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by

Whitney K. Newey and James L. Powell

1 . Introduction

For the linear regression model, several tests of the null

hypothesis of homoscedastic disturbances against the alternative of

heteroscedasticity of linear form have recently been investigated. One

category of tests use the residuals from a preliminary fit of the

regression equation of interest; this group includes the tests proposed

and studied by Anscombe [1961], Glejser [1969], Goldfeld and Quandt

[1972], Harvey [l976], Godfrey [l978], Bickel [l978], Breusch and Pagan

[1979], and White [198O]. In their simplest form, these tests of

homoscedasticity are tests that the coefficients of a second-stage

regression of the squared values of the residuals (or monotonic

transformations of them, e.g., the absolute residuals) on

transformations of the regressors are zero.

An alternative approach has been studied by Koenker and

Bassett [ 1982a]; the test they propose is based upon the regression

analogues of order statistics, termed "regression quantiles," introduced

in Koenker and Bassett [l978]. For this test, the null hypothesis of

homoscedasticity is rejected if the slope coefficients of the regression

equation, estimated at different quantiles of the distribution of the

dependent variable, are significantly different from each other.

Comparing the asymptotic efficiency of this test relative to a

corresponding "squared residual regression" test, the authors found some

xnefficiency of the "regression quantiles" test when the error



distribution is Gaussian, but this conclusion was reversed for

contaminated Gaussian error distributions, and the efficiency gains of

the latter test appeared to be substantial even for low levels of

contamination.

Koenker and Bassett's approach to heteroscedasticity testing

differs from the "squared residual regression" methods in two important

respects. First, estimation of regression parameters and testing for

heteroscedasticity are unified in the regression quantile approach; by

comparing regression coefficients estimated at different quantiles, the

question of heteroscedasticity is recast as a question- concerning

differences in alternative measures of "location" of the conditional

distribution of the dependent variable. Also, the regression quantile

test involves "robust" estimation of these location measures, so the

precision of this statistical procedure depends on the ability to

identify the percentiles of the error distribution, rather than on

moments of the error terms. It is not immediately apparent which of of

these two characteristics of their test — the "specification test" form

(as in Hausman [ 1978 J) or the robustness of quantile estimation — is

primarily responsible for the superior performance of the regression

quantiles test for nonnormal errors, and the object of the present study

is to determine which of these factors predominates. To this end, a

least squares analogue of the regression quantile test is investigated,

in order to focus on the relationship of heteroscedasticity to the

divergence of location measures.

In the following section, these least squares analogues of

regression quantiles, termed "asymmetric least squares" estimators, are

defined, and their asymptotic behavior under local heteroscedasticity



and a general error distribution is investigated in Section 3 below.

The general results are specialized in Section 4 to the contaminated

normal error distributions considered by Koenker and Bassett, and the

efficiency of the proposed test is determined, relative to the

regression quantile test and tests using magnitudes of least squares

residuals, for various degrees of contamination. A comparison of these

tests for a specific empirical example follows, and the paper concludes

with some qualitative observations about the applicability of the

procedures considered.

2. Definition of the Asymmetric Least Squares Estimators

The observable data {(y., zl): i = 1, ..., n) , are assumed to be

generated by the linear model

(2.1) yi=x'B^ -u.,

where (z.} is a set of fixed regression vectors of dimension p with

first component z.. = 1, B is a conformable vector of unknown error

terms, and (u.) is a set of mutually independent scalar error terms.

A convenient specification of heteroscedasticity in this context is of

the form

(2.2)

where the {e.} are independent and identically distributed error terms

with distribution fimction FC^) and io .) is a seauence of unknown

scale parameters; the null hypothesis of homoscedasticity thus

specifies the io.) to be constant across i.

The "regression quantile" estimators of the parameter vector B ,



proposed by Koenker and Basaett [ 1978a], are defined as those vectors

g(e) which minimize the function

n

(2.5) Qj,(3; e) = J PgCy^ - x^e)

)ver e in R^ for fized valuet

convex loss function of the form

(2.4) p (x) = le - 1(X < o)|.UI,
o

with "1(A)" denoting the indicator function of the event "A". Under

the null hypothesis of homoscedasticity (and with additional regularity

conditions cited below), the probability limits of the regression

quantile estimators {6(e)} for different choices of 6 deviate from

(2.5) piim e(e) = Bp + Ti(e)e^

Ti(6) = F" (e), the quantile function for the error terms {e-}. Under

the heteroscedastic alternative, the probability limits for the slope

coefficients (when they exist) will in general also vary with 6. with

differences depending on the relationship between the scale parameters

{o.} and the regressors {x.}-

The regression quantile estimators are thus a class of empirical

"location" measures for the dependent variable whose sampling behavior

involves the true regression coefficients and the stochastic behavior of

the error terms; their "robustness" follows from the absolute error

loss component of the criterion function (2.4). To obtain a similar

class of location measures which do not involve robustness



considerations, we consider replacing the "check function" criterion of

(2.4) with the following "asymmetric least squares" loss function:

(2.6) P^(X) = It - 1(X < 0)|-A^, for t in (O, I).

