
Visualization of Wave Propagation

in Elastic Solids Using a

Mass-Spring Lattice Model

by

Shiva Ayyadurai

S.B. Electrical Engineering
Massachusetts Institute of Technology

(1987)

SUBMITTED TO THE MEDIA ARTS &
SCIENCES SECTION

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE IN VISUAL STUDIES

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 1990

© Shiva Ayyadurai, 1989. All rights reserved
The author hereby grants to M.I.T. permission to reproduce and to

distribute copies of this thesis document in whole or in part.

Z")

Signature of Author -----------
Department of Mechanical Engineering

December, 1989

Certified by ------. _-_-_--- 4 _ _-_-_-..-_-_-_-
Pro ssor James H. Williams, Jr.

Department of Mechanical Engineering
Thesis Supervisor

Accepted by --------- y -v - .. -V - - -- - - - - - - - - - - - - - -
Professor Stephen A. Benton, Chairman

Department Graduate Committee
$90tCh on Graduate Students

VASSACHUSETTS INSTITUTE
OF TECHNOLOGY

FEB 27 1990
& 1M0'&Qr~rf

Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://libraries.mit.edu/docs

DISCLAIMER NOTICE

The accompanying media item for this thesis is available in the
MIT Libraries or Institute Archives.

Thank you.

Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

j_morris
Typewritten Text
Page 123 is missing from the original document.

Visualization of Wave Propagation in Elastic
Solids Using a Mass-Spring Lattice Model

by

Shiva Ayyadurai

Submitted to the Media Arts & Sciences Section
on December 27,1989 in partial fulfillment of the

requirements for the Degree of

Master of Science in Visual Studies

Abstract
A technique for modeling and visualizing wave propagation in elastic solids is pres-

ented. The model, referred to as the mass-spring lattice model (MSLM), offers three major
features: 1) simplicity, 2) usage of a relatively small amount of computer memory, and 3)
requirement of a relatively short amount of computing time. In this thesis, the MSLM is
developed for two-dimensions; however, its extension to three-dimensions is straight-
forward and will be pursued in future research.

Following mathematical formulation of the model, four computer graphics techniques
are developed for visualizing data generated from the MSLM. The four techniques are
termed color contouring, vector-fields, two-dimensional mesh deformation and three-
dimensional surface deformation. The techniques of two-dimensional mesh deformation
and three-dimensional surface deformation are two new and unique techniques which are
a product of this thesis. Each technique is implemented in software and can accept any type
of data including displacement, velocity, stress or strain.

Displacement data is generated using the MSLM for three materials: zinc, uni-
directional graphite fiber-reinforced epoxy and beryl. The four computer graphics tech-
niques are then applied to these three sets of data to produce twelve video animations which
depict wave propagation in the three materials. Production of the video animations involves
the configuration of specialized hardware and the development of new software for auto-
matically directing the production of the entire animation. A video tape is attached con-
taining these animations.

Thesis Supervisor: James H. Williams, Jr.
Title: Professor of Mechanical Engineering

Acknowledgments

I wish to dedicate this thesis to my mother, father, sister and my new-born nephew
Shivaji.

I wish to thank the following people for their friendship, encouragement and support
which was instrumental to my completing this work:

Prof. James H. Williams, Jr., my thesis advisor, his friendship, guidance, support,
and understanding will always be remembered.

Prof. David Zeltzer, Prof. Stephen Benton and Prof. David Gossard for their guidance
and support in completing this work.

My brother and colleague Fred Foreman and my sister Nadene Foreman for their
technical and personal support.

My colleagues Norman Fortenberry, Dave Wooton, Ray Nagem and Han Song Seng.

Reed Sturtevant and Bob Phenix for their friendship, trust, and continued support of
my work at Lotus Development Corporation and at M.I.T.

Table of Contents

Abstract .. 2

A cknow ledgm ents... 3
Table of Contents... 4

Chapter 1: Formulation of
M ass-Spring Lattice M odel ... 6

A bstract .. 7
Introduction ... 8
M athem atical Form ulation ... 10

Analysis of F... 12

Analysis of F... 25

Equations of M otion.. 28

Boundary Formulae for Mass-Spring Lattice Model............................. 32

Conclusions and Results... 34

Isotropic Case... 37

Transversely Isotropic Case ... 38

References ... 41

Figures... 42

Chapter 2: Computer Graphics Techniques
for Visualizing W ave Propagation .. 49

A bstract .. 50

Introduction ... 51

Configuration of M esh ... 55

Color Contouring... 58

Mapping Colors to Nodal Displacement Data................................ 58

Smooth Shading of Mesh Elements to Create Color Contour.......... 61

V ector Fields ... 64

Tw o-D im ensional M esh D eform ation... 66

Three-Dimensional Surface Deformation ... 68

Calculating Three-D im ensional Curves ... 69

Steps in Creating the Three-Dimensional Surface 76

C onclusions ... 78

R eferences ... 79

Figures.. 80

Appendix A: Program for Generating Mesh ... 95

Appendix B: Program for Calculating
Maximum and Minimum Displacement.. 98

Appendix C: Program for Assigning RGB Values to a Node......... 100

Appendix D: Program for Smooth Shading Mesh Element........... 102

Appendix E: Program for Rendering Vector at Each Node 104

Appendix F: Program for Two-Dimensional Mesh Deformation............. 110

Appendix G: Program for Calculating Y Component for a Node............. 116

Appendix H: Program for Generating Cubic Spline Surface.................... 118

Chapter 3: Computer Graphics Animations
of Wave Propagation in Elastic Solids ... 123

A bstract ... 124

Introduction ... 125

V ideo ... 127

R eferences ... 128

F igures... 129

Chapter 1:

Formulation of Mass-Spring
Lattice Model

Abstract

A mass-spring lattice model in a two-dimensional framework is presented. The model
makes use of point masses and simple extensional and rotational springs. Springs and
masses are connected in a lattice structure as an idealized representation of the material to
be studied. The equations of motion in two-dimensions are developed following an analysis
of forces in both x- and z-directions. The mass-spring lattice model can serve to analyze
and to predict wave propagation in both isotropic and anisotropic media.

Introduction

Ultrasonic testing is a widely used method for nondestructive evaluation. A knowledge

of wave propagation is of enormous benefit for the interpretation of experimental results

obtained from ultrasonic testing. Many theories have been developed and applied to the

theoretical study of ultrasonic nondestructive testing.

In applying elastic wave theory, for example, computer simulations should be executed

and compared with experiments in order to verify the validity of the theory. These simu-

lations can be executed by several schemes which are classified in part according to how

the medium is modeled. In this report, the two-dimensional mass-spring lattice model

(MSLM) for analyzing elastic wave propagation in both isotropic and anisotropic media is

developed. This model can be used to simulate and to visualize wave propagation in these

media.

Conventional models for performing such simulations have been shown to possess

prohibitive aspects for the purposes of nondestructive evaluation. FDM (Finite Difference

Methods) require complex boundary conditions to be satisfied [1]. FEM (Finite Element

Methods) generally require a great deal of computing time and computer memory for

executing simulations. Matsuzawa, in order to execute simulations more efficiently,

developed a "mass-point system model" [2]; however, it proved to provide no cogent

physical significance. Takahashi [3], in order to give this mass-point model more physical

significance, modified Matsuzawa's model by developing a potential function for the

medium of interest. However, Takahashi's model addressed only static problems, so it was

not adequate for wave propagation problems.

Sato [4], using a different approach, developed a mass-point system model by con-

necting different mass-points with pure extensional springs. Because he included only

simple extensional springs without considering the rotational effects of the diagonal springs,

his model works only when X = p., where X and p are Lame's constants. His model, therefore,

is not useful in ultrasonic testing, where X = p does not apply in general. Since Sato's model

included only the extensional effects of the springs, Harumi [1] modified the model by also

including the rotational effects in the diagonal springs in addition to the extensional effects.

Harumi's purpose was to develop a model which would emulate media with arbitrary

combinations of X and p. The MSLM presented here is based on the Harumi model; however,

some portions of his model have been modified to give the model more physical meaning.

In summary, the MSLM offers three main advantages: 1) it is simple in its approach, 2) it

requires relatively little computer memory and 3) it requires relatively little computing time.

Mathematical Formulation

In the MSLM, an elastic continuum is modeled by lumped masses which are connected

by elastic springs. The two-dimensional framework of the MSLM is depicted in Fig. 1,

where the circles denote the lumped masses and the lines denote the elastic springs having

the corresponding spring constants, k, through k8. In Fig. 1, i and j are the indices of the

masses along the x- and z-directions, respectively. The horizontal and vertical spacings

between adjacent masses are h. The model assumes that 1) the grid spacing, h, is much less

than the shortest wavelength of the elastic wave propagating in the material and 2) the

magnitude of the displacement of the masses is smaller than the grid spacing, h.

As shown in Fig. 1, the central mass (ij) is connected by eight springs to eight adjacent

masses. In this model, two types of springs are used: pure extensional and hybrid springs.

In making use of these two different types of springs, the goal is to create a more general

model which can emulate elastic media having arbitrary elastic constants, as mentioned

above in the introduction. In Fig. 1, the horizontal and vertical springs of the model are

pure extensional springs which cause forces only in the the x- or z-directions, respectively.

However, the diagonal springs in Fig. 1 are hybrid springs. They are a combination of a

pure extensional spring and a rotational spring. Fig. 2 illustrates the hybrid diagonal spring

as a combination of an extensional spring and a rotational spring.

In the mathematical formulation, the central mass (ij) is used as the reference. The

equations of motion for the central mass are derived by summing all the spring forces acting

on the central mass. It is assumed that a perturbing wave causes displacements of each

mass in the x- and z- directions. The spring forces on the central mass are formulated, given

displacements of each mass caused by this perturbing wave. The spring forces of the

diagonal springs are formulated as two components: 1) the force as a result of extension or

compression of the extensional spring and 2) the force as a result of rotation of the rotational

spring. The forces of the vertical and horizontal springs, however, involve only the extension

or compression of the spring. The approach is to formulate expressions for the net spring

forces acting on the central mass in the x- and z-directions, F, and F, respectively. Once

F, and F, are formulated, Newton's momentum principle is applied to derive the equations

of motion for the central mass.

Analysis of F,

F, denotes the x-component of the total spring force on the central mass. There are

three components which contribute to F,: 1) the extension and compression of the two

horizontal springs, 2) the extension and compression of the four hybrid diagonal springs

and 3) the rotation of the four hybrid diagonal springs. Therefore,

F, = FA + Fd+ F, (1)

where FA denotes the force in the x-direction due to the extension and compression of the

horizontal springs, F, denotes the force in the x-direction due to the extension and com-

pression of the diagonal spring, and F, denotes the force in the x-direction due to the rotation

of the diagonal spring.

F,,: Contribution to F,from Horizontal Springs

There are two horizontal springs ki and k5, as evident from Fig. 1. A perturbing wave

causes masses (ij) and (i+1j), for example, to experience displacements in the positive

x-direction as shown in Fig. 3a. The net displacement of the horizontal spring k5, connecting

the mass (i+ 1j) and the central mass, is

Au = (ui+ - ug,j) (2)

where u denotes the horizontal displacement of the mass indexed by the subscripts.

The force on the central mass, in the positive x-direction, due to k5 is therefore

F = k -(u +y -ui,) (3)

Similarly, in Fig. 3b, the net displacement of the horizontal spring k,, connecting the

mass (i-if) and the central mass, is

Au = (ui _1 , - uij) (4)

The force on the central mass, in the positive x-direction, due to ki is therefore

F = ki(ui _ . 1 - u,) (5)

Thus, the total force on the central mass, in the positive x-direction, due to the horizontal

springs, from eqns. (3) and (5), is

Fh= k,(u - ,- u;,) + ks(u + 1,j -u,) (6)

Fa: Contribution to F.from Extension of Diagonal Springs

F, is the sum of the forces on the central mass in the positive x-direction caused by

the compression and extension of diagonal springs having spring constants k2, k4, k6 and k 8.

Thus, there are four components which contribute to F,4.

Fxd = Fx2 +Fx +Fx6 +Fx8 (7)

where F,2 , FA, F,, and F,4 are the forces in the positive x-direction due to extension and

compression of the diagonal springs, k2, k4, k6 and k8, respectively, in Fig. 1.

Extension or compression of the diagonal spring involves a net displacement of the

central mass in both x- and z-directions, relative to the adjacent masses connected by the

diagonal springs. Since it is assumed that the model is a linear system, superposition holds.

Therefore, to find F6, for example, first the masses are displaced in the x-direction and the

spring force on the central mass, F1 as shown in Fig. 4a, is formulated, and then the masses

are displaced in the z-direction and the spring force on the central mass, F2 as shown in Fig.

4b, is formulated. By superposition, the sum of these two forces is taken to arrive at the

total force. Once the total force is found, the x-component of this force is calculated to find

the resultant force in the x-direction.

First, F1 is formulated. The dotted position in Fig. 4a illustrates the net displacement

of the central mass in the x-direction relative to the mass (i+ 1j+ 1); the dotted position in

Fig. 4b illustrates the net displacement of the central mass in the z-direction relative to the

mass (i+ 1j+ 1); and the dotted position in Fig. 4c illustrates the position of the central mass

as the superposition of the two net relative displacements. From Fig. 4a, Fi is found to be

F1 = k6Al (8)

where Al denotes the net displacement of the diagonal spring k6, with an original length of

hNf, as shown in Fig. 4a.

The net relative displacement of the central mass in the x-direction is

Au = (u ,+ j, - u) (9)

By using the Pythagorean Theorem, the net displacement of the diagonal spring k6, Al, is

derived.

