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Abstract

Knowledge of the asymptotic variance of an estimator is important for

large sample inference, efficiency, and as a guide to the specification of

regularity conditions. The purpose of this paper is the presentation of a

general formula for the asymptotic variance of a semiparametric estimator. A

particularly important feature of this formula is a way of accounting for the

presence of nonparametric estimates of nuisance functions. The general form

of an adjustment factor for nonparametric estimates is derived and analyzed.

The usefulness of the formula is illustrated by deriving propositions on

asymptotic equivalence for different nonparametric estimators of the same

function, conditions for estimation of the nuisance functions to have no

effect on the asymptotic variance, and the form of a correction term for the

presence of linear function of a conditional expectation estimator, or other

projection estimator (e.g. partially linear and/or additive nonparametric

projections), and for a function of a density. Specific results cover a

semiparametric random effects model for binary panel data, nonparametric

consumer surplus, nonparametric prediction, and average derivatives.

Regularity conditions are given for many of the propositions. These include

primitive conditions for v'n-consistency, asymptotic normality, and consistency

of an asymptotic variance estimator with series estimators of conditional

expectations (or projections), in each of the examples.

Keywords: semiparametric estimation, asymptotic variance, nonparametric

regression, series estimation, panel data, consumer surplus, average

derivative.



1. Introduction

This paper develops a general form for the asymptotic variance of

semiparametric estimators. Despite the complicated nature of such estimators,

which can depend on estimators of functions, the formula is straightforward to

derive in many cases, requiring only some calculus. Although the formula is

not based on primitive conditions, it should be useful for semiparametric

models, just as analogous formulae are for parametric models, such as Huber

(1967) for m-estimators. It gives the form of remainder terms, which

facilitates specification of primitive conditions. It also can be used to

make asymptotic efficiency comparisons, in order to find an efficient

estimator in some class.

The usefulness of this formula is illustrated in several ways. New

examples are considered throughout, in order to emphasize that it can be a

useful tool for further work in semiparametric estimation, and not just a way

of "unifying" existing results. A number of Propositions are derived, and

primitive conditions are given for many of them. The propositions include

showing that the method of estimating a function (e.g. kernel or polynomial

regression) does not affect the asymptotic variance of the estimator. Also,

two sufficient conditions are given for the absence of an effect on the

asymptotic variance from the presence of a function estimator. One is that

the limit of the function estimator maximizes the same expected objective

function as the population parameter, i.e. the function has been "concentrated

out." The other is a certain orthogonality condition.

Several propositions are given on the form of correction terms for the

presence of function estimates. One has sufficient conditions for this

adjustment to take the form of the projection on the tangent set (the

mean-square closure of all scores for parametric models of the nuisance



functions) for a semiparametric model. More specific results are given for

the case of conditional expectations, or other mean square projections, and

for densities. A characterization of the correction term for estimators of

linear functions of projections and densities is given, with specific formula

given for semiparametric individual effects regression for binary panel data,

nonparametric consumer surplus, and Stock's (1989) nonparametric prediction

estimator.

Regularity conditions for v^-consistency and asymptotic normality are

formulated. The discussion is organized around a few "high-level"

assumptions. Times series are covered, including weighted autocovariance

estimation of the asymptotic variance, with data-based lag choice. Primitive

conditions are given for power series estimators of conditional expectations

and other projections, including several examples.

The formula builds on previous work, including that on Von Mises (1947)

estimators, i.e. functionals of the empirical distribution, by Reeds (1976),

Boos and Serf ling (1980), and Fernholz (1983). The formula here allows for

explicit dependence on nonparametric functions estimators, such as conditional

expectations or densities, which are difficult to allow for in the Gateaux

derivative formula for Von-Mises estimators. It is based on calculating the

semiparametric efficiency bound, as in Koshevnik and Levit (1976), Pfanzagl

and Wefelmeyer (1982), and Van der Vaart (1991) for the functional the

estimator is a nonparametric estimator of, as discussed in the next section.

Also, some of the examples build on previous work on semiparametric

estimation, including Bickel, Klaassen, Ritov, and Wellner (1990), Hardle and

Stoker (1989), Klein and Spady (1987), Powell, Stock, and Stoker (1989),

Robinson (1988), Stock (1989), and others cited below.

Section 2 gives the formula for the asymptotic variance. Section 3 and 4

apply this formula to derive some propositions on the effect of preliminary



nonparametric estimators on the asymptotic variance. Some high-level

regularity conditions are collected in Section 5. Section 6 gives general

regularity conditions for v^-consistency and asymptotic normality when an

estimator depends on a series estimator of a conditional expectation or other

projection, and Section 7 applies these results to specify primitive

regularity conditions for several examples.

2. The Pathwise Derivative Formula for the Asymptotic Variance

The formula is based on the observation that Vn-consistent nonparametric

estimators are often efficient. For example, the sample mean is known to be

an efficient estimator of the population mean in a nonparametric model where

no restrictions, other than regularity conditions (e.g. existence of the

second moment) are placed on the distribution of the data. The idea here is

to use this observation to calculate the asymptotic variance of a semiparamet-

ric estimator, by finding the functional that it nonparametrically estimates,

i.e. the object that it converges to under general misspecif ication, and

calculating the semiparametric variance bound for this functional.

To be more precise, let ^ be an estimator, and suppose that one can

associate with it the triple,

(2.1) p

z ; finite dimensional data vector,

^ = {F }; unrestricted family of distributions of z,

fi : 3^ ^ R^; u(F ) = plim(p) when F is true.
z z

That is, p is a nonparametric estimator of ^l{F ), having this as its

probability limit for all distributions of z belonging to a family that is

unrestricted, except for regularity conditions. In other words, M^F ) is the



object estimated by p under general misspecif ication, when the distribution

of z does not necessarily satisfy restrictions on which p is based. The

asymptotic variance formula discussed here is taken to be the variance bound

bound for estimation of ii{F ), F € 9^. This formula is an alternative to
z z

the Gateaux derivative for Von-Mises estimators, because the domain of li(F )

z

need not include all distributions, e.g. so that fi(F ) can depend explicitly

on a density function. In the technical conditions to follow, this feature of

the formula results from F having a density with respect to a measure for

which the true distribution also has a density.

The formula for calculating the variance bound for /i(F ) is that given

in previous work by Koshevnik and Levit (1976), Pfanzagl and Wefelmeyer

(1982), and others. Following Van der Vaart (1991), let <F ^ : 6 e (0, e) c
Zd

R, e > 0, F e 3-}, denote a one-dimensional subfamily of ^, i.e. a path in
Z3

3-, such that the true distribution and each member of this subfamily are

absolutely continuous with respect to the same o—finite measure. Let £[•]

be the expectation under the true distribution F „, and let dF „ and dF „^ zO z9 zO

be the densities with respect to the common dominating measure, and dz

integration with respect to that measure. Let T denote a set of paths such

2
that for each one there is a random variable S (z) with E[S (z) ] < oo and

Q

J[e-^dF-^-dF^^^) - is^(z)dF^^^,^dz -.0, as e -^ 0.

Here S (z) is a "mean-square version" of the score 51n(dF a^/dQ\ ^^6 Zw 0—0

associated with the path, which quantifies a direction of departure from the

truth allowed by ?. The requirement that ? be unrestricted is formalized

in the condition that there is a set of paths T with associated set of

scores !f satisfying the following property:

2
Assumption 2.1: y is linear and for any s(z) with E[s(z)] = 0, E[s(z) ]

2
< 00, and any c > there is S„(z) € y such that E[{s(z)-S^(z) } ] < e.



That is, the mean-square closure of the set of scores is all mean-zero random

variables, i.e. ^ allows for any direction of departure from the truth.

The functional ^l{F ) is pathwise different iable if there is a mapping

ji_,(S ) : y —) IR that is linear and mean-square continuous with respect to

the true distribution (i.e. for every e > there exists 5 > such that

2
ll/V(S )ll < E if E[S (z) ] < 6), such that for each path,

(2.2) e"^[^x(F^g) - /jfF^Q)] ^ 'V^^e^
^^ e ^ o,

i.e. the derivative from the right of /i(F ) at the truth (6 = 0) is
Z6

^L,(S ). The linearity and mean-square continuity of fx (S ), Assumption 2.1,

and the Riesz representation theorem imply the existence of a unique (up to

the usual a. s. equivalence) random vector d(z), the pathwise derivative,

such that E[d(z)] = 0, E[d(z)^] < co, and

(2.3) Mr-(S^) = E[d(z)S„(z)].
r y

Under Assumption 2.1 and with i.i.d. data the asymptotic variance bound for

estimators of /i(F ) is E[d(z)d(z) ' ] Hence, the formula for the asymptotic

variance of ^ suggested here is the variance of the pathwise derivative of

the functional 3 is a nonparametric estimator of.

A stronger justification for regarding the pathwise derivative of fi(F )

as a correct formula for the asymptotic variance of p is available when ^

is asymptotically equivalent to a sample average. Define 3 to be

asymptotically linear with influence function i//(z) if at the truth,

(2.4) Vn{^ - j3„) = y.",i//(z. )/v^ + o (1), E[i//(z)] = 0, Var(i//(z)) finite.
^1=1 1 p

This condition is satisfied by many semiparametric estimators, under

sufficient regularity conditions. For i.i.d. data, asymptotic linearity and



the central limit theorem imply 3 is asymptotically normal with variance

Var(f/»(2)). Define p to be a regular estimator of /i(F ) if for any path in

T, and 6 = 0(l/v^), when z. has distribution F„ , Vn{^-^l(F^ )) has a
n 1 6

n n

limiting distribution that does not depend on {6 } _ or on the path.

Regularity is the precise condition that specifies that ^ is a nonparametric

estimator of fi(F ), because it requires that ^ is asymptotically, locally

consistent for /j(F ).

Theorem 2.1: Suppose that z ,z .... are i.i.d, ^ is asymptotically linear

and regular for T, and Assumption 2. 1 is satisfied. Then \i(F ) is

pathwise different iable and \l)(z) = d(z).

The thing that seems to be novel here is the idea of applying this result

to the functional (i(F ) that is nonparametrically estimated by p. The

fact that asymptotic linearity and regularity imply pathwise differentiability

follows by Van der Vaart (1991, Theorem 2.1), and the fact that Assumption 2.1

implies that there is only one influence function and that it equals the

pathwise derivative, is a small additional step that has been discussed in

Newey (1990a).

This result can also be used to detect whether an estimator is

Vn-consistent. As shown by Van der Vaart (1991), if equation (2.2) is

satisfied but fip,(S ) is not mean-square continuous (i.e. d(z) satisfying

equation (2.3) does not exist) then no V^-consistent, regular estimator

exists. For example, the value of a density function at a point does not have

a mean-square continuous derivative, and neither does the functional that is

nonparametrically estimated by Manski's (1975) maximum score estimator. The

pathwise derivative does not help in finding the asymptotic distribution (at a

slower than v^ rate) of such estimators, which can be quite complicated:



e.g. see Kim and Pollard (1989).

The hypotheses of Theorem 2. 1 are not primitive, but the point of Theorem

2. 1 is to formalize the statement that "under sufficient regularity

conditions" the influence function of a semiparametric estimator is the

pathwise derivative of the functional that is nonparametrically estimated by

p. In Sections 3 and 4, this result and some pathwise derivative calculations

are used to derive propositions about semiparametric estimators. These

results are labeled as "propositions" because primitive conditions for their -

validity are not given in Sections 3 and 4. They might also be labeled as

"conjectures," although this word does not convey the same sense that the

validity of the results only requires regularity conditions. In Sections 3

and 4, the solution to equation (2.3) is calculated using the chain rule of

calculus, differentiation under integrals, integration, and 3ja(z)dF /39l
9 0—

U

= E[a(z)S (z)] for a(z) with finite mean square where ever needed, and then

in Sections 5-7 conditions for implied remainder terms to be small are

given. This approach, with formal calculation followed by regularity

conditions, is similar to that used in parametric asymptotic theory (e.g. for

Edgeworth expansions), and is meant to illustrate the usefulness of the

pathwise derivative calculation.

3. Semipcirametric M-Estimators

The rest of the paper will focus on a class semiparametric m-estimators,

obtained from moment conditions that can depend on estimated functions. Let

m(z,p,h) be a vector of functions with the same dimension as fS, depending

on a data observation z and a vector of unknown functions h. Let hO)



denote an estimator of h, with corresponding m(z,p,hO)). A semiparametric

m-estimator p is one which solves an asymptotic moment equation

(3.1) Y,^^^m{z^,p,hW))/n = 0.