The corresponding class of asymmetric least squares estimators {3(7)}

are defined to minimize

n

(2.7) R^(e; t) =
I p^(y. - x^e)

2/
over B, for p (• ) given in (2.6) —

To determine the class of location parameters which are estimated

by {6(t)}» consider the scalar parameter ^(t) which minimizes the

function E[p (e - m) - p (e.)] over m, where the expectation is

taken with respect to the distribution of the i.i.d. residuals {t .}

,

which is assumed to have finite mean and to be absolutely continuous

with respect to Lebesgue measure. The parameter \i{i) is easily shown

to be a solution of the equation

(1 - T)E[e .l(e, < u(t))] + tE[c -Ke. > m(t))]
(2.8) y(T) =— ^ ^

11-
(1 - tMAt)) - t[i - F(y(T))]

.E[ejc^ < u(t)] + (1 - a^)E[e^U^ > p(t)],

where

(2.9) a^ = (1 - t)F(p(t))[(1 - t)F(w(t)) -^ t[i - F(p(T))]rS

thus the parameter y(T). hereafter referred to as the "x weighted

mean," summarizes the distribution of the error terms in much the same

way that the quantile function n(e) = F~ (s ) does. When the error

terms {u } of the linear model (2.1) are homoscedastic, then, we will



(2.10) plim- B(t) = Bq + p(T)e

under suitable regularity conditions, while for heteroscedastic

disturbances the slope coefficients in large samples can be expected to

vary with the index t as well; nonzero differences in the slope

coefficients of b(t) across x can thus be taken as evidence of

heteroscedasticity.

Of course, the loss function given in (2.6) is not the only one

which could be used to construct a "specification test'-' of

heteroscedasticity; if, for example, the median and the mean of the

error distribution differed, a similar test could be constructed using

the loss function

(2.11) Pg = ixl^

where slope coefficient estimates would be compared when a function like

(• ) of (2.3) is minimized for e set equal to one and xwo. One

reason to focus on the loss function p (x) of (2-6) is that the

corresponding "location" function p (t ) will be an invertible function

of T even if the error terms are symmetrically distributed, due to the

asymmetry of the loss function itself.— Hence the test which uses the

"asymmetric least squares" loss function can be expected to have

4/
reasonable power regardless of the shape of the error density.—

An additional advantage of the asymmetric least squares estimators

relative to regression quantiles is that the loss function p (x) is

continuously differentiable in X , so the estimators g (x ) can be

computed as iterative weighted least squares estimators, i.e., as



solutions to the equations

(2.12) ^(t) =
[ I It - Ky^ < x';(t))U.x']-^ .

i = 1

n

I It - Ky^ < x'B(T))|x.y..
i=1

(Note that the classical least squares estimator is a special case,

corresponding to x "^ 1/2)' Furthermore, and perhaps more importantly,

consistent estimation of the asymptotic covariance matrix of the {b(t)}

under the null hypothesis does not require estimation of the density

function of the error terms, as shovm below; unlike the regression

quantile test of homoscedasticity, then, the test statistic using the

asymmetric least squares estimators will involve no "smoothing" of the

empirical distribution or quantile function of the estimated

residuals.— These convenient properties of the asymmetric least

squares test, along with its relatively favorable performance in the

efficiency comparisons of Section 4> suggest that it merits

consideration for use in practice, and should not simply be regarded as

a standard of comparison for the other tests of heteroscedasticity

considered below.

3« Large Sample Properties of the Estimators and Test Statistic

The asymptotic theory for the asymmetric least squares estimators

and test for heteroscedasticity will be developed under the following

assumptions

:



Assumption E ; The error terms {e.} of (2.2) are i.i.d. with

E(e ) < «> for some C > 0, and have distribution function F(X)

which is continuous with density f(X).

AssumDtion R: The regression vectors ix.) have x^ . = 1, and
' 1 1i

n~ y. 2.x! * D, where D is positive definite.

Assumption S ; The scale terms {o.} of (2.2) are of the form

1 + x!y , where Y = T //n for some fixed p-dimensional vectorin no

These conditions are identical to Assumptions A1 to A3 of Koenker and

Bassett [l982a], except that our condition E(e ) < " replaces their

assumption of uniform positivity of the error density f(A) in X.

Following Koenker and Bassett, then, we consider only local

heteroscedasticity which is linear in the regression vector x. , and

restrict attention to the case of fixed dimension for the unknown

parameter vectors B and y , assumed functionally independent (note,

though, that Assumption S does not restrict the exogenous variables upon

which o. depends, because of the possibility of redefining the

original regression vector z.).

For a vector (t , t , ..., t )' of weights ordered so that
1 2 m

< T < ... < T < 1, let \x = (y(Tj, ..., ii(T ))' be the
1 m 1 m

corresponding vector of t. weighted means (as defined in (2.8)), and

define the (m'<p)-dimensional vectors C = vec[B(T ), ..., B(t )] and

5 =(i bB)+(p Be), where i is an m-vector of ones. Then
m m

we have the following result, analogous to Theorem 3.I of Koenker and



Bassett [ 1982a]:

Theorem 1 ; Under the linear heteroscedastic model (2.1) and (2.2)

with Assumptions E, R, and S, the random vector e,
of asymmetric least

squares estimators is asymptotically normal,

/n il - i^) i N(m^ « T^. I « D"^).

where the matrix l has elements o-- = c(t., t . )/d(T: . ).d(T; . ) , for

c(t, e) = E{|t - Ke^ < ii(T))l.|e - ^U^ < w(e))l(c^ - w(t))(c^ - u(r))}

and d(T) = t[i - F(p(t))] + (1 - t)F(p(t)).

Proof : Our argument follows the approach taken "by Ruppert and

Carroll [l980], Koenker and Bassett [l982a], and Powell [l983], among

others. Consider the random function

(3.1) M^(6, t) . ^^ .I^V,((1 - ^^iT^^i - x'6 - p (t)),

where

(3.2) ^ (x) = !t - Kx < 0)1. X .

The behavior of this function is of interest because, letting

6(t) e ^(t) - &^ - )j(T)«e , we can write

(3.3) M^(6(t), t) = ^ J^
x.^^(y. - z^b(t))

the latter equality holding because g (t ) minimizes E (g) of (2.7).

Assumption E ensures that max. ii x . II //n° -»- 0; thus, it can be shown

that, for any L > (and y = y //n)

,



(3.4) sup UM (6, t) - K (0, t) - e[m^(6, t) - K (O, t)]u = o (1)
, - / /— n li 11 n p

II 6 II < L//n ^

by a straightforward modification of the proof of Lemma 4«1 of Bickel

[1975]. Since

(3.5) e[,^^((1 + z'y^)c. - x^6 - vi(T))] = y(T)Vn - <i(T)3::6

(x:6-m(t))(i^x'v )-^

* (1 - 2t)/
^ ^ ^ [(1 - x:t^)x - x|6 -ii(T)]dF(g)

y (t )

(where dd) is defined in the statement of Theorem I), it is evident

that e[k (0, t)] = 0(x.'-Y ) = o(l) and that

(5-6) E[m^(6, t)] = d[m(t)t^ - d(T).(/n6)] + 0(1)

-1 /2
when 6 = 0(n~ )• Equations (3«3)f (3'4)» (5-6) , and the monotonicity

of 4. (x) imply

(3.7) /n(6(T) E /n(B(T) - g^ - y(T)e^) = 0^(1)

by Lemma 5-1 of Jureckova [l977], so »''n5 (t ) satisfies the asymptotic

linearity relationship

(3.8) /n6(T) = p(t)to - [d(T)D]"^ ^ I ^T^^i ^^'^^ * °p^^^-

Finally, writing »^(£; ~
E, ) = /n" vec[6 (t • ) » »'.9 6 (i )]. "the result of

Theorem 1 follows from application of the Lindeberg-Feller central limit

theorem to the right-hand side of (3'8).

In order for the result of Theorem 1 to be useful in constructing a

large sample test of the null hypothesis of homoscedasticity , a

consistent estimator of the asymptotic covariance matrix I » D~ must



be provided. Unlike the regression quantile estimators, natural

estimators of the components of j- can be constructed using the

asymmetric least squares residuals

(3.9) U.(T) = y. - x'e(T) .

Define

(3.10) c(T, e) = i
I '^^(u.(T))-v^g(u.(e))

for i>^i^) defined in (3' 2) and

(3.11) d(T) = i I |T _ i(u (T) < 0)1 ;

^ i=1 ^

these are just the sample analogues of the population moments defining

c(t, 6) and d(T) of Theorem 1.

Theorem 2 ; Under the conditions of Theorem 1 , the estimators

c(f., T.) and d(i^.) are consistent for i, j = 1, ..., m; that is,

c(T T ) _ c(T T ) = 0^(1) and d(T ) - d(T ) = 0^(1)-^3 iJP 1 IP
Proof: Only consistency of d(f) will be shown here; consistency

of c(t, 6) can be shown analogously. Writing

(3.12) d(T) . d(T) = 1 I [\T . i(e. < y(T))| . E|T - l(e. < Vi(T)l]

^^ I [h - l(Ui(^) < 0)! - |t - i(e < p(T)|],
^ i=1 ^ 1

the first term in this sum converges to zero in probability by

Tchebyshev's inequality. Thus



(3.13) IdG) - d(,)l <

|2t - 1| ^ I KU. - y(T)l < |x:(6(t) - vi(T)T^)/(l ^ ^iT^)!)

for 6 (t ) defined in (5'7)' By Theorem 1 and Assumptions E and S,

(5.14) (1 + z'y^)"^zJ6(T) + y(T)x"^^) = Op(l),

and since all moments of the indicator function 1(1e, -^(t)! <d) are

0(d) by the continuity of the error distribution, the sum in (3.13)

converges to zero in probability, again by Tchebyshev's inequality.

2
Vith the results of Theorems 1 and 2, a large sample ^ test of

the null hypothesis of homoscedasticity using the vector ^ of

asymmetric least squares estimators can be constructed. The definition

of 5 implies a set of linear restrictions H^ =0, where the

transformation H yields a vector of slope coefficients corresponding

to pairwise differences of the vectors g "^ p (t • )e and

B
• y (t •

1
)e • ^ Koenker and Bassett [l982a] point out, the matrix H

can be written in the form

(5-15) H = A s f,

where a is an (m - 1 )xm differencing matrix with i,j element

equal to f, . . - £. . ,, and s" is a (p - 1 )xp selection matrix with

k,l element 6, , . , for 6- the Kronecker delta. The test of

heteroscedasticity can thus be based upon the statistic



(3.16) /nH^ = 'iinili-v^) - lix^), .... liij - 1(t^_^)) ;

this statistic is asymptotically normal under the conditions of Theorem

1 , with zero mean only when y =0. The asymmetric least squares test

of homoscedasticity thus uses the test statistic

(3.17) \^ = n(H^)'[H(E « I)"^ )H' ]"^H^ )

,

where z is computed using (3.IO) and (3.1 I) and

(3-18) i)E 1
J^

r.x' .

Corollary 1 : Under the conditions of Theorem 1 , the test statistic

2
T^„ defined in (3.17) has a limiting noncentral ^ distribution with

(m - 1 )• (p - 1 ) degrees of freedom and noncentrality parameter

6^5 = (App)'(AIA')'^(Ayp)[(>i'To)'("i'I^'V')(no)]

Again, this result parallels that of Theorem 4.I of Koenker and

Bassett [l978a]; this test and the corresponding regression quantile

test are "both consistent (i.e., for fixed significance level their power

tends to one as U H'y II
->-'») » and the regression quantile test statistic

has a limiting noncentrality parameter of the form

(3.19) 6jjp =
<jjQ [(no)'('^i)"^'i'')(no)] ,

where the scalar < involves the differences [11(6.) - 11(6- >)] of



quantiles and the precision with which these differences are estimated.

Thus the relative efficiency of the two tests is governed by the

relative accuracy of estimation of weighted means versus quantiles, a

property which is exploited in the following section.

4. Asymptotic Relative Efficiencies of Alternative Tests

In this section, the efficiency comparisons of the regression

quantiles test to a squared residual regression test made by Koenker and

Bassett [l982a] are extended to the asymmetric least squares test. In

this context, Koenker and Bassett 's original calculations are revised;

due to an algebraic error (described below), their Figures 1 and 2 give

a misleading depiction of the relative performance of the tests for the

class of nonnormal error distributions they considered.

Following Koenker and Bassett 's setup, we consider the two-

parameter class of contaminated Gaussian distributions, with cvunulative

distributions of the form

(4.1) F(xla, 0) = (1 - a)<5)(x) ^ a4>(x/a),

for $(•) denoting the standard normal cumulative and for a in the

interval (O, I). For this class of distributions, the t weighted

mean satisfies

(2t - 1)[(1 - aH(y(T)) + (a/a)<f.(p(T)/o)]

(4.2) y(T) =

T + (1 - 2t)[(1 - a)*(p(T)) + a$(y(T)/a)]

for (},(.) the standard normal density function. To conform to Koenker

and Bassett 's framework, we consider only the efficiency of the

asymmetric least squares test using a single difference of symmetrically

chosen weights, i.e., a test based upon b(t) - e(l - x), for



^ < 1 < 1- For this test, the scalar k^„ of Corollary 1 above can be

shown (after some tedious algebra) to be

(4.3) Kj^s = 2[w(T)r[d(T)]'

[(1-2t){1 - (l-a)*(M(T)) - ao*(M(T)/o)} - (
1 -i )[y (i ) J^]'

•

The corresponding regression quantile test uses B(e) - b('' - 6)i "the

difference in symmetