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Abstract

In this paper, we consider the problem of approximately solving a system of homogeneous
linear equations over reals, where each equation contains at most three variables.

Since the all-zero assignment always satisfies all the equations exactly, we restrict the
assignments to be “non-trivial”. Here is an informal statement of our result: it is NP-hard
to distinguish whether there is a non-trivial assignment that satisfies 1 − δ fraction of the
equations or every non-trivial assignment fails to satisfy a constant fraction of the equations
with a “margin” of Ω(

√
δ).

We develop linearity and dictatorship testing procedures for functions f : Rn 7→ R over
a Gaussian space, which could be of independent interest.

We believe that studying the complexity of linear equations over reals, apart from being
a natural pursuit, can lead to progress on the Unique Games Conjecture.

∗This is a new and improved version of our paper [KM10] that established the same result, but under the
Unique Games Conjecture.
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1 Introduction

In this paper, we study the following natural question: given a homogeneous system of linear
equations over reals, each equation containing at most three variables (call it 3Lin(R)), we
seek a non-trivial approximate solution to the system. In the authors’ opinion, the question is
poorly understood whereas the corresponding question over a finite field, say GF (2), is fairly
well understood [H̊as01, HK04]. Over a finite field, an equation is either satisfied or not satisfied,
whereas over reals, an equation may be approximately satisfied up to a certain margin and we
may be interested in the margin.

Apart from being a natural pursuit, we believe that studying the complexity of linear equa-
tions over reals can lead to progress on the Unique Games Conjecture. More details appear in
Section 1.5.

We first describe our result and techniques and compare it with known results.

1.1 Our Result

Fix a parameter b0 ≥ 1. Call a 3Lin(R) system b0-regular if every variable appears in the same
number of equations, and the absolute values of the coefficients in all the equations are in the
range [ 1b0 , b0]. Let X denote the set of variables so that an assignment is a map A : X 7→ R.
For an equation eq : r1x1 + r2x2 + r3x3 = 0, and an assignment A, the margin of the equation
(w.r.t. A) is Margin(A, eq)

.
= |r1A(x1) + r2A(x2) + r3A(x3)|. The all-zeroes assignment, ∀x ∈

X,A(x) = 0, satisfies all the equations exactly, i.e. with a zero margin. Therefore, we will be
interested only in the “non-trivial” assignments. For now, think of a non-trivial assignment as
one where the distribution of its values {A(x)|x ∈ X} is “well-spread”. Specifically, we may
consider the “Gaussian distributed assignments”, for which the set of values {A(x)|x ∈ X} is
distributed (essentially) according to a standard Gaussian. Here is an informal statement of our
result:

Theorem 1. (Informal) There exist universal constants b0, c (b0 = 2 works) such that for every
δ > 0, given a b0-regular 3Lin(R) system, it is NP-hard to distinguish between:

• (YES Case): There is a Gaussian distributed assignment that satisfies 1 − δ fraction of
the equations.

• (NO Case): For every Gaussian distributed assignment, for at least a fraction c of the
equations, the margin is at least c

√
δ.

A few remarks are in order. Since the 3Lin(R) instance is finite, we cannot expect the set
of values {A(x)|x ∈ X} to be exactly Gaussian distributed. The proof of our result proceeds
by constructing a probabilistically checkable proof (PCP) over a continuous high-dimensional
Gaussian space and then this “idealized” instance is discretized to obtain a finite instance.
Theorem 1 holds in the idealized setting. The discretization step introduces, in the YES Case,
a margin of at most γ in each equation, but γ can be made arbitrarily small relative to δ and
hence this issue may be safely ignored. The distribution of values is still “close” to a standard
Gaussian. We also set all variables with values larger than O(log(1/δ)) to zero. This applies
to only poly(δ) fraction of the variables and hence does not have any significant effect on the
result. Thus our assignment, in the YES Case, satisfies in particular:

∀x ∈ X, |A(x)| ≤ b = O(log(1/δ)), E
x∈X

[
A(x)2

]
= 1. (1)
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In the NO Case, our analysis extends to every assignment that satisfies (1), and the conclusion
is appropriately modified (which is necessary since an assignment that satisfies (1) could still
have a very skewed distribution of its values). A formal statement of the result appears as
Theorem 6 in Section 3.

1.2 Optimality of Our Result, Squared-ℓ2 versus ℓ1 Error, and Homogeneity

Optimality: The result of Theorem 1 is qualitatively almost optimal as can be seen from a
natural semi-definite programming relaxation and a rounding algorithm. Suppose there are N
variables X = {x1, . . . , xN}, m equations and jth equation in the system is

rj1xj1 + rj2xj2 + rj3xj3 = 0.

Consider the following SDP relaxation where for every variable xi, we have a vector vi and
b = O(log(1/δ)):

Minimize Ej∈[m]

[
∥rj1vj1 + rj2vj2 + rj3vj3∥2

]
,

Such that

∀xi ∈ X, ∥vi∥ ≤ b,

Exi∈X
[
∥vi∥2

]
= 1.

Suppose that in the YES Case, there is an assignment A that satisfies (1) and satisfies 1− δ
fraction of the equations exactly. Then letting vi = A(xi)v0 for some fixed unit vector v0 gives
a feasible solution to the SDP with the objective O(δ log2(1/δ)). Hence the SDP finds a feasible
vector solution with the same upper bound on the objective. Suppose the SDP vectors lie
in d-dimensional Euclidean space. Consider a rounding that picks a standard d-dimensional
Gaussian vector r and defines an assignment A(xi) = ⟨vi, r⟩. It is easily seen that after a
suitable scaling, with constant probability over the rounding scheme, we have:

E
xi∈X

[
A(xi)

2
]
= 1, E

j∈[m]

[
|rj1A(xj1) + rj2A(xj2) + rj3A(xj3)|2

]
≤ O(δ log2(1/δ)).

Thus the margin |rj1A(xj1) + rj2A(xj2) + rj3A(xj3)| is at most O(
√
δ log(1/δ)) for almost all,

say 99%, of the equations. Moreover, since ∀xi ∈ X, ∥vi∥ ≤ b, after rounding all but poly(δ)
fraction of the variables get values bounded by O(log2(1/δ)), and these variables can be set to
zero without affecting the solution significantly.

Optimality of Semidefinite Programming Based Algorithms: As shown by Raghaven-
dra [Rag08], the Unique Games Conjecture, if true, implies that for every constraint satisfaction
problem1, a certain semi-definite programming based algorithm gives the best efficient approx-
imation for the problem (as long as P ̸= NP). Similar results hold for many other types of
problems, e.g., certain covering and ordering problems. In light of this, a natural question is
whether one can prove for specific problems that an SDP-based algorithm is optimal, assuming
only P ̸= NP, and not relying on the Unique Games Conjecture.

Zwick [Zwi98] gave several examples of constraint satisfaction problems where each constraint
depends on three variables, for which the natural semi-definite programming algorithm (with

1where variables range over a constant sized alphabet, and each constraint depends on a constant number of
variables.
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a particular rounding) yields the best possible approximation, assuming P ≠ NP. These
examples include the AND function and the Majority function on three variables.

Our work can be seen as continuing this line of work, showing optimality of SDP for the
3Lin(R) problem.

The Squared-ℓ2 versus ℓ1 Error: The SDP algorithm described above finds an assignment
that minimizes the expected squared margin, i.e. Ej∈[m]

[
Margin(A, j)2

]
. Thus the problem

of minimizing the squared-ℓ2 error is a computationally easy problem. However, Theorem 1
implies that minimizing the ℓ1 error (i.e. Ej∈[m] [Margin(A, j)]), even approximately, is com-
putationally hard (assuming P ≠ NP). In the YES Case therein, all but δ fraction of the
equations are exactly satisfied, and the variables are bounded by O(log(1/δ)). Hence the ℓ1
error is O(δ log(1/δ)).2 In the NO Case, for any Gaussian distributed assignment, for at least
a constant fraction of the equations, the margin is at least Ω(

√
δ), and hence the ℓ1 error is

Ω(
√
δ). Thus approximating the ℓ1 error within a quadratic factor is computationally hard; this

is optimal since the squared-ℓ2 minimization implies an ℓ1 approximation within a quadratic
factor.

Homogeneity: Theorem 1 holds for a system of linear equations that is homogeneous and it
is necessary therein (in the NO Case) to restrict the distribution of values of an assignment.
When the system of equations is non-homogeneous, one might hope to drop the restriction on
the distribution of values. However, then a simple LP can directly minimize the ℓ1 error and
hence one cannot hope for a theorem analogous to Theorem 1.

1.3 Techniques

1.3.1 Dictatorship Test Over Reals

Similar to most hardness results, our result proceeds by developing an appropriate “dicta-
torship test”. However, unlike most previous applications that use a dictatorship test over an
n-dimensional boolean hypercube (or k-ary hypercube in some cases), we develop a dictatorship
test over Rn with the standard Gaussian measure. The test is quite natural, but its analysis
turns out to be rather delicate. We think that the test itself is of independent interest and
provide its high level overview here.

Let N n denote the n-dimensional Gaussian distribution with n independent mean 0 and
variance 1 coordinates. Let L2(Rn,N n) be the space of all measurable real functions f : Rn → R
with ∥f∥22 = Ex∼Nn

[
f(x)2

]
< ∞. This is an inner product space with the inner product

⟨f, g⟩ .
= Ex∼Nn [f(x)g(x)].

A dictatorship is a function f(x) = xi0 for some fixed coordinate i0 ∈ [n]. Given oracle access
to a function f ∈ L2(Rn,N n), we desire a probabilistic homogeneous linear test that accesses
at most three values of f . The tests, over all choices of randomness, can be written down as a
system of homogeneous linear equations over the values of f . We assume that the function f
is non-trivial, i.e. ∥f∥22 = 1, and anti-symmetric, i.e. f(−x) = −f(x) ∀x ∈ Rn. In particular,

E [f ] = 0. We desire a test such that a dictatorship function is a “good” solution to the system
of linear equations, whereas a function that is far from a dictatorship, is a “bad” solution to
the system. The test we propose is a combination of a linearity test and a coordinate-wise
perturbation test. A dictatorship function satisfies all the equations of the linearity test and

2A closer examination of the proof of Theorem 1 shows that the upper bound is actually O(δ); for the equations
that are not satisfied, the margin itself is distributed according to a standard Gaussian.
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1 − δ fraction of the equations of the coordinate-wise perturbation test. A function that is far
from a dictatorship, either fails “miserably” on the linearity test, or a constant fraction of the
equations have a margin Ω(

√
δ) on the coordinate-wise perturbation test.

One starts out by observing that a dictatorship function is linear. Thus, for any λ, µ ∈ R
such that λ2 + µ2 = 1, say λ = µ = 1√

2
, one can test whether

f(λx+ µy) = λx+ µy,

where x, y ∼ N n are picked independently. Clearly, a dictatorship function satisfies each such
equation exactly. The condition λ2 + µ2 = 1 ensures that the query point λx + µy is also
distributed according to N n. Note that we assume ∥f∥22 = 1 and E [f ] = 0. Functions in
L2(Rn,N n) have the Hermite representation; in particular, f can be decomposed into the linear
and non-linear parts:

f = f=1 + e, f=1 =

n∑
i=1

aixi,
⟨
f=1, e

⟩
= 0.

Note that 1 = ∥f∥22 = ∥f=1∥22 + ∥e∥22. A simple Fourier analytic argument shows that unless
∥e∥22 ≤ 0.01, the linearity test fails with “large” average squared margin (and the analysis of
the test is over). Therefore we may assume that ∥e∥22 ≤ 0.01.

Assume for now, that e ≡ 0 and hence the function is linear: f = f=1 =
∑n

i=1 aixi and∑n
i=1 a

2
i = 1. We introduce the coordinate-wise perturbation test to ensure that the coefficients

{ai}ni=1 are concentrated on a bounded set. This makes sense because for a dictatorship function,
there is exactly one non-zero coefficient. The test picks a random point x ∈ N n and for a ran-
domly chosen δ fraction of the coordinates, each chosen coordinate is re-sampled independently
from a standard Gaussian. If x̃ is the new point, then one tests whether

f(x̃)− f(x) = 0.

Note that for a dictatorship function, the above equation is satisfied with probability 1 − δ,
whereas with probability δ, the margin is distributed as a mean-0 variance-

√
2 Gaussian. On

the other hand, if f =
∑n

i=1 aixi is far from a dictatorship, then coefficients {ai}ni=1 are “spread-
out”, and with a constant probability, the margin is Ω(

√
δ). This is intuitively the idea behind

the test; however the presence of the non-linear part e complicates matters considerably. Even
though ∥e∥22 ≤ 0.01, we are dealing with margins of the order of

√
δ, and the non-linear part

e could potentially interfere with the above simplistic argument. We therefore need a more
refined argument. We observe that since f = f=1 + e,

f(x̃)− f(x) = (f=1(x̃)− f=1(x)) + (e(x̃)− e(x)).

When f=1 =
∑n

i=1 aixi is “spread-out”, the first term in the above equation, namely f=1(x̃)−
f=1(x), is Ω(

√
δ) with a constant probability as we observed above. The same can be concluded

about the left hand side of the equation, namely f(x̃) − f(x), unless the second term e(x̃) −
e(x) “interferes” in a very correlated manner. If this happens, then the function e must be
“sensitive” to noise along a random set of δn coordinates. We add a test ensuring that e is
“insensitive” to noise of comparable magnitude in a random direction. We then show that the
two behaviors are contradictory, using a Fourier analytic argument that relies, in addition, on
the cut-decomposition of line/ℓ1 metrics.
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1.4 The Reduction

The NP-hardness proof proceeds by using the dictatorship test discussed in the previous section
as a gadget in a reduction. One might expect the reduction to go along the lines of H̊astad’s
reduction for the Boolean 3Lin, however the real case confronts us with serious challenges. A
key component in H̊astad’s reduction addresses the following problem (in the Boolean case):

The Restriction Problem. Given oracle access to a function f : Fn → F that is approx-
imately a dictatorship function (for the sake of exposition, assume that for some i0 ∈ [n], on
most points y ∈ Fn we have f(y) = yi0), and to a function g : Fm → F, m · ℓ = n, test whether
g is the following restriction of f :

g(x1, . . . , xm) = f(x1, . . . , x1, . . . . . . , xm, . . . , xm),

where each xi repeats ℓ times. The test should check a linear equation on three values of f and
g (altogether).

The restriction problem can be solved in the Boolean case F = {0, 1} and for any finite field
F via self-correction. The tester is as follows:

1. Pick x ∈ Fm, y ∈ Fn uniformly at random.

2. Set z = (x1, . . . , x1, . . . . . . , xm, . . . , xm) ∈ Fn.

3. Accept if and only if
g(x1, . . . , xm) = f(y) + f(z − y).

Note that when f is a dictatorship function and g is the appropriate restriction of it, the test
always accepts (in fact, linearity of f suffices). Also note that the test is linear in three values of
f and g. The test works also when f is close to a dictatorship function f̃ , because the points y
and z− y are uniformly distributed in Fn, and with high probability, f evaluates to the correct
dictatorship function f̃ at both the points. Note that z itself is not uniformly distributed in Fn,
but still f(y) + f(z − y) yields, with high probability, the correct value f̃(z).

Now consider the analogous problem for functions in Gaussian space. In this case, we can at
most gurantee that with high probability over y ∼ N n it holds that f(y) ≈ yi0 . The tester we
showed for the finite field case no longer works: even when x ∈ Rm and y ∈ Rn are Gaussian
distributed, the point z − y may not be distributed as a Gaussian in Rn. We instead proceed
as follows. Define a subspace S of Rn as:

S := {(x1, . . . , x1, . . . . . . , xm, . . . , xm) |x1, . . . , xm ∈ R} ,

where each xi repeats ℓ times. Let π : S 7→ Rm denote the projection that for 1 ≤ i ≤ m, picks
the common coordinate from the ith block. The tester is as follows:

1. Pick y ∼ N n.

2. Write y = y|| + y⊥, where y|| ∈ S and y⊥ ∈ S⊥. Set y′ = y|| − y⊥ and let y↓ ∈ Rm be the
vector y↓ :=

√
ℓ · π(y||). It is easily seen that y↓ is distributed as Nm.
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3. Check that

g(y↓) =
√
ℓ · f(y) + f(y′)

2
.

It can be easily checked that if f is a dictatorship and g its appropriate restriction, then the
test equation holds. Note that y, y′ are both Gaussian distributed, and thus if f is close to a

dictatorship f̃ , then with high probability f(y) ≈ f̃(y) and f(y′) ≈ f̃(y′) and
√
ℓ · f(y)+f(y′)

2 ≈
√
ℓ · f̃(y)+f̃(y′)

2 = g(y↓) if g is the appropriate restriction of f̃ . One caveat however is that the

error involved in the approximating f̃ by f gets multiplied by
√
ℓ in this calculation and if ℓ is

too large, the equation becomes rather meaningless.
How large is ℓ in hardness applications? This parameter corresponds to the “Outer PCP”

(aka Label Cover) being “ℓ to 1”. In standard hardness results, such as H̊astad’s, one uses the
Parallel Repetition Theorem [Raz98] and ℓ = (1/ε)O(1), where ε is the soundness error of the
Outer PCP. Moreover, the soundness error ε usually needs to be tiny, which in turn requires ℓ
to be large, and this is prohibitive in our application.

To avoid having large ℓ, we do not use parallel repetition, and work instead with the basic PCP
Theorem [AS98, ALM+98]. This PCP has high soundness error (say 0.99), but is adequate for
the purpose of proving Theorem 1. The reason is that Theorem 1 is also a “hige error” hardness
result – we only guarantee in the NO case that a constant fraction of the equations (say 1%)
fail with a good margin.

Still, working with a high error PCP seems impossible at first sight. The dictatorship test
gives rise to a list decoding of possible dictatorship functions, rather than identifying a single
dictatorship function, and this seems to call for an Outer PCP with low error. Indeed, virtually
all existing hardness results rely on PCP with low error for the same reason (where one of the
dictatorship coordinates in the decoded list is picked at random as a candidate label/answer
for the Outer PCP). To circumvent the need for a low error PCP, we build a new Outer PCP.
Suppose that the basic PCP corresponds to a set of variables Z, a set of tests/constraints C,
and each test depends on d variables. The new Outer PCP is as follows:

1. The verifier picks independently at random k possible tests c1, . . . , ck ∈ C, an index i ∈ [k],
and a variable z in the test ci.

2. The verifier sends the tuple u = (c1, . . . , ck) to the first prover and the tuple
(c1, . . . , ci−1, z, ci+1, . . . , ck) to the second prover.

3. Both provers are supposed to answer with the values of all the variables in the tuple they
were given.

4. The verifier checks that provers’ answers are consistent and satisfy the tests.

Note that this outer PCP is as sound as the basic PCP. Moreover, it is “ℓ = d to 1” where each
constraint depends on d variables for a fixed constant d. The crux of the analysis is that a short
list of each prover’s answers in this PCP translate (with high probability) into just one answer
for a random coordinate i ∈ [k] on which the basic PCP test is actually performed. Thus, via
this Outer PCP, we convert the list decoding setting into a unique decoding setting, and allow
the reduction to go through. We make the argument formal by using the technique of correlated
sampling [KT02, Hol09] to choose a consistent element from two lists, one for each prover.

Due to the specific Outer PCP construction, our reduction maps instances of Sat of size
N to instances of 3Lin(R) of size NO(k), k = (1/δ)O(1), where δ is the parameter of Theorem
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1. Hence, the reduction incurs a blow-up of N (1/δ)O(1)
in the size. This blow-up matches the

blow-up predicted by the recent work of Arora, Barak and Steurer [ABS10] for unique games.
We remark that the actual analysis is much more complex than hinted here. The reason is that

the 3Lin(R) instance constructed by the reduction consists of several functions f : Rn 7→ R that
could have widely varying norms, whereas list decoding via dictatorship testing can be extracted
only from functions with non-negligible norms, and the eventual prover strategies have to be
weighted delicately according to these norms.

1.5 Comparison with Known Results and Motivation for Studying 3LIN(R)

MinUncut: Given a graph G(V = [N ], E), the MinUncut problem seeks a cut in the graph
that minimizes the number of edges not cut. It can be thought of as an instance of 2Lin(R)
where one has variables {x1, . . . , xN}, and for every edge (i, j) ∈ E, a homogeneous equation:

xi + xj = 0,

and the goal is to find a boolean, i.e. {−1, 1}-valued assignment that minimizes the number of
unsatisfied equations. Khot et al [KKMO07] show that assuming the UGC, for sufficiently small
δ > 0, given an instance that has an assignment that satisfies all but δ fraction of the equations,
it is NP-hard to find an assignment that satisfies all but 2

π

√
δ fraction of the equations. This

result is qualitatively similar to Theorem 1, but note that the variables are restricted to be
boolean.

Balanced Partitioning: Given a graph G(V = [N ], E), the Balanced Partitioning problem
seeks a roughly balanced cut (i.e. each side has Ω(N) vertices) in the graph that minimizes
the number of edges cut. It can again be thought of as an instance of 2Lin(R) where one has
variables {x1, . . . , xN}, and for every edge (i, j) ∈ E, a homogeneous equation:

xi − xj = 0, (2)

and the goal is to find a {−1, 1}-valued and roughly balanced assignment that minimizes the
number of unsatisfied equations. Arora et al [AKK+08] show that assuming a certain variant
of the UGC, given an instance of Balanced Partitioning that has a balanced assignment that
satisfies all but δ fraction of the equations, it is NP-hard to find a roughly balanced assignment
that satisfies all but δc fraction of the equations. Here 1

2 < c < 1 is an arbitrary constant and
for every such c, the result holds for all sufficiently small δ > 0. The result is again qualitatively
similar to Theorem 1. In fact, the result holds even when the variables are allowed to be real
valued, say in the range [−1, 1], as long as the set of values is “well-separated”. Imagine picking
a random λ ∈ [−1, 1] and partitioning the variables (i.e. vertices of the graph) into two sets
depending on whether their value is less or greater than λ. The cut is roughly balanced if the

set of values is well-separated, and the probability that an edge (i, j) ∈ E is cut is
|xi−xj |

2 . Thus
solving the 2Lin(R) instance w.r.t. ℓ1 error is equivalent to solving the Balanced Partitioning
problem.

Motivation for Studying 3LIN(R): The hardness results for the MinUncut and the Balanced
Partitioning problems cited above are known only assuming the UGC. It would be a huge progress
to prove these results without relying on the UGC and could possibly lead to a proof of the
UGC itself. Due to the close connection of both problems to the 2Lin(R) problem, it is natural
to seek a hardness result for the 2Lin(R) problem with respect to the ℓ1 error. This is the main
motivation behind the work in this paper.
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We propose that understanding the complexity of the 3Lin(R) problem might help us make
progress on the UGC: the plan would be to (1) prove Theorem 1 (which we do) and then (2)
give a gap-preserving reduction from 3Lin(R) to 2Lin(R). We note that if step (2) achieves
hardness of 2Lin(R) similar to the hardness we prove for 3Lin(R), then the UGC follows using
the parallel repetition theorem of Raz [Raz98]. We briefly outline the transformation below.

Assume that the following holds: given an instance of 2Lin(R), where the coefficients of
the equations are taken from a set of fixed size, it is NP-hard to distinguish between the case
where there is a Gaussian assignment that exactly satisfies 1− δ fraction of the equations, and
the case where for any Gaussian-like assignment, at least Ω(1) fraction of the equations have
margin Ω(

√
δ). For simplicity, assume that the coefficients of the equations are ±1. We can

truncate the assignments to the variables to some accuracy depending on δ, so exact equality
is preserved, while a margin of Ω(

√
δ) becomes an unsatisfied equation. Now, we can perform

a large number t of equation tests in parallel, while performing statistical tests on the variables
involved to verify that the assignment is Gaussian-like. By the parallel repetition analysis, this
results in a low error unique game.

Guruswami and Raghavendra’s Result: Our result is incomparable to that in [GR09].
Their result shows that given a system of non-homogeneous linear equations over integers (as
well as over reals), with three variables in each equation, it is NP-hard to distinguish 1 − δ
satisfiable instances from δ satisfiable instances. The instance produced by their reduction is
non-homogeneous, a good solution in the YES Case consists of large (unbounded) integer values,
the result is very much about exactly satisfying equations, and in particular does not give, if
any, a strong gap in terms of margins, especially relative to the magnitude of integers in a good
solution.

Comparison with Results over GF (2): We argue that, in order to make progress on Min-
Uncut, Balanced Partitioning and UGC, studying equations over reals may be the “right” thing
to do, as opposed to equations over GF (2). As we discussed before, the Balanced Partitioning
problem can be thought of as an instance of 2Lin(R) (as in Equation (2)) where one seeks to
minimize ℓ1 error and the set of values is a well-separated set in [−1, 1]. Assuming a UGC vari-
ant, we know that (δ, δc)-gap is NP-hard for c > 1

2 , whereas Theorem 1 yields a similar gap for
3Lin(R), with a stronger conclusion that a constant fraction of equations have a margin at least
Ω(

√
δ). We pointed out that such a gap is also the best one may hope for. Thus the 3-variable

case seems qualitatively similar to the 2-variable case in terms of hardness gap that may be
expected. For equations over GF (2), the two cases are qualitatively very different. Suppose
one thinks of the Balanced Partitioning problem as an instance of 2Lin(GF (2)) where a cut is a
GF (2) valued balanced assignment, and one introduces an equation xi ⊕ xj = 0 for each edge
(i, j). Its generalization to homogeneous equations with three variables, namely 3Lin(GF (2)),
turns out to be qualitatively very different. Holmerin and Khot [HK04] show a hardness gap
(in terms of fraction of equations left unsatisfied by a balanced assignment) of (δ,≈ 1

2) which is
qualitatively very different from the (δ, δc) gap that may be expected for 2Lin(GF (2)).

1.6 Overview of the Paper

In Section 3, we formally state our main result (Theorem 6) and provide preliminaries on Hermite
representation of functions in L2(Rn,N n). In Section 4, we propose and analyze the linearity
test that is used as a sub-routine in the dictatorship test proposed and analyzed in Section 5.
The reduction, proving our main result, is presented in Section 6. The soundness analysis is

8



first presented in a simplified setting and then in the general setting. The entire reduction is
presented in a continuous setting and then discretized in Section 6.7.

2 Problem Definition and Our Result

We consider the problem of approximately solving a system of homogeneous linear equations
over the reals. Each equation depends on (at most) three variables. The system of equations is
given by a distribution over equations, meaning different equations receive different “weights”.

Definition 2 (Robust-3Lin(R) instance). Let b0 ≥ 1 be a parameter. A Robust-3Lin(R)
instance is given by a set of real variables X and a distribution E over equations on the variables.
Each equation is of the form:

r1x1 + r2x2 + r3x3 = 0,

where the coefficients satisfy |r1|, |r2|, |r3| ∈ [ 1b0 , b0] and x1, x2, x3 ∈ X.

Definition 3 (Assignment to Robust-3Lin(R) instance). An assignment to the variables of a
Robust-3Lin(R) instance (X, E) is a function A : X → R. An equation r1x1+ r2x2+ r3x3 = 0
is exactly satisfied by A if

r1A(x1) + r2A(x2) + r3A(x3) = 0.

The equation is β-approximately satisfied for an approximation parameter β, if

|r1A(x1) + r2A(x2) + r3A(x3)| ≤ β.

Notation. The set of variables appearing in an equation eq : r1x1+r2x2+r3x3 = 0 is denoted
as Xeq = {x1, x2, x3}. The assignment A will usually be clear from the context. We use the
shorthand |eq| to denote the margin |r1A(x1) + r2A(x2) + r3A(x3)|.

An assignment that assigns 0 to all variables trivially exactly satisfies all equations. Hence,
we use a measure for how different the assignment is from the all-zero assignment, locally (per
equation) and globally (on average over all equations):

Definition 4 (Assignment norm). Let (X, E) be a Robust-3Lin(R) instance. Let A : X → R
be an assignment. Define the squared norm of A at equation eq to be:

∥Aeq∥22 = E
x∈Xeq

[
A(x)2

]
.

Define the squared norm of A to be:

∥A∥22 = E
eq∼E

[
∥Aeq∥22

]
.

Remark 2.1. We will sometimes refer to a distribution on the set of variables X induced by
first picking an equation from the distribution E and then picking a variable at random from
that equation. If D denotes this distribution on variables, then clearly ∥A∥22 = Ex∈D

[
A(x)2

]
.

Legitimate assignments A are required to be normalized ∥A∥22 = 1 and bounded A : X →
[−b, b] for some parameter b. We seek to maximize:

valβ(X,E)(A)
.
= E

eq∼E

[
χ|eq|≤β · ∥Aeq∥22

]
, (3)

9



where χ|eq|≤β is indicator function of the event that |eq| ≤ β. In words, we seek to maximize3

the total squared norm of equations that are satisfied with margin of at most β.

Definition 5 (Robust-3Lin(R) problem). Let b0 ≥ 1, b ≥ 0 and 0 < β < 1 be parameters.
Given a Robust-3Lin(R) instance where the coefficients are in [ 1b0 , b0] in magnitude, the prob-

lem is to find an assignment A : X → [−b, b] of norm ∥A∥22 = 1 that maximizes valβ(X,E)(A).

We are now ready to formally state our result:

Theorem 6 (Hardness of Robust-3Lin(R)). There exist universal constants b0 = 2 and c, s >
0, such that for any γ, δ > 0, there is b = O(log(1/δ)), such that given an instance (X, E) of
Robust-3Lin(R) with the magnitude of the coefficients in [ 1b0 , b0], it is NP-hard to distinguish
between the following two cases:

• Completeness: There is an assignment A : X → [−b, b] with ∥A∥22 = 1, such that

valγ(X,E)(A) ≥ 1− δ.

• Soundness: For any assignment A : X → [−b, b] with ∥A∥22 = 1, it holds that

valc
√
δ

(X,E)(A) ≤ 1− s.

We note three points: (1) The parameter γ is to be thought of as negligible compared to δ
and essentially equal to 0. Our reduction is best thought of as a continuous construction on a
Gaussian space, and the parameter γ arises as a negligible error involved in discretization of the
construction. (2) In the YES Case, we can say more about how the “good” assignment looks like.
Consider the distribution D induced on variables by first picking an equation eq ∈ E and then
picking one of the variables in the equation. The values taken by the good assignment, w.r.t. D,
are distributed (essentially) as a standard Gaussian, and can be truncated to b = O(log(1/δ))
in magnitude without affecting the result. (3) In the NO Case, if an assignment has either
values bounded in [−1, 1] or values distributed, w.r.t. D, (essentially) as a standard Gaussian,
it is indeed the case that a constant fraction of the equations fail with a margin of at least c

√
δ,

proving informal Theorem 1.

Appendix

3 Preliminaries

3.1 Fourier Analysis Over Gaussian Space

Gaussian Space. LetN n denote the n-dimensional Gaussian distribution with n independent
mean-0 and variance-1 coordinates. L2(Rn,N n) is the space of all real functions f : Rn → R
with Ex∼Nn

[
f(x)2

]
< ∞. This is an inner product space with inner product

⟨f, g⟩ .
= E

x∼Nn
[f(x)g(x)].

3We recommend that the reader takes a pause and convinces himself/herself that this is a reasonable measure
of how good an assignment is. Since an assignment may be very skewed, assigning large values to a tiny subset
of variables and zero to the rest of the variables, simply maximizing the fraction of equations satisfied does not
make much sense.
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Hermite Polynomials. For a natural number j, the j’th Hermite polynomial Hj : R → R is

Hj(x) =
1√
j!

· (−1)jex
2/2 dj

dxj
e−x2/2.

The first few Hermite polynomials are H0 ≡ 1, H1(x) = x, H2(x) = 1√
2
· (x2 − 1), H3 =

1√
6
· (x3 − 3x), H4(x) =

1
2
√
6
· (x4 − 6x2 + 3). The Hermite polynomials satisfy:

Claim 3.1 (Orthonormality). For every j, ⟨Hj ,Hj⟩ = 1. For every i ̸= j, ⟨Hi,Hj⟩ = 0. In
particular, for every j ≥ 1, Ex∈N [Hj(x)] = 0.

Claim 3.2 (Addition formula).

Hj

(
x+ y√

2

)
=

1

2j/2
·

j∑
k=0

√(
j

k

)
Hk(x)Hj−k(y).

Fourier Analysis. The multi-dimensional Hermite polynomials defined as:

Hj1,...,jn(x1, . . . , xn) =
n∏

i=1

Hji(xi),

form an orthonormal basis for the space L2(Rn,N n). Every function f ∈ L2(Rn,N n) can be
written as

f(x) =
∑
S∈Nn

f̂(S) HS(x),

where S is multi-index, i.e. an n-tuple of natural numbers, and the f̂(S) ∈ R are the Fourier
coefficients of f . The size of a multi-index S = (S1, . . . , Sn) is defined as |S| =

∑n
i=1 Si. The

Fourier expansion of degree d is f≤d =
∑

|S|≤d f̂(S)HS(x), and it holds that

lim
d→∞

∥f − f≤d∥22 = 0.

The linear part of f is f=1 = f≤1 − f≤0. When f is anti-symmetric, i.e. ∀x ∈ Rn, f(−x) =
−f(x), we have f̂ (⃗0) = E [f ] = 0 and f≤0 ≡ 0.

Influence. We denote the restriction of a Gaussian variable x ∼ N n to a set of coordinates
D ⊆ [n] by x|D. The influence of a set of coordinates D ⊆ [n] on a function f ∈ L2(Rn,N n) is

ID(f)
.
= E

x|D

[
Var
x|D

[f(x)]

]
.

The influence can also be expressed in terms of Fourier spectrum of f :

Proposition 3.3.

ID(f) =
∑

S∩D ̸=ϕ

f̂(S)2,

where S ∩ D ̸= ϕ denotes that there exists i ∈ D such that Si ̸= 0. Note that S ∈ Nn is a
multi-index and D ⊆ [n] is a subset of coordinates.
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Perturbation Operator. The perturbation operator (more commonly known as the Ornstein-
Uhlenbeck operator) Tρ takes a function f ∈ L2(Rn,N n) and produces a function Tρf ∈
L2(Rn,N n) that averages the value of f over local neighborhoods:

Tρf(x) = E
y∈Nn

[
f(ρx+

√
1− ρ2y)

]
.

The Fourier spectrum of Tρf can be obtained from the Fourier spectrum of f as follows:

Proposition 3.4.

Tρf =
∑
S

ρ|S|f̂(S) HS .

3.2 Distributions: Entropy and Distance

The entropy of a probability distribution D over a discrete probability space Ω is

H(D)
.
=
∑
a∈Ω

D(a) log
1

D(a)
.

Entropy satisfies the following properties:

Proposition 3.5. [CT91] For distributions D,D1, . . . , Dk over Ω,

• Range: 0 ≤ H(D) ≤ log |Ω|; the lower bound is attained by constant distributions; the
upper bound is attained by the uniform distribution.

• Concavity: H( 1k
∑k

i=1Di) ≥ 1
k

∑k
i=1H(Di).

• Sub-additivity: H(D1 . . . Dk) ≤
∑k

i=1H(Di).

The statistical distance between distributions D1 and D2 over a discrete probability space Ω
is

∆(D1, D2)
.
=

1

2

∑
a∈Ω

|D1(a)−D2(a)| .

A distribution with nearly maximal entropy is close to uniform:

Proposition 3.6. [CT91]

log |Ω| −H(D) ≥ 1

2 ln 2
∥D − Uniform∥21.

The squared Hellinger distance between D1 and D2 is

∆2
H(D1, D2)

.
=

1

2

∑
a∈Ω

(√
D1(a)−

√
D2(a)

)2
= 1−

∑
a∈Ω

√
D1(a)D2(a).

We have the following connection between the Hellinger distance and the statistical distance:

Proposition 3.7. [Pol02]

∆2
H(D1, D2) ≤ ∆(D1, D2) ≤

√
2∆H(D1, D2).
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4 Linearity Testing

We show how to perform linearity testing for functions in L2(Rn,N n) using linear equations
on three variables each. Linear functions always exactly satisfy the linear equations. Functions
with a large non-linear part give rise to heavy margins in the equations.

The linearity test we show resembles linearity testing in finite fields (see, e.g., [BLR93,
BCH+96]). We change it slightly so as to guarantee that all the queries to the function are
distributed according to the Gaussian distribution.

Linearity Test:

Given oracle access to a function f ∈ L2(Rn,N n), f anti-symmetric, i.e., f(−x) = −f(x) for
every x ∈ Rn. Pick x, y ∼ N n and test:

f(x) + f(y) +
√
2 · f

(
−x+ y√

2

)
= 0.

Note that a linear function always exactly satisfies the test’s equation. The following lemma
shows that if the test’s equations are approximately satisfied, then the weight of f ’s non-linear
part is small:

Lemma 4.1 (Linearity testing). Let f ∈ L2(Rn,N n), f anti-symmetric, i.e., f(−x) = −f(x)
for every x ∈ Rn. Then

∥f − f=1∥22 ≤ E
x,y∼Nn

[∣∣∣∣f(x) + f(y) +
√
2 · f

(
−x+ y√

2

)∣∣∣∣2
]
.

Proof. Since x and y are independent, the variables x, y and −x+y√
2
are all distributed according

to N n. Also f is anti-symmetric. Hence,

E
x,y∼Nn

[∣∣∣∣f(x) + f(y) +
√
2 · f

(
−x+ y√

2

)∣∣∣∣2
]

= 4∥f∥22 − 4 ·
√
2 · E

x,y

[
f(x)f

(
x+ y√

2

)]
. (4)

Writing in terms of the Fourier representation:

E
x,y

[
f(x)f

(
x+ y√

2

)]
= E

x,y

 ∑
S,T∈Nn

f̂(S)f̂(T )HS(x)HT

(
x+ y√

2

)
=

∑
S,T

f̂(S)f̂(T )E
x,y

[
n∏

i=1

HSi(xi)HTi

(
xi + yi√

2

)]

=
∑
S,T

f̂(S)f̂(T )

n∏
i=1

E
x,y

[
HSi(xi)HTi

(
xi + yi√

2

)]
.

By Claim 3.2,

HTi

(
xi + yi√

2

)
=

1

2Ti/2

Ti∑
l=0

√(
Ti

l

)
Hl(xi)HTi−l(yi).
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Hence,

E
x,y

[
f(x)f

(
x+ y√

2

)]
=

∑
S,T

f̂(S)f̂(T )
n∏

i=1

1

2Ti/2

Ti∑
l=0

√(
Ti

l

)
E
x
[HSi(xi)Hl(xi)]E

y
[HTi−l(yi)].

By Claim 3.1, Ey [HTi−l(yi)] = 0, unless l = Ti, and Ex [HSi(xi)Hl(xi)] = 0, unless l = Si.
Thus,

E
x,y

[
f(x)f

(
x+ y√

2

)]
=

∑
S

f̂(S)2 ·
(

1√
2

)|S|

≤ 1√
2
· ∥f=1∥22 +

(
1√
2

)2

· ∥f − f=1∥22, (5)

where we used f̂ (⃗0) = 0 that follows from anti-symmetry. By combining equality (4) and
inequality (5),

E
x,y∼Nn

[∣∣∣∣f(x) + f(y) +
√
2 · f

(
−x+ y√

2

)∣∣∣∣2
]

≥ 4∥f∥22 − 4∥f=1∥22 −
4√
2
∥f − f=1∥22

= (4− 2
√
2)∥f − f=1∥22

≥ ∥f − f=1∥22.

5 Dictator Testing

In this section we devise a dictator test, i.e., a test that checks whether an anti-symmetric real
function in L2(Rn,N n) is a dictator (that is, of the form f(x) = xi for some i ∈ [n]) or far from
a dictator. We consider a function to be close to a dictator if it satisfies the following definition:

Definition 7 ((J, s,Γ)-Approximate linear junta). An anti-symmetric function f ∈ L2(Rn,N n)
with linear part f=1 =

∑n
i=1 aixi, is called a (J, s,Γ)-approximate-linear-junta, if:

• ∥f=1∥22 =
∑n

i=1 a
2
i ≥ (1− s)∥f∥22.

•
∑

i:a2i≤
1
J
∥f∥22

a2i ≤ Γ · ∥f∥22.

An approximate linear junta has almost all the Fourier mass on its linear part, and this linear
part is concentrated on at most J coordinates: Let I =

{
i | a2i ≥ 1

J ∥f∥
2
2

}
. Then |I| ≤ J , and

∥f −
∑

i∈I aixi∥22 ≤ (s+ Γ)∥f∥22.
Our test will produce equations that dictators almost always satisfy exactly. On the other

hand, functions that are not even approximate linear juntas fail with large margin.

Theorem 8 (Dictator testing). For every constant 0 < Γ ≤ 0.01, there are constants s, c > 0
such that the following holds. For every sufficiently small δ > 0, there is a dictator test given
by a distribution E over equations, where each equation depends on the value of f on at most
three points in Rn. The test satisfies the following properties:

1. Uniformity: The distribution over Rn obtained from picking at random an equation and x
such that f(x) is queried by the equation, is Gaussian N n.
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2. Bound on coefficients: All the coefficients in the equations are in [ 1b0 , b0] in magnitude
where b0 is a universal constant (b0 = 2 works).

3. Completeness: If f(x) = xi for some i ∈ [n], then

E
eq∼E

[
χ|eq|>0 · ∥feq∥22

]
≤ δ.

4. Soundness: For any anti-symmetric function f ∈ L2(Rn,N n), ∥f∥22 = 1, if f is not a
( 10
Γδ2

, s,Γ)-approximate linear junta, then

E
eq∼E

[
χ|eq|>c

√
δ · ∥feq∥

2
2

]
≥ s

100
.