The general idea here is that P is obtained by a procedure that "plugs-in"

an estimated function hO), that can depend on p.

An early and important example is the Buckley and James (1979) estimator

for censored regression. Other examples are Robinson's (1988) semiparametric

regression estimator and Powell, Stock, and Stoker's (1989) weighted average

derivative estimator. For a new example, consider a semi-linear model with

additive nonparametric component, E[y|x,v] = x'P + p, (v ) + p (v ), where

V = (v ,v ). The motivation for this model is that if v is high

dimensional the asymptotic properties of P could be adversely affected if

additivity of p, (v ) + p (v ) is true but not imposed: see Section 4 for

further discussion. Assume that the set of additive functions in v and v

with finite mean-square is closed in mean square, and let n(»|v ,v ) denote

the mean-square (Hilbert space) projection on this set. Also, let fl(«|v ,v )

denote an estimator of this projection, such as the series estimator

considered in Stone (1985) and in Section 6, or the alternating conditional

expectation estimator in Breiman and Friedman (1985). Consider

(3.2) p = argminp{j:^2i f^i ~
''i'^

" ^(v^, p) ]^/2>,

h(v,p) = lt(y|Vj,V2) - f[ix\v^,v^)'p.

This is a semiparametric m-estimator with m(z,p,h(p))

= [x + ah(v,p)/ap][y - x'fi - h(v,p)].

It is possible, at the level of generality of equation (3.1), to derive a



number of propositions. To use the pathwise derivative formula in this

derivation, it is necessary to identify the functional that is

nonparametrically estimated by ^. Let hO,F) denote the limit of hO)

for a general distribution F = F , where the z subscript is suppressed

henceforth for notational convenience. By the usual method of moments

reasoning, the limit /i(F) of ^ for a general F should be the solution to

(3.3) Ep[m(z,fi,h(ti,F))] = 0.

That is, equation (3.1) sets ^ so that sample moments are zero, and the

sample moments have a limit of E [m(z, p, h{/3, F) ) ] (by the law of large

numbers and hO,F) equal to the limit of hO)), so that g is consistent

for that value of fi that sets the population moments to zero.

Before computing the pathwise derivative, it is interesting to note that

it will depend only on the limit hO,F), and not on the particular form of

the estimator hO). Thus, different nonparametric estimators of the same

functions should result in the same asymptotic variance. For example, this

reasoning explains why replacing the kernel estimator of Robinson (1988) by

series estimators gives an asymptotically equivalent estimator, as shown by

Newey (1990b), and suggests that for estimation of the additive model above,

the distribution is invariant to the estimator of the projection. Also, two

estimators may not be asymptotically equivalent if the nuisance functions

estimate different objects nonparametrically.

Proposition 1: The asymptotic variance of semiparametric estimators depends

only on the function that is nonparametrically estimated, and not on the type

of estimator (such as kernel or series nonparametric regression).

To obtain more results, it is useful to be more specific about the form



of the pathwise derivative. Suppose that h has J components, h =

(h , ...,h,). For a path F , equal to the truth when 9 = 9=0, let
1 J 9 U

E^[«] denote the expectation with respect to F , h.O,9) = h.O,F ), h.O)
6 9 J J 9 J

= h.(|3,9^), h.(9) = h.O , 9), and let the same expressions without the j

subscript denote corresponding vectors. For a path, ^i(9) will be the

functional satisfying the parametric version of equation (3.2),

(3.4) E^[m(z,ji,h(ji,9))] = 0.

Then for m(z,h(9)) = m(z,P ,h(9)), differentiation gives

5E^[m(z,h(9-))]/S9l = /m(z, h(9- ) ) [SdF /S9]dz
|

^ = E[m(z, h(9- ) )S^(z) ]

.

Then, applying the chain rule to E [m(z,h(9 ))], it follows that
9 2
1

9Eg[m(z,h(9))]/a9|g = E[m(z,h(9Q) )Sg(z) ] + aE[m(z,h(9) ) ]/59 1^ .

Assuming D = 9E[m(z,p, hO, 9„) ) ]/9^| „ is nonsingular, the implicit function
° ^0

theorem gives

(3.5) 5M(e)/S9l = -D"^{E[m(z,h(9_))S^(z)] + SE[m(z, h(9) ) ]/5e I }..0
The first term is already in outer product form of equation (2.3), so that the

pathwise derivative will exist if the second term can be put in a similar

form. Suppose there are a.(z) such that for each j = 1 J,

(3.6) SE[m(z.h,(9-) h.(9) h,(9.))]/S9L = E[a .(z)S^(z) ]

.

iU J JU D Jo
Then, applying the chain rule to E[m(z, h (6 ),..., h . (0 .),..., h (9 )) ] with

each 9. equal to 9, it follows that

10



SE[m(z.h(G))]/ael = J].:!,5E[m(z.h, (e.) h.O) . h ,(6, ) ) ]/Se I

= l.i.ElaAz)SAz)] = El il.i. a Az)}S{z)],
J-l J « J-i J D

giving the outer product form. Then, moving -D inside the expectation,

it follow that the pathwise derivative is d(z) = -D [m(z,h(e )) +

{J] ._ a . (z) } ] , so that by Theorem 2.1 the influence function of ^ equals

(3.7) ipiz) = -D"^'{m(z,pQ,hOQ)) + l.-i^[ccAz) - E[a.(z)]]}.

This influence function has an interesting structure. The leading term

-D m(z,P^,hO )) is the usual Huber (1967) formula for the influence

function of an m-estimator with moment functions m(z,^,h(^)), i.e. the

formula that would be obtained if hO) were equal to hO). Thus, the

second term is an adjustment term for the estimation of hO), a

nonparametric analog of adjustments that are familiar for two-step parametric

estimators. It can also be interpreted as the pathwise derivative of the

functional. D E[m(z, p , hO , F) ) ] , or as the influence function of

D Jm(z, p , hO ) )dF(z) . Furthermore, the adjustment contains exactly one term

for each component of h, and the j adjustment can be interpreted as

the pathwise derivative of E[m(z,PQ,hAp^) h . O^, F) , . . . , h^O^) ) ] . This

property is useful, because the adjustment terms can be calculated for each

function h., holding the other functions fixed at their true values, and

then the total adjustment formed as the sum. For this reason the j

subscript will be dropped in the rest of Sections 3 and 4, with the

understanding that the results can be applied to individual h. terms, and

then combined to derive the total adjustment (e.g. when some adjustment terms

are zero and others are not).

11



It is useful to know when an adjustment term is zero. In such cases, it

should not be necessary to account for the presence of h(/3), i.e. hO) can

be treated as if it were equal to hO), greatly simplifying the calculation

of the asymptotic variance and finding a consistent estimator of it. One

case where an adjustment term will be zero is when equation (3.1) is the

first-order condition to a maximization problem, and hO) has a limit that

maximizes the population value of the same function. To be specific, suppose

that there is a function q(z,P,hO)) and a set of functions HO), possibly

depending on P but not on the distribution F of z, such that

(3.8) m(z,p,hO)) = Sq(z,p,hO))/5|3, hO,F) = argmaxp^^^^j^^^Ej,[q(z, p, hO) ) ]

.

The interpretation of this condition is that m(z,p,hO)) are the first order

conditions for a stationary point of the function q and that hO,F)

maximizes the expected value of the same function, i.e. that hO,F) has been

"concentrated out." Then for any parametric model F , since hO,e) =

hO,F„), it follows that E[q(z, P, hO, 6) ) ] is maximized at 6.. The first
(J

order conditions for this maximization are 5E[q(z, p, hO, 0) ) ]/5e |
= 0,

Q

identically in p. Differentiating again with respect to 3,

(3.9) = a^E[q(z,p,hO,0))]/seapi = aE[aq(z,p,h(/3,0))/5p]/a0i
o

= aE[m(z,p,hO,e))]/a0i .

Evaluating this equation at p , it follows that a(z) = will solve

equation (3.6), and hence the adjustment term is zero. Summarizing:

Proposition 2: If equation (3.8) is satisfied, then the estimation of h can

be ignored in calculating the asymptotic variance, i.e. it is the same as if

h(p) = h(li).

12



Examples of estimators that satisfy the hypotheses of this proposition

are those of Robinson (1988), Ichimura (1987), Klein and Spady (1987), and Ai

(1990). A new example is the additive semi-linear estimator of equation

(3.2). Suppose that the set H of additive functions is closed under

any F e ^ and is invariant to F, and let IT ('Iv ,v ) denote the

projection under F. Then hO) is a nonparametric estimator of IT (y|v ,v )

2
- Tl^{x\w^,w^)'^ = Tl^{y-x'P\w^,v^), which minimizes Ep[(y - x'^ - h(v,p)) ],

the same objective function minimized by the limit of p. Therefore, by

Proposition 2, estimation of IT (y|v v ) and IT (x|v v ) should have no
r 1 Z r 1 Z

effect on the asymptotic variance of p. Thus, for c = y-x'P -p (v )-p (v ),

the formula for the influence function is

(3.10) 0(z) = (E[{x-n[xlv^,V2]}{x-n[x|v^,V2]}' ])~-^{x-n[x|v^,V2]}c.

Primitive conditions for this result are given in Newey (1991), and somewhat

weaker conditions could be formulated using the results of Section 6.

There is another, more direct condition under which estimation of the

nuisance function does not affect the asymptotic variance. To formulate this

condition, suppose that m(z,h) depends on h only through the value it

takes on as a function h(v) of a subvector v of z, i.e. h is a real

vector argument in m(2,h). The additive semi-linear example has this

property if h(p) is redefined to include IT[x|v ,v ]. Let h(v,9) denote

the limiting value of h(v,p ) for a path. For M(z) = Sm(z,p ,h)/Sh| , ,,

differentiation gives

(3.11) aE[m(z,h(e))]/ae|^ = E[M(z)ah(v,e)/aeL ] = aE[M(z)h(v,e)]/aei .

If the term on the right-hand side is zero, then a(z) = will solve

equation (3.6), and the adjustment term is zero. One simple condition for

13



this is that E[M(z)|v] = 0. More generally, the adjustment term will be zero

if h(v,e) is an element of a set to which M(z) is orthogonal.

Proposition 3: If E[H(z)\v] = 0, or more generally h(v,F) is an element

of a set H such that E[M(z)h(v)] = for all h & H, then estimation of

h can be ignored in calculating the asymptotic variance.

The semi-linear, additive model is also an example here.

In cases where the correction term is nonzero, its form will depend on

the limit of hO). Therefore, it is difficult to give a general

characterization of the correction term. One result that does not depend on

completely specifying the form of h can be obtained in semiparametric models

where the data, z, , ..., z are i.i.d. and z. is restricted to have aIn 1

density function of the form f(zO,g), where g is a nonparametric

(functional) component. Let S (z) = 51nf(z|p ,g(T)))/97}| denote the score

for a finite-dimensional parameterization of g with S^Vj^) = gp,. (g^ is

the truth), and let S-(z) = Slnf (z|^,g„)/S^| „ . Also, let A denote a

constant matrix with number of rows equal to the number of elements of p.

The tangent set J is defined as the mean-square closure of the set of all

linear combinations AS (z). The tangent set is useful in calculating the

asymptotic variance bound for estimators of p in the semiparametric model

f(z|p,g). The form of this bound is 7 = (E[S(z)S(z)' ]
)~\ where S(z) =

S (z)-n(S (z) IS") and Tl{'\J) denotes the mean-square projection on the

tangent set. See, for example, Newey (1990a) for further discussion.

Under certain conditions, a(z) = -IT(m(z)|3') will solve equation (3.5),

for m(z) = m(z,p , hO )), so that the correction term can be calculated from

this projection. Let 6 be the parameter of an unrestricted path, as

discussed in Section 2 (6 does not have anything to do with /3 or t)).

14



Suppose that there is g(0) such that,

(3.12) Jm(z,h(e))f(z|pQ.g(e))dz = 0.

In words, for the limit of hO ) under a general distribution there is a

corresponding value of the nonparametric component of the semiparametric model

where the population moment conditions (corresponding to equation (3.1)) are

satisfied. Let S „(z) = Slnf. (z |g(e) )/99, and note that S „(z) is an
ge ^ ' g9

element of the tangent set, implying E[m(z)S q(z)] = E[n(m(z) |3')S (z)].
g9 go

Suppose that S „(z) = IKS (z)]?). Then differentiating equation (3.12) with
ge e

respect to 6,

5E[m(z,h(e))]/Sel = -E[m(z)S ^(z)] = -E[m(z)n(S^(z) l^")
]

®

= -E[n(m(z)|3-)n(S^(z)|3-)] = E[-n(m(z) |Sr)S^(z) 1

.

