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ABSTRACT

The U.S. Department of Energy recently filed a motion to withdraw the Nuclear
Regulatory Commission license application for the High Level Waste Repository at
Yucca Mountain in Nevada. As the U.S. has focused exclusively on geologic disposal in
shallow mined repositories for the past two decades, an examination of disposal
alternatives will be necessary should the Yucca Mountain Project be terminated. This
provides an opportunity to study other promising waste disposal technologies. One such
technology is the use of very deep boreholes in monolithic granite to permanently
segregate high level wastes from the biosphere. While research in this field has focused
on vertical emplacement techniques, horizontal emplacement offers the significant
advantages of allowing increased emplacement lengths without crushing of the waste
package and the use of a single vertical shaft for drilling multiple horizontal shafts. This
project examines the application of currently deployed oil and natural gas directional
drilling techniques to borehole design. A large trade-space of potential borehole
configurations is evaluated and a final design selected using the "V-DeepBoRe" code, a
Monte-Carlo simulation based cost model for borehole construction and waste package
emplacement. Waste repackaging and reconstitution is evaluated to permit deployment
of waste in borehole diameters too small for intact fuel assemblies. A 5 m x 195.26 mm
(OD) cylindrical waste package is designed using P-110 drill string steel to meet strength
and thermal loading requirements; fuel centerline temperatures are shown to not exceed
190'C by analytical and finite element methods. The total cost of a national borehole
repository (including drilling, consolidating and encapsulating the fuel, emplacement, and
closure) is shown to fall below $63/kgHM, well within the capacity of the DOE
Commercial Spent Nuclear Fuel Waste Fund.
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1 INTRODUCTION

1.1 Objective of the Thesis

This project examines the application of currently deployed oil and natural gas directional

drilling techniques to borehole design for high level nuclear waste disposal. Various

drilling configurations are examined and a final repository configuration is selected to

minimize drilling costs. Cost modeling for borehole construction and waste package

emplacement is developed to evaluate the total costs of a national borehole repository.

Disposal of both reconstituted Light Water Reactor (LWR) fuel and high level vitrified

reprocessing waste forms is analyzed. A feasible waste package design is developed to

meet strength and thermal requirements. Costs for waste repackaging and canister

fabrication are also estimated so that the economic feasibility of a lateral borehole

repository may be assessed.

1.2 Topic Motivation

The U.S. Department of Energy recently filed a motion to withdraw the Nuclear

Regulatory Commission license application for the High Level Waste Repository at

Yucca Mountain in Nevada. As the U.S. has focused exclusively on shallow mined

geologic disposal for the past two decades, an examination of disposal alternatives will be

necessary should the Yucca Mountain Project be terminated. This provides an

opportunity to study other promising disposal technologies. One such technology is the

use of very deep boreholes to permanently segregate the high level wastes from the

biosphere.

Boreholes are attractive due to the superior isolation of the waste (mitigating

proliferation, terrorist and human intrusion concerns), the impermeability of available

geologic formations to radionuclide transport, and the presence, at depth, of reducing

environments. While prior MIT research in this field has focused almost exclusively on

surface-shaft vertical emplacement techniques (Hoag, 2004)1, horizontal emplacement

offers the significant advantages of allowing increased emplacement lengths and the use

of a single vertical shaft for drilling multiple emplacement drifts.



The design philosophy employed in this project is to minimize construction and

emplacement costs of the borehole project by using readily fielded commercial oil and

natural gas drilling standards and practices. This may be achieved by consolidating spent

fuel from intact assemblies (the form as discharged from the reactor) into densely packed

arrangements. This permits relaxing the requirement for a large through-bore of the

emplacement hole and it is anticipated that the additional costs of repackaging spent

nuclear fuel may be recovered through significantly reduced drilling costs. Furthermore,

as horizontal emplacement techniques make recovery of wastes impractical and costly,

this project will be designed without any particular considerations for future

retrieveability. As there will potentially be several different waste forms and spent fuel

types loaded into any national repository, this study will examine repackaging of fuel

pins from Pressurized Water Reactor (PWR) assemblies and, if made necessary by the

geometry of the selected waste package, Boiling Water Reactor (BWR) assemblies.

1.3 Overview of the Deep Borehole Concept

1.3.1 Nuclear Waste

Any national nuclear waste repository must be capable of accommodating a wide variety

of high level waste forms from several sources. Among these wastes are:

1. Commercial Spent Nuclear Fuel (CSNF) from light water reactors (LWR)

2. Department of Energy weapons program legacy High Level Waste (HLW: from

reprocessing, potentially in vitrified form such as borosilicate glass)

3. Department of Defense spent Naval fuel

4. Long-lived wastes resulting from a (potential future) spent fuel reprocessing

regime in the United States

This diverse array of potential loads must be accommodated within the repository design.

Rather than design for all of these individually, representative Pressurized Water Reactor

(PWR) and Boiling Water Reactor (BWR) CSNF geometries are selected to demonstrate

the feasibility of the repository design: schematics of these are shown in Figure 1-1 and

Figure 1-2. Similarly, the drilling model developed in this project will consider only a



single, simple vitrified waste form. Defense spent fuel is not specifically evaluated due

to classification security requirements.
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1.3.2 Vertical Borehole Studies

MIT3 4 and Sandia National Laboratories 5 , as well as others6 , have conducted extensive

studies on the application of very deep borehole technology to waste disposal. While

areas of outstanding research and development have been identified, these studies

underscore the feasibility of geologic isolation of high level wastes using deep boreholes.

The designs examined, however, require that large diameter boreholes be employed to

achieve the clearance to permit interment of intact PWR assemblies. Further, the vertical

emplacement lengths in these disposal schemes are limited by the self-crushing tendency

of a string of massive waste packages. These two drawbacks provide the major

motivation for examining lateral emplacement.

1.3.3 Site Selection

Desirable site features for a borehole repository in the contiguous United States:

1. Ready access to high integrity basement crystalline rock (Figure 1-3)

rnwa 4.2: Sedim.t thiek... at thn s.fae (Mamucka.tb Iuitt.eeTacbmgy, 26K.AA M197).

Figure 1-3: Sedimentary Overburden for Continental U.S.

(Courtesy "The Future of Geothermal Energy" by MIT) 7

Age of the granitic formation (Figure 1-4)

Proximity to rail, barge, and heavy truck transportation corridors



150 0 150 300 Miles

Figure 1-4: Makeup of Canadian Shield by Age

(Courtesy Natural Regions of the United States and Canada by Hunt)8

4. Isolation from population centers (Figure 1-5)

Population Density for Counties and
Puerto Rico Municipios: July 1, 2000

*W low d

US otIS0

L_10 05o30 9
y"ew =100

Figure 1-5: U.S. Population Density by County, 2009

(Courtesy U.S. Census Bureau) 9

5. Proximity to high-level waste storage sites / nuclear utilities to minimize

transportation costs and improve likelihood of popular support (Figure 1-6)

6. Distant from regions of significant volcanism and seismic activity



0 Sites sto ring spent nuclear q
fuel, hog-level radioactive Smosd owaste, and/or surpi plutoniu symbols
destined for geologic disposition. rflec precise locations

Figure 1-6: High Level Waste Storage Sites in the United States

(Courtesy U.S. DOE Office of Civilian Radioactive Waste Management)10

As was seen in the development of the Waste Policy Act of 1982 (and as amended in

1987), socio-political considerations will invariably dominate the site selection process.

This resulted, for example, in the incorporation of language into the U.S. Code to

specifically limit consideration of additional sites:"

TERMINATION OF GRANITE RESEARCH.-Not later than 6 months after December 22, 1987, the
Secretary shall phase out in an orderly manner funding for all research programs in existence on
December 22, 1987, designed to evaluate the suitability of crystalline rock as a potential repository
host medium.

The relative abundance of potentially acceptable deep borehole sites should therefore

greatly help to facilitate the political adoption of a new site for a national repository

(provided that the law is amended permitting government funded research into granite as

a host medium for isolation of high level waste). The upper Midwest and upstate New

York state are of particular interest with their access to the ancient and stable Canadian

granite shield, but access to suitable formations is found in numerous regions of the U.S.

1.3.4 Transport Processes and Repository Performance

Escape of radioactive species from the repository is primarily driven by transport in

groundwater. Should the borehole become flooded (a consideration which cannot be

ruled out a priori) water movement will be dominated by advection with limited diffusion

possible through the high integrity granite basement rock.



Darcy's Law for groundwater flow may be adapted' 2 for advection through a porous rock

formation as shown in Equation [1-1]:

k (H E dP<

7/R t dz

Where: k = Medium Permeability, (in darcy)

r/ Dynamic Viscosity of Fluid (in centipoise)

R Retardation Factor due to Sorption

H Caprock Thickness (cm)

c Rock Porosity

t Transit Time (sec)

dP - Pressure Gradient (bar/cm)
dz

In order for the waste in a borehole repository to be adequately isolated from the

biosphere by a 1500 m deep granite formation (granite porosities of less than 0.01 are

reasonable), the advective release of radionuclides through the granite is governed by the

performance map shown in Figure 1-7. To demonstrate the adequate isolation of the

longest-lived species, holdup times in excess of 106 years are desired. The theoretical

maximum pressure gradient driving advection is approximately 1.5-10-3 bar/cm (the

difference between lithostatic and hydrostatic gradients), though actual gradients driving

the upward flow through the rock are expected to be significantly lower. Based on this

map, identifying repository sites with permeabilities on the order of 0.1 - 1.0 pdarcy will

be required unless significant sorption of the radionuclides in the rock formation is

demonstrated (experimental values for retardation of sodium range from 1.7 to 3013 and

for calcium of up to approximately 100 in fractured rock'4 ). Identifying formations of

such quality will not, however be trivial: geothermal researchers in the United Kingdom

have identified granite formations with perm abilities of "almost 200 darcies."" Any

potential geologic repository will therefore require extensive surveying using pilot

boreholes.



Holdup Performance for 1.5 km Granite Caprock
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1.3.5 Oil and Natural Gas Directional Drilling Capabilities

Currently deployed oil and natural gas wells frequently make use of directional drilling

techniques to significantly improve the production from and access to the formation of

interest. Significant advances in measurement-while-drilling (MWD) and well logging

permit the real-time control of the drill rig to achieve the desired geometry with high

precision. Examples of the complexity of such wells 1 6 are shown in Figure 1-8.

Stacked fishbone well Triple "Crow's foot" well

Multilateral wells from adjacent clusters Single and stacked dual wells in one cluster

Figure 1-8: Examples of Complexity in Directional Wells

(Courtesy Multilateral Wells, SPE, 2008)

Various radii of curvature are possible in directional drilling. Due to the large lateral

lengths of interest, long-radius wells are the focus of this project as seen in Figure 1-9.

............



The radius of curvature must be sufficiently large to accommodate the waste canister and

lateral liner making the turn toward the horizontal.

Figure 1-9: Radii of Curvature for Directional Wells

(Courtesy Multilateral Wells, SPE, 2008)

The high integrity of crystalline rock formations should permit drilling longer laterals

than is possible in sedimentary formations. According to the required application for the

well, the joint between the vertical shaft and the lateral can take several forms (higher

level joints are more capable and more costly) shown in Figure 1-10. In the case of waste

disposal, Level 3 (lined and cemented vertical borehole and lined but uncemented lateral)

should be sufficient.

................... ............ .... ............ .. .... .



Level 5:-I
Pressure
integrity at the
junction-
achieved with
the completion

Level 6:
Pressure
integrity at the
junction-
achieved with
the casing

Note: cement is not a
pressure seal

Level 3:
Trunk cased &
cemented, lateral
cased but not
cemented

Trunk & lateral
cemented at the
junction

Level 2:
Cased trunk,
lateral open

Level 1:
Open/
unsupported
junction

OG

Figure 1-10: Configurations of Vertical to Lateral Junction

(Courtesy Multilateral Wells, SPE, 2008)
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Several different techniques for commencing a lateral branch have been developed in

industry. One such method is section milling wherein the vertical casing is milled away

to permit the use of a bent drill sub to effect the lateral. As the sub continues through the

kickoff, the bit will continue to deflect due to the angle of the sub. This is shown in

Figure 1-11.

Casing Cemented

Casing
Coupling

+4-A

4 +'

Original
Open Hole

Casing

+

.4. +

4 4. +

Section Mill
With Cutting

Arms Retracted

Section Mill
With Cutting

Arms Opened
Milling Casing

Section Of
Casing Milled
With Cement

Plug Ready To
Kick Off

Kicking Off
With Mud

Motor and Bent Sub

Figure 1-11: "Kicking Off" to Start a Lateral

(Courtesy Multilateral Wells, SPE, 2008)

......................... . ........... ......... ......



Figure 1-12 shows how a level three joint is made up between the vertical and lateral

shafts by hanging the liner for the lateral from the main shaft. This completion of the

lateral proceeds after drilling the lateral is completed.

(a) Drill the lateral (b) Install the deflector (c) lun the lateral liner (d) Orient the lateral setting tools

(e) Set the transition joint assembly (f) Remove the liner running tool (g) Retrieve the deflector tool

Figure 1-12: Lining the Lateral (Level 3 Joint)

(Courtesy Multilateral Wells, SPE, 2008)
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1.4 Arrangement of the Thesis

1.4.1 Drilling Cost Model and Repository Configuration Selection:

Chapter 2

This chapter describes the V-DeepBoRe code and underlying model, critical inputs to the

model and how the final design of the borehole repository was selected from over 20,000

potential configurations. With a single configuration selected, a linear model for the

expected repository operating time (for an individual vertical shaft and its associated

laterals) and the expected overall cost rate are developed based on a sensitivity analysis

of key input parameters.

1.4.2 Waste Package Design and Analysis: Chapter 3

With the geometric configuration of the repository selected, design selections for the

waste package may be made. This chapter details the characteristics of the final waste

package design and the thermal and mechanical analyses and tools used to verify that the

repository and canister designs are adequate to meet all suitability requirements. Both

analytical and finite element methods are employed in the thermal performance analysis

of the repository, while analytical and empirical relations are used to evaluate the

mechanical performance of the canister.

1.4.3 Rod Consolidation and Package Cost: Chapter 4

This chapter compares and updates cost estimates for LWR rod consolidation from the

1980s and 90s. In applying these costs to the waste package design, the economic

attractiveness of consolidation is examined as applied to deep borehole repositories.

1.4.4 Conclusions and Future Work: Chapter 5

In closing the thesis, the repository design, analyses, and evaluation tools are summarized

and recommendations are made for topics of interest to very deep borehole repositories in

general and lateral emplacement in particular.



2 DRILLING COST MODEL AND REPOSITORY
CONFIGURATION SELECTION

2.1 Model Overview

In order to support the feasibility analysis of lateral emplacement of high level waste in

very deep borehole repositories, a repository configuration must be identified. This

model will be used to optimize this decision and identify the most attractive repository

design. Additionally, it will be useful in identifying the major cost and risk drivers for

such a repository as well as the repository design's sensitivity to potential parameters of

interest.

The "V-DeepBoRe" model (Very DEEP BOrehole REpository Cost Model) developed

for this project combines a deterministic approach with Monte Carlo simulation of the

drilling process. Over a large trade space of potential repository designs, the model

simulates the drilling of, completion of, emplacing of waste in, and sealing of a finished

borehole repository. The solution space spans different emplacement lengths (the lateral

portion of the borehole), main shaft depths, different declination angles of the lateral

shafts, various piping schedules used, and the number of laterals branching out from a

single central shaft.

The general configuration of the borehole repository is shown in Figure 2-1 below. The

notional repository site is characterized by the depth of non-crystalline rock, the required

depth of surface casing, and the desired size of the plug zone in the granite above the

lateral kickoff. In addition, the size of the kickoff radius (which determines the distance

traversed to effect the change in drilling direction to the desired lateral declination)

impacts the depth at which the waste emplacement zone begins.



Surface Casing SdmnayRc
(200 m) (500 m)

Main Shaft

PlugGZone 1500R
(to 100 m above kickoff)

Kickoff

Lateral Kickoff us

Waste
.. .. CanisterEmplacement Zone

Figure 2-1: Nominal Repository Configuration

V-DeepBoRe incorporates the capacity of the repository (in metric tons of heavy metal in

high level waste) to allow meaningful comparison of different repository configurations.

This is calculated based on a common canister design that is 5 meters in length (half the

standard 10 meter drill string).

2.2 Model Assumptions

V-DeepBoRe was developed using the following assumptions:

" The notional site is characterized by a 500 m sedimentary overburden above an

uninterrupted granite basement. The presence of a water table requires the

surface string to continue to 200 m below the surface. To permit acceptable

continuity in the plug zone adjacent to undisturbed granite, the emplacement zone

will start at a depth of 2000 m below the surface.

* Drilling speeds may be effectively modeled using a Gaussian distribution.

* Failures of drill bits (tripping) are independent events and may be effectively

modeled by sampling using a probability density function for the expected bit life

(in hours).

* Unexpected events are limited to tripping while drilling vertical shafts or laterals.

This is to say that all other borehole operations (cementing, emplacing casings,

emplacing waste canisters, backhauling equipment etc.) may be treated

deterministically.



* The time associated with the pumping of cement depends only on the total

volume of cement used (not the depth of the casing to be cemented).

" The main shaft is only cemented below the plug zone. This simplifies the

removal of the upper portions of the casing to enhance plug sealing of the

borehole. Reuse of this recovered pipestring (and cost savings) is not treated.

" Reconstitution of PWR assemblies is necessitated by the availability of current-

practice lateral casing inner diameters.

* Adequate isolation between lateral shafts may be obtained with vertical as well as

longitudinal segregation. This will permit as many as 12 lateral shafts to be

drilled from a single main shaft, even should main shafts be located as close

together as 200 meters.

" Borehole drilling and waste emplacement is conducted in shiftwork to permit

around the clock operations.

The model simulates the drilling of the borehole through a Monte Carlo process where

drilling speed and bit life are treated probabilistically and all other parameters

deterministically. A brief sequence for V-DeepBoRe is shown below:

1. Drill vertical shaft (including several steps of lining the hole, telescoping

down in bit diameter, backhauling bits as they wear out, etc.)

2. Drill and complete lateral shaft

3. Emplace waste in lateral, seal lateral

4. Repeat 2 and 3 until all laterals are full

5. Remove vertical liner and plug borehole

The outputs from these steps depend significantly on the parameters described in the next

section.

2.3 Model Parameters

Tables 2-1 through 2-5, below, list the key parameters used in the V-DeepBoRe -code.

While many are justified by project work to date and expert input, several represent

reasonable estimates (such as waste emplacement speeds and rate impact). Additionally,

parameters such as the phase delay, overall billing rate, and borehole closeout costs were



adjusted to calibrate the model output for a 20,000-ft deep borehole to the results of a

Sandia Enhanced Geothermal Study (summarized in section 2.5).

2.3.1 Repository Geometry
Table 2-1: Reposito y Geometric Parameters

Employment in
Parameter Value Basis V-DeepBoRe

Required Depth of 200 m Assumption of This is the total length of the

Surface String Notional Site surface string piping schedule
and the starting depth of the
main shaft.

Sedimentary 500 m Assumption of This is the depth at which

Overburden Depth Notional Site drilling speeds and failure
rates are adjusted to reflect the
ease/difficulty of drilling
through different rock
formations.

Plug Zone Length 1500 m Assumption of This is the depth at the start of

(w/ 100 m of Notional the lateral waste emplacement

cemented Repository zone.

casing below) (Similar to
Other
Borehole
Proposals)

Canister Length 5 m Hoag Thesis 7 This is used to determine the
number of canisters in an
emplacement lateral and
factors into the total waste
capacity of a repository
configuration.

Minimum Vertical 30 m John Finger" This value is the estimated

Spacing Between vertical separation between

Lateral Kickoffs starting subsequent laterals
from the same vertical
borehole shaft.

Turn Radius Calculated to Conservatively This value describes the
(kickoff) Permit 1 Om Lateral Liner to radius of curvature for the

Make Curve 'kickoff of the lateral
(departure from the main shaft
to a lateral of given
declination). In the model it
determines how far above the
desired repository minimum
depth the kickoff must occur.

Emplacement Depth Calculated based on Plug This value is used in plotting

Length, Sedimentary the drilling costs of the

Overburden, Declination Angle, repository by depth as the
Tota Numer o Latralsper start of the emplacement zone.

Total Number of Laterals per
Borehole, and Turn Radius



2.3.2 Handling Speeds

Table 2-2: Handling Speed Parameters

Parameter Value Basis Em po e

Backhaul Speed 350 m/hr John Finger19  This is the speed at which drill

(retrieving/tripping) bits and handling gear is
brought up through the
borehole (whether for routine
retrieval or during a tripping
event).

Casing Speed 350 m/hr John Finger2 0  This is the speed at which
casing is run into the borehole
and is assumed to be constant
from the surface all the way to

wthe zone to be cased.

Lowering Speed 350 rn/hr John Finger This is the speed at which drill
bits are run into the borehole
(whether routine for starting a
new phase of drilling or after a
trippilg event).

Waste Speed 25 m/hr This is the speed at which
iwaste caisters are connected

(Emplaement (5 aster) together to form a drill string
hat the surface of the borehole

>1 0bm below and then run into the hole.
drill rig, shifts This speed is assumed to be

to 1/2 of casing constant from the surface all
the way into the lateral

speed.emplacement zone.

Cementing Speed 10 M3/hr This is the volumetric flow
rate of pumping cement into
the borehole when required for
cementing string casing in
atthsurfceofthebreholplace.



2.3.3 Time Parameters

Table 2-3: Dril ing Time Parameters

Employment in

Parameter Value Basis V-DeepBoRe

Phase Delay 192 hours Fit to Match This is the fixed delay
Sanda EG22Sandia EGS2 assumed during the

Well Cost Lite completion of each drilling
phase, also used in this model
during the completion of the
lateral. Principally this serves
as added conservatism in the
time and cost projections of
the model.

Cement Cure Time 48 hr This time represents the delay
after pumping cement into the
borehole to hold casing in
place before the next phase of
the borehole completion may
begin. This allows for the
cement to appropriately set.

Time to Cement for 48 hrs This is a delay time to

New Kickoff and represent preparation of the

Mill Through base of the main borehole
shaft to permit kicking off for

Vertical Casing a new lateral. A cement base
is poured allowing for a (new)
off-center kickoff.

Time to Plug Lateral 72 hrs This is a delay time associated
with the plugging of the
lateral. This plug is merely
intended to isolate the waste
string from drilling operations
for the other laterals and will
not be designed to act as a
barrier to the long term
transport of radionuclides.

Borehole Plugging 240 hr This is a delay time to capture
Time the extensive effort involved

in plugging the main shaft of
the borehole with sufficient
integrity to mitigate release of
radionuclides to the
environment. This is
approximately 5 times slower
than the pumping speed of
cement assumed and is
extremely conservative.



2.3.4 Cost Parameters
Table 2-4: Drilling Cost Parameters

Parameter Value Basis Epo e

Drill Bit Various, by Bit John Finger2 3  This cost represents the cost of

Replacement Size repairing/replacing damaged

Cost (tripping) drilling equipment as a result of a
tripping event. This is in addition
to the cost of delayed operations at
the borehole (captured through the
billing rate).

Cement $90.36/m' Survey of This is the material cost associated

Material Cost Supplier with the specialized cement used in
- 24 the completion of the borehole.

Prices _______________

Casing Material $6/kg Survey of This is the material cost associated

Cost Supplier with the drill casing used in the

Prices25 completion of the borehole.

Billing Rate $4200/hr Fit to Match This billing rate represents the

(Non- EGS26 Well principle operating costs at the

Eplacement) Cost Lite drilling site regardless of the phase
EmplaementuCostof borehole development (with the
Model Results exception of emplacement of the

waste canisters).

Billing Rate 2.5x Billing This billing rate represents the

(Emplacement) Rate (until
waste is drilling site when waste canisters

>00mare 
being assembled into drill

>1 O~mbelowstrings and run into the borehole.
rig) While radiation workers will need

1. 15x Billing to remain on site to supervise the

Rate waste emplacement, once the
waste is shielded in the borehole,
remote handling of string is no

longer required. It is also intended
that with multiple boreholes being
constructed and filled at the same
time, that the work load for
radiological personnel can be
level-loaded across the entire

_______________repository.

Plugging Cost $1,000000 This cost represents the material

(Main Shaft) and specialized labor costs that
result from sealing the main shaft
of the borehole with an

______________impermeable plug zone.

Borehole $2,000000 Fit to Match This parameter captures the costs

Closeout Cost EGS2 1 Well associated with final completion of

Cost Lite a rcilling site and the breakdown of
the rig and other equipment (those

Model Results costs not captured elsewhere)



2.3.5 Spent Fuel Parameters

Table 2-5: Spent Fuel Parameters

Employment in

Parameter Value Basis V-DeepBoRe

Vitrified Waste 20% This fraction is used to determine

Fraction the relative composition of the

(of Canisters) waste sent to the repository.

Waste Loading of 25 weight % The weight loading of waste

Borosilicate Glass (Heavy species into vitrified waste forms

Metal) permits the calculation of the total
capacity of the repository in
MTHM.

PWR Fraction of 64% (of LWR Nuclear This fraction is used to determine

Canisters Canisters) Engineering the relative composition of the

International 28  waste sent to the repository.
Specifically, this is used to
determine the number of canisters
used for disposal of PWR and
BWR spent fuel assemblies.

Ratio of Usable 0.9 This parameter describes how much

Waste Diameter to of the available inner diameter of
the cased lateral may be occupied
by waste in the waste canister. This

Diameter permits the comparison of different
repository designs without having
to design canisters for each.

BWR Assembly 13.4 cm Nuclear This geometric factor will

Width Engineering determine if intact BWR assemblies

Internationa 29  can be used in the repository design
or if the small size of the final inner
diameter of the lateral emplacement
casing will require consolidation of
BWR fuel pins.

PWR Pin Outer 0.95 cm Nuclear This factor will determine how

Diameter Engineering densely PWR fuel pins may be

Internationa
30  packed together into the waste

canister and, ultimately, what mass
of waste may be placed in a
canister.

BWR Pin Outer 1.1 cm Nuclear This factor will determine how

Diameter Engineering densely BWR fuel pins may be

Internationa
31  packed together into the waste

canister and, ultimately, what mass
of waste may be placed in a
canister (if fuel consolidation is
necessary).

Pins/Assy (PWR) 264 Nuclear This factor is used to compare the

Engineering number of fuel pins in a canister to

Internationa 32  that of an intact fuel assembly so
that the mass of waste in the
canister can be determined from the
mass in an intact PWR assembly.



Table 2-5: Spent Fuel Parameters (Continued)

Employment in
Parameter Value Basis V-DeepBoRe

Pins/Assy (BWR) 72 Nuclear This factor is used to compare the

Engineering number of fuel pins in a canister to

- 33 that of an intact fuel assembly so
that the mass of waste in the
canister can be determined from the
mass in an intact BWR assembly.

Mass of HM/Assy 0.50 MTHM Nuclear This factor is used to compare the

(PWR) Engineering number of fuel pins in a canister to

International34  that of an intact fuel assembly so
that the mass of waste in the
canister can be determined from the
mass in an intact PWR assembly.

Mass of HM/Assy 0.19 MTHM Nuclear This factor is used to compare the

(BWR) Engineering number of fuel pins in a canister to

International 35  that of an intact fuel assembly so
that the mass of waste in the
canister can be determined from the
mass in an intact BWR assembly.

2.3.6 Drill String Parameters

Table 2-6, below, depicts the 'menu' of 14 standard drill bit sizes and associated casing

sizes employed in the model (as well as the 48" and 36" diameter holes used in the EGS

comparison calculations). The model examines the impact of the various drill bit sizes on

the overall cost and time to drill the repository by using 69 potential piping schedules

(one size for the surface shaft/casing, one for the main shaft, and one for the lateral).

These 69 combinations ensure reasonable telescoping of casing to the subsequent drill bit

while permitting a finished lateral casing interior diameter of at least 4 inches.



Drill
Bit/Hole Casing Casing Wall Casing Replacement

Size Pipe Size Pipe Thickness Weight Mass Bit Cost
(inches) (Nominal) Schedule OD (in) ID (in) (in) (lbs/ft) (kg/m) ($2009)

48 40 STD 40 39.125 0.237 184.86 275.10 $158,300
36 30 STD 30 29.125 0.237 138.13 205.57 $109,800
26 20 STD 20 19.25 0.375 78.6 116.97 $72,000
24 18 STD 18 17.25 0.375 70.59 105.05 $64,800
20 16 STD 16 15.25 0.375 62.48 92.98 $50,600

17.5 14 STD 14 13.25 0.375 54.57 81.21 $41,900
17 12 STD 12.75 12 0.375 49.56 73.75 $40,200

15.5 11 STD 11.75 11 0.375 45.56 67.80 $35,100
14.5 10 STD 10.75 10.02 0.365 40.48 60.24 $31,700

12.25 9 STD 9.625 8.941 0.342 33.91 50.46 $24,200
11.625 8 STD 8.625 7.981 0.322 28.55 42.49 $22,100

10.75 7 STD 7.625 7.023 0.301 23.54 35.03 $19,200
9 6 STD 6.625 6.065 0.28 18.97 28.23 $13,500

8.75 5 STD 5.563 5.047 0.258 14.62 21.76 $12,700
7.875 5 STD 5 4.506 0.247 12.54 18.66 $9,900

6.25 4 STD 4.5 4.026 0.237 10.79 16.06 $4,700
Table 2-6: Drill String Parameters

(Drill and Casing Sizes and Weights Courtesy of WoodCo USA36 )

For each drilling/casing size, drilling parameters are identified in yellow. As part of the

Monte Carlo simulation of the drilling of the repository, each drill bit has a Gaussian

drilling speed distribution characterized by a mean and standard deviation as shown in

Figure 2-2, as well as a logarithmically distributed failure probability, to model bit failure

events as shown in Figure 2-3.
Drilling Speed Probability Density Functions Bit Life Probability Density Functions

1.4-------------- ---- ---- --- - 0.12 - - - - - - - - --

1.2 T 0.1 - - ~ - -

Sedimentary Rock Sedimentary Rock
1 - - - - - - - - - Granitic Rock Granitic Rock

0. -- 0.08 -- -- -

.0.8 - -- - -- -

0.6 - - -- - -. - - --
0 

00.6I

0.04- - - - -- - - -
0 0.04 - - - - -

0.42

0 02 4 6 8 10 12 14 0 20 40 60 80 100 120 140
Drilling Rate (m/hr) lime (hrs)

Figure 2-2: Model Drilling Rate PDFs Figure 2-3: Model Bit Life PDFs

The model further breaks down these speeds and failure probabilities between the

sedimentary overburden zone (more similar to conventional oil and natural gas drilling

, , ............................................................................................. ...............................



experience) and the crystalline granite basement rock (similar to enhanced geothermal

applications). The nature of these distributions is based largely on the input of Mr. John

Finger, formerly of Sandia National Laboratory37 .

One of the key costs employed in the model is the cost of replacing a drill bit after it is no

longer effective. Based on input from John Finger 3 8, Table 2-7 reflects the estimated

replacement cost for several Drill Bits in 2009-year dollars.

Table 2-7: Drill Bit Replacement Costs

Drill Bit Replacement
.z Cost Estimate

Size ($2009)
26" $72,000

17.5" $42,000
12.25" $24,000
8.5" $12,000

By plotting these costs by bit size, the replacement costs appear to obey a very weak

quadratic relation (highly linear). Using the regression in Figure 2-4, an empirical

relation is used to obtain the replacement cost for each drill bit; this is shown in Table 2-

6.

Drill Bit Replacement Costs

$180,000

$100,000

$140,000

$120,000 = 12.333x2 + 3008.7x - 14541

$100,000

$0000-

$0,000

S40,000-

$20,000

0

0 5 10 1 20 25 30 35 40 45 50

2il Bit R metC

Figure 2-4: Drill Bit Replacement Costs Curve Fit

2.4 Modules

2.4.1 Waste Mass Calculation

To permit the comparison of different sizes of repositories, each candidate repository is

scored based on the mass of nuclear waste that it can accommodate in the emplacement
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zone. Using the spent fuel parameters identified above, 90% of the inner diameter of the

lateral casing is used as an upper limit on the diameter of the fueled portion of the waste

canister. As PWR assemblies are larger than the lateral casings we are examining,

reconstitution of PWR fuel assemblies is assumed. This is to say that the PWR

assemblies will be disassembled at a facility near the repository to be repacked into the

borehole waste canisters. Assembly compaction of this type is a well proven procedure

(EPRI Fuel Consolidation Demonstration Program, EPRI NP-6892, June 1990);

(Scientech Prototypical Consolidation Demonstration Project, BW1/22066, March 1998)

and will be discussed further in Chapter 4. Figure 2-5 shows the hexagonal packing of

fuel pins into the waste canister. For many ratios of canister diameter to fuel pin

diameter, additional pins could be packed within the required diameter outside of the

hexagonal array. For simplicity this is not considered in the trade-space produced by the

model but is reflected in the canister design selected in Chapter 3.

Figure 2-5: Hexagonal Packing Scheme of Reconstituted PWR & BWR Fuel Pins

With the number of fuel pins in a canister so identified, the total mass of waste in a PWR

canister is found by multiplying the number of pins by the mass of waste in a PWR

assembly and dividing by the total number of pins in a PWR assembly.

A similar approach is used for consolidated BWR fuel pins, provided that intact

assemblies cannot fit within the required diameter. To check this, V-DeepBoRe

compares the available diameter to that required for various packing configurations of the

square BWR assemblies. A sample of these configurations is shown in Figure 2-6.



1. 2. 3.
r= 42 / 2=.707+ r-=5 /2= 1.118+ r= 5 417 16= 1.288+

Trivial. Trivial Found by Erich Friedman in 1997.

4. 5. 6.
r 2 =1.414+ r 10/ 2 1.581+ r 1.688+

Found by Erich Friedman in 1997. Found by Erich Friedman in 1997. Found by Erich Friedman in 1997.

Figure 2-6: Optimal Packing of BWR Assemblies in Waste Canister
(courtesy Erich Friedman of Stetson University39)

Generally BWR fuel consolidation is avoided due to its increased handling costs.

Additional credit is given to that fraction of the waste canisters containing vitrified

wastes. A wasteform weight density, an input parameter, yields a volumetric density of

waste in borosilicate glass based on the relative densities of the glass and the waste

species (assumed here to be natural uranium). By using the volume available to the waste

canister (based on the 5 meter length and inner diameter available from the lateral

casing), the total mass of waste from the vitrified canisters is calculated. Taken together,

the total capacity of the repository is identified by summing up the mass contributions of

PWR, BWR, and vitrified waste canisters according to the fractions identified in the key

parameters section.

2.4.2 Drilling Script

The drilling model evaluates each combination of the trade space variables over a series

of realizations (to account for the probabilistic nature of the drilling operations

themselves). Within each realization, the entire borehole is drilled and completed, waste

canisters are emplaced, and the vertical shaft is sealed using a 1500 meter plug zone. At

each step, the current depth of the hole, the total time since drilling began, and the total

cost of the borehole are retained in a history file. The MATLab scripts for the drilling

model are reproduced in Appendix A. The sequence below describes how these scripts

.............. ..



evaluate each drilling simulation (parameters of interest are called out and explained in

section 2.3, above):

1. Calculate Minimum Required Radius of Curvature for Kickoff Arc per Figure 2-7

such that the gap is not less than 1/3 of the difference between hole inner diameter

and casing/canister outer diameter (the limit imposed by the 10 m lateral casing

liner sections is significantly more restrictive than emplacing 5 m waste canisters)

4 R{1-cosllsin-'(L/2R)]}

'I~
'I

Hole Diam.
Clearance R

(Gap)

I /

I ,

Figure 2-7: Calculation of Minimum Required Radius for Kickoff Arc

Table 2-8 lists the resulting minimum radii for the 8 potential lateral drill bit sizes:

Table 2-8: Minimum Radii of Curvature for Kickoff Arcs
Lateral Hole Lateral Casing Minimum

ID (in) OD (in) Radius (m)
12.250 9.625 270.69
11.625 8.625 242.41
10.750 7.625 234.51
9.000 6.625 305.65
8.750 5.563 230.59
7.875 6.000 250.31
6.250 4.500 392.05

2. Drill the Surface Shaft

a. Sample Drilling Speed (For Overburden Normal Distribution Figure 2-2)

b. Determine Time to Complete to 200m



c. Determine if Bit Failure Occurs (Logarithmic Distribution Figure 2-3)

d. Calculate Total Time and Costs

3. Back out Surface Drill String

4. Emplace Surface String Casing (Update the Total Casing Mass Used)

5. Cement Surface Casing

a. Calculate Annular Volume Between Liner and Hole

b. Calculate Total Time and Costs

6. Lower Main Shaft Drill String

7. Drill Main Vertical Shaft

a. Sample Drilling Speed (For Overburden Normal Distribution Figure 2-2)

b. Determine Time to 500 m

c. Determine if Bit Failure Occurs in Overburden (Logarithmic Distribution

Figure 2-3)

d. Calculate Total Time and Costs to Reach 500 m (Granite Formation)

e. Sample Drilling Speed (For Granite Normal Distribution Figure 2-2)

f. Determine Time to Reach Kickoff Depth

g. Determine if Bit Failure Occurs in Granite (Logarithmic Distribution

Figure 2-3)

h. Calculate Total Time and Costs to Kickoff Depth

8. Back Out Main Drill String

9. Emplace Main String Casing (Update Total Casing Mass Used)

10. Cement Main Casing (100 m Below Plug Zone)

a. Calculate Annular Volume and Update Cement Volume

b. Calculate Total Time and Costs

11. Lateral Operations (Repeat for Each Lateral in Repository)

a. Cement for Kickoff (Update Time and Cost)

b. Lower Lateral Drill String

c. Drill Through to Lateral Declination

i. Sample Drilling Speed (For Granite Normal Distribution Figure

2-2)

ii. Divide Speed by 2 (Accounts for Difficulty in Kicking Off)



iii. Determine Time to Drill Radial

iv. Determine if Bit Failure Occurs in Radial (Logarithmic

Distribution Figure 2-3)

v. Calculate Total Time and Costs to Lateral Declination

d. Drill Lateral

i. Multiply Previous Speed by 2 (Restores Original Sampled Value)

ii. Determine Time to Drill Lateral

iii. Determine if Bit Failure Occurs in Lateral (Logarithmic

Distribution Figure 2-3)

iv. Calculate Total Time and Costs to Lateral Declination

e. Back out Lateral Drill String

f. Emplace Lateral Casing (Update Total Casing Mass Used)

g. Emplace Waste Canisters (Use Updated Speed and Rate Once Waste is

>1 00m Below the Surface)

h. Seal Lateral

i. Update Total Time and Costs

12. Remove Main String Casing (Up to 100m Below Plug Zone - this region of the

casing was never cemented and will be cut or unscrewed)

13. Seal Borehole with Plug (Update Cost and Time)

14. "Score" Repository Using Waste Mass Calculations and Generate Outputs

2.4.3 Output and Plotting

Figure 2-8, below, depicts a sample realization of V-DeepBoRe evaluating the time and

cost to drill a 4 lateral repository with 2000 meter lateral emplacement lengths. The

stepped nature of the drilling lines indicates the influence of bit failure on drilling a given

shaft or lateral. The horizontal breaks in the top two plots reflect the times when active

drilling is not going on (such as while waste is being emplaced or other drilling delays

occur).
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Figure 2-8: Sample Output (Single Trial)

250

Based on the input parameters currently in use, the model appears to be very sensitive to

the diameter of the lateral and the length of the emplacement and less so to the number of

laterals used and the declination angle of the lateral emplacement. Revising the input

parameters, however, is likely to change these results.
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As currently configured, the drilling model also outputs several key results from the

simulation. These are listed below [note, a trial represents a unique repository

configuration (number of laterals, length of laterals, declination angle of laterals, and

pipe-schedule to be used), whereas a realization is the simulation of drilling, completing,

filling, and closing/plugging a borehole; thus multiple realizations should be employed to

capture the variability of a particular configuration].

1. Total Time for Repository Completion (From Surface String Through Plugging)

[days/MTHM]

2. Total Cost for Repository Completion (From Surface String Through Plugging)

[$/MTHM]

3. Total Volume of Cement Used [in 3

4. Total Mass of Drill String Casing Used [kg]

5. Total Capacity of Repository [MTHM]

6. If BWR Fuel was Consolidated

7. Number of PWR Pins per Canister

8. Number of BWR Assemblies per Canister (0 if Pins are Consolidated)

9. Number of BWR Pins per Canister (0 if Assemblies are Left Intact)

10. Emplacement Length of Each Trial / Realization

11. Emplacement Declination Angle of Each Trial / Realization

12. Number of Laterals Used in Each Trial / Realization

13. Piping Schedule Used in Each Trail / Realization

2.5 Calibration Using Vertical Borehole Results

To help demonstrate the acceptability of the parameters input into this drilling script, a

simple simulation was developed for comparison with work to date on vertical boreholes.

Figure 2-9 shows the results from 100 realizations of this simulation wherein a drill bit

schedule of 48", 36", 26", 17 ", 12 %", and 8 /4" diameters were used for the conductor

string, surface string, intermediate shaft, and three production phases respectively (to an

ultimate depth of 20,000 ft [6096 m]. The drilling parameters were otherwise the same as

those used for the lateral emplacement simulation (those parameters called out in sections



2.3.3-2.3.4 were calibrated to match these data). The EGS data are from Enhanced

Geothermal Systems Well Construction Technology Evaluation Report (Sandia Report

2008-7866, December 2008)40.

EGS Reference Simulation Cost and Time Simulation
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Figure 2-9: Output Results for Vertical Borehole

The output values for this simulation were made to effectively correlate with reference

Sandia borehole data.
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2.6 Results and Repository Configuration Selection

Figure 2-10 through Figure 2-25 depict the results from a trade space study of several

thousand repository configurations. In order to parse out key cost and time drivers, each

plot breaks apart the trade-space by applying colors according to the various parameters

employed.

2.6.1 Complete Trade Space Results
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2.6.2 Trade Space Results with Crushing Limit Imposed

The first down-selection of the trade-space was achieved by removing those

combinations of declination angle and emplacement length that produced a lateral with a

total vertical height of 800 m or more. This was done to mitigate the hydrostatic crushing

weight on the bottommost canister and, as a result, ensures that horizontal (i.e.

significantly departed from standard, vertical boreholes) geometry was explored.
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2.6.3 First Narrowing of Trade-space

To ensure an economically feasible design cost per mass was used to eliminate several

potential repository configurations. This was achieved by eliminating configurations

with fewer than 10 laterals (more laterals allows the spreading of the "sunk" vertical shaft

costs over more waste canisters) and the elimination of pipe-schedules with final lateral

hole (drill bit) diameters of less than 10".
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2.6.4 Second Narrowing of the Trade-space

Further inspecting the pared-down trade-space results suggested further liming the scope

of study to laterals of length 1500 - 2500 m, lateral declinations of 10 - 30 degrees, and

final lateral drill bit diameter of 11.625."

Sample Repository Drilling Cost and Time Simulation (by Declination Angle)
64-

54 trials, 5 realizationstrial

_60-

2

8-

34 036 0.38 0.4 0 42 0 44 0,46 048
Timhmaso (dayelMTM)

Sample Repository Drilling Cost vs. Capacity (by Declination Angle)
130 -

54 trials, 5 reaationsltrial
120-

110-

100- -

90-f80 
-

70 +1 20
30

9200 1400 16 1800 20D0 2200 2400 26
Total Capacity (MTHM)

Figure 2-22: 2nd Winnowed Trade-space
by Declination Angle (0)
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2.6.5 Final Repository Configuration and Results

Having almost completely refined the trade-space, the final repository design was

selected (not necessarily as the most cost-optimal of the remaining choices):

" Ten 2000-m emplacement laterals from a single vertical shaft at a declination of

20 degrees

* Pipe Schedule: 26", 17 1/2", 11 5/8"

A sample time history for this configuration is shown below in Figure 2-26:

ample Repository Drilling
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Figure 2-26: Sample Realization of Final Repository Design
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Figure 2-27 displays 100 realizations of the Final Repository Design. As shown, total

repository cost is $80-90 Million and the total time to drill, fill, and close each vertical

repository shaft varies between approximately 610 and 680 days.

Final Repository Design Drilling Simulation Results
55-

1641.5959 MTHM Capacity
610.0605 to 681.7398 Days to Complete

Median: 639.5596 Days; p: 640.194Days; a: 13.6118 Days
80.9877 to 88.854 $M in Drilling Costs

5 Median: $84.09M; p: $84.2427M; cy: $1.5086M
Drill Bit Schedule: 26", 17 1/2", 11 5/8"
100 Realizations

n 52

51
0

50- +++r-

49
0.37 0.375 0.38 0.385 0.39 0.395 0.4 0.405 0.41 0.415 0.42

Time/mass (days/MTHM)
Figure 2-27: Drilling Cost and Time Simulations of Final Repository Design

The following Figures depict potential geometric arrangements of the borehole design

(radial versus bidirectional shafts).

Figure 2-28: 3-D Representation of Figure 2-29: 3-D Representation of
Multidirectional Borehole Configuration Multidirectional Borehole Configuration

(Hole Diameters x500 for Visualization)

A multidirectional radial configuration such as is shown in Figure 2-28 and Figure 2-29

would be desirable to maximize the spacing between laterals should a single vertical shaft

be needed (such as for small regional repositories). While directional drilling and vertical

staggering techniques could well accommodate a closely packed array of such

... .......... . .......... .



multidirectional boreholes, it is significantly more difficult than accommodating

bidirectional-configured boreholes.

Figure 2-30: 2-D Representation of Figure 2-31: 3-D Representation of Multiple
Bidirectional Borehole Configuration Bidirectional Boreholes

Figure 2-30 and Figure 2-31 show how a close array of boreholes can be accommodated

using 200 meter spacing between adjacent sets of laterals.

2.7 Model Sensitivity Analyses and Curve Fit of Results

In evaluating the robustness of the V-DeepBoRe model, it is helpful to identify those

input parameters which most heavily impact the resulting completion cost and time for

the repository. Figure 2-32 through Figure 2-37 show how the selected repository unit

costs and time vary with the length of the borehole plug, cost of cement, overall billing

rate, cost of the borehole plug, vitrified waste fraction, and material costs of the liners. In

each case, 100 realizations of each scenario are plotted for comparison purposes.

Final Repository Design Plug Length Sensitivity Results
56
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Figure 2-32: Emplacement Length Sensitivity Analysis
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Final Repository Design Cement Cost Sensitivity Results
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Figure 2-33: Cement Cost Sensitivity Analysis

Repository Design Billing Rate Sensitivity Results
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Figure 2-34: Billing Rate Sensitivity Analysis

Final Repository Design Plug Cost Sensitivity Results
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Figure 2-35: Plug Cost Sensitivity Analysis
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Final Repository Design Vitrified Waste Fraction Sensitivity Results
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Figure 2-36: Vitrified Waste Fraction of Repository Sensitivity Analysis

Final Repository Design Casing Cost Sensitivity Results
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Figure 2-37: Casing Cost Sensitivity Analysis

From these sensitivity runs, a stochastic model for the repository time and total cost is

based on these 6 input parameters. Figure 2-38 through Figure 2-40 graphically plot the

impact of each parameter on the overall repository completion time and effective cost

rate.
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The major and minor factors are summarized in Table 2-9.

Table 2-9: Impact of Key Parameters on Repository Statistics

I Stdev I Repositoryl
IRate~

Plug Length
Cement
Casing Minor
Plug Cost Minor
Vit Frac
Billing Rate Majo

Having identified the major contributions of each parameter, a linear regression is

performed for each effect. The regression model values are shown in Table 2-10.

Table 2-10: Model Values for Linear Fit for Repository Statistics Based on Key Parameters

Input j Slope Intercept Output
Vit Frac -1.8965E+03 2.2646E+03 repository size (MTHM)

Casin Cost 1.8415E+00
Plug Cost 1.5292E+00 1.0237E+01 mean rate ($k/Day)

Billing Rate 2.5889E-02

Plug Lenth 6.1418E-02 5.4810E+02 mean time (Days)
Casing Cost 4.0748E-02
Bilng Cot 46 - 4.0387E-03 stdev rate ($k/Day)

Plug Length 2.0355E-03 1.1773E+01 stdev time (Days)

Equations [2-1] through [2-5] summarize these linear relations

S, = (f,,)-(- 1896.5)+2264.6

Prate =Ccasng -1.8415+ Cpl,,g -1.5 2 9 2 + Rbil -2.5889- 10-2 +10.237. 103

p,,,m, = LPg -6.1218. -10-2 +548.171

Crate =Ccasjn-4.0748-10-2 +bill *5.0635 -10 +4.0387-104]-103

aUtime = LPlug 2.0355-10~3 +11.773

[2-1]

[2-2]

[2-3]

[2-4]

[2-5]

Meani

..... ......... ... .. ... ............ ..... ........ :::" ,: ...... ................ ............................ ::::::::::: ..............

I mean
ime Rate Time Capacity

Mainrn Maio



Where S, Total Capacity of Repository (MTHM)

fl, -Fraction of Repository Canisters that are

vitrified waste

pt, =_ Mean Repository Cost Rate ($/Day)

Ccasing Specific Casing Cost ($/kg)

Cpug - Total Plug Cost ($M)

Rbill Overall Repository Billing Rate ($/hr)

'tie Mean Repository Completion Time (Days)

LPlug Vertical Plug Length (m)

,,at, =Standard Deviation of Repository Cost Rate ($/Day)

'7ime -Standard Deviation of Repository Completion Time (Days)

Note that equation [2-1] reflects the additional waste mass in the repository associated

with consolidating 301 PWR and 211 BWR fuel pins into a canister (as opposed to the

271 and 175, respectively, calculated based on strictly hexagonal packing as is assumed

in the drilling script).

2.8 Drilling Cost Model and Repository Configuration Summary

The V-DeepBoRe model demonstrates the economical feasibility of using lateral

emplacement of high level nuclear waste in very deep boreholes. Drilling, emplacement,

and sealing costs for the borehole are estimated at less than $48/kg of heavy metal. The

model is extremely sensitive to the overall billing rate of drilling operations and, to a

lesser extent, to the cost of the drill casing. Additional data are required to further refine

and validate the model and verify the modeling assumptions used.

Study of the trade-space of repository configurations produced a final repository design

featuring a telescoping pipe-schedule of 26", 17 %", and 11 %" diameters, lateral

emplacement lengths of 2 km, angled 200 declined from horizontal, and 10 laterals per

vertical borehole. With the repository geometry so prescribed, design of the waste

package could then proceed.



3 WASTE PACKAGE DESIGN AND ANALYSIS

Having completed the design of the repository, a waste canister design is developed given

the geometric constraints of the selected lateral. This chapter will detail the package

design selection, the expected thermal performance of the loaded waste canisters once

emplaced in the repository, and the mechanical performance of the waste canister under

repository conditions.

3.1 Waste Package Design

The final waste canister design selection is summarized in Table 3-1. This waste package

accommodates vitrified waste (i.e. borosilicate glass waste-form) as well as reconstituted

Light Water Reactor (LWR) fuel pins that have been removed from their assemblies to be

consolidated and compacted in a close-packed arrangement.

Table 3-1: Summary of Canister Design
Canister Properties

Metric English

Canister Material P-1 10 Casing Steel
Minimum Tensile Strength 861.84 MPa 125000 psi
Canister Inner Diamter 180.98 mm 7 1/8 in

Canister Outer Diamter 195.26 mm 7 1/1 in
Canister Length 5000.00 mm 196.85 in
Interior Volume 128616.61 cm3 7848.67 in3

Steel Mass 169.11 kg 372.82 Ibm

PWR Waste Canister Properties
Metric English

Fill Volume PWR 38639.83 cm3 2357.95 in3

Fill Mass PWR (SiC) 77.86 kg 171.65 Ibm
Waste Mass PWR 729.07 kg 1607.32 Ibm
Heavy Metal Mass PWR 568.59 kg 1253.53 Ibm
Total PWR Canister Mass 976.04 kg 2151.79 Ibm

BWR Waste Canister Properties
Metric English

Fill Volume BWR 46035.89 cm3 2809.28 in3

Fill Mass BWR (SiC) 92.76 kg 204.51 Ibm
Waste Mass BWR 711.15 kg 1567.81 Ibm
Heavy Metal Mass BWR 561.79 kg 1238.53 Ibm
Total BWR Canister Mass 973.02 kg 2145.14 Ibm

The canister material of P-110 drill string steel ensures adequate tensile strength for the

waste string as it is lowered into the borehole. The choice for fill material of SiC



particles is expected to enhance hydrostatic crushing resistance while permitting adequate

conduction of decay heat outward from the package while only moderately contributing

to the overall mass of the package. Other potential fill materials such as SiO 2 (silica

sand) or crushed granite should provide similar crushing resistance and adequate

conduction of heat from the waste to the borehole wall at moderately reduced cost, but

have not been analyzed in this project. The final canister inner diameter permits the

encapsulation of 301 PWR spent fuel pins or 211 BWR spent fuel pins; this exceeds the

initial estimate used in the waste-mass subroutine of the V-DeepBoRe model from

Chapter 2 (from purely hexagonal packing) of 271 PWR pins and 176 BWR pins. Figure

3-1 and Figure 3-2 show the cross-sectional arrangement of the PWR pins and BWR pins

respectively.

L ~ l. I i I I I I I i i IJ _J I I I I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 cm

Figure 3-1: Canister Arrangement- 301 PWR Fuel Pins



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 cm

Figure 3-2: Canister Arrangement- 211 BWR Fuel Pins

Figure 3-3 illustrates the waste package and liner as configured in the lined lateral. The

two gaps in this diagram will be analyzed for both a vacuum (conservatively assuming

radiation only between the rock wall and the liner and between the liner and the waste

package) and a water-flooded (assuming conduction only in water between the rock wall

and the liner and between the liner and the waste package) thermal case study.



Borehole Wall.

Outer Gap --- ' .... - 295.3 mm

Lateral Liner ........
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Figure 3-3: Canister and Liner Cross Sections

3.2 Thermal Analysis of Waste Package

The thermal performance assessment of the canister design is conducted in three separate

analyses. In the most basic of these, the lateral of waste is modeled as an infinite line

source in an infinite, homogenous granite slab. This reduces to a one-dimensional

problem where temperature varies with time and distance from the line source only. A

more refined model is the two-dimensional heating of an adiabatically bounded finite cell

surrounding the lateral in the repository (this will account for the influence of

neighboring laterals). Further refined still is a three-dimensional analysis using a scaled

model of the laterals in the repository and the application of fixed temperature boundary

conditions replicating the thermal gradient in the earth's crust (accounting for the

diffusion of heat vertically which is not modeled in the two-dimensional study). All three

of these analyses demonstrate the feasibility of the canister design selected.



3.2.1 Thermal Study Assumptions

Table 3-2 calls out the thermal properties and parameters used in the waste package

performance analysis. The waste package, as modeled in these analyses is assumed to

remain concentrically centered within the lateral, as is the liner, despite the inclination of

the lateral 700 from vertical. Further, convection is conservatively ignored as is

conduction through air for the case of a non-flooded borehole. Further conservatism is

achieved by modeling the 2000m lateral string of waste packages with the same linear

power as the fueled regions of the canister. This is to say that while only 82% or 84% of

the canister length is generating heat, the entire 5 meter length is assumed to be fueled.

Also, to observe the worst case thermal power for a given package, it is assumed that

there are no material defects or irregularities in the fuel pins that would prevent full

compacting to 301 PWR and 211 BWR pins per canister. As fuel pin packages are

anticipated to present a higher thermal load than vitrified wastes, the entire repository is

assumed to contain LWR fuel packages only.

Table 3-2: Summary of Thermal Design Study Properties and Parameters

Granite Material Properties Ref
Thermal Conductivity, k 2.2 W/m-K 41

Density, p 2500 kg/m 3  42

Emissivity, E0.45 43

Specific Heat Capacity, C, 790 J/kg-K 44

Repository Properties Ref

Surface Temperature 25 0C

Subterranean Thermal Gradient 24 0C/km 45
Cooling Time Before Emplacement, t, 40 years

Irradiation Time (for ANS Std Decay Heat), Ts 3.53 years

Lateral Radius, r 0.14764 m
BWR Fueled Length 4.1 m

PWR Fueled Length 4.2 m

Borehole Shaft Spacing (Pitch) 200 m

Borehole Shaft Spacing (Back Pitch) 5 km



Table 3-2: Summary of Thermal Design Study Properties and Parameters (Continued)

Canister, Waste, and Fill Thermal Properties Ref
Steel Thermal Conductivity, k 50.2 W/m-K 46

Steel (Oxidized) Emissivity, , 0.79 47

SiC Carbon Bed Volumetric Packing Factor 0.65 48

SiC Particle Density, p 3100 kg/m3  49

SiC Bed Thermal Conductivity, k 0.33 W/m-K 50

PWR & BWR Fuel Pin Thermal Conductivity, keff 1.87 W/m K 51

For simplicity, the PWR effective thermal conductivity calculation performed by Hoag

(2006) is applied to the BWR fuel pins, despite minor distinctions in geometry. In each

of the long term thermal studies, the waste package is assumed to be in quasi-steady state

while transient conditions may exist in the surrounding granite. This is justified by the

relatively low thermal capacity of the waste package with respect to the surrounding

granitic rock.

3.2.2 Effective Conduction Coefficient of Reconstituted Waste

As a survey of the literature did not identify any relations for the effective conductivity of

close packed arrays of spent fuel pins in a matrix, an effective homogenization of the fuel

pin and fill interior of the waste package is developed using finite element analysis with

the Solidworks Simulation code (assuming conduction only and no contact resistance

between fill and fuel). The effective homogenized conduction coefficient, khom eff, is

calculated using Equation [3-1]52:

khom eff q 'TCL TEdge [3-11
4rc

Where q'- Linear Thermal Power Modeled in the Study

TEdge =Boundary Condition Fixed Temperature

TCL = Canister Centerline Temperature Produced in the Study

The thermal power and boundary temperature may be chosen arbitrarily as the material

properties used in the study are taken to be constant as a function of the temperature of

the material, and the TCL observed will vary accordingly. For both the PWR and BWR

canister configurations, a 30' section of the canister, 5 cm in thickness, is modeled. An

appropriate linear power q'is applied and a fixed edge temperature of 150 'C is applied.



Figure 3-4 and Figure 3-5 show the temperature profiles of the 300 wedge for each of the

PWR canister and BWR canister as modeled in Solidworks.

Figure 3-4: Effective Heat Transfer Coefficient Analysis (PWR Waste Package)

Figure 3-5: Effective Heat Transfer Coefficient Analysis (BWR Waste Package)

Table 3-3 summarizes the results from the effective homogenized conduction coefficient

studies: the khom eff is highlighted in green.

Table 3-3: Effective Heat Transfer Coefficient Analysis Results

Angle kpin kfll Power in Thickness B.C. Peak CL kra Canister No. Metal Area
Modeled (*) W/(m-K) W/(m-K) Wedge (W) I(m) Temp (C) Temp (C) W/(m.K) Raus Pins Ratio

PWR Waste 30 1 1.87 0.33 0.015587917 1 0.005 150 1 153.794 0.7847 0.0904875 301 1 82.94%
BWR Waste 30 1.87 0.33 0.01297375 0.005 150 153.853 0. 6431 0.0904875 211 77.95%

.................................................................................................... .................... ...............



The resulting values of 0.7847 W/m-K and 0.6431 W/m-K for the PWR and BWR

packages, respectively, are used in the thermal conduction analysis for the rest of this

section.

3.2.2 Package Thermal Power

In order to model the long term temperatures in the waste package and in the repository,

an appropriate model must be employed for the decay power of the entombed waste.

Equation [3-2] shows the ANS Standard Decay Power (times in seconds) 53

Q t+ = 0.066[(t,+t )~.2 - (t e + _r) j [3-21
Q0

Where: te =Time Since Emplacement (sec)

tc Cooling Time Between Irradiation and Emplacement (sec)

r, Total Time of Irradiation (sec)

Q(te)- Decay Power at Time te (W)

Q0 Thermal Power of Fuel During Irradiation (W)

While this empirical correlation is appropriate for time scales of up to 109 seconds (-32

years), the long term performance of the repository will require an empirical form that is

applicable for several thousand years. Malbrain, Lester, and Deutch develop the thermal

power of spent Light Water Reactor fuel in Equation [3-3]5

q(te)= C1 -e [c2+c (t,+,)] for te + tc < 30 years [3-3]

D. (te+t) for 30 years <; t, +t, < 100,000 years

Where: q(t) Decay Power (W/MTHM)

t, Time Since Emplacement (years)
tc Cooling Time Between Irradiation and Emplacement (years)

C, 550

C2 0.223
C3  0.117

D, 9.41-10 3

p , 0.749



Figure 3-6 graphically depicts the decay power variation between these two empirical

relations. Note that the duration of irradiation for the ANS Standard Decay Heat relation

was adjusted to 3.53 years in order that the two relations have equivalent initial decay

powers. Additional decay power calculations are shown in the Appendices in section

B.1.

PWR Decay Power (301 Pins / Canister, 40 yr Cooling)

300 --

Cn 200 -

C/100 - -

0'
20 40 60 80 100

Time After Irradiation (yr)

- ANS Standard (T & K)
- Malbrain, Lester, Deutch

Figure 3-6: Comparison of Decay Power Empirical Relations

From a desire to conservatively estimate the decay power of the waste package and to

ensure the long-term accuracy of the analyses, decay power based on Equation [3-3] is

used for the remaining studies with the following modification: Malbrain, Lester, and

Deutch assume a burnup of 33,000 GWd/MTHM for their light water reactor fuel. To

better reflect the higher burnup of current LWR fuel discharges, the decay power is

scaled up linearly with the burnup, assuming a 57,000 GWd/MTHM irradiation for the

repository fuel. This decay power relation is very similar to one used in a recent thermal

FEA at Hongik University in South Korea5. Figure 3-7 depicts the decay heat power of

the reconstituted PWR and BWR waste packages (of 301 and 211 pins respectively).

While nearly identical in loading, the PWR package produces a slightly higher thermal

power, as later analyses will underscore.

.. . .... .... ............ .... .. I ....... .- -, _ :::::::::::: --........... __



Package Thermal Power Comparison
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Figure 3-7: Package Decay Power (M, L, & D Correlation)

3.2.3 1-D Infinite Medium Temperature Analysis

The first thermal analysis performed was for a simple one-dimensional problem. The

general solution for the radial temperature profile resulting from an infinite line source in

an infinite, homogeneous medium is given in Equation [3-4]56

T (rt )=T + de4a(tr)
T~rt) j 4~k --cdz [3-41

Where: T(r, t) Temperature

To = Initial (Uniform) Temperature

t Time (sec)

r Distance from Line Source (in)

q' Linear Thermal Power (W/m)

k Thermal Conductivity of Medium (W/m- C)

a Thermal Diffusivity of Medium (m 2/sec)

k

p-C,
r Dummy Integration Variable

While this integral may be calculated numerically, it is appropriate to check the results

from computer tools using a simplified calculation. By assuming that the linear power is

of the form

3
10

C) 2
~10

0

I-10

6
10

......................................................... .. ............................................................. .......................
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[3-5]q'(t) =q' t'
0tc + t

Where: t Time After Emplacement (sec)

te Cooling Time Between Irradiation and Emplacement (sec)

q' Initial Linear Thermal Power (W/m)

the integral form simplifies to:

q' t 4tIn 4a
T(r, t) = T,, + 0 " I 2 t)- 0.5772

4;T-k tc+t r I

2

for 1<< and t<<t
4a-t

A comparison of the results of Equation [3-6] and the numerical integration using the

source from [3-3] are shown in Figure 3-8 (this case is for the PWR consolidated waste

package linear decay power). Even with moderately different forms of the source term,

the approximation to the integral solution validates the numerical integration and

generates peak times within a few years and the peak temperatures within a few degrees

Celsius of the integral method.

I -D Infinite Line Source Temperature Histories (Comparison of Numerical Integral and Approximation)
135 -

(Dashed Lines are Integral Approximations)

- 0.5 m
- 1 M

- 2m

5 10
Time (yrs after emplacement)

Figure 3-8: Comparison of 1-D Integral Solution and Approximation
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The temperature for steady state conduction in cylindrical coordinates is shown in

Equation [3-7]5

q'. -In rue

inner =Touter + q' -Rcond = Tu, + r ' [e3-7|
2W rrk

Where: T Temperature on Inner Surface

Toue, = Temperature on Outer Surface

q'- Linear Thermal Power (W/m)

Rcond =Conductive Thermal Resistance (m K/W)

k = Thermal Conductivity of Medium (W/m -K)

rinner =Inner Surface Radius

router -Outer Surface Radius

Radiation in a vacuum in cylindrical coordinates is shown in Equation [3-8]58

,hrad Tinner 4 outer 4 38
rad cT - T-T

od± inner __ \ inner outer 
[

inner outer outer T

Where: hrad =Heat Transfer Coefficient of Medium (W/m2 -K)

a=Stefan - Boltzmann Constant 5.6704. 10-' W

,inner =Emissivity of Inner Surface

souter - Emissivity of Outer Surface

And therefore, the effective conductive coefficient may be found using Equation [3-9]:

/r \
krd eff = hrad -inner * lrouter [3-9|

\k inner j

Where: krdeff- Effective Conductive Coefficient for Radiation (W/m- K)

In evaluating the peak centerline temperature of the waste package, an appropriate

thermal limit is needed. Manteufel (1994) 59 suggests using the transportation canister

peak fuel centerline thermal limit of 380 'C. This limit appears on the temperature

history plots of this chapter as a heavy red dashed line.



The one-dimensional analysis begins by solving [3-3] (assuming an ambient granite

temperature of 100.15 'C at a depth of 3007m) for the temperature history at a set of

distances from the line source (to include the borehole wall at a radius of 0. 14764m).

Using the temperature history at 1 meter from the line source, a thermal circuit for each

material is evaluated to calculate the temperature at progressively smaller radii, until the

centerline temperature of the package is developed. The 1 meter boundary condition is

used as this is sufficiently distant from the borehole (radius of 0.148 m) that

approximating the package thermal power as a concentrated line source and neglecting

the thermal capacity difference between the canister and the surrounding granite are

accurate modeling assumptions.

3.2.3.1 PWR Canister Temperature Analysis Results

Figure 3-9 shows the resulting rock temperature profiles at several distances from the

lateral centerline.

1-D Infinite Line Source Temperature Histories
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Figure 3-9: Rock Temperature Profiles (PWR Infinite Line Source)

Figure 3-10 and Figure 3-11 show the resulting temperatures of the surfaces of the waste

package under the conditions of vacuum gaps and gaps flooded with water, respectively.

In the water flooded gaps, convective effects are conservatively neglected and water

conductivity is modeled as 0.606 W/m-K.

......................................................................... ...........



1 -D Temperature Histories (Radiation Only in Gaps)
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Figure 3-10: PWR Canister Thermal Histories (Radiation Only in Gaps)

1-D Temperature Histories (Water in Gaps)
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Figure 3-11: PWR Canister Thermal Histories (Water Conduction in Gaps)

The analyses predict a peak PWR centerline temperature of 182.98 'C at 3.0 years for the

radiation only case and 168.74 'C at 3.8 years for water-flooded gaps case.

3.2.3.2 BWR Canister Temperature Analysis Results

Figure 3-12 shows the resulting rock temperature profiles at several distances from the

lateral centerline.
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1-D Infinite Line Source Temperature Histories
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Figure 3-12: Rock Temperature Profiles (BWR Infinite Line Source)

Figure 3-13 and Figure 3-14 show the resulting temperatures of the surfaces of the waste

package under the conditions of vacuum gaps and gaps flooded with water, respectively.

1 -D Temperature Histories (Radiation Only in Gaps)
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Figure 3-13: BWR Canister Thermal Histories (Radiation Only in Gaps)
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1 -D Temperature Histories (Water in Gaps)
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Figure 3-14: BWR Canister Thermal Histories (Water Conduction in Gaps)

The analyses predict a peak BWR centerline temperature of 183.16 C at 2.9 years for the

radiation only case and 169.04 'C at 3.9 years for the water-flooded gaps case.

3.2.3.3 Canister Temperature Analysis Comparison

The temperature rise across the borehole-canister circuit is shown in Figure 3-15 for

PWR and BWR waste packages where the gaps are either vacuum or water-flooded.

2 Temperature Rise, Borehole Wall to Canister Center

0

0

4)

E 10

-1

100

E

7 8 9 10 11 12 13
7 8 9 10123

10 10 10 10 10 10 10
Time Since Emplacement (sec)

Figure 3-15: Temperature Rise from Borehole Wall to Canister Center
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3.2.4 2-D Finite Cell Temperature Analysis

The second thermal analysis conducted is a two-dimensional study. The geometry of this

study represents % of the unit cell of granite surrounding a single canister of waste. This

geometry is shown below in Figure 3-16 and Figure 3-17. The rock wall of the lateral

modeled is highlighted in green

Figure 3-16: Granite Finite Cell for Transient Thermal Analysis

Figure 3-17: Granite Finite Cell for Transient Thermal Analysis

(Enlarged to Show Borehole Wall for PWR case)

The unit cell extends half of the distance to the next lateral above and below the modeled

borehole and half the distance to the next vertical borehole in the array. This leads to a

30 m by 100 m slab with thickness the same as the LWR assembly studied (4.1 m for

......... . ..... ........... ..... ....... ........... ........ ........... .. ...... ....



PWR and 4.2 m for BWR). The boundary conditions imposed on the slab are adiabatic

on all faces with the exception of the heat flux onto the borehole wall.

3.2.4.1 PWR Canister Temperature Analysis

Running the transient analyses for the PWR waste package produces the results shown in

Figure 3-18, Figure 3-19, and Figure 3-20. In performing the analyses in Solidworks, two

time regimes were used: a 200 year simulation with timesteps of 1 year and a 2000 year

simulation with timesteps of 20 years; this is why Figure 3-20 and Figure 3-23 show a

short term and long term wall temperature series.

Figure 3-18: Temperature Distribution in Finite Cell

(PWR Package, 200 yr after Emplacement)

Figure 3-19: Temperature Distribution in Finite Cell

(PWR Package, 2000 yr after Emplacement)
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Finte Cell Thermal Analysis (PWR Package)
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Figure 3-20: PWR 2-D Finite Cel Borehole Wal Temperature History

The PWR waste case produces a local short-term peak wall temperature at approximately

10 years after emplacement. The peak observed agrees well with the 1 -D model,

demonstrating that the 1 -D line source accurately models the short term behavior. The 2-

D analysis, however, indicates the potential for a second peak: depending on how rapidly

the decay power falls off as compared with the rate that heat is diffused through the

granite, a second (local) maxima is possible. Over the long duration of the study the

utility of the 2-D analysis breaks down: once the thermal pulse has traveled from one

corner of the slab to the opposite corner, the entire slab is then heated steadily to higher

and higher temperatures due to the purely adiabatic boundary conditions. In the real

repository, heat is still free to flow vertically toward the surface. This limitation

motivated the three-dimensional study in the next section.

3.2.4.2 BWR Canister ThermalAnalysis

Running the transient analyses for the BWR waste package produces the results shown in

Figure 3-21 and Figure 3-22. Similar to the PWR results, the long term results show a

run-away thermal transient.
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Figure 3-21: Temperature Distribution in Finite Cell

(BWR Package, 200 yr after Emplacement)

Figure 3-22: Temperature Distribution in Finite Cell

(BWR Package, 2,000 yr after Emplacement)

Finte Cell Thermal Analysis (BWR Package)
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Figure 3-23: BWR 2-D Finite Cell Borehole Wall Temperature History
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3.2.3 3-D Repository Thermal Analysis

To further refine the thermal analysis of the repository performance and be able to fully

model vertical diffusion of heat through the repository, a three-dimensional model of the

repository laterals is employed. Due to the limitations of Solidworks Simulation, a full

scale analysis was not possible. Accordingly, a 1/10 scale slab of the repository is

modeled and analyzed. Figure 3-24 and Figure 3-25 show the geometry of the rescaled

repository model. The analysis applies fixed heat flux boundary conditions on the

borehole lateral rock walls, fixed temperature boundary conditions at the top and bottom

of the repository (25 'C at the surface and 109 'C at a depth of 3500m), and adiabatic

boundary conditions at all other faces. The vertical slab geometry represents 200 m

spacing between adjacent vertical boreholes, and 5 km spacing between subsequent

arrays of boreholes. This geometry is shown in Figure 3-24 and Figure 3-25.

Figure 3-24: One-Tenth Scaled 3-D Analysis Geometry
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Figure 3-25: 3-D Thermal Analysis Geometry

(Enlargement of One of Five Modeled Laterals)

In creating the small scale repository model in Solidworks Simulation, similitude requires

that the Fourier number be preserved (to maintain results at the same times as the full

scale problem):

FoModel = FoRepository

aModel * TModel - aRepository Repository [3-10

R odee,2 RRepository 2

Where: a - Thermal Diffusivity (m2 /s)
z- Characteristic Time

R Characteristic Length

Thus, in order to scale down the repository characteristic length by a factor of ten while

maintaining the same characteristic time, the thermal diffusivity of the granite must be

decreased by a factor of 100 (this is achieved by modeling the granite in the scaled

repository with a density of 250,000 kg/m3 vice 2,500 kg/m3 for the full scale repository).

Furthermore, in order for the temperature values to be the same between the model and

the full scale problem, the non-dimensional temperature, 0, must be maintained between

the two cases.

................................................... . .................



TMndel __ __ TRepository [3-11]
MModl - Repository / Rr - Model RModel Rpsitory Repository

k Mode, k Repository

Where q" = Heat Flux (W/m 2 K)

0 Non - Dimensiona lized Temperatur e

T Temperatur e Result from Analysis

Having adjusted the thermal diffusivity, a, by modifying density, p, k is left the same for

the model as for the full repository. This only leaves modifying the heat flux, q ", to

maintain similarity between the model and full-scale temperatures. As the length scale is

reduced by a factor of 10, q" must be increased by a factor of 10. Put another way, this

preserves energy continuity between the heat removed from the waste and the heat

deposited in the granite. The energy relationship maintained is:

Qwaste I- oC P' siab -C, -AT [3-12]
q" -A.,, -r oc p -Vb -C, -AT

Where: Qwste = Total Heat Generation Rate in Waste Canister

Ally Area of the Heated Wall

Vsb Volume of Granite Slab

C, = Granite Specific Heat Capacity (Constant Pressure)

r = Characteristic Time

AT = Characteristic Temperature Rise

For the small scale geometry, wall area is reduced by 102, heat flux increased by 10, slab

volume decreased by 103, so density must increase by 102 to balance [3-12] and keep the

characteristic time and temperature rise consistent with the full scale problem. Section

B.2 in Appendix B also features a validation of this methodology by running a similar

FEA thermal problem on two scales, both of which were modeled in Solidworks with

identical results.

Figure 3-26 through Figure 3-29 show the short term and long term impact on wall

temperatures of the borehole that result from the three-dimensional analysis. Peak

borehole wall temperatures observed occur at approximately 10 years after emplacement

and are on the order of 145 'C. This wall temperature is significantly consistent with the

1-D and 2-D analysis, as seen in Figure 3-29.



Figure 3-26: 3-D Repository Model Granite Temperatures at 10.1 Years

(Peak Borehole Wall Temperatures)

Figure 3-27: 3-D Repository Model Granite Temperatures at 200 Years



Figure 3-28: 3-D Repository Model Granite Temperatures at 2000 Years

Scaled Repository Thermal Analysis
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Figure 3-29: 3-D Repository Thermal Results (PWR Waste Package)
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Applying the borehole wall temperature histories above to the results from Figure 3-15,

the peak centerline temperatures for the PWR and BWR packages are developed and

shown in Figure 3-30 and Figure 3-31, respectively.

3-D Temperature Histories (Comparison of Radiation Onlyto Flooded)
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Figure 3-30: Centerline Temperature Results for PWR Canister

(Using 3-D Analysis Rock Wall Temperatures)
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Figure 3-31: Centerline Temperature Results for BWR Canister

(Using 3-D Analysis Rock Wall Temperatures)

Peak centerline temperatures of approximately 181 C for PWR waste and 179 'C for

BWR waste demonstrate the feasibility of the canister and repository designs to meet

thermal limits.
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3.3 Mechanical Analysis of Waste Package

3.3.1 Tensile Stress

The concept loading scheme involves running an entire lateral's worth of waste packages

into the borehole at one time. This produces a large tensile stress on the drill string

suspending the column of waste packages, found by applying Equation [3-13]:

Sm = - WString +Wcasing - Pmud ' (Vcasing +Vstring [3-131
Axs Axs

Where: S, -Average Tensile Stress

P - Axial Load

Axs = Canister Cross Sectional Area (Shell)

WString =Weight of the Total Waste String

Wcasing =Weight of the Casing Above the Waste String (370m)

Pud Drilling Mud Density
g = Gravitational Constant

Vcasing =-Volume of Casing Above the Waste String (370m)

Vstring = Volume of Waste String

Per the ASME code, the maximum allowable tensile stress is:

1 2
S, Sus and Sm SY [3-141

3 3

Where: Suts = Ultimate Tensile Strength of Material

S, =-Yield Strength of Material

As the waste column begins the kickoff (departing from vertical), the contact of the

bottom canisters with the liner begins to alleviate the tensile stress on the uppermost

casing segment. The most limiting case for the tensile stress therefore occurs just before

the first waste canister reaches the kickoff radius. At this time, the tensile stress is 822.1

MPa for a string of PWR canisters and 819.3 MPa for a string of BWR canisters. With

the ultimate tensile strength of P- 110 casing steel at 861.8 MPa, and yield strength of

758.4 MPa, the maximum allowable load is 287.3 MPa or 2.9 times lower than the

expected loading. While the strength of the casing at the top of the drill string could be

increased, the stress at the topmost canister is likely to be nearly as high. The most



effective solution, then, is to limit the number of waste packages emplaced at a time to

not exceed the weight of 690 m of PWR (138) canisters. It is conceivable that the

increased presence of vitrified waste canisters would lower the weight of the stack and

increase the number of canisters that may be emplaced at one time. Regardless, batch

emplacement is necessary and the repository cost model should be refined to take this

into account.

3.3.2 Longitudinal Buckling

The significant angle of the lateral (from vertical) will dramatically lower the crushing

loads on the waste packages once emplaced. It is possible, however, for the waste string

to bottom out during emplacement at which point the entire weight of the string of waste

packages would be born on the bottommost canister. It is this scenario, when the

bottommost canister just reaches the kickoff to start the transition to the lateral that must

be analyzed for buckling. The critical buckling stress for a thin walled long cylinder with

unrestrained ends is shown in Equation [3-15] (Roark, Table XVI, Formula 25)60

S = E t. [3-151
-,fO V 1-v;) r

Where: s' Critical Longitudinal Buckling Stress for Thin -Shell Cylinder

E Young's Modulus (190 GPa for Steel)

v = Poisson's Ratio (0.26 for Steel)

t Cylinder Wall Thickness

r Cylinder Radius

From this critical buckling stress, a factor of safety for the repository loading may be

developed using Equation [3-16] (Note: Roark explains that experimental data support

designing for 40-60% of the critical buckling stress developed above).



F.S.Buckling X s'S4%*Axs [3-161
Wwste string -sin(o)

Where: F.S.Buckling -Buckling Factor of Safety

s' = Critical Longitudinal Buckling

Axs = Canister Cross Sectional Area (Shell)

WWste String =Total Waste String Weight

S- Lateral Declination (from Horizontal)

For the repository configuration and canister material selected, the buckling factor of

safety of 10.72 is achieved for canisters loaded with reconstituted PWR waste and 10.75

for canisters loaded with reconstituted BWR waste. Further, these buckling equations

take no credit for the confinement of the shell wall by both the internal fill material and

the lateral liner. Hence longitudinal buckling is not of concern for this design.

3.3.3 Hydrostatic & Lithostatic Crushing

One of the central advantages of lateral emplacement in very-deep boreholes is

emplacement of the waste as shallow as possible while still taking full advantage of

sufficient geologic isolation. Deeper emplacement produces larger pressures on the

canister and increases the likelihood of the canister crushing in place.

The static uniform radial pressure load for a thin walled long cylinder with unrestrained

ends is shown in Equation [3-17] (Roark, Table XVI, Formula 30)61

P = - [3-17]
"4 1 - v2

Where: P = Critical External Pressure

E Young's Modulus

v Poisson's Ratio

t Canister Wall Thickness

r Mean Canister Radius

The resulting critical external pressure is 22.32 MPa (for the collapse of an unfilled

canister) while the hydrostatic pressure on the lowest canister (at a depth of 3,007 m) is



29.4855 MPa. Thus far, no credit has been taken for the crushing resistance of the SiC

particle filler material or the consolidated fuel bundle. Canadian researchers 62 have,

however, demonstrated crushing resistances of up to 10 MPa using both compacted silica

sand and glass micro-beads as a filler material in CANDU disposal packages as shown in

Figure 3-32.
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Figure 3-32: CANDU Geologic Disposal Over-pack and Canister Design
Courtesy Canadian Nuclear FAQ63

Additional research is needed to demonstrate that the SiC particle bed will provide

similar crushing resistance in this design and hence will prevent radial crushing of the

waste package.
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4 ROD CONSOLIDATION AND PACKAGE COST

Consolidation of Light Water Reactor (LWR) Fuel was a topic for considerable research

and development in the 1980s and 1990s. Significant delays in the Department of

Energy's timeline to accept spent fuel for permanent disposal spurred significant industry

interest in increasing the capacity of spent fuel pools. By dismantling discharged fuel

assemblies, volumetric reductions of 2:1 or 3:1 of fueled components and 10:1 of non-

fueled components were assessed as feasible. 64 65

Fuel consolidation, as studied typically, involved remote handling of assemblies and

individual components while they are submerged within a spent fuel storage pool.

Operators using robotic controls would remove individual assemblies from a storage site,

perform several processing steps to dismantle the assembly support structure, and place

individual fueled elements (typically fuel pins) back into a storage canister. The

arrangement of such a handling system is shown in Figure 4-1.

The FUEL-PAC system uses a robot and remote viewing to ensure
speed, reliability and flexibility.

Figure 4-1: Rod Consolidation Concept Arrangement66

oa*



Dry (shielded) handling is also possible and is likely to achieve lower costs, as wastes

would arrive at the borehole repository processing facility in dry transportation casks

(cooling time was assumed to be 40 years between irradiation and emplacement in the

thermal studies conducted in Chapter 3).

Figure 4-2: Dry Fuel Pin Consolidation at BNFP-
2 Consolidated PWR Assemblies (Viewed end on) 67

Fuel assembly consolidation also typically involves compaction of the non-fuel bearing

support components as shown in Figure 4-3.

Figure 4-3: Shearing of Non-Fuel Bearing Assembly Components for Compaction 68
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As applied for the Very Deep Borehole, this low-level waste may be either stored in a

separate facility or the shredded components may be compacted in the disposal canister

along with the consolidated fuel (typical PWR assembly lengths are approximately 4.1 m

in length while the package overall length is 5 m; this leaves 22,400 cm3 of room in the

package for non-fuel waste).

The remainder of this chapter will estimate the anticipated consolidation and canister

costs for the Very Deep Borehole Repository using a review of previous in-depth studies

of fuel consolidation.

4.1 Cost Threshold for Feasibility

The lateral emplacement approach used in this project requires fuel consolidation in order

to reduce the waste package diameter sufficiently to permit the use of currently deployed

oil and natural gas drilling techniques. In this sense, consolidation costs are integral to

the economic feasibility of such a repository. It is useful to examine under what

conditions the incorporation of fuel pin consolidation becomes attractive for deep

borehole disposal when it is not requisite in the design. Accordingly this section

examines the impact of consolidation on a large-diameter borehole repository featuring

vertical emplacement of waste packages, such as was studied by Christopher Ian Hoag

("Canister Design for Deep Borehole Disposal of Nuclear Waste," 2006).

Hoag's analysis produced a total repository cost of approximately $50/kg HM. Given the

geometry of Hoag's waste package, consolidation of PWR fuel assemblies would

increase the number of fuel pins from one assembly of 264 pins per canister to 955 pins

per canister. This is accomplished through the

e Compaction into close packed arrangement

e Removal of unfueled 'water rods' from the intact assembly (these account for 26

of the 280 pin locations in the intact 17x17 Westinghouse assembly studied by

Hoag)

e Use of the region between the intact assembly (square cross-section) and the

canister inner wall (circular cross section)



These two configurations are shown in Figure 4-4 and Figure 4-5 below.

Figure 4-4: Hoag Waste Package Figure 4-5: Hoag Waste Package
with Intact 17 x 17 PWR Fuel Assembly with Consolidated PWR Fuel

This would lower the effective overall drilling costs by a factor of 3.6 or to approximately

$14/kg HM. Thus fuel consolidation must cost less than approximately $36/kg HM for it

to be an attractive aspect in borehole disposal. This analysis assumes that there are no

additional costs from the increased mass of the package (i.e. the package design is still

sufficient for the increased mechanical loads associated with the increased weight).

4.2 Previous Studies

Two detailed studies on rod consolidation provide thorough analyses on prospective fuel

consolidation costs. The Electric Power Research Institute (1990)69 and the Department

of Energy's Prototypical Rod Consolidation Project carried out by Scientech (1989-

1993)70 each evaluated the full-scale infrastructure, operational and maintenance costs of

a rod consolidation program. A comparison of the results from these reports is useful in

bracketing expected consolidation costs for the borehole repository.



4.2.1 Electric Power Research Institute Study

Figure 4-6 shows the handling concept for the EPRI fuel consolidation process.

Figure 4-6: EPRI In-Pool Consolidation Handling Arrangement

Figure 4-7 shows in detail the handling steps employed in the EPRI approach to

consolidate the fuel pins and compact the non-fueled components.

Figure 4-7: EPRI Process for Fuel Assembly Consolidation

The EPRI report estimates a total of 118-128 man-hr to consolidate two 14x14 PWR fuel

assemblies into a single storage box with a total handling time of 20 hours. Thus the



capacity of the pilot operation was approximately 270 MTHM/yr (assuming two 8-hour

shifts per day). EPRI further claims that the total cost to consolidate two 14 x 14

assemblies is $11,431 - 13,043 (1990). "The Program Target for the consolidation of

two assemblies was 16 hours, and [we] believe[ ] that this can be achieved and even

improved upon by the incorporation of the equipment and procedure modifications

recommended in the Cold and Hot Demonstration Reports."71

Table 4-1 calls out the results of the EPRI rod consolidation study. Highlighted in dark

gray are the canister and non-canister related costs of the study expressed in constant

2009 dollars. Taken together, these total just over $19/kg for the consolidated fuel and

canister. The light highlighting shows the canister costs per mass of steel in the canister

(using the deep borehole canister design waste mass and steel mass) to identify that the

canister costs are significantly conservative (the borehole model included fabricated

casing costs at $6/kg of steel; welding the package closed will not exceed the difference

between $6/kg and $28.75/kg.

Table 4-1: EPRI Study Results Summary

EPRI Study Summary Ref

Assembly Type 14x14 Westinghouse

Assembly Mass 0.4687 MTHM 72
Labor Cost/2 Assy $5,609 (1990)

Filter Cost/2 Assy $624 (1990)

Canister Cost/2 Assy $4,636 (1990)
- -~-77777 -7- A -4r~~rw 3rsrt

Levelized Equivalent Canister Cost $28.75 /kg steel (2009)
Canister Capacity 729.07 kg HIM

Canister Mass 169.11 Kg

Labor Rate (with Overhead Factor of 1.75) $25.00 /hr (1990)

Labor Escalator (1990-2001) (Union Labor) 1.480 73
Labor Escalator (2001-2009) (Manufacturing) 1.278 74
Material Escalator (1990-2009) (Gen. Purp. Machy.) 1.586 75

Material Escalator (1990-2009) (Metal Containers) 1.349 76

The cost escalators employed in updating from 1990 dollars to 2009 dollars include the

Producer Price Index (PPI) for Metal Containers, PPI for General Purpose Machinery,

and the Employment Cost Index and Employer Cost for Employee Compensation



furnished by the U. S. Bureau of Labor Statistics (see references in Table 4-1). The EPRI

work, therefore, shows that consolidation is a promising technology for waste disposal

(the total costs of $19.05/kg are well within the feasible value of $36/kg).

4.2.2 Scientech Study

The project completed by Scientech for the DOE was quite similar in operation to the

EPRI consolidation program, the cost analysis for which is shown in Table 4-2:

Table 4-2: Scientech Prototypical Rod Consolidation Project Cost Summary

Procurement, Fabrication, Supplies and Operating Costs (less labor)
1989 Present

Direct Costs Buyout Equipment 5,911,000 $5,911,000
Fabricated Equipment $3,206,000 $3,206,000

Consumables Fuel & NFBC Canisters $238,735,000 $125,163,520
Other Consumables $18,917,000 $9,920,120

Spare Parts $2,717,850 $1,424,989
Major Equip. Replacement $1,072,800 $562,477
utilities $1,536,000 S805,336

Total $145,502,440
Labor Requirements

OPERATION
Management/Supervisory 4,160
Operations 8,320
Maintenance 1,900
Support 9.504
Total 23,884 Hr/Yr

INSTALLATION 1,218 Hours
TESTING 5,720 Hours

*Based on Present Worth Rate of 4.81%, 30 year period

The Scientech report summarizes these costs and the potential for future savings:77

It is noted that of the $145 million of procurement, fabrication, supplies, and non-labor operation
costs, $125 million is a result of the Fuel and NFBC [Non-Fuel Bearing Component] Canister
costs. Assuming a labor cost of $50 per hour, the total labor cost would be $1.29 million per year.
Using the present worth factor from Appendix I of 15.729 the present worth of the operation labor
would be $20.3 million. Adding the Installation and Testing 6928 hours at $50 per hour results in
an additional cost of the $0.3 million for the total labor cost of about $21 million. Therefore, for a
total project cost of about $166 million, $125 million is for Canisters, $21 million is for labor, and
$20 million is for all other costs. Clearly, the greatest potential for cost reduction lies with the
Canister design/fabrication costs, which are 75% of the total project costs.

This highlights one of the key advantages to using a package design featuring relatively

inexpensive, low-alloy steel. Table 4-3 details the results from the Scientech report. As

in the EPRI section, the levelized unit cost for labor, the canisters, and other direct costs

are highlighted in dark gray. As with the EPRI summary, the light highlighting shows

the canister costs per mass of steel in the canister (using the deep borehole canister design



waste mass and steel mass). The canister cost figures show good agreement between the

two studies ($32.72/kg steel for Scientech, $28.75 for EPRI) and are encouraging for our

package design. The P-110 steel selected for the borehole application is both cheaper and

simpler to fabricate than the high-grade stainless steels in the waste canisters used in

these studies.

Table 4-3: Scientech PRCP Results Summary

Scientech Study Surmary Ref

Project Capacity 750 MTHM/yr

Operating Lifetime 30 yr

Direct Costs (Excluding Canisters and Labor) $33,360,650 (1989)

Present Worth (PW) of Direct Costs $21,829,922 (1989)

Canister Costs $238,735,000 (1989)

PW of Canister Costs $125,163,520 (1989)

Direct Costs (Excludin Canisters and Labor) $2.44 /kg HM (2009)

Canister Costs $14.47 /kg HM (2009)

Equivalent Canister Cost $62.40 /kg steel(2009)

Levelized Equivalent Canister Cost $32.72 /kg steel (2009)

Annual Labor Requirements 23,884 hr/yr

Initial Labor Requirements 6,938 hr

Total Labor Cost $36,172,900 (1990)

PW of Labor Cost $19,109,070 (1990)

Total Labor Cost $3.13 /kg HM (2009)

Labor Rate $50.00 /hr (1989)

Labor Escalator (1989-2001) (Union Labor) 1.524 78

Labor Escalator (2001-2009) (Manufacturing) 1.278 79

Material Escalator (1989-2009) (Gen. Purp. Machy.) 1.644 80

Material Escalator (1989-2009) (Metal Containers) 1.364 81

Discount Rate 4.81%

4.2.3 Cost Comparison

Table 4-4 compares the costs presented in the two fuel consolidation studies.



Table 4-4: EPRI and Scientech Stud Cost Com arison
EPRI I Scientech

Canister Cost ($2009/kg HM) 6.67 7.59
Labor Cost ($2009/kg HM) 12.38 1.65
Other Direct Costs ($2009/kg HM) 1.59
Total Cost ($2009/kg HM) 19.05 10.84

It is important to note that the operational scale of the two projects is significantly

different (270 MT/yr for EPRI and 750 MT/yr for Scientech), and this may account for

some of the difference in costs. Additionally, the canister costs per waste mass for the P-

110 canister should be significantly lower than the canisters designed for the rod

consolidation studies due to both material selection and the higher loading in the borehole

waste package.

4.3 Cost Estimation for Waste Packaging of L WR Fuel

To permit the evaluation of a single, modular borehole repository (i.e. a single vertical

shaft with 10 laterals for emplacement), a small scale consolidation plant is assumed.

Based on the studies presented in section 4.2, the moderate scale of operation for a single

vertical borehole repository leads to a conservative estimate for the consolidation costs of

$12.50/kg HM. This reflects the increased sunk costs per kg of infrastructure and

overhead associated with a small scale and most closely resembles the consolidation at a

reactor site, such as was studied in the EPRI report.

The material cost for the waste package should be close to that used in the cost model for

the drill casing ($6/kg steel, Table 2-4). Remote canister welding will increase this cost

somewhat, but is not expected to exceed $500 per waste package. These costs together

equate to $2.67/kg HM.

The package fill material, SiC particles, is commercially available 82 (for use in abrasive

applications) for $3.12/kg. This equates to $0.34/kg HM for this canister design. Other,

less expensive fills may be examined in future work. Although the processing costs to

load the fill material are not treated directly here, compaction of the fill material into the

canister (such as using a vibration table) should not significantly impact the cost of the

fuel package.



In Conclusion, taking together the costs for the consolidated fuel package, compaction of

the spent fuel assembly, filling and sealing the canister and canister costs, the design

should not exceed $15.51/kg of HM. This is well within the DOE civilian spent nuclear

fuel waste fee of 0.001 $/kW-hr electric (which equates to roughly $400/kg of HM). The

cost is less than the incremental cost of about $34.44/kg HM to drill a deeper borehole to

accommodate unconsolidated fuel (for the Hoag design).



5 CONCLUSIONS AND FUTURE WORK

This chapter summarizes the work of this project and future work needed to further

demonstrate the feasibility of lateral emplacement in very-deep borehole disposal of high

level nuclear waste.

5.1 Summary of Design and Results

After developing a borehole drilling cost model, a trade-space study was conducted to

examine what borehole configuration was most economically attractive for high level

nuclear waste disposal. From over 20,000 potential repository configurations, the final

design selected features were as follows:

* A 1500 meter vertical plug section for adequate isolation of the nuclear waste

from the biosphere

0 10 laterals extending from each vertical borehole

* 2000 meter long lateral emplacement shafts (400 packages / lateral)

e Laterals declined 200 from horizontal

* Drill-bit schedule calling for 26" for the surface shaft, 17 1/2" for the main vertical

shaft, and 11 %" for the laterals and radial kickoffs

The vertical shaft is lined and cemented at depths below 2100 m, above which all casings

are removed to permit direct contact of the borehole plug with the exposed granite rock

face. Laterals are also lined with casing but these liners are not cemented in place.

Based on the modeling in this project, drilling and emplacement costs for this repository

configuration should not exceed $47/kg HM (with a statistical confidence of 0.99).

Based on some conservative assumptions built into the model (mature drilling techniques

only, equipment rental rates similar to those for a much larger diameter and deeper

enhanced geothermal well) this cost estimate should be considered an upper limit on

directional drilling costs for lateral emplacement. Additional costs for waste package

fabrication, SiC fill, fuel pin consolidation and canister sealing are expected to not exceed

$16/kg of HM for LWR spent fuel packages. These costs are significantly lower for

reprocessed or vitrified wastes as they may be packaged into the final disposal canister at



the source site. Taken together, all costs expected for a very-deep borehole amount to

about $63/kgHM, well within the DOE's waste fund fee (equivalent to -$400/kgHM)

even when transportation costs to the repository and research and development costs are

considered. The lateral emplacement configuration is therefore demonstrated to be

economically feasible.

The waste package and repository design are also demonstrated to be technically feasible.

Specifically, the thermal analysis shows that peak fuel temperatures and peak rock

temperatures in the repository will not exceed 190 'C and 145'C respectively. These

results were obtained using a three-dimensional finite element analysis of the thermal

loading in the repository and validated using two-dimensional finite element and one-

dimensional (infinite line source) analytical methods. Mechanical analysis also shows

that the waste package design is sufficient to withstand all expected loading until after the

repository is closed. Longitudinal buckling, radial crushing, and tensile failure modes

were analyzed using limits based on elastic shell theory. The use of SiC particulate fill in

the waste package, the modest maximum depth of the directionally drilled repository

(approximately 3000 m below the surface), and the reliance on the host geology for long

term isolation of the waste permit the use of an inexpensive canister material and simple

design while still meeting all requirements.

5.2 Recommendations for Future Work

In order to further demonstrate the feasibility of very-deep boreholes in general and

lateral emplacement in particular, further work is required in the following areas:

* Performing a total system performance assessment of borehole plugging materials

" Refining the cost model to better reflect cost dependence with depth and diameter

" Further study of radionuclide transport through crystalline rock

" Testing of fill material efficacy in improving package crushing resistance

" Evaluation of cost and efficacy of using grout / bentonite clay as fill material

surrounding waste packages

* Identifying additional experiential cost data from industry for drilling model

calibration



" Study of advanced drilling techniques such as air drilling and spallation drilling

" Further evaluation of cost implication of dry vice wet fuel rod consolidation

* Validation / modification of the canister design to accommodate non-vitrified

defense wastes (such as spent Naval Nuclear fuel)

5.3 Conclusions

The small scale of the borehole concept allows for modularity and scalability of the

repository. The application of currently fielded oil and gaswell drilling practices makes

this approach extremely attractive for permanent and irretrievable waste disposal thereby

alleviating the research and development needed for large diameter boreholes. Taking

advantage of the impermeability of the crystalline formation to water/waste transport, and

the down-hole environmental conditions, the material for the waste package may be

selected for its strength properties and cost rather than for its performance as an

engineered barrier to release of radionuclides. This project demonstrates that marrying

fuel consolidation with small diameter lateral borehole disposal of high level waste

produces an economically and technically feasible waste repository design.



APPENDIX A: V-DeepBoRe Code
(Very-DEEP BOrehole REpository Cost Model)

A.1 Model Script Organization

Figure A-1, below, shows the overall organization of scripts used in the organization of the

drilling model and the flow of data between modules. The code for these modules is shown in

section A.2.

Script Script
Inputs 1 Outputs

Figure A-1: Repository Cost Model Script Flowchart

A.2 Model Scripts (MA TLAB)

A.2.1 Waste Packing Script (wastemass.m)

function [wasteparam]=wastemass(emplacementlength,no laterals,...

pipeschedule,IDs,PWR frac,Vit frac,vit load)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function estimates the total mass of HM stored in MTHM in the %

% repository once completely loaded %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Load array for hexagonal close packing circles based on the diameter of

% the hexagon

load hexarray

....................................................................................... .............. ---------_ ::::::: :_."_ __ - _ . .... ..... ..... - . , , , _ .. .. ...........



% Load array for

% Circle

load squarepacking

% Input parameters

L BWR=.134;

PWR rod diam=0.0095;

BWR rod diam=0.011;

Diam frac=.9;

PinsAssyPWR=264;

m assy PWR=.4987;

PinsAssyBWR=72;

m assyBWR=.1917;

borosilicate=2.23;

heavymetal=19.1;

packing squares within the diameter of a circumscribed

Cross section dimension of BWR fuel assembly (m)

pin diameter of PWR fuel pins (reconstituted) (m)

pin diameter of PWR fuel pins (reconstituted) (m)

usable fraction of casing inner diameter

number of pins in intact PWR assembly

mass of HM in 1 PWR assembly (MT)

number of pins in BWR assembly

mass of HM in 1 BWR assembly (MT)

density of borosilicate glass (MT/m^3)

density of HM (MT/m^3)

% calculate the density of heavy metal in vitrified waste

rhovit=borosilicate/((1/vit load-1)+borosilicate/heavymetal);

% Calculate the number of canisters in repository (5 m canister length)

no canisters=(emplacementlength/5)*no laterals;

% Calculate the interior diameter of the waste package

% (based on inner diameter of liner and Diam frac above)

canID=Diam frac*IDs(pipeschedule(3))/39.37;

% Calculate the volume of the waste canister (L*pi*d^2/4)

V can=5*(canID^2)/4*pi; % (in m^3)

100
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% Divide up the total number of canisters by waste form

PWR no=ceil(no canisters*PWR frac);

Vit no=ceil(no canisters*Vit frac);

BWR no=no canisters-PWR no-Vit no;

% Calculate max number of PWR fuel pins in hex array to fit canister ID

PWR diam=2*floor((floor(canID/PWR rod diam)-1)/2)+1;

no PWR pins=interpl(hexarray(:,l),hexarray(:,2),PWRdiam,'nearest');

% Calculate mass of fuel in a canister of PWR waste (MT)

mPWR=noPWR pins/PinsAssyPWR*m assyPWR;

% Calculate mass of fuel in Vitrified waste canister

mVit=V can*rho vit;

% Calculate # of intact BWR assemblies per cannister

no BWR assy=floor(interpl(squarepacking(:,2),squarepacking(:,l),...

canID/(LBWR*2), 'linear'));

no BWR pins=O;

% If intact BWR assy will not fit, calculate the number of BWR pins in

% waste canister and associated mass

if noBWRassy==0 || isnan(noBWR assy)

% Calculate number of fuel pins in hexagonal array to fit canister ID

BWR diam=2*floor((floor(canID/BWR rod diam)-l)/2)+l;

no BWR pins=interpl(hexarray(:,l),hexarray(:,2),BWR diam,'nearest');

% Calculate mass of fuel in BWR cannister

mBWR=noBWR pins/PinsAssyBWR*massyBWR;

BWR reconst=true;

noBWR assy=O;

else

m BWR=noBWR assy*m assyBWR;

BWR reconst=false;

end

% Tally total waste packing of repository from all three waste forms
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m HM=PWR no*m PWR+BWR no*m BWR+Vit no*m Vit;

% Output key results back to the drilling script for 'scoring' repository

wasteparam=[m_HM BWR-reconst noPWR-pins noBWR-assy noBWR pins];
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A.2.2 Drilling Cost Realization Script for Lateral Repository (drillbitlife.m)

function [depthtimecosthist,drillparam,wasteparam] = drill bit life...

(pluglength,emplacementlength,declination,nolaterals,...

pipeschedule,ODs,Holes,IDs,mused,mugran,sdgran,sd sed,PWRfrac,...

Vit frac,rho vit,casing mass,bit cost,radii)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function executes a Monte Carlo simulation of drilling a single %

% vertical shaft of a borehole repository based on the inputs from the %

% drilling costs.m script and outputs the simulated drilling progress in %

% cost and time vs. depth as well as material (cement and casing) used, and %

% how the waste is accomodated (canister packing, whether reconstitution is %

% required, etc.) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Drilling Parameters

backhaul=350;

surfdepth=200;

changeoutcost=[bitcost(pipeschedule...

(1)),bit cost(pipeschedule (2)),...

bit cost(pipeschedule (3))];

cementcost=(80*.75*1.506);

billingrate=4200;

emplacementbillingl=billingrate*2.5;

emplacementbilling2=billingrate*1.15;

casingspeed=350;

casingcost=6;

lowerspeed=350;

wastespeedl=25;

cementspeed=10;

cementcure=84;

% backhaul speed (m/hr)

% depth of surface hole (m)

% additional cost associated

% with repair/replacement

% of damaged drill bit ($)

% cost for concrete poured

% ($/m^3), [25% by weight

% H20, 1.506 kg/m^3 wet]

% cost factor of time ($/hr)

% cost multiplier while handling

% waste canisters ($/hr)

% cost multiplier while lowering

% waste canisters ($/hr)

% speed of lowering casing (m/hr)

% steel casing material cost ($/kg)

% speed of lowering bits (m/hr)

% speed of lowering string (m/hr)

% cement speed (m^3/hr)

% curetime needed for cement (hr)
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overburden=500;

lateraloffset=30;

kickoffdepth=(no laterals-i)*...

lateraloffset+overburden+...

pluglength+100;

kickcement=48;

latplug=72;

boreholeplug=240;

plugcost=1000000;

phasedelay=192;

closeoutcosts=2000000;

wastespeed2=casingspeed*.5;

% depth to granite formation (m)

% required vertical spacing

% between lateral kickoffs (m)

% calculate the depth of deepest

% lateral start (m)

% time to cement for kickoff

% time to plug the lateral (hr)

% time to plug the borehole (hr)

% Additional plug cost

% Additional completion time at end

% of each phase

% Final cleanup/closure costs ($)

% Handling speed of waste once 100m

% into hole (no remote handling)

%% Determine the turn radius to permit 10 meter lateral liner to make bend

% minimum radius of curvature for lateral to allow casing placement (m)

turnradius=radii(pipeschedule(3)-7);

% calculate distance drilled during transition to lateral

kickoffarc=turnradius* (90-declination)*pi/180;

%% Initialize Parameters

cementtally=O;

casingtally=0;

depthtimecosthist=zeros(20,3);

depthtimecosthist(1,3)=changeoutcost(1);

index=2;

% Total volume of cement (m^3)

% Total mass of casing steel (kg)

% Time and cost history matrix

% (depth, time, cost)

% for indexing the hist matrix

%% Drill surface shaft

disttogo=surfdepth;

% Determine the time to drill the surface shaft

while 1==l
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surfspeed=normrnd(mu sed(pipeschedule(l)),sdsed(pipeschedule(l)));

if surfspeed >= 0

break

end

end

while I==1

% Determine if failure occurs during the drilling of the surface shaft

ttf=200-lognrnd(log(100),.15);

if ttf>(disttogo/surfspeed)

depthtimecosthist(index,:)=[surfdepth,depthtimecosthist(index-l,...

2)+disttogo/surfspeed,depthtimecosthist(index-1,3)+disttogo/...

surfspeed*billingrate);

index=index+1;

break

else

disttogo=disttogo-ttf*surfspeed;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf*...

surfspeed,depthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+l;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-1,1) ...

/backhaul+depthtimecosthist(index-1,1)/lowerspeed,...

depthtimecosthist(index-1,3)+(depthtimecosthist(index-1,1)...

/backhaul+depthtimecosthist(index-1,1)/lowerspeed)*...

billingrate+changeoutcost(1)];

index- index+1;

end

end

%% Back out surface drill string

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (surfdepth/...

backhaul), (surfdepth/backhaul*billingrate)];

index=index+l;

%% Emplace surf casing
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casingmass=surfdepth*casingmass(pipeschedule(1));

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[O, (surfdepth/...

casingspeed), (surfdepth/casingspeed)*billingrate+casingmass*...

casingcost];

casingtally=casingtally+casingmass;

index=index+l;

%% Cement surf casing

% Calculate cement volume (annulus)

Vsurfcement=(Holes(pipeschedule(1))^2 - ODs(pipeschedule(1))^2)* ...

surfdepth*0.00064516/4*pi;

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[0, (cementcure+...

Vsurfcement/cementspeed), (cementcure+Vsurfcement/cementspeed)*...

billingrate+cementcost*Vsurfcement];

cementtally=cementtally+Vsurfcement;

index=index+l;

%% Lower vertical drill string

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (surfdepth/...

lowerspeed), (surfdepth/lowerspeed*billingrate)+changeoutcost(2)];

index=index+l;

%% Drill main vertical shaft

% Determine the time to drill the main shaft

% Sedimentary Overburden portion

while 1==l

mainspeedsed=normrnd(mu sed(pipeschedule(2)),sd sed(pipeschedule (2)));

if mainspeedsed >= 0

break

end

end
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disttogo=overburden-surfdepth;

while 1==1

% Determine if failure occurs during the drilling of the main shaft

ttf=200-lognrnd(log(100),.15);

if ttf>(disttogo/mainspeedsed)

depthtimecosthist(index,:)=[overburden,...

depthtimecosthist(index-1,2)+disttogo/mainspeedsed,...

depthtimecosthist(index-1,3)+disttogo/mainspeedsed*...

billingrate];

index=index+l;

break

else

disttogo=disttogo-ttf*mainspeedsed;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf*...

mainspeedsed,depthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+l;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed,...

depthtimecosthist(index-i,3)+(depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed)*...

billingrate+changeoutcost(2)];

index=index+l;

end

end

% Granite portion

while 1==1

mainspeedgran=normrnd(mu gran(pipeschedule (2)),...

sd gran(pipeschedule(2)));

if mainspeedgran >= 0

break

end

end

disttogo=kickoffdepth-overburden;

while 1==l

% Determine if a failure occurs during the drilling of the main shaft
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ttf=76-lognrnd(log(38),.1);

if ttf>(disttogo/mainspeedgran)

depthtimecosthist(index,:)=[kickoffdepth,...

depthtimecosthist(index-1,2)+disttogo/mainspeedgran,...

depthtimecosthist(index-1,3)+disttogo/mainspeedgran*...

billingrate];

index=index+1;

break

else

disttogo=disttogo-ttf*mainspeedgran;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf*...

mainspeedgran,depthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+i;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed,...

depthtimecosthist(index-i,3)+(depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed)*...

billingrate+changeoutcost(2)];

index=index+i;

end

end

%% Back out drill string

depthtimecosthist(index,:)=depthtimecosthist(index-,:)+[O, (kickoffdepth...

/backhaul), (kickoffdepth/backhaul*billingrate)];

index=index+1;

%% Emplace casing

casingmass=(kickoffdepth-surfdepth)*casingmass(pipeschedule (2));

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[O, (kickoffdepth...

/casingspeed), (kickoffdepth/casingspeed)*billingrate+casingmass...

*casingcost];

casingtally=casingtally+casingmass;
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index=index+l;

%% Cement lower casing

% Calculate cement volume (annulus) (only portions below plug zone)

Vmaincement=(Holes(pipeschedule (2))^2 - ODs(pipeschedule (2))^2)*...

(kickoffdepth-pluglength-surfdepth)*0.00064516/4*pi;

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (cementcure+...

Vmaincement/cementspeed), (cementcure+Vmaincement/cementspeed)*...

billingrate+cementcost*Vmaincement];

cementtally=cementtally+Vmaincement;

index=index+l;

%% Repeat for laterals:

for j=l:no laterals

%% Cement for kickoff

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0,...

(kickcement), (kickcement*billingrate)+changeoutcost(3)1;

index=index+l;

%% Lower lateral drill string

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0,...

(kickoffdepth/lowerspeed), (kickoffdepth/lowerspeed*billingrate)];

index=index+l;

%% Drill through to lateral declination

% Determine the time to drill the radial shaft

while 1==1

latspeed=normrnd(mu_gran(pipeschedule(3)),...

sd gran(pipeschedule (3)));

if latspeed >= 0

break
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end

end

latspeed=latspeed/2; % a factor of 2 is included to incorporate

% difficultly of turning radius

disttogo=kickoffarc;

while 1==1

% Determine if a failure occurs during the drilling of the radial

% kickoff

ttf=76-lognrnd(log(38),.1);

if ttf>(disttogo/latspeed)

depthtimecosthist(index,:)=[kickoffdepth+kickoffarc,...

depthtimecosthist(index-1,2)+disttogo/latspeed,...

depthtimecosthist(index-1,3)+disttogo/latspeed...

*billingratel;

index=index+i;

break

else

disttogo=disttogo-ttf*latspeed;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+...

ttf*latspeed,depthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+i;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-...

1,1)/backhaul+depthtimecosthist(index-1,1)/lowerspeeed,...

depthtimecosthist(index-1,3)+(depthtimecosthist(index-...

1,1)/backhaul+depthtimecosthist(index-1,1)/lowerspeed)...

*billingrate+changeoutcost(3)];

index=index+i;

end

end

%% Drill lateral

% Determine the time to drill the remainder of the lateral shaft

latspeed=latspeed*2; % factor of 2 removed

disttogo=emplacementlength;

while 1==1
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% Determine if a failure occurs during the drilling of the lateral

ttf=76-lognrnd(log(38),.l);

if ttf>(disttogo/latspeed)

depthtimecosthist(index,:)=[kickoffdepth+kickoffarc+...

emplacementlength,depthtimecosthist(index-1,2)+disttogo/...

latspeed,depthtimecosthist(index-1,3)+disttogo/latspeed*...

billingrate];

index=index+l;

break

else

disttogo=disttogo-ttf*latspeed;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf...

*latspeeddepthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+l;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-...

1,1)/backhaul+depthtimecosthist(index-1,1)/lowerspeed,...

depthtimecosthist(index-1,3)+(depthtimecosthist(index-...

1,1)/backhaul+depthtimecosthist(index-1,1)/lowerspeed)*...

billingrate+changeoutcost(3)];

index=index+l;

end

end

%% Back out drill string

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[O,...

(kickoffdepth+kickoffarc+emplacementlength)/backhaul,...

((kickoffdepth+kickoffarc+emplacementlength)/backhaul...

*billingrate)];

index=index+l;

%% Emplace lateral casing

casingmass=(emplacementlength+kickoffarc)*casingmass(pipeschedule (3));

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[O,...

(kickoffdepth/casingspeed+(kickoffarc+emplacementlength)/...
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(casingspeed))+phasedelay, (kickoffdepth/casingspeed+...

((kickoffarc+emplacementlength)/(casingspeed)+phasedelay)*...

billingrate)+casingmass*casingcost];

casingtally=casingtally+casingmass;

index=index+1;

%% Emplace waste canisters

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[0,...

(emplacementlength+100)/wastespeedl+(kickoffdepth+kickoffarc-...

100)/wastespeed2, (emplacementlength+100)/wastespeedl*...

emplacementbillingl+(kickoffdepth+kickoffarc-100)/wastespeed2 ...

*emplacementbilling2];

index=index+l;

%% Plug lateral

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[0,latplug,.

latplug*billingrate];

depthtimecosthist(index,1)=kickoffdepth;

index=index+l;

kickoffdepth=kickoffdepth-lateraloffset;

end

%% Back out vertical casing (above cemented region)

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0,...

(pluglength+surfdepth)/backhaul, (pluglength+surfdepth)/...

backhaul*billingrate+closeoutcosts];

depthtimecosthist(index,1)=pluglength+surfdepth;

index=index+1;

%% Plug borehole

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[0,...

boreholeplug,boreholeplug*billingrate+plugcost];
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depthtimecosthist(index,1)=O;

wasteparam=wastemass(emplacementlength,no laterals,pipeschedule,IDs,...

PWR frac,Vit frac,rho vit);

drillparam=[casingtally cementtally];
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A.2.3 Lateral Repository Trade Space Study Script (drillingcosts.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Lateral waste emplacement %

% Drilling cost script %

% Jonathan S Gibbs %

% 2009-2010 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear

clc

close all

format compact

%% Parameter Initialization

load in.mat

load radii.mat

Vit frac=.2;

PWRfrac=.64*(1-Vit frac);

vit load=.25;

output=O;

index=1;

%% Trade-space Generation

% loads parameters previously

% imported from Excel

% loads minimum radii by

% geometry of the trial

% fraction of canisters with

% vitrified wasteform

% fractin of canisters with

% PWR waste

% waste loading of vitrified

% waste by mass (i.e. 25% of

% vitrified mass is waste

% determines whether trial is

% plotted

% tracking parameter

% This part of the script will bound the trade-space by plug length,

% emplacement length, declination angle of lateral, number of laterals per

% vertical hole, which combinations of pipe schedules to try, and how many

% realizations (trials) should be conducted for each combination of the
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% above parameters

% Vertical plug length required (m)

min plug length=1500;

max plug length=1500;

plug length trials=l;

pluglength=linspace (min plug length,...

max pluglength,pluglength trials);

% Shaft length of lateral required (m)

minemplacementlength=1500;

maxemplacementlength=2500;

emplacementlengthtrials=3;

emplacementlength=linspace(minemplacement length,maxemplacement length,...

emplacement length trials);

% Declination angle of lateral emplacement (degrees from horizontal)

min declin=20;

max declin=50;

declin trials=4;

declination=linspace(min declin,max declin,declin trials);

% Number of lateral emplacements used per main shaft

min laterals=10;

max laterals=12;

no laterals=min laterals:l:max laterals;

% Pipe schedule combinations to study

pipeavail=l:2;

pipeschedule=zeros(length(pipeavail),3);

% indexing matrix to determine bits and casings used

for m=l:length(pipeavail)

pipeschedule (m,:)=pipecombos(pipeavail(m),:);

end

% Number of individual realizations for each combination

no realizations=5;
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% Total size of the trade-space

spacesize=length(nolaterals)*length(pluglength)*length(emplacementlength) ...

*length(declination)*size(pipeschedule,l)*norealizations;

% Initialize the tracker matrix

tracker=zeros(spacesize,16); % output matrix for key results

% from each trial

%% Trade-space study

if output==l

figure('Position', [100 100 750 900])

end

% For each trial in the trade-space (for each realization) calculate the

% results from the drill bit life.m and wastemass.m scripts

for i=l:length(no laterals)

for j=l:length(pluglength)

for k=l:length(emplacementlength)

for 1=1:length(declination)

for m=l:size(pipeschedule,1)

for n=l:no realizations

[depthtimecosthist,drillparam,wasteparam]=...

drill bit life(pluglength(j),...

emplacementlength(k),declination(l),...

no laterals(i),pipeschedule(m,:),ODs,Holes,...

TDs,mu sed,mu gran,sd gran,sd sed,PWR frac,...

Vit frac,vit load,casing-mass,bitcost,radii);

time=depthtimecosthist(size (depthtimecosthist,1) ...

,2)/24/wasteparam(l);

cost=depthtimecosthist(size (depthtimecosthist,1) ...

,3)/wasteparam(1);

tracker(index,:)=[time,cost,drillparam,wasteparam...

,pluglength(j),emplacementlength(k),...

declination(l),no laterals(i),...

Holes(pipeschedule (m,1)),...

Holes(pipeschedule(m,2)),...

Holes(pipeschedule(m,3))];

%% Output

% If plotting is desired, plot the history of depth
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% vs. time and cost for the most recent trial

if output==1

depthtimecosthist(:,2)=depthtimecosthist(:,
2 )

/24;

subplot (3,1,1)

figure(1)

hold on

plot(depthtimecosthist(:,2),-...

depthtimecosthist(:,1), 'LineWidth',2)

xlabel('\fontsize{l0}\bfTime (days)')

ylabel(['\fontsize{l0}\bfTotal Pathlength'...

' Hole Depth (m)'])

grid on

title(['\fontsize{14}\bfSample Repository'...

' Drilling Cost and Time Simulation'])

subplot (3,1,2)

hold on

plot(depthtimecosthist(:,3)/le6,...

-depthtimecosthist(:,1),'LineWidth',2)

xlabel('\fontsize{l0}\bfCost ($M)')

ylabel(['\fontsize{10}\bfTotal Pathlength'...

' Hole Depth (m)'])

grid on

subplot(3,1,3)

hold on

plot(depthtimecosthist(:,2),...

depthtimecosthist(:,3)/wasteparam(1)/ ...

le3,'LineWidth',2)

xlabel('\fontsize{i0}\bfTime (days)')

ylabel('\fontsize{10}\bfCost ($/kgHM)')

grid on

end

index=index+1;

end

end

(index-i)/spacesize*100

% outputs to the screen a progress indication

end

117



end

end

end

% save all results for use in plotting later

save final.mat tracker spacesize norealizations declin trials...

declination emplacementlengthtrials emplacementlength no-laterals
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A.2.4 Drilling Cost Realization Script for EGS Borehole (drill-egs.m)
function [depthtimecosthist,drillparam] -

drillegs(ODs,Holes,mused,mu gran,sdgran,sdsed,casing mass,bit cost)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function executes a Monte Carlo simulation of drilling a single %

% vertical shaft EGS borehole based on the inputs from the %

% drilling costs egs.m script and outputs the simulated drilling progress %

% in cost and time vs. depth %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Drilling Parameters

backhaul=350;

conductordepth=15.24;

surfdepth=152.4;

intdepth=1524;

prodldepth=3048;

prod2depth=5181.6;

prod3depth=6096;

changeout=O;

backhauling a drill bit

pipeschedule=[15 16 1 4 8 12];

changeoutcost=[bitcost(...

pipeschedule (1)),...

bit cost(pipeschedule (2)),

bit cost(pipeschedule (3)),

bit cost(pipeschedule (4)),

bit cost(pipeschedule (5)),

bit cost(pipeschedule (6))]

cementcost=(80*.75*1.506);

billingrate=4200;

casingspeed=350;

backhaul speed (m/hr)

depth of conductor hole (m)

depth of surface hole (m)

depth of intermediate hole (m)

depth of production hole 1 (m)

depth of production hole 2 (m)

depth of production hole 3 (m)

delay time lost on the surface after

% calls out the pipes to be used in the EGS

% comparison hole

% additional cost associated with repair/

%replacement of damaged drill bit ($)

% cost for concrete poured ($/m^3)

% [25% by weight H20, 1.506 kg/m^3 wet]

% cost multiplier of time ($/hr)

% speed of lowering casing (m/hr)
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casingcost=6;

lowerspeed=350;

cementspeed=10;

cementcure=48;

overburden=500;

cementtally=0;

casingtally=0;

phasedelay=192;

closeoutcosts=2000000;

depthtimecosthist=zeros(20,3);

depthtimecosthist(1,3)=...

changeoutcost(1);

index=2;

steel casing material cost ($/kg)

speed of lowering drill bits (m/hr)

pumping speed of cement (m^3/hr)

curetime required for cementing (hr)

depth to granite formation (m)

Total volume of cement (m^3)

Total mass of casing used (kg)

Additional delay time at end of each phase

Final cleanup and closure costs ($M)

preallocates the time and cost history

% matrix (depth, time, cost)

% this parameter will index the hist matrix

%% Drill Conductor shaft

disttogo=conductordepth;

% Determine the time to drill the conductor shaft

while 1==1

condspeed=normrnd(mused(pipeschedule(l)),sdsed(pipeschedule(l)));

if condspeed >= 0

break

end

end

while 1==1

% Determine if a failure occurs during the drilling of the conductor

shaft

ttf=200-lognrnd(log(100),.15);

if ttf>(disttogo/condspeed)

depthtimecosthist(index,:)=[conductordepth,...

depthtimecosthist(index-1,2)+disttogo/condspeed,...

depthtimecosthist(index-1,3)+disttogo/condspeed*billingratel;

index=index+l;

break

else

disttogo=disttogo-ttf*condspeed;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf*...
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condspeed,depthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+1;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout,...

depthtimecosthist(index-1,3)+(changeout+depthtimecosthist(...

index-1,1)/backhaul+depthtimecosthist(index-1,1)/lowerspeed) ...

*billingrate+changeoutcost(1)];

index=index+1;

end

end

%% Back out drill string

depthtimecosthist(index,:)=depthtimecosthist(index-i,:)+[O,...

(conductordepth/backhaul), (conductordepth/backhaul*billingrate)];

index=index+i;

%% Emplace conductor casing

casingmass=conductordepth*casing mass(pipeschedule (1));

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[O,...

(conductordepth/casingspeed), (conductordepth/casingspeed)*...

billingrate+casingmass*casingcost];

casingtally=casingtally+casingmass;

index=index+1;

%% Cement conductor casing

% Calculate cement volume (annulus)

Vcondcement=(Holes(pipeschedule(1))^2 - ODs(pipeschedule(i))^2)* ...

conductordepth*0.00064516/4*pi;

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[O,...

(cementcure+Vcondcement/cementspeed), (cementcure+Vcondcement/...

cementspeed)*billingrate+cementcost*Vcondcement];

cementtally=cementtally+Vcondcement;
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index=index+l;

%% Lower vertical drill string

depthtimecosthist(index,:)=depthtimecosthist(index-i,:)+[O,...

conductordepth/lowerspeed, (conductordepth/lowerspeed*...

billingrate)+changeoutcost(2)];

index=index+i;

%% Drill Surf shaft

disttogo=surfdepth-conductordepth;

% Determine the time to drill the surface shaft

while 1==1

surfspeed=normrnd(mused(pipeschedule(2)),sdsed(pipeschedule(2)));

if surfspeed >= 0

break

end

end

while 1==1

% Determine if a failure occurs during the drilling of the surface shaft

ttf=200-lognrnd(log(100),.15);

if ttf>(disttogo/surfspeed)

depthtimecosthist(index,:)=[surfdepth,depthtimecosthist(index-...

1,2)+disttogo/surfspeed,depthtimecosthist(index-1,3)+...

disttogo/surfspeed*billingrate];

index=index+1;

break

else

disttogo=disttogo-ttf*surfspeed;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf*...

surfspeed,depthtimecosthist(index-1,2)+ttf,depthtimecosthist(...

index-1,3)+ttf*billingrate];

index=index+1;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout,...
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depthtimecosthist(index-1,3)+(changeout+depthtimecosthist(...

index-1,1)/backhaul+depthtimecosthist(index-1,1)/lowerspeed)*...

billingrate+changeoutcost(1)];

index=index+1;

end

end

%% Back out drill string

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (surfdepth/...

backhaul), (surfdepth/backhaul*billingrate)];

index=index+1;

%% Emplace surf casing

casingmass=surfdepth*casingmass(pipeschedule (2));

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (surfdepth/...

casingspeed), (surfdepth/casingspeed)*billingrate+casingmass*casingcost];

casingtally=casingtally+casingmass;

index=index+l;

%% Cement surf casing

% Calculate cement volume (annulus)

Vsurfcement=(Holes(pipeschedule (2))^2 - ODs(pipeschedule(2))^2)* ...

surfdepth*0.00064516/4*pi;

depthtimecosthist(index,:)=depthtimecosthist(index-i,:)+[0, (cementcure+...

Vsurfcement/cementspeed), (cementcure+Vsurfcement/cementspeed)*...

billingrate+cementcost*Vsurfcement];

cementtally=cementtally+Vsurfcement;

index=index+l;

%% Lower vertical drill string

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (surfdepth/...

lowerspeed), (surfdepth/lowerspeed*billingrate)+changeoutcost(3)];
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index=index+l;

%% Drill Intermediate shaft

% Determine the time to drill the intermediate shaft

% Overburden portion

while 1==1

intspeedsed=normrnd(mused(pipeschedule (3)),sdsed(pipeschedule(3)));

if intspeedsed >= 0

break

end

end

disttogo=overburden-surfdepth;

while 1==1

% Determine if a failure occurs during the drilling of the surface shaft

ttf=200-lognrnd(log(100),.15);

if ttf>(disttogo/intspeedsed)

depthtimecosthist(index,:)=[overburden,depthtimecosthist(index-i,...

2)+disttogo/intspeedsed,depthtimecosthist(index-1,3)+disttogo/...

intspeedsed*billingrate];

index=index+1;

break

else

disttogo=disttogo-ttf*prodlspeedsed;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf*...

intspeedsed,depthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+l;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout,...

depthtimecosthist(index-1,3)+(depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout)*...

billingrate+changeoutcost(3)];

index=index+i;

end
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end

% Granite portion

while 1==1

intspeedgran=normrnd(mu gran(pipeschedule (3)),sdgran(pipeschedule (3)));

if intspeedgran >= 0

break

end

end

disttogo=intdepth-overburden;

while 1==1

% Determine if failure occurs when drilling of the intermediate shaft

ttf=76-lognrnd(log(38),.1);

if ttf>(disttogo/intspeedgran)

depthtimecosthist(index,:)=[intdepth,depthtimecosthist(index-...

1,2)+disttogo/intspeedgran,depthtimecosthist(index-1,3)+...

disttogo/intspeedgran*billingratel;

index=index+i;

break

else

disttogo=disttogo-ttf*intspeedgran;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf*...

intspeedgran,depthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+l;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,i),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout,...

depthtimecosthist(index-1,3)+(depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout) ...

*billingrate+changeoutcost(3)];

index=index+i;

end

end

%% Back out drill string
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depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[O, (intdepth/...

backhaul), (intdepth/backhaul*billingrate)];

index=index+l;

%% Emplace casing

casingmass=intdepth*casing mass (pipeschedule (3));

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[O, (intdepth/...

casingspeed), (intdepth/casingspeed)*billingrate+casingmass*casingcost];

index=index+1;

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[O,phasedelay,...

phasedelay*billingrate];

casingtally=casingtally+casingmass;

index=index+l;

%% Cement casing

% Calculate cement volume (annulus)

Vintcement=(Holes(pipeschedule(3))^2 - ODs(pipeschedule(3))^2)*intdepth*...

0.00064516/4*pi;

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (cementcure+...

Vintcement/cementspeed), (cementcure+Vintcement/cementspeed)*...

billingrate+cementcost*Vintcement];

cementtally=cementtally+Vintcement;

index=index+l;

%% Lower vertical drill string

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (intdepth/...

lowerspeed), (intdepth/lowerspeed*billingrate)+changeoutcost(4)];

index=index+l;

%% Drill production shaft 1

% Determine the time to drill the production shaft 1

while 1==1
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prodlspeedgran=normrnd(mu gran(pipeschedule (4)),sdgran(...

pipeschedule(4)));

if prodlspeedgran >= 0

break

end

end

disttogo=prodldepth-intdepth;

while 1==l

% Determine if failure occurs during the drilling of production shaft 1

ttf=76-lognrnd(log(38),.l);

if ttf>(disttogo/prodlspeedgran)

depthtimecosthist(index,:)=[prodldepth,depthtimecosthist(index-...

1,2)+disttogo/prodlspeedgran,depthtimecosthist(index-1,3)+...

disttogo/prodlspeedgran*billingratel;

index=index+l;

break

else

disttogo=disttogo-ttf*prodlspeedgran;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf*...

prodlspeedgran,depthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+l;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout,...

depthtimecosthist(index-1,3)+(depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout) ...

*billingrate+changeoutcost(4)];

index=index+l;

end

end

%% Back out drill string

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (prodldepth/...

backhaul), (prodldepth/backhaul*billingrate)];

index=index+l;
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%% Emplace casing

casingmass=prodidepth*casingmass(pipeschedule(4));

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[O, (prodldepth/...

casingspeed), (prodidepth/casingspeed)*billingrate+casingmass*...

casingcost];

casingtally=casingtally+casingmass;

index=index+1;

%% Cement casing

% Calculate cement volume (annulus)

Vprodlcement=(Holes(pipeschedule(4))^2 - ODs(pipeschedule(4))^2)* ...

prodldepth*0.00064516/4*pi;

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[0, (cementcure+...

Vprodlcement/cementspeed), (cementcure+Vprodlcement/cementspeed)*...

billingrate+cementcost*Vprodlcement];

index=index+1;

depthtimecosthist(index,:)=depthtimecosthist(index-i,:)+[0,phasedelay,...

phasedelay*billingrate];

cementtally=cementtally+Vprodlcement;

index=index+1;

%% Lower vertical drill string

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (prodidepth/...

lowerspeed), (prodldepth/lowerspeed*billingrate)+changeoutcost(5)];

index=index+1;

%% Drill production shaft 2

% Determine the time to drill the production shaft 2

while 1==1
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prod2speedgran=normrnd(mugran(pipeschedule (5)),sdgran(pipeschedule(5)));

if prod2speedgran >= 0

break

end

end

disttogo=prod2depth-prodldepth;

while 1==1

% Determine if a failure occurs during the drilling of the main shaft

ttf=76-lognrnd(log(38),.l);

if ttf>(disttogo/prod2speedgran)

depthtimecosthist(index,:)=[prod2depth,depthtimecosthist(index-...

1,2)+disttogo/prod2speedgran,depthtimecosthist(index-1,3)+...

disttogo/prod2speedgran*billingrate];

index=index+l;

break

else

disttogo=disttogo-ttf*prod2speedgran;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf*...

prod2speedgran,depthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+l;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout,...

depthtimecosthist(index-1,3)+(depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout) ...

*billingrate+changeoutcost(5)];

index=index+l;

end

end

%% Back out drill string

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[0, (prod2depth/...

backhaul), (prod2depth/backhaul*billingrate)];

index=index+1;
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%% Emplace casing

casingmass=(prod2depth-prodldepth)*casing mass(pipeschedule(5));

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[O, (prod2depth/...

casingspeed), (prod2depth/casingspeed)*billingrate+casingmass*casingcost];

casingtally=casingtally+casingmass;index=index+l;

%% Cement casing

% Calculate cement volume (annulus)

Vprod2cement=(Holes(pipeschedule (5))^2 - ODs(pipeschedule (5))^2)*...

(prod2depth-prodldepth)*0.00064516/4*pi;

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[0, (cementcure+...

Vprod2cement/cementspeed), (cementcure+Vprod2cement/cementspeed)*...

billingrate+cementcost*Vprod2cement];

index=index+l;

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[0,phasedelay,...

phasedelay*billingrate];

cementtally=cementtally+Vprod2cement;

index=index+l;

%% Lower vertical drill string

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[0, (prod2depth/...

lowerspeed), (prod2depth/lowerspeed*billingrate)+changeoutcost(6)];

index=index+1;

%% Drill production shaft 3

% Determine the time to drill the production shaft 3

while 1==1

prod3speedgran=normrnd(mugran(pipeschedule (6)),sdgran(...

pipeschedule (6)));

if prod3speedgran >= 0

break
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end

end

disttogo=prod3depth-prod2depth;

while 1==1

% Determine if a failure occurs during the drilling of the main shaft

ttf=76-lognrnd(log(38),.i);

if ttf>(disttogo/prod3speedgran)

depthtimecosthist(index,:)=[prod3depth,depthtimecosthist(index-...

1,2)+disttogo/prod3speedgran,depthtimecosthist(index-1,3)+...

disttogo/prod3speedgran*billingratel;

index=index+1;

break

else

disttogo=disttogo-ttf*prod3speedgran;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,1)+ttf*...

prod3speedgran,depthtimecosthist(index-1,2)+ttf,...

depthtimecosthist(index-1,3)+ttf*billingrate];

index=index+1;

depthtimecosthist(index,:)=[depthtimecosthist(index-1,i),...

depthtimecosthist(index-1,2)+depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout,...

depthtimecosthist(index-1,3)+(depthtimecosthist(index-1,1)/...

backhaul+depthtimecosthist(index-1,1)/lowerspeed+changeout)*...

billingrate+changeoutcost(6)];

index=index+1;

end

end

%% Back out drill string

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[O, (prod3depth/...

backhaul), (prod3depth/backhaul*billingrate)];

index=index+1;

%% Emplace casing

casingmass=(prod3depth-prod2depth)*casing mass(pipeschedule (6));
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depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[O, (prod3depth/...

casingspeed), (prod3depth/casingspeed)*billingrate+casingmass*casingcost];

casingtally=casingtally+casingmass;

index=index+l;

%% Cement casing

% Calculate cement volume (annulus)

Vprod3cement=(Holes(pipeschedule(6))^2 - ODs(pipeschedule(6))^2)* (...

prod3depth-prod2depth)*0.0006 4 516 /4 *pi;

depthtimecosthist(index,:)=depthtimecosthist(index-1,:)+[O, (cementcure+...

Vprod3cement/cementspeed), (cementcure+Vprod3cement/cementspeed)*...

billingrate+cementcost*Vprod3cement];

index=index+1;

depthtimecosthist(index,:)=depthtimecosthist(index-l,:)+[O,phasedelay,...

phasedelay*billingrate+closeoutcosts];

cementtally=cementtally+Vprod3cement;

drillparam=[casingtally cementtally];
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A.2.5 EGS Borehole Trial Script (drillingcostsegs.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% EGS Comparison %

% Drilling cost script %

% Jonathan S Gibbs %

% 2009-2010 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This script runs the overall cost model for the specific case of the EGS

% nominal borehole (20,000 ft deep well) presented in Sandia National

% Laboratories report SAND2008-7866, December 2008 and then plots 10 trials

% of these results agains those from Sandia's report

%% Parameter Initialization

clear

clc

close all

format compact

load in.mat % loads parameters previously imported from Excel

no realizations=10;

output=1;

index=1;

tracker=zeros (no realizations,4);

trackerheader=['time ', ' cost', ' casing-mass', ' cement-volume'];

if output==1

figure('Position', [100 100 750 900])

end

for i=l:no realizations

[depthtimecosthist,drillparam]=drillegs(ODs,Holes,mu sed,mu gran,...

sd gran,sd sed,casing-mass,bitcost);

time=depthtimecosthist(size(depthtimecosthist,1),2)/24;

cost=depthtimecosthist(size(depthtimecosthist,1),3);

tracker(index,:)=[time,cost,drillparam];

%% Output

if output==1

depthtimecosthist(:,2)=depthtimecosthist(:,2)/24;
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subplot (3,1,1)

figure (1)

hold on

plot(EGSdepthtimecost(:,2),-EGSdepthtimecost(:,1),'r--',...

'LineWidth',2)

plot(depthtimecosthist(:,2),-depthtimecosthist(:,1),'LineWidth',1)

xlabel('\fontsize{l0}\bfTime (days)')

ylabel('\fontsize{l1}\bfTotal Hole Depth (m)')

grid on

title(['\fontsize{14}\bfEGS Reference Simulation Cost and Time'...

' Simulation'])

legend(['20,000 ft EGS Well','Borehole Drilling Cost'...

' Simulations'],'Location','SouthWest')

subplot (3,1,2)

hold on

plot(EGSdepthtimecost(:,3)/le3,-EGSdepthtimecost(:,l),'r--',...

'LineWidth',2)

plot(depthtimecosthist(:,3)/le6,-depthtimecosthist(:,1),...

'LineWidth',1)

xlabel('\fontsize{l0}\bfCost ($M)')

ylabel('\fontsize{l0}\bfTotal Hole Depth (m)')

grid on

legend('20,000 ft EGS Well','Borehole Drilling Cost Simulations',...

'Location','SouthWest')

subplot (3,1,3)

hold on

plot(EGSdepthtimecost(:,2),EGSdepthtimecost(:,3)/le3,'r--',...

'LineWidth',2)

plot(depthtimecosthist(:,2),depthtimecosthist(:,3)/le6,...

'LineWidth',1)

xlabel('\fontsize{l0}\bfTime (days)')

ylabel('\fontsize{10}\bfCost ($M)')

grid on

legend('20,000 ft EGS Well','Borehole Drilling Cost Simulations'...

,'Location','NorthWest')

end

index=index+1;

end
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A.3 Drilling Sample Problem
To evaluate a small trade space, the following repository features are examined:

e Emplacement Length 2000m or 2500m

* Lateral Declinations 200 or 400

* Number of Laterals 3, 4, or 5

" Pipe Schedule 26", 17 ", 11 /8"

With a single realization per trial, a total of 24 realizations are run.

The inputs (as produced from an excel dataset shown in Figure 2-6) are:

Drill Bit Diameters Liner Inner Diameter Liner Outer Diameter

Lookup (inches) Lookup (inches) Lookup (inches)

>> Holes >> IDs >> ODs

Holes = IDs = ODs =

26 19.25 20

24 17.25 18

20 15.25 16

17.5 13.25 14

17 12 12.75

15.5 11 11.75

14.5 10.02 10.75

12.25 8.941 9.625

11.625 7.981 8.625

10.75 7.023 7.625

9 6.065 6.625

8.75 5.047 5.563

7.875 4.506 5

6.25 4.026 4.5

48 39.125 40

36 29.125 30
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Drill Bit Replacement

Cost Lookup ($)

>> bit cost

Casing Mass Lookup

(kg/m)

>> casing mass

Kickoff Radius of

Curvature Lookup (m)

>> radii

bit cost =

72024

64774

50568

41890

40173

35058

31679

24167

22103

19229

13537

12730

9917.9

4745.5

1.583e+005

1.0976e+005

casing mass =

116.97

105.05

92.98

81.209

73.753

67.801

60.241

50.464

42.487

35.031

28.23

21.757

18.662

16.057

275.1

205.57
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radii =

270.69

242.41

234.51

305.65

230.59

250.31

392.05



Allowable

Combinations of Pipe

Diameters

>> pipecombos

pipecombos =

Figure A-2 shows the trace of each trial in this sample (depth, time and cost history)
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Figure A-2: Sample Problem Output

Table A-I lists the output (tracker) from these 24 trials.
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Table A-1: Drilling Script Output
Trial 1 2 3 4 5 6 7 8 9 10 1 11 12

Time (Days/MTHM) 0.4613 0.4186 0.4034 0.4043 0.4520 0.4161 0.4350 0.3922 0.4325 0.4134 0.3741 0.3673
Cost ($/MTHM) 65145 60261 57103 57121 64163 60176 60705 55721 59937 57686 52159 51266

Casing Mass (kg) 475235 464450 538965 528180 475235 464450 538965 528180 575228 560848 660202 645822

Cement Volume (M
3

) 53.67 53.67 53.67 53.67 53.67 53.67 53.67 53.67 55.34 55.34 55.34 55.34

Repository Capacity (MTHM) 492.52 492.52 615.60 615.60 492.52 492.52 615.60 615.60 656.69 656.69 820.80 820.80
BWR Reconstitution 1 1 1 1 1 1 1 1 1 1 1 1

PWR Pins 271 271 271 271 271 271 271 271 271 271 271 271

BWR Assemblies 0 0 0 0 0 0 0 0 0 0 0 0

BWR Pins 169 169 169 169 169 169 169 169 169 169 169 169

Plug Length 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500
Lateral Length 2000 2000 2500 2500 2000 2000 2500 2500 2000 2000 2500 2500

Declination 20 40 20 40 20 40 20 40 20 40 20 40

Number of Laterals 3 3 3 3 3 3 3 3 4 4 4 4

Bit Size 1 26 26 26 26 26 26 26 26 26 26 26 26
Bit Size 2 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5

Bit Size 3 11.625 11.625 11.625 11.625 11.625 11.625 11.625 11.625 11.625 11.625 11.625 11.625

Trial 13 1 14 1 15 1 16 |17 18 19 20 21 22 1 23 24
Time (Days/MTHM) 0.4064 0.3952 0.3687 0.3854 0.4268 0.3977 0.3813 0.3725 0.3945 0.3868 0.3826 0.3515

Cost ($/MTHM) 56914 55616 51534 53369 58074 54583 51965 50802 54391 53450 51995 48492

Casing Mass (kg) 575228 560848 660202 645822 675221 657246 781439 763464 675221 657246 781439 763464

Cement Volume (M
3

) 55.34 55.34 55.34 55.34 57.02 57.02 57.02 57.02 57.02 57.02 57.02 57.02

Repository Capacity (MTHM) 656.69 656.69 820.80 820.80 820.80 820.80 1026.00 1026.00 820.80 820.80 1026.00 1026.00
BWR Reconstitution 1 1 1 1 1 1 1 1 1 1 1 1

PWR Pins 271 271 271 271 271 271 271 271 271 271 271 271

BWR Assemblies 0 0 0 0 0 0 0 0 0 0 0 0

BWR Pins 169 169 169 169 169 169 169 169 169 169 169 169

Plug Length 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500

Lateral Length 2000 2000 2500 2500 2000 2000 2500 2500 2000 2000 2500 2500

Declination 20 40 20 40 20 40 20 40 20 40 20 40
Number of Laterals 4 4 4 4 5 5 5 5 5 5 5 5

Bit Size 1 26 26 26 26 26 26 26 26 26 26 26 26

Bit Size 2 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5
Bit Size 3 11.625 11.625 11.625 11.625 11.625 11.625 11.625 11.625 11.625 11.625 11.625 11.625

This matrix of values are then plotted to evaluate any trends in the cost and completion time of

the repositories to identify the most feasible repository configuration. Figures A-3 through A-6

show the small trade-space study.
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Sample Repository Drilling Cost and Time Simulation (by Declination Angle)
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Figure A-3: Trade-space
by Declination Angle (0)
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Figure A-4: Trade-space
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140

................................ " ._ . ..... .......

AA
+

+ -

f i I +

+ 4



APPENDIX B: THERMAL ANALYSIS CALCULATIONS

B.1 Decay Heat Modeling

Decay Heat Generation Estimation: Comparison of Malbrain, Lester, Deutch to ANS Standard

Parameters from notional PWR Reactor

Thermal Rating of Reactor

Total Number of Assemblies in Reactor

Number of Fuelled Pins/Assembly

Fuel Pin Total Length

Full Power Pin Thermal Rating

PWR Fuel Assembly mass

Q Tot := 3411 MW

N assy 193

N Pins 264

LassyPvR := 4.1 m

Q Tot
Q pnfiillpower :=N *Nassy pins

massy := 0.4987 tonne

Fuel Parameters

Time of cooling

Time of operation (for ANS Std)

tc : 40 yr

ts : 3.53 yr

L assyBWR := 4.2 m
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Decay Power Relations

ANS Standard (from Kazimi and Todreas):

Npins-can

pin(t) := Qpin1fullpoweiP.066- t.-

From Malbrain, Lester, Deutch:

C := 550

p 0.749

C 2 := 0.223

C sec

C3 := 0.117

D, := 9.41-103

Qassy(t) massy-Ci .rexpr C2 + C3 - t + - ---o W

massy rDl -t + -J -- otherwise
yr _tonne

tc
if t + - < 31.4824

yr

Qassy(t)

Npins

PWR Decay Power (301 Pins / Canister, 40 yr Cooling)

20 40 60 80

Time After Irradiation (yr)

- ANS Standard (T & K)
-- Malbrain, Lester, Deutch
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ANS Standard

Immediately After Irradiation:

Immediately After Emplacement

Malbrain, Lester, Deutch

Immediately After Irradiation:

Immediately After Emplacement

m assybwr := 0.1947 tonne

Qpin (0 Npins-can 5 - 23W=an 82.3-

LassyPWR m

te
Q pin - N pinscan

= 36.732
LassyPWyR

Qpin2 (0) Npins can 5
=82.35

LassyPWR

Q pin2 # )N pinscan

Lassy PWR

W
m

W
m

W~

N pinsbwr

tc W
massybwr.C I exp rC2 + C3 t + - ] tonne

massybwr D ± t+ -t+ t--- otherwise
yr _ tonne

tc
if t + - < 31.4824

yr

Q assybwr (t)

N pinsbwr

Q pinbwr - Npinscan 6)

LassyBWR
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W

= 48-
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- = 49 -



Decay Heat Correlation for LWR Uranium Fuel

10 20 30 40 50 60 70

Time (yr)

K := 2.7
m-A0 C

t -yr

- 0

2
m

a40 -
yr

Qpin(t) *N2pins ex (rm2

assy_PWR cn L4a-(t-yr -T)
4-t -K t-yr -T

A C
pt -yr

Qpin2(t) Npinscan (r m)2

assyWR 4a-(t-yr--c)_ .dT

04-7 -K t-yr - T

A0 C

Qpin(O)-Npins can 5  tc .FinF 4atyr] 05772
L In -20577

Lassy PWR *4-r . t-yr+ t (r.m)

A0 C

Qpin2(0) Npins-can
5  tc _.[[4- -

LassyPWR 4 i-tK t.yr + t L (r m)2

A0 C

r in m, t in yr

r in m, t in yr

r in m, t in yr

r in m, t in yr
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1 -D Time Histories (Inf Line Source, 40 yr cooling, 301 Pins/Can)

- 0.5 m From CL (ANS STD)
- 0.5 m From CL (M, L &D)

. 0.5 m From CL (Pulse, ANS STD initial)
-- 0.5 m From CL (Pulse, M, L &D initial)

2I I I I I I |
2 4 6 8 10 12 14 16 18

Time Since Emplacement (yr)

l-D Temp Profiles (Inf Line Source, 40 yr cooling, 301 Pins/Can)
I I I Y I I I I I

8 Years After Emplacement (ANS STD)
- 8 Years After Emplacement (M, L &D)
* 8 Years After Emplacement (Pulse, ANS STD initial)
-- 8 Years After Emplacement (Pulse, M, L &D initial)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Radial Distance (in)
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B.2 Scaling Validation Test Results
In order to validate the 3-Dimensional scaling performed for the Finite Element Analysis

used in Section 3.2.3, a simplified scaled problem was modeled in Solidworks. In this

test, a full scale 1Oim x 1Oim x 2m slab with a 4m diameter curved surface (with a heat

source) was also modeled at 1/ 10 th small scale. Identical fixed temperature boundary

conditions at the top and bottom to both cases and the material density and the heat flux

on the curved surface are scaled according to Table blah (the same scaling methodology

as in section 3.2.3.). It is demonstrated that the temperatures and times of the problem

are preserved in the scaled model and that the methodology is valid.

Table B-1: Scaling Parameters for Test
Small Scale Block Large Scale Block

Height (m) 1 10
Width (m) 1 10
Thickness (m) 0.2 2
Hole Diameter (m) 0.4 4
k W/m-K 16 16
p _k_/m_ _ 80000 8000

C _J/k_-K_ 500 500

q" (W/m2 K)
(Decay Curve Multiplier) 100 10
Upper Temp (0C) 25 25
Lower Temp (*C) 109 109

Figure B-1: Full d Small Scale
Geomet

Scaling Procedure Validation

II I | I I| I | l | | | | | [ |

| | | | 1 I I | I 1 I I J | | | | | | | | |

- 1 - -- -1 - - LL L 1 -1 L i -L I
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I I I I | | | 1
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Figure B-2: Temperature History Comparison of Scaled and Unscaled Geometries
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Figure B-3: Full Scale Final Temperature
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Figure B-4: Small Scale Final Temperature



APPENDIX C: MECHANICAL STRESS CALCULATIONS

Borehole Canister Stress Analysis

1
7+ -

rin 2 in rin = 90.4875 mm Esteel := 190000 MPa

11
7 + -

rout 16 -in rout = 97.63125 mm v := 0.26
2

1 := 5m

Critical stress for localized buckling (Roark

Esteel rout - rin
s_prime:=

.-J I- v2 rout

EQN 25 of Table XVI):

9
sprime - 8.3124537 x 10 Pa

Canister Mass:

Casing Mass

Vsteel R (rout2

Psteel 7874- 3
m

Waste Mass

N PWR=
pinsPWR

massy PWR :=

mpin PWR 2.4

massyBWR :=

mpin BWR 3.3

rin2 .1+ 2 -rin2.7 -(rout - rin)

msteel := V steel *P steel

01

00kg

221453

273 kg

703704

Vsteel

msteel

2.1477035 x 10 mm3

169.1101713 kg

NpinsBWR := 211 lassy PWR 4.2m lassyBWR := 4.lm

N massy PWR
NpinsassyPWR := 289 mpinPWR N massyPR

pins_assyjVPWR

kg mPWR waste := NpinsPWR "'pin PWR mPWvR waste = 729.0657439 kg

massy BWR
Npins assy BWR:= 81 mpin BWR N

- pins _assyBWR

kg mBWR waste := Npins BWR-mpinBWR mBWRwaste = 711.1481481 kg
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SiC Fill Mass

VfillPWR:= [i 2 .(rout - rin)] .(rin2)-7 Npins PWyR (9.5 m) 2] 'ssy_PWR

3.863983 x 10 mm3 Pfill:= 3.1
3

cm
Packing Factor

mfill pWR := Vfill PWR p fill-PackingFactor

VfillBWR:= 1
(mm )l

-- NpinsBWR' 4 'isW

Vfill BWR = 4.6035885
7 3

x 10 mm

mfill BWR := Vfill BWR p fill-PackingFactor mfill BWR 92.7623089

Total Canister Mass

mCanister PWR

mCanister BWR

:msteel + mPWR waste

:msteel + mBWR waste

+ mfill PWR

+ mfill BWR

mCanister PWR = 976.0351728 kg

mCanister BWR = 973.0206283 kg

Total Weight of Waste String

W stringPWR

W stringBWR

2000 m
1 mmCanisterPWR -g

!2000 m -mCanisterBWR -g

WstringPWR= 3.8286541 x 106 N

WstringBWR= 3.8168291 x 106 N

Tensile Stress in Canister Wall

ACrossSection := 7C .(rout2 - rin 2)

GTopof StringPWR

3 2 kg
ACrossSection = 4.2219026 x 10 mm p mud := 1000 kg

3In
WstringPWR - P mud 2000 m.7. rout 2)g

ACross Section

G Topof StringPWR = 7.6774142 x 108 Pa

Top of String BWR

G Top of StringBWR

Wstring_BWR - Pmud-2 0 00 m- -(rout 2)g

ACross Section

= 7.6494054 x 108 Pa
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:= 0.65

mfill PWR = 77.8592576
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At the time the lowest canister of waste begins kickoff radius

String AboveWaste := 370 m
lbf

P casing := 42.49 -

Wstring above := StringAboveWaste P casing

cyTopof HolePWR

G Top of HoleBWR

5
W string above =2.2943513 x 10 N

Wstring PWR + Wstring-above - Pmud.-2000m -( rout 2)g

ACross Section

Wstring_BWR + Wstring-above - Pimud -20 0 0 m - - rout2

ACross Section

8
GTop of HolePWR = 8.2208543 x 10 Pa

o tensile limit P110 125000 psi

F tensile limitP110
FS tensPWR:=

- Y Topof HolePWR

FS tens PWR = 1.0483639

Local Buckling limit at the bottom of the hole:

a Topof HoleBWR

a tensile limit

FS tens_BWR

FS tens BWR

= 8.1928456 x 108 Pa

P110 = 8.6184466 x 10 8 Pa

' tensile limitP110

4 Topof HoleBWR

= 1.0519479

FSbuck PWR

s_prime -.4 -ACross Section-

Wstring PWR -sin(20deg)

FS buck PWR = 10.7201192

FS buckBWR

FS buckBWR

sprime -.4 -ACross Section

W string BWR -sin (20 deg)

= 10.7533315

Lithostatic / Hydrostatic crushing:

Critical Pressure for Radial Crushing (Roark EQN 30 of Table XVI):

. Esteel rout - rin
1 2) +r

2

gm
3

cm
-d -g

78 MPa *
Plith(d) := 7 -d

3 km

PC = 22.3184393

Phyd (3006.686 m) = 29.4855173

MPa

MPa

Plith( 3 0 06 .6 86 m) = 78.173836 MPa
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