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NONCOMMUTATIVE DEL PEZZO SURFACES

AND CALABI-YAU ALGEBRAS

PAVEL ETINGOF AND VICTOR GINZBURG

Abstract. The hypersurface in C3 with an isolated quasi-homogeneous elliptic singularity of type

Ẽr, r = 6, 7, 8, has a natural Poisson structure. We show that the family of del Pezzo surfaces of
the corresponding type Er provides a semiuniversal Poisson deformation of that Poisson structure.

We also construct a deformation-quantization of the coordinate ring of such a del Pezzo surface.
To this end, we first deform the polynomial algebra C[x1, x2, x3] to a noncommutative algebra with
generators x1, x2, x3 and the following 3 relations labelled by cyclic parmutations (i, j, k) of (1, 2, 3):

xixj − t·xjxi = Φk(xk), Φk ∈ C[xk].

This gives a family of Calabi-Yau algebras At(Φ) parametrized by a complex number t ∈ C× and a
triple Φ = (Φ1,Φ2,Φ3), of polynomials of specifically chosen degrees.

Our quantization of the coordinate ring of a del Pezzo surface is provided by noncommutative
algebras of the form A

t(Φ)/〈〈Ψ〉〉, where 〈〈Ψ〉〉 ⊂ A
t(Φ) stands for the ideal generated by a central

element Ψ which generates the center of the algebra A
t(Φ) if Φ is generic enough.

Table of Contents

1. Introduction

2. Poisson deformations of a quasi-homogeneous surface singularity

3. Main results

4. Three-dimensional Poisson structures

5. Poisson (co)homology

6. Classification results

7. Calabi-Yau deformations

8. From Poisson to Hochschild cohomology

9. Appendix: computer computation

1. Introduction

1.1. Poisson structures on del Pezzo surfaces. We remind the reader that a del Pezzo surface
is a smooth projective surface S that is obtained by blowing up ℓ sufficiently general points in CP2,
where 0 ≤ ℓ ≤ 8, or CP1×CP1. Let S be such a del Pezzo surface with canonical bundle KS , resp.
anti-canonical bundle K−1

S . A regular section π ∈ Γ(S,K−1
S ) is a bivector that gives S a Poisson

structure (any bivector π on a surface automatically has a vanishing Schouten bracket: [π, π] = 0).
We say that a regular section π ∈ Γ(S,K−1

S ) is nondegenerate provided the divisor of zeros of π is
a reduced smooth curve.

In this paper we consider the most interesting case where ℓ = 6, 7, or 8, and where π is assumed
to be a nondegenerate section. Then, a simple application of the adjunction formula shows that the
zero locus of π is an elliptic curve E ⊂ S. Furthermore, X := S r E is an affine surface equipped
with an algebraic symplectic structure provided by the (closed) 2-form π−1 ∈ Γ(S r E,KS).

There are two Poisson algebras naturally associated with the data (S, π). The first algebra is
C[X], the coordinate ring of the affine symplectic surface X. The second algebra is a graded algebra

R =
⊕

n≥0 Rn, Rn := Γ
(
S, (K−1

S )⊗n
)
, (1.1.1)
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the homogeneous coordinate ring associated with the anti-canonical bundle, an ample line bundle
on S. One can use a construction of Kaledin to make R a Poisson algebra as follows.

Choose a local nowhere vanishing section φ ∈ Γ(U,K−1
S ), on a Zariski open subset U ⊂ S.

Let Lh(φ) := [iπ(dh), φ] denote the Lie derivative of the bivector φ with respect to iπ(dh), the
Hamiltonian vector field associated with a regular function h on U . Further, write {−,−}π for
the Poisson bracket on U induced by the bivector π. Then, following [Ka], one defines a Poisson
bracket {−,−}R : Rn ×Rm → Rn+m, m, n ≥ 0, by the formula

{fφn, gφm}R := {f, g}π · φ
n+m +

(
mgLf (φ)− nfLg(φ)

)
· φn+m−1, ∀f, g ∈ Γ(U,OU ).

It is straightforward to verify that the resulting bracket is independent of the choice of a nowhere
vanishing section φ, on U .

To relate the Poisson algebras C[X] and R, write K for the total space of the canonical bundle
KS . Thus K is a 3-dimensional variety equipped with a natural C×-action. By definition, one has
a graded algebra isomorphism R = C[K] := Γ(K,OK), such that the grading on C[K] comes from
the C×-action. Further, there is a diagram

X = S r E
�

� i:=π−1

// K
p // // S, (1.1.2)

where the second map p is the line bundle projection and the first map is a section of p over S rE

provided by the symplectic form.
One can show that the map i = π−1, in the diagram, is a closed imbedding. Moreover, the

corresponding restriction morphism i∗ : R = C[K] → C[X] induces an algebra isomorphism
R/(π−1) ∼→C[X], where (π−1) denotes the ideal generated by the element π−1 ∈ R1⊕R0. The
element π− 1 being nonhomogeneous, the grading on the algebra R does not descend to a grading
on the quotient algebra. However, the ascending filtration F≤mR :=

⊕
n≤mRm, on R, induces a

well-defined ascending filtration, F qC[X] that makes the coordinate ring C[X] a filtered algebra.
Let RC[X] :=

∑
n≥0 FnC[X] · tn ⊂ C[X]⊗ C[t] be the Rees algebra of the filtered algebra C[X].

This is a graded algebra equipped with a canonical graded algebra imbedding C[t] →֒ RC[X] such
that one has RC[X]/(t− 1) ∼= C[X]. Furthermore, the Poisson bracket on C[X] induces one on the
Rees algebra.

We leave to the reader to prove the following simple result:

Proposition 1.1.3. There is a natural graded Poisson algebra isomorphism Ξ : RC[X] ∼→R such
that

• The canonical algebra imbedding C[t] →֒ RC[X] gets transported, via Ξ, to the
graded algebra homomorphism C[t] →֒ R induced by the assignment t 7→ π.

• The isomorphism RC[X]/(t − 1) ∼= C[X] gets transported, via Ξ, to the algebra
isomorphism C[K]/(π − 1) ∼→C[X]. �

The Proposition shows how the Poisson algebras C[X] and R can be recovered from each other.
Therefore, quantization (i.e., noncommutative deformation) problems for these two algebras are
essentially equivalent.

In the rest of the paper, we will concentrate on the problem of quantizing the affine symplectic
surface X = S r E by constructing noncommutative deformations of the Poisson algebra C[X],
to be viewed as coordinate rings of ‘noncommutative affine surfaces’. Noncommutative deforma-
tions of the Poisson algebra R, to be viewed as homogeneous rings of ‘noncommutative projective
surfaces’, may then be obtained by applying the Rees algebra construction to the corresponding
noncommutative deformations of C[X].
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1.2. The general theory of noncommutative projective surfaces has been initiated in the late 80’s
by Artin and Schelter [AS]. Many deep results were obtained later, in the papers [ATV], [AV],
[BSV], [C1], [Le], and [St1].

The general philosophy of noncommutative surfaces, either projective or affine, was outlined
by M. Artin in [A]. According to that philosophy in the affine case, one tries to construct a
noncommutative algebra B that plays the role of ‘coordinate ring’ of an (affine) noncommutative
surface X. It turns out that, in typical examples, the algebra B often appears in the form B =
A/〈〈Ψ〉〉. Here, A is an auxiliary associative algebra which is somehow more accessible than B, and
〈〈Ψ〉〉 denotes a two-sided ideal in A generated by a normal (often central) element Ψ ∈ A. It has
been remarked by M. Artin [A] that there should be some more conceptual a priori explanation of
the appearance of the algebra A and of the element Ψ.

The aim of the present paper is to propose such an explanation. Our approach is based on the
concept of Calabi-Yau (CY) algebra, introduced recently, cf. eg. [Bo], [Gi], and Definition 1.4.1
below. This approach is consistent with the point of view of string theory where 3-dimensional CY
varieties are considered to be more fundamental than 2-dimensional surfaces. Thus, a 2-dimensional
surface should be viewed as a hypersurface in an ambient CY 3-fold which, in the affine case, is
typically taken to be C3 and, in the projective case, is taken to be the total space of the canonical
bundle of the surface.

The best way to understand what kind of noncommutative algebraic structers should be anal-
ogous to the structures of CY geometry is to consider a ‘quasi-classical approximation’ first. A
noncommutative CY algebra of dimension 3 reduces, quasi-classically, to the coordinate ring C[M ]
of an affine 3-dimensional variety M . Such a variety comes equipped with an algebraic volume
form vol ∈ Ω3(M), that keeps track of the CY structure, and with a Poisson bracket, that ‘re-
members’ about the noncommutative deformation, up to first order. A key point is that these two
pieces of data must be related. Specifically, it was explained by Dolgushev [Do] that the correct
quasi-classical analogue of the CY condition is the requirement that the Poisson bracket on M be
unimodular, that is, such that any Hamiltonian vector field on M preserves the volume form vol,
i.e. has the vanishing divergence.

It is easy to show that any unimodular Poisson bracket on a 3-fold with trivial first de Rham
cohomology is determined by a single regular function φ ∈ C[M ], see §4. The function φ is unique
up to a constant summand and it is automatically central with respect to the corresponding Poisson
bracket. Furthermore, this function generates, generically, the whole Poisson center.

We turn now to noncommutative surfaces inside our noncommutative CY variety. Quasi-cla-
ssically, giving such a surface amounts to giving a Poisson hypersurface X ⊂M . For M = C3, for
instance, that means, in the generic case, that the equation of the hypersurface X must be given
by a function contained in the Poisson center of C[M ]. In the situation where the Poisson center
reduces to C[φ] we conclude that our function is a polynomial in φ. Hence, the only hypersurfaces
which may arise in the process of quasiclassical degeneneration of a noncommutative story are,
essentially, the level sets of φ. By redefining φ, one may assume without loss of generality that the
surface is the zero set of φ, so the corresponding coordinate ring is C[X] = C[M ]/(φ).

The discussion above suggests that C[M ], the coordinate ring of the CY 3-fold, gets deformed
via a quantization to a noncommutative CY algebra A in such a way that the function φ gets
deformed to a central (more generally, normal) element Ψ ∈ A. Therefore, the coordinate ring of
the corresponding surface gets deformed to a noncommutative algebra of the form B = A/〈〈Ψ〉〉.

This provides a reason for the appearance of the objects A and Ψ we were looking for.

1.3. In this paper, we study hypersurfaces in the CY variety M = C3, equipped with the standard
volume form dx∧dy∧dz. Thus, we have C[M ] = C[x, y, z]. As we have mentioned earlier, associated
with any φ ∈ C[x, y, z], there is a Poisson structure on M . Specifically, the Poisson brackets of
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coordinate functions are given by the following explicit formulas

{x, y} =
∂φ

∂z
, {y, z} =

∂φ

∂x
, {z, x} =

∂φ

∂y
. (1.3.1)

It is immediate to verify that φ is a central element with respect to the above bracket. Therefore,
C[x, y, z]/(φ), a quotient by the principal ideal generated by φ, inherits the structure of a Poisson
algebra.

Definition 1.3.2. We write Aφ := C[x, y, z] for the Poisson algebra with bracket (1.3.1), and let
Bφ := Aφ/(φ) be the quotient Poisson algebra with induced bracket.

It is interesting to take φ a (quasi-) homogeneous polynomial with an isolated singularity at the
origin. In the special case where degφ ≤ degx+deg y+deg z, the equation φ = 0 defines a Poisson
surface with either simple Kleinian, or elliptic singularity.

We study both commutative and noncommutative deformations of the corresponding Poisson
algebra Bφ. We show that all Poisson algebra deformations are essentially obtained by deforming
the polynomial φ, see Theorem 2.5.3. In the elliptic case, for instance, any such deformation gives
the coordinate ring of an affine surface obtained by removing an elliptic curve from an appropriate
projective del Pezzo surface.

Our approach to noncommutative deformations of elliptic singularities is motivated by the ide-
ology explained in §1.2. Specifically, we simultaneously deform both the corresponding surface
φ = 0 and the ambient CY variety C3. This way, we construct a flat family of noncommutative
CY algebras A

t(Φ) of dimension 3, which provide a deformation of the Poisson algebra Aφ, and
a family of central elements Ψ ∈ A

t(Φ). The noncommutative algebras of the form A
t(Φ)/〈〈Ψ〉〉

thus provide a flat deformation of the Poisson algebra Bφ. In analogy with the Poisson case, these
noncommutative algebras may be thought of as ‘coordinate rings’ of noncommutative del Pezzo
surfaces.

There were a few other approaches to the problem of quantization of del Pezzo surfaces in the
literature. One of them was proposed by M. Van den Bergh, in the paper [VB3], which gives a
construction of the category of coherent sheaves on a ‘would be’ noncommutative (projective) del
Pezzo surface. The connection between this approach and our approach is given by Chapter 12 of
[VB3]. Namely, it is shown there that if one blows up 6 points in a quantum plane and then takes
the affine part (the complement of the elliptic curve), then the coordinate ring is of the form A/(n),
where A is a filtered deformation of an AS-regular algebra and n is a normalizing element. We
expect that this ring is the E6-deformation considered in this paper, and that a similar approach
works for E7 and E8.

A different construction which is explicit but works only for a very special class of degenerate
noncommutative del Pezzo surfaces, was proposed in [EOR].

Our present approach works in the general case, and is both quite simple and explicit. As a
first step, we introduce a family of associative algebras At(Φ) to be the algebras with 3 generators,
x, y, z, subject to 3 defining relations of the following form

[x, y]t =
∂Φ

∂z
, [y, z]t =

∂Φ

∂x
, [z, x]t =

∂Φ

∂y
, (1.3.3)

In this formula, Φ runs over a certain explicitly defined family of noncommutative cyclic potentials,
t is a complex parameter, and we have used the notation [u, v]t := uv − t · vu.

Remark 1.3.4. It is interesting to note that relations in (1.3.3) look very similar to the formulas
for the Poisson bracket (1.3.1), at least formally. The analogy goes much further since the actual
formula for Φ, see (3.4.1)-(3.4.2), is quite similar to the formula for the polynomial φ ∈ C[x, y, z]
that gives the equation of an affine del Pezzo surface, see (2.5.1)-(2.5.2).
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Next, we prove one of our main results, see §§3.3-3.4, saying that At(Φ) is a Calabi-Yau algebra of
dimension 3 and that, for sufficiently general parameters, the center of At(Φ) has the form C[Ψ], a
free polynomial algebra generated by an element Ψ uniquely determined up to a constant summand.
We show further that the family of noncommutative algebras of the form B

t(Φ,Ψ) := A
t(Φ)/〈〈Ψ〉〉

provides the required quantization of del Pezzo surfaces. It is also quite remarkable that, in a
sense, any flat infinitesimal deformation of the Poisson algebra Bφ can be obtained by the above
construction, cf. Theorem 3.4.4.

In section 3.5, we discuss the special case of homogeneous potentials. In this case, the algebras
A
t(Φ) and B

t(Φ,Ψ) have natural gradings. The graded algebra A
t(Φ) is nothing but an Artin-

Schelter regular algebra of dimension 3. These algebras, also known as Sklyanin algebras, have been
intensively studied in the literature, see [AS], [ATV], [AV] and references therein. In particular,
they were classified in D. Stephenson’s Ph.D. thesis, [St2] (see also [St3]). The best understood
case is that of singularities of type E6, resp. E7, corresponding to quadratic, resp. cubic, Sklyanin
algebras. The E8-case hasn’t been studied so well, cf. however [St1].

The graded algebra B
t(Φ,Ψ) may be thought of as the homogeneous coordinate ring of a non-

commutative elliptic singularity. There seems to be an interesting and largely unexplored theory of
graded matrix factorizations for noncommutative elliptic singularities. In section 3.6, we introduce
a few basic results, cf. also [KST], and formulate Conjecture 3.6.8.

In the general case of an arbitrary, not necessarily homogeneous, potential Φ the algebra A
t(Φ)

comes equipped with a natural ascending filtration and one may form the corresponding Rees
algebra. This way, one obtains a class of graded algebras that has been considered earlier, especially
in type E6, see [BSV] and [C1], [C2]. Nonetheless, an explicit expression for the central element Ψ ∈
A
t(Φ), or the corresponding homogeneous central element of the Rees algebra, is quite complicated

even in type E6, see §9 and [R].

Remark 1.3.5. It would be interesting to establish a connection between our approach to noncom-
mutative del Pezzo surfaces and the results of Chan-Kulkarni [CK].

1.4. Definition of Calabi-Yau algebras. We will work with unital associative, not necessarily
commutative, C-algebras, to be referrred to as ‘algebras’. We write ⊗ = ⊗C, dim = dimC, etc.

Definition 1.4.1 ([Gi]). An algebra A is said to be a Calabi-Yau algebra of dimension d ≥ 1,
provided it has finite Hochschild dimension, and there are A-bimodule isomorphisms

ExtkA-bimod(A,A⊗A) ∼=

{
A if k = d

0 if k 6= d.
(1.4.2)

The image of 1A ∈ A under such an isomorphism gives a central element in ExtdA-bimod
(A,A⊗A),

called noncommutative volume on A.

Example 1.4.3. Let X be a smooth connected affine complex algebraic variety of dimension d. A
noncommutative volume for the algebra A = C[X], the coordintate ring of X, is the same thing

as a nowhere vanishing section of the line bundle ΛdTX = ExtdOX×X
(OX ,OX×X). Thus, A is a

Calabi-Yau algebra if and only if X is a Calabi-Yau variety. ♦

Remark 1.4.4. Following Van den Bergh [VB1], it may be natural to consider a wider class of twisted
CY algebras which satisfy a weaker version of (1.4.1) requiring that the group ExtkA-bimod

(A,A⊗A)
be zero for k 6= d and, for k = d, this Ext-group be an arbitrary invertible A-bimodule U , not
necessarily U = A. Twisted CY algebras correspond geometrically to arbitrary Gorenstein varieties
whose dualizing sheaf is a not necessarily trivial line bundle.

One should be able to develop an analogue of the theory of CY algebras in this more general
framework. In such a theory, the role of dΦ, an exact noncommutative cyclic 1-form associated with
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a cyclic potential Φ, cf. §3.1 and [Gi] §3.5, is expected to be played by a suitable noncommutative
cyclic 1-form with coefficients in U−1, an inverse A-bimodule.

In the special case of graded algebras, any invertible graded A-bimodule U must be a rank 1 free
left A-module. The right A-action on U is then given, in terms of a left A-module isomorphism
U ∼= A, by the formula ua = u · σ(a),∀u ∈ U, a ∈ A, where σ is an algebra automorphism of A.
In the framework of Sklyanin algebras, this has the effect that the central element Ψ of the CY
algebra gets replaced by a normal element in a twisted CY algebra, cf. [ATV].

1.5. Acknowledgements. We are grateful to Mike Artin and Eric Rains for useful discussions. We also thank Eric

Rains for allowing us to reproduce his computer computations in the appendix to this paper. We are grateful to the

referee for comments and references. The work of E.G. was partially supported by the NSF grant DMS-0504847. The

work of V.G. was partially supported by the NSF grant DMS-0601050.

2. Poisson deformations of a quasi-homogeneous surface singularity

2.1. Deformations and cohomology. Deformations of an algebraic object A are often controlled
by the vector space H2(A), the second cohomology group for an appropriate cohomology theory.
That means, in particular, that associated with such a deformation, i.e. with a family of objects
{As, s ∈ S} parametrized by a scheme S, one has a canonical classifying, Kodaira-Spencer type,
linear map

KSs : TsS → H2(As), s ∈ S, (2.1.1)

where TsS stands for the Zariski tangent space to the scheme S at a point s. A tangent vector
v ∈ TsS determines a 1-parameter infinitesimal first order deformation of the object As. The image
of v under the classifying map KSs is called the Kodaira-Spencer class of that deformation.

Definition 2.1.2. A family {As, s ∈ S}, parametrized by a smooth scheme S, is said to be a
(smooth) semiuniversal 1 deformation provided the classifying map is a vector space isomorphism
for any s ∈ S.

Obstructions to deformations of an object A are often controlled by H3(A), the third cohomology
group. A standard result of deformation theory insures the existence of a formal semiuniversal
deformation of A with base S = H2(A) provided one has: (1) dimH2(A) <∞ and, moreover, (2)
H3(A) = 0. However, a formal semiuniversal deformation of A sometimes exists even if H3(A) 6= 0.
If the semiuniversal deformation exists, one says that the deformations of A are unobstructed.

Given an associative, resp. commutative associative or Poisson, algebra A, one can define its
Hochschild cohomology HH

q

(A) := Ext
q

A-bimod
(A,A) (Gerstenhaber), resp. Harrison cohomology,

Harr
q

(A) (cf. [Lo] and references therein), or Poisson cohomology PH
q

(A) (cf. [GK, Appendix] and
§5.1 below). By definition, in degree zero for an associative algebra A one has HH0(A) = Z(A),
the center of A. Similarly, for a Poisson algebra with Poisson bracket {−,−} : A × A → A, we
have PH0(A) = Z(A) := {z ∈ A | {z, a} = 0, ∀a ∈ A}, is the Poisson center of A.

Also, for the corresponding degree zero Hochschild, resp. Poisson, homology, one has HH0(A) =
Acyc := A/[A,A], the commutator quotient space, resp. PH0(A) = A/{A,A}.

Flat deformations of an associative, resp. commutative associative or Poisson, algebra A are
controlled by the second Hochschild cohomology group HH2(A), resp. Harr

2(A) or PH2(A), cf.
[GK]. Thus, one may consider flat deformations of such an algebra A. Observe that, a flat family
of Poisson algebras is in particular a flat family of commutative algebras. This corresponds, in

1The term “semiuniversal deformation” is often used for deformations parametrized by arbitrary (not necessarily
smooth) formal schemes. In this paper, we will consider only smooth semiuniversal deformations, and for this reason
will not explicitly mention that they are smooth.
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terms of cohomology, to the existence for any Poisson algebra A of a canonical linear map can :
PH2(A) → Harr

2(A).
Now, let A be a Calabi-Yau algebra of dimension d in the sense of Definition 1.4.1. According

to [VB2], a choice of noncommutative volume for A induces a Poincaré duality type isomorphism

HH q(A) ∼→HHd− q

(A). (2.1.3)

Following [CBEG], we introduce a BV operator ∆ : HH
q

(A) → HH
q−1(A), obtained by trans-

porting the Connes differential B, on Hochschild homology, to Hochschild cohomology via the
duality isomorphism (2.1.3).

One may consider first order deformations of the CY algebra A within the class of Calabi-Yau
algebras. The Kodaira-Spencer classes of all such deformations form a vector subspace in HH2(A),
that turns out to be equal to

Ker[∆ : HH2(A) → HH1(A)].

In the special case of Calabi-Yau algebras of dimension d = 3, there is a chain of maps

κ : Acyc
(1.4.2)

∼
// // HH3(A)

∆ // Ker[∆ : HH2(A) → HH1(A)], (2.1.4)

where we have used that Image(∆) ⊂ Ker(∆), since ∆2 = 0.
Let A = A(Φ) be a Calabi-Yau algebra of dimension 3 defined by a potential Φ, see §3.1.

An arbitrary infinitesimal variation Φ  Φ + εΦ′ (where ε2 = 0), of the potential, yields an
infinitesimal deformation of A. We show in §7.3 below, cf. also [BT], that such a deformation
is automatically flat; moreover, it is a deformation within the class of Calabi-Yau algebras. Let
Φ′
cyc ∈ Acyc denote the class of Φ′ in the commutator quotient. Then, it is not difficult to prove

the following proposition, whose proof is left to the reader.

Proposition 2.1.5. The Kodaira-Spencer class in Ker[∆ : HH2(A) → HH1(A)] of the deformation
A(Φ) A(Φ + εΦ′) is equal to κ(Φ′

cyc), the image of Φ′
cyc under the composite map (2.1.4). �

2.2. Quasi-homogeneous surface singularities. Let the multiplicative group C× act on C3 with
positive integral weights a ≤ b ≤ c. This makes the coordinate ring C[x, y, z], of C3, a nonnegatively
graded algebra with homogeneous generators of degrees deg x = a, deg y = b, deg z = c. Thus,
φ ∈ C[x, y, z] is a (weighted-, equivalently, quasi-) homogeneous polynomial of weight deg φ = d if
and only if one has eu(φ) = d · φ, where

eu := ax
∂

∂x
+ by

∂

∂y
+ cz

∂

∂z
, (2.2.1)

denotes the Euler vector field that generates the C×-action.
Associated with any polynomial φ ∈ C[x, y, z] with an isolated singularity, is its Jacobi ring

J(φ) := C[x, y, z]/(∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z
). If φ is (weighted-) homogeneous of weight d, then 0 ∈ C3 is the only

singular point. Furthermore, the Jacobi ring acquires a natural grading J(φ) = ⊕m≥0 J
(m)(φ). For

the corresponding Hilbert-Poincaré polynomial, one easily finds the formula, cf. §5.3,

∑
m≥0

um · dim J(m)(φ) =
(ud−a − 1)(ud−b − 1)(ud−c − 1)

(ua − 1)(ub − 1)(uc − 1)
. (2.2.2)

Set Mφ := φ−1(0) ⊂ C3. Specializing the RHS of (2.2.2) at u = 1, we get a formula

dim J(φ) = µ :=
(d− a)(d− b)(d− c)

abc
, (2.2.3)

for the Milnor number of the isolated singularity (at the origin) of the hypersurface Mφ.
7



Let a ≤ b ≤ c < d be an arbitrary quadruple of positive integers such that gcd(a, b, c, d) = 1.
According to Kyoji Saito [Sa, Theorem 3], one has the following result.

Theorem 2.2.4 (Saito). Assume that the rational function associated with the quadruple (a, b, c; d)
by the formula on the right of (2.2.2) is a polynomial (i.e. has no poles).

Then, the surface Mφ has an isolated singularity at the origin, for any general enough homoge-
neous polynomial φ ∈ C[x, y, z], of degree d. �

2.3. Simple Kleinian and elliptic singularities. Let Pa,b,c = (C3r{0})/C× denote the weighted
projective plane corresponding to the C×-action with weights (a, b, c), where gcd(a, b, c) = 1. Re-
stricting the projection C3 r {0} → Pa,b,c to the punctured hypersurface, one obtains a map
Mφ r {0} ։ P(Mφ) ⊂ Pa,b,c. This way Mφ r {0} becomes a principal C×-bundle over P(Mφ), a
projective curve. The type of the hypersurface Mφ is closely related to the integer

̟ := d− a− b− c. (2.3.1)

There is a complete list of all hypersurfaces with ̟ = −1, 0, 1, see [Sa]. According to K. Saito,
for any such hypersurface, one has Mφ r {0} ∼= H̟/Γ. Here, H̟ is the total space of the C×-
bundle associated with the canonical line bundle on a curve C̟, and Γ is a discrete group of bundle
automorphisms. Depending on whether ̟ = −1, 0, or +1, the curve C̟ is either the projective
line P1(C), or the affine line C, or the upper half plane, respectively. Moreover, in each case, the
group Γ is a discrete subgroup of the group of motions of C̟, viewed as a Riemann surface with
the natural metric, and the Γ-action on H̟ is induced by the natural Γ-action on C̟.

In the case ̟ = −1, the surface Mφ has a simple A,D,E (Kleinian) singularity, while the case

̟ = 0 corresponds to simple elliptic singularities Ẽ6, Ẽ7, Ẽ8 (for a reducible curve, all components
must be rational). Specifically, one has the following classical result, cf. e.g. [B], and §6.1 below.

Proposition 2.3.2. Let the variables x, y, z have degrees 0 < a ≤ b ≤ c, such that gcd(a, b, c) = 1.
(i) Let φ ∈ C[x, y, z] be an irreducible homogeneous polynomial of degree degφ ≤ a + b + c.

Then, the projective curve φ(x, y, z) = 0 is either rational or elliptic.

(ii) Let d ≤ a + b + c be such that, for a general homogeneous polynomial φ of degree d, the
projective curve φ(x, y, z) = 0 is elliptic. Then, d = a+ b+ c, and we have

• One of the following holds:

a b c d p := d
a q := d

b r := d
c µ

1. E6 case : 1 1 1 3 3 3 3 8

2. E7 case : 1 1 2 4 4 4 2 9

3. E8 case : 1 2 3 6 6 3 2 10

(2.3.3)

moreover, the integers (p − 1, q − 1, r − 1) give the lengths of 3 legs of the corresponding

extended Dynkin diagram of type Ẽ6, Ẽ7, or Ẽ8.
• The homogeneous equation of the corresponding elliptic curve can be brought to the canonical
form

φτ (x, y, z) =
xp

p
+
yq

q
+
zr

r
+ τ ·xyz = 0, where τ ∈ C×. (2.3.4)

We note that, in the setting of (2.3.3) one has 1
p +

1
q +

1
r = a

d +
b
d +

c
d = a+b+c

d = 1.

Remark 2.3.5. The case ̟ = 1 turns out to be closely related to 14 exceptional singularities
(Dolgachev singularities) arising in degenerations of K3 surfaces.
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2.4. Let C× act on C3 with weights 0 < a ≤ b ≤ c, where gcd(a, b, c) = 1. Associated with
φ ∈ C[x, y, z] we have the Poisson algebra Bφ, see Definition 1.3.2.

The following theorem will be proved in Subsection 5.5 using some results of Pichereau, [P],
explained in §5.4.

Theorem 2.4.1. For a (quasi-) homogeneous polynomial φ with an isolated singularity, we have
(i) The Hochschild cohomology of Bφ is as follows

HH
q

(Bφ) ∼= X
q

Bφ

⊕
u2 ·C

q

[u]⊗ J(φ), deg u = 1.

(ii) The Poisson cohomology of Bφ is as follows

PH0(Bφ) = C, PH1(Bφ) = J(̟)(φ), PH2(Bφ) = J(̟)(φ)⊕ J(φ), PHk(Bφ) = J(φ), k ≥ 3.

Here, in part (i), X
q

Bφ denotes the algebra of poly-derivations of the algebra Bφ, cf. §4.1, and
in part (ii) we use the notation (2.3.1).

Theorem 2.4.1(ii) shows that the group PH3(Bφ) does not vanish. Nonetheless, there is an
explicit Poisson deformation of the Poisson algebra Bφ such that the tangent space to the base

of that deformation is identified with PH2(Bφ) = J(̟)(φ) ⊕ J(φ). Specifically, the space J(φ),
the second direct summand, parametrizes deformations of the Poisson algebra Bφ obtained by
deformations of the polynomial φ. Any nontrivial deformation of this kind gives a nontrivial
deformation of Bφ, viewed as a commutative algebra (with the Poisson structure disregarded), cf.
relation to Harrison cohomology below.

On the other hand, the space J(̟)(φ), the first direct summand in the decomposition PH2(Bφ) =

J(̟)(φ)⊕J(φ), parametrizes deformations which change the Poisson structure on Bφ while keeping
the commutative algebra structure unaffected. To see this, we use results of Pichereau [P], see

also formula (5.5.1) in the paper. According to loc cit, elements of the direct summand J(̟)(φ) ⊂
PH2(Bφ) may be represented by bivectors of the form f · π, where f ∈ Bφ is a homogeneous
element of degree ̟ and π is the Poisson bivector that gives the Poisson bracket (1.3.1), on Bφ.
We will see in the course of the proof of Theorem 2.4.1 that the family of bivectors of the form
π+f ·π, f ∈ J(̟)(φ), yields the required family of nontrivial deformations of the Poisson structure
on Bφ, parametrized by the vector space J(̟)(φ).

The direct sum decomposition HH2(Bφ) = X
2Bφ⊕u · J(φ), in Theorem 2.4.1(i), corresponds to

the Hodge decomposition of Hochschild cohomology, cf. [Lo], §4.5. The second direct summand is
equal to Harr

2(Bφ), the second Harrison cohomology group of the algebra Bφ. By general defor-
mation theory, the latter group is the base of the semiuniversal unfolding of the quasi-homogeneous
isolated singularity φ = 0. Thus, the canonical morphism can : PH2(Bφ) → Harr

2(Bφ), that send
a Poisson deformation to the corresponding deformation of the underlying commutative algebra,
may be identified with the second projection J(̟)(φ)⊕J(φ) → J(φ). This agrees with the discussion
of the preceding paragraph: the direct summand that corresponds to Poisson deformations of Bφ

induced by deformations of the polynomial φ projects isomorphically onto the group Harr
2(Bφ).

On the other hand, the direct summand J(̟)(φ), that corresponds to deformations of the Poisson
structure which do not change the commutative algebra structure, projects to zero.

Note that if ̟ = −1, the case of Kleinian singularity, Theorem 2.4.1 yields PH1(Bφ) = 0 and

PH2(Bφ) = Harr
2(Bφ) = J(φ). It is easy to see that, in this case, the map can reduces to the

identity.
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2.5. Poisson deformations of elliptic singularities. Given a triple (p, q, r) of positive integers,
introduce a triple of polynomials

P = 1
p ·x

p + α1 ·x
p−1 + . . .+ αp−1 ·x ∈ C[x],

Q = 1
q ·y

q + β1 ·y
q−1 + . . . + βq−1 ·y ∈ C[y], (2.5.1)

R = 1
r ·z

r + γ1 ·z
r−1 + . . .+ γr−1 ·z ∈ C[z].

Further, we let

φτ,νP,Q,R := τ ·xyz + P (x) +Q(y) +R(z) + ν ∈ C[x, y, z], τ ∈ C×, ν ∈ C. (2.5.2)

The family of polynomials φτ,νP,Q,R depends on (p− 1) + (q− 1) + (r− 1) + 2 = p+ q+ r− 1 complex
parameters αi, βj , γk, τ, ν. If all the parameters, except for the parameter τ , vanish, this family

specializes to a homogeneous polynomial φτ = φτ,00,0,0 of the form (2.3.4).

Recall that, for any polynomial φ ∈ C[x, y, z], the equation φ(x, y, z) = 0 defines an affine Poisson
surface in C3, with coordinate ring Bφ.

Theorem 2.5.3. Let (a, b, c) and (p, q, r) be the integers associated to one of the 3 cases Eℓ, ℓ =
6, 7, 8, of table (2.3.3), and let φτ be the corresponding polynomial (2.3.4). Then,

(i) For the Milnor number dim J(φτ ) = µ, we have

µ = (a+b)(a+c)(b+c)
abc = p+ q + r − 1. (2.5.4)

(ii) The equations φτ,νP,Q,R(x, y, z) = 0 give a flat µ-parameter family of affine del Pezzo surfaces
of the corresponding type Eℓ, ℓ = 6, 7, 8.

(iii) The family of Poisson algebras {Bφ, φ = c·φτ,νP,Q,R , c ∈ C×} provides a semiuniversal Poisson
deformation of Bφτ , the coordinate ring of the corresponding elliptic singularity (2.3.4).

In the next section, we will state a ‘quantum analogue’ of Theorem 2.5.3 with Poisson algebras
being replaced by noncommutative algebras.

Remark 2.5.5. Observe that the family of Poisson algebras Bφ, in part (iii), depends on µ + 1
parameters. The reason is that, although the underlying surface φτ = 0 does not depend on the
extra-parameter c ∈ C×, the corresponding Poisson structure does.

Proof of Theorem 2.5.3. Part (i) is a simple consequence of equations d = a+b+c, and p = d/a, q =
d/b, r = d/c, combined with formula (2.2.3). Part (ii) is a well known classical result, cf. [D].

Next, let S = C2 × Sp × Sq × Sr × C×. Here, the parameters τ, ν form coordinates in the
first factor C2, the affine linear spaces Sp, Sq, Sr are spanned by the corresponding polynomials in
(2.5.1), and the parameter c gives a coordinate on the last factor C×. Thus, members of the family
{Bφ, φ = c ·φτ,νP,Q,R , c ∈ C×} are parametrized by points of S. Let o ∈ S be the point corresponding
to vanishing parameters ν, c, P,Q,R, i.e., to the Poisson algebra Bφτ .

To prove (iii), we must show that the classifying map for our family of Poisson algebras induces
a vector space isomorphism ToS

∼→PH2(Bφτ ). According to Theorem 2.4.1, cf. also the discussion

at the beginning of this subsection, we have PH2(Bφτ ) = J(φτ )⊕C, where the direct summand C

corresponds to the 1-dimensional space J(̟)(φτ ). By part (i), we compute

dimPH2(Bφτ ) = dim J(φτ ) + 1 = µ+ 1 = (p− 1) + (q − 1) + (r − 1) + 3 = dimS.

It is easy to see that the map ToS → J(φτ )⊕ C we are interested in is the natural map sending
a polynomial c · φτ,νP,Q,R to its resudue class in the Jacobi ring. This map is injective. Hence, it must
be an isomorphism, due to the above equality of dimensions. �

10



3. Main results

3.1. Algebras defined by a potential. Let V be a C-vector space with basis x1, . . . , xn, and
let F = TV = C〈x1, . . . , xn〉, be the corresponding free tensor algebra. The commutator quotient
space Fcyc = F/[F,F ] is a C-vector space with the natural basis formed by cyclic words in the
alphabet x1, . . . , xn. Elements of Fcyc are referred to as potentials.

Let Φ ∈ Fcyc. For each j = 1, . . . , n, one defines ∂jΦ ∈ F, the corresponding partial derivative of
the potential, by the formula

∂jΦ :=
∑

{s | is=j}

xis+1 xis+2 . . . xir xi1 xi2 . . . xis−1 ∈ C〈x1, . . . , xn〉.

We extend this definition to arbitrary elements ξ = (ξ1, . . . , ξn) ∈ Cn, by C-linearity, i.e. we put
∂ξΦ := ξ1 · ∂1Φ+ . . . + ξn · ∂nΦ. This way, we get a linear map V ∗ → TV, ξ 7→ ∂ξΦ.

Many interesting examples of Calabi-Yau algebras arise from the following construction of alge-
bras associated with a potential, cf. [Gi]. Given Φ ∈ Fcyc, introduce an associative algebra

A(Φ) := F/〈〈∂Φ〉〉 = C〈x1, . . . , xn〉
/
〈〈∂iΦ〉〉i=1,...,n, (3.1.1)

a quotient of F by the two-sided ideal generated by all n partial derivatives, ∂iΦ, i = 1, . . . , n, of
the potential Φ.

3.2. Filtered setting. Let each of the generators xk, k = 1, . . . , n, be assigned some positive degree
deg xk = dk ≥ 1. This makes V a graded vector space, with homogeneous basis xk, k = 1, . . . , n.
Thus, the tensor algebra F = TV = C〈x1, . . . , xn〉 acquires a graded algebra structure with respect

to the induced total grading F =
⊕

r≥0 F
(r) (not to be confused with the standard grading on the

tensor algebra; the latter corresponds to the special case where deg xk = 1 for all k).
One may also view F as a filtered algebra, with an increasing filtration C = F≤0 ⊂ F≤1 ⊂ . . . ,

given by F≤r = F (0) ⊕ . . . ⊕ F (r). The filtration, resp. grading, on F gives rise to a filtration

F≤k
cyc , k = 0, 1, . . . , resp. grading Fcyc = ⊕rF

(r)
cyc, on the commutator quotient space Fcyc.

The increasing filtration on F induces a filtration C = A
≤0(Φ) ⊂ A

≤1(Φ) ⊂ A
≤2(Φ) ⊂ . . . , on

the quotient algebra A(Φ). In the special case where Φ is, in effect, homogeneous, our algebra

inherits a grading A(Φ) =
⊕

m≥0 A
(m)(Φ).

Given a filtered algebra A with filtration by finite dimensional vector spaces, we write

P(A) :=
∑

m∈Z
dim(gr(m)A) · um ∈ Z[[u]],

for the Hilbert-Poincaré series of the associated graded algebra grA =
⊕

m≥0 gr
(m) A.

An ascending filtration, resp. grading, on A induces a filtration HH
q

≤m(A), resp. grading
HH

q

(A) =
⊕

m∈ZHH
q

(m)(A), on each Hochschild cohomology group.

A family of nonnegatively filtered algebras is said to be a semiuniversal filtered family provided
the associated graded algebras form a flat family and, moreover, the classifying map gives an
isomorphism TsS

∼→HH2
≤0(As) for all s ∈ S. There is a similar definition in the case of graded

algebras.
The above discussion also applies to filtered, resp. graded, Poisson algebras and Poisson coho-

mology.

3.3. Quantization of the Poisson algebras Aφ and Bφ. In the three sections below, we are
going to state four theorems which are main results of the paper. The proofs of these theorems will
be given later, mostly in §§7,8.
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Fix a triple of integers 0 < a ≤ b ≤ c such that gcd(a, b, c) = 1. We will be interested in (not
necessarily commutative) algebras with 3 generators. We put F = C〈x, y, z〉 and view F as a graded
algebra such that deg x = a, deg y = b, deg z = c.

It will be convenient to introduce the following

Definition 3.3.1. An element Φ ∈ Fcyc is called a CY-potential provided A(Φ) is a Calabi-Yau
algebra of dimension 3.

The basic example of a homogeneous CY-potential of degree d = a+b+c is Φ = xyz−yxz ∈ F
(d)
cyc .

In this case, one easily finds that A(Φ) = C[x, y, z].
We will be mostly interested in general, not necessarily homogeneous, potentials of degree d =

a+ b+ c.

Theorem 3.3.2. Let (a, b, c) be a triple of positive integers and Φ(d) a homogeneous CY-potential
of degree d = a+ b+ c. Then, for any potential Φ′ ∈ F<dcyc , one has

(i) The sum Φ = Φ(d) + Φ′ is a CY-potential, and for the corresponding filtered algebra, we
have

P
(
A(Φ)

)
= 1/(1 − ua)(1− ub)(1 − uc),

is the Hilbert-Poincaré series of the graded algebra C[x, y, z].

(ii) There exists a nonscalar central element Ψ ∈ A
≤d(Φ).

Theorem 3.3.2 is proved in Subsection 8.3.
The equation in part (i) of the theorem shows that any algebra of the form A(Φ), where Φ

is a nonhomogeneous potential such that its leading term is a CY-potential of degree a + b + c,
may be thought of as a ‘noncommutative analogue’ of the polynomial algebra C[x, y, z]. Further,
a Calabi-Yau structure (i.e. a noncommutative volume) on the algebra may be thought of as a
noncommutative deformation of a unimodular Poisson structure on the polynomial algebra. As
we will see in §4 below, any such unimodular Poisson algebra must be of the form Aφ for an
appropriate polynomial φ ∈ C[x, y, z]. Moreover, the polynomial φ is necessarily a central element
for the Poisson structure.

This suggests to view a central element Ψ ∈ A(Φ) as a noncommutative analogue of the polyno-
mial φ. Thus, one may view any algebra of the form

B(Φ,Ψ) := A(Φ)/〈〈Ψ〉〉, Ψ ∈ Z(A(Φ)), (3.3.3)

(a quotient of the CY algebra A(Φ) by the two-sided ideal generated by the central element Ψ), as
a noncommutative analogue of a Poisson algebra of the form Bφ = Aφ/(φ).

3.4. Noncommutative del Pezzo surfaces. For the rest of section 2.5 we assume that (a, b, c)
is one of the triples from table (2.3.3) and recall the nonhomogeneous polynomials φτ,νP,Q,R , of degree

d = a+ b+ c defined in (2.5.2). According to Theorem 2.5.3(ii), the algebra Bφ, φ = φτ,νP,Q,R , gives
the coordinate ring of an affine del Pezzo surface.

One the other hand, Theorem 3.3.2(ii) insures the existence of nontrivial central elements in the
noncommutative algebra A(Φ). Therefore, it is natural to look for cyclic potentials Φ of the form
similar to one given by formula (2.5.2), and to view the corresponding algebras B(Φ,Ψ), in (3.3.3),
as quantizations of those del Pezzo surfaces.

To implement this program, fix complex parameters t, c. To each triple P ∈ C[x], Q ∈ C[y], R ∈
C[z], of polynomials given by formulas (2.5.1), of degrees p, q, r, respectively, we associate the
following potential

Φt,cP,Q,R = xyz − t·yxz + c·
[
P (x) +Q(y) +R(z)

]
∈ Fcyc. (3.4.1)
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Clearly, Φt,cP,Q,R is a nonhomogeneous potential of degree d. The corresponding algebra A(Φt,cP,Q,R)
is a filtered algebra with generators x, y, z, and the following 3 relations

xy − t·yx = c· dR(z)dz , yz − t·zy = c· dP (x)
dx , zx− t·xz = c· dQ(y)

dy . (3.4.2)

We need the following

Definition 3.4.3. Let X be an irreducible variety, thought of as a variety of ‘parameters’. We say
that a property (P) holds for generic parameters x ∈ X if there exists a countable family, {Ys}, of
closed subvarieties Ys ( X, such that (P) holds for any x ∈ X r (∪sYs).

Recall formula (2.5.4) for the Milnor number µ = dim J(φ) of an elliptic singularity. The two
theorems below are our main results about noncommutative del Pezzo surfaces.

Theorem 3.4.4. For generic parameters (t, c, P,Q,R), formula (3.4.1) gives a CY-potential, and
we have

(i) The algebras A(Φt,cP,Q,R), with relations (3.4.2), form a semiuniversal filtered family of asso-
ciative algebras that depends on µ parameters.

(ii) The algebras of the form B(Φt,cP,Q,R ,Ψ), where Ψ ∈ A
≤d(Φt,cP,Q,R) is a nonscalar central element,

give a semiuniversal family of associative algebras that depends on µ+ 1 parameters.

A sketch of proof of Theorem 3.4.4 is given in Subsection 8.5.
Our presentation for the algebras B(Φ,Ψ) in terms of generators and relations is not completely

explicit yet, since we have not explicitly described central elements Ψ. This can be done by a direct
computation which has been carried out by Eric Rains, see §9 and [R].

Part (1) of the next Theorem gives a ‘parametrisation’ of noncommutative del Pezzo algebras
similar to the one provided, in the commutative (Poisson) case, by Theorem 2.5.3(iii).

Theorem 3.4.5. For any generic homogeneous potential Φ(d) of degree d = a + b + c and an
arbitrary potential Φ′ ∈ F<dcyc , the sum Φ = Φ(d) +Φ′ is a CY-potential, and the following holds:

(1) There exists a potential of the form Φt,cP,Q,R , cf. (3.4.1), such that one has a filtered algebra

isomorphism A(Φ) ∼= A(Φt,cP,Q,R).

(2) The center of A(Φ) is a free polynomial algebra C[Ψ] generated by an element Ψ ∈ A
≤d(Φ),

and one has grZ
(
A(Φ)

)
∼= Z

(
A(Φ(d))

)
.

Theorem 3.4.5 is proved in Subsection 8.3.

3.5. Noncommutative elliptic singularities. Let (a, b, c) be one of the triples from table (2.3.3).
In this subsection, we are interested in the special case where the polynomials P,Q,R, cf. (2.5.1),

reduce to their leading terms. In such a case, the corresponding potential Φt,c := Φt,cP,Q,R , and the

central element Ψ ∈ A
≤d(Φt,c), both become homogeneous elements of degree deg Φt,c = degΨ =

a+ b+ c = d.
Explicitly, we have, cf. also §9 and [R],

case Φt,c ∈ F
(d)
cyc Ψ ∈ Z(A(d)(Φt,c))

E6 xyz − t·yxz + c(x
3

3 + y3

3 + z3

3 ) c·y3 + t3−c3

c3+1 (yzx+ c·z3)− t·zyx

E7 xyz − t·yxz + c(x
4

4 + y4

4 + z2

2 ) (t2 + 1)xyxy − t4+t2+1
t2−c4 (t·xy2x+ c2 ·y4) + t·y2x2

E8 xyz − t·yxz + c(x
6

6 + y3

3 + z2

2 ) too long

(3.5.1)
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Let χ(u) denote the rational function in the RHS of formula (2.2.2). Further, let Υ ∈ HH3(A(Φ))
denote the image of 1 ∈ HH0(A(Φ)) under the isomorphism in (2.1.3), resp. ∆ denote the BV-
operator, associated with a noncommutative volume on the CY algebra A(Φ), cf. Definition 1.4.1.

Theorem 3.5.2. Let (a, b, c) be as in table (3.5.1). Then, for any generic homogeneous potential
Φ of degree d = a+ b+ c, one has

(i) There exists a potential of the form Φt,c, as in table (3.5.1), such that one has a graded
algebra isomorphism A(Φ) ∼= A(Φt,c).

(ii) Each group HHk
(
A(Φ)

)
, k ≤ 3, is a free C[Ψ]-module with the Hilbert-Poincaré series:

P
(
HHk(A(Φ))

)
=





1
1−ud

if k = 0, 1;

1
ud

[ χ(u)
(1−ud)

− 1
]

if k = 2;

χ(u)
ud(1−ud)

if k = 3.

(iii) The BV-operator kills Υ and induces the following bijections

∆ : HH3(A(Φ))/C·Υ ∼→HH2(A(Φ)), resp. ∆ : HH1(A(Φ)) ∼→HH0(A(Φ)).

Theorem 3.5.2 is proved in Subsection 8.4.

Remarks 3.5.3. (1) Part (ii) of the theorem is a generalization of a result of Van den Bergh [VB2].
The factor ud in denominators of the formulas is due to the fact that degΥ = −d. We recall also
that any Calabi-Yau algebra of dimension 3 has no Hochschild cohomology in degrees > 3.

(2) For a result related to part (i) see also [BT], Proposition 5.4.

Associated with a nonzero homogeneous central element Ψ ∈ A(Φ), of degree d, there is the
corresponding quotient algebra B(Φ,Ψ), cf. (3.3.3), which inherits a graded algebra structure.
According to [ATV] and [St1], the element Ψ is not a zero divisor in A(Φ); furthermore, the algebra
B(Φ,Ψ) is a noetherian domain of Gelfand-Kirillov dimension two.

Let Db(B(Φ,Ψ)) be the bounded derived category of finitely generated graded left B(Φ,Ψ)-
modules. One also introduces Tails(B(Φ,Ψ)) ⊂ Db(B(Φ,Ψ)), a full triangulated subcategory of
tails, whose objects are complexes with finite dimensional cohomology, cf. [NVB].

Recall next that, for any algebra of the form B(Φ,Ψ) as above, there exists a triple (E,L, σ),
where E is an elliptic curve, L is a positive line bundle on E, and σ is an automorphism of E, such
that one has a graded algebra isomorphism, see [ATV], [St1],

B(Φ,Ψ) =
⊕

m≥0
Γ(E,L ⊗ σ∗L ⊗ . . .⊗ (σm−1)∗L). (3.5.4)

The graded algebra on the right of (3.5.4) is a σ-twisted homogeneous coordinate ring of E.
Therefore, the algebra B(Φ,Ψ) may be thought of as a flat graded noncommutative deformation
of the affine cone over the elliptic curve E.

Let DbCoh(E) be the bounded derived category of coherent sheaves on E. According to a result
due to Artin and Van den Bergh, [AV], there is a triangulated equivalence

DbCoh(E) ∼= Db(B(Φ,Ψ))/Tails(B(Φ,Ψ)). (3.5.5)

3.6. Matrix factorizations on a noncommutative singularity. Given a nonnegatively graded
algebra A and a central homogeneous element Ψ ∈ A, of degree d > 0, one may introduce Dgr(A,Ψ),
a triangulated category of graded matrix factorizations, see [Or1]. An object of Dgr(A,Ψ) is a
diagram

M =


 M+

g
,,
M−

g′
ll


 g ◦ g′ = Ψ·IdM−

, g′ ◦g = Ψ·IdM+
, (3.6.1)
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whereM+,M− is a pair of finite rank free graded A-modules and g, g′ is a pair of graded A-module
morphisms of degrees 0 and d, respectively.

We take A = A(Φ) and apply a noncommutative version of results due to Orlov, [Or1],[Or2].
This way, one obtains the following, cf. also [KST].

Theorem 3.6.2. (i) There is a triangulated equivalence

DbCoh(E) ∼= Dgr(A(Φ),Ψ).

(ii) Any maximal Cohen-Macaulay graded B(Φ,Ψ)-module has a 2-periodic free graded A(Φ)-
module resolution.

Sketch of proof of Theorem 3.6.2. It is known that A(Φ), being a graded Calabi-Yau algebra, is
automatically a Gorenstein, Artin-Schelter regular algebra of dimension 3, see [BT], [ATV]. Further,
the central element Ψ is not a zero divisor in A(Φ), by construction. It follows that the quotient
B(Φ,Ψ) = A(Φ)/〈〈Ψ〉〉 is an Auslander-Gorenstein algebra of dimension 2, by [Le].

Let Perf(B(Φ,Ψ)) denote the full triangulated subcategory in Db(B(Φ,Ψ)) of perfect complexes,
i.e. of bounded complexes of free graded leftB(Φ,Ψ)-modules of finite rank. Following Orlov, [Or1],

one introduces a quotient category Dsing
gr (B(Φ,Ψ)) := Db(B(Φ,Ψ)/Perf(B(Φ,Ψ)), the triangulated

category of a homogeneous singularity.
An immediate generalization of [Or1], Theorem 3.9, yields the following result

Proposition 3.6.3. Let A = ⊕j≥0Aj be a graded noetherian algebra with A0 = C. Assume that A
is Gorenstein, Artin-Schelter regular algebra of dimension n. Let Ψ ∈ An be a homogeneous central
element, which is not a zero divisor. Then, there is a triangulated equivalence

Dsing
gr (A/〈〈Ψ〉〉) ∼= Dgr(A,Ψ).

Proof. The proof of this result is based on the fact that A/〈〈Ψ〉〉 is an Auslander-Gorenstein algebra
of dimension n− 1, by [Le]. This insures that an analogue of [Or1], Proposition 1.23, holds in our
present noncommutative setting. The rest of the proof of [Or1], Theorem 3.9 then goes through,
and Proposition 3.6.3 follows. �

Next, we apply [Or2], Theorem 2.5, to the algebra B(Φ,Ψ). This way, we obtain a triangulated
equivalence

Dsing
gr (B(Φ,Ψ)) ∼= Db(B(Φ,Ψ))/Tails(B(Φ,Ψ)). (3.6.4)

On the other hand, applying the equivalence of Artin and Van den Bergh, (3.5.5), and using the
isomorphism in (3.5.4), we deduce that the quotient category on the right of (3.6.4) is equivalent
to DbCoh(E). This, combined with Prposition 3.6.3, yields part (i) of Theorem 3.6.2.

The proof of part (ii) is similar to the proof of the corresponding well-known result in commutative
algebra, due to D. Eisenbud [Ei]. �

Example 3.6.5. One of the simplest examples is the case of a cubic curve Eτ ⊂ P2 = P(C3), with
homogeneous equation of the form, cf. (2.3.4),

ψτ (x, y, z) := x3 + y3 + z3 + τ ·xyz, τ ∈ C∗. (3.6.6)

Motivated by [ATV] and [LPP], for any point u ∈ P2, with homogeneous coordinates (α, β, γ),
one associates the following 3 × 3-matrix D, as well as the corresponding adjoint D♮, the matrix
formed by the 2× 2-minors of D,

D :=



αx βz γy
γz αy βx
βy γx αz


 , D♮ =



α2yz − βγx2 γ2xy − αβz2 β2xy − αγy2

β2xy − αγz2 α2yz − βγy2 γ2yz − αβx2

γ2xz − αβy2 β2yz − αγx2 α2xy − βγz2


 .
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We have an identity D ·D♮ = D♮ ·D = detD ·Id. Assume that α, β, γ are all nonzero and put
D′ := − 1

αβγ ·D♮. Thus, we obtain an equation D ·D′ = D′ ·D = −detD
αβγ ·Id.

Further, from the definition of D one computes

detD = (α3 + β3 + γ3)xyz − αβγ(x3 + y3 + z3).

Therefore, assuming that the triple (α, β, γ) is such that α3 + β3 + γ3 = τ · αβγ we may write,
detD = −αβγ ·ψτ . We deduce that whenever ψτ (α, β, γ) = 0 holds, cf. (3.6.6), one has D ·D′ =
ψτ ·Id = D′ ·D. This way, we have constructed a family of graded matrix factorizations

Mu =


 C[x, y, z]⊕3

D --
C[x, y, z]⊕3

D′

mm


 ∈ Dgr(C[x, y, z], ψ

τ ), u ∈ Eτ , (3.6.7)

parametrized by the points u = (α, β, γ) ∈ Eτ with nonvanishing coordinates. ♦

There is an important class of point modules over the algebra A(Φ) introduced in [ATV]. A point

module has a grading P =
⊕

k≥0 P
(k) such that P (0) = C and dimP (k) ≤ 1 for any k. Given an

integer r > 0, we let P≤r := P/
⊕

k>r P
(k) denote the r-truncation of P .

Following [ATV], one proves that any point module P is annihilated by Ψ, hence, may be viewed
as a B(Φ,Ψ)-module. Further, it is not difficult to show that there exists r > 0 such that the map
P 7→ P≤r assigning to a point module its r-truncation gives a bijection between the moduli spaces
of point modules and r-truncated point modules, respectively. Let ro be the minimal such r.

We expect that Example 3.6.5 can be generalized to a noncommutative setting. Specifically, let
Φ be a homogeneous CY potential of degree d = a + b + c, and let Ψ ∈ A(Φ) be a homogeneous
central element of degree d.

Conjecture 3.6.8. To any point module P over the algebra B(Φ,Ψ) one can associate naturally
a matrix factorization M(P ) = (M+,M−), as in (3.6.1), where rkM± = dimP≤ro .

In the E6-case, one has ro = d− 1 = 2 and dimP≤ro = d = 3. Moreover, it was shown in [ATV]
that point modules are parametrized by the points of the corresponding elliptic curve E. In that
case, our conjectural matrix factorisation M(P ) should reduce to (3.6.7), where u ∈ E stands for
the parameter of the point module P .

4. Three-dimensional Poisson structures

4.1. Given a (not necessarily smooth) finitely generated commutative C-algebra A, write Ω1A for
the A-module of Kähler differentials of A, and let Ω

q

A := Λ
q

A(Ω
1A) be the graded commutative

algebra of differential forms, equipped with the de Rham differential d. For each p = 1, 2, . . . , we
also have X

pA = HomA(Ω
pA,A), the space of skew p-polyderivations A ∧C . . . ∧C A→ A.

Set X0A := A =: Ω0A. The graded space X
q

A :=
⊕

p≥0X
pA has a natural structure of Gersten-

haber algebra with respect to the Schouten bracket [−,−] : XpA × X
qA → X

p+q−1A. Associated
with a polyderivation η ∈ X

pA, there is a Lie derivative operator Lη : Ω
q

A → Ω
q−p+1A, resp.

contraction operator iη : Ω
q

A→ Ω
q−pA. These operators make Ω

q

A a Gerstenhaber X
q

A-module.
Let A = C[M] be the coordinate ring of a smooth affine variety M, with tangent bundle TM,

resp. cotangent bundle T ∗
M. Then we have canonical isomorphisms X

q

A = Γ(M,∧
q

TM), resp.
Ω
q

A = Γ(M,∧
q

T ∗
M). We will also use the notation X

q

(M), resp. Ω
q

(M), for these spaces.
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4.2. Unimodular Poisson structures. Any Poisson bracket {−,−} : A × A → A on a (not
necessarily smooth) finitely generated commutative algebra A determines (and is determined by)
a bivector π ∈ X

2A, via the formula

{f, g} := 〈df ∧ dg, π〉, ∀f, g ∈ A. (4.2.1)

The Jacobi identity for the bracket {−,−} is equivalent to the equation [π, π] = 0, in X
3A.

Associated with any f ∈ A, there is a Hamiltonian derivation ξf := {f,−} ∈ X
1A; it is easy to

check that ξf = [π, f ].
Let M be a smooth affine variety of dimension n, with a trivial canonical bundle. Let vol ∈

Ωn(M) be a nowhere vanishing volume n-form. Contraction with vol yields an isomorphism

X
p(M) ∼→ Ωn−p(M), η 7→ iηvol, p = 0, . . . , n. (4.2.2)

A Poisson bracket on the algebra A = C[M] is said to be unimodular provided the divergence
(with respect to the volume vol) of any Hamiltonian vector field vanishes, i.e, for any f ∈ C[M], we
have div(ξf ) = 0. This means that the volume-form is preserved by the Hamiltonian flow generated
by the vector field ξf .

One has the following standard result.

Lemma 4.2.3. Given an arbitrary bivector π ∈ X
2(M), on a 3-dimensional smooth variety M,

let α := iπvol, a 1-form. Then, we have

(i) The condition that π be a Poisson bivector is equivalent to the equation α∧ dα = 0.

(ii) π gives a unimodular Poisson bracket ⇐⇒ Lπvol = 0 ⇐⇒ dα = 0.

Proof. For any η ∈ X
p(M), one has i[π,η] = [Lπ, iη], where [−,−] stands for the super-commutator.

Further, using Cartan’s identity Lπ := iπd− diπ we get

i[π,η] = iπdiη − diπiη − (−1)piηiπd+ (−1)piηdiπ.

We take p = 2 and apply the operations on each side of the identity to the 3-form vol. Clearly,
one has d vol = 0 and also iπiηvol = iηiπvol = iηα = 0. Hence, we find

i[π,η]vol = iπdiηvol+ iηdα+ diπα = 〈π, diηvol〉+ 〈η, dα〉. (4.2.4)

Now let η = π and let Υ be the 3-vector inverse to vol. Then, we have π = iαΥ. So, 〈π, dα〉 =
〈iαΥ, dα〉 = 〈Υ, α ∧ dα〉. Hence, we obtain i[π,π]vol = 2〈Υ, α ∧ dα〉. Thus, we see that [π, π] = 0
holds if and only if we have α ∧ dα = 0. This yields part (i) since the pairing in (4.2.1) gives a
Poisson bracket if and only if one has [π, π] = 0.

There is also an alternate more geometric proof of (i) as follows. A bivector π gives a Poisson
structure on M if and only if [π, π] = 0, which holds if and only if the distribution in TM (of generic
rank 2) spanned by π is integrable. For α = iπvol, the same distribution may be alternatively
described as the distribution defined by the kernels of the 1-form α. The latter distribution is
integrable if and only if α satisfies Frobenius integrability condition: α ∧ dα = 0.

The unimodularity property in part (ii) is equivalent to the equation

0 = div(ξf )·vol = Lξf vol = d(iξf vol), ∀f ∈ C[M]. (4.2.5)

We have

ξf = idfπ = idf (iαΥ) = idf∧αΥ. (4.2.6)

Therefore, we get iξf vol = df ∧ α, hence d(iξf vol) = −df ∧ dα. We see that (4.2.5) amounts to the
equation df ∧ dα = 0, for any regular function f . This holds if and only if we have dα = 0. �
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4.3. Fix a smooth 3-dimensional manifold with a nowhere vanishing volume form vol ∈ Ω3(M)
and a regular function φ ∈ C[M].

Associated with dφ, an exact 1-form, one has a bivector π ∈ X
2(M) such that iπvol = dφ. By

Lemma 4.2.3, this bivector gives rise to a unimodular Poisson bracket {−,−}φ, on C[M]. Explicitly,
the bracket is determined by the equation

{f, g}φ · vol = dφ ∧ df ∧ dg, ∀f, g ∈ C[M]. (4.3.1)

We now specialize to the case where M = C3, is a vector space with coordinates x, y, z, and
vol = dx ∧ dy ∧ dz is the standard volume form.

Corollary 4.3.2. Let {−,−} be an unimodular polynomial Poisson structure on C[x, y, z]. Then,
(i) There exists a polynomial φ ∈ C[x, y, z], such that the Poisson bracket of linear functions is

given by formula (1.3.1).
(ii) We have C[φ] ⊂ Z(C[x, y, z]). If the Poisson bracket is nonzero then, any element f ∈

Z(C[x, y, z]) is algebraic over the subalgebra C[φ], i.e. there exists a nonzero polynomial P ∈ C[t1, t2]
such that one has P (φ, f) = 0.

Proof. Recall that any polynomial closed 1-form on C3 is exact. Hence, any unimodular Poisson
bracket on the algebra C[M] = C[x, y, z] is of the form (4.3.1), for some polynomial function
φ ∈ C[M]. The corresponding Poisson bivector π is given by

π = idφΥ = ∂φ
∂x · ∂

∂y ∧
∂
∂z +

∂φ
∂y · ∂

∂z ∧
∂
∂x + ∂φ

∂z · ∂
∂x ∧ ∂

∂y , where Υ := ∂
∂x ∧ ∂

∂y ∧
∂
∂z . (4.3.3)

Part (i), and the inclusion in part (ii) follow.
Next, let f ∈ C[x, y, z] be such that C(φ, f), the field of rational functions generated by the

polynomials φ and f , has transcendence degree = 2 over C. Then, there exists a point u ∈ C3 such
that dφ|u and df |u are linearly independent covectors.

Now, formula (4.3.1) shows that f is a central element with respect to the Poisson bracket if
and only if one has dφ ∧ df = 0. Hence, for f ∈ Z(C[x, y, z]), the covectors dφ|u and df |u must be
proportional, and part (ii) follows. �

Remark 4.3.4. For a polynomial φ such that the ring C[φ] is algebraically closed in C[x, y, z],
Corollary 4.3.2(ii) yields C[φ] = Z(C[x, y, z]). This condition holds for instance for any irreducible
polynomial, cf. [P], Proposition 4.2, for a similar result in a special case.

5. Poisson (co)homology

5.1. Poisson homology PH q(A), resp. cohomology PH
q

(A), of a Poisson algebra A is defined as
the homology of the total complex associated with a double complex, DP q, q(A) = Λ

q

A(D qΩ1A),
resp. DP

q, q(A) = HomA(DP q, q(A), A), cf. [GK, Appendix]. Here, D qΩ1A denotes the cotangent
complex of A, the latter being viewed as a commutative associative algebra, cf. [GK], formula (A.4).

The bi-graded space DP
q, q(A) comes equipped with a natural Gerstenhaber (i.e. graded Pois-

son) algebra structure, of bi-degree (0,−1) that gives rise to a Gerstenhaber algebra structure on
PH

q

(A), see [GK]. Also, PH0(A) = Z(A) and for each j = 0, 1, . . . , the group PHj(A), resp.
PHj(A), comes equipped with a natural Z(A)-module structure.

Let π ∈ X
2A be the bi-derivation associated with the Poisson bracket, cf. (4.2.1). The Lie

derivative Lπ : Ω
q

A → Ω
q−1A, resp. Lπ : X

q

A → X
q+1A, makes the graded space Ω

q

A, resp.
X
q

A, a complex called homological, resp. cohomological, Lichnerowicz-Koszul-Brylinski complex
(LKB-complex) of the Poisson algebra A, cf. [Br].

The canonical projection D qΩ1A։ Ω1A induces a map DP q, q(A)։ DP0, q(A) = Ω
q

A, and also
the dual map X

q

A → DP
q, q(A). These maps provide morphisms between the LKB- and Poisson

18



cohomology complexes, respectively. Furthermore, unlike the case of the Hochschild complex, the
map X

q

A→ DP
q, q(A) turns out to be a DG Gerstenhaber algebra morphism.

If the scheme SpecA is smooth then the projection D qΩ1A ։ Ω1A is a quasi-isomorphism. It
follows that each of the morphismsDP q, q(A) → Ω

q

A, and X
q

A→ DP
q, q(A), is a quasi-isomorphism

as well. In that case, Poisson (co)homology of A may be computed via the corresponding LKB
complex, that is, one has, cf. [GK],

PH q(A) = H
q

(Ω
q

A, Lπ), resp. PH
q

(A) = H
q

(X
q

A, Lπ).

Observe that the de Rham differential d : Ω
q

A → Ω
q+1A anti-commutes with the operator Lπ,

hence, induces a well defined operator d : PH q(A) → PH q+1(A), on Poisson homology, cf. [Xu].
Assume next that SpecA is a manifold of pure dimension n, equipped with a nowhere vanishing

volume form vol ∈ ΩnA. Define a differential δ : X
q

A → X
q−1A, by transporting the de Rham

differential d : Ω
q

A → Ω
q+1A via the isomorphism X

q

A ∼→Ωn−
q

A, cf. (4.2.2). Then, by [Xu],
Proposition 4.5 and Theorem 4.8, we have

Proposition 5.1.1. Let SpecA be smooth of pure dimension n. For any unimodular Poisson
bivector π ∈ X

2A, one has
(i) The isomorphism in (4.2.2) intertwines the Lπ-actions on polyvector fields and on differential

forms; it induces a degree reversing Z(A)-module isomorphism PH q(A) ∼→PHn− q

(A).
(ii) The differential δ anti-commutes with Lπ; it descends to a well-defined BV-type differential

δ : PH
q

(A) → PH
q−1(A). �

5.2. Poisson homology of a complete intersection. Let I ⊂ A be a Poisson ideal in a Poisson
algebra A, so we have {I,A} ⊂ I. We set B = A/I. Thus, B is a Poisson algebra and SpecB is a
closed Poisson subscheme in SpecA.

The following is a Poisson analogue of a similar result known in the case of Hochschild cohomol-
ogy, cf. eg. [LR].

Proposition 5.2.1. Assume that the Poisson scheme SpecA is smooth and, moreover, the Poisson
subscheme SpecB is a locally complete intersection in SpecA. Then, one has Lπ(I

n · ΩmA) ⊂
In+1 · Ωm−1A, for any m,n ≥ 0, and there is a direct sum decomposition

PHk(B) =
⊕

0≤2j≤k

Hk−2j
(
Ij ·Ω

q

A/Ij+1 ·Ω
q

A, Lπ
)
, ∀k ≥ 0.

Proof. The first statement is verified by a direct computation. Further, the assumption that SpecB
be a locally complete intersection insures that I/I2 is a projective B-module, and the cotangent
complex of SpecB may be represented by a length two complex of amplitude [−1, 0],

D qΩ1B
qis
≃

[
I/I2

d
−→ B ⊗ Ω1A

]
.

Hence, Poisson double complex is quasi-isomorphic to a double complex with the following terms

DPp,q(B)
qis
≃ ΛqB(DpΩ

1B) = ΛqB
(
[I/I2][1]

⊕
B ⊗A Ω1A

)

=
⊕

0≤j≤q

(
[Symj(I/I2)][j] ⊗A Ωq−jA

)

=
⊕

0≤j≤q

(
Ij ·Ωq−jA/Ij+1 ·Ωq−jA

)
[j]. �
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5.3. Poisson cohomology of a hypersurface. Below, we will be mostly interested in Poisson
cohomology of an algebra of the form B := C[M]/(φ) where M is a smooth Poisson variety and
φ ∈ C[M] a regular function contained in the Poisson center. In that case, one can give a slightly
different description of Poisson (co)homology of the algebra B, which is more explicit than the one
provided by Proposition 5.2.1.

Observe first that contraction with the 1-form dφ provides a differential idφ : X
q

(M) → X
q−1(M),

in the corresponding Koszul complex.

Remark 5.3.1. The Jacobi ring of φ may be identified with H0(X
q

(M), idφ). The latter group is
the only nontrivial cohomology group of the Koszul complex, provided φ has isolated singularities.
This way, using the Euler-Poincaré principle, one proves formula (2.2.2).

Let π ∈ X
2(M) be a Poisson bivector.

Lemma 5.3.2. For any φ ∈ Z(C[M]), the map Lπ is C[φ]-linear and it anticommutes with idφ.

Proof. In general, for any function f and a bivector π, one has the following standard identity

Lπ ◦ idf + idf ◦Lπ = Lidfπ = ξf . (5.3.3)

Now, the function φ is central with respect to the Poisson bracket given by a bivector π if and
only if one has idφπ = 0. In that case the maps Lπ and idφ anticommute. The C[φ]-linearity
statement is clear. �

Proposition 5.3.4. Let φ ∈ Z(C[M]) be a central regular function on M. Assume that φ has only
isolated singularities and that there exists a vector field eu ∈ X

1(M) such that one has eu(φ) = c ·φ,
where c is a nonzero constant.

Then, for the Poisson cohomology of the algebra Bφ := C[M]/(φ), there is a convergent first

quadrant spectral sequence Ep,q2 ⇒ grp PH
p+q(Bφ), with E1-term of the form

. . . . . . . . . . . . . . .

X
4(Bφ)

Lπ

OO

0

Lπ

OO

0

Lπ

OO

J(φ)eu

Lπ

OO

J(φ)

Lπ

OO

X
3(Bφ)

Lπ

OO

0

Lπ

OO

J(φ)eu

Lπ

OO

J(φ)

Lπ

OO

X
2(Bφ)

Lπ

OO

J(φ)eu

Lπ

OO

J(φ)

Lπ

OO

X
1(Bφ)

Lπ

OO

J(φ)

Lπ

OO

X
0(Bφ)

Lπ

OO

(5.3.5)

where the leftmost column is the LKB complex of the Poisson algebra Bφ, and J(φ) denotes the
Jacobi ring of φ, cf. §2.2.

Proof. Put A := C[M] and let DA
q

= A ⊗ C[τ ]/(τ2) denote a graded super-commutative algebra
such that A is an even subalgebra placed in degree zero, and τ is an odd generator of degree −1. We
introduce a differential ∇ : DA

q

→ DA
q+1, which is defined as an odd super-derivation, ∇ = φ ∂

∂τ
,

that annihilates the subalgebra A and is such that ∇(τ) = φ. Clearly, one can view the resulting
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DG algebra as a 2-term complex A
φ·
−→ A with the differential given by multiplication by the

function φ. Therefore, we have H0(DA) = Bφ and Hj(DA) = 0 for any j 6= 0.
Next, we make DA a Poisson DG algebra by extending the Poisson bracket {−,−} on A by τ -

linearity. This way, DA becomes a Poisson DG algebra which is quasi-isomorphic to Bφ. Thus, for
the Poisson cohomology, we have PH

q

(Bφ) ∼= PH
q

(DA), where the cohomology on the right-hand
side denotes the hyper-cohomology involving the differential ∇, on DA.

It will be convenient to use geometric language and write DA = C[Y ], where Y = M × C is a
smooth affine Poisson super-manifold of super-dimension (dimM|1). The corresponding Poisson
cohomology may be computed, according to general principles, as a hyper-cohomology of the LKB
double complex for the Poisson DG super-manifold Y . This way, we deduce

PH
q

(A) ∼= PH
q

(DA) ∼= H
q

(X
q

DA, ∇+ Lπ),

where the differential ∇ is induced by the same named differential on the DG algebra DA itself,
and the differential Lπ comes from the Poisson structure on C[M].

Let t denote an even coordinate on the total space, T ∗Y , dual to the odd coordinate τ on Y .
Thus, we get X

q

(Y ) = X
q

(M)⊗C[t, τ ]/(τ2), where the variable t is assigned grade degree +2. With
this notation, the LKB complex takes the form

(
X
q

(M)⊗ C[t, τ ]/(τ2), φ· ∂∂τ + t·idφ + Lπ
)
. (5.3.6)

Let Tφ := TM|φ−1(0) denote the restriction of the tangent bundle of M to the (not necessarily

smooth) hyper-surface φ−1(0) ⊂ M. Thus, Tφ is a vector bundle on φ−1(0) of rank dimM, and we
let Λ

q

φ := Γ(φ−1(0),Λ
q

Tφ) ∼= Bφ ⊗A X
q

A be the corresponding exterior algebra viewed as a graded

algebra such that the space Bφ ⊗A X
1A is placed in degree +1.

Restriction to φ−1(0) combined with the specialization τ 7→ 0, gives a natural algebra projection

pr :
(
X
q

(M) ⊗C[t, τ ]/(τ2), φ· ∂∂τ + t·idφ + Lπ

)
։

(
Λ
q

φ ⊗ C
q

[t], t·idφ
)
. (5.3.7)

It is easy to see that the differential in (5.3.6) descends to the differential t · idφ, on Λ
q

φ ⊗ C[t].
Moreover, the map pr is a quasi-isomorphism of DG algebras.

Thus, we conclude that the Poisson cohomology of Bφ may be computed as hyper-cohomology
of the DG algebra represented by the following mixed complex:

. . . . . . . . .

Λ2

φ

Lπ

OO

idφ // Λ1

φ

Lπ

OO

idφ // Λ0

φ

Lπ

OO

Λ1

φ

Lπ

OO

idφ // Λ0

φ

Lπ

OO

Λ0

φ

Lπ

OO

(5.3.8)

We view (5.3.8) as a bicomplex, K, with two differentials, idφ and Lπ. Associated with this
bicomplex, there is a standard first quadrant spectral sequence (Ep,qr , dr) such that E1 = H

q

(K, idφ)
and the differential d1 is induced by Lπ.

We first analyze the horizontal differential idφ. Let Λ
(q) : Λqφ → . . .Λ1

φ → Λ0
φ denote the complex

in the q-th row of diagram (5.3.8) where, for any j = 0, 1, . . . , q, the term Λjφ is placed in degree

j. The E1 page of the spectral sequence of the bicomplex (5.3.8) takes the required form (5.3.5)
thanks to the sublemma below. �
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Sublemma 5.3.9. (i) We have Hq(Λ(q), idφ) = X
qBφ.

(ii) The complex Λ(q) is acyclic in all degrees j 6= 0, 1, or q. Moreover, H0(Λ(q), idφ) = J(φ) and,

if q > 1, also we have H1(Λ(q), idφ) = J(φ).

Proof of Sublemma. To prove (i), recall that, in general, for any complete intersection N ⊂ M
where M is smooth, each poly-derivation of the algebra C[N ] is induced by a section of the vector
bundle ΛpTM|N . We take N = Mφ := φ−1(0). It follows that each poly-derivation θ : Bφ ∧ . . . ∧
Bφ → Bφ comes from a section s ∈ Λpφ = Γ(Mφ,Λ

pTM|Mφ
). An extension of s to a section s̃ ∈

Γ(M,ΛpTM) gives a poly-derivation θ̃ : A∧. . .∧A→ A, such that one has θ̃(φ, a1, . . . , ap−1) ∈ φ·A,
for any a1, . . . , ap−1 ∈ A. In geometric language, the latter condition translates into the equation
idφs = 0, for the original section s. This proves (i).

Assume now that the function φ has an isolated singularity. Then, the complex

X
(q) : X

q(M)
idφ
−→ X

q−1(M)
idφ
−→ . . . −→ X

1(M)
idφ
−→ X

0(M)

is exact everywhere except possibly the leftmost and rightmost terms. Furthermore, the cokernel
at the rightmost term equals J(φ).

By definition, we have a short exact sequence of complexes 0 → X
(q) → X

(q) → Λ(q) → 0, where
the morphism X

(q) → X
(q) is given by multiplication by the function φ. From the corresponding

long exact sequence of cohomology, we deduce that Hj(Λ(q), idφ) = 0 unless j 6= 0, 1, q. Moreover,

since H0(X(q), idφ) = J(φ), the final part of the long exact sequence reads

0 = H1(X(q), idφ) → H1(Λ(q), idφ) → J(φ)
φ·
→ J(φ) → H0(Λ(q), idφ) → 0. (5.3.10)

Now, by our assumptions, we have φ ∈ C · idφeu. Therefore, the image of φ in the Jacobi
ring J(φ) vanishes. Thus, the map J(φ) → J(φ) induced by multiplication by φ is equal to zero.
This, combined with the exact sequence (5.3.10), yields part (ii) of the sublemma. In addition,
an easy diagram chase shows that the preimage of the element 1 ∈ J(φ) under the isomorphism

H1(Λ(q), idφ)
∼→ J(φ), cf. (5.3.10), corresponds to the class of the vector field eu. �

5.4. Poisson cohomology of the algebra Aφ. We now specialize to the setting of §2.2. Thus,
let 0 < a ≤ b ≤ c be a triple of integers with gcd(a, b, c) = 1. Write eu for the corresponding Euler
vector field (2.2.1), on M = C3, and Υ for the standard 3-vector, see (4.3.3).

Given a polynomial homogeneous φ ∈ C[M] = C[x, y, z], write π := idφΥ, cf. (4.3.3), and let Aφ

denote the corresponding Poisson algebra, cf. Definition 1.3.2.
A. Pichereau has found all Poisson cohomology groups of the algebra Aφ explicitly, see [P]. To

state some of her results set µ := dim J(φ) and choose homogeneous elements 1, f1, . . . , fµ−1 ∈
C[x, y, z] such that their residue classes modulo the Jacobi ideal form a C-basis of the vector space
J(φ). View the elements idfkΥ ∈ X

2(C3), k = 1, . . . , µ− 1, as elements of the LKB-complex for the
algebra Aφ.

Proposition 5.4.1 (Pichereau). For any homogeneous polynomial φ with an isolated singularity
of degree a+ b+ c, Poisson cohomology of Aφ vanishes in degrees ≥ 4 and, one has

(i) We have PH0(Aφ) = C[φ]. Furthermore, the group PH1(Aφ) = C[φ]eu is a rank 1 free
C[φ]-module with generator eu.

(ii) The group PH3(Aφ) is a rank µ free C[φ]-module with basis Υ, f1 ·Υ, . . . , fµ−1 ·Υ, resp.

PH2(Aφ) is a free C[φ]-module with basis idf1Υ, . . . , idfµ−1
Υ, π. �

5.5. Poisson cohomology of a quasi-homogeneous singularity. Pichereau has also computed
cohomology groups of the LKB complex for the (singular) Poisson algebra Bφ associated with a
quasi-homogeneous polynomial φ ∈ C[x, y, z] of an arbitrary weight d > 0. Specifically, she shows
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that XpBφ = 0, for all p > 2. Furthermore, the cohomology of the LKB-differential Lπ is as follows,
see [P],

H0(X
q

Bφ) = C, H1(X
q

Bφ) = J(̟)(φ)eu, H2(X
q

Bφ) ∼= J(̟)(φ)π, (5.5.1)

where J(̟)(φ) is viewed, in the notation of the previous subsection, as the span of the basis elements
fj with deg fj = ̟.

Proof of Theorem 2.4.1. We begin with part (ii) of the theorem. Our Poisson bivector has the form
π = idφΥ. Therefore, for any f ∈ Aφ we have Lπ(f) = ξf = idf∧dφΥ ⊂ idφ(X

2(Aφ)). It follows

that, for any p ≥ 1, the vertical differential Lπ : Ep,p1 = J(φ) → Ep,p+1
1 = J(φ)eu, in the spectral

sequence (5.3.5), vanishes. Thus, the E2 page of the spectral sequence reads

. . . . . . . . . . . . . . .
H4(X

q

Bφ, Lπ) 0 0 J(φ)eu J(φ)
H3(X

q

Bφ, Lπ) 0 J(φ)eu J(φ)
H2(X

q

Bφ, Lπ) J(φ)eu J(φ)
H1(X

q

Bφ, Lπ) J(φ)
H0(X

q

Bφ, Lπ)

(5.5.2)

Here, the cohomology in the leftmost column is provided by formula (5.5.1), hence vanish in

degrees > 2. Thus, we see that all differentials dr : E
p,q
r → Ep−r+1,q+r

r , r ≥ 3, have zero range, and
the statement of part (ii) follows.

The case of Hochschild cohomology is quite similar. Write HH
q

(−) = HH
q

(−, b), where we have
explicitly indicated the Hochschild differential b. Then, using the notation ∇ = φ ∂

∂τ , we get

HH
q

(Bφ, b) = HH
q

(DA, ∇+ b) = HH
q

(C[Y ], ∇+ b) = H
q

(X
q

(Y ), ∇),

where the last isomorphism is due to the Hochschild-Kostant-Rosenberg theorem applied to the
smooth super-scheme Y .

One can now repeat the argument in the proof of Proposition 5.3.4 and replace the complex
(X

q

(Y ),∇), by a smaller complex (Λ
q

φ ⊗ C[t], t · idφ), which is quasi-isomorphic to it, cf. (5.3.7).
This way, we see that the Hochschild cohomology of the algebra Bφ may be computed as hyper-
cohomology of the complex similar to (5.3.8), where the vertical differential Lπ is replaced by zero.
This yields part (i). �

Remark 5.5.3. (i) Theorem 2.4.1 shows that Poisson cohomology groups of the algebra Bφ are
nonzero in all degrees ≥ 2, in particular, these groups are not the same as the cohomology groups
of the LKB complex, cf. (5.5.1). That agrees with the fact that the surface Mφ = SpecBφ has a
singularity.

(ii) Let f ∈ Aφ. For any p = 1, 2, . . . , the image of the element f in J(φ) gives a class in Ep,p2 ,
cf. (5.5.2). An explicit lift of that class to a 2p-cocycle in the total complex associated with the
corresponding bicomplex (5.3.8) is provided by the element f + idfΥ ∈ Λ0

φ ⊕ Λ2
φ. Indeed, we have

Lπf = ξf = idf∧dφΥ, cf. (4.2.6). Further, using (5.3.3), the fact that LπΥ = 0 and unimodularity
of the Poisson bivector π (Lemma 4.2.3), we get LπidfΥ = LidfπΥ = LξfΥ = 0. Thus, we compute

(Lπ + idφ)(f + idfΥ) = Lπf + LπidfΥ+ idφidfΥ = idf∧dφΥ+ 0 + idφ∧dfΥ = 0.

Similarly, for a homogeneous function f ∈ Aφ, of degree deg f = k, the element (̟−k)fΥ+feu ∈
Λ3
φ ⊕ Λ1

φ gives, for each p = 1, 2, . . ., a (2p + 1)-cocycle in the total complex associated with the

corresponding bicomplex (5.3.8). To see this, one may use the identity π∧ eu = deg φ ·Υ, to obtain
the following equation, see [P, formula (27)],

Lπ(feu) = (k −̟)fπ − deg φ·φ·idfΥ = (k −̟)fπ mod (φ).
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Further, we have idφeu = eu(φ) = (a+ b+ c)φ. Thus, we find that, in Λ
q

φ = X
q

(M)/(φ), one has

(Lπ + idφ)
[
(̟ − k)fΥ+ feu

]
= (̟ − k)fidφΥ+ Lπ(feu) + feu(φ)

= (̟ − k)fπ + (k −̟)fπ mod (φ) = 0.

6. Classification results

6.1. Proof of Proposition 2.3.2. Assume that the curve is not rational. Let a ≤ b ≤ c.
If all the degrees are equal, then they are equal 1, and degφ ≤ 3. In this case, the statement is

classical (the E6 case).
Now assume that the degrees are not equal to each other. In this case the leading power of z is

≤ 2. If this power were 1, the curve would be rational, so it is 2. Consider two cases.
Case 1. a < b = c. In this case z2 comes together with zy and y2, so for generic coefficients, by

making a linear change of y, z, we can kill z2 and y2, so the leading term in z will be linear. This
shows that the curve is rational, contradiction.

Case 2. a ≤ b < c. Then the leading term in z is z2. so we get 2c ≤ a+ b+ c, hence c ≤ a+ b.
After a change of variable the equation of the curve can be written as z2 = g(x, y), where g is
homogeneous of degree 2c ≤ 2(a+ b). Consider two cases.

Case 2a. a = b. In this case, g has degree 3 or 4. If the degree of g is 3, then a = b = 2, c = 3,
and this the curve is rational, because the point (x, y, z) is equivalent to (x, y,−z) in the weighted
projective space. Thus it remains to consider the case when deg(g) = 4, and thus a = b = 1, c = 2.
In this case, for generic coefficients we do get an elliptic curve (the E7 case).

Case 2b. a < b. Then the terms that can be present in g(x, y) are y3 and terms that contain
y in power ≤ 2. Thus for the curve not to be rational, the term y3 must be present. So 2c = 3b,
and thus b ≤ 2a. If b = 2a, then a = 1, b = 2, c = 3, d = 6, and for generic coefficients we indeed
get an elliptic curve (the E8 case). On the other hand, if b < 2a, then g cannot contain quadratic
terms in y (the only possible quadratic terms are y2, xy2, x2y2, and none of them have the right
degree). The only linear term in y that can occur in g is x3y, in which case the curve is given
by z2 = y3 + x3y, in weighted projective space of weights (4, 6, 9). This curve is rational, because
the point (x, y, z) is equivalent to (x, y,−z). Otherwise, the curve is z2 = y3 + xp, 4 ≤ p ≤ 5, in
weighted projective space with weights (6, 2p, 3p). If p = 5, the curve is rational since (x, y, z) is
equivalent to (x, y,−z). If p = 4, the curve is given by the equation z2 = y3 + x4, with weights
(3, 4, 6), and the curve is rational since (x, y, z) is equivalent to (x, εy, z), where ε is a cubic root of
unity. �

6.2. Proof of Theorem 3.4.5(1). Let Y ′ be the space of all non-homogeneous potentials of degree
a+ b+ c, and Y be the space of all nonhomogeneous commutative polynomials of that degree. Let
G′ be the group of degree preserving automorphisms of C〈x, y, z〉. Then we have the following exact
sequence of G′-modules:

0 → U → Y ′ → Y → 0,

where U is a 1-dimensional representation spanned by xyz−yxz in the E6 case, and a 2-dimensional
representation spanned by xyz − yxz and xyxy − x2y2 in the E7 and E8 cases.

Also, let G be the group of degree preserving automorphisms of C[x, y, z]. We have an exact
sequence

1 → H → G′ → G→ 1,

where H = 1 in the E6 case, and H = Ga consisting of elements x→ x, y → y, z → z + b(xy − yx)
in the E7 and E8 cases. It is easy to see that a generic element of U is equivalent under H to
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γ(xyz−yxz). Thus to prove the theorem, it suffices to show that the expressions xyz+c·[P+Q+R],
cf. (2.5.2), give normal forms of generic elements in Y under the action of G. But this is a classical
fact from the theory of del Pezzo surfaces, see [D]. �

7. Calabi-Yau deformations

7.1. The dg algebra D(Φ). Let F = C〈x1, . . . , xn〉 be a free algebra on n homogeneous generators
x1, . . . , xn, where degxi > 0 for all i = 1, . . . , n. We view F either as a graded or as a filtered
algebra, as in §3.2. We shall refer to the grading on F as a weight grading.

Associated with any potential Φ ∈ Fcyc, we have introduced in [Gi], §1.4, a free graded associative
algebra D(Φ) = ⊕r≥0D(Φ)r, with 2n+1 homogeneous generators x1, . . . , xn, y1, . . . , yn, t. We have
D(Φ)0 = F . The algebra D(Φ) comes equipped with a differential ∂ : D(Φ) q → D(Φ) q−1 such that
one has H0(D(Φ)) = F/∂(D1(Φ)) = A(Φ).

In the case where Φ is a homogeneous potential of degree d > max{deg xi, i = 1, . . . , n}, there
is an additional weight grading on D(Φ) such that the generators y1, . . . , yn, t, are assigned degrees
deg yi := d − deg xi, and deg t := d. This way, multiplication by elements of D(Φ)0 makes each

component D(Φ)r a graded left F -module D(Φ)r = ⊕s>0D
(s)(Φ)r, where the s-grading denotes the

weight grading.
The precise definition of the dg algebraD(Φ) is not essential for us at the moment. The important

points are the following 4 properties

• The differential on D(Φ) and the weight grading are determined by the potential Φ,
while the algebra structure and the r-grading do not involve the potential;

(7.1.1)

• For each r = 0, 1, . . . , the homogeneous component D(Φ)r is a free F -module, more-

over, if Φ is homogeneous, then we have dimC

(
D

(s)(Φ)r
)
<∞, ∀s ≥ 0;

(7.1.2)

• If Hj(D(Φ)) = 0 for all j > 0, then Φ is a CY-potential; (7.1.3)

• If Φ is a homogeneous CY-potential then the differential ∂ preserves the weight
grading on D(Φ); moreover, we have Hj(D(Φ)) = 0 for all j > 0, i.e. the converse
to (7.1.3) holds as well.

(7.1.4)

Here, (7.1.1)-(7.1.2) are immediate from the definition of D(Φ), while (7.1.3)-(7.1.4) follow from
[Gi], Theorem 5.3.1, which is one of the main results of that paper.

For each i = 1, . . . , n, write di := deg xi > 0, and let AutF denote the group of degree pre-

serving automorphisms of the algebra F . Given d ≥ 3, let CY3(d, d1, . . . , dn) ⊂ F
(d)
cyc , be the set of

homogeneous CY-potentials of some fixed degree d ≥ 3.

Lemma 7.1.5. (i) The set CY3(d, d1, . . . , dn) is AutF -stable, moreover, it is an intersection of

at most countable family of Zariski open (possibly empty) subsets in F
(d)
cyc .

(ii) For all Φ ∈ CY3(d, d1, . . . , dn), the algebras A(Φ) have the same Hilbert-Poincaré series.

Proof. For any Φ ∈ F
(d)
cyc , we may split the differential ∂ on the dga D(Φ) into components ∂Φr,s :

D
(s)(Φ)r → D

(s)(Φ)r−1, where each D
(s)(Φ)r is a finite dimensional vector space, by (7.1.2). Since

∂2 = 0, for any r, s ≥ 0, one has dim Image ∂Φr+1,s ≤ dimKer∂Φr,s.
According to property (7.1.4), Φ is a CY potential iff the dga D(Φ) has no nonzero cohomology

in positive degrees. Thus, we have

CY3(d, d1, . . . , dn) =

{
Φ ∈ F (d)

cyc

∣∣∣ dim Image ∂Φr+1,s ≥ dimKer ∂Φr,s, and

∂Φ1,s has maximal rank, ∀r > 0, s ≥ 0.

}
. (7.1.6)
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The set on the right is clearly an intersection of a countable family of Zariski open subsets in

F
(d)
cyc . Part (i) follows. Part (ii) is [Gi, Proposition 5.4.7]. �

7.2. Deformation setup. In this and the following subsection, we develop a formalism that will
be used in the proofs of our main results.

Given a vector space V , we write V [[~]] for the space of formal power series in an indeterminate
~ with coefficients in V . In particular, we have C[[~]], the ring of formal power series. A C[[~]]-
module is said to be topologically free if it is isomorphic to a module of the form V [[~]], where V is a
C-vector space. Such a module is clearly a flat C[[~]]-module, complete in the ~-adic topology. vvv
Let K = ⊕r≥0Kr be a complex of topologically free C[[~]]-modules, equipped with a C[[~]]-linear
differential d : K q → K q−1. Put K := K/~ ·K. This is a complex of C-vector spaces, with induced
differential d : K q → K q−1.

We recall the following standard result.

Lemma 7.2.1. If the complex (K, d) is acyclic in positive degrees then, we have
(i) The complex (K, d) is acyclic in positive degrees;
(ii) The cohomology group H0(K, d) is a flat C[[~]]-module;
(iii) The projection K ։ K induces an isomorphism

H0(K, d)/~·H0(K, d) ∼→ H0(K, d). �

We will also use a graded analogue of the above lemma, where the variable ~ is assigned grade
degee 1. Thus, let K be a complex of graded C[~]-modules Kr = ⊕s≥0 K

s
r , with homogeneous,

C[~]-linear differential d : Kr → Kr−1. Put K := K/~K, resp. K ′ := K/(~− 1)K, and let d, resp.
d′, be the induced differential on K, resp. on K ′. For each r, the grading on Kr induces a filtration

on K ′
r. Replacing each term Kr by its completion K̂r :=

∏
s≥0K

s
r and applying Lemma 7.2.1 to

the resulting complex yields the following elementary result.

Lemma 7.2.2. Assume, in the above setting, that each Kr is a free graded C[~]-module such that
dimCK

s
r <∞ for all r, s, and that Hr(K, d) = 0 for any r > 0. Then, we have Hr(K ′, d′) = 0 for all

r > 0. Furthermore, the natural map K → grK ′ induces an isomorphism H0(K, d) ∼→ grH0(K ′, d′).
�

Below, it will be necessary to work with C[[~]]-algebras, that is, with associative algebras B
equipped with a central algebra imbedding C[[~]] →֒ B. A C[[~]]-algebra B which is complete
in the ~-adic topology will be referred to as an ~-algebra. Abusing terminology, we call such an
algebra flat if it is topologically free as a left (equivalently, right) C[[~]]-module.

We reserve the notation F~ for the ~-algebra F [[~]]. We have a canonical isomorphism of free
C[[~]]-modules F~/[F~, F~] ∼= Fcyc[[~]]. This way, for any potential

Φ = Φ0 + ~ · Φ1 + ~2 · Φ2 + . . . ∈ (F [[~]])cyc = Fcyc[[~]], (7.2.3)

where Φj ∈ Fcyc, one may define the following ~-algebras

A~(Φ) := F~

/
〈〈∂iΦ〉〉i=1,...,n, resp. D~(Φ) = ⊕r≥0D~(Φ)r.

Here, D~(Φ) is a dg ~-algebra with C[[~]]-linear differential, of degree −1, moreover, D~(Φ)0 = F~,
and we have A~(Φ) = H0(D~(Φ)). There are natural ‘~-analogues’ of properties (7.1.1)-(7.1.4).

Corollary 7.2.4. Let Φ be a potential as in (7.2.3). Then, we have
(i) For each r = 0, 1, . . . , the component D~(Φ)r is a free F~-module.

In the case where all Φj are homogeneous of the same degree d, the homogeneous component

D
(s)(Φ)r is a finite rank free C[[~]]-module, for any s ≥ 0.
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(ii) Reduction modulo ~ induces a dg algebra isomorphism D(Φ0)
∼→D~(Φ)/~·D~(Φ) which, in

the homogeneous case, is compatible with the weight gradings on each side.

Proof. Part (i) follows from an ‘~-analogue’ of property (7.1.2); part (ii) follows from definitions. �

7.3. Formal deformations of potentials. For any vector space, resp. algebra, C let C((~)) be
the vector space, resp. algebra, of formal Laurent series with coefficients in C. In particular, we
put k = C((~)), the field of Laurent series.

It is clear that k
⊗

C[[~]] F~ = F ((~)). We also have Fcyc[[~]] ⊂ Fcyc((~)) = [F ((~))]cyc. Therefore,

any potential Φ ∈ Fcyc[[~]] may also be viewed as a potential for the k-algebra F ((~)). Thus, one
may view k as a ground field and form a k-algebra A(Φ) = F ((~))/〈〈∂jΦ〉〉j=1,...,n. To emphasize

the fact that the latter is a k-algebra, we will write Ak(Φ) := A(Φ). There is an obvious k-algebra
isomorphism Ak(Φ) = k

⊗
C[[~]]A~(Φ).

We begin with the following result which says that being a CY-potential is an ‘open condition’.

Proposition 7.3.1. Fix a homogeneous CY-potential Φ0 ∈ F
(d)
cyc .

(i) For any (not necessarily homogeneous) element Φ′ ∈ Fcyc[[~]], the sum Φ = Φ0 + ~ · Φ′ is a
Calabi-Yau potential for the algebra F ((~)).

Furthermore, A~(Φ) is a flat ~-algebra and the natural projection yields an algebra isomorphism

A(Φ0)
∼→A~(Φ)/~·A~(Φ).

(ii) For any element Φ′ ∈ F<dcyc , the sum Φ = Φ0 +Φ′ is a CY-potential for the algebra F .
Furthermore, the natural projection yields a graded algebra isomorphism

A(Φ0)
∼→ grA(Φ).

We remark that part (ii) of Proposition 7.3.1 is due to Berger and Taillefer, [BT]; cf. also [Gi],
Corollary 5.4.4, for an alternate approach.

Proof of Proposition 7.3.1. To prove (i), let K := D~(Φ). Corollary 7.2.4(i) insures that the as-
sumptions of Lemma 7.2.1 hold for K. It follows from property (7.1.4) and Lemma 7.2.1(i) that the
dg algebra D~(Φ) is acyclic in positive degrees. Hence, the dg algebra Dk(Φ) = k

⊗
C[[~]]D~(Φ) is

acyclic in positive degrees as well. Thus, property (7.1.3) implies that Φ is a Calabi-Yau potential.
Now, part (ii) of Lemma 7.2.1 insures that A~(Φ) is a flat ~-algebra and part (iii) of Lemma 7.2.1
completes the proof of Proposition 7.3.1(i).

Now, we prove part (ii) of Proposition 7.3.1 by an argument involving Rees algebras that will
be also used later in this section again. Let F

q

~ := F [~] = C[~] ⊗ F . We assign the variable ~

degree +1. This, together with the grading F = ⊕sF
(s), makes F

q

~ a graded C[~]-algebra, the Rees
algebra of F , the latter being viewed as a filtered algebra. Thus, we have that (F

q

~ )cyc is a graded
C[~]-module.

Next, write a decomposition Φ′ = Φ(d−1) + Φ(d−2) + . . . + Φ(0), into homogeneous components

Φ(r) ∈ F
(r)
cyc, r = 1, . . . , d. Introduce a new homogeneous potential (of degree d) for the graded

algebra F
q

~ = F [~] as follows

Φ~ := Φ0 + ~ · Φ(d−1) + ~2 · Φ(d−2) + . . .+ ~d · Φ(0) ∈ (F
q

~ )cyc = Fcyc[~]. (7.3.2)

One has a dg algebra D
q

~(Φ
~) = ⊕r,s≥0D

(s)
~ (Φ~)r, with differential D

( q)
~ (Φ~)r → D

( q)
~ (Φ~)r−1

defined in terms of the homogeneous potential Φ~. For each r ≥ 0, the component D
( q)
~ (Φ~)r is a

free graded C[~]-module and the differential is a morphism of graded C[~]-modules. Further, we
have dg algebra isomorphisms, cf. Corollary 7.2.4(ii):

D
q

~(Φ
~)/(~ − 1) ·D

q

~(Φ
~) ∼→D(Φ), resp. D

q

~(Φ
~)/~ ·D

q

~(Φ
~) ∼→D(Φ0). (7.3.3)
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Here, the dg algebra on the right is acyclic in positive cohomological degrees by (7.1.4), since Φ0 is
a homogeneous CY potential. Hence, the dg algebra on the left is acyclic in positive cohomological
degrees, by Lemma 7.2.2. Also, from (7.3.3), we deduce

H0
(
D

q

~(Φ
~)/(~− 1) ·D

q

~(Φ
~)
)
∼= A(Φ), resp. H0

(
D

q

~(Φ
~)/~ ·D

q

~(Φ
~)
)
∼= A(Φ0).

Thus, the last statement of Lemma 7.2.2 yields the algebra isomorphism A(Φ0) ∼= grA(Φ). �

7.4. The case: n = 3. We put F = C〈x, y, z〉 and assign the generators x, y, z positive weights
(a, b, c). Let d := a+ b+ c.

First of all, we know that Φ0 := xyz − yxz is a CY-potential of degree d. In other words, we
have Φ0 ∈ CY3(d, a, b, c). We recall Definition 3.4.3, and deduce

Corollary 7.4.1. (i) A generic homogeneous potential Φ ∈ F (d) is a CY-potential; the Hilbert-
Poincaré series of the corresponding graded algebra A(Φ) is equal to that of the algebra C[x, y, z].

(ii) For any Φ′ ∈ F<dcyc , the sum Φ = xyz − yxz + Φ′ is a CY-potential; moreover, the natural
projection yields a graded algebra isomorphism

C[x, y, z] ∼→ grA(Φ).

Proof. Part (ii) follows from Proposition 7.3.1(ii). Further, we observe that the set CY3(d, a, b, c)
contains Φ0, hence is nonempty. Therefore, part (i) follows from Lemma 7.1.5. �

Recall that k = C((~)). Since CY3(d, a, b, c) 6= ∅ for d = a + b+ c, from Proposition 7.3.1(i) we
deduce

Lemma 7.4.2. For any element Φ′ ∈ Fcyc[[~]], the sum Φ = xyz − yxz + ~ · Φ′ is a CY-potential
for the k-algebra F ((~)).

Furthermore, the ~-algebra A~(Φ), with relations

xy − yx = ~· ∂Φ
′

∂z
, yz − zy = ~· ∂Φ

′

∂x
, zx− xz = ~· ∂Φ

′

∂y
, (7.4.3)

is a flat formal deformation of the polynomial algebra C[x, y, z]. �

Reducing the flat deformation of the lemma modulo ~2, one obtains in a standard way a Poisson
bracket on C[x, y, z]. To describe this Poisson bracket, consider the natural abelianization map

C〈x, y, z〉cyc ։ C[x, y, z], f 7→ fab.

Further, expand the potential in Lemma 7.4.2 as a power series in ~ and write

Φ = xyz − yxz + ~ · Φ1 + ~2 · Φ2 + . . . , Φj ∈ C〈x, y, z〉cyc. (7.4.4)

It is easy to show that the Poisson bracket on C[x, y, z] arising from the flat deformation of
Lemma 7.4.2 is given by formula (1.3.1); specifically, we have

{−,−} = {−,−}φ where φ := (Φ1)
ab ∈ C[x, y, z], (7.4.5)

the image under the abelianization map of the degree 1 term in the ~-power series expansion of Φ.

8. From Poisson to Hochschild cohomology

8.1. We fix a triple of positive weights (a, b, c). Put F = C〈x, y, z〉 and assign the generators x, y, z
some positive weights a, b, c, respectively. This gives the ascending filtration F≤m, m = 0, 1, . . . ,
on F , as in §3.2. Further, we introduce a variable ~ of degree zero and use the notation F≤m

~ :=

(F≤m)[[~]], resp. F≤m
cyc [[~]], for the corresponding induced filtrations on the ~-algebra F~, resp.

on (F~)cyc = (Fcyc)[[~]]. Thus, given a potential Φ ∈ (F~)
≤m
cyc , we get a filtered ~-algebra A~(Φ).
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Note that these filtrations on F~, (F~)cyc, and A~(Φ), are not exhaustive, rather, one has that e.g.

∪m≥0 A
≤m
~ (Φ) is dense in A~(Φ) with respect to the ~-adic topology.

Now, put d = a+ b + c, and recall the notation k = C((~)), resp. Ak(Φ) = k
⊗

C[[~]]A~(Φ) and

Definition 1.3.2.

Proposition 8.1.1. (i) For any potential Φ ∈ (F~)
≤d
cyc of the form (7.4.4), with Φ0 = xyz − yxz,

the ~-algebra A~(Φ) contains a central element Ψ ∈ A
≤d
~ (Φ) such that one has Ψ (mod ~) = (Φ1)

ab.

Assume, in addition, that (Φ1)
ab is a homogeneous polynomial of degree a + b + c with an

isolated singularity. Then we have:

(ii) There is a bi-graded k-algebra isomorphism

HH
q

(Ak(Φ)) ∼= k⊗ PH
q

(Aφ) where φ := (Φ1)
ab ∈ C[x, y, z].

(iii) The center of A~(Φ) is Z(A~(Φ)) = C[Ψ][[~]], a free topological ~-algebra in one generator,
and HH1(Ak(Φ)) = k[Ψ]Eu, is a rank one free k[Ψ]-module generated by the Euler derivation.

Proof of Proposition 8.1.1(i). Let R = C[u] be a graded polynomial algebra where the variable u is
assigned grade degree 1. Below, we consider R as a ground ring, and write R[x, y, z] = C[x, y, z, u],
a polynomial R-algebra. Given a commutative R-algebra A we use the notation Ω

q

RA, resp. X
q

RA,
for the algebra of relative differential forms with respect to the subalgebra R ⊂ A, resp. R-linear
polyderivations of A.

Given a filtered algebra B we write RB
q

=
∑

m≥0B
≤m · um for the corresponding Rees algebra,

a flat graded R-algebra. Thus, associated with the filtered algebra F , resp. F~, one has a graded
R-algebra RF , resp. a graded R[[~]]-algebra RF~.

Now, fix a potential Φ =
∑

~jΦj ∈ (F~)
≤d
cyc, as in (7.4.4), and for each j = 1, 2, . . . , write

Φj = Φ
(d)
j +Φ

(d−1)
j + . . .+Φ

(0)
j , where Φ

(m)
j ∈ F

(m)
cyc . We introduce a new homogeneous potential of

degree d similar to the one in (7.3.2) (but where the role of ~ is now played by the variable u),

Φu = xyz − yxz +

∞∑

j=1

~j ·Φuj ∈ RFcyc[[~]], where Φuj :=

d∑

m=0

um ·Φ
(d−m)
j ∈ R(d)Fcyc.

Associated with the potential Φ, resp. Φu, we have a filtered ~-algebra A~(Φ), resp. graded
R[[~]]-algebra A~(Φ

u). Clearly, there is a natural graded algebra isomorphism RA~(Φ) ∼= A~(Φ
u).

One can prove R-analogues of Corollary 7.4.1 and of Lemma 7.4.2. This way, one deduces that
the natural projection A~(Φ

u)/~ · A~(Φ
u) ∼→R[x, y, z] is a graded algebra isomorphism. Thus, the

algebra A~(Φ
u) provides a C×-equivariant flat formal deformation (where ~ is the deformation

parameter and where the C×-equivariant structure comes from the grading) of RA := R[x, y, z],
the latter being viewed as a Poisson R-algebra with an R-bilinear Poisson bracket arising from the
polynomial φu := (Φu1)

ab, cf. (7.4.5).
Recall next that to any formal deformation-quantization of a commutative algebra A one can

associate a Poisson bivector π~ ∈ X
2A[[~]] that represents the Kontsevich’s class of the deformation.

The Kontsevich correspondence is known to respect equivariant structures arising from a reductive
group action by Poisson automorphisms. Furthermore, according to a result of Dolgushev [Do],
the bivector π~ gives a unimodular Poisson structure if and only if the corresponding deformation-
quantization gives a flat family of CY algebras. These results by Kontsevich and Dolgushev can be
easily generalized to the setting of (flat) R-algebras.

Now, put RA~ := RA[[~]] and let π~ ∈ X
2
RRA~ be a Poisson bivector that represents Kontse-

vich’s class of the deformation-quantization of RA provided by the noncommutative R[[~]]-algebra
A~(Φ

u). We know, by R-analogues of Corollary 7.4.1 and of Lemma 7.4.2, that this deformation
is indeed a flat family of CY R-algebras. Therefore, we conclude that the R[[~]]-bilinear Poisson
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bracket {−,−} on RA~ associated with the bivector π~ is unimodular. Moreover, since the Kontse-
vich correspondence respects the C×-equivariant structure arising from the grading on A~(Φ

u), resp.
on RA~, we deduce that the Poisson bracket associated with the bivector π~ respects the grading
on the algebra RA~, i.e. is such that we have deg{f, g} = deg f + deg g, for any homogeneous
elements f, g ∈ RA~ (where deg ~ = 0 as before).

Next, one uses an R-analogue of Corollary 4.3.2(i) to show that there exists a formal series of
the form ψ = ~ · ψ1 + ~2 · ψ2 + . . . , ψj ∈ RA, such that, in X

2
RRA[[~]], one has π~ = idψΥ. Here,

Υ ∈ X
3
RRA is the standard 3-vector given by formula (4.3.3). Thus, degΥ = −(a+ b+ c) = −d. It

follows that each element ψj ∈ RA(d) must be homogeneous of degree d. It is also immediate from
(7.4.5) that, for the first term in the expansion of ψ, one has

ψ1 = (Φu1)
ab. (8.1.2)

We introduce RA((~)), a commutative R((~))-algebra. One may obviously view ψ as an element
of RA((~)). Associated with this element, there is a Poisson R((~))-algebra RAψ, cf. Definition
1.3.2. Clearly, we have RAψ

∼= R((~))
⊗

R[[~]]RA~, and the Poisson bracket on RAψ is nothing

but the R((~))-bilinear extension of the Poisson bracket on the ~-algebra RA~. Similarly, associated
with the potential Φu, we have an R((~))-algebra A(Φu) := R((~))

⊗
R[[~]]A~(Φ

u).

At this point, one applies Kontsevich’s formality theorem [K1], cf. also [CVB]. The theorem
yields a graded R((~))-algebra isomorphism,

HH
q

(A(Φu)
)
∼= PH

q

(RAψ). (8.1.3)

In degree zero, in particular, we get algebra isomorphisms Z(A(Φu)
)
∼= Z(RAψ) = R((~))[ψ].

We deduce that the center of A(Φu) is generated by a degree d homogeneous element. Multiplying
by a power of ~, we may assume without loss of generality that this central element has the form

1⊗Ψu ∈ R((~))
⊗

R[[~]]A
(d)
~ (Φu), where Ψu ∈ A

(d)
~ (Φu) is such that Ψu (mod ~) = ψ. Notice further

that the ~-algebra A~(Φ
u) has no ~-torsion since Φu is a CY-potential, see Proposition 7.3.1(i). It

follows that the map A~(Φ
u) → A(Φu), a 7→ 1⊗ a, is injective and therefore Ψu must be a central

element of the algebra A~(Φ
u).

By construction, the original potential Φ is obtained by specializing the homogeneous potential
Φu at u = 1. Thus we see that specializing the central element Ψu at u = 1 one obtains a central
element Ψ ∈ A(Φ), as required in the statement of Proposition 8.1.1(i). �

8.2. Proof of Proposition 8.1.1(ii)-(iii). Part (ii) is also an easy consequence of the Kontsevich
isomorphism (8.1.3). However, assuming the statement of part (i) holds, one can give an alternate
proof of part (ii) which does not involve formality theorem. To this end, we exploit an adaptation
of an argument used by Van den Bergh in the proof of [VB2], Theorem 4.1.

Recall that π = idφΥ, cf. (4.3.3). First, we need the following corollary of Pichereau’s results.

Lemma 8.2.1. The algebra PH
q

(Aφ) is a graded commutative algebra with generators

φ ∈ PH0(Aφ), eu ∈ PH1(Aφ), θ1 = idf1Υ, . . . , θµ−1= idfµ−1
Υ, π ∈ PH2(Aφ), Υ ∈ PH3(Aφ),

and the following defining relations

eu ∪ π = ψ ·Υ, eu ∪Υ = π ∪Υ = 0, θi ∪ θj = θi ∪ π = 0, ∀i, j. (8.2.2)

Proof. For any polynomial f ∈ C[x, y, z], we have eu ∧ idfΥ = eu(f) · Υ. Hence, we deduce
eu ∧ idφΥ = d · φ ·Υ. Similarly, we get eu ∧ idfkΥ = (deg fk) · fk ·Υ, for any k = 1, . . . , µ − 1. The
statement readily follows from this using the description of Poisson cohomology given in Proposition
5.4.1. �
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Next, we let A~(Φ) ⊃ ~ · A~(Φ) ⊃ ~2 · A~(Φ) ⊃ . . . , be the standard ~-adic filtration. The latter
may be extended in a unique way to a descending Z-filtration on the algebra Ak(Φ) such that
multiplication by ~−1 shifts the filtration by one and such that for the associated graded algebra,
we have grAk(Φ) = R[x, y, z][~, ~−1].

The resulting associated graded Poisson bracket on grAk(Φ) is easily seen to be the C[~, ~−1]-
bilinear extension of the Poisson bracket {−,−}φ, on Aφ, where φ = (Φ1)

ab. In other words, we
have a Poisson C[~, ~−1]-algebra isomorphism grAk(Φ) ∼= Aφ[~, ~

−1].
Associated with the above defined descending filtration on the algebra Ak(Φ), there is a standard

spectral sequence with the first term, cf. [VB2], page 224,

E1 = PH
q

(grAk(Φ)) = C[~, ~−1]⊗ PH
q

(Aφ) =⇒ grHH
q

(Ak(Φ)). (8.2.3)

Following an idea of Van den Bergh, we prove

Lemma 8.2.4. Each of the elements from the set of generators of the algebra PH
q

(Aφ) given in
Lemma 8.2.1 can be lifted to an element in HH

q

(Ak(Φ)) in such a way that analogues of relations
(8.2.2) hold for the lifted elements as well.

Proof of Lemma. Set Ak = Ak(Φ). By Proposition 8.1.1(i) we have HH0(Ak) = k[Ψ]. Furthermore,
the central element Ψ ∈ Ak provides a lift of the element φ ∈ Aφ, due to equation (8.1.2).

To lift cohomology classes of degree 3, we compare two duality isomorphisms provided by Propo-
sition 5.1.1(i) and by (2.1.3), respectively:

g : Aφ/{Aφ,Aφ} = PH0(Aφ)
∼→PH3(Aφ);

G : Ak/[Ak,Ak] = HH0(Ak)
∼→HH3(Ak).

Observe that any element f ∈ Aφ/{Aφ,Aφ} can be trivially lifted to an element F ∈ Ak/[Ak,Ak].

It follows easily that any class of the form g(f) ∈ PH3(Aφ) admits a lift of the form G(F ) ∈
HH3(Ak). Further, let B(F ) ∈ HH1(Ak) be the image of F under the Connes differential B :
HH0(Ak) → HH1(Ak). Then, one shows that G(B(F )) ∈ HH2(Ak), the image of B(F ) under the
duality (2.1.3), provides a lift of the class idfΥ ∈ PH2(Aφ). In particular, each of the Poisson

cohomology classes π = idφΥ, resp. θk = idfkΥ, k = 1 . . . , µ− 1, in PH2(Aφ), see Lemma 8.2.1, has

a lift Π = G(B(Ψ)), resp. Θk = G(B(Fk)), in HH
2(Ak).

Finally, one lifts the class eu ∈ PH1(Aφ) to the corresponding Euler derivation Eu of the graded
algebra Ak.

It follows from our construction that all of the relations from (8.2.2), except possibly the first
one, automatically hold for the lifted elements, by degree reasons. Also the remaining relation
holds for it is a a formal consequence of [Gi], Theorem 3.4.3(i) and the equation Eu(Ψ) = d ·Ψ. �

According to the lemma, the assignment sending our generators of the algebra PH
q

(Aφ) to the
corresponding generators of the algebra HH

q

(Ak(Φ)) can be extended to a well defined graded
k-algebra map ρ : k⊗ PH

q

(Aφ) → HH
q

(Ak(Φ)).
We claim that the map ρ is an isomorphism. To prove this, we exploit [VB2], Lemma 5.2. That

lemma, combined with our Lemma 8.2.4, implies that the spectral sequence in (8.2.3) degenerates
at E1. We deduce that, for the filtration on HH

q

(Ak(Φ)) coming from the spectral sequence, one
has

grHH
q

(Ak(Φ)) ∼= E1 = C[~, ~−1]⊗ PH
q

(Aφ). (8.2.5)

Observe further that the lifts constructed in Lemma 8.2.4 are compatible with the filtrations
involved. Moreover, each term of the filtration is complete in the ~-adic topology. This, together
with isomorphism (8.2.5) immediately implies, as explained at the top of page 224 in [VB2], that
the map ρ must be a bijection. That completes the proof of part (ii) of Proposition 8.1.1 and, at
the same time, yields part (iii), cf. Proposition 5.4.1(i). �
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8.3. Proof of Theorem 3.3.2 and Theorem 3.4.5. Part (i) of Theorem 3.3.2 follows directly
from Corollary 7.4.1(i) and Proposition 7.3.1(ii).

Next, we prove the existence of a central element in A(Φ) from Theorem 3.3.2(ii) for generic
potentials Φ ∈ F≤d

cyc , where d = a + b + c. To this end, one may replace the ground field C by a
larger field and follow the strategy of Van den Bergh, [VB2], §5. Thus, we let our ground field be
of the form K((~)), for a certain field K.

We assume (as we may) that the coefficitients in the expansion of Φ as a linear combination of
cyclic monomials in x, y, z are algebraically independent over Q. Then, following [VB2], §5, we may
assume that the potential has the form Φ = xyz − yxz +

∑
j>0 ~

j · Φj, where Φj ∈ F≤d
cyc . In such a

case, Proposition 8.1.1(i) insures the existence of a central element Ψ ∈ A
≤d(Φ), and we are done.

The proof of part (ii) of Theorem 3.3.2 in the general case is based on a continuity argument.
We will use the same notation concerning Rees algebras as in the proof of Proposition 8.1.1(i).

Thus, given a potential Φ = Φ(d) +Φ(d−1) + . . .+Φ(0) of degree ≤ d, we replace it by a degree d
homogeneous potential Φu = Φ(d) + u · Φ(d−1) + . . . + ud · Φ(0) ∈ RFcyc, where deg u = 1. Further,

given Ψ̃u ∈ RF (d) let Ψu ∈ A(Φu) denote the image of Ψ̃ under the projection RF (d) ։ A
(d)(Φu).

The condition that Ψu ∈ A(Φu) be a central element of the algebra A(Φu) amounts to the following

3 constraints on Ψ̃u,

v ·Ψ̃u − Ψ̃u ·v ∈ ∂Φ(D
(d+deg v)(Φu)1), ∀v ∈ {x, y, z}. (8.3.1)

The commutator on the left is taken in the algebra RF, and ∂Φ : D(d)(Φu)1 → D
(d)(Φu)0 = F

stands for the differential in the dg algebra D(Φu).

Let Ξ ⊂ RF
(d)
cyc × P(RF (d)) be the set of pairs (Φu,C·Ψ̃u), where Φu ∈ RF

(d)
cyc is a homogeneous

CY-potential and the element Ψ̃u, generating the line C·Ψ̃u ⊂ RF (d), satisfies (8.3.1). According

to (7.1.6), for each r ≥ 0, the dimension of the vector space ∂Φ(D
(r)(Φu)1) is a (finite) integer

independent of the choice of a CY-potential Φu ∈ RF
(d)
cyc . It follows that the first projection Ξ →

RF
(d)
cyc , (Φu,C ·Ψ̃u) 7→ Φu, is a proper morphism. The image of this morphism is dense in RF

(d)
cyc

since we have already established the existence of central elements in A(Φ≤d) for generic potentials.

We conclude that the map Ξ → RF
(d)
cyc is surjective, and our claim follows by the specialization

u 7→ 1, Φu 7→ Φ, and Ψu 7→ Ψ. �

Proof of Theorem 3.4.5. Part (1) has been proved earlier, in §6.2. To prove (2), we repeat the
argument used in the proof of Theorem 3.3.2 in the case of generic potentials. This way, we see
that the required statement follows from the statement of Proposition 8.1.1(iii) about the center of
the algebra Ak(Φ). �

8.4. Proof of Theorem 3.5.2. The statement of part (i) is a graded version of the corresponding
statement of Theorem 3.4.5(1). Thus, it follows from the latter theorem.

To prove part (ii), we may again reduce the statement to the case where the ground field is
k = C((~)). Furthermore, we may assume the potential Φ to be of the form (7.4.4) and such that
(Φ1)

ab ∈ C[x, y, z] is a generic homogeneous polynomial of degree d. Our assumptions on the triple
(a, b, c) insure that such a polynomial has an isolated singularity. Thus, we are in a position to apply
Proposition 8.1.1(ii). The statement of Theorem 3.5.2(ii) then follows from that proposition and
from the corresponding results about Poisson cohomology proved by Pichereau and summarized in
Proposition 5.4.1.

We now prove Theorem 3.5.2(iii). We keep the above setting, in particular, we have k as the
base field. Thus, A = Ak(Φ) is a Calabi-Yau algebra and we know that HH1(A) = k[Ψ]Eu, by
Proposition 8.1.1(iii).
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Let vol ∈ HH3(A) denote the image of 1 ∈ Z(A) = HH0(A) under the duality isomorphism
(2.1.3). Then, the duality gives a k[Ψ]-module isomorphism HH1(A) ∼→HH2(A) that sends Eu ∈
HH1(A) to iEuvol ∈ HH2(A). Therefore, using the equation Eu(Ψ) = d · Ψ and standard calculus
identities in the framework of Hochschild cohomology, cf. [Lo], §4.1, we compute (where dot denotes
cup-product on Hochschild cohomology),

B(Ψk ·iEuvol) = B ◦ iEu(Ψ
k ·vol) = (B ◦ iEu + iEu ◦B)(Ψk ·vol)

= LEu(Ψ
k ·vol) = k ·Ψk−1 ·Eu(Ψ)·vol +Ψk ·LEuvol

= kd·Ψk ·vol + d·Ψk ·vol = (k + 1)d·Ψk ·vol.

Since (k + 1)d 6= 0 for any k = 0, 1, . . . , from the calculation above we deduce that the Connes
differential gives a bijection B : HH2(A)

∼→HH3(A). By duality, this implies that the BV-differential
yields a bijection ∆ : HH1(A) ∼→HH0(A). That proves one of the two isomorphisms of Theorem
3.5.2(iii).

To prove the other isomorphism, we observe that A is a nonnegatively graded algebra with degree
zero component equal to k. Hence, by [EG], Lemma 3.6.1, we get an exact sequence of Hochschild
homology

0 → k → HH0(A)
B

−→ HH1(A)
B

−→ HH2(A)
B

−→ HH3(A) → 0. (8.4.1)

Applying duality (2.1.3), we obtain an exact sequence of Hochschild cohomology

0 → k·Υ → HH3(A)
∆
−→ HH2(A)

∆
−→ HH1(A)

∆
−→ HH0(A) → 0. (8.4.2)

We have shown earlier that the last map ∆ on the right in this exact sequence is a bijection.
This forces the first map ∆ on the left to be a surjection, and we are done. �

Remark 8.4.3. There are also Poisson cohomology counterparts of exact sequences (8.4.1)-(8.4.2).
The counterpart of (8.4.1) follows, using Cartan’s homotopy formula Leu = d ◦ ieu + ieu ◦d, from
the fact that the operator Leu acts on ΩjAφ with positive weights, for any j 6= 0. The analogue of
(8.4.2) can be deduced from this by duality, cf. Proposition 5.1.1.

Further, an explicit description of the group PH2(Aφ) given by Pichereau [P] shows that the

map δ : PH3(Aφ) → PH2(Aφ), equivalently, the map d : PH0(Aφ) → PH1(Aφ), is surjective as
well. This, combined with spectral sequence (8.2.5), may be used to obtain an alternate proof of
Theorem 3.5.2(iii).

8.5. Sketch of proof of Theorem 3.4.4. We begin with part (i). First of all we introduce a
space of deformation parameters similar to the one used in the proof of Theorem 2.5.3. Specifically,
let SA be the space of tuples (t, c, P,Q,R). We have dimSA = (p − 1) + (q − 1) + (r − 1) + 2 = µ,
by (2.5.4).

For each s = (t, c, P,Q,R) ∈ SA we let As := A(Φt,cP,Q,R) be the corresponding algebra. This is
a filtered algebra, with an associated graded algebra grAs. Hence there is an induced ascending
filtration HH

q

≤m(As) on Hochschild cohomology, resp. homology, groups of As. Proving Theorem
3.4.4(i) amounts to showing that there exists a subset U ⊂ SA, of sufficiently general parameters,
such that for any s ∈ U, the Kodaira-Spencer map induces an isomorphism

KSs : TsSA
∼→HH2

≤0(As), ∀s ∈ U (⊂ SA). (8.5.1)

To this end, we first use the classification result from Theorem 3.4.5(i). The theorem implies
that for any choice of subset F ◦

cyc ⊂ Fcyc, of generic potentials in the sense of Definition 3.4.3, the

set U := {(t, c, P,Q,R) ∈ SA | Φt,cP,Q,R ∈ F ◦
cyc} is nonempty and, moreover, it is a subset of generic

parameters in SA, in the sense of Definition 3.4.3 again.
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We have the following diagram, cf. (2.1.4),

TsSA

KSs
��

pr // (As)cyc

B
����

HH2(As) HH1(As)
(2.1.3)

(8.5.2)

In this diagram, the map pr is the tautological projection that sends a variation of the potential,
viewed as an element of C〈x, y, z〉cyc, to its image in (As)cyc. Observe further that the isomor-

phism (2.1.3) at the bottom of the diagram gives a bijection between HH≤d
q (As) and HH

d− q

≤0 (As).

Furthermore, Proposition 2.1.5 insures that diagram (8.5.2) commutes.

In order to prove (8.5.1) for an algebra As associated with a potential Φ = Φt,cP,Q,R with generic
coefficients, we may (and will) assume that our base field is k = C((~)) and that our potential has
the form (7.4.4). We put φ := (Φ1)

ab, cf. (7.4.5) and let Aφ be the corresponding Poisson algebra.
There is an analogue of diagram (8.5.2) for the Poisson algebra Aφ instead of the algebra As.

Furthermore, there is a spectral sequence like (8.2.5) for each of the Hochschild (co)homology groups
in (8.5.2). Its E1-term is the corresponding Poisson (co)homology group in the Poisson analogue
of (8.5.2).

First of all, applying Proposition 8.1.1(ii) we get dimHH2
≤0(As) = dimPH2

≤0(Aφ). Now, for

any homogeneous element f and k ≥ 0, we have deg(φk · idfΥ) = kd + deg f − (a + b + c) =
deg f + (k − 1)d. Therefore, using Proposition 5.1.1 and the notation of Proposition 5.4.1(ii), we

find that the elements df1, . . . , dfµ−1, dφ, form a C-basis of the vector space PH≤d
1 (Aφ). Thus, we

deduce

dimHH2
≤0(As) = dimPH2

≤0(Aφ) = dimPH≤d
1 (Aφ) = µ = dimSA. (8.5.3)

Thus, to complete the proof of part (i) it suffices to show that the map (8.5.1) is surjective.
From diagram (8.5.2), we see that this would follow provided we prove the surjectivity of the

composite map B ◦pr : TsSA → HH≤d
1 (As). Using the spectral sequence in (8.2.5) we reduce the

latter statement to proving surjectivity of a similar map TsSA → PH≤d
1 (Aφ), for Poisson algebras.

But this is clear since there are obvious elements in fj ∈ SA = C2 × Sp × Sq × Sr, cf. §2.5, proof of

Theorem 2.5.3, such that the 1-forms df1, . . . , dfµ−1, dφ, give a basis of the vector space PH≤d
1 (Aφ).

The proof of Theorem 3.4.5(ii) proceeds in a similar way. We omit the details. �

9. Appendix: computer calculation

9.1. In the E6 case the relations in the algebra A(Φt,cP,Q,R) take the following form

xy − qyx− tz2 + c1z + c2,

yz − qzy − tx2 + a1x+ a2,

zx− qxz − ty2 + b1y + b2
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The corresponding central element Ψ was computed by Eric Rains using MAGMA. It reads

t(q + 1)(t(t3 + 1)y3 + (q3 − t3)yzx− q(t3 + 1)zyx+ t(q3 − t3)z3)

− t(q2 + qt3 + q + 2t3 + 1)b1y
2

+ (qt3 − q2)a1yz + t3(q + 1)b1zx+ (q3 + qt3)a1zy

+ q(q + 1)t3c1yx+ t(2qt3 + t3 − q4 − q3 − q2)c1z
2

− ((q3t+ 2q2t+ qt)a2 + q2a21 + qt2b1c1)x

− t((q3b2 + 2q2 + qt3 + 2q + t3 + 1)b2 + qta1c1 − t2b21)y

− t((q4 + 2q3 + 2q2 − qt3 + q − t3)c2 + qt2c21 + qta1b1)z

We refer to [R] for more complicated formulas in the E7 and E8 cases.

Remark 9.1.1. We were informed by the referee that such formulas were also obtained by a computer
calculation in D. Stephenson’s thesis.
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