Thus, under the previous conditions, a(z) = -n(m(z)|3^) satisfies equation

(3.6). Summarizing:

Proposition 4: If for all unrestricted paths F there exists g(6) such
ZQ

that equation (3.12) is satisfied, and dlnf(z\^^,g(B))/dQ = W(S(z)\'5),

then a(z) = -\[(m(z,^^,h(^^))\'5 ) and the influence function of ^ is

-D"^[m(z,pQ.hOQ)) - n(m(z,PQ,hOQ))|3-)].

This form of the correction term has previously been derived by Bickel,

Klaassen, Ritov, and Wellner (1990) and Newey (1990a). The contribution of

Proposition 4 is to give a general formulation for this result in terms of the

pathwise derivative calculation developed in Section 2.

This result leads to a sufficient condition for asymptotic efficiency of

a semiparametric m-estimator, that the hypotheses of Proposition 4 are
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satisfied and m(z) = S„(z). In this case, m(z) + a(z) - E[a] = S^Cz) -
P p

IKSqCz)!?) = S(z). Furthermore, any semiparametric m-estimator that is
P

regular under the semiparametric model f(z|p,g) and has influence function

-D~ (m(z)+a(z)-E[a] ) will satisfy

(3.13) D = -E[(m(z)+a(z)-E[a])S(z)'],

as discussed in Newey (1990a). Thus, the influence function of p is

(E[S(z)S(z)' ] ) S(z) = VS[z), with corresponding asymptotic variance

VE[S{.z)S(.z)' ]V = V, which equals the lower bound.

4. Functions of Mean-Square Projections and Densities

In this section, the form of the correction term is derived when the

nuisance functions are linear functions of conditional expectations or other

mean-square projections, such as additive or partially linear regressions,

and for densities. Let y be a random variable with finite second moment and

X an r X 1 vector. Let § denote a linear set of functions of x that

is closed in mean-square and g(x) denote the least squares (Hilbert-space)

2
projection of y on x, that is g(x) = argmin- „E[(y-g(x)) ]. One h(v)

considered in this section will be h(v) = A(g,v), where A is a linear

function of g, and v is a subvector of z.

The simplest nonparametric example of a projection is g(x) = E[y|x],

where W is all measurable functions of x with finite mean-square. A more

general example is a projection on
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with each x. a subvector of x. This is a smaller set of functions, whose

consideration is motivated partly by the difficulty of estimating conditional

expectations for x with many dimensions; e.g. see Stone (1985) for

discussion and references. Here, where g(x) is a nuisance function,

important reasons to avoid high dimensional nonparametric regressions are that

a projection on a larger set of functions than that to which g(x) belongs

will lead to higher asymptotic variances for P in some cases, as noted in

Newey (1991), and will lower the rate at which remainder terms converge to

zero, affecting accuracy of the asymptotic normal approximation.

The correction term is derived first for the simplest case, where h(v) =

2
g(x). Let g(x,9) = argmin~ ^^^^^V ~ E^^^^ 1 denote the projection of y

on ^ for a path. Note that for the vector of projections of elements of

M(z) on '§, 5(x) = n(M(z)|^), it follows that E[M(z)g(x, 6) ] = E[5(x)g(x, 9) ]

identically in 6. Also, by 6(x) € §, E [6(x)g(x, 6) ] = E [5(x)y], so by
s s

the chain rule,

(4.2) E[M(z)ag(x,0Q)/S9] Ig
= 5E[M(z)g(x.9)]/S9|g = SE[6(x)g(x,9)]/S9|g

= {3EQ[6(x)g(x.e)]/ae - aE^[s{x)gix]]/ae}\^

= SE„[6(x){y-g(x)}]/a9l = E[6(x){y-g(x) }S^(z) ] I .

o y y y

Equation (4.2) implies the next result.

Proposition 5: If h(v) = g(x) is the projection of y on "§ , then the

correction term is a.(z) = Tl(H(z)\'§) [y-g(x)]

.

A new example is an estimator for a semiparametric random effects model.

Let (y. ,x ) (t=l,2), be sets of observations for two time periods, where y

is binary, and suppose that for x = (x ,x ), E[y |x] = $( [x ^ +p(x) ]/cr )

,
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<r = 1, p(x) is an unknown function, and $ denotes the standard normal

CDF. This is a binary panel data model with y = 1 (x P + a + e > 0) for

an individual effect a, and the conditional distribution of a + e given

2
X is N(p(x),cr ). This model generalizes Chamberlain's (1980) random

effects model by allowing the conditional mean of a to be unknown. In

contrast to Manski's (1987) semiparametric individual effects model, e is

allowed to be heteroskedastic over time, but the conditional distribution of

a + E is restricted to be Gaussian.

An implication of this model is that

(4.3) *"-^(E[y^|x]) = <r^^i>~^(.E[y^\x]) + U^-x^)^^^.

This implication can be used to construct a semiparametric minimum distance

estimator by replacing the conditional expectations with nonparametric

estimators h (x) = E[y |x] and choosing p and o" from the least squares

-1 - -1 -

regression of $ (h, (x.)) on x, .-x„. and $ (h„(x.)). This estimator can
1 1 li 2i 2 1

also be generalized to the case where the distribution of disturbances is

unknown, by normalizing the scale of ^ and replacing $ by a series

approximation to the unknown inverse marginal distribution functions, although

further development of this estimator is beyond the scope of this paper.

To derive the influence function of the estimator of IB and cr , note

that it is a semiparametric m-estimator with p = O'er )', v = x,

m(z,^,h(v.^)) = A(x,h2)[$"-^(h^(x)) - ^'"^
(.h^ix))o-^ - (x^-x^)^], and A(x,h2) =

[x -X , $ (h (x))]'. Here, the correction terms are the only source of

variation, since m(z,3 ,h(v,p )) = 0. Also, D = -E[A(x, h )A(x,h )' ] and

M.(z) = A(x,h ){-l)'^~-^<^($~^(h.(x)))~^ Then by Proposition 5, a.(z) =
J ^ J J

A(x,h )(-lcr )J"V(4'~^(h.(x)))"^[y.-h.(x)].
•^ <i J J J
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(4.4) 0(z) = -D ^[a^(z)+a2(z)] = -D ^Atx.h^) •

{^(*"^(h^(x)))"^y^-h^(x)] - (r^(p{i~'^{h^U)))~'^ly^-h^U)]}.

Proposition 5 can be generalized to linear functionals of the projection

that have a particular property specified in the following assumption.

Assumption 4.1: h(v) = A(v,g), A(v,g) is a linear function of g, and

there is 6(x) e & such that for all g(x) e §,

(4.5) E[M(z)A(v.i)] = E[5(x)i(x)].

By the Riesz representation theorem, equation (4.5) is equivalent to assuming

that the functional E[M(z)A(v, g) ] is mean-square continuous in g. This

condition is necessary for XM(z)h(v)dF(z) to be a v^-consistently estimable

functional of h(v), as discussed in Newey (1991), so that the estimation of

h(v) will affect the convergence rate of P unless Assumption 4. 1 is

satisfied. Thus, for h(v) a linear function of g(x). Assumption 4.1 and

the form of the correction term given below characterize the adjustment for

mean-square projections.

Equation (4.5) leads to a straightforward form for the correction term.

Noting that h(v,e) = A(v,g(e)), differentiation gives

(4.6) E[M(z)ah(v.e)/se] I = 5E[M(z)h(v,e)]/aei = SE[M(z)A(v,g(e))]/aei

= aE[5(x)g(x,e)]/ae|^ = E[5(x){y-g(x)}S^(z)].
o o

where the last equality follows as in equation (4.2).

Proposition 6: If Assumption 4.1 is satisfied, the correction term is oc(z)

8(x)[y-g(x)].
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In order for this result to provide an interesting formula, it must be

possible to find 6{x). In a number of cases 6(x) takes a projection form

similar to that of Proposition 5. One interesting case is that where x =

(x ,x ), X may be a vector, v = x , and h(v) = A(v,g) = J.g(x ,x )dx .

In this case, E[M(z)h(v)] = E[E[M(z) |v]h(v) ] = E[J^[M(z) Ix^lgCxjdx^] =

E[l(x^6^)f(x^|x2)"^E[M{z)|x2]i(x)] = E[n(l (x^€^)f (x^ |x2)"^E[M{z} Ix^] l^)g(x) ]

,

where f (x |x ) is the conditional density of x given x .

Proposition 7: If h(v) = S^(x ,x )dx , x is absolutely continuous wi th

respect to the product measure corresponding to dx and the distribution of

-1
X with density f(x \x^), and 1 (x €j4)f (x, Ix-, ) E[M(z)|x-,] has finite

second moment, then the correction term is 8(x) [y-g(x)] for 8(x) =

n(l(x^€^)f(x^|x2)~^E[M(z)|x2]|g).

An example is average approximate consumer surplus, where x is a price

^ n b'^
variable and p = J^._ J g(x , x )dx /n, which is a semiparametric m-estimator

with M(z) = 1. By Proposition 8, the influence function for this estimator

will be

(4.7) ^(z) = J^g(x^,X2)dx^ " ^0 " ^(l(aix^£b)f(x^|x2)"^^)[y - g(x)].

Results for exact consumer surplus (i.e. equivalent variation) and where the

demand function is a nonlinear function of a projection (e.g. log-linear

models) are analyzed in Hausman and Newey (1991).

Another case where 5(x) takes a projection form is where h(v) is a

J"

derivative of a projection evaluated at some other variable v. For x e IR ,

and a vector \- (A A )' of nonnegative integers, let |A| = E-=i'^-

and denote a partial derivative by

(4.8) D'^g(x) = ^''^'g(x)/ax^^ooo^x^^
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Suppose that h(v) = Z)'^g(x). Let M[v) = E[M(z)|v] and f (v) and f (x) be
V X

the densities of v and x respectively, with respect to the same dominating

measure. Assuming that v has a density that is differentiable to sufficient

order in the components of v corresponding to nonzero components of X,

with zero derivatives on the boundary of its support, repeated integration by

parts gives E[M(z)h(v)] = J>l(v)D'^g(v)f (v)dv = (-1 )

'

'^' J'D'^[M(v)f (v)]g(v)dv =

{_l)l^lj-C^[M(v)f (v)]| g(x)dx = E[(-l)'^'f (x)~^/[M(v)f (v)] g(x)] =
V V=X X V v=x

E[5(x)g(x)], S(x) = (-l)'^'n(f (x)"^D^[M(v)f (v)] |^).XV v=x

Proposition 8: If h(v) = D g(x)\ , v and x are absolutely continuous
x=v

with respect to the same measure, which is Lebesgue measure for the components

X of X corresponding to nonzero components of X, the density f (v) and

E[M(z)\v] are continuously differentiable to order |X| in x, the support

of X is a convex set with nonempty interior, and for each X s X, D f (v)

is zero on the boundary of the support of x and f (x) D [M(v)f (v)] hasXV v=x

finite second moment, then the correction term is S(x) [y-g(x)] for S(x) =

C-i;''^'n(f (x)~-^D^[H(v)f (v)] \'§).
X V v=x

An example with no derivatives involved is Stock's (1989) nonparametric

prediction estimator, where ^ = {g. (x ) + x'tj}, so that g(x) is a

partially linear projection, v = (v x ) is partitioned conformably with x,

and P = 7- , [g(v. )-g(x. ) ]/n. This is a semiparametric m-estimator where S„

= E[g(v)]-E[g(x)], h^(v) = g(v), h^Cx) = g(x), and M^(z) = M^Cz) = 1.

From the form of the correction terms in Proposition 8, the influence function

of Pq is

(4.9) 0(z) = g(v)-g(x)-pQ + [n(f^(x)~V^(x)|^) - l][y - g(x)].

This result differs from Stock's in the inclusion of the term g(v)-g(x)-p ,
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because Stock's result only derived the conditional distribution given the

observations on x and v. The variance of the second term is the same as

Stock's formula, because n(f (x)~-^f (x)|g) = f (x, )~-^f (x, ) +XV X 1 V 1
1 1

U^-E[x^\x^])E[War{x^\x^)]~'^Elx^-Elii^\x^]^^^ ], for f^U^) and fy(v^)
11 1 1

equal to the densities of x and v respectively. Proposition 8 also

gives the form of correction terms for the dynamic discrete choice estimators

of Ahn and Manski (1989) and Hotz and Miller (1989), and the average

derivative estimator of Hardle and Stoker (1989).

A correction term for density estimation can be derived under conditions

similar to those for the projection. Suppose that h(v) = A(v,f ), where
w

A(v,f ) is a linear function of the density f (w) of a vector w, with
w w

respect to some measure. Suppose that there is a(w) such that

E[M(z)A(v,f )] = J'a(w)f (w)dw. Let f (w|e) denote the density of w for aWW w

path. Then

E[M(z)ah(v,e)/5e] I = aE[M(z)A(v,f (e))]/ae|^
O Wo

= aE^[a(w)]/Sel = E[a(w)S^(z)].
y y y

Proposition 9: If h(v) = A(v,f ) for a density f and there is a(v)

such that E[H(z)A(v, f )] = So.(v)f (v)dw then the correction term is

a(w)-E[a.(w)].

Existence of such a a(w) will follow from the Riesz representation theorem

2
if J"f (w) dw is finite and E[M(z)A(v,f )] can be extended to a linear

w w

functional on the Hilbert space of square integrable (dw) functions that is

continuous. Continuity of E[M(z)A(v,f )] in f , in the square integrable

sense, appears to be essentially necessary for the correction term to be

V^-consistent, although it is difficult to give a precise result, because the

22



usual parameterization for checking v'n-consistency is the square root of the

density, rather than density itself.

A case where is it easy to compute a density correction term a(w) is

that with w = (y',x') and h(v) = D [Ja(y)f (w)dy]
| _ . Integration by

parts gives E[M(z)A(v,f )] = jM(v)D'^[J'a(y)f (w)dy] | f (v)dv =
W W X=V V

(_l)l^lj-£)^[M(v)f (v)]| _ [Ja(y)f (w)dy]dx = Ja(w)f (w)dw, a(w) =
V V—X w w

{-l)''^'D^[M(v)f (v)]| a(y).
V v=x

Proposition 10: If h(v) = D Sa(y)f (y,x)dy\ _ , v and x are absolutely

continuous with respect to the same measure, which is Lebesgue measure for the

components x of x corresponding to nonzero components of X, the density

f (v) and E[H(z)\v] are continuously differentiable to order |A| in x,

the support of x is a convex set with nonempty interior, and for each X ^

X, D f (v) is zero on the boundary of the support of x and

D [N(v)f (v)]\ a(y) has finite second moment, then the correction term is
V v=x

then the correction term is a(w) - Ela(w)] for aCw) =

(-l)^^^D^[H(v)f (v)]\ a(y).
V v=x

This result gives the form of the correction term for Powell, Stock, and

Stoker's (1989) weighted average derivative estimator and Robinson's (1989)

test statistics. Another example is Ruud' s (1986) density weighted least

squares estimator, which is treated in Newey and Ruud (1991).

There may be other interesting cases where the form of the correction

term can be calculated. Hopefully, the ones given here illustrate the

usefulness of the pathwise derivative calculation of the influence function.

In the next two Sections, regularity conditions for the validity of many of

these calculations are given.
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5. Regularity Conditions.

This Section develops a set of regularity conditions that are sufficient

for validity of the pathwise derivative formula. The regularity conditions

are based on direct verification that remainder terms from the pathwise

derivative are small.

The rest of the paper will focus on semiparametric generalized method of

moments estimators where h(v) does not depend on parameters. Let m(z,^,h)

be a vector of functions of the data observation z, the q x 1 parameter

vector ^ and a J x 1 vector h, where h represents a possible value of

a vector of functions h(v) = (h (v ),..., h (v )) ' and each v. is a vector.

Also, assume that the moment condition E[m(z.
, P , h(v. ) ) ] =0 is satisfied.

Note that this setup allows h(v) to include parameter values, by specifying

that some v. are trivial (can only take on one value). For example, some

elements of h(v) might be trimming parameters, as in Newey and Ruud (1991).

Let h(v) denote an estimator of this vector function, m (S) =
n

y. ,m(z.
,
p, h(v. ) )/n, and W a positive semi-definite matrix. The estimator

to be analyzed satisfies

(5.1) p = argmin^ ^m 0)'Wm (p).
p€t! n n

Although h is not allowed to depend on p in this section, the results

are still useful for the general case, because they provide conditions for the

important intermediate result that V. ,m(z. , 6., h(v. , 6. ) )/v'n is^1=1 1 1

asymptotically normal. This result will follow as a special case by

letting p = I^^i'^^^i'^o'^^^i'^O^^^'^-

Because of the importance of asymptotic normality of J^._ m(z. , h(v. ) )/V^

(for m(z,h) = m(z,p , h)), and because this function is the source of the

correction terms, it is useful to discuss this result first and organize the
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discussion around a few high-level conditions. The pathwise derivative

calculation is very useful in formulating these conditions, because it gives

the form of a remainder term that should converge in probability to zero,

implying asymptotic normality. Let a.(z) be the solution to equation (3.5),

(J = 1 J), and a(z) = J^._ a.(z). Then, from the form of equation (3.7)

one would expect that the following remainder term R should converge in

probability to zero:

R = y;.",m(z.,h(v.))/Vn - F.^^u./Vn, u. = m(z.,h(v.)) + a(z. ) - E[a(z)].
n ^1=1 1 1 ^1=1 11 11 1

If R -^ 0, then asymptotic normality of Y. ,m(z. , h(v. ) )/V^ will follow
n ^ -^ ^1 = 1 1 1

from the central limit theorem applied to J^._ u./Vn.

To give conditions for R to be small it is helpful to decompose this

remainder term. For M(z) = 9m(z,h)/3h|, ^, ,, let M.(z) denote the j
h=htv) J

column of M(z) and

R^ = I.",{m(z.,h(v.)) - m(z.,h(v.)) - M(z.)[h(v.) - h(v.)]}/Vn.
n ^1=1 11 11 11 1

R^. = j:.'^.{M.(z.)[h.(v.) - h.(v.)] - a.(z.) + E[aAz)]}/Vn.
nj ^1=1 J 1 J 1 J 1 J 1 J

Note that R = R^ + E.'^.R^.. so that R -^ if each of the following
n n ^j=l nj' n ^

conditions is satisfied.

Asymptotic Linearity: R -^ 0.

Asymptotic Differentiability: R . -^ 0, (j = 1 J).

Asymptotic linearity is similar to a condition formulated in Hardle and

Stoker (1989), and will follow from a Taylor expansion and a sample

-1/4
mean-square convergence rate for h of slightly faster than n , as

discussed below. Asymptotic differentiability is a deeper, more important
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condition. It can be shown to hold if h.(v) is a kernel estimator of
J

J'a(y)f (y, x)dy using U-statistic projection results and higher-order bias

reducing kernels, as in Powell, Stock, and Stoker (1989) and Robinson (1988),

or if h.(v) is a series estimator using properties of sample projections and

series approximations, as in Newey (1990b) and Section 6. It is also possible

to further decompose the asymptotic differentiability remainder in a way that

allows application of Andrews (1990b) stochastic equicontinuity results. Let

R^^. = 5:.",{M.(z.)[h.(v.) - h.(v.)] - J>l.(z)[h.(v) - h .(v)]dF(z)}/i/S.
nj ^1=1 Jiji ji J J J

R^^ = Vn{XM.(2)[h.(v) - h.(v)]dF(2) - l.^Aoi.U.) - E[a . (z) ] }/n}.

Note that R^ . = R^^. + R^^, so that R^ . -^ if each of the following
nj nj nj nj

conditions is satisfied.

Stochastic Ecpiicontinuity: R . -^ 0.

Functional Convergence: R . —> 0.
nj

Conditions for stochastic equicontinuity are given below. Functional

convergence is specific to the form of h(v). One interesting result is that

if E[M.(z)|v] = 0, then functional convergence holds trivially for a.(z) =

0. Thus, asymptotic linearity and stochastic equicontinuity are regularity

conditions for Proposition 3, as further discussed below. When a.(z) is not

zero, functional convergence may follow from asymptotic normality of

mean-square continuous linear functionals of h(v), since functional

convergence is only slightly stronger than asymptotic normality of

v^{jE[M.(z)|v]th.(v) - h.(v)]dF(z).

Some of these high level conditions will be consequences of more

primitive hypotheses. The first of these limits the dependence between

26



observations that are far apart.

Assumption 5.1: z. is strictly stationary and strong (a) mixing with mixing

coefficients oc{t) = 0(t~^) for fi > 2.

The next condition is uniform consistency of h.

Assumption 5.2: For each j and the support V . of v .,

sup ,, |h.(v.)-h.{v.)| -^ 0.
v^el/j J J J J

Primitive conditions for this and the other assumptions about h are given in

Section 6. The following pair of hypotheses are more primitive conditions for

Asymptotic Linearity. The first imposes smoothness conditions on m. For a

random variable Y let |Y| = (E[ | Y| ^]
)

^''^, and for any € > let Jf(v,€)

= {h: llh-h(v)ll < €>.

Assumption 5.3: |m(z, p , h(v) ) | , is finite for some s' > 2fi/(fi-l) and

there is a neighborhood N of p € > 0, b. (z) > 1, &. (1 s j+k ^ 2),

& . i 2, 6 i 2 such that with probability one m(z,p,h) is twice

continuously differentiable on Nx'Hiv,e),

The next hypothesis imposes a convergence rate on h.

O At

Assumption 5.4: i) for some h, for each J, Y. , |h . (v. )-h . (v. ) | /n = o (n ):
^1 = 1 J 1 J 1 p '

ii) either m is linear in h or h ^ -& -(1/2).

Assumption 5.4 is stated in terms of the sample L norm rather than a more

general norm because the literature on convergence rates of nonparametric

estimators seems to give the sharpest results for this norm.
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Lemma 5.1: If Assumptions 5.2 - 5.4 are satisfied then Asymptotic Linearity

is satisfied.

The following condition is sufficient for stochastic equicontinuity.

Assumption 5.5 |M(z)| , < oo for s' > 2/i/(/i-2) and for each j, there is a

set V. such that E[l(v .el/" .) IIM .(z) II ] = and either; a) V. is a singleton,
J J J J J

or; b) V is convex with Prob(Boundary(V .) ) = and there is a positive

integer d. > diin(v.)/2 such that h.(v) is continuously differentiable,
J J J

with bounded derivatives, to order d. . on V . and for all |A| £ d.,
J J J

sup^ ^^ |D'^h(v.)-D\(v.)| -^ 0.

Lemma 5.2: If Assumptions 5.1 and 5.5 are satisfied, then Stochastic

Equicontinuity is satisfied

Although the main focus here is asymptotic distribution theory, for

completeness it is appropriate to give a consistency result. The next

hypothesis imposes identification and regularity conditions for consistency.

Let p: IR ^ IR be continuous at zero, with p(0) = 0.

Assumption 5.6: E[m(z, (3, h(v) ) ] = has a unique solution at P , W -^ W,

W is positive definite, and either a) m(z,P,h(v)) is convex in /3 with

probability one, for each j3 e SB, E[llm(z, |3, h(v) ) II ] < cd, there is b(z} and

such that E[b(z)] < oo and sup, -,, Jlm(z, p,h)-m(z, /3, h{v) ) II £ b(z)p(€), or;
nSH IV, G J

b) B is compact, m(z,p,h(v)) is continuous in p, there is b(z) and

p(e) continuous at zero such that E[b{z)] < oo, sup „llm(z, 3, h(v) ) II ^ b(z),

^"PpeB h€K(v e)l'"'(z.'3.h)-m(z,p,h(v))ll :£ b(z)cP.

Theorem 5.3: If Assumptions 5.1 -5.2 and 5.6 are satisfied then -^ ^ .
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Next, regularity conditions for Proposition 3 are given. Let m. =

Theorem 5.4: If Assumptions 5.1-5.6 are satisfied and for each J either

E[H .(z) \v .] = or, more generally h .(v .) and h .(v .) are elements of a
J J J J J J

set U. such that E[M .(z)h .(v .)] = for all h . e K ., then for Q =
J J J J J J

E[m.m'.] + y„ ,E[m.m'. „ + m. „m'.].

^i^-p ) -^ N(0,V), V = (D'WD)~'^D'WnWD(D'WD)~'^.

This theorem shows that Andrews (1990a) "independence" hypothesis, that

estimation of h(v) does not affect the limiting distribution of ^, is a

consequence of orthogonality of M(z) with the set of possible h(v).

The next asymptotic normality result allows for a nonzero correction

term. Let n^ = E[u.u^^^], ^ = n^ + l^l^iQ^+Q'^)

.

Theorem 5.5: If for some s' > 2^/(y.-l), |a.Czj| , is finite, (J = 1, ...

J), Assumptions 5.1 - 5.4, 5.6, and Asymptotic Differentiability are

satisfied, then v^(p-p ) -^ N(0,V), V = (D' WD)~-^D' WnWD(D' WD)~^

A consistent estimator n of n is required to form a consistent

estimator of the asymptotic variance of p. Such Q can be formed from

estimates u. of u.. Let a., denote estimates of a.(z.) and
1 1 Ji J 1

m. = m. (z. ,p,h(v. ) ), u. = in. + Y- ,\.a...-Y. ,a../n], n„ = Yv ,u.u' „/n.
1 1 1

'^'
1 * 1 1 ^.]=1 .11 ^1=1 11 i ^1=1 1 i+£

If u. is not autocorrelated then n = Q will be an appropriate estimator.

When u. may be autocorrelated, consider a weighted autocovariance estimator

like that in Newey and West (1987), with
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n = ^Q + l^^^u,L)iQ^ + n^],

where w(£,L) is a weight such that Q is positive semi-definite, such as

w(£, L) = 1 - £/(L+l). Here L can depend on the data, as is important for

applications. Given this estimator of Q, an estimator of the asymptotic

covariance matrix of ^ can be formed in the usual way, as

V = (D'WD) D'WnWD(D'WD) .

Theorem 5.5: Suppose that Assumptions 5.1 and 5.3 are satisfied with &_ =

6,^ = 2, there is s > 4u./(ll-2) such that |m.| and \a .(z.)[ are finite
10 r- r-

^ ^ J X s

for each J, w(l,L) is bounded uniformly in I and L and lim, w(i,L) =

1 for each i, \\p-pj\ = (l/Vn). there is e = o(l) such that 1/n = 0(&^),Up n n

\h .(v)-h .(v)\ = fe ;, y.",lla ..-a .Cz Jll^/n = (^ ) and either a) Q, = 0,
J J CO p n ^1 = 1 ji J 1 p n I

i ^ 1, and n = n^; or b) L -^ co, and L = o (&~'^). Then, V -^ V.
u p n

As usual for minimum distance estimators, the asymptotic variance depends

on W, and an optimal (asymptotic variance minimizing) choice of W is n

when n is nonsingular. The estimator Q can be used to form a feasible

version of the optimal minimum distance estimator, by using W = n in

equation (5.1). The resulting estimator will be an optimal estimator that

adjusts for the presence of first-stage, plug-in estimators in the moment

functions, similarly to the estimator of Hansen (1985). For this choice of

W, (D'n D) will be a consistent estimator of the asymptotic variance of
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6. Series Estimation of Projection Functionals.

This Section develops regularity conditions for linear functionals of

power series estimators of projections. Power series are considered because

they are computationally convenient and the most complete convergence rate

results seem to be available for them. Although in some contexts power series

are thought to be inferior to other approximating functions, because of their

"roly-poly" behavior and global sensitivity of best uniform approximations to

singularities, these considerations may not be as important here, where the

projection estimator is a nuisance function. Under Assumption 4.1, p

depends on the series approximation essentially only through a weighted

average, where these problems with power series seem not to be so important.

An example is provided by the Monte-Carlo results of Newey (1988a), where a

semiparametric power series estimator performs extremely well relative to a

kernel estimator.

Here, the domain & of the projection will be assumed to take the form

in equation (4.1). The conditions to follow will depend on the maximum across

£ i L of the dimension of x„, which will be denoted by a. A power series

estimator of the projection can be obtained from a regression of y on a

truncated power series with elements restricted to lie in W, analogous to

Stone's (1985) spline estimator. Let X denote a vector of nonnegative

X T- ^f CO

integers as before, and let x = IT._ x. . For a sequence (/VCk)) of

distinct such vectors, a power series is

(6.1) pj^(x) =

X , k = 1, . . . , dim(x )

L+l,k L+l

A (k-s ) , , . /•
~

\ ,
X . k = dim(x )+l,

L + l

A (k

)

It will be assumed that {x }, j. ,~ , consists of all multivariate
k>dim{x )

L+l
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powers of each x. for £ ^ L, and no more, ordered so that |A.(k)| is

monotonic increasing. This assumption imposes the essential restriction that

each p. (x) belongs to W, and the spanning condition that the sequence

includes all such terms.

The estimator of the projection considered here is that obtained from the

least squares regression of y on K terms, where K is allowed to depend

K K
on the data. For y = (y y )', p (x) = (p.(x) p (x))', and p =

K K
[p (x ) p (x )], the estimator of g(x) is

(6.2) i(x) = p^(xrn, n = t'p^'y, t = p'^'p^^/n

where (•) denotes a generalized inverse. Under the conditions to follow,

K K
p 'p will be nonsingular with probability approaching one, so that the

choice of generalized inverse does not matter, asymptotically.

A data based K is essential for making operational the nonparametric

properties of series estimators, allowing the estimator to adjust to

conditions in particular applications. It would also be interesting to know

how to best choose K in the current context, but this question is outside

the scope of this paper.

For computational purposes it may be useful to replace p (x) with

nonsingular linear transformation to polynomials that are orthogonal with

respect to some distribution, since these may have less of a multicollinearity

problem than power series are known to have. Of course, this replacement will

not affect the estimator. Also, note that the elements of each x. may be

smooth, bounded transformations (e.g. the logit distribution function) of

"original" variables, which may help to limit the sensitivity of the estimator

to outliers. In the Monte Carlo example of Newey (1988a), such a

transformation lead to reduced sensitivity to the choice of K.
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The function h(v) that appears in the moments will be taken to be a

linear function A(v,g) of the projection g, as analyzed in Section 4, and

h(v) will be estimated by replacing g by g in the function. By linearity

of A in g, the resulting estimator takes the form

(6.3) h(v) = A(v,g) = A(v)'7t, A(v) = (A(v,p^) A(v,p~))'.

Note that this estimator requires that A(v,g) have an explicit form that

does not depend on the true data-generation process.

An estimator of the correction term is required for estimation of the

asymptotic variance of p. Under Assumption 4.1, such an estimator can be

constructed in a straightforward way. Let

(6.4) a(z) = *'f:"p^(x)[y - g(x)], * = Y.^^^ldm(z^,^,hiv^))/ah]Mv ^)/n.

By Assumption 4.1 i will be an estimator of J6(x)p (x)dF(x), so that

*'£ p (x) is an estimator of the regression of 6(x) on p (x), which will

approximate 6(x) for large K and n. Alternatively, a(z) can be viewed

as the estimator of the correction term obtained by treating g(x) as if it

were a parametric regression, with K fixed. This procedure results in a

consistent estimator of the correction term because it accounts properly for

its variance, while bias from the series approximation will be small because

of smoothness restrictions on g(x) and 5(x) imposed below.

The following conditions are needed to apply the results of Newey (1991).

Let X denote the vector consisting of the union of all distinct variables

s, L ~ ~ 2
appearing in x„, (£ £ L), and let t = '(Eo^ig/^^/^ • ^^^A^f^ ^ *~ "^- ^^®

first condition is sufficient for § to be closed.
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Assumption 6.0: i) For each x^, (£ = 1, .... L), if x is a subvector

of x^ then x = x„, for some I' £ L; ii) There exists a constant c > 1

such that for each i, with the partitioning X = (x^.x.')', for all a(q) ^

0, cJa(q)d[F(x^)-F(xJ)] £ E[a(q)] ^ c"Va(q)d[F(x^) -FCxJ) ] ; iii) Either i)

= (i.e. X is not present) or x is bounded and for the closure

of t, E[{x^^^-n(x^^j|f)}{x^^^-n(x^^^|f)>'] is nonsingular.

The next condition requires that the support of X be a box and places a

lower bound on its distribution.

Assumption 6.1: There are finite X. > X.,, v . ^ 0, (j = 1, ..., dim(X))

such that the support of X is n - ^ [X. ,X.. ] and the distribution of
II j=l ju' jb

X has absolutely continuous component with density bounded below by

§

Cn. ,[(X. -X.){X.-X., )] on the support.
"j=l JU J J Jb

The nonsingularity condition is a normalization, unless 7) is a parameter of

interest, where it is an identification assumption for t\ . Let e = y-g(x).

2
Assumption 6.2: |c| , is finite for s' i 2 and E[e |x] is bounded.

The bounded second conditional moment assumption is quite common in the

literature (e.g. Stone, 1985), and simplifies the regularity conditions.

Assumption 6.3: Either a) z. is uniform mixing with mixing coefficients

0(i) = 0(t~^), (t = 1, 2, ...), for /i > 2 or; b) there exists c(t) such

that lEf^i^^i+il'^i.^i+^J I
- c(t) and E^"jC(t) < co.

This assumption is restrictive, but covers many cases of interest, including

independent observations and dynamic nonparametric regression with g(x.) =

E[y. |x.,y. .,x. ,,y. ^,...]. The next condition restricts the amount of
1 1-^1-1 1-1 '1-2

variation allowed in the choice of number of terms K.
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Assumption 6.4: K = K such that with probability approaching one, K ^ K ^ K

where K = K(n) and K = K(n) are sequences of constants, and there is e >

such that K(n) ^ n for all n large enough.

The bounds K and K control the bias and variance, respectively, of g.

The next set of conditions impose smoothness assumptions used to control

the bias of the estimator.

Assumption 6.5: g. (x.) is continuously differentiable to order d, (£ ^ L).

Two results will be given, because the conditions are weaker and simpler

in the special case where h(v) = g(x), meriting Its separate treatment. For

any nonnegative integer d let

(6.5) C^(K) =K-^"^*2d_

The covariance matrix of ^ can be estimated by the procedure discussed in

Section 5, using the estimators of a.(z) given above. The asymptotic

distribution results will include consistency of this variance estimator.

Theorem 6.1: Suppose that Assumpt ions 5.1, 5.3, 5.6, 6.0-6.5 are satisfied,

s'
and for each J, i) s > ^ii/Cii-Z), ElWH .(z)\\ ] is finite for some s' >

2
^\l/(\1l-2) and E[\\M .(z)-5 .(x)\\ \x] is bounded; ii) S .(x) is continuously

differentiable to order d on x; Hi) each of the following converge to
o

zero: K^C^(K)^/n. K^^^^CK)^-"^ ^"^ , K^^^^^(K)k'^^'' , v^'^^^^S^^'^; iv)

either m(z,^^,h) is linear in h or K/Vn + VnK = o(n O2); v) e =

n K Cq(K)(K /vn + K )+n K5 = o(l) and either a) Q. = 0, £ >

1, n = n.; or b) L -^ 00, and L = o (s'h. Then Vn(^-f3^) -^ N(0,V) and
u p ri u

V -^V.
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The upper bound on the rate of growth for the number of terms in the series

1/4
expansion is n when the density of X is bounded away from zero (v = 0),

1/2
which is less than the n rate derived in Newey (1990b). This result also

requires existence of derivatives of both g(x) and 6(x) up to order more

than the largest dimension of an additive component, as in Newey (1990b).

To obtain asymptotic normality in the more general case, where h(v) =

A(v,g) is some other linear function of g, it is useful to impose a

continuity condition on A(v,g) as a function of g. Let V denote the

support of V, and denote supremum Sobolev norms by

"^^^^"d
= =^Pui^d,vel/l^''h^^^l' "S^^^"d =^"P|A|sd,xl^^^(X)l.

Assumption 6.6: There is a constant C and an integer A such that

IIA(v,g)llQ :£ Cllg(x)ll^.

This Assumption will imply that the bias from approximating the function

h (v) by a linear combination of A(v) is bounded by the bias of

approximating g(x) and its derivatives to order A by a linear combination

of p (x). Unfortunately, for multivariate functions, a literature search has

not yet revealed bias bounds for approximating a functions and derivatives by

power series, except under part b) of the following condition.

Assumption 6.7: Either a) a = 1 or A = or; b) for each £, g. (x.)

is continuously differentiable to all orders, and there is a constant C such

that sup^^^|Z)\^(x^)| £ c''^' for all X.

Condition b) implies an approximation rate for g(x) and its derivatives that

is faster than K for any a.

When K is random, it is useful to also have an approximation rate for
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6(x). In order that the results would apply to many cases, with more general

approximation results that one anticipates will appear eventually, the rest of

the results of this section will be stated in terms of

e^(K) = min |5(x)-p*^(x)'7i|„.on ^

Let X = X(n) = tK. K].

Theorem 6.2: Suppose that Assumptions 4.1. 5.1. 5.3. 5.6. 6.0-6.7 are

satisfied and let a. = d/n, and a - (d/n.)-L under Assumption 6.7 a) and a.

= a = +00 under Assumption 6.7 b). Also suppose that for each j.

|m(2,p h(v))| , and \6 .(x) [y .-g .(x)\ , are finite for s' > ^[i/(^i-Z). and
^ s J J J ^

i) Z,/KC.CK;^K~'^" -^ and }^nK'°'oejK) -^ 0; ii) Either a) z. is uniform

mixing or b) J^^ft ^ CK^ K o —> 0; Hi) Either a) m(z.h) is linear in h

and € = K^^^i:jK)K~°- + n''^[K{:jK)+ K^^^C-CTc/j/v^ + [l^eJK)^]^^^ -^ 0. or

b) yrMcAK)^lK/n+YC^"-l = o(l) and e = n^^l^^^C^jDll^^^/^n + k""' 7 +
A - n A -

n^^¥p^^C,^(K)^/V?i + flj^^^CK)^]^^^ -^ 0; iv) either a) n^ = 0. I ^ 1 . h =

fi_; or b) L -^ <x>. and L = o (e~^). Then Vn(^-(i^) -^ N(O.V) and V -^
(J P n u

V.

The smallest upper bound on the number of terms allowed by this theorem is

n , for V = and s = oo, a rate also derived in Newey (1991). This

result also requires existence of derivatives of g(x) of order more than

3/2 the maximum dimension of the additive components, but imposes weak

smoothness restrictions on 5(x).

The requirement that the bias go to zero faster than 1/v^, as needed

for V^-consistency, is that v'i^ °''oe.(K,) converge to zero. This term is the
o

product of i/n, the approximation rate for g(x) (i.e. the bias from

estimating g(x) by truncated series), and the approximation rate for 5(x).
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Consequently, "iindersmoothing" is not required for asymptotic norma'' ty ' th

"plug-in" series estimators, as it is for some kernel estimators, because the

bias from estimating h(v) does not have to go to zero faster than 1/v^.

This result is a consequence of the usual orthogonality property of

mean-square projections. Let gv-(^) and
^jf^^)

be the population regression

on p (x) of g(x) (or y) and 6(x), respectively, and hxr(v) = A(v,g )

the corresponding value of h^(v). Using Assumption 4.1, the population first

order bias term, analogous to that considered by Stoker (1990) for kernels, is

(6.6) E[M(z){hj,(v)-h(v)}] = E[5(x){gj,(x)-g(x)}]

= -E[{5j,(x)-5(x)}{g^(x)-g(x)}].

so that the bias term for h is equal to product of biases terms for 5 and

g-

Under Assumption 6.1 with v = 0, K nonrandom, and Assumption 6.7 a),

these results will also apply to uniform knot spline estimators of g(x), if

5+d
the definition of Cj(K) is changed to Cj(K) = K' . More generally, the

results apply to any series estimator satisfying Assumptions 3.1-3.8 in Newey

(1991), although these do not allow for Fourier series estimators.

7. Examples

This Section gives primitive regularity conditions for the validity of

the examples of Section 4, and one or two additional examples. To save space,

this Section has a special format, where each subsection gives an estimator

an estimator of its asymptotic covariance and a result on v'n-consistency and
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asyniptOj. c normality of the estimator and consistency of the estimated

variance, with discussion of the results reserved until the end.

To give more specific results on the rate at which the number of terms

can grow it will be useful to impose the following Assumption.

T — r
Assumption 7.1: K(n) = n and K(n) = n for some T > 7 > 0.

7. 1 Semiparametric Random Effects for Binary Panel Data

CP;.o^o)' = (!'', A. An ^I-'^.A.* ^(h,(x.)). S-. = 1; X. = (x.' X.;)'.
1 2 ^1=1 1 1 ^1=1 1 1 1 1 1 il i2

h.(x) = Ely, |x], (t = 1, 2), A. = I . (x. 1 -x. '

$"-^ (h„(x. ) ) )'

,

t t 1 1 il i2 2 1

I. = 1(0 < h,(x.) < 1 and < h^(x.) < 1), .

1 1 1 2 1

V = ^(I.;^A.Ap-^I.2^G.GMI.;^A.An-^ G. = A. ^c"! (h^ (x. )) - AM^^.^^^'}

+ It=l^"^^^~^°'tf^j = l'^^*'^^^t^''j^^^"^P^^''j^^"'^'P^^''i^^yti " ^t^'^l^^^'

Theorem 7.1: Suppose that i) z. are i.i.d.; ii) Assumptions 6.0 and 6.1

are satisfied for x = (x ,x ). iii) p(x) has continuous derivatives of up

to order d on X; iv) E[(x -x , p(x) )(x -x , p(x) )' ] is nonsingular; vi)

Assumption 7.1 is satisfied with T < 1/4. r > max{2r^/d, ZTk/d^, ^/(d+d_)>.
o o

Then V?l[(^' ,S-^) - (p' ,<r^)] -^ N(0, V) and V -^ V.

7. 2 Nonparametric Consumer Surplus

^ = ri=i>r^g^^r^2i^^^/"'

^ = ^i=i^/^' ^ =^^g^^r^2i^^^i
-^

+ <I
" J^P^(x^,X2.)dx^/n}'rV(x.)[y. - i(x.)].
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Theorem 1.2: Suppose that i) z. are i.i.d.; ii) Assumptions 6.0 - 6.2, and

6.5 are satisfied for v = 0, s > 4. iii) x = (x ,x^) is absolutely

continuous with respect to the product of the uniform density on d and

the distribution of x , with bounded density f(x) and either a) ^ =

~ 1 2 1-11 2 1
{g.(x.,x^) + X 't)}, and f(x ,x ) f(x^) and E[x \x ] are continuously

different iable to order d_ on the support of x or b) '[l(f(x)\^) is
o

continuously different iable in X to order d. on the support of x. iv)
o

Assumption 7.1 is satisfied with d > 3n./Z, T < (s-2)/5s, y > n./[2(d+dj]

,

o

r > Tnyd. Then Vn(^-p) -^ N(0. V) and V -^ V.

7. 3 Nonparametric Prediction

P = Zi=iti(v.} - i(x.)]/n.

V = Zi=i^i/n, G. = i(v.)-i(x.)-p

+ <I-"i[p^(v.)-p*^(x.)]/n}'z'^p^(x.)[y. -i(x.)]. .

J=l JJ '^i-'i^i

Theorem 7.3: Suppose that i) z. are i.i.d.; ii) Assumptions 6.0 - 6.2, and

6.5 are satisfied for v = and s > 4, iii) v is absolutely continuous

with respect to x with bounded density f(v) and either a) ^ = (g (x ) +

2 12 1-11 2 1
X 't)}, V = (v ,x ), and f \(x ) f \(x ) and Eix \x ] are continuously

different iable to order d.. on the support of x or b) Tl(f(x)\'S) is
o

continuously different iable in X to order d„ on the support of x. iv)
o

Assumption 7.1 is satisfied with d > 3a/2, T < {s-2)/5s, y > ny[2(.d+dj].
o

r > rn/d. Then Vn(^-^) -^ N(0, V) and V -^ V.
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7.4 Average Derivatives

V = Z.^jG.G^/n, G. = m(z.,h(x^)) - ^

+ [5:.",{am(z..h(x.))/5h>{ap^(x.)/ax,}'/n]z"p^(x.)[y.-i(x.)]
^j=l 1 1 J 1 111

Theorem 7.4: Suppose that i) Assumption 5.1 is satisfied, and g(x.) =

Ely .\x ., y ._, X ._,...] ; ii) K = K(n) is not random; iii) Assumptions 6.0 -

6.2, 6.5, and 6.1 b) are satisfied, there is s' > 4yi/(^i-2) such that

\a.(z)\ , < 00, (J = 1, ..., J), X is absolutely continuous respect to the
J ^

product of Lebesgue measure on x and the distribution of all elements

of X other than x with density f(x) that is continuously different iable

in X on the interior of a convex support, df(x)/dx zero on the boundary-12 -x

of the support, and E[\\f(x) df(x)/dx W ] is finite. v) K ^ n for some if

r
> and K = 0(n ) for either a) m(z,h) linear in h and F <

(s-2)/[s(7+4v)], or b) T < (s-2)/ [s(14+4v)] . Then Vn(0-^) -^ N(0, V)

and V -^ V.

7.5 Discussion

The conditions in Section 7.4 for multidimensional average derivatives

are quite restrictive, but could be relaxed if better approximation rate

results were available, on approximation of derivatives and unbounded

functions by power series. In particular, nonrandom K results from not

having an approximation rate for 6(x), which is unbounded for average

derivatives. Also, one can relax these conditions substantially for weighted

average derivatives, where fi = E[w(x)3g(x)/Sx] and the weight function is
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such that f (x) w(x)5f(x)/5x + 5w(x)/Sx is continuously differentiable on

the support of x, including allowing for random K.

The estimators for the semiparametric random effects and for

nonparametric consumer surplus seem to be new. The result for nonparametric

prediction is the first result on v^-consistency of an estimator, and includes

the unconditional variance in the estimation of the asymptotic variance.

Series estimators for average derivatives were previously suggested by Andrews

(1991), although the result here includes conditions for V^-consistency and

apply to times series.
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Appendix A: Proofs of Theorems

Throughout this appendix C will denote a generic positive constant that

can be different in different uses and o will denote o (1).
P P

Proof of Theorem 2.1: Pathwise differentiability of )i(F ) follows

inunediately from Theorem 2.1 of Van der Vaart (1991), since asymptotic

linearity of p and the Linbergh-Levy central limit theorem imply that for

any S (z) e !f, (v^(p-p )
' ,X]._ S (z. )/v^)' converges in distribution to

o U 1 — 1 6 i

N(0, E[(0(z)',S„(z))' (i//(z)' ,S^(z))] ). Furthermore, by the the final

conclusion of Lemma A. 1 of Van der Vaart, it follows that for any vector b,

b' (G [/i(F )-p(F -,)]) converges to b' E[0(z)S (z) ] , while by pathwise
ZS ZU B

differentiability it follows that b'E[0(z)S^(z) ] = b'E[d(z)S^(z) ] . Since

this equality must hold for any b and path, it follow by Assumption 2.

1

that E[ (0(z)-d(z) )s(z) ] = for all mean-zero s(z), so that choosing s(z)

to be any element of i/»(z)-d(z), it follows that 0(z) = d(z).

Proof of Lemma 5.1: It suffices to prove the result for scalar m. Let

let h. = h(v.), h. = h (v.), and m(z,h) = m(z,p,h). By Assumption 5.2,

max. Ilh.-h.ll < e w.p.a.l. Also, a standard result implies max. {b„„(z.)}
i^n 11 ^ i^n 02 1

= (n 02). Thus, by an expansion,

(A.l) liy.",m(z.,h. )-m.-M(z. )(h.-h. )/nll < 7.", IIS^m(z. , h. )/5hah' llllh.-h. Il^/n
'^1 = 1 111 111 ^1=1 11 11

J^..( \\^ n ,,c , ,,2, ^ , 1/& . , -(l/2)-l/& , . -1/2-
s max.^ {b(z.)}y. .Ilh.-h.ll /n = (n 02)0 (n 02) = o (n ).

i^n 1 ^1=1 1 1 p p p

Proof of Lemma 5.2: Suppress the J subscript. In Andrews (1990b) notation,

let W _. = v., W_, = z.. Vf = V, q = d, x = l(vey)h(v), k = dim(v),aiLiiLia a

m(w ,t) = t(v), and g(w) = M(z). Note that Andrews Assumption F ii) is
a

satisfied by hypothesis. Also by hypothesis, t = l(v€V)h (v) has
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derivatives of up to order q on W , and for |X| ^ q, sup ^ \D t(v) -

a

d\q(v)| = o (1). Let T = {t(v) : sup^^^ |d\(v)
|
< ^^\^y^ IP'^t^Cv) |

+ 1

a a
\

2 1/2
for all X with Ul ^ q}. Then sup cT^^|xI< "^W

'^ ""^(^^l "^^^ < "• giving
a

Andrews Assumption F iii). Also, by construction, m(w ,t) = t(v) is zero

(and hence constant) outside W
,

giving Andrews Assumption F iv). Also, s'
cL

> 2/1/(^-2) implies ^l > 2s'/(s'-2), so that Andrews Assumptions v) and vi)

are satisfied. Finally, t(v) e T w.p.a. 1, and /.-[tCvj-tCv) ] dv -^ 0, so

that the conclusion follows by Theorem II. 7 of Andrews (1990b).

Proof of Theorem 5.3: Let iii O) = y.",m(z.
, g, h„(v) )/n, mO) =

n ^1=1 1

E[m(z,p.h„(v))], QO) = iii 0)'Wiii (p), and QO) = m{/3)'WmO). Under
n n

Assumption 5.6 a). Assumption 5.2 implies that for each p, llm 0)-m 0)ll -^

0, while by z. ergodic, iii O) -^ mO), implying m O) -^ m (p), so

that QO) -^ QO). Noting that QO) is convex by iii O) convex, the

conclusion then follows from QO) uniquely minimized at p , as in Anderson

and Gill (1982). Under Assumption 5.6 b), sup„ ^llrii 0)-iii 0)ll -^ by
p€jD n n

Assumption 5.2, while sup .^llm 0)-mO)ll -^ follows by Andrews (1987),

so that sup _IIQO)-QO)ll -^ 0. The conclusion now follows by the Wald

argument for extremum estimators.

Proof of Theorem 5.4: By Lemmas 5.1 and 5.2, Asymptotic Linearity and

Stochastic Equicontinuity are satisfied, and by orthogonality of M(z) with

h(z) and h(z), v'iiJT'Kz) [h(v)-h(v) ]dF(z) = 0. Then by the a-mixing central

limit theorem of White and Domowitz (1984), Vnrii 0-) = T. ,m./V^ + o (1) —>
n ^1=1 1 p

N(0,n). The remainder of the proof then follows from a standard minimum

distance argument, such as that in Newey (1988b).

Proof of Theorem 5.5: It follows by Lemma 5.1 that Asymptotic Linearity is
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satisfied, so that by Asymptotic Differentiability, the triangle inequality,

and the a-mixing central limit theorem of Vfhite and Domowitz (1984), vTim (S_)
n

= y. ,u./v^ + o (1) —) N(0,n). The remainder of the proof then follows by a^1=1 1 p

standard minimum distance argument, such as that in Newey (1988b).

Proof of Theorem 5.6: By a mean value expansion,

(A. 2) X-^Jlin--m.ll^/n £ ( ll^-^_ll^+sup llh(v)-h(v) ll^)j;." fb, . (z. )^+ b.. (z, )^]/n
^1 = 1 11 "^ "^0 V ^1 = 1 10 1 01 i

= (€^).
P n

Therefore, T. ,llu.-u.ll /n = (e ). Let Q„ = ). ,u.u' „/n, Q = Q„ in case
^1=1 11 P n I ^1=1 1 i+i

a), and Q = n + E„^.,w(£, L) [n„ + Q'] in case b). Note llu.u'.^. - u.u'^.ll ^

llu.-u. Illlu. „-u. Jl + llu.llllu. „-u. .11 + llu. Jlllu.-u. II, so that for all 1^0,
1 1 i+t i+£ 1 i+l i+i i+£ 1 1

by the Cauchy-Schwartz and Markov inequalities,

(A. 3) lin„ - nJI i {I^"fllG.-u.ll^/n}^''^{j:"~fllG.^,-u.^„ll^/n}^^^
t i ^1=1 1 1 ^1=1 i+£ i+t

,,-n-t,, „2 . ,l/2,^-£,- „2 . ,1/2
+ <r. JIu.ll /n> {Y. JIu. „-u. „ll /n}^1=1 1 ^1=1 i+£ i+£

_^
.^-i,, ,,2 . .l/2.Ji-£ ' ,,2, .1/2
^^ = l"''i+£" '^"^ ^^ = l"'^i""i" ^"^

i y."jlu.-u.ll^/n + {y.^Jlu.ll^/n}^'^^{y:.^JlG.-u.ll^/n}^^^ = (€ ).^1 = 1 1 1 ^1 = 1 1 ^1 = 1 11 p n

In case a), lin - nil = lin„ - n^ll =0 (e ) = o (1), while lin - nil follows by
p n p

the law of large numbers, giving the conclusion. In case b), there is a

sequence of numbers 6 ^0 such that for L' = 6 /e , Prob(L :£ L' ) —^ 1,
n n n

were L' can be chosen as an integer by the argument from Newey (1990b).

Then by boundedness of w(£,L) and eq. (A. 3), with probability approaching

one lin - nil s ||5 - 5 II + cr.^jin.-njl ^ (1+CL')0 (€ ) = o (l). AIso, l/'/n =
^£=1 £ £ p n p

0(e ), so by Davidov's inequality, arguing as in Kool (1988), it follows that

for n^ = n + J]fi_.,w(£, L) [n. + n'], with probability approaching one, iin -
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a II s \\n -n W + CX;„^ lin„ - n.ll = O (L'/Vn) = o (l). Finally, applying the

dominated convergence theorem as in Newey and West (1987), it follows by L

-^ 00 that wn^+Y.^^'^u.Din^ + n^] - nil = o (1).

Proof of Theorem 6.1: To show consistency, note first that iii) implies that

K^''^Cq(K)/v^ = o(1) and K^'^^<q(K)K~^'^'^ = o(1), so that Assumption 5.2 is

satisfied by Theorem 6.1 of Newey (1991). Consistency of p then follow by

Theorem 5.3. Let objects without subscripts denote vectors of observations.

Asymptotic Linearity follows by Lemma 5.1 and iv), since by Theorem 6.1 of

Newey (1991), llg-gll /n = (.K/Vn + K ) = o (n 02 ) , so Assumption

5. 4 is satisfied.

Next, Asymptotic Differentiability is shown, with a.(z) as derived in

Section 4. For notational convenience the j subscript will be dropped and

M(z) treated as a scalar (for vector M(z) the result follows by applying

the following argument to each of its elements). Let Q = p(p'p) p' , M =

(M(z ), . . . ,M(z ))', and 6 = QM. Then by Q idempotent,

(A.4) M'(g-g) - 6'(y-g) = 6'g - M'g - 5'y + 5'g

= (6-5)' (g-g) + S'(y-g) + (5-3)'g = Rj + ^2 ""^ ^3'

By Theorem 6.1 of Newey (1991) and iii),

iRjI/Vn s Vnlia-5lllli-gll = (.VniK.'^^^/Vn + k'^S^'^) (K^^^/'/n + k"^'^) ) = o (1).

K K
By Lemma 8.1 of Newey (1991), there are g„(x) = p (x)'7i and 5 (x) =

K g K.

p^(x)'7r^ such that llg(x)-g„(x) IL £ CiC^'^ and Il5(x)-5^,(x) ll„ ^ CK~^5'^'^.
O K U Is. V

Then by Q idempotent.
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(A. 5) IR^I/V^ = 15' (I-Q)yl/V^ :£
I
(6-6- )' (y-g) |/v^ +

I
(6-6^)'Q(y-g) |/v/H

*
I
(6-6^)' (I-Q)(g-g^)|/Vn = R^, - R22 - R23-

By I-Q idempotent and K i K with probability approaching one, R ^

116-6- II llg-g-ll/Vn = (Vnk~^^*^6^'''^) = o (1). By Lemma 9.8 of Newey (1991),

(y-g)'Q(y-g)/n = (iC/n). so that R^^ ^ II5-6-II [ (y-g) 'Q(y-g)/n]
^'^^ =

(K K 6 ) = o (1). By the strong mixing hypotheses, Davydov'

s

_ 2
inequality, and Assumption 6.4, for p = 1-2/ji and K = [K,K], R £

1

(6-6-)' (y-g)|^/n = Op(i:^E[ |
(6-6^,) ' (y-g) |^]/n) = Op(j:j^E[ |

(6-5^) ' (y-g) |^]/n) ^

Op(j:j^|(6(x)-6j,(x))(y-g(x))|^) = 0p(E^|(5(x)-6j,(x))(y-g(x))|^) = Op(I^K"^V'').

Then since 2d_/a > 1 follows from K C^^^^K 6 converging to zero,
o U

y^K 6 = 0(1) follows, implying R = o (1). Note also that R has the
J\ ^1 p 3

same form as R , with y and M interchanged, so that R /V^ =0 (1) also

follows. Finally, note that 6(x) is bounded, and |e| < cd for s >

2^/((j-l), so that |a(z)| < oa for s > 2/i/((j-l), so that all of the

hypotheses of Theorem 5.5 are satisfied and the first conclusion follows from

its conclusion.

To prove the second conclusion, note first that by Theorem 6. 1 of Newey

(1991), li(x)-g(x)| = (K^''^Cn(K)[K^''^/v^ + K'"^^""]) = (€ ). Therefore,

by Theorem 5.6, it only remains to be shown that V. Jla.-a(z.)ll /n = (€ ).
^1 = 1 11 P n

It suffices to show this result for each element of a, and hence a can be

assumed to be scalar without loss of generality. Let c. = y.-g(x.), e. =111 1

y.-g(x.), M. = 5m(z. ,p,h(x))/ah, M = (M M ). Then11 1 1 In
(A. 6) Cr."jla.-a(z. )ll^/n £ T."JIM'p^'p^(c. -c. ) ll^/n + 7." ,11 (M-M) 'p'^'p'^e. Il^/n^1=1 1 1 ^1 = 1 111 ^1 = 1

"^
'^i 1

+ y'."jl(M'p^~p^-6. )c.ll^/n = R, + R^ + R^.^1=1 111 123
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By 6 s 2 and Q idempotent, M'QM/n ^ M'M/n =0 (1). Therefore, by

Theorem 6.1 of Newey (1991),

(A. 7) R, £ sup li(x)-g(x)|^M'QM/n = (e^).
.

1 X P ri

Also, by & £ 1, 6 £ 1 and a Taylor expansion, (M-M)'Q(M-M)/n £

IIM-MII^/n = (€^n~^^^), so
P n

(A.8) R^ £ (max.^ e^)y;."jl (M-M)'p*^"p^ll^/n = (n^''^) (M-M)'Q(M-M)/n = (e^).
2 lin 1 ^1=1 1 p P n

Finally, note that M'p z! p. is 6(x. ) where 5(x. ) is the series estimator11 1

of 5(x) from regressing M on p . Thus, by Theorem 6.1 of Newey (1991),

(A. 9) R^ £ (max. G?)y'.'^JI6(x. )-5(x. ) ll^/n = (e^).
3 lin 1 ^1=1 11 P n

Proof of Theorem 6.2: First, consider the case where Assumption 6.7 a) is

satisfied. Consistency of ^ follows as in the proof of Theorem 6.1, noting

that a = d/n. Next, it follows by Theorem 6.1 of Newey (1991) and

Assumption 6.6 that Vlillh(v)-h (v)!!^ £ Ci/nllg(x)-g(x) 11^
=

(V^C. (K) [K/n+K ]) = o , so that Asymptotic Linearity follows by the

same Taylor expansion argument as used in the proof of Lemma 5.1. To show

Asymptotic Differentiability, let

*j, = J-5(x)p^(x)dF(x), Z^ = Xp^(x)p*^(x)'dF(x), 71^ = 2:^^E[p^(x)g(x)].

6j,(x) = p*^(x)'Z^^*j,, g^(x) = p^(x)'7rj,, hj,(v) = A(v,gj,) = A(v)'7rj,,

* = Ij"iM(z^)A(v.)'/n.

Note that h(v) is invariant to nonsingular linear transformations, so that

without loss of generality p (x), p^(x), ... can be assumed to be the

functions in the conclusion of Lemma 8.4 of Newey (1991), for which the
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smallest eigenvalue of Z is bounded below and there is a constant C such

that sup ^ ID p (x)| s CC, [K] . Then, by Assumption 6.6

(A. 10) maXj^^j^llA(v,Pj^)llQ i C^(K).

It then follows by |M(z) | finite for s > 2/i/(/i-l) and Lenuna 9.6 of Newey

(1991) that

— 1 /9 — /N — — ?
(A. 11) ll*-*-ll = (K C.(K)/yn) = o . IIZ-ZII = {KC,AK) /Vn) = o .

K p A p P p

Also, as in the proof Lemma 9.8 of Newey (1991),

(A. 12) liz'-^'^^p' (y-g)/v/nll =0 (K^'^^/'/K).

~ K ~
Next, by Lemma 8.1 of Newey (1991) there exists g„(x) = p (x)'7r such

K.

that llg(x)-g^(x)ll. :£ CK~". Note that Uti-tiII :£ C[ (7i-7i)'Z(7r-7i) ]

^'^^ =

C|gj^(x)-ij^(x)l2 ^ C[|g(x)-gj,(x)l2+lg(x)-ij,(x)l2] ^ C|g(x)-g^(x) 1^ ^ CK"".

Therefore.

(A. 13) llg(x)-gj,(x)ll^ £ llg(x)-gj,(x)ll^ + llgj,(x)-gj,(x)ll^ s C(K~"+llp^(x)ll^ll7i-Trll)

:£ C(K""+llp^(x)IIJIn-7ill) =£ CK^''^<.(K)K~",
A A

By the definition of the least squares coefficients 7i and Lemma 8. 1 of

Newey (1991) it follows that E[p^(x) {g(x)-g^(x) }] = and |g(x)-gj,(x) 1^ ^

CK 0, so that under uniform mixing, for p = [p (x ),..., p (x )]',

(A. 14) E[Ij^llp^'(g-g^)/v/nll^] £ CEj^E[llp^(x)ll^(g(x)-g^(x))2] ^ CJ:^KCq(K)V^%,

which converges to zero by i). Without uniform mixing, it follows by strong

mixing and boundedness of p (x), g(x), and g„(x) that
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which converges to zero by ii) b). Then, since lip' (g-g')/\^ll ^

K 2
Zi/"P ' (g-gv,)/v'nll with probability approaching one, it follows by the Markov

2
inequality that lip' (g-g/>)/Vnll = o .

K. p

Now, it follows by a little arithmetic that

(A. 16) 5:.|^,M(z.)[h(v.)-h(v.)]/n = ($-*)'Z"-^p' (g-g/>)/n + *' (z"-^-z"-^ )p' (g-g/>)/n
1 — 1 111 I\. K

+ *j^'s"^p'(g-gj^)/n + ($-*-)'Z"-^p'(y-g)/n + *' (i"-^-z"^ )p' (y-g)/n

+ (6^-6)' (y-g)/n + J^.^^ (M(zJ [h^(v. )-h(v. ) ]-XM(z) [h^(v)-h(v)]dF(z) )/n

+ J>l(z)[h^(v)-h(v)]dF(z) + 6'(y-g)/n = I,?,R, + 5' (y-g)/n.

By IIZ-ZII = o and |A . {Z)-A . (Z) |
:£ IIZ-ZII, the largest eigenvalue of

p min min

Z"'^ is bounded in probability, so that II ($-*-) 'z"'^ I! :£ ll$-*^IIO (1) = o (1).'^ -^ K K p p
-1 -1 1/2 2 -1

Also, ll*-'Z II :£ C[*-'Z */>] ^ CE[5(x) ], so that ll*/>'Z II = (1), and
K. K. K. K p

hence II*-' (Z~-^-Z~-^ ) II ^ ll%'Z~-^ llll (Z-Z)Z~-^II = o . It now follows by
K. I^ p

v^llp' (g-g-)/nll = o that v^ . = o , (J = 1, 2, 3). Also, by
^ P J P

IIZ~'^''^p' (y-g)/v'nil = (K), it follows similarly from eq. (A. 11) and iii) that

V^. = o and V^_ = o .

4 p 5 p

Next, note that by either uniform mixing or the bound on the conditional

covariances, E[{ (5j,-5)' (y-g)}^/n] £ CE[{l+e^}{5j^(x)-5(x) >^] £

CE[{1+E[e^|x]}{5,,(x)-S(x)}^] s C€-(K)^, so that by Assumption 6.4 and iii),
K. o

(A. 17) nlR^I^ = Op(j:j^E[{(5^-5)'(y-g)}^/n]) = O^ilj^e^iK)^) = o^.

Similarly, note that by eq. (A. 13), |h^(v)-h(v) |^ £ CK^^^C^{K)K~", so that

by strong mixing, Davydov' s inequality, and i) for p = 1 - 2//J,

50



(A. 18) n|R_|^ = {l^\mz)lh^{v)-h{v)]\l) = (5:^KC.(K)^K ^'^) = o .

I p K K p p K A p

Furthermore, by Assumption 4.1, * = E[5(x)p (x)], so that by

j6{x)g-(x)dF(x) = J-6^(x)g^(x)dF(x) = j5^(x)g(x)dF(x)

,

(A.19) v^lRgl = ••n|j6(x)g^(x)dF(x) - E[5(x)g(x) ]

|

= •K|J[6(x)-5£,(x)][g/>(x)-g(x)]dF(x)| :£ Vne-(K)K"% :£ Vne-(K)K"% -^ 0,
K K. O o

where the last inequality follows by e-(K) monotonically decreasing in K.
o

For the case where Assumption 6.7 b) is satisfied, it follows by Lemma

8.2 of Newey (1991) that all the previous arguments hold with a and a

replaced by any (arbitrarily large) positive number a. It then follows K

bounded by a power of n, Cj^I^^ bounded by a power of K, and Assumption

6.4 that all terms above where K o, K , K o, or K appear are small,

so that all the terms depending on a or a in the statement of the Theorem

can be ignored, i.e. a and a can be set to +oo, again giving the first

conclusion.

The second conclusion will be shown only under case a) of Assumption 6.7,

because under case b) the result will follow as above. For notational

convenience, suppress the j subscript on each h.(v). It follows from

Theorem 6.1 of Newey (1991) that |h(v)-h(v)| = (K^^^C^ (K) [K^'^^/V^+K~"]

)

CD p A ~

= (e ). Therefore, by Theorem 5.6, it only remains to be shown that
p n

r.^Jla.-a(z. )ll^/n = (e^). Let * = y.^.m^ (z. , p, h(v. ) )A(v. ) '/n and define^1=1 11 P n ^1=1 hi 1 1

€^ = K^'^^<^(K)[K^'^^/\/n + K~"] if m is linear in h and e^ =

KC^(K)^tK-^^^/\/n + K~"] otherwise. By eq. (A. 10) sup^^^llA(v)ll £ CK^'^^C^(K).

so that by an expansion.
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(A. 20) ll$-*/>ll :£ ll$-*i>ll + |IIA(v)lll {lip-P-liy.^.llm, -(2.,p,h(v.))ll/n

+ |h(v)-hQ(v)lJ.;^llm^(z.,p,h(v.))ll/n} =0^[^^).

Also, it follows as in the proof of eq. (A. 11) that ll*-'S~^ (Z-i)i~'^ll = (e„)

for €„ = KC,AZ)^/Vn and ll*-'Z~-^ll is bounded, so that ll^'Z"'^-*-'^"^!! £

II (*-*/> )'2~-^ II + ll*i>'S~-^(Z-Z)i~'^ll = (€,+€„) = o , and ll^-'i'^^ll = (1).
K K p v Z p p

Next, note that

(A. 21) l.'^.\a.-(x.\^/n ^ Cj;.!?J*'Z"^P. (e. -c. ) |^/n +05^.^,1 ($'z"^-*/>'z"^ )P.e. |^/n
1— 1 1 1 1— 1 111 1 — 1 K. 11

+ CX.^j|[5j,(x.)-5(x.)]c. l^/n = R^ + ^2 " ^3"

Therefore, by Theorem 6.1 of Newey(1991), and d/n, i a,

(A.22) |R,| £ Cll$'z"^ll|llp^(x)ll|^.'^ji(x.)-g(x.)|^/n
i 00^1 — i 1 1

= (Kr (K)^[(K/n) + k"^^^""]) = (e^).
p -

P n

Also. I.^liz"^/2p.l|2/n = Z." tr(Z"^''2p_p,£-l/2^/^ ^ tr (z"^''^(P'P/n)r^/2)/n^1=1 1 ^1=1 1 1

is equal to the dimension of Z, less than or equal to K w.p.a. 1., so

(A. 23) IR^I £ C(max., c^) (T.^JIZ'-^^^P. Il^/n) [ ll($-vt) 'Z"-^^^ll^
Z isn 1 1=1 1

+ II*'Z"^/2||2|!Z"^/2(Z-Z)Z"^''2||2] = (n^^=K(e +6,)^).
p Z w

2
Finally, it follows as in the proof of Theorem 6.1, using E[e |x] bounded,

that |R_| = 0^(J:„ ^E[<6„(x)-5(x)}^]) = (e^).

Proof of Theorem 7. 1: The proof proceeds by verifying the hypotheses of

Theorem 6.1. Assumption 5.1 holds by i). The estimator has the form of

Section 6, where m(z,3,cr h) =
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I(0<h^<l,0<h2<l)(x^-x^,$ ^ih^))'[i ^(h^)-cr^i '^ {h^)-ix^-x^)' fi] . Note that

X + p(x) is bounded, so that h (x) = $( [x +p(x) ]/<r ) is bounded away

from zero and one, and that $ (•) is continuously differentiable on any set

where its argument is bounded away from zero and one. It follows that

Assumptions 5.3 and 5.6 are satisfied for case a) of Assumption 5.6 and ^ -u.
-

CD, 1 < j+k £ 2. Assumptions 6.1 - 6.5 also hold, with v = and s = oo.

Also, note that M (z) is a bounded function of x and & is the set of all

mean-square integrable functions of x, so that M.(z) = 5.(x), and i) - ii)

1/2
of Theorem 6. 1 are satisfied with d_ = d. Noting that Co(K) = K , it

o u

follows by vi) that Theorem 6.1 iii) and iv) are satisfied, since each of

4r-i r-r{d/2k) , .s-^d/k
'

_, .. . , .

n , n , and n converge to zero. The first conclusion now

follows by Theorem 6.1. Next, note s = m by y.-h (x) bounded, so that

Theorem 6.1 v) is implied by Theorem 6.1 iii), so € —> and the second

conclusion also follows by Theorem 6.1.

Proof of Theorem 7.2: Follows similarly to the proof of Theorem 7.3 to

follow, on noting that 1) Assumption 4.1 is satisfied, where E[A(v,g)] =

E[J"^g(x ,x^)dx ] = £{d)E[g{x)f{x)] , 1 is the Lebesgue measure, and hence

6(x) = ie(^)n(f(x)|g); 2) :e(^)E[f(x)|Xj] = f(x^,X2)~^f(x2) in case b), where

the projection has an explicit form.

Proof of Theorem 7.3: The proof proceeds by verifying the hypotheses of

Theorem 6.2. Assumption 5.1 holds by i). The estimator has the form of

Section 6, where m(z,p,h) = g(v)-g(x)-^, so that Assumptions 5.3 and 5.6 are

satisfied for case a) of Assumption 5.6 and 6 . = oo, 1 i j+k :£ 2. Also, A =

0, so that Assumption 6.7 a) is satisfied. Let h (v ) = g(v), h (v )
=

g(x), so that 5 (x) = 1. To discuss 6 (x), note first that by Lemma 8.0

of Newey (1991), '§ is closed, so that IT(f(x)|§') exists. As shown in

Section 4, Assumption 4.1 is satisfied for 5 (x) = II(f(x)|§'), so that under
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iii) b), it follows by Lemma 8.2 of Newey (1991) that €^(K) s k'^S'^^. Under
o

iii) a), the projection has an explicit form n(M(z)|^) = E[M(z)|x ] +

{x^-E[x^|x^]}(E[Var(x^|x^)])"-^E[{x^-E[x^|x^]}M(z)], and that E[f(x)|x^] =

f i(x^)~'^f i(x-^). so that part b) is satisfied. Noting that C„(K) = CAY.) =

1/2
K and a = a = -d/a, it follows by iv) that the hypotheses of Theorem

.,.,,, , . iri3-2d/n) 1/2-y (d+d-)/a 5r-l+(l/s)
6.2 are satisfied, since each of n , n 5 , n ,

and n converge to zero. The conclusions now follow from the

conclusion of Theorem 6.2.

Proof of Theorem 7.4: First the result will be proven when x is a scalar.

Assumption 5.1 holds by i ) . The estimator has the form of Section 6, where

m(z,p,h) = m(z,9g(x)/Sx ) - p, so that Assumptions 5.3 and 5.6 are satisfied

for case a) of Assumption 5.6 and & . = oo, Is j+k £ 2. As shown in Section

4, 5(x) = n(f(x) 9f(x)/9x |&), so that by the usual mean-square spanning

result for polynomials, e_(K) —) as K —> oa. Also, since Assumption 6.7
o

b) is satisfied, none of the conditions of Theorems 6.2 that depend on a or

a are binding. The conclusion now follows by Theorem 6.2, since A =

^ u r u^ • 1- • u ... V, ^v, (l/s)+r[(7/2)+y]-(l/2)
1 and when m(z,h) is linear in h and both n and

(l/s)+r[(5/2)+2i^]-(l/2) ^ u-n *u • (l/s)+r(2+l+2i'+4)-(l/2)
n go to zero, while otherwise n

converges to zero, so the conclusion follows by Theorem 6,2.
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