will discuss this in more detail in the next
section.

The dependence on the orientation of the needle comes
through T xx and T yy and is given by

Exx � T xxfð�0; 	0Þ

 � ℏc

8�

1

D3
T xx

�
� 4

3
þ cosð2	0Þð�2þ cot�0 csc�0Þ

� csc�0ð3 cot�0 þ 2 sinð2	0Þ
þ�0ð�3þ cosð2	0 þ 2�0ÞÞcsc2�0ÞÞ

�
; (18)

and, by symmetry,

E yyð�0; 	0Þ ¼ T yyf

�
�0; 	0 þ �

2

�
: (19)

The sum of these expressions gives the interaction of a
needle with a half-line. The last equation is a consequence
of the symmetries of the problem. Note that these

expressions all come with the same dependence on the
separation distance; so in principle they are all important
at the leading order. A simple consistency check is that the
sum fð�0; 	0Þ þ fð�0; 	0 þ �

2Þ must be independent of the

orientation 	0. That is because it gives the interaction of a
circle—as opposed to an ellipse—with the half-line.
It is interesting that the complicated interaction of a

needle with an edge can be described analytically. The
nontrivial dependence on the mutual orientation can be
studied at different values and limits of the angles. In the
limit that�0 approaches �, the interaction becomes that of
an infinite line with a dipole. A closely related problem of a
dipole opposite an infinite conducting plate has been
studied in Ref. [23] in three dimensions. In another limit,
�0 ¼ 0, the needle is aligned along the axis of the half-
line, in which case the orientation-dependent terms, Exx

and Eyy, exhibit unusual characteristics as a function of the

orientation which will be discussed in more detail below.
Note that in the same limit, E00 vanishes.
Here we assume that the needle is elongated in one

direction. Choosing this axis to be y, we can then neglect
Exx. Also the contribution from E00 is significantly smaller
than the orientation-dependent terms; so the total energy is
given by Eyy without any loss of generality. The absolute

value of the force (derived from Eqs. (18) and (19)) as a
function of the needle orientation for �0 ¼ 0 is plotted in
Fig. 13(a). The force is symmetric with respect to �=2 as it
should be. But it also vanishes at this point. This was first
observed in Ref. [22] where it is explained by employing
an intuitive argument. Figure 13(b) gives the magnitude of
the force for a set of different angles. Away from �0 ¼ 0
the force is nonvanishing but it shows a strong dependence
on the angle 	0.

FIG. 13 (color online). The magnitude of the force as a function of the needle orientation. The force strongly depends on the
orientation.
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The direction of the force also exhibits some interesting
features. Let us consider several points all at the same
distance from the edge. We show the direction (and the
relative magnitude of the force) in a small circle around
each point (see Fig. 14). An arrow drawn from a point on
the circle should be understood as the force on the needle
which is pointed from the center of the circle to that point.
The force is normalized within each circle but differently
from other circles. The small needle drawn in each circle is
the stable equilibrium configuration at each point.

This plot illustrates some characteristics of the interac-
tion of an edge with a needle:

(1) There is a strong dependence on the orientation of
the needle. Both the magnitude and direction of the
force vary strongly. In fact, when �0 ¼ 0 the dipole
drags the force direction along with itself (parallel to
its orientation).

(2) The vertical component of the force does not always
point towards the half-line. For �0 ¼ �=8, for ex-
ample, we can see that for a certain range of the
orientation 	0, the (vertical) force points upward.
This will be essential to the argument in the next
section. III.

(3) The equilibrium configuration (the point of zero
torque) strongly depends on �0, the relative posi-
tioning of the two objects.

2. Repulsion

In this section, we follow the setup in Ref. [22] and
consider the interaction between a vertical needle and a
line with a gap, or two half-lines (see Fig. 15).

The two-body interaction of a half-line with an ellipse
was computed in the previous section. Here we also con-
sider higher reflections. Because the ellipse is small in size,
it will suffice to consider only a single reflection off of it.
But higher reflections from the half-lines should be in-
cluded. The three-body diagram in Fig. 16 is an example.
We will find that the latter diagrams are also signifi-

cantly smaller than the two-body diagrams. This again
proves the usefulness of the expansion in multiple reflec-
tions. Figure 16 summarizes these statements. As a result,
we can very precisely describe the interaction as the sum of
the two-body diagrams. Using Eqs. (18) and (19), the
energy takes the form

E 
T yy

cot3�0

48�d3
ð�24�0 þ 6 sinð2�0Þ

þ 5 sinð3�0Þ þ 3 sinð4�0Þ � 3 sinð5�0ÞÞ: (20)

This expression is plotted as the bold (blue) curve in
Fig. 17 where it has been also compared with the case

FIG. 15. The configuration of a needle against a gap.

FIG. 14 (color online). The direction (and the normalized
magnitude) of the force for �0 ¼ 0, �=8, �=4, �=2, 3�=4
and ��. See text for further description.

FIG. 16. Diagrammatic expansion in multiple reflections. The
two-body diagrams dominate the interaction. The higher-order
diagrams with more than one needle vertex are parametrically
smaller. Other higher-order diagrams are numerically smaller
due to the rapid convergence in higher reflections.

FIG. 17 (color online). Casimir interaction energy of the
vertical and horizontal needle and the circle with the gap in
the leading order of multiple reflections. The bold (blue) curve
represents the energy of a vertical needle, the fine (red) curve
gives the energy of a horizontal needle and the dashed curve is
the energy of a circle opposite the gap.

MOHAMMAD F. MAGHREBI PHYSICAL REVIEW D 83, 045004 (2011)

045004-10



where the needle was positioned horizontally (fine [red]
curve). The dashed curve belongs to a circle of the same
diameter as the needle and is simply obtained by summing
the values of the other two curves. Note that the contribu-
tion due toT 00 is smaller by one order magnitude which is
why it is neglected. The interesting point about the bold
curve, also discussed in the previous section, is that it
vanishes for h ¼ 0. The energy, however, is always nega-
tive so the force on a vertical needle in the proximity of the
gap is actually repulsive. This observation has been used to
propose a mechanism of obtaining repulsion in Ref. [22].
On the other hand, the force on a horizontally-positioned
needle or a circle is never repulsive. These are plotted in
Fig. 18. We also include the corrections to the force due to
higher-order reflections. The dots include the first correc-
tion from the three-body diagrams which is extremely
small compared to the leading order (shown by the solid
and dashed curves). Again this shows that a systematic
expansion of multiple reflections gives a remarkably accu-
rate result.

The configuration in Fig. 15 gives rise to repulsion, but it
is unstable with respect to the rotations in the plane. Also
according to the theorem in Ref. [24], it should be unstable
with respect to the displacement in the horizontal direction.

V. CONCLUSIONS

In this work, we have developed a multiple-reflection
expansion of the Casimir interaction. We have represented
the latter in a diagrammatic fashion and derived simple
rules to organize and consistently expand it.

We have argued that the formal diagrammatic expansion
converges rapidly and thus it is sufficient to keep only the
lowest-order diagrams in the number of reflections. We
have explicitly shown the latter for various configurations.
Specifically, the interaction between edges (of half-plates)
among themselves and with a needle has been computed.
Most notably, we have found an analytical expression
describing the interaction of two half-plates in the lowest
reflection, that should be accurate for practical applications.
Three-body interactions of half-plates are considered where

we have taken advantage of the remarkable convergence in
multiple reflections. Finally, the interaction between edges
and a needle is studied to find analytical formulae. The
results have been used for an analytic treatment of a model
of repulsion which has been proposed recently.
A more rigorous bound on the convergence of higher-

order diagrams is still desired for both two-body and multi-
body configurations. The expansion in the lowest reflec-
tions can be a basis for both numerical and analytical
studies of complex multibody configurations and geome-
tries. The rapid convergence in diagrammatic expansion
can lead to a remarkable simplification of the intensive
computations.
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APPENDIX: ELECTROMAGNETISM
IN TWO DIMENSIONS

In any dimensions, the Maxwell equations can bewritten
in their most general form as a tensor equation

@
F

� ¼ 0; (A1)

where F
� is the field strength tensor and 
, � ¼
0; 1; 2; . . . indicate the space-time coordinates. In two di-
mensions, this reads

@1F
10 þ @2F

20 ¼ 0;

@0F
01 þ @2F

21 ¼ 0;

@0F
02 þ @1F

12 ¼ 0:

(A2)

We can solve these coupled equations by introducing an
auxiliary field c such that

F10 ¼ @2c ; F20 ¼ �@1c ; F12 ¼ �@0c : (A3)

The gauge freedom has been fixed by this set of choices.
The electromagnetic lagrangian� 1

4F
�F

� then becomes

proportional to

1

2
ðð@0c Þ2 � ðrc Þ2Þ; (A4)

which is the lagrangian of a scalar field.
The boundary condition for a perfect conductor can be

written in a covariant form too,

�
��F

�n�j� ¼ 0; (A5)

where � denotes the surface of the object. In this equation,
� is the completely antisymmetric tensor and n is the vector

FIG. 18 (color online). Casimir force on the vertical and
horizontal needle and the circle with the gap. They are plotted
as the bold (blue), fine (red) and the dashed curves, respectively.
The dots include the correction from higher reflections.
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normal to the (hyper-)surface of the object. When the
auxiliary field is replaced for the field tensor, the last
equation becomes

@nc j� ¼ 0: (A6)

Hence, the quantum electrodynamics in two spatial dimen-
sions with perfect conductors as the boundaries is equiva-
lent to a quantum scalar field theory with Neumann
boundary conditions.
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