Remark 5.1. Note that it follows from the soundness guarantee that for an anti-symmetric
function f ∈ L2(Rn,N n) with arbitrary non-zero norm, if f is not a ( 10

Γδ2
, s,Γ)-approximate

linear junta, then

E
eq∼E

[
χ|eq|>c

√
δ·∥f∥2 · ∥feq∥

2
2

]
≥ s

100
· ∥f∥22.

This is obtained by applying the theorem with the normalized version of f , i.e., f
∥f∥2 .

The test will consist of three steps: (i) Linearity test that rules out functions that are not
well-approximated by their linear parts. (ii) Coordinatewise perturbation test that checks that
the function does not change by re-sampling a small fraction of the coordinates. (iii) Random
perturbation test that guarantees that the function does not change much if perturbing the
input slightly in a random direction. We achieve the effect of this test by instead doing two
correlated linearity tests, in order to keep the coefficients in the range [12 , 2] in magnitude.

Dictator Test:

Given oracle access to a function f ∈ L2(Rn,N n), f anti-symmetric. With equal probability,
perform one of these three tests:

1. Linearity test on f , as in Section 4.

2. Coordinatewise perturbation test:

(a) Pick x, y ∼ N n. Pick x̃ ∼ N n as follows: for i = 1, 2, . . . , n, independently, with
probability 1− δ, set x̃i = xi, and with probability δ, set x̃i = yi.

(b) Test:
f(x)− f(x̃) = 0.

3. Random perturbation test (in disguise):

(a) Pick y, z ∼ N n. Let x = y+z√
2
, w = y−z√

2
, and

x̃ = (1− δ)x+
√

2δ − δ2w

=

(
1− δ√

2
+

√
2δ − δ2√

2

)
y +

(
1− δ√

2
−

√
2δ − δ2√

2

)
z

= λ1y + λ2z (say).
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(b) Note that λ1, λ2 are very close to 1√
2
. Test with equal probability:

f(x)− 1√
2
f(y)− 1√

2
f(z) = 0.

f(x̃)− λ1f(y)− λ2f(z) = 0.

Note that in the random perturbation test, x̃ = (1− δ)x+
√
2δ − δ2w and x is independent

of w. Thus x̃ can indeed be thought of as a perturbation of x in a random direction. The
uniformity property, as well as the bound on the coefficients, hold by the definition of the tests.
Denote the distribution on all equations by E , and the three sub-distributions by: El (linearity
tests), Ec (coordinatewise perturbation tests), Er (random perturbation tests).

Completeness: A dictator function f , being a linear function, always exactly satisfies the
linearity test and the random perturbation test. As for the coordinatewise perturbation test,

Eeq∼Ec
[
χ|eq|>0 · ∥feq∥22

]
≤ δ∥f∥22 = δ.

Soundness: In the following, O(·) and Ω(·) notations will hide universal constants. Let Γ be
the given constant in Theorem 8. We will pick s and c to be constants eventually, but throughout
the proof, retain the dependence on the parameters. Assume for now that 2c ≤ s ≤ 0.01 and
3
√
s ≪

√
Γ. The parameter δ is thought of as tending to zero.

Let f ∈ L2(Rn,N n) be an anti-symmetric function, ∥f∥22 = 1, f is not a (J = 10
Γδ2

, s,Γ)-
approximate linear junta. Assume, for the sake of a contradiction, that

E
eq∼E

[
χ|eq|≤c

√
δ · ∥feq∥

2
2

]
≥ 1− s

100
.

Denote the non-linear part of f by e = f − f=1 (since f is anti-symmetric, f≤0 ≡ 0). We
handle the cases that ∥e∥22 ≤ s and ∥e∥22 > s separately.

Case ∥e∥22 > s: By Lemma 4.1, Eeq∼El

[
|eq|2

]
≥ ∥e∥22 > s. By Cauchy-Schwarz inequality, for

every equation,4 we have |eq|2 ≤ 12∥feq∥22, so

s < E
eq∼El

[
|eq|2

]
≤ E

eq∼El

[
χ|eq|>c

√
δ · 12∥feq∥

2
2

]
+ c2δ ≤ 12 E

eq∼El

[
χ|eq|>c

√
δ · ∥feq∥

2
2

]
+

s

3
.

Since the distribution E is average of distributions El, Ec, and Er, we get

E
eq∼E

[
χ|eq|>c

√
δ · ∥feq∥

2
2

]
≥ 1

3
· E
eq∼El

[
χ|eq|>c

√
δ · ∥feq∥

2
2

]
>

s

100
.

This contradicts our assumption that Eeq∼E

[
χ|eq|≤c

√
δ · ∥feq∥

2
2

]
≥ 1− s

100 .

4The linearity testing equation is of the form f(x) + f(y)−
√
2f(z) = 0. Here |eq| = |f(x) + f(y)−

√
2f(z)|

and ∥feq∥22 = f(x)2+f(y)2+f(z)2

3
.
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Case ∥e∥22 ≤ s: We first show that in this case, almost every equation is satisfied with margin
at most c

√
δ.

Lemma 5.1. The probability that a dictator test equation chosen at random is c
√
δ-approximately

satisfied is at least 1− 7 3
√
s.

Proof. We begin by showing that for x ∼ N n, |f(x)| ≥
3
√
s

4 except with probability at most 6 3
√
s.

When x ∼ N n, except with probability at most 4 3
√
s, we have that |e(x)|2 ≤ 1

4 3√s
∥e∥22 ≤ s2/3

4 .

Write f=1(x) =
∑n

i=1 aixi. When x ∼ N n, we have that f=1(x) is normal with mean 0
and variance

∑n
i=1 a

2
i = 1 − ∥e∥22 ≥ 0.99. Thus, except with probability at most 2 3

√
s, we

have that
∣∣f=1(x)

∣∣ ≥ √
0.99 3

√
s. Overall, except with probability at most 6 3

√
s, we have that

|f(x)| ≥
∣∣f=1(x)

∣∣− |e(x)| ≥
√
0.99 3

√
s−

3
√
s

2 ≥
3
√
s

4 .
Assume, for the sake of a contradiction, that with probability at least 7 3

√
s, a dictator test

equation has margin at least c
√
δ. An equation has at most three variables, and each of these

is distributed as N n. With probability at least 7 3
√
s − 6 3

√
s = 3

√
s, it also holds that the

first variable, say f(x), in the equation has magnitude |f(x)| ≥
3√s
4 . For such an equation,

∥feq∥22 ≥ 1
3f(x)

2 ≥ s2/3

48 . Hence,

E
eq∼E

[
χ|eq|>c

√
δ · ∥feq∥

2
2

]
≥ 3

√
s

s2/3

48
>

s

100
.

This contradicts our assumption, and the claim follows.

In the sequel we inspect the change in e as we perturb the input. We show that our assump-
tions on f (made towards a contradiction) imply that e may change somewhat as a result of a
perturbation in a random direction, yet changes noticeably more as a result of a coordinatewise
perturbation. We will later show that these two behaviors are contradictory.

Lemma 5.2 (e is noise-stable for random perturbation). (Under the assumptions we made
towards a contradiction) Let x, x̃ be picked as in the random perturbation test. Then, with
probability at least 1−O( 3

√
s),

|e(x)− e(x̃)| ≤ O( 3
√
s)
√
δ.

Proof. Since the random perturbation test is performed with probability 1
3 , from Lemma 5.1,

with probability at least 1−O( 3
√
s), we have∣∣∣∣f(x)− 1√

2
f(y)− 1√

2
f(z)

∣∣∣∣ ≤ c
√
δ,

|f(x̃)− λ1f(y)− λ2f(z)| ≤ c
√
δ.

Since f = f=1 + e, and f=1 is linear, the above inequalities are really inequalities for e:∣∣∣∣e(x)− 1√
2
e(y)− 1√

2
e(z)

∣∣∣∣ ≤ c
√
δ,

|e(x̃)− λ1e(y)− λ2e(z)| ≤ c
√
δ.

Combining the two inequalities and substituting for λ1 and λ2, we get:

|e(x)− e(x̃)| ≤ 2c
√
δ +O(

√
δ)(|e(y)|+ |e(z)|).
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By Markov inequality, except with probability at most 3
√
s, it holds that |e(y)|2 ≤ ∥e∥22/ 3

√
s ≤

s2/3. The same applies to e(z). Therefore, with probability at least 1−O( 3
√
s),

|e(x)− e(x̃)| ≤ 2c
√
δ +O( 3

√
s ·

√
δ) = O( 3

√
s)
√
δ.

Lemma 5.3 (e is noise-sensitive coordinatewise). (Under the assumptions we made towards a
contradiction) Let x, x̃ ∼ N n be picked as in the coordinatewise perturbation test. Then, with
probability at least Ω(1), we have

|e(x)− e(x̃)| ≥ Ω(
√
Γδ).

Proof. Write f=1 =
∑n

i=1 aixi. Since f = f=1 + e, we have

|e(x)− e(x̃)| ≥
∣∣f=1(x)− f=1(x̃)

∣∣− |f(x)− f(x̃)|

=

∣∣∣∣∣
n∑

i=1

ai(xi − x̃i)

∣∣∣∣∣− |f(x)− f(x̃)| .

From Lemma 5.1, we know that except with probability O( 3
√
s), the second term |f(x)− f(x̃)|

is at most c
√
δ. Thus it suffices to show that with probability Ω(1), the first term is at least

Ω(
√
Γδ) (and to choose c and s sufficiently small).

Recall that the test picks the pair (x, x̃) as follows: First pick a set D ⊆ [n] by including in it
every i ∈ [n] independently with probability δ. Pick x, y ∼ N n independently. For every i ̸∈ D,
set x̃i = xi, and for every i ∈ D, set x̃i = yi. Thus for a fixed D,

n∑
i=1

ai(xi − x̃i) =
∑
i∈D

ai(xi − yi),

which is a normal variable with mean 0 and variance 2
∑

i∈D a2i . We will show that the variance
is at least Γδ with probability 0.9 over the choice of D. Whenever this happens, the random
variable exceeds Ω(

√
Γδ) in magnitude with probability Ω(1) and we are done.

Let I =
{
i ∈ [n] | a2i ≤ 1

J

}
be the “non-influential” coordinates. Since f is not a (J, s,Γ)-

approximate linear junta, and ∥e∥22 ≤ s, we must have
∑

i∈I a
2
i ≥ Γ. A standard Hoeffding

bound now shows that for a random choice of set D, the sum
∑

i∈I∩D a2i is at least half its
expected value with probability at least 0.9 and the expected value is δ

∑
i∈I a

2
i which is at least

Γδ.

Pr
D

[∣∣∣∣∣ ∑
i∈I∩D

a2i − δ
∑
i∈I

a2i

∣∣∣∣∣ ≥ δ

2

∑
i∈I

a2i

]
≤ 2 · exp

(
−
2( δ2

∑
i∈I a

2
i )

2∑
i∈I a

4
i

)
≤ 2 · exp

(
−J

2
· Γδ2

)
≤ 0.1,

where we noted that
∑

i∈I a
4
i ≤ 1

J

∑
i∈I a

2
i and J = 10

Γδ2
.

The rest of the proof is devoted to showing that Lemma 5.2 and Lemma 5.3 cannot both
hold, i.e., a function cannot be noise stable for random perturbation, yet noise sensitive for
coordinatewise perturbation. Towards this end, we will construct from e a new function e′ (that
happens to be {0, 1}-valued) for which the expected squared change as a result of coordinate-
wise perturbation is much larger than the expected squared change as a result of random
perturbation:
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Lemma 5.4. (Under the assumptions we made towards a contradiction, and in particular,
assuming Lemma 5.2 and Lemma 5.3) There is a function e′ such that:

1. E(x,x̃)∼R

[
|e′(x)− e′(x̃)|2

]
≤ O

(
3√s√
Γ

)
,

2. E(x,x̃)∼C

[
|e′(x)− e′(x̃)|2

]
≥ Ω(1),

where R is the distribution over pairs in the random perturbation test, and C is the distribution
over pairs in the coordinatewise perturbation test.

The proof of Lemma 5.4 appears in Section 5.1. For sufficiently small s, Lemma 5.4 leads to
a contradiction by the following claim:

Claim 5.5. For any function h ∈ L2(Rn,N n),

E
(x,x̃)∼R

[
|h(x)− h(x̃)|2

]
≥ E

(x,x̃)∼C

[
|h(x)− h(x̃)|2

]
,

where R is the distribution over pairs in the random perturbation test, and C is the distribution
over pairs in the coordinatewise perturbation test.

Proof. The expectation E(x,x̃)∼C

[
|h(x)− h(x̃)|2

]
is given by the following expression:

E
D

[
E
x|D

[
E

x|D,x̃|D

[
|h(x)− h(x̃)|2

]]]
,

where the set of coordinates D ⊆ [n] is chosen by including each i ∈ [n] in D independently
with probability δ. Using Varx [F (x)] = 1

2Ex,x′
[
(F (x)− F (x′))2

]
and the notion of influence

as discussed in the preliminaries, the above expression can be re-written as:

E
D

[
E
x|D

[
2Var

x|D
[h(x)]

]]
= 2E

D
[ID(h)] = 2E

D

 ∑
S∩D ̸=ϕ

ĥ(S)2

 = 2
∑
S

ĥ(S)2Pr
D

[S ∩D ̸= ϕ].

For every multi-index S ∈ Nn, we have: PrD [S ∩D ̸= ϕ] = 1 − (1 − δ)#S ≤ 1 − (1 − δ)|S|.
Here |S| =

∑n
i=1 Si and #S denotes the number of Si that are non-zero, and hence we have

#S ≤ |S|. Therefore, the expectation is at most

2
∑
S

ĥ(S)2 · (1− (1− δ)|S|).

On the other hand, the expectation E(x,x̃)∼R

[
|h(x)− h(x̃)|2

]
is given by the following ex-

pression, for ρ = 1− δ:

2E
x

[
h(x)2

]
− 2 E

x,w

[
h(x)h(ρx+

√
1− ρ2w)

]
.

We have Ex,w

[
h(x)h(ρx+

√
1− ρ2w)

]
= ⟨h, Tρh⟩ =

∑
S ĥ(S)2ρ|S| and Ex

[
h(x)2

]
=
∑

S ĥ(S)2,

so the expectation is

2
∑
S

ĥ(S)2(1− (1− δ)|S|).

This concludes the proof of Theorem 8 assuming Lemma 5.4.
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5.1 Proof of Lemma 5.4

In this section we prove Lemma 5.4. Assume that a function e ∈ L2(Rn,N n) with ∥e∥22 ≤ s
satisfies:

• With probability at least 1−O( 3
√
s) over (x, x̃) ∼ R, it holds that

|e(x)− e(x̃)| ≤ dR = O( 3
√
s)
√
δ. (6)

• With probability at least Ω(1) over (x, x̃) ∼ C, it holds that

|e(x)− e(x̃)| ≥ dC = Ω(
√
Γδ). (7)

We show how to obtain a function e′ ∈ L2(Rn,N n) (in fact {0, 1}-valued) that satisfies:

• E(x,x̃)∼R

[
|e′(x)− e′(x̃)|2

]
≤ O

(
3
√
s√
Γ

)
.

• E(x,x̃)∼C

[
|e′(x)− e′(x̃)|2

]
≥ Ω(1).

To this end, we construct two graphs on Rn, GR = (Rn, ER) and GC = (Rn, EC), representing
the function e under random perturbation and under coordinatewise perturbation, respectively.
The graphs are infinite, and we will be abusing notation in the following, but all the arguments
can be made precise by replacing sums by integrals wherever appropriate.

Perturbation Graphs. The graphs GR and GC have labels on their vertices and weights on
their edges. The label of a vertex x ∈ Rn is e(x).

The graph GR has edges between pairs (x, x̃) such that: (i) The labels on the endpoints
are bounded, |e(x)| , |e(x̃)| ≤ 1. (ii) |e(x)− e(x̃)| ≤ dR. The weight of the edge wR(x, x̃) is
the probability that (x, x̃) is chosen in the random perturbation test. The total edge weight
is wR(ER) ≥ 1 − O( 3

√
s) from Hypothesis (6) and the observation that ∥e∥22 ≤ s and thus for

x ∈ N n, |e(x)| ≤ 1 except with probability
√
s.

The graph GC has edges between pairs (x, x̃) such that: (i) The labels on the endpoints are
bounded, |e(x)| , |e(x̃)| ≤ 1. (ii) |e(x)− e(x̃)| ≥ dC . The weight of the edge wC(x, x̃) is the
probability that (x, x̃) is chosen in the coordinate-wise perturbation test. The total edge weight
is wC(EC) ≥ Ω(1) from Hypothesis (7) and since ∥e∥22 ≤ s.

Cuts in Perturbation Graphs. We will construct a cut C : Rn → {0, 1}, and this will be
our function e′ ≡ C. Denote by wR(C) and wC(C), the weight of the edges in the graphs GR

and GC respectively that are cut by C. The cut C will satisfy:

1. (Small ER weight is cut:) wR(C) ≤ O
(

3√s√
Γ

)
.

2. (Large EC weight is cut) wC(C) ≥ Ω(1).

Let us first check that this proves Lemma 5.4: When choosing (x, x̃) as in the random pertur-
bation test, the probability that the pair (x, x̃) is separated is at most wR(C)+ (1−wR(ER)) ≤
O
(

3√s√
Γ

)
. When choosing (x, x̃) as in the coordinatewise perturbation test, the probability the

pair (x, x̃) is separated is at least wC(C) ≥ Ω(1).
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Lemma 5.6. There is a distribution over cuts such that:

• Every edge (x, x̃) ∈ ER is cut with probability at most pR,0 ≤ O( 3
√
s)
√
δ.

• Every edge (x, x̃) ∈ EC is cut with probability at least pC,0 ≥
√
Γδ.

Proof. The distribution over cuts is defined by picking at random λ ∈ [−1, 1]. For every x ∈ Rn

we define C′(x) = 1 if e(x) ≥ λ, and C′(x) = 0 otherwise. A pair (x, x̃) is cut if and only if

λ falls between e(x) and e(x̃). If e(x), e(x̃) ∈ [−1, 1], this happens with probability |e(x)−e(x̃)|
2 .

The lemma follows from the construction of the graph.

We construct the cut C in a randomized way as follows: Let M = ⌈1/pC,0⌉.

1. For i = 1, . . . ,M , draw a cut Ci from the distribution in Lemma 5.6.

2. Let I ⊆ [M ] be chosen by including every i ∈ [M ] in I independently with probability 1
2 .

3. Let C(x) =
⊕

i∈I Ci(x).

Lemma 5.7. The following hold:

• For every edge (x, x̃) ∈ ER, the probability that (x, x̃) is cut by C, is at most pR ≤ O
(

3√s√
Γ

)
.

• For every edge (x, x̃) ∈ EC , the probability that (x, x̃) is cut by C, is at least pC ≥ Ω(1).

Proof. Note that an edge is cut by C if and only if it is cut by an odd number of cuts Ci, i ∈ I.
If (x, x̃) ∈ ER, then by Lemma 5.6, it is cut by any specific Ci with probability at most pR,0.

Hence the probability that it is cut by C is at most M · pR,0 ≤ O
(

3
√
s√
Γ

)
.

If (x, x̃) ∈ EC , then by Lemma 5.6 and the choice of M , with constant probability, the edge is
cut by at least one Ci, i ∈ [M ]. Since I is a random subset of [M ] of half the size, with constant
probability, the edge is cut by an odd number of Ci, i ∈ I, and hence by C.

The above Lemma 5.7 shows that

E [wR(C)] ≤ pR · wR(ER) ≤ pR, and

E [wC(C)] ≥ pC · wC(EC) ≥ Ω(1) · Ω(1) = Ω(1) = p∗.

It follows that there must exist a cut C such that both these hold simultaneously:

wR(C) ≤
4 · pR
p∗

= O

(
3
√
s√
Γ

)
and wC(C) ≥

p∗

2
= Ω(1).

Indeed, by an averaging argument, the first condition holds with probability at least 1 − p∗

4

and the second condition holds with probability at least p∗

2 , and hence both conditions hold

simultaneously with probability at least p∗

4 . This completes the proof of Lemma 5.4.

6 NP-Hardness of Robust-3LIN(R)

We now show the NP-hardness of Robust-3Lin(R) and prove Theorem 6. The reduction is
from hardness of “GapCSP” that follows from the PCP Theorem.
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6.1 Constraint Satisfaction Problems.

A constraint satisfaction problem (CSP) is given by a set of variables Z and a set of constraints
C. Each constraint depends on d variables, where d is a parameter. Each variable takes values
from some finite alphabet Σ. A constraint c ∈ C restricts the set of assignments its variables
may assume, thus defining some subset of Σd. A CSP can be represented as a bipartite graph
G = (C, Z,E), where there is an edge between a constraint c ∈ C and a variable z ∈ Z if z
appears in the constraint c. We call an edge (c, z) a test. The degrees of the C vertices are d.
We will refer to regular CSPs, in which the degrees of all the Z vertices are the same as well.
I.e., every variable appears in the same number of constraints. An assignment to a constraint is
an assignment to its variables that satisfies the constraint (i.e., is in the subset of Σd defined by
the constraint). We say that an assignment to the constraint is consistent with an assignment
to a variable z in it, if restricted to the variable, the two assignments are the same. We will be
interested in the value of the CSP, i.e., under the best (maximizing) assignments to C and Z,
what is the fraction of edges e = (c, z) that give rise to consistent assignments? The following
hardness result is well-known:

Theorem 9 (PCP Theorem, [BFLS91, AS98, ALM+98]). There are a finite alphabet Σ, a
dependency d, and a constant η < 1, such that given a CSP instance (Z, C), it is NP -hard to
distinguish between the case that its value is 1 and the case that its value is at most η. One may
take Σ = {0, 1} and d = 3.

Remark 6.1. The standard starting point for most hardness reductions is the so-called Label
Cover problem with low soundness. The problem is known to be hard by combining the PCP
Theorem with Raz’s Parallel Repetition Theorem [Raz98]. However, our reduction uses only the
basic PCP Theorem and the soundness η could be close to 1.

6.2 The Reduction (PCP Construction)

We reduce a CSP instance (Z, C) as in Theorem 9, to a Robust-3Lin(R) instance (X, E). To
simplify the presentation, we show a non-discretized construction, having variables for all points
in real-space. We later explain how to discretize the construction.

Let k = 104

Γ2δ4
be a parameter (Γ is the global constant from the definition of an approximate

linear junta; δ is from the statement of Theorem 6). Denote the number of bits representing an
assignment to the variables in (k+1) constraints of the CSP by N

.
= (k+1)d log |Σ|. Denote the

difference between the number of bits required to represent an assignment to all the variables in
a constraint and the number of bits required to represent an assignment to just one variable, by
∆

.
= (d−1) log |Σ|. Note that with Σ = {0, 1} and d = 3, we may take ∆ = 2. The construction

of the Robust-3Lin(R) instance is as follows (note that it incurs a blow-up of exponent k in
the size, compared to the CSP instance):

Variables: There are two types of variables:

U variables: For every choice of (k+1) constraints of the CSP, u = (c1, . . . , ck+1), and every

x ∈ R2N , there is a variable. We denote the assignment to those R2N variables associated with
u by Au : R2N → R. Supposedly, Au(x) = xa where a is an assignment to the variables of u (in
bit representation). We assume, by folding5, that:

5Folding means we can ensure Au(−x) = −Au(x) by letting a single variable and its negation represent the
two values, instead of having two separate variables. Similarly, we can ensure Au(x+ ν) = Au(x) by letting the
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• Au is anti-symmetric, i.e. ∀x ∈ R2N , Au(−x) = −Au(x).

• Au corresponds to a legal assignment a, in the following sense: Let Hu ⊆ R2N be the
subspace spanned by all standard basis vectors ea ∈ R2N corresponding to assignments a
to the variables of u (in bit representation) satisfying all the constraints c1, . . . , ck+1.

Then, for all x ∈ R2N , for all ν ∈ (Hu)⊥ ⊆ R2N ,

Au(x+ ν) = Au(x).

V variables: For every choice of k constraints, a coordinate i ∈ [k+1], and a variable z of the

CSP, v = (c1, . . . , ci−1, z, ci+1, . . . , ck+1), and every x ∈ R2N−∆
, there is a variable. We denote

the assignment to those R2N−∆
variables associated with v by Av : R2N−∆ → R. Supposedly,

Av(x) = xa′ where a′ is an assignment to the variables of v (in bit representation). We again
use folding to ensure:

• Av is anti-symmetric, i.e. ∀x ∈ R2N−∆
, Av(−x) = −Av(x).

• Av corresponds to a legal assignment a′, in the following sense: Let Hv ⊆ R2N−∆
be

the subspace spanned by all standard basis vectors ea′ ∈ R2N−∆
corresponding to as-

signments a′ to the variables of v (in bit representation) satisfying all the cosntraints
c1, . . . , ci−1, ci+1, . . . , ck+1.

Then, for all x ∈ R2N−∆
, for all ν ∈ (Hv)⊥ ⊆ R2N−∆

,

Av(x+ ν) = Av(x).

Equations: The distribution over equations: Pick independently at random CSP constraints,
c1, . . . , ck+1 ∈ C, a distinguished constraint, i ∈ [k + 1], and a variable z appearing in the
constraint ci. Let u = (c1, . . . , ck+1), v = (c1, . . . , ci−1, z, ci+1, . . . , ck+1), e = (u, v). Sample an
equation according to the following distribution Ee: With equal probability,

• Eu: Perform dictator testing on Au as in Theorem 8 with parameter δ.

• Ev: Perform dictator testing on Av as in Theorem 8 with parameter δ.

• Ee: Av is supposed to encode an assignment to all the variables in u, except for the (d−1)

variables missing in v. Let I ⊆ R2N be the subspace consisting of all points x where
xa = xb if a and b agree on the assignment to the variables in v (this is the subspace that
corresponds to Av).

Pick x ∼ N 2N . Write
x = x|| + x⊥,

for x|| ∈ I, x⊥ ∈ I⊥. Let x′ = x|| − x⊥. Let x↓ ∈ R2N−∆
be such that x↓a′ = 2∆/2 · x||a for

every assignment a′ ∈ {0, 1}N−∆ and assignment a ∈ {0, 1}N where a and a′ are consistent
on the variables in v (note that by the definition of x|| it does not matter which a one
picks). Produce the equation:

2∆/2 · Au(x) +Au(x
′)

2
= Av(x

↓).

same variable represent both values.
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Note that the normalization factors are introduced appropriately so that x↓ ∼ N 2N−∆
. Note

also that a random query lands in U with probability 5
9 , then uniform over u ∈ U , and then

for a fixed u ∈ U , Gaussian distributed over R2N . A random query lands in V with probability
4
9 , then uniform over v ∈ V (by regularity of the CSP instance), and then for a fixed v ∈ V ,

Gaussian distributed over R2N−∆
.

Let s0 (slightly redefined) and c0 be the constants for the dictator testing theorem, Theorem 8,
so for any n, for any anti-symmetric function f ∈ L2(Rn,N n),

E
eq

[
χ|eq|≤c0

√
δ∥f∥2∥feq∥

2
2

]
≥ (1− s0)∥f∥22 ⇒ f is

(
10

Γδ2
, 100s0,Γ

)
-approximate linear junta.

Note that Theorem 8 remains correct if the parameters s0 and c0 are made smaller, so w.l.o.g.
we can assume that these parameters can be made sufficiently small if needed. The constant
Γ itself will be chosen to be small enough. The constants s and c for the Robust-3Lin(R)
hardness theorem, Theorem 6, depend appropriately on s0 and c0.

6.3 Properties of Folded Assignments

In this section we prove some properties of the assignments that follow from folding. The first
property is that the linear parts of the assignments are themselves folded:

Claim 6.1 (linear part folded). For every u = (c1, . . . , ck+1) ∈ Ck+1, for every x ∈ R2N , for
every ν ∈ (Hu)⊥,

A=1
u (x+ ν) = A=1

u (x).

Proof. Note that by linearity it suffices to prove that A=1
u (ν) = 0.

A=1
u (ν) =

2N∑
i=1

E
x∼Nn

[Au(x)xi]νi = E
x∼Nn

[Au(x)⟨x, ν⟩].

We can write every x ∈ R2N as x = x|| + x⊥ where x|| ∈ Hu and x⊥ ∈ (Hu)⊥, and get:

E
x∼Nn

[Au(x)⟨x, ν⟩] = E
x∼Nn

[
Au(x

|| + x⊥)⟨x⊥, ν⟩
]
.

Since Au is folded:

E
x∼Nn

[
Au(x

|| + x⊥)⟨x⊥, ν⟩
]
= E

x∼Nn

[
Au(x

||)⟨x⊥, ν⟩
]
.

But x|| and x⊥ are independent, and since −x⊥ ∈ (Hu)⊥, we have

E
x⊥

[
⟨x⊥, ν⟩

]
= E

x⊥

[
⟨x⊥, ν⟩+ ⟨−x⊥, ν⟩

2

]
= 0.

Thus, A=1
u (ν) = 0.

Similarly, one can prove:

Claim 6.2 (linear part folded). For every v = (c1, . . . , ci−1, z, ci+1, . . . , ck+1), for every x ∈
R2N−∆

, for every ν ∈ (Hv)⊥,
A=1

v (x+ ν) = A=1
v (x).
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The second property we observe is a decomposition of the linear part into summands corre-
sponding to satisfying assignments for the CSP instance:

Claim 6.3 (linear part decomposed). Let u = (c1, . . . , ck+1). Write the coefficient vector of A=1
u

as fu =
∑

a∈{0,1}N f̂u(a)ea. Then f̂u(a) ̸= 0 implies that a ∈ {0, 1}N is a satisfying assignment

to the variables in u (in bit representation).

Proof. By Claim 6.1, A=1
u ∈ Hu. The claim follows from the definition of Hu.

Claim 6.4 (linear part decomposed). Let v = (c1, . . . , ci−1, z, ci+1, . . . , ck+1). Write the coeffi-
cient vector of A=1

v as fv =
∑

a′∈{0,1}N−∆ f̂v(a
′)ea′. Then f̂v(a

′) ̸= 0 implies that a′ ∈ {0, 1}N−∆

is a satisfying assignment to the variables in v (in bit representation).

6.4 Completeness

Assume that there is an assignment A0 : Z → Σ to the CSP variables that satisfies all the
constraints in C. We construct from it an assignment A : X → R for the Robust-3Lin(R)
instance (X, E): For every vertex u ∈ U , let Au = xa where a is the assignment of A0 to the
variables of u (in bit representation). Note that the folding constraints hold and ∥Au∥22 = 1.

For every vertex v ∈ V , let Av = xa′ where a′ is the assignment A0 to the variables of v (in
bit representation). Note that the folding constraints hold and ∥Av∥22 = 1.

Hence, ∥A∥22 = 1. Consider CSP constraints c1, . . . , ck+1 ∈ C, a distinguished constraint,
i ∈ [k + 1], and a variable z appearing in the constraint ci. Let u = (c1, . . . , ck+1), v =
(c1, . . . , ci−1, z, ci+1, . . . , ck+1), e = (u, v). By Theorem 8,

E
eq∼Eu

[
χ|eq|>0 · ∥Aeq∥22

]
≤ δ.

E
eq∼Ev

[
χ|eq|>0 · ∥Aeq∥22

]
≤ δ.

The equations from Ee are exactly satisfied. This is because x = x|| + x⊥ and

2∆/2 · Au(x) +Au(x
′)

2
= 2∆/2 ·Au(x

||) = 2∆/2 · x||a = x↓a′ = Av(x
↓).

Thus,

E
eq∼Ee

[
χ|eq|>0 · ∥Aeq∥22

]
= 0.

Overall, we have val0(X,E) ≥ 1 − δ. Finally, we can truncate all the variables whose magnitude

exceeds b = O(log(1/δ)) to zero. The norm on equations involving these variables is at most,
say δ4, and this does not affect the result.

6.5 Soundness: Simplified Setting

Assume that for any assignment to the CSP instance, at most η fraction of the (constraint,variable)
pairs are consistent. Fix an assignment A : X → [−b, b], ∥A∥22 = 1. We first consider a sim-
plified setting in which for every u and v, ∥Au∥22 = 1, ∥Av∥22 = 1. This setting will allow us to
demonstrate the main idea of the proof without getting into many of the technicalities that the
general case involves. We will show that

E
eq∼E

[
χ|eq|>c

√
δ∥Aeq∥22

]
≥ (1− 3

√
η)s.
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Note that this is enough by slightly redefining s and since η < 1 is an absolute constant. Rewrite
the above inequality as:

E
e

[
E

eq∼Ee

[
χ|eq|>c

√
δ∥Aeq∥22

]]
≥ (1− 3

√
η)s. (8)

In the sequel, we will partition the e’s into two sets E1∪E2 where the fraction of E2 is at most
J2

k+1 +
√
η and J := 10

Γδ2
. The latter expression can be made smaller than 3

√
η for sufficiently

large k. Thus, it suffices to show that the contribution of every edge e ∈ E1 towards (8) is lower
bounded as:

E
eq∼Ee

[
χ|eq|>c

√
δ∥Aeq∥22

]
≥ 2s. (9)

Pick independently at random CSP constraints c1, . . . , ck+1 ∈ C, a distinguished constraint,
i ∈ [k + 1], and a variable z appearing in the constraint ci. Let u = (c1, . . . , ck+1), v =
(c1, . . . , ci−1, z, ci+1, . . . , ck+1), e = (u, v).

Case Au is not a ( 10
Γδ2

, 100s0,Γ)-approximate linear junta. Since ∥Au∥22 = 1, in this case
we are done, since by the analysis of the dictatorship test,

E
eq∼Eu

[
χ|eq|>c0

√
δ∥Aeq∥22

]
≥ s0 ≥ 6s.

Therefore,

E
eq∼Ee

[
χ|eq|>c0

√
δ∥Aeq∥22

]
≥ 2s.

Case Av is not a ( 10
Γδ2

, 100s0,Γ)-approximate linear junta. This case is handled similarly.

Thus we are left with the case where both Au and Av are ( 10
Γδ2

, 100s0,Γ)-approximate linear
juntas. Let J

.
= 10

Γδ2
.

Write the coefficients vector of the linear part A=1
u as fu =

∑
a∈{0,1}N f̂u(a)ea. Let Lu

.
={

a ∈ {0, 1}N
∣∣∣ f̂u(a)2 ≥ 1

J

}
. Let Au’s approximating junta Gu : R2N → R be

Gu(x)
.
=
∑
a∈Lu

f̂u(a)xa.

Write the coefficients vector of the linear part A=1
v as fv =

∑
a∈{0,1}N−∆ f̂v(a)ea. Let Lv

.
={

a ∈ {0, 1}N−∆
∣∣∣ f̂v(a)2 ≥ 1

J

}
. Let Av’s approximating linear junta Gv : R2N−∆ → R be

Gv(x)
.
=
∑
a∈Lv

f̂v(a)xa.

Then,

• ∥Gu −Au∥22 ≤ (Γ + 100s0).

• ∥Gv −Av∥22 ≤ (Γ + 100s0).
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Note that Gu and Gv contain at most J summands. For fixed u, over the choice of v, the
probability that there exist assignments a ̸= b in Gu whose restrictions to v are identical is at
most J2

k+1 . Let the edges e where this happens be in E2, and let us assume from now on that
this does not happen.

By folding (Claim 6.3), all a with non-zero coefficients in fu (and hence in Gu) correspond
to satisfying assignments to the variables of u, and (Claim 6.4) all a′ with non-zero coefficients
in fv (and hence in Gv) correspond to satisfying assignments to the variables of v.

For x ∈ R2N , let x||, x⊥, x′, be as in the definition of the equations. Define Auv(x)
.
=

Au(x)+Au(x′)
2 , and

Guv(x)
.
=

Gu(x) +Gu(x
′)

2
=
∑
a∈Lu

f̂u(a)x
||
a.

Claim 6.5.
∥Guv −Auv∥22 ≤ (Γ + 100s0).

Proof. By Cauchy-Schwartz inequality,

∥Guv −Auv∥22 = E
x

[(
Gu(x) +Gu(x

′)

2
− Au(x) +Au(x

′)

2

)2
]

= E
x

[(
Gu(x)−Au(x)

2
+

Gu(x
′)−Au(x

′)

2

)2
]

≤ 1

2
∥Gu −Au∥22 +

1

2
∥Gu −Au∥22

≤ (Γ + 100s0).

Claim 6.6.
∥Guv∥22 = 2−∆∥Gu∥22.

Proof.

∥Guv∥22 = E
x∼N 2N

(∑
a∈Lu

f̂u(a)x
||
a

)2


= E
x∼N 2N

 ∑
a,b∈Lu

f̂u(a)f̂u(b)x
||
ax

||
b


=

∑
a,b∈Lu

f̂u(a)f̂u(b) E
x∼N 2N

[
x||a · x

||
b

]
.

By our assumption, for every a ̸= b ∈ Lu, Ex∼N 2N

[
x
||
a · x||b

]
= 0. Hence, we are left with:

∥Guv∥22 =
∑
a∈Lu

f̂u(a)
2 ·E

x

[
(x||a)

2
]

= 2−∆∥Gu∥22.
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Case Ex∼N 2N

[(
2∆/2Guv(x)−Gv(x

↓)
)2] ≥ 2∆/2+3 ·

√
Γ + 100s0. First note that by Cauchy-

Schwarz inequality,

E
x∼N 2N

[(
2∆/2Guv(x)−Gv(x

↓)
)2]

≤ 2∆∥Guv∥22 + ∥Gv∥22 + 2 · 2∆/2∥Guv∥2∥Gv∥2 ≤ 4. (10)

Applying inequality (10), we have (again using Cauchy-Schwarz):

E
e∼Ee

[
|eq|2

]
= E

x∼N 2N

[(
2∆/2Auv(x)−Av(x

↓)
)2]

= E
x∼N 2N

[(
2∆/2(Auv(x)−Guv(x)) + (Gv(x

↓)−Av(x
↓)) + (2∆/2Guv(x)−Gv(x

↓))
)2]

≥ E
x∼N 2N

[(
2∆/2Guv(x)−Gv(x

↓)
)2]

− 2 · 2∆/2
√

Γ + 100s0 ·
√
4− 2 ·

√
Γ + 100s0 ·

√
4

≥ 2
√

Γ + 100s0. (11)

For an equation 2∆/2 · Au(x)+Au(x′)
2 −Av(x

↓) = 0, by Cauchy-Schwarz,

|eq|2 ≤ (2∆ + 2∆ + 1)(Au(x)
2 +Au(x

′)2 +Av(x
↓)2).

Thus, we have |eq|2 ≤ 3 · (2∆+1 + 1)∥Aeq∥22 ≤ 2∆+3∥Aeq∥22, and so:

E
eq∈Ee

[
|eq|2

]
≤ E

eq∈Ee

[
χ|eq|>c

√
δ 2∆+3∥Aeq∥22

]
+ c2δ.

Therefore,

E
eq∈Ee

[
χ|eq|>c

√
δ ∥Aeq∥22

]
≥ 2

√
Γ + 100s0
2∆+3

− c2δ

2∆+3
≥

√
Γ + 100s0
2∆+3

≥ 6s.

And we are done, since:

E
eq∈Ee

[
χ|eq|>c

√
δ ∥Aeq∥22

]
≥ 2s.

Thus we are left with the case that:

E
x∼N 2N

[(
2∆/2Guv(x)−Gv(x

↓)
)2]

≤ 2∆/2+3 ·
√

Γ + 100s0.

In other words (using the fact that ∥Gu∥22, ∥Gv∥22 ≥ 1− (Γ + 100s0)),

E
x∼N 2N

[
2∆/2Guv(x)Gv(x

↓)
]

≥ 1− 2∆/2+4
√

Γ + 100s0. (12)

We define two probability distributions over possible assignments to the variables in v (in
bit representation): Duv and Dv. For every a ∈ Lu, the distribution Duv assigns probability

2−∆ f̂u(a)2

∥Guv∥22
to the restriction of a to v, which we denote a|v (recall that there are no two a’s

in Guv with the same restriction to v). Every other assignment gets probability 0. For every

b ∈ Lv, the distribution Dv assigns probability 2−∆ f̂v(b)2

∥Gv∥22
to b. Every other assignment gets

probability 0. Also define a distribution Du over the possible assignments to the variables in u

(in bit representation). Du assigns probability f̂u(a)2

∥Gu∥22
to every a ∈ Lu, and assigns 0 to all other

a’s. Note that the probability assigned by Du to a ∈ Lu is same as the probability assigned by
Duv to a|v. First, we argue that the Hellinger distance between Duv and Dv is small:
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Claim 6.7.
∆2

H(Duv, Dv) ≤ 2∆/2+5
√

Γ + 100s0.

Proof. We expand Ex∼N 2N

[
2∆/2Guv(x)Gv(x

↓)
]
:

= 2∆/2 · E
x∼N 2N

(∑
a∈Lu

f̂u(a)x
||
a

)∑
b∈Lv

f̂v(b)x
↓
b


= 2∆/2 ·

∑
a∈Lu,b∈Lv

f̂u(a)f̂v(b) E
x∼N 2N

[
x||ax

↓
b

]
=

∑
a∈Lu,a|v∈Lv

f̂u(a)f̂v(a|v) E
x∼N 2N

[
(x↓b)

2
]

≤
∑

a∈Lu,a|v∈Lv

√
f̂u(a)2f̂v(a|v)2

≤
∑

b∈{0,1}N−∆

√
Duv(b)Dv(b) + 4(Γ + 100s0),

where the last inequality holds for (Γ+100s0) ≤ 1
4 . The claim now follows from inequality (12).

From Proposition 3.7, we get a bound on the statistical distance between Duv and Dv:

∆(Duv, Dv) ≤ 2∆/4+3 · 4
√
Γ + 100s0.

6.5.1 A Strategy for the CSP

Using the bound on the statistical distance between the distributions, we describe a probabilistic
strategy for the CSP instance. This implies a deterministic strategy that achieves at least the
same value. The probabilistic strategy is as follows:

Give a constraint c and a variable z appearing in c:

1. Use shared randomness to choose a random index i ∈ [k+1] and a (multi-set of) random
constraints w = {c1, . . . , ci−1, ci+1, . . . , ck+1}. Let u = (c1, . . . , ci−1, c = ci, ci+1, . . . , ck+1)
and v = (c1, . . . , ci−1, z, ci+1, . . . , ck+1).

2. Use correlated sampling [KT02, Hol09] to decide on an assignment to w in the following
manner: Pick an infinite sequence of random pairs (a′, p), where a′ is an assignment to w

and p is a probability, i.e., a number between 0 and 1. Let D↓
u be the restriction of Du to

w. Let D↓
v be the restriction of Dv to w.

• For u, the assignment a′u to w is the first pair (a′u, p) in the sequence such that

D↓
u(a′u) ≤ p.

• For v, the assignment a′v to w is the first pair (a′v, p) in the sequence such that

D↓
v(a′v) ≤ p.
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3. Obtain an assignment to the distinguished constraint c = ci by picking an assignment a∗u
to u (i.e. the (k + 1) constraints) from Du, conditioned on its restriction to w being a′u.
Restrict a∗u to the distinguished constraint to get its assignment.

Obtain an assignment to the variable z by picking an assignment a∗v to v (i.e. the k
constraints and the variable z) from Dv, conditioned on its restriction to w being a′v.
Restrict a∗v to z to get its assignment.

Since Duv and Dv are close in statistical distance, so are D↓
uv and D↓

v. In particular, we have
that (i) a′u is distributed as D↓

u. (ii) a′v is distributed as D↓
v. (iii) except with probability at

most 2∆(Duv, Dv), we have a′u = a′v. Let us concentrate on this case. a∗u is distributed as Du,
and a∗v is distributed as Dv. In fact, a′u defines uniquely a∗u. The probability that a∗u does not
agree with a∗v on z is at most ∆(Duv, Dv).

Overall, we get consistent assignments to c and z with probability at least

1− 2∆/4+5 · 4
√

Γ + 100s0.

For sufficiently small Γ and s0 this is at least
√
η. By the soundness of the CSP, the fraction of

e’s for which this can happen is at most
√
η. These edges are added to E2.

6.6 Soundness: The General Setting

In general, it does not necessarily hold for every u, v that ∥Au∥22 = 1, ∥Av∥22 = 1. Instead, the
prover may put very low norm on some of the Au, Av. This gives the prover the freedom not
to decide on assignments to certain u, v. Fortunately, (i) the prover must put significant norm
on significant number of the u, v (as the total norm is 1 and the assignment is bounded); (ii)
equations involving a table Au with high norm and a table Av with low norm (or vice versa) are
likely to fail with large margin. Let us begin by proving the second point:

Lemma 6.8 (Norm gap ⇒ dissatisfaction). For e = (u, v), define N2
e

.
= 5

9∥Au∥22 + 4
9∥Av∥22.

Assume that Ne ≥ 2∆/2 · c/c0 and (∥Au∥2 − ∥Av∥2)2 ≥ 22∆+4(Γ + 100s0)N
2
e . Then,

E
eq∼Ee

[
χ|eq|>c

√
δ∥Aeq∥22

]
≥ s02

−∆−2N2
e .

Proof. By Cauchy-Schwarz inequality (we use the definition of Auv from the previous section,

Auv(x) =
Au(x)+Au(x′)

2 ),

E
eq∈Ee

[
|eq|2

]
= E

x∼N 2N

[∣∣∣2∆/2 ·Auv(x)−Av(x
↓)
∣∣∣2]

≥
(
2∆/2 · ∥Auv∥2 − ∥Av∥2

)2
. (13)

Note that (again by Cauchy-Schwarz), ∥Auv∥22 ≤ ∥Au∥22. Thus, if ∥Av∥2 ≥ 2 · 2∆/2∥Au∥2, we
are done by inequality (13), since

(
2∆/2 · ∥Auv∥2 − ∥Av∥2

)2 ≥ ∥Av∥22/4 ≥ N2
e /16.

Assume therefore that ∥Av∥2 ≤ 2 · 2∆/2∥Au∥2. Then, ∥Au∥22 ≥ 2−∆N2
e . If there is no

( 10
Γδ2

, 100s0,Γ)-linear approximating junta Gu for Au, then we are also done, since by the dictator
testing:

E
eq∼Eu

[
χ|eq|>c0

√
δ∥Au∥2∥Aeq∥22

]
≥ s0∥Au∥22.
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And as ∥Au∥2 ≥ 2−∆/2Ne ≥ c/c0,

E
eq∼Eu

[
χ|eq|>c

√
δ∥Aeq∥22

]
≥ s02

−∆N2
e .

Hence, assume that there is a linear approximating junta Gu for Au, ∥Gu − Au∥22 ≤ (Γ +

100s0)∥Au∥22. Let Guv = Gu(x)+Gu(x′)
2 . We have (using the triangle inequality):

∥Auv∥22 ≤ (∥Guv∥2 + ∥Auv −Guv∥2)2.

By Claim 6.5 (adapted to the case that ∥Au∥22 is not necessarily 1), and Claim 6.6, we have:

2∆ · ∥Auv∥22 ≤ 2∆ · (2−∆/2∥Gu∥2 +
√

Γ + 100s0∥Au∥2)2 ≤ ∥Au∥22 + 2∆+1
√

Γ + 100s0∥Au∥22.

By Claim 6.6, and since Gu is orthogonal to (Au −Gu), we have:

2∆ · ∥Auv∥22 ≥ 2∆ · (∥Guv∥22 − ∥Gu∥2∥Au −Gu∥2)
≥ ∥Gu∥22 − 2∆∥Au∥2∥Au −Gu∥2
≥ ∥Au∥22 − (Γ + 100s0)∥Au∥22 − 2∆

√
Γ + 100s0∥Au∥22

Overall,

∥Au∥2 ·
(
1− (2∆ + 1)

√
Γ + 100s0

)
≤ 2∆/2 · ∥Auv∥2 ≤ ∥Au∥2 ·

(
1 + 2∆

√
Γ + 100s0

)
.

Since (∥Au∥2 − ∥Av∥2)2 ≥ 22∆+4(Γ + 100s0)N
2
e , we have∣∣∣2∆/2 · ∥Auv∥2 − ∥Av∥2

∣∣∣ ≥ |∥Au∥2 − ∥Av∥2| − (2∆ + 1)
√

Γ + 100s0∥Au∥2

≥ |∥Au∥2 − ∥Av∥2| − 2(2∆ + 1)
√

Γ + 100s0Ne

≥ (2∆+1 − 2)
√

Γ + 100s0Ne.

Substituting in inequality (13) yields the lemma.

Note that the total contribution to the norm of equations from Ee where Ne ≤ 2∆/2 · c/c0 (let
us denote the set of such e’s by E0) is at most Ee∈E0

[
N2

e

]
≤ 2∆(c/c0)

2. Choosing c sufficiently

small, we may ignore these equations. We therefore assume henceforth that Ne ≥ 2∆/2 · c/c0.
Further we assume that (∥Au∥2 − ∥Av∥2)2 ≤ 22∆+4(Γ + 100s0)N

2
e . From what we argued in

Lemma 6.8, it follows that the expectation Eeq∼Ee

[
χ|eq|>c

√
δ∥Aeq∥22

]
is large for e’s for which

this does not hold.
From our assumptions we get, in particular, ∥Au∥22, ∥Av∥22 ≥ 1

10N
2
e . Hence, there must be

( 10
Γδ2

, 100s0,Γ)-linear approximating juntas Gu for Au and Gv for Av; otherwise, the equations
fail with significant margin, as in the proof of Lemma 6.8. Moreover, we have:

Claim 6.9.

min

{
∥Gu∥2
∥Gv∥2

,
∥Gv∥2
∥Gu∥2

}
≥ 1− 2∆+6

√
Γ + 100s0.
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Proof.

|∥Gu∥2 − ∥Gv∥2| = |(∥Gu∥2 − ∥Au∥2) + (∥Av∥2 − ∥Gv∥2) + (∥Au∥2 − ∥Av∥2)|
≤ (∥Au∥2 − ∥Gu∥2) + (∥Av∥2 − ∥Gv∥2) + |∥Au∥2 − ∥Av∥2| (14)

We have ∥Au∥22 − ∥Gu∥22 ≤ (Γ + 100s0)∥Au∥22. Since

∥Au∥22 − ∥Gu∥22 = (∥Au∥2 + ∥Gu∥2)(∥Au∥2 − ∥Gu∥2) ≥ (∥Au∥2 − ∥Gu∥2)∥Au∥2,

we get that
∥Au∥2 − ∥Gu∥2 ≤ (Γ + 100s0)∥Au∥2.

Applying a similar reasoning to Av and substituting in (14),

|∥Gu∥2 − ∥Gv∥2| ≤ (Γ + 100s0)∥Au∥2 + (Γ + 100s0)∥Av∥2 + 2∆+2
√

Γ + 100s0Ne

≤ 2∆+3
√

Γ + 100s0Ne

The claim follows, noticing that for sufficiently small Γ, s0 it holds that N2
e

∥Gu∥22
, N2

e

∥Gv∥22
≤ 20.

Consider the case that

E
x∼N 2N

[(
2∆/2Guv(x)−Gv(x

↓)
)2]

≥ 2∆/2+4
√
Γ + 100s0N

2
e .

We follow the argument in the simplified setting and see what needs to be changed when
Au, Av are not necessarily of norm 1. In inequality (10) the upper bound of 4 should be
replaced by (∥Au∥2 + ∥Av∥2)2. This change implies subsequent changes in inequality (11):
the first

√
4 should be replaced by ∥Au∥2(∥Au∥2 + ∥Av∥2) and the second

√
4 should be re-

placed by ∥Av∥2(∥Au∥2 + ∥Av∥2). The sum of two error terms in inequality (11) is thus
bounded by 2∆/2+1

√
Γ + 100s0(∥Au∥2+ ∥Av∥2)2 ≤ 2∆/2+3

√
Γ + 100s0N

2
e , giving a lower bound

of 2∆/2+3
√
Γ + 100s0N

2
e in inequality (11). This lower bound suffices for the subsequent ar-

gument to go through and derive the conclusion that an appropriate measure of equations fail,
i.e.

E
eq∈Ee

[
χ|eq|>c

√
δ ∥Aeq∥22

]
≥ 2∆/2+3

√
Γ + 100s0N

2
e

2∆+3
− c2δ

2∆+3
≥ 2−∆/2−1

√
Γ + 100s0N

2
e .

So we are left with the case that:

E
x∼N 2N

[(
2∆/2Guv(x)−Gv(x

↓)
)2]

≤ 2∆/2+4
√
Γ + 100s0N

2
e .

We can deduce an inequality similar to inequality (12), using Claim 6.9:

E
x∼N 2N

[
2∆/2Guv(x)

∥Gu∥2
· Gv(x

↓)

∥Gv∥2

]
≥ 1− 2∆+15

√
Γ + 100s0. (15)

The bound on the squared Hellinger distance (Claim 6.7) goes through (in fact, since we start
with an inequality that is already normalized by ∥Gu∥2, ∥Gv∥2, the last inequality in Claim 6.7,
introducing a normalization error, is unnecessary). We end up with a bound on the statistical
distance:

∆(Duv, Dv) ≤ 2∆/2+8 4
√

Γ + 100s0.
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6.6.1 Deriving a Strategy for the CSP

Assume on the contrary that

E
eq∼E

[
χ|eq|>c

√
δ∥Aeq∥22

]
< s. (16)

We will derive a (randomized) assignment to the constraints and variables of the original CSP,
such that the probability that a random constraint and a variable in it are consistent is more
than η, reaching a contradiction.

Let E1 be the set of all e = (u, v) with

1. Eeq∼Ee

[
χ|eq|>c

√
δ∥Aeq∥22

]
< s02

−∆−2N2
e .

2. Ne ≥ 2∆/2 · c/c0.

Note that by Lemma 6.8,

∀e ∈ E1, (∥Au∥2 − ∥Av∥2)2 ≤ 22∆+4(Γ + 100s0)N
2
e . (17)

Let E2,1 be the set of all e with Ne < 2∆/2 · c/c0. Let E2,2 be all the e /∈ E1 ∪E2,1. Thus,

s > E
eq∼E

[
χ|eq|>c

√
δ∥Aeq∥22

]
≥ 1

|E|
∑

e∈E2,2

s02
−∆−2N2

e .

So, there is little norm outside of E1:

1

|E|
∑
e/∈E1

N2
e =

1

|E|
∑

e∈E2,1

N2
e +

1

|E|
∑

e∈E2,2

N2
e ≤ 2∆ · (c/c0)2 + 2∆+2(s/s0) ≤ θ,

where θ can be made sufficiently small by choosing s and c appropriately. Assume also that θ sat-
isfies, from Equation (17) and appropriate choice of Γ, s0, that ∀e ∈ E1,max{∥Au∥22, ∥Av∥22} ≤
(1 + θ)∥Au∥22, and θ ≤ 1

100 .

Association Scheme

Given a constraint c∗ and a variable z∗ in it, we design a (randomized) scheme that associates:
(i) to the constraint c∗, a tuple u containing it (the tuple u does not depend on the variable
z∗, given c∗) (ii) to the variable z∗, a tuple v containing it (the tuple v does not depend on the
constraint c∗, given z∗) (iii) w.h.p., e = (u, v) is an edge.

For the sake of analysis, it is convenient to also design a scheme that associates, to the pair
(c∗, z∗), a pair (u′, v′) where u′ contains c∗, v′ contains z∗, e′ = (u′, v′) is an edge; note however
that this scheme depends on both c∗ and z∗.

These schemes work as follows:

• Pick an infinite sequence of random tuples (i, c1, . . . , ci−1, ci+1, . . . , ck+1, w), where i ∈
[k+1] is an index, c1, . . . , ci−1, ci+1, . . . , ck+1 ∈ C are CSP constraints, and w is a number
between 0 and b2.
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• With a CSP constraint c∗ associate u = (c1, . . . , ci−1, c
∗, ci+1, . . . , ck+1), where

(i, c1, . . . , ci−1, ci+1, . . . , ck+1, w) is the first tuple with w ≤ ∥Au∥22.

• With a CSP variable z∗ associate v = (c1, . . . , ci−1, z
∗, ci+1, . . . , ck+1), where

(i, c1, . . . , ci−1, ci+1, . . . , ck+1, w) is the first tuple with w ≤ ∥Av∥22.

• With a CSP constraint-variable pair (c∗, z∗) associate e′ = (u′, v′) with
u′ = (c1, . . . , ci−1, c

∗, ci+1, . . . , ck+1), v
′ = (c1, . . . , ci−1, z

∗, ci+1, . . . , ck+1) where
(i, c1, . . . , ci−1, ci+1, . . . , ck+1, w) is the first tuple with w ≤ max

{
∥Au∥22, ∥Av∥22

}
.

A Strategy for the CSP. The association scheme we just described gives rise to a strategy
for the CSP instance:

1. Using the scheme, associate a tuple u to constraint c∗ and a tuple v to variable z∗.

2. Using the strategy described in the simplified setting, given u decide on an assignment to
c∗, and given v decide on an assignment to z∗.

The strategy succeeds if c∗, z∗ are given consistent values.

Claim 6.10. Fix (c∗, z∗). With probability at least 1− 2∆+10
√
Γ + 100s0 over the randomness

in the strategy, conditioned on the event that e′ = (u′, v′) associated with the pair (c∗, z∗) is in
E1, we have that u′ is associated with c∗, v′ is associated with z∗, and the strategy succeeds for
(c∗, z∗).

Proof. Assume that the pair e′ = (u′, v′) associated with the pair (c∗, z∗) is in E1. Let u and v
be the tuples associated with c∗ and z∗ respectively. The probability that u ̸= u′ or v ̸= v′ is at
most

max
{
∥Au′∥22, ∥Av′∥22

}
−min

{
∥Au′∥22, ∥Av′∥22

}
max

{
∥Au′∥22, ∥Av′∥22

} ≤
∣∣∥Au′∥22 − ∥Av′∥22

∣∣
N2

e′

≤ 1

N2
e′
· |∥Au′∥2 − ∥Av′∥2| · (∥Au′∥2 + ∥Av′∥2)

≤ 1

N2
e′
· |∥Au′∥2 − ∥Av′∥2| ·

9

4
·
(
5

9
∥Au′∥2 +

4

9
∥Av′∥2

)
≤ 1

N2
e′
· |∥Au′∥2 − ∥Av′∥2| ·

9

4
·
√

5

9
∥Au′∥22 +

4

9
∥Av′∥22

≤ 9

4
· 2∆+2

√
Γ + 100s0,

where we used Equation (17). Thus we may now assume u = u′ and v = v′. We showed just be-
fore Section 6.6.1 that whenever e′ = (u, v) ∈ E1, it holds that ∆(Duv, Dv) ≤ 2∆/2+8 4

√
Γ + 100s0.

In Section 6.5.1, we showed that the strategy described there succeeds for (c∗, z∗) with proba-
bility at least 1− 3∆(Duv, Dv). The claim follows.

Definition 10. Let D′ be the distribution over edges that picks a pair (c∗, z∗) of the CSP
uniformly at random and then associates an edge e′ = (u′, v′) to the pair (c∗, z∗). Formally:

• Pick a pair (c∗, z∗) of the CSP uniformly.
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• Pick an infinite sequence of random tuples (i, c1, . . . , ci−1, ci+1, . . . , ck+1, w), where i ∈
[k+1] is an index, c1, . . . , ci−1, ci+1, . . . , ck+1 ∈ C are CSP constraints, and w is a number
between 0 and b2.

• Let e′ = (u′, v′) with u′ = (c1, . . . , ci−1, c
∗, ci+1, . . . , ck+1), v

′ = (c1, . . . , ci−1, z
∗, ci+1, . . . , ck+1)

where (i, c1, . . . , ci−1, ci+1, . . . , ck+1, w) is the first tuple with w ≤ max
{
∥Au∥22, ∥Av∥22

}
.

We will show that an edge e′ ∼ D′ is in E1 with high probability. From Claim (6.10), it
then gives a strategy for the CSP that satisfies more than η fraction of its pairs, reaching a
contradiction. Towards this end, we define another distribution D′′ on edges and show that it
is close to D′ and an edge e ∼ D′′ is in E1 with high probability.

Definition 11. Let D′′ be the distribution over edges that gives an edge e = (u, v) probability
proportional to max{∥Au∥22, ∥Av∥22}. Another way to sample an edge e ∼ D′′ is:

• Pick an infinite sequence of random tuples ((c∗, z∗), (i, c1, . . . , ci−1, ci+1, . . . , ck+1, w)), where
(c∗, z∗) is a (uniformly) random CSP pair, i ∈ [k+1] is an index, c1, . . . , ci−1, ci+1, . . . , ck+1 ∈
C are CSP constraints, and w is a number between 0 and b2.

• Let e = (u, v) with u = (c1, . . . , ci−1, c
∗, ci+1, . . . , ck+1), v = (c1, . . . , ci−1, z

∗, ci+1, . . . , ck+1)
where ((c∗, z∗), (i, c1, . . . , ci−1, ci+1, . . . , ck+1, w)) is the first tuple with w ≤ max

{
∥Au∥22, ∥Av∥22

}
.

Claim 6.11. If e ∼ D′′, then e ∈ E1 with probability at least 1− 3θ.

Proof. Let T =
∑

e=(u,v)∈E max{∥Au∥22, ∥Av∥22}. Note that T ≥
∑

e∈E N2
e = |E|. The probabil-

ity that an edge distributed as D′′ is not in E1 is∑
e ̸∈E1

max{∥Au∥22, ∥Av∥22}
T

≤
∑
e ̸∈E1

3N2
e

T
≤ 3θ|E|

T
≤ 3θ.

Next we show that D′ and D′′ are close. Let D′|CSP (and D′′|CSP resp.) be a distribution
over the CSP pairs (c∗, z∗) obtained by first picking an edge e = (u, v) ∼ D′ ( e = (u, v) ∼ D′′

resp.) and then taking the “projection” to the coordinate on which u contains a constraint c∗

and v contains a variable z∗. Clearly, D′|CSP is uniform on all CSP pairs. However, D′′|CSP is
not necessarily uniform. We will show nevertheless that D′′|CSP is close to uniform. Note that
this implies in turn that D′ and D′′ are close since they are identical distributions conditional
on the projection being any fixed pair (c∗, z∗).

Towards showing that D′′|CSP is close to uniform, we will define yet another distribution D
over edges and show that D and D′′ are close and that D|CSP is close to uniform.

Definition 12. Let D be the distribution over all edges that gives an edge e = (u, v) probability
proportional to ∥Au∥22. Equivalently, D is the distribution that picks u ∈ U with probability
proportional to ∥Au∥22 and then picks a random edge incident on u (among the (k+ 1) · d edges
incident on u).

Claim 6.12. ∆(D,D′′) ≤ 4θ.
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Proof. Let

S =
∑

e=(u,v)∈E

∥Au∥22, T =
∑

e=(u,v)∈E

max{∥Au∥22, ∥Av∥22}, T ≥ |E|.

We have,

S ≤ T ≤
∑
e∈E1

max{∥Au∥22, ∥Av∥22}+
∑
e̸∈E1

3N2
e ≤ (1 + θ)

∑
e∈E1

∥Au∥22 + 3θ|E| ≤ (1 + θ)S + 3θT.

In particular, S ≥ 1−3θ
1+θ T ≥ (1− 4θ)T ≥ (1− 4θ)|E| ≥ 1

2 |E|. Now,

2 ·∆(D,D′′) =
∑
e

∣∣∣∣∥Au∥22
S

− max{∥Au∥22, ∥Av∥22}
T

∣∣∣∣ .
We split the sum into e ̸∈ E1 and e ∈ E1 and show that both are small. We start with the sum
over e ̸∈ E1. We analyze the expression:∣∣∣∣T∥Au∥22 − Smax{∥Au∥22, ∥Av∥22}

ST

∣∣∣∣
If T∥Au∥22 ≥ Smax{∥Au∥22, ∥Av∥22}, then, using T ≤ 2S, we obtain the expression

T∥Au∥22 − Smax{∥Au∥22, ∥Av∥22}
ST

≤ 2S∥Au∥22 − Smax{∥Au∥22, ∥Av∥22}
S2

≤ ∥Au∥22
S

.

If T∥Au∥22 < Smax{∥Au∥22, ∥Av∥22}, then, using S ≤ T , we obtain the expression

Smax{∥Au∥22, ∥Av∥22} − T∥Au∥22
ST

≤ max{∥Au∥22, ∥Av∥22} − ∥Au∥22
S

≤ ∥Av∥22
S

Overall,∑
e/∈E1

∣∣∣∣∥Au∥22
S

− max{∥Au∥22, ∥Av∥22}
T

∣∣∣∣ ≤ ∑
e̸∈E1

∥Au∥22 + ∥Av∥22
S

≤ 1

S
·
∑
e ̸∈E1

N2
e ≤ 1

S
· θ|E| ≤ 2θ.

Noting that for e ∈ E1, max{∥Au∥22, ∥Av∥22} ≤ (1 + θ)∥Au∥22, the sum over e ∈ E1 can be upper
bounded as:∑

e∈E1

∣∣∣∣∥Au∥22
S

− ∥Au∥22
T

∣∣∣∣+ ∑
e∈E1

∣∣∣∣∥Au∥22
T

− max{∥Au∥22, ∥Av∥22}
T

∣∣∣∣ ≤ T − S

T
+

θS

T
≤ 5θ.

Now we show that D|CSP is close to uniform. Let DU be the distribution on U that picks
u ∈ U with probability proportional to ∥Au∥22. Let DC be the distribution on CSP constraints
that picks u ∼ DU and then picks a random constraint c∗ in u. It is enough to show that DC is
close to uniform. Let D1

U , . . . , D
k+1
U be the marginals of DU on each of the k+1 coordinates so

that DC = 1
k+1

∑k+1
i=1 Di

U . Note that:

• ∀u ∈ U, ∥Au∥22 ≤ b2.
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•
∑

u∈U ∥Au∥22 = |U |
|E|
∑

e∈E ∥Au∥22 = |U |·S
|E| ≥ 1

2 |U | (this uses a calculation in the proof of

Claim 6.12).

• Hence ∀u ∈ U,DU (u) =
∥Au∥22∑

u∈U ∥Au∥22
≤ 2b2

|U | .

This implies that the entropy of DU is at least H(DU ) ≥ log |U | − 2 log b − 1. Using the
sub-additivity and concavity of entropy,

H(DC) = H

(
1

k + 1

k+1∑
i=1

Di
U

)
≥ 1

k + 1

k+1∑
i=1

H(Di
U ) ≥

H(DU )

k + 1
≥ log |C| − 2 log b+ 1

k + 1
.

Thus when k is sufficiently large, H(DC) is close to its maximum possible value of log |C| and
therefore ∆(DC ,Uniform) ≤ θ as desired.

This implies, as argued before, ∆(D|CSP,Uniform) ≤ θ and ∆(D′′|CSP,Uniform) ≤ 30θ using
Claim 6.12. Since D′|CSP = Uniform, we have ∆(D′|CSP, D

′′|CSP) ≤ 30θ, which implies that
∆(D′, D′′) ≤ 30θ. The last argument uses the observation that conditional on the projection
being (c∗, z∗), D′ and D′′ are identical. Combining with Claim 6.10, Claim 6.11, and choosing
θ,Γ, s0 small enough, we get a strategy for the CSP that succeeds with probability exceeding η.
This completes the soundness anlaysis.

6.7 Discretization

Let us briefly explain how the construction can be discretized. Define L
.
= 2Nb, α = γδ/3b. To

obtain a discrete construction, for every vertex u ∈ U , replace R2N with a tiling of [−L,L)2
N
by

the cube [0, α)2
N
. The new variables correspond to representatives of the shifted cube [0, α)2

N
.

Similary, for every vertex v ∈ V , replace R2N−∆
. In every equation, replace each occurrence

of a variable with the appropriate representative. Replace each equation that depends on a
variable outside the range of [−L,L) (in any of its coordinates) by an equation 0 = 0. Note

that the probability that a Gaussian x ∼ N 2N falls outside of the cube [−L,L)2
N

is at most
2√
2πb

e−22N b2/2 ≤ δ/4b2.

Since N , b, γ and δ are constants, the construction is of polynomial size. Completeness and
soundness follow from the completeness and soundness of the non-discrete construction: In the
completeness case, by assigning the representatives their dictator values, the values effectively
substituted to the other variables may shift by α compared to their original dictator values. This
may cause equations that were exactly satisfied to become only 3α-approximately satisfied. It
may also change the squared norm (on each equation, and on average over all equations), by
an additive O(αb) ≤ O(γδ). Additionally, we may lose the norm on the equations that were
replaced with 0 = 0, but this norm is at most O(δ). Using appropriate normalization of the
dictators, we attain valγ(X,E) ≥ 1−O(δ).

In the soundness case, an assignment to the discretized construction induces an assignment
to the non-discretized construction, and one can apply the soundness analysis we have. One
needs to account for the norm on equations that were replaced by 0 = 0, but again this norm
is at most O(δ). This concludes the proof of Theorem 6.
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