(Au + h)2+h2= (Al + 4h)2 (10)

Au 2 +2Auh +h 2+h2 A12+2Yh Al+2h 2 (11)

Au2 +2Auh = Al2 +2'h Al (12)

Since Au and Al are small, eqn. (12) may be approximated, by neglecting second order

terms, as

2Auh = 2N hAl (13)

Al = - = - Au (14)
- 2

Al =--Au (15)
2

Substituting eqn. (15) into eqn. (8) gives

F1 = u (16)

Next, F2 is formulated, given a net relative displacement of the central mass in the

z-direction as shown in Fig. 4b. The force F2, when the diagonal spring k6 is displaced by

Al as shown in Fig. 4b, is

F2 = k6Al (17)

and, the net relative displacement of the central mass in the z-direction is

Aw = (wi+1 j+1 - wi,j) (18)

By using the Pythagorean Theorem, the net displacement of the diagonal spring k6, Al, is

calculated as

Al =- Aw (19)
2

Therefore from eqns. (17) and (19),

F2 = k6 -2 Aw (20)

From Fig. 4c, F1 and F2 are superposed to find the total force in the diagonal spring

with spring constant k6 to be

F1 +F2 =k 6 -(Au +Aw) (21)
2

Since only F,, the horizontal component of the total force in eqn. (21), is desired,

Fx6 = (F1 + F2) (22)

Using eqn. (21),

F,6= : lk6 (Au + Aw) (23)
(23

Substituting for Au and Aw, using eqns. (9) and (18), respectively, gives

F,6 = {6 (ui - j) + (w;,+ ,J+1 - w;,5) (24)(24

For the diagonal springs with spring constants k2, k4 and k., the form of Fa, F,4 and

F. is similar to F,6; however, the direction of F, and F2in each case varies. Similar analysis

for these three diagonal springs leads to the following results.

2

k4

Fx4 = {(u , I - u) - (w - wi,j)} (26)

F = ui -1,j +1 -u) - (Wi1 1 +1 - w;)I} (27)

The net horizontal force acting on the central mass, caused by the extensional effects of all

the diagonal springs attached to the central mass, is the sum of the horizontal components

of the forces in those diagonal springs, as shown in eqn. (7).

Therefore, eqn. (7), with eqns. (24) through (27), results in

k2

kc4+- {(U,+1,-1U - uJj) -(Wi+1,.1 - i,,)}

k8
+- {(u,1,1-u,) (.1.1-w,}

+ 2 (u_ .+- uij) - (wi-1, .1- wi,j)} (28)

F,: Contribution to Ffrom Rotation of Diagonal Springs

Angular rotations of the hybrid diagonal springs are caused by a relative movement

of the central mass in the x- and z-directions. Since there are four hybrid diagonal springs

attached to the central mass, four corresponding torques, one from each of the hybrid

diagonal springs, are induced due to this relative displacement of the central mass. Each

torque corresponds to a force on the central mass. The forces on the central mass, caused

by the torque of the hybrid diagonal springs, k2, k4, k6 and k8, are denoted by F, 2, F, 4, F,

and F,,, respectively.

The hybrid diagonal spring with spring constant k6 is examined first; then, this case

is used to derive the similar forces on the central mass caused by the other hybrid springs

attached to the central mass. It is assumed that the reactive torque, T, produced by the

angular rotation of the hybrid diagonal spring is proportional to the angle of rotation (see

Fig. 5). Furthermore, the constant of proportionality is denoted by the rotational spring

constant, k,. Therefore,

T = kAO (29)

The corresponding force acting on the central mass due to the generated torque in eqn. (29)

is

T
F =- (30)

L

where L, the length of the spring in Fig. 5, is the moment arm of the corresponding force.

In examining the force caused by the rotation of the hybrid diagonal spring k6,

superposition is used. From Fig. 6a, T,, the torque due to the relative displacement of the

central mass in the x-direction, is calculated. Then, from Fig. 6b, T2, the torque due to the

relative displacement of the central mass in the z-direction, is calculated. The corresponding

forces, F1 and F2, of each torque, T, and T2, are calculated using eqn. (30). Superposing F1

and F2 allows the calculation of the total force on the central mass due to the rotation of the

hybrid diagonal spring. The x-component of this total force is calculated to find the total

horizontal force on the central mass due to the rotation of the hybrid diagonal spring.

In calculating the total force due to the rotation of the spring, it is assumed that the

angle of rotation is sufficiently small. In Fig. 6a, for example, this is depicted.

Ar
sin(AO) =- (31)

Since, AO is small,

Ar
sin(AO) - -A (32)

2 h

Therefore,

Ar = h-iAO (33)

In order to calculate AO in terms of the grid spacing, h, and the net relative displacement

of the central mass in the x-direction, Au, the Pythagorean Theorem is used.

(Au) 2 = (Al) 2 + (Ar)2 (34)

Since the angle of rotation is sufficiently small, from eqn. (15),

Al =-Au (35)
2

Therefore, eqn. (34), with eqns. (33) and (35), results in

(Au)2= (u 2 +(hA)2 36)
2

Thus,

AO = (37)
2h

Let k6a denote the rotational spring constant of the hybrid diagonal spring, k, in Fig.

6. Therefore, using eqns. (29) and (37), the torque Ti is found to be

T, = ((38)(2h)

The corresponding force, on the central mass, of this torque T, is denoted by Fn and can

be calculated using eqn. (30). Using eqn. (35), the moment arm L in eqn. (30) is

L = h -+Al = h 2+- Au (39)

as shown in Fig. 6a.

Using eqns. (30) and (39), the corresponding force F7 is

FT T,
L

_ k6aAu

2h h'+- Au

k6a Au

2h-i(h +2

koa
= Au (40)

251h2

where, in the last expression, F 1 is approximated by neglecting second or higher order

terms of Au, since Au is assumed to be small.

Similarly for Fig. 6b,

T2=(k6 Aw) (41)
(2h)

The corresponding force, on the central mass, of this torque T2 is denoted by F7 and can

be calculated using eqn. (30). Using eqn. (19), the moment arm L in eqn. (30) is

L = h2+Al = h2+ -Aw (42)
2

as shown in Fig. 6b.

Using eqns. (30) and (42), the corresponding force Fn is

2

k6OCi Aw

2h -(h +2

koax
- Aw (43)

20I~h2

where, in the last expression, F7 is approximated by neglecting second or higher order

terms of Aw, since Aw is assumed to be small.

The forces F. and F7 are in opposite directions as shown in Fig. 6a and Fig. 6b. Therefore,

the total force on the central mass due to the rotation of the hybrid diagonal spring, having

rotational spring constant k6 ca, from eqns. (40) and (43), is

k6C
F=FT1 -FT - (Au - Aw) (44)

2ih

For convenience, let

a (-45)
2h2

Therefore,

F -kap(Au -Aw) (46)
2

F in eqn. (46) is the total force acting on the central mass caused by the rotation of the hybrid

diagonal spring having rotational spring constant k6a; however, at this time, the interest is

on the x-component of this force. The x-component of this force for spring k6 is denoted

by F,,6. Thus, from eqn. (46),

F.,6 = k6 (Au - Aw) (47)

where Au and Aw are the net relative displacements of the central mass in the x- and

z-directions, as shown in eqns. (9) and (18), respectively.

Hence,

F,6= k6 -++I- u) - + I- wi,} (48)

The force due to the angular rotation of the other hybrid diagonal springs, having

rotational spring constants k2Cx, k4a and k8a, is of the same form, as in eqn. (48). However,

the direction of Ti and T2in each case varies.

In performing a similar analysis for the other three hybrid diagonal springs,

F,2= k2 {(ui _1, 1 I - uij) - (w _1...1 - wi,j)} (49)

Fr4= k4 { f(ui,, _ j - u;,j) + (wi ,+, _1 - wi,5) (50)

F, 8 =k8 (ui _1 ,+ 1 - ui,)+ 1,, - w;,1)} (51)

The total force on the central mass in the x-direction due to the rotation of the four

hybrid diagonal springs is denoted by F,. F,, by superposition, is

F xr= Fx2+F,4+ +F,g (52)

Therefore, using eqns. (48) through (52),

Fr= k2 {(ui _1,7_- ug,j) - (wi 1,- I-wi,7)2

+k4 {(u+ 1,_1+-u, 1, _1-wi,)

+k8 { (ui_, -j+Iui,j) + (wi _1,j+ - wi,5) (53)

Total Force in X-Direction, F,

The final result for F, the total horizontal force on the central mass exerted by the

attached springs, can now be given. To summarize, FA is the total force in the x-direction,

caused by the compression and extension of the two horizontal springs, F.is the total force

in the x-direction, caused by the compression and extension of the four diagonal springs,

and F, is the total force in the x-direction, caused by the rotation of the diagonal springs.

Since Fa,Fand F, have been formulated in the previous three sections, an expression

for F, based on eqns. (1), (6), (28) and (53), can be written as

F 2 = k -(u _1,j -ui,j)+ k(u+ ,, - u,)

* 2 Ui- j- -Uij Wi-I - w,,)}
+2

2
i- (U + 1,j -1 - u1,) + (wi + 1,j -1 -

(54

kT
+ {(ui -_1+ -u j)-(wi_1 - w)}+ W

+k2 {(ui_ - j-1-u j) i-;_,7_-w)} W

+k4 {(ui, + 1i-u j) + (wi,+,7_-w)} W

+k6 (ui, + 1j+I-u j) - (W,1,ij+,1-w i'

+k8 { (ui _ 1 1-u j) + (wi_1 - w)}+ (54)

Therefore, eqn. (54) is the complete expression for F,

Analysis of F,

F, denotes the z-component of the total spring force on the central mass. There are

three components which contribute to F,: 1) the extension and compression of the two

vertical springs, 2) the extension and compression of the four hybrid diagonal springs and

3) the rotation of the four hybrid diagonal springs. Therefore,

F,= F.,+ Fd +F, (55)

where F, denotes the force in the z-direction due to the extension and compression of the

vertical springs, Fza denotes the force in the z-direction due to the extension and compression

of the diagonal springs, and F., denotes the force in the z-direction due to the rotation of the

diagonal springs. In formulating F, extensive use of the results from calculating F, is made.

F,,: Contribution to Fzfrom Vertical Springs

The results for F, are analogous to the results for F&. The force in the z-direction

generated by the vertical spring having spring constant k7 is

k(,(w I - wi,) (56)

The force generated in the z-direction by the vertical spring having spring constant k3 is

k, _1I - wi,) (57)

Therefore, the total force in the z-direction, F,, generated by the two vertical springs

is

Fz, = k(w ,j _ 1 - wi,j) +k,(wi,j, - w;,j) (58)

Fza: Contribution to F, from Extension of Diagonal Springs

Following the formulation for F, an expression for F~d, the extensional contribution

of the four diagonal springs, can also be derived. Fa is expressed as

Fzd=Fz2 +Fz 4 +F 6 +Fz 8 (59)

Furthermore,

2

F,2={(u -u,)+w -)}

F4 - k4f u +j-I - u,j) -i+ - w)} WA

k6

F~6 =- {(u -u,)-w w)}

F62 f(i +1,j + I U~) + (wi + 1j+ - wL)}

Fz8 k8 -f (U I - ui~) - (Wi -11j+ - w1 1)

(60)

(61)

(62)

(63)

Substituting eqns. (60) through (63) into eqn. (59),

k2
F= --2- -)+(w -

k4

+ {(u -+u5 .)

kg

- {(ui - u Ij+iU)

- (wi +1,j -w 'j)}

- (wv I -w)} (64)

F,: Contribution to Fz from Rotation of Diagonal Springs

In formulating F,,, the derivation used in arriving at F, is used.

F,, = F,2 + F,,r4+ F,,6 +Fz (65)

Furthermore,

Fzr2 = -k2 {(ui -,1 1 - u;,j) - (wi - 1,1. 1 - wi,) (66)

jF,4= k4 {(u - u;,j)+(w + - wi,) (67)

F,,6 = -k6 p U j+1- ui,j) - O 1 i - wi,5) (68)

,F,,8= k8 {(u - uj)+(w - wi') (69)

Substituting eqns. (66) through (69) into eqn. (65),

Fzr = -k2 {(ui - uij) - (wi 1 - wi,)

+k {(u _ -uij)+(w _1 - wi,)

2
-k6 1 U +i - ui,j) - 1 I - wi,7A

+kT t(ul -uij)+(w + - win) (70)

T otal Force in Z-Direction, F.

The final result for F, the total force in the z-direction on the central mass exerted by

the attached springs, can be written by using eqns. (55), (58), (64) and (70). To summarize,

F, is the total force in the z-direction, caused by the compression and extension of the two

vertical springs, Fd is the total force in the z-direction, caused by the compression and

extension of the four diagonal springs, and F,, is the total force in the z-direction, caused

by the rotation of the diagonal springs.

Since F., Fd and Fr have been formulated, the final expression for F, is

F, = k3(wj -1 - wi,j) + k1(wi~ 1 - wij)

k2

+ i - u) - (W-u, + -)}

k4
k8

- {(ui - uig,j) - (wi-j+I - w)}

-k2f {(u4 i -ug4,j) - (wi w)}- W

+k8 {I(u + -u,)+(w1+I - w)}(71)

Equations of Motion

With the final expressions for F, and F, Newton's momentum principle is applied in

order to develop the equations of motion for this model. Note, for this model, the mass of

each lumped mass can be expressed as

m = ph 2 (72)

where p denotes the density of the medium and h is the grid spacing in Fig. 1.

By Newton's momentum principle, the equation of motion in the x-direction for the

central mass is

3J2u
m -= F (73)

at2,

Using eqn. (72),

ph2 =F, (74)
at2

Substituting eqn. (54) for F, into eqn. (74) and combining like terms,

a2u
ph 2 =kj(u-_,, -ujj)+k(u+ 1,j -ui,j)

2 (1+ D)(u; _ ,j _ I - uj,j)

kc42
+ -(1 G+ P) (ui., _1'j- - u;,j)

k6
2

+ (1 G+ P)(ui., +Ij - ui,j)

k8
2

k2
+-

k6

k8
-2

(1 - P) (w - I wi,j)

(1 - P) (wi - wi,j)

(1 - @) (wi+j+I - wij)

(1 - $) (wi ' - wi,j)

The similar formulation is performed for finding an expression describing the motion in the

z-direction.

at2'

ph 2--2 = F,at

(76)

(77)

Substituting eqn. (71) for F, into eqn. (77) and combining like terms,

ph2 =k3(wi,_ I - wi,-)+kk(wi,j+ - wi,j)

2

2 (1+@)(wi+1,_ Ij - wi,j)

+-(1+0)(w _ i - wij)

2 (1+ (wi , + - wi,j)+ -12(;1,4 ;5

(75)

k
2

k4

k
+ (1-)(u -u)

1 -$ (ui -u i) (78)

Boundary Formulae for Mass-Spring Lattice Model

The boundary formulae are best expressed by investigating the treatment of masses

in this model. Specifically, the distribution of the point masses to emulate the actual mass

of the material is of concern. Fig. 7a diagrams one method of distributing the point masses

of the model. The horizontal or vertical distance between adjacent point masses is h. It is

assumed that the material is homogeneous and has density p. The dotted lines in the diagram

signify the "field" of each point mass. This field is defined to be the area over which the

point mass covers. In the mass distribution diagramed in Fig. 7a, the masses of the corner,

edge, and inner point masses are different.

Let mcorr, medge and mr denote the masses on the corner, edge and inside, respec-

tively. Because the material is homogenous with density p,

mcorr = p = p (79)

medge = P(h) = p (80)

m ,= p(h)(h) = ph 2 (81)

Thus, the mass of a point mass on the corner is one-quarter of that of a mass on the inside

of the material, and the mass of an edge point mass is one-half of that of a mass on the

inside. If the MSLM were to use this scheme in the distribution of masses, special treatment

of the boundaries would be required, since the spring constants of the springs along the

edge of boundary, as well as the masses of the point masses along the boundary, would be

different from those of inner springs and masses.

In the MSLM, the point masses are distributed as shown in Fig. 7b. All the boundary

masses in this model are located a distance of h/2 inside the boundary of the medium. This

allows all the point masses to have equal mass, regardless of their positions.

mcorr= medge = mr (82)

Accordingly, the springs connecting the point masses, which are located a distance h12 from

the boundary, need not be treated differently. The mass distribution scheme in Fig. 7b is

also the way in which Harumi [1] developed his boundary formulae. This method obviates

the need for special treatment of the boundary and reduces the complexity of the model.

One advantage of this method, from a practical standpoint, is that the MSLM can now handle

strip-like cracks without thickness. This feature makes the model useful and powerful in

ultrasonic flaw detection.

Conclusion and Results

The mass-spring lattice model has been formulated and the resulting equations of

motion have been introduced. In this section, the discussion of the MSLM is concluded by

proving the ability of the MSLM to simulate wave propagation in both isotropic and

transversely isotropic media.

In both cases, the following simplifications apply: 1) the spring constants ki and ks of

the two horizontal springs are equal, 2) the spring constants k3 and k7 of the two vertical

springs are equal and 3) the spring constants k2, k4, k6 and k8 of the four diagonal springs

are equal.

In summary,

k, = k5 (83)

k3 = A (84)

k2 = kz4 = k6 = k 8 (85)

Therefore eqn. (75) is transformed into

-2U (ui, 1 ,,+u, -, - 2uij)
p-=k

at2 1h 2

k2 (uig,,7, +ui.1,j _1+ui_1,j,1+u;_1, _- 4ui,j)
+ 2 h2

k 2 (u i ,,, ,1+ u i , , ,_ + u 1,j ,1+ u 1,j _1I - 4 uw))
%2 h2

k2 (wi+1,j+1- Wi+1,j-1- Wi-1,j+1+wi_1,5..1)I
+2 h2

k2 (-wi+1,j+++ ,,-1+ wi_1,j1- wi-1,7_1) (6+ 2 h2(86)

Similarly, eqn. (78) is transformed into

-I2w (wi,j , I+ w ;,j _,I - 2w ,)at2 h

kJ
k2 (wi, Ij+1+ w;,1, j_ 1+ wi _1,j+ 1+ w;_17- j-I-4wi,j)

2 h2

(w+1,j+1+ w,+1,j-I+ w;_1,j+I+ w;_-,7 _ -- 4wi,)
+$ 2

2 h

k2 (-ui,+1, +I +i+g,1, _1+ ui_1, +,1 -u _1, _ j 1

+@- 2 (87)
2 h

Recall the finite difference formulae [5],

()2U U, _1,j + U,.1,j -2ui~ ---= +(88)
ax2 h2

2
2u _ g.,41- _,7 1- J

1 1+u j1 (89)
axaz 4h2

-,2u 0-2u (ui.1,,,1+u+,1,j_+ ,,+ _,_- 4ui) (0
-x2 -z2 2h 2

and,

a2 W -wi ,j + ij(91)

-- (91)
aZ2h2

a2 i++ i-1,j+1 i+1,j-1 i-1,j-1 (2
axaz 4h2

)2 (-2W W,+1,'j+ 1 +,j-1' i-,+ -1,j-1
+ h(93)

ax2 az2 2h2
Eqns. (86) and (87) can be written, using eqns. (88) through (93), as

a2u 0-2U 0-2U a-2U _-2W

p-= kly+(1+)k -+y +2(1- $)ka (94)

wt a2 2 X Z xa

a W k-,2W 0,2W ,2W? 2 l, a2U
p-- = k +(+p)k2 + +2(1 -)k2 (95)

at2 3 az2 2 x2 az2j axaz

Isotropic Case

The two-dimensional version, on thex-z plane, of the equations of motion for isotropic

media in terms of Lame's constants [6] is

auu _w u
p 0-= (X + 2g) 0- + (X + gi) + (6

p =(X+2g) +(X+pg) xa gz2 (97)
p) az2 axaz ax 2

Comparing the coefficients of eqns. (94) and (95) with those of eqns. (96) and (97)

reveals the following relations between the theoretical elasticity constants and the spring

constants in the MSLM.

ki = k3 = X+ (98)

k2= X+3 (99)
4

p =(100)
X+3g

The MSLM with the spring constants, which are obtained from eqns. (98) through

(100), can simulate wave propagation in an isotropic elastic medium having Lamd's con-

stants X and g. Note that if the rotational effect of the diagonal springs had not been

developed, eqn. (100) shows that the condition X = , assumed in the model of Sato, would

be satisfied.

Transversely Isotropic Case

The discussion so far rests on the assumption that the medium is isotropic; however,

the MSLM can also be applied to anisotropic media. For transversely isotropic media, in

particular, the model can be easily modified by varying the spring constants.

In general, the generalized Hooke's law [7] at a point in an elastic medium is expressed,

in terms of the elastic constants cy, as

G = cIu+ c 12vY+ c13w+ c14(v+ wy)+ ci5 (wx+ uz)+ Ci(Uy+) (101)

ay,= c12u,+ c22v, + c23w, + c(v + w) + c25(w + u) + c26(uy + v) (102)

O,,= c13u,+ C23V+ c33w + c(v, + w,) + c35(w, + u) + c36(u, +v.) (103)

,,= c14u, + c2v, + c3w, + c44(v + w,) + c45(w, + U) + c46(u,+ v) (104)

,,= c15u, + c25v + c35w, + c45(v, + w,) + c55(w, + U) + c5(u, + v.) (105)

Txy = c16u, + c2v,+ c36w, + c46(V + w,) + c56(w + u) + c(u, + v) (106)

where u, v and w denote the displacements at that point inx-, y- and z-directions, respectively,

and a and r denote the normal and the shear stresses, respectively, and the first subscripts

of a and t denote the direction normal to the face on which the stresses apply, and the second

subscripts of a and r denote the direction in which the stresses apply, and cj are the elastic

constants of the medium. Also, in eqns. (101) through (106), the subscripts of displacements

stand for differentiation with respect to the variables.

The equations of motion for the general elastic medium is [8]

+. +--pa (107)
ax ay az

+ "+ = PV (108)
ax ay az

+ Y +--= pw; (109)
ax ay az

where p is the density of the medium.

A transversely isotropic medium, which has the x-y plane as its isotropic plane, is

considered. Combining eqns. (101) through (109) with elastic constants for the transversely

isotropic medium [9], the two-dimensional equations of motion on a transversely isotropic

plane, for example, the x-z plane, are

a'u (a2 aIU a2W
p =c +c11 +,4a+(c +c13)axaz (110)

__ Av 144 c. 13 ~ (111)
p at2 c33 az2 +c +(C4+C)axaz z

Comparing eqns. (110) and (111) with eqns. (94) and (95),

ki= cl - c4 (112)

k3= C33 - C4 (113)

3c +C 3 (114)
4

p= -C13 (115)
3c44 + c13

With these new spring constants, the model can be applied to the simulation of elastic wave

propagation in a transversely isotropic medium. In particular, many fiber reinforced

composite materials and large space structures may be modeled as transversely isotropic

media.

The MSLM, in conclusion, can model wave propagation in both the isotropic and

transversely isotropic media. Unlike the Harumi [1] model, the MSLM accounts for the

torque on the hybrid diagonal springs by considering the displacements of the central mass

in both x- and z-directions; the Harumi model, however, ignores the possible motions of

the central mass in the z-direction when formulating the torque on its hybrid diagonal springs.

The MSLM, therefore, is more complete and offers greater physical meaning in modeling

wave propagation in isotropic and transversely isotropic media.

References

[1] K. Harumi and T. Igarashi, "Computer Simulation of Elastic Waves by a
New Mass-point System with Potentials", Journal of Nondestructive Test-
ing of Japan, Vol. 12, 1978, pp. 807-816.

[2] T. Matsuzawa, "Vibrations of a System of Particles", Bull. Tokyo Dom.
Sci. Inst., Vol. 12, 1972, pp. 66-69.

[3] H. Takahashi, "Linear Distribution Constant Theory (IV)", Iawnami Basic
Engineering Lectures, Vol. 7, 1973, pp. 307-308.

[4] Y. Sato, "Reflection and Diffraction at Cracks, Angles, Etc.", Journal of
Nondestructive Testing of Japan, Vol. 27, 1978, pp. 180-181.

[5] B. Carnahan, H.A. Luther and J.O. Wilkes, Applied Numerical Methods,
John Wiley and Sons, Inc., 1969, pp. 430-43 1.

[6] L.E. Malvern, Introduction Q .the Mechanics of a Continuous Medium,
Prentice-Hall, Inc., 1969, pp. 499-500.

[7] M.J.P. Musgrave, "On the Propagation of Elastic Waves in Aelotropic
Media", Proceedings of the Royal Society of London, Series A Vol. 225,
1954, pp. 340-341.

[8] L.E. Malvern, Introduction Q .the Mechanics gf a Continuous Medium,
Prentice-Hall, Inc., 1969, pp. 214-215.

[9] S.G. Lekhnitskii, Thery gf Elasticity pf an Anisotropic Elastic Body,
Holden-Day, Inc., 1963, pp. 23-24.

i-i j+1 ij+1

h
i-1j ij

h k2 k3 k4

h h

Fig. 1 Mass-spring lattice model.

1 j+1

i+1j

j-1

i+

Extensional

i+1,j+1

Spring
i+,j+1 T

-H-
F

T=krAG

Fig. 2 Hybrid spring constitutive components.

F=kAl

Spring Rotational

-A I

k5

ui,j

i+ 1,j

Ui+1,j

Fig. 3a Displacement of masses connected to k, spring.

i-i,j k1

Ui,j ui,j

Fig. 3b Displacement of masses connected to ki spring.

44

F,
i+ 1 ,j+1

+ h
hT h

iqj

Iu h
Fig. 4a Elongation of k6 spring due to net horizontal displacement.

+1,j+1

ij + hfrT
F2

Aw

Fig. 4b Elongation of k6 spring due to net vertical displacement.

0 U i+1,j+1

i~j

Fig. 4c Total elongation of k6, spring.

T

kr

Fig. 5 Torque and corresponding force of rotational spring.

F11\ L =A1+ hl

h

Fig. 6a Torque due to horizontal displacement.

h

L =AI + hI
FT2 1,J

L W

Fig. 6b Torque due to vertical displacement.

T
h
i

Fig. 7a Conventional mass distribution scheme.

H-h-+A Fi

I I I I I

h0 0~
@ 1 10 01 I.-

Fig. 7b MSLM mass distribuiton scheme.

I I I I I

-l~ ~~ -l - ~i ~ -T - T-I I I I
1*101*1O1

*-h-+|

Chapter 2:

Computer Graphics Techniques for
Visualizing Wave Propagation

Abstract

Four computer graphics techniques for visualizing two-dimensional wave propagation
are presented. The techniques termed color contouring, vector fields, two-dimensional mesh
deformation and three-dimensional surface deformation are developed for viewing data
generated using a mass-spring lattice model (MSLM) which predicts wave propagation in
both isotropic and anisotropic media. The techniques of two-dimensional mesh deformation
and three-dimensional surface deformation are two new techniques for visualizing wave
propagation. Specific software programs and procedures are devised for creating the
appearance of wave propagation in two and three dimensions that is associated with these
two techniques. The techniques of color contouring and vector fields are traditional visu-
alization techniques, and new methods and procedures are developed for adapting these
techniques for the data generated from the MSLM. The displacements of the MSLM point
masses in a plane are used as the data for applying the various visualization techniques. All
software is written in the C Programming Language torun on the Hewlett-Packard 9000/350
workstation. These visualization techniques also provide the flexibility of using any type
of data as input including stress or strain as long as the input/output data protocol described
is followed.

Introduction

The use of computer graphics in scientific computation is an emerging field. As a

tool for applying computers to science, this emerging field, being termed Visualization in

Scientific Computing (ViSC), offers a way to see the unseen [1]. Computer graphics

techniques have been used to enhance the understanding of such phenomena as fluid flow,

crack propagation and rigid body motion in the field of applied mechanics [2]. However,

there is a dearth of information in applying modern computer graphics techniques to

visualize wave propagation in elastic solids. This document will serve as one step towards

addressing this shortcoming. Four techniques for visualizing two-dimensional wave

propagation are devised and presented.

The techniques termed color contouring, vector fields, two-dimensional mesh

deformation and three-dimensional surface deformation are developed to visualize wave

propagation. Each of these techniques is discussed at length in the sections titled Color

Contouring, Vector Fields, Two-Dimensional Mesh Deformation and Three-Dimensional

Surface Deformation. These techniques are applied to time-dependent data generated from

computer solutions created using a mass-spring lattice model (MSLM) [3-4]. The MSLM

simulates the medium as a two-dimensional structure consisting of point masses and simple

extensional and rotational springs. Since the x-y plane in this model is taken to be the plane

of isotropy, the more interesting wave propagation phenomena occur in the x-z plane which

is anisotropic. The MSLM, therefore, calculates the displacement in the x- and z-directions

of each point mass for every time step. These displacement data are used as the input for

the various visualization techniques.

Software for each of the techniques is written in the C Programming Language with

the use of computer graphics functions from Hewlett-Packard's Starbase Graphics Library

[5]. The software assumes the medium to be a rectangular mesh with each node of the mesh

representing a corresponding MSLM point mass. The features and details of this mesh

representation of the medium are described in the next section. Each of the techniques uses

the same mesh representation of the medium to generate the computer graphics.

The technique of color contouring assigns color values to each node of the mesh and

then performs smooth shading on each mesh element to produce a color contoured two-

dimensional rectangle. A mapping function calculates a color value for each node of the

mesh based on the magnitude of the displacement of the corresponding MSLM point mass.

The term smooth shading is commonly used in computer graphics to refer to a method of

coloring an object. For example, an object such as a rectangle instead of being colored with

a homogeneous color can be smooth shaded such that the color of the rectangle varies

gradually from one region to another.

The use of color in viewing data has both advantages and disadvantages. Bertin [6]

points out that color, in contrast to black-and-white, is richer in cerebral stimulation, and

therefore captures and holds the attention of the viewer and assures better retention of the

information. Some of the events occurring in wave propagation problems occur in tenths

of microseconds. Visualization of such events in color enables the viewer to identify a

particular wave interaction phenomenon more easily; whereas, the same phenomenon

viewed in black-and-white may go unnoticed. One disadvantage of using color is that the

viewer may have anomalies of chromatic perception (for example, color blindness). The

more significant disadvantage as Tufte [7] mentions is that the mind does not give visual

ordering to colors, except possibly for red to reflect higher levels than other colors. Without

attempting to address the problem of chromatic perception, the problem of visual ordering

can be solved by providing the viewer with a color legend as shown in Fig. 1 which enables

the viewer to know the corresponding mapping of colors to data ranges.

Vector fields are created using the same displacement data as described previously;

however, the magnitude of the displacement and the direction of displacement are mapped

to a vector's length and direction, respectively. The computer graphics software routines

represent the vector as an arrow element. The arrow element is the most efficient and often

the only technique for representing the complex movement of a point [8]. Arrow elements

are drawn starting from each node of the mesh. The final visual effect is a region of arrow

elements depicting the magnitude and the direction of motion of the MSLM point masses.

The two-dimensional mesh deformation technique depicts the medium as the mesh

itself where each node of the mesh is the location of a MSLM point mass. The computer

graphics software routines for this technique generate the mesh image by drawing each

individual mesh element. The routines represent each mesh element as a polygon. As each

point mass displaces in the x- and z-directions, the corresponding nodes of the mesh change

their position, and polygon after polygon is drawn to render a new mesh configuration.

The three-dimensional surface deformation technique depicts the medium as a

three-dimensional surface situated in x-y-z space. The computer graphics routines for this

technique use the framework of the mesh to creates a surface which deforms in three-

dimensions. The mesh is situated in the x-z plane. The magnitude of the displacement of

a point mass is represented as a displacement of a node of the mesh in the y-direction. The

mesh in this technique, unlike the previous techniques, is a three-dimensional mesh with

each node defined by a coordinate triplet of (x,y,z).

In the subsequent sections, each of the computer graphics techniques for visualizing

wave propagation is discussed in detail. Each technique offers the visualization of the

magnitude and direction of wave propagation in uniquely different ways. In the section

following immediately, the configuration of the mesh used by the software programs for

generating the computer graphics is described.

Configuration of Mesh

Prior to discussing the details of each of the computer graphics techniques used to

visualize wave propagation, it is necessary to understand the nature and concept of the mesh

that is used as the framework for rendering the images for each of the techniques. The mesh

used in this discussion is a discrete geometric representation of a two-dimensional structure

situated in the x-z plane. A 5 by 5 mesh, for example, means a mesh consisting of 5 mesh

elements in the x-direction and 5 mesh elements in the z-direction. Each node of the mesh

is defined by a coordinate pair: (x,z). This 5 by 5 mesh has 25 elements and 36 nodes. In

general, T., the total number of nodes in a system of quadrilateral mesh elements, can be

defined as

T, = (E,+ 1)(E,+ 1) (1)

where EX is the number of mesh elements in the x-direction or the number of columns in

the mesh, and EZ is the number of mesh elements in the z-direction or the number of rows

in the mesh. Since the mesh described here is a rectangular mesh, it is appropriate to use

the terms rows and columns to reference elements within the mesh.

Node and Element Numbering Conventions of Mesh

In developing the computer graphics techniques for mapping data values to a particular

node, there is a need to know what node numbers surround any particular mesh element.

In Fig. 2, the node numbers as well as the mesh element numbers are shown for a 5 by 5

mesh. The mesh element numbers are in bold. When recalling nodes surrounding a particular

element, the ordering of nodes begins from the lower left node to the lower right node to

the upper right node and finally to the upper left node. Mesh element number 13, for

example, is surrounded by nodes 15, 16, 22 and 21. Node number 15 is termed the first

node of the mesh element, node number 16 is termed the second node of the mesh element,

node number 22 is termed the third node of the mesh element, and node number 21 is termed

the fourth node of the mesh element.

To express this node numbering convention for a particular element, more generally,

a convention is developed. In this convention, the term N, is used to denote the j'th node

of the i'th mesh element. Thus, the nodes of element 13 from the above example can be

expressed as follows

N13,1= 15 (2)

N13,2 = 16 (3)

N13,= 22 (4)

N13,4=21 (5)

Before formulating a general expression for Ng it is important to define the notation

LxJ, standardized by Knuth [9], to denote the greatest integer less than or equal to x. Using

this notation, equations for finding the absolute node numbers of nodes 1, 2, 3 and 4 of a

particular mesh element i are expressed as

N, 1 = i + (6)

i1 E

Ni, 2 =i +1 (7)

N, =i + +2+E, (8)

Ni,4=i+ iE1J+1+E (9)

From eqns. (6), (7), (8) and (9), a general expression for No can be written as

Nij=i+ iElJ+2-Ij-3 |I 21_JE (10)

Therefore for a particular element i, the absolute node number of node j, which surrounds

element i, can be found from eqn. (10).

Appendix A contains the software code for generating any rectangular mesh as well

as the code for assigning the node numbers for the elements of the mesh by using eqn. (10).

Color Contouring

In this section, the technique of color contouring is presented. While color contouring

is a traditional visualization technique for visualizing scalar data, new software and methods

had to be developed for adapting and implementing this technique for the mesh configuration

discussed in the previous section and for the displacement data generated from the MSLM.

In order to visualize wave propagation using color contouring, specific procedures were

developed for generating a color contour from the MSLM data. These procedures are the

focus of this discussion. All software related to this technique was written in the C Pro-

gramming Language to run on the Hewlett-Packard 9000/350 personal computer.

There are two steps involved in this technique: 1) mapping colors to the displacement

values of each node in the mesh and 2) using the resulting values for color at each node to

perform smooth shading on each mesh element to create a color contour of the entire mesh.

The displacement values for each node are acquired from the displacement data generated

from the MSLM. The form of the data is a pair of numbers which denote the displacements

of the node in the x- and z-directions. For example, the mesh in Fig. 2 has data of the form

shown in Fig. 3. The displacements of any node j in the x- and z-directions are denoted by

uj and wj, respectively.

Mapping Colors to Nodal Displacement Data

The two steps for mapping colors to nodal displacement data involve the following:

1) determining the minimum and maximum displacement values among all the nodes for

all time steps and 2) using a color mapping algorithm to assign a RGB (red, green, blue)

value to each node. The term RGB is used in computer graphics to denote the red, green

and blue components which can be combined to create a spectrum of colors. A RGB value

is a set of three numbers, each mapped to discrete values between zero and one, which

determines the intensity of each component.

The MSLM model generates displacement data for a specified number of time steps.

For each time step, therefore, there are data for the displacement of each node of the mesh.

Fig. 4 offers one way of representing such data for n time steps. The first step in mapping

colors involves finding the minimum and maximum magnitudes of displacement. The

magnitude of displacement for a particular node j and at a particular time step t is denoted

by M,, and is expressed as

g=u ,w,(11)

where u, and wj,, denote the displacement of node j at time step t in the x- and z-directions,

respectively. To evaluate the minimum and maximum magnitudes of displacement, it is

necessary to evaluate Mj,, for each node j and at each time step t. In Appendix B, this

calculation is performed and the minimum and maximum values are evaluated. The

minimum and maximum values for the magnitude of displacement among all time steps

and among all nodes are denoted by M.,e, and M..

Once M. and M.,, are calculated, the color mapping algorithm can be used to assign

RGB values to each node of the mesh for a particular time step. Colors are mapped to each

value of M,,, by assigning values to the red, green and blue components of color. If the

convention (as indicated in Fig. 1) is to denote high values with shades of red, low values

with shades of blue and intermediate values in the color ranges of orange, yellow and green,

the RGB mapping described below can be used. In this convention, the red component for

a particular node and time step, denoted by R , varies with Mj,, as shown by the line in Fig.

5. Mathematically, the relationship between R,, and M,, is formulated by considering the

slope of the line.

1(12)

Mi,,t -M Mmin -mxMmi

Therefore the red component is expressed as

M. -M.
R. = ''' m" (13)

''Mmx - Mmin

Similarly, the green component for a particular node and time step, denoted by Gt,

varies with Mj,tas shown by the two lines in Fig. 6. The green component is described by

two expressions, one for the interval between M,, and Mmid and the other for the interval

between Mmid and Mm., where Mmdis defined as

=Mmx = +Mmin (14)
2

For the interval between M.i and Mmd, Gj, is

2(M, t-Mmi)
Gj,, -M, Mmin5 M,, Mm (15)

For the interval between Mm and Mmnax, Gjt is

G 2' Mj -Mmx) Mo < Mj,, 5 M=7 (16)
Mmin -Mm

Therefore, eqns. (15) and (16) describe the green component for variations in M,s.

The blue component for a particular node and time step, denoted by Bj,, varies with

as shown by the line in Fig. 7.

Bt = Mn, iMmax (17)
'i M- Mmx

Eqns. (13), (15), (16) and (17) describe the assignments of the RGB components for

a given node at a specified time step. The range of values of the RGB components, moreover,

are

0.0 9 R,, t5 1.0 (18)

0.0:5 Gj,, 1.0 (19)

0.0 B;,, 1.0 (20)

For every Mj,,, therefore, non-zero values of red, green and blue exist except at M, and

Mmax. Appendix C contains the code to assign a RGB value to a value of Mj. Therefore,

for a particular time step, each node of the mesh has a RGB value associated with it. In

software, this association is performed through the use of arrays. In Fig. 8, a table is used

to represent this association. In general, each node j has corresponding values of Rj, G and

B for a particular time step.

It is important to point out that the reason that the color assignment scheme depicted

in Figs. 5, 6 and 7 was chosen was in order to generate a smooth transition in color from

blue to green to red. The issue of traversing RGB space smoothly across these color ranges

is actually quite difficult. The scheme chosen here appeared to work efficiently, however,

it is not perhaps the most optimal scheme.

Smooth Shading of Mesh Elements to Create Color Contour

Once RGB values are assigned to each node, the next step is to perform smooth shading

for each mesh element to create the color contour. In order to perform smooth shading for

a mesh element, it is necessary to know the RGB values of the four nodes of the element.

Access to the RGB values of the four nodes of a mesh element can be acquired by knowing

the node numbers of the element. The node numbers can be acquired through the use of

eqn. (10). The node numbers, in turn, serve as indices for finding the RGB values associated

with the node.

An example of locating the RGB values for a particular mesh element, in the 5 by 5

mesh described previously, will serve to illustrate this process. Given mesh element 18,

for example, the nodes surrounding mesh element 18 are found using eqn. (10) to be

N 18,1= 21 (21)

N18,2 =22 (22)

N18, = 28 (23)

N18,4 =27 (24)

From Fig. 8, the RGB value associated with each node is found. In Fig. 9, this association

of RGB values with the nodes of mesh element 18 is shown. Once the RGB values associated

with the four corners are known, the smooth shading of the mesh element can be performed.

Each mesh element is graphically treated as a polygon having five vertices with the first

vertex and the fifth vertex being the same. The StarBase Graphics Library [10] contains

the subroutines for coloring (or smooth shading) the polygon based on the RGB values

assigned to the vertices of the polygon. In Appendix D, the code for performing the smooth

shading for each mesh element is shown.

The smooth shading method used, however, does not eliminate Mach band effects.

This effect is one of exaggeration of intensity along a surface. The effect, from a visual

standpoint, is caused by lateral inhibition of the receptors in the eye, whose response to

light is influenced by adjacent receptors in inverse relation to the distance to the adjacent

receptor [14].

As each mesh element is smooth shaded, the final result is an entire smooth shaded

mesh. The color contouring technique described is applied to displacement data; however,

the same technique can also be used for creating color contours for any other type of data

as long as the mapping of colors-to-data protocol described above is followed.

Vector Fields

In this section, the technique of vector fields is presented. While vector fields are a

traditional visualization technique for visualizing scalar and vector data, new software and

methods had to be developed for adapting and implementing this technique for the mesh

configuration discussed in the section titled Configuration ofMesh and for the displacement

data generated from the MSLM. In order to visualize wave propagation using vector fields,

specific procedures were developed for generating the vector fields from the MSLM data.

These procedures are the focus of this discussion. All software related to this technique

was written in the C Programming Language to run on the Hewlett-Packard 9000/350

personal computer.

The creation of vector fields, like the technique of color contouring, requires the use

of the mesh described in the section titled Configuration of Mesh. Vector fields offer a way

to visualize direction as well as the magnitude of wave propagation using the graphical

arrow element. Typically, however, vector fields are more suited for visualizing direction

of propagation.

Vector fields are created using the same displacement data described previously. Each

node of the mesh serves as the starting point from which an arrow is drawn representing

the displacement vector for a particular point mass. The magnitude of displacement and

the direction of displacement are mapped into the length and direction of the arrow,

respectively.

The first step in creating vector fields, like in color contouring, involves calculating

the minimum and maximum displacement values for all time steps. The second step involves

drawing arrow elements at each vertex of a mesh element for a particular time step. The

final image is a field of arrow elements, which for each time step vary in lengths and pointing

directions.

Calculating the minimum and maximum displacement values for all time steps is done

using the code in Appendix B. As in the color contouring technique, this code calculates

M. and M. for all nodes and all time steps. Drawing arrow elements at each vertex of

a mesh element is accomplished using the code in Appendix E. An arrow element has two

coordinates as shown in Fig. 10a. The starting coordinate, or the tail of the arrow, is the

location of a particular node denoted by the coordinate (xj, zj). The ending coordinate, or

the head of the arrow, is denoted by (xe, ze) and is calculated as

x, =x +uj (25)

z, =z 1 + w (26)

In Fig. 10b, an example of arrow elements drawn at each vertex of a particular mesh

element is shown. The code in Appendix E draws arrow elements for each mesh element

in the entire mesh, where the final result for the entire mesh at a given time may be similar

to the vector field shown in Fig. 11.

Vector fields, unlike color contouring, serve to show direction as well as magnitude.

Vector fields are particularly useful for visualizing changes in direction of wave propagation.

Moreover, this technique also enables the visualization of surface wave propagation.

Two-Dimensional Mesh Deformation

In this section, a new technique for visualizing wave propagation termed the two-

dimensional mesh deformation technique is described. This technique, like the previous

techniques, requires the use of the mesh described in the section titled Configuration of

Mesh. New methods and software were created to implement this technique. All software

related to this technique was written in the C Programming Language to run on the

Hewlett-Packard 9000/350 personal computer.

Two-dimensional mesh deformation is particularly useful for visualizing wave

propagation not only within the bulk of the material but also at the edge of the material. In

this technique, as each point mass displaces in the x- and z-directions, the corresponding

nodes of the mesh change their positions and a new mesh configuration is rendered. In

Figs. 12a and 12b, this change in mesh configuration between two arbitrarily chosen time

steps is illustrated.

The creation of the two-dimensional mesh involves drawing each element of the mesh

beginning at the bottom most row, starting with the left most element within that row. Each

mesh element is created using a polygon element having five vertices where the first vertex

and the fifth vertex are the same; therefore, a closed quadrilateral element is created. For

a mesh element, the first vertex and fifth vertex are the bottom left node, the second vertex

is the bottom right node, the third vertex is the top right node, the fourth vertex is the top

left node. For example, in Fig. 9, the first vertex and fifth vertex would be the location of

node 21, the second vertex would be the location of node 22, the third vertex would be the

location of node 28, and the fourth vertex would be the location of node 27.

For each time step, new nodal positions are calculated based on the displacements of

the point masses in the x- and z-directions and a new mesh configuration is created. In

Appendix F, the code for rendering each new mesh configuration is shown.

Three-Dimensional Surface Deformation

In this section, a new technique for visualizing wave propagation termed the three-

dimensional surface deformation technique is described. This technique, like the previous

techniques, requires the use of the mesh described in the section titled Configuration of

Mesh. The three-dimensional surface deformation technique is a new and unique method

of graphically visualizing changes in the magnitude of the displacement vector during wave

propagation. New methods and software were created to implement this technique. All

software related to this technique was written in the C Programming Language to run on

the Hewlett-Packard 9000/350 personal computer.

The mesh used in the previous techniques is now situated in x-y-z space as shown in

Fig. 13, and each node of the mesh is defined by a coordinate triplet: (x,y,z). The x and z

components, as in the previous techniques, are used to denote the position of the nodes in

the x-z plane. In this technique, however, the additional y component is used to plot the

changes in the magnitude of displacement of the corresponding node. Therefore, while the

x and z components for a node remain fixed, the y component varies from time step to time

step. Redrawing the mesh for each time step is a more complicated process than the two-

dimensional techniques described in the previous sections since the nodes of the mesh no

longer lie in the x-z plane. Therefore, curves are calculated along each set of nodes parallel

to the x-axis and then along each set of nodes parallel to the z-axis to create a smooth

three-dimensional wire mesh. Each mesh element of this three-dimensional wire mesh is

then filled with a color to generate a three-dimensional surface which depicts overall changes

in the magnitude of the displacement vector.

Prior to discussing each step involved in the three-dimensional surface deformation

technique, the mathematics for calculating three-dimensional curves is described.

Calculating Three-Dimensional Curves

In this technique, it is necessary to calculate three-dimensional curves for each set of

nodes parallel to the x- and z-axis. The calculation of a three-dimensional curve for a set

of n nodes is equivalent to the general problem of finding a curve to fit a group of n points.

Mathematically, this problem involves finding a polynomial of order (n-1) for a set of n

points. Clearly, this problem becomes quite cumbersome and difficult to solve as the

number of points, n, increases. Therefore, in the three-dimensional surface deformation

technique, a practical approach is taken towards solving this problem by decomposing the

problem into a simpler problem. More specifically, in this technique, piecewise polynomial

curve segments, called splines, are calculated for each sub-group of four points, and these

curve segments are connected together to produce one continuous three-dimensional curve.

The number of splines, N, required to create one three-dimensional curve is given as

N, =(n (27)
3

where n is the total number of points through which the three-dimensional curve passes.

Since N, must be an integral value, n is selected to ensure an integral number of splines.

The number of points n must be such that the quantity (n-1) is divisible by three. In Fig.

14, for example, the seven points shown in three-dimensional space require two splines to

create a three-dimensional curve.

In this technique, polynomials of order three or cubic splines are selected as the class

of piecewise polynomials for generating the three-dimensional curves. The main reason is

that no lower-order representation of curve segments can provide continuity of position and

slope at the point where curve segments meet and at the same time ensure that the ends of

the curve segments pass through specified points. Cubic splines, therefore, ensure that the

curve segments join smoothly at the connection points of individual curve segments.

Furthermore, while polynomials of higher-order can be used, these functions tend to have

undesirable oscillations which require more complex methods for generating smooth curves

[11].

A cubic spline is mathematically represented by three parametric equations as

x(t) = at3+bt2 +c't +d, (28)

y(t) = a t3+byt 2+cyt +d, (29)

z(t) = at 3 + bt2+ ct + d, (30)

where a, b, c and d subscripted by x, y and z are coefficients for eqns. (28), (29) and (30),

respectively and where t is the parametric variable with limits of

Ot5 1 (31)

Eqns. (28), (29) and (30) are rewritten in matrix form for greater clarity. In developing

the mathematics for converting these equations to matrix form, eqn. (28) is taken as an

example and the results are later applied to eqns. (29) and (30).

Eqn. (28) is rewritten as

'a,

x(t)=(t t2 t 1) bj (32)

Tda(

Taking the first derivative of egn. (32) with respect to t gives

a,)

= (3t 2 2t 1 0) b, (33)
dt c,

(d,)

Next eqns. (32) and (33) are evaluated at the endpoints of the cubic spline where t=0 and

t=1. Eqn. (32) evaluated at t=0 gives

ax)

x(O)=(0 0 0 1) * (34)
c,
(dx

Evaluating eqn. (32) at t=1 gives

x(1)= (1 1 1 1) (35)

(dx

Evaluating eqn. (33) at t=0 gives

1(0)= (0 0 1 0) 1) (36)

Evaluating eqn. (33) at t=1 gives

(ax

1(1)=(3 2 1 0) (37)

Eqns. (34), (35), (36) and (37) can be written in one equation as

x('O O O 1 Jxj
x(1) 1 1 1 1 b' (38)
!(0) 0 0 1 0 c,
st (1), 3 2 1 0) dx

Inverting eqn. (38) gives

'a,' ' 2 -2 1 1''(0)
b_ -3 3 -2 -1 x(1) (39)
c, 0 0 1 0 1(0)

d,,/ 1 0 0 0, M()

Substituting eqn. (39) into eqn. (32) gives

' 2 -2 1 1'x(0)

X W)W(t, t 1-3 3 -2 -1 x(1) (
x1 0 0 1 0 t() I(40)

, 1 0 0 0, sc(1))

Using eqn. (40), x(t) is evaluated for t=O, 1/3, 2/3 and 1; the result is written in matrix form

as

'X(0) ''1 0 0 0 '(0)'
x(1/3) 20/27 7/27 4/27 -2/27 x(1)

x(2/3) 7/27 20/27 2/27 -4/27 !(0)

x(1) 0 1 0 0 ,)

Inverting eqn. (41) gives

X(0) 1 0 0 0)'x(0)

x(1)1_ 0 0 0 1 x(1/3) (42)
t(0) ~ -11/2 9 -9/2 1 x(2/3)
V(1), , -1 9/2 -9 11/2,) x(1) /

Substituting the elements x(0), x(1/3), x(2/3) and x(l) of the column matrix on the right

hand side of eqn. (42) such that

x(0)=Pi

x (1/3)= P,2

x(2/3) =P,

x(1)= P,4

(43)

(44)

(45)

(46)

where P,, P., P, and P,4 are the x-coordinates of a set of four points that are used to calculate

the spline.

Substituting eqns. (43), (44), (45) and (46) into eqn. (42) gives

'x(0) ' 1

x(1) 0

1(0) -11/2

() ,-1

0 0 0
0 0 1
9 -9/2 1

9/2 -9 11/2),

,2'x

,,3x41
(47)

Substituting eqn. (47) into eqn. (40) gives

-3
0

-2
3
0
0

1
-2

1
0

'1
-1 0

0 -11/2

0) \ -1

0
0
9

9/2

0
0

-9/2

-9

0
1
1

11/2

P$)
p2

P13
g4

(48)

Eqn. (48) can be rewritten as

x(t) = T(49

x(t)=(t 3 t2 t

(49)

where T is

T = (t t2 t 1)

where M is

M

2

-3

0
1

-2

3

0
0

1

-2

1
0

l' 1
-1II 0

0 -11

0,R - 1
/2

and is simplified to

-9 27 -27 9
24 -45 36 -15

-11 18 -9 21
2 0 0 0)

and where X is

(PX

-p2

X=[j
P,4

(52)

(53)

Eqn. (49) is the general expression for x(t). Similar eqns. for y(t) and z(t) can be written

as

(54)

(55)

where Y is

z(t)= TMZ

(50)

0 0
0 0
9 -9/2

9/2 -9

0

11/2)

(51)

, 1)

P 2

I = '(56)
P,3

P 4

and where Z is

P,0
P 2

= 3
(57)

P'

Eqns. (49), (54) and (55) together represent the equations of a cubic spline in three-

dimensions. It is important to note that the spline passes through each of the four points.

A three-dimensional curve created using the cubic spline, therefore, passes through all n

points.

A three-dimensional curve, P(t), is assembled using one or more cubic splines.

Mathematically, P(t) is expressed as

N,

P(t) X SM(t) (58)
M=1

where the superscript m denotes the number of the spline, and where S(t) represents one

cubic spline and is given as

S(t) = {x(t), y(t),z(t)} (59)

Using eqn. (58), a three-dimensional curve can be calculated for a set of n points or

n nodes. The spline used to generate the curve in eqn. (58) is commonly known as a Hermite

curve [12].

Steps in Creating the Three-Dimensional Surface

The first step in creating the three-dimensional surface is to select a mesh of proper

dimensions. The number of mesh elements E. and Ez in the x- and z-directions, respectively,

is expressed as

Ex= n. - 1 (60)

E,= n, - 1 (61)

where n. and nz are the number of nodes in the x- and z-directions, respectively.

From the previous discussion on creating three-dimensional curves, eqn. (27) demands

that one less than the number of points or nodes selected be divisible by three. In this case,

it requires that (n. - 1) and (n, - 1) be divisible by three. This requirement along with eqns.

(60) and (61) means that a mesh for this technique be selected such that the number of mesh

elements along the x- and z-directions be divisible by three.

The second step involves calculating the y components for each node j of the mesh at

time step t using the equation

2(Mmx -Mg,)
Yj' = 1- (Mm -Mi) (62)

(Mmx - MGj

where Mj is calculated using eqn. (11), and where Yj denotes the y component for node j

at time step t. The y component, as evident from eqn. (62), is a normalized value which

varies between -1 and 1. The software program shown in Appendix G performs the cal-

culation of Yj.

The third step involves calculating three-dimensional curves for each set of nodes

parallel to the x-axis and for each set of nodes parallel to the z-axis to create a three-

dimensional wire mesh. Using eqn. (58), this calculation is performed and the curves for

each set of nodes is generated. In Appendix H, the calculation of the three-dimensional

curves and the generation of the three-dimensional wire mesh are performed.

Once the three-dimensional wire-mesh is created, the final step in creating the three

dimensional surface involves filling each mesh element with a color to create the appearance

of a surface. Each mesh element, as in the two-dimensional mesh deformation technique,

is represented as a polygon element. Appendix H also contains the code for performing

this final step of filling in each polygon element with a color to render the three-dimensional

surface.

In Figs. 15a, 15b, 15c and 15d, the overall process of creating a three-dimensional

surface from a three-dimensional wire mesh is summarized. In Fig. 15a, a mesh of proper

dimension is chosen such that the number of mesh elements along the x- and z-directions

is divisible by three. Fig. 15b shows the effect on the mesh following the calculation of y

components for each node at a particular time step. In Fig. 15c, curves are generated along

each set of nodes parallel to the x- and z-axes. Finally, in Fig. 15d each mesh element is

filled to created the appearance of a surface.

Conclusions

Four techniques for visualizing wave propagation have been discussed: color con-

touring, vector fields, two-dimensional mesh deformation and three-dimensional surface

deformation. The techniques of two-dimensional mesh deformation and three-dimensional

surface deformation are two new methods for visualizing wave propagation. Specific

procedures and software were developed for implementing these techniques. The techniques

of color contouring and vector fields, which are traditional visualization techniques, were

adapted to handle the particular mesh configuration and data generated by the MSLM.

While in the current presentation of the four techniques displacement data have been used

as the input for visualization, there is no restriction that the data be only displacement data.

The data may be any variable of interest, including velocities, accelerations, stresses or

strains, as long as the data to mesh mapping protocol described above is followed.

Combining the features of some of the techniques may yield new techniques for

visualizing wave propagation. For example, color contouring combined with vector fields

may offer an even richer method for visualizing the direction and magnitude of propagation.

In addition, visualizing various variables using different techniques, at the same time, may

prove to be useful. For example, visualizing displacement with vector fields and stress

using color contouring may prove to be effective. However, the key in such research is to

enable the viewer to comprehend and to recognize patterns in complex visual information

without overloading the viewer with too many visual cues. Such new techniques will be

pursued in subsequent research.

References

[1] B.H. McCormick, T.A. DeFanti and M.D. Brown, "Visualization in
Scientific Computing", Computer Graphics, Vol. 21, No. 6, November
1987, pp. vii-viii.

[2] B.H. McCormick, T.A. DeFanti and M.D. Brown, "Visualization in
Scientific Computing", Computer Graphics, Vol. 21, No. 6, November
1987, pp. El-E8.

[3] S. Ayyadurai, "Formulation of Mass-Spring Lattice Model", Composite
Materials and Nondestructive Evaluation Laboratory, MIT, 1990.

[4] S. Ayyadurai, "Computational Wave Propagation in Isotropic and Aniso-
tropic Media", Composite Materials and Nondestructive Evaluation Labora-
tory, MIT, 1990.

[5] Starbase Reference Manual, Hewlett-Packard Corporation, 1980.

[6] J. Bertin, Semiology _qf Graphics, The University of Wisconsin Press, 1983,
pp. 85-97.

[7] E.R. Tufte, The Visual Display of Quantitative Information, Graphics
Press, 1983, pp. 153-175.

[8] J. Bertin, Semiology -of Graphics, The University of Wisconsin Press, 1983,
pp. 346-347.

[9] D.E. Knuth, The An f Computer Programming, Vol. 1, Addison-Wesley
Publishing Company, 1973, pp. 37-38.

[10] R.H. Bartels, J.C. Beatty and B.A. Barsky, An Introduction .o Splines for
J.e in Computer Graphics and Geometric Modeling, Morgan Kaufmann
Publishers, Inc., 1987, pp. 321-369.

[11] G.J. Peters, Interactive Computer rahics Application of the Bi-Cubic
Parametric Surface to Engineering Design Problems, AFIPS Press, 1974,
pp. 491-511.

[12] J.D. Foley and A. Van Dam, Fundamentals Qf Interactive Computer
Graphics. Addison-Wesley Publishing Company, 1982, pp. 505-572.

[13] J.D. Foley and A. Van Dam, Fundamentals _f Interactive Computer
Graphics. Addison-Wesley Publishing Company, 1982, pp. 521-523.

[14] J.D. Foley and A. Van Dam, Fundamentals £f Interactive Computer
Graphics. Addison-Wesley Publishing Company, 1982, pp. 581-582.

Value of Variable Corresponding Color

60.0 -------- Red

50.0 -------- Purple

40.0 ~~~~---- Orange

30.0 ~~~~---- Yellow

20.0 -------- Green

10.0 ------- Blue

Fig. 1 Example of color legend.

31 32 33 34 35

21 22 23 24 25

25 26 27 28 29

16 17 18 19 20

19 20 21 22 23

11 12 13 14 15

13 14 15 16 17

6 7 8 9 10

7 8 9 10 11

1 2 3 4 5

Fig. 2 Element and node numbering convention.

Node j x-displacement z-displacement
1 ul w1

2 u2 w2

3 u3 w3

4 u4 w4

5 u5 w5

6 u6 w6

7 u7 w7

8 u8 w8

9 u9 w9
10 u10 w10

11 ull w1l

12 u12 w12

13 u13 w13

14 u14 w14

15 u15 w15

16 u16 w16

17 u17 w17

18 u18 w18

19 u19 w19

20 u20 w20

21 u21 w21

22 u22 w22

23 u23 w23

24 u24 w24

25 u25 w25

Fig. 3 Form of data from MSLM for each node of mesh.

time step =7n

time step = 2

time step=1

time step =0
Node j x-displacement z-displacement

1 ul1 W1

2 u2 w2

3 u3 w3

4 u4 w4

5 u5 w5
6 u6 w6

7 u7 w7

8 u8 w8

9 u9 w9

10 u10 w10

11 U1l W11

12 u12 w12

13 u13 w13

14 u14 wl4

15 u15 w15

16 ul6 w16

17 u17 w17

18 u18 w18

19 u19 w19

20 u20 w20

21 u21 w21

22 u22 w22

F 23 u23 w23
24 u24 w24

25 u25 w25

Fig. 4 Representation of displacement data for n time steps.

83

R j,t
1.2

1-

0.8

0.6

0.4

0.2

0
Mmin 5i

t

Fig. 5 Red component variation with magnitude of displacement.

Mmax

Gjy
1.2

0.8 ---------

0.6 --------

0.4 --------

0.2 --------.

0
Mmin

Fig. 6 Green component variation with magnitude of displacement.

1.2

0.8 - - - . - .-

0.6 - - - -.-

0.4 - --.-.-

0.2 - -

0 M 1

Fig. 7 Blue component variation with magnitude of displacement.

Nodej Rj Gj Bj
1 Ri Gi Bi

2 R2 G2 B2

3 R3 G3 B3

4 R4 G4 B4

5 R5 G5 B5

6 R6 G6 B6

7 R7 G7 B7

8 R8 G8 B8

9 R9 G9 B9

10 R10 G10 B10

11 Rul Gll B1l

12 R12 G12 B12

R13 Gi3 B13
R14 G14 B14

R15 G15 B15

R16 G16 B16

17R17 Gi7 B17

1--R-8 G8 B18

19 R19 G19 B19

20 R20 G20 B20

21 R21 G21 B21

22 R22 G22 B22

23 R23 G23 B23

24 R24 G24 B24

25 R25 G25 B2

Fig. 8 RGB assignment convention for each node at specified time.

27 28

18

21 22

(R FiC9,G1) (RpGmB2o

Fig. 9 RGB value corresponding to nodes of mesh element.

(RmC-a,E6(RnGn,B7)

(Xe,ye)

(xi, y)

Fig. 1Oa Arrow element for creating vector fields.

A.
Fig. 10b Arrow elements drawn at each node of mesh element.

//
A
/

Fig. 11 Arrow elements drawn for mesh.

Fig. 12a Undeformed rectangular mesh.

Fig. 12b Deformed rectangular mesh.

X

Fig. 13 Mesh situated in x-y-z space.

92

Spline 1 Spline 2

Fig. 14 Three-dimensional curve created using two splines.

Fig. 15a A 3 by 6 mesh.

z x

Fig. 15b Mesh with y component displaced.

x

zig. 15c Mesh created using three-dimensional curves.

t y Fig. 15d Three-dimensional surface.

x
z

Appendix A: Program for Generating Mesh.

/* mesh.c */

MESH

* This program generates a mesh which is RMNODES by
* RNNODES. The mesh is defined by its connectivity. This
* connecitivity data is stored in a file with extension MSH.
*

/* Include Files */
#include <math.h>
#include <stdio.h>
#include </lisp/users/vashiva/newwave.h>

main()
{

int num-steps; /
int step;
double elapsjtim; /
int ij; /
int n; /
double deltat; p
double period; p
char mshnam[80]; p
FILE *fopenO, *fp; /A
int numnodes; p
int numelems; /A
int xnode_min, xnode-max; p
int xelemmax, ynode-max; p
int ylevel; p
double bottom; p
double xstep; /
double ystep; /
int melems; p
int nelems; p
double x[RMNODES*RNNODES]; /I
double y[RMNODES*R NNODES]; /*
int N[(RMNODES-1)*(RNNODES- /I

1)];
[NODESELEM]

number of time steps
time step index
amount of elapsed time
loop indices
type of boundary node
time step
period of impulse
mesh file name
file attributes
number nodes in mesh
number elements mesh
loop indices
loop indices
loop indices
loop indices
mesh spacing in x (m)
mesh spacing in y (m)
elements in x
elements in y
location of nodes in x
location of nodes in y
connectivity

/* Initialize the number of nodes and elements in the mesh */
numnodes = RMNODES*RNNODES;
num_elems = melems*nelems;

/* Evaluate spacing of mesh in x and y direction */
xstep = deltaj/(sqrt(DENSITY*FAC* 1.OE- 10));
ystep = deltajt/(sqrt(DENSITY*FAC*1.OE-10));

/* calculate the x positions of each node */
xnode_mn =0;
xnodemax = melems;
for (i=0; i<numnodes; i++)

x[i] = xstep*((double)(i-xnode-min));
if (i >= xnode max) {

xnode_mmi = xnode max + 1;
xnodemax = xnode_min + melems;

}
}

/* calculate the y positions of each node */
ynodemax = melems;
ylevel =0;
bottom = 0.0;
for (i=0; i<numnodes; i++){

y[i] = bottom + (double)(ystep*ylevel);
if (i>=ynode max){
ynode-max = i + melems + 1;
ylevel = ylevel + 1;

}
}

/* Evaluate the overall connectivity of the mesh */
ylevel= 0;
xelemmax = melems - 1;
for (i = 0; i<numelems; i++){

N[i][0] = i + ylevel + 1;
N[i][1] = N[i][0] + 1;
N[i][2] = N[i][1] + melems + 1;
N[i][3] = N[i][2] - 1;

if (i >= xelem max) (
xelemmax = xelemmax + melems;
ylevel = ylevel + 1;

}
}

/* Open file for storing nodal x and y positions */
fp = fopen(mshnam, "w");

/* Write Header into MSH file */
fprintf (fp, "%d %d %d\n", numsteps, num-elems, numnodes);

/* Write x and y nodal positions */
for (i=O; i<num nodes; i++) (
fprintf (fp, "1%1. 10e % 1.10e~n"f, x~i], yRi];

/* Write connectivity information */
for (i=O; i<numelems; i++) (

fprintf(fp, "%d %d %d %d\n", N[i][0], N[i][1], N[i][2], N[i][3]);
I

/* Close the mesh file */
fclose(fp);

}/* main *1
/*==== ===== ===== ===== ===== ====== ===== ===== ===== =====*/

Appendix B: Program for Calculating Max. and Min. Displacements.

/* maxmin.c */

* MAXMIN
*

* This program evaluates the minimum and maximum values
* across all time steps from the data stored in a file with
* file extension ANM.
*

/* Include files */
#include <math.h>
#include <stdio.h>
#include <fcntl.h>
#include </lisp/users/vashiva/anim.h>
#include </lisp/users/vashiva/newwave.h>

/* Defines */
#define MAXFNAM 80
#define BIG 1.79e+308
#define SMALL 1.79e-308

MaxMin(mmin, mmax)
double *m_min, *mmax;

char valnam[MAXFNAM];
FILE *fopenO, *fp;
int i, t;
int num steps;
int num_elems, numnodes;
double dum1, dum2;

/* max. file name
/* largest value
/* smallest value

/* ANM file name
/* file pointers
/* loop indices
/* number of steps
/* elements and nodes
/* dummy variables

/* Open the ANM File */
sprintf (valnam, "%s.anm", ANIMNAM);
if ((fp = fopen(valnam, "r")) == NULL){

printf("Error: Cannot open file\n");
exit(-1);

}
fclose(fp);

/* Calculate the Minimum and maximum Values */
/* Under Consideration */
fp = fopen(valnam, "r");
*mmax = SMALL;
*mmin =BIG;
for (t=O; t<num-steps; t++){

for (i=O; i<numnodes; i++){
fscanf(fp, "%lf %lf", &dum2, &dum1); /* dum2, critical */
if (dum2 >= *mmax)

*mmax = dum2;
else if (dum2 <= *m min)

*m_min = dum2;

/* Close the ANM Ffle */
fclose (fp);

}/* MaxMin */
/*=======================================- ------

Appendix C: Program for Assigning RGB Value to a Node.

/* rgb.c */

/************************************ ****** ***********

* RGB
*

* This program assigns RGB values to a particular node
* of the mesh.
*

#include <mt*.h>
#include <sath.h>
#include <fcntl.h>
#include </lisp/users/vashiva/anim.h>
#include </lisp/users/vashiva/newwave.h>

#define MAXFNAM 80 /* max. file name */
#define MAXINDEX NODESELEM*5 /* array size of clist */
#define BIG 1.79e+308 /* largest value */
#define SMALL 1.79e-308 /* smallest value */

Rgb (mnode, r, g, b, F, f_min, f_max)
int m.node;
float *r, *g, *b;
double F[];
double f min, f-max;
{

double fmid;

/* Find cutoff value */
f_mid = (ffmax - fmin)/2.0 + f_min;

/* Map Colors to Values */
*r = (F[mnode] - f-min)/(f-max - f min);

100

if (F[mnode] <= temp)
g = 2(F[mnnode] - fLmin)/(fmax - f_min);

else
g = 2(F[m-nodel - f-max)/(f-min - fmax);

*b = (F[m node] - fLmax)/(fmin - f max);

Rgb */
/*= === === === === === === === === === === === ===-=

101

Appendix D: Program for Smooth Shading Mesh Element.

/* smooth.c */

* SMOOTH
*

* This program smooth shades a mesh element based on the
* RGB values at the four vertices.
*

#include <math.h>
#include <stdio.h>
#include <fcntl.h>
#include </lisp/users/vashiva/anim.h>
#include </lisp/users/vashiva/newwave.h>

/*.doc smoothshade
*/

smoothshade(dev, elem,
int dev;
int elem;
double F[];
int N[] [NODES ELEM];
double f_min;
double f max;
int delet;
double x[], y[];

{
int i;
int e,..node, mnode;
float r, g, b;
float clist[MAXINDEN

e_node = 0;

F, N, fmin, Lmax, delet, x, y)

/* contains 5 values per node:
/* x,y,r,g,b

for (i=; i< MAXINDEX; i= i + 5){

102

m_node = N[elem] [enode] - 1;

clist[O+i] = x[m node];
clist[1+i] = y[mnode];

Rgb(mnode, &r, &g, &b, F, Lmin, fmax);

clist[2+i] = r;
cist[3+i]= g;
cist[4+i] = b;

e_node =e_node +1;

}/* for i */

/* close the polygon */
for (i=O; i<5; i++){

clist[20+i] = clist[O+i];
}

/* draw the polygon */
polygon2d(dev, clist, 5, FALSE);
make-picture-current(dev);

}/* smoothshade */
/*= ===== =-- - -- -- -- -- - -- -- -- -- -- -- - -- */

103

Appendix E: Program for Rendering Vector at Each Node.

/* wavevect.c */

WAVEVECT

*

* This program generates vector fields using the data in
* in the MSH file and ANM file. A vector is denoted by a
* magnitude and a direction. Lines are drawn of a normal-
* length in a particular direction to emulate a vector.
* The vectors are drawn at each node of the mesh.
*

#include <math.h>
#include <stdio.h>
#include <fcntl.h>
#include </lisp/users/vashiva/anim.h>
#include </lisp/users/vashiva/newwave.h>

#define MAXFNAM 80 /* max. file name
#define MAXINDEX NODESELEM*5 /* array size of clist
#define BIG 1.79e+308 /* largest value
#define SMALL 1.79e-308 /* smallest value
#define VECTLEN 200.0 /* length of display vector
#define VECT R 0.0 /* red color of vector
#define VECTG 1.0 /* green color of vector
#define VECT_B 0.0 /* blue color of vector

main()
{
int dev; /* output graphics device
char mshnam[MAXFNAM]; /* MSH file name
char valnam[MAXFNAM]; /* ANM file name
FILE *fopenO, *fp; /* file pointers
int i, k; /* loop indices
mt num-steps; /* number of steps
int numelems, num nodes; /* elements and nodes
double x[RMNODES*R_NNODES]; /* x position of node

104

double y[RMNODES*RNNODES];
double xmin, xmax;
double ymin, ymax;
int elem;
double f_min, f-max;
double dumi, dum2;
double vectmag;
double u,w;
double factor;
int Buffer = 0;
int N[(RMNODES-1)*

(RNNODES-1)]
[NODESELEM];

y position of node
loop indices
loop indices
loop indices
max/min of values
dummy variables
vector magnitude
displacement in x,y
length factor
for animating
mesh connectivity

/* Initialize Graphics Device */
dev = gopen(REN, OUTDEV, HP98721, INITITHREEDIMODELXFORM);
doublebuffer(dev, TRUE, 12);
shademode (dev, CMAPFULLIINIT, TRUE);
vertexformat (dev, 3, 3, TRUE, FALSE, COUNTERCLOCKWISE);
vdc extent (dev, 0.0, 1023.0, 0.0, 1279.0, 0.0, 1.0);
clipindicator (dev, CLIPTOVDC);

/* Get file name of MSH and ANM files */
printf("Enter MSH file\n");
scanf ("%s", mshnam);
printf("Enter ANM file\n");
scanf ("%s", valnam);

/* Open MSH Data File */
if ((fp = fopen(mshnam, "r")) == NULL){

printf("Error: Cannot open file\n");
gclose(dev);
exit(-1);

}

/* Read x, y Position Data. Calculate xmin, xmax, ymin, ymax */
xmin = ymin = BIG;
xmax = ymax = SMALL;
for (i=O; knum nodes; i++){
fscanf (fp, "%lf %lf\n", &x[i], &y[i]);

105

if (x[i] > xmax)
xmax = x[i];

if (x[i]< xmin)
xmin = x[i];

if (y[i] > ymax)
ymax = y[i];

if (y[i]< ymin)
ymin = y[i];

}

/* Read Connectivity Data into Local Array, N */
for (i=O; i<numelems; i++) {

fscanf(fp, "%d %d %d %d", &N[i][0],&N[i][1],&N[i][2],&N[i][3]);
}

/* Close the MSH File */
fclose(fp);

/* Check Degenerate Mesh */
if ((xmin == xmax) II (ymin == ymax)){
printf ("Error: This is a one-dimensional mesh\n");
gclose(dev);
exit(-1);

}

/* Shape the x,y Values to Fit Screen */
shape (numnodes, xmin, xmax, ymin, ymax, x, y);

/* Open the ANM File */
if ((fp = fopen(valnam, "r")) == NULL){
printf("Error: Cannot open file\n");
gclose(dev);
exit(-1);

}
fclose(fp);

/* Calculate the Minimum and maximum Value of the Magnitude */
fp = fopen(valnam, "r");
f_max = SMALL;
f_min= BIG;
for (i=O; i<num-steps; i++){
for (k=O; k<numnodes; k++){

106

fscanf(fp, "%lf %lf', &duml, &dum2);
vect mag = (duml*duml) + (dum2*dum2);
if (vect mag >= f max)

f_max = vect-mag;
else if (vect mag <= f min)

fLmin = vectgmag;

/* vector magnitude */

/* Close the ANM File */
fclose (fp);

/* Set Max and Min of the Magnitude */
f_min = sqrt(fjmin);
f_max = sqrt(fLmax);

/* Report the Minimum and Maximum */
printf("fmin=%1.10e, fmax=%1.10e\n", fminf_max);

/* Initialize the factor */
factor = VECTLEN/Lmax;

/* Re-open the ANM file */
fp = fopen(valnam, "r");

/* Animate the Vector's */
for (i=0; i<num.steps; i++){
dbufferswitch(dev, Buffer = !Buffer);

for (k=0; k<numnodes; k++) {
fscanf(fp, "%lf %lf',&duml, &dum2);
u = factor*duml;
w = factor*dum2;

/* Set the Vector's Line Color */
linecolor(dev, 1.0, 1.0, 1.0);
move2d(dev,(float)x[k],(float)y[k]);
draw2d(dev, (float)(x[k]+u), (float)(y[k]+w));
linecolor(dev, 1.0, 0.0, 0.0);
draw2d(dev, (float)(x[k]+u), (float)(y[k]+w));

107

make-picture current(dev);
}

/* Close the ANM File */
fclose (fp);

}/* main */ ---------------- -------------------

----------------------------------=*/

/*----==== ========== ========= ========== ========== =========

/*.doc shape static
re-shapes the x,y postions of the nodes for the current screen

*/
static shape(num nodes, xmin, xmax, ymin, ymax, x, y)
int numnodes;
double xmin, xmax, ymin, ymax;
double x[], y[];
I
double rs;
double xfact, yfact;
int i;

/* shape the x y location's with shape function */
rs = (ymax - ymin)/(xmax - xmin);

if (rs <= (YLEN/XLEN)){
rs = rs*XLEN/YLEN;
xfact = (((1.0 - XPCT)/2.0)*XPIX);
yfact = (((YPCT/2.0) + 0.5)*YPIX) - ((1-rs)*YPCT*YPI2.0);

for (i=0; i<numnodes; i++) {
x[i] = (xfact + (XPCT*XPIX*((x[i] - xmin)/(xmax - xmin))));
y[i] = (yfact - (rs*YPCT*YPIX*((y[i] - ymin)/(ymax - ymin))));
if (x[i] <0.0)

x[i] = (int) (x[i] - 0.5);
else

x[i] = (int) (x[i] + 0.5);

108

if (y[i] <0.0)
y[i] = (int) (y[i] - 0.5);

else
y[i] = (int) (y[i] + 0.5);

}
}*if *

else {
rs = (1/rs)*(YLEN/XLEN);
xfact = (((1.0 - XPCT)/2.0)*XPIX) + ((XPCT*(l-rs)/2.0)*XPIX);
yfact = (((YPCT/2.0) + 0.5)*YPIX);

for (i=0; i<numnodes; i++) (
x[i] = (xfact + (XPCT*rs*XPIX*((x[i] - xmin)/(xmax - xmin))));
y[i] = (yfact - (YPCT*YPIX*(y[i]-ymin)/(ymax-ymin)));

if (x[i] <0.0)
x[i] = (int) (x[i] - 0.5);

else
x[i] = (int) (x[i] + 0.5);

if (y[i] <0.0)
y[i] = (int) (y[i] - 0.5);

else
y[i] = (int) (y[i] + 0.5);

}
1/* else */

}/* end shape */

*/

109

Appendix F: Program for Two-Dimensional Mesh Deformation.

/* wavemesh.c */

WAVEMESH

* This program deforms the mesh based on the x-y displace-
* ment.

/* INCLUDES */

#include <math.h>
#include <stdio.h>
#include "fcntl.h"
#include </lisp/users/vashiva/anim.h>
#include </lisp/users/vashiva/newwave.h>

/* DEFINES */
#define MAXFNAM 80
#define BIG 1.79e+308
#define SMALL 1.79e-308
#define BACKR 0.4
#define BACKG 0.4
#define BACKB 0.4
#define MESHSPAC 60.0

main()
{
int dev;
char mshnam[MAXFNAM];
char valnam[MAXFNAM];
FILE *fopeno, *fp;
int i,j, k;
int num-steps;
int numelems, num-nodes;
double x[RMNODES*RNNODES];
double y[RMNODES*RNNODES];
double u[RMNODES*RNNODES];
double w[RMNODES*RNNODES];
double xmin, xmax;
double ymin, ymax;
double f_min, fmax;

output graphics device
MSH file name
ANM file name
file pointers
loop indices
number of steps
elements and nodes
x position of node
y position of node
displacement in x
displacement in y
loop indices
loop indices
max/min of values

110

double vectmag;
double factor;
double dum1, dum2;
int Buffer = 0;
int N[(RM1NODES-1)*

(RNNODES-1)]
[NODESELEM];

char titl1 [80];
char titl2[80];
char curtim[80];

/* vector magnitude
/* length factor
/* dummy variables
/* for animating
/* mesh connectivity

/* Initialize Output Device */
dev = gopen(REN, OUTDEV, HP98721, INITITHREEDIMODELXFORM);
doublebuffer(dev, TRUE, 12);
vertexformat (dev, 0, 0, TRUE, FALSE, COUNTERCLOCKWISE);
vdcextent (dev, 0.0, 1023.0, 0.0, 1279.0, 0.0, 1.0);
clipindicator (dev, CLIPTOVDC);

/* Set Text Characteristics */
printf("Enter Heading:\n");
scanf("%s", titll);
sprintf(titl2, "Displacement - Mesh Deformation");
text alignment (dev, TACENTER, TATOP, 0.0, 0.0);
textfontindex(dev, 6);
designatescharacter-set(dev, "usascii", 0);
characterheight(dev, 40.0), character_width(dev, 30.0);
text color (dev, 1.0, 0.0, 0.0);
text_orientation2d(dev,0.0,- 1.0,1.0,0.0);

/* Get file name of MSH and
printf("Enter MSH file\n");
scanf ("%s", mshnam);
printf("Enter ANM file\n");
scanf ("%s", valnam);

ANM files */

/* Open MSH File */
if ((fp = fopen(mshnam, "r")) == NULL){
printf("Error: Cannot open file\n");
exit(-1);
}

111

/* Report Number of Animation Steps */
fscanf (fp, "%d %d %d", &numsteps, &num-elems, &numnodes);
printf("There will be %d animation steps, elems=%d, nodes=%d\n",

numsteps, num-elems, num-nodes);

/* Read x, y position data. calculate xmin, xmax, ymin, ymax */
xmin = ymin = BIG;
xmax = ymax = SMALL;
for (i=O; i<numnodes; i++){

fscanf (fp, "%lf %lf", &x[i], &y[i]);
if (x[i] > xmax)

xmax = xi];
if (x[i] < xmin)

xmin = x[i];
if (y[i] > ymax)

ymax = y[i];
if (y[i] < ymin)

ymin = y[i];
}

/* Read Connectivity Data */
for (i=O; i<num-elems; i++){

fscanf(fp, "%d %d %d %d", &N[i][0],&N[i][1],&N[i][2],&N[i][3]);
}

/* Close MSH File */
fclose (fp);

/* Check Degenerate Mesh */
if ((xmin == xmax) II (ymin == ymax)){
printf ("Error: This is a one-dimensional mesh\n");
exit(-1);

}

/* Open ANM File */
if ((fp = fopen(valnam, "r")) == NULL) {

printf("Error: Cannot open file\n");
gclose(dev);
exit(-1);

}
fclose(fp);

112

/* Open ANM File */
fp = fopen(valnam, "r");

/* Calculate Minimum and maximum */
f_max = SMALL;
f_min= BIG;
for (i=0; i<num-steps; i++){
for (k=O; k<numnodes; k++){

fscanf(fp, "%lf %lf", &duml, &dum2);
vect -mag = (duml*duml) + (dum2*dum2);
if (vect.mag >= fLmax)

f_max = vect_mag;
else if (vect-mag <= f min)

f min = vectmag;

/* vector magnitude */

/* Close ANM File */
fclose (fp);

/* Set Max and Min of the Magnitude */
f_min = sqrt(fmin);
f_max = sqrt(Lmax);

/* Shape the Nodal Points to Screen Coordinates */
shape (num nodes, xmin+f_min, xmax+fmax, ymin+f min, ymax+f max, x, y);

factor = MESHSPAC/fgmax;

/* Open ANM File */
fp = fopen(valnam, "r");

/* Animate Deformation of Mesh */
for (j=0; j<num-steps; j++) {
dbufferswitch(dev, Buffer = !Buffer);

/* Changing text */
interior-style(dev, INT_SOLID, TRUE);
fill-color (dev, 1.0, 0.0, 0.0);
text2d(dev, 640.0, 75.0, titl1, VDCTEXT, 0);

113

text2d(dev, 640.0, 150.0, titl2, VDCTEXT, 0);
text2d(dev, 640.0, 830.0, "Time", VDCTEXT,0);
sprintf(cur-tim, "% 1.2e", j*DELTAT);
line-color(dev, 1.0, 1.0, 1.0);
move2d(dev, 527.0, 875.0);
draw2d(dev, 750.0, 875.0);
draw2d(dev, 750.0, 930.0);
draw2d(dev, 527.0, 930.0);
draw2d(dev, 527.0, 875.0);
text2d(dev, 640.0, 880.0, cur -tim, VDCTEXT, 0);
text2d(dev, 640.0, 930.0, "(secs)", VDCTEXT,0);

for (k=O;k<numnodes; k++) (
fscanf(fp, "%lf %lf', &u[k], &w[k]);
u[k]= u[k]*factor;
w[k]= w[k]*factor;

I
fill-color (dev, 0.0, 0.4, 1.0);
for (i=0; i<numelems; i++){
disp_2delem(dev, i, N, x, y, u, w);

}

/* Close ANM File *1
fclose (fp);

}/* main */

/ * ===============================*1
/*.doc disp_2delem static
*/
static disp_2delem (dev, elem, N, x, y, u, w)
int dev, elem, N[][NODESELEM];
double x[], y[];
double u[], w[];
{
float cist[NODESELEM*2 + 2];
int i;
mt num.vert;
int e_node =0;
int m-node;

114

/* Deform the Mesh */
for (i=; i<8; i= i + 2)(

m_node = N[elem] [e.node] - 1; /* subtract 1 to bring to 0 base */
clist[O+i] = (float) x[m node] + u[mnnode];
clist[1+i] = (float) y[m-node] + w[mnode];
e_node =e-node +1;
)/* for i */

/* Close the Polygon */
clist[8] = clist[0];
clist[9] = clist[1];

polygon2d(dev, clist, 5, FALSE);
make-picturescurrent(dev);

)/* end draw_2delem */

115

Appendix G: Program for Calculating Y Component for a Node.

/* zcoord.c */

/* YCOORD
/* This program calculates the y component for the nodes
/* of a mesh based on the displacement value of the node.

/* Include Files */

#include <starbase.c.h>
#include <stdio.h>
#include <math.h>
#include </lisp/users/vashiva/newwave.h>

/*======== ========= ========== ========= ========== =========*

YCoord(CtrlPts)
float CtrlPts[RNNODES][RMNODES][3];

/* Global Variables */
int u,v;
double f_min, f-max;
float x step, y-step
char valnam[MAXFNAM];
int num-steps;
int numelems, num-nodes;
FILE *fopenO, *fp;
double dumI, dum2;
int i, k;

/* Control Points */

/* Knot Vectors
/* min/max disp. values
/* virtual mesh spacing
/* ANM file name
/* number of steps
/* elements and nodes
/* file pointers
/* dummy variables
/* loop indices

/* Initialize the x, y coordinates of the mesh */
x_step = 1.0/((float) RNNODES - 1.0);
z_step = 1.0/((float) RMNODES - 1.0);
for (v=O; v<RNNODES; v++) {
for (u=0; u<R_MNODES; u++)

CtrlPts[v][u][0] = z-step*((float) u);
CtrlPts[v][u][2] = x step*((float) v);

116

CtrlPts[v][u][1] = 0.0;

/* Calculate the minimum and maximum values of displacement */
MaxMin(&fLmin, &fimax)

/* Open the file containing the displacement values */
fp = fopen(valnam, "r");

/* Calculate the z-coordinate for each node. */
for (v=0; v<RNNODES; v++){
for (u=0; u<R_MNODES; u++){

fscanf(fp, "%lf %lf', &dum2, &duml); /* dum2, critical */
CtrlPts[v][u][1] = 1.0 - (float) (2.0*(f_max-dum2)/(Lmax-f min));

}
}

/* Close the
fclose (fp);

ANM FIle */

}/* end YCoord *1

*/

117

Appendix H: Program for Generating Cubic Spline Surface.

/* surface.c */

/*
SURFACE

/* This program contains the graphics routines to render the
/* the three-dimensional surface.
/*

#include <starbase.c.h>
#include <stdio.h>
#include <math.h>
#include </lisp/users/vashiva/newwave.h>

#define AMP 0.5
#define deg *MPI/1 80
#define ZbufferOn TRUE
#define CullOn TRUE
#define Gray(Lvl) Lvl, Lvl, Lvl
#define Red 1.0,0.0, 0.0
#define Black 0.0,0.0, 0.0
#defme White Gray(1.0)
#define On TRUE
#define SpecularOn TRUE
#define BIG 1.79e+308
#define SMALL 1.79e-308
#define MAXFNAM 80

/* Global Variables */
int fildes;
camera.arg Camera;
int ans,splin_typ;
float CtrlPts[RNNODES][R_MNO-
DES][3];
int u,v;
float Theta;
int Buffer= 0;
char mshnam[MAXFNAM];
char valnam[MAXFNAM];

/* largest value
/* smallest value
/* max. file name

/* Graphic Output Device
/* Camera
/* Spline Type
/* Control Points
/* Knot Vectors
/* Angle
/* Dbuffer Switch
/* MSH file name
/* ANM file name
/* number of steps

118

int num steps;
int numelems, numnodes;
double f min, fmax;
FILE *fopeno, *fp;
double dum1, dum2;
int i, k;
float refy;

/* elements and nodes
/* min/max disp. values
/* file pointers
/* dummy variables
/* loop indices

main()
{

float x-step;
float z-step;

printf ("Display mode? 1 = Wire Mesh, 2 = Surface\n");
scanf ("%d", &ans);
if (ans == 2){

printf("What spline type?\n");
printf("1 = BI-LINEAR\n");
printf("2 = BI-QUADRATIC\n");
printf("3 = BI-CUBIC\n");
scanf ("%d", &splin-jyp);

}

printf("\33h\33J"), fflush(stdout);
fildes = gopen("/dev/crtren", OUTDEV, "hp98721",

INIT I THREEDI MODELXFORM);

/* Get file name of MSH and ANM files */
printf("Enter MSH file\n");
scanf ("%s", mshnam);
printf("Enter ANM file\n");
scanf ("%s", valnam);

/* Open MSH Data File */
if ((fp = fopen(mshnam, "r")) == NULL){

printf("Error: Cannot open file\n");
gclose(fildes);
exit(-1);
I

119

/*= == === == == === == == === == == === == == === == =========

/* Report Number of Animation Steps */
fscanf(fp, "%d %d %d", &num-steps, &num-elems, &numnodes);
printf("There will be %d animation steps, elems=%d, nodes=%d\n",

numsteps, num elems, num nodes);

fclose(fp);

/* Open the ANM File */
if ((fp = fopen(valnam, "r")) == NULL){

printf("Error: Cannot open file\n");
gclose(fildes);
exit(-1);

}
fclose(fp);

/* Set the Camera *1
Camera.refx = 0.0;

refy = Camera.refy = 1.0 - (float) (2.0*fmax/(f_max-f min));
Camera.refz = 0.0;
Camera.upx = 0.0, Camera.upy = 1.0, Camera.upz = 0.0;
Camera.front = -5.0, Camera.back = 5.0;
Camera.projection = CAMPERSPECTIVE;
Camera.fieldofview = 25;

/* set resolution */
curveresolution(fildes, STEPSIZE, 0.1, 0.1, 0.1, 0.1);

/* set for animating */
doublebuffer(fildes, TRUE, 12);

/* shade and hidden on */
shade-mode(fildes, CMAPFULLIINIT, On);
hiddensurface(fildes, ZbufferOn, CullOn);

/* set fill color */
fill-color(fildes, 0.7, 0.3, 1.0);

/* set lighting */
light-ambient(fildes, 1.0, 1.0, 0.0);

120

lightsource(fildes, 1, POSITIONAL, Gray(0.7), 10.0, 10.0, -10.0);
light-source(fildes, 2, POSITIONAL, Gray(0.4), 0.0, 5.0, -3.0);
light-switch(fildes, 7);

/* create splines */
surfacemodel(fildes, SpecularOn, 50, 1.0, 0.7, 0.7);

/* DrawSurfaceO;*/
vertexformat(fildes, 3, 3, FALSE, FALSE, COUNTERCLOCKWISE);

DrawSurface(;
gclose(fildes);

}/* end main */

*/
--------- ------------------------------------

*/

/*.doc DrawSurface static

*/

static DrawSurface()

float x-step;

float z.step;

Theta = 0.0;

/* Re-read the data and Normalize all the data between -1 and 1 */

fp = fopen(valnam, "r");

for (i=0; i<numsteps; i++){

Camera.camx = 4.0;

Camera.camy = 2.0;

Camera.camz = 5.0;

viewcamera(fildes, &Camera);

dbufferswitch(fildes, Buffer = !Buffer);

zbufferswitch(fildes, 1);

line-color(fildes, 0.0, 0.3, 1.0);

move3d(fildes, 0.0, -1.0, 0.0);/* y axis */

draw3d(fildes, 0.0, 1.0, 0.0);

move3d(fildes, 0.0, refy, -1.0);/* z-axis */

121

draw3d(fildes, 0.0, refy, 1.0);
move3d(fildes, -1.0, refy, 0.0);/* x-axis */
draw3d(fildes, 1.0, refy, 0.0);

/* Calculate the Z-Coordinate for each control point
ZCoord(CtrlPts);

/* animate */
if (ans == 1){
for (v= 0; v< RNNODES; v++){
move3d(fildes,CtrlPts[v][0][0], CtrlPts[v][0][1], CtrlPts[v][0][2]);
for (u=O; u< R_MNODES; u++){
draw3d(fildes, CtrlPts[v][u][0], CtrlPts[v][u][1], CtrlPts[v][u][2]);
}
}

for (u= 0; u < R_MNODES; u++) I
move3d(fildes, CtrlPts[0][u][0], CtrlPts[0][u][1], CtrlPts[0][u][2]);
for (v=1; v<RNNODES; v++)
draw3d(fildes, CtrlPts[v][u] [0], CtrlPts[v][u] [1], CtrlPts[v] [u] [2]);
1}

else {
linecolorjindex(fildes, 0.0, 0.3, 1.0);
if (splinjtyp == 1){

spline surface(fildes, CtrlPts, R_MNODES, RNNODES, LINEAR, LINEAR,
NONRATIONAL);

}
else if (splinjtyp == 2)

spline-surface(fildes, CtrlPts, R_MNODES, RNNODES, QUADRATIC, QUA-
DRATIC, NONRATIONAL);

}
else if (splin_typ == 3)

spline-surface(fildes, CtrlPts, R_MNODES, RNNODES, CUBIC, CUBIC, NON-
RATIONAL);

}
}

}/* for numsteps */

/* Close the ANM Fle *1
fclose (fp);

}/* end DrawSurface */

/*===*/

122

M ITLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://Iibraries.mit.edu/docs

DISCLAIMER

MISSING PAGE(S)

123

Abstract

Video animations are produced to visualize wave propagation in zinc, uni-directional
reinforced graphite epoxy and beryl. The production of these animations required assem-
bling special computer and video hardware and writing new computer software for
automating and directing the script. The animations serve to exemplify the power of using
the techniques of computer graphics and animation with methods from computational
mechanics. The video animations are produced using computer graphics techniques
developed for visualizing wave propagation along with results generated from a compu-
tational wave propagation model termed the mass-spring lattice model (MSLM).

124

Introduction

Large scale computer simulations combined with visualization techniques are giving

researchers a third means of investigating scientific phenomena. Traditionally, theoretical

and experimental methods were used. However, today computer simulations are making

it possible to investigate natural events that could not be evaluated by physical exper-

imentation. The video animations that are presented in this discussion are one example of

the power of using mathematical modeling techniques with computer graphics and

animation techniques for visualizing wave propagation in elastic solids. The video ani-

mations were created from computer solutions generated by the mass-spring lattice model

(MSLM) [1]. This document consists of this introductory section and an attached video

tape which contains computer graphics animations of wave propagation in three materials

using four different computer graphics techniques.

The twelve video animations on the attached video tape can be divided into three sets.

The first set of four animations depicts wave propagation in the transversely isotropic

medium zinc; the second set of four animations depicts wave propagation in uni-directional

reinforced graphite epoxy which is also transversely isotropic; and, the third set of ani-

mations depicts wave propagation in the isotropic medium beryl. Each set of animations

demonstrates the use of four different computer graphics techniques which were especially

developed for visualizing wave propagation [2].

The animations were created using data output by the MSLM. The MSLM models

the media as a two-dimensional rectangular framework of point masses and springs. The

rectangular framework is situated in the x-z plane since the plane of transverse isotropy for

zinc and graphite is taken to be the x-z plane as illustrated in Fig. la. For beryl, the x-z

125

plane is also used as the region of visualization. Therefore, the plane of visualization for

all three materials is the x-z plane as shown in Fig. lb.

The input to the MSLM is a sinusoidal pulse of frequency v defined as

v=5xlO6Hz (1)

The 5 MHz sinusoidal pulse is injected at a point along one edge of the medium as illustrated

in Figs. 2a and 2b. The pulse duration or period is denoted by T which is defined as

T = 1=2 x 106 (2)
V

For each animation sequence, the MSLM models the event occurring over a time

duration of three pulse periods or 2x10-6 seconds. Since each animation sequence lasts for

15 seconds, the acutal event has been slowed down by a factor of 2.5x10 6 .

For each material four different techniques are used to visualize the data generated

by the MSLM. First color contouring is used, then vector fields, then two-dimensional

mesh deformation and finally three-dimensional surface deformation. Each of these

techniques offers a different and unique approach to visualizing wave propagation in zinc,

graphite and beryl.

126

Video

Refer to attached video tape.

127

References

[1] S. Ayyadurai, "Formulation of Mass-Spring Lattice Model", Composite
Materials and Nondestructive Evaluation Laboratory, MIT, 1990.

[2] S. Ayyadurai, "Computer Graphics Techniques for Visualizing Wave
Propagation", Composite Materials and Nondestructive Evaluation Labora-
tory, MIT, 1990.

128

Fig. 1 a Reference frame for transversely isotropic media.

Fig. lb Region of visualization.

129

Fig. 2a Sinusoidal pulse injected at center of edge of material.

Amplitude

Fig. 2b Sinusoidal pulse.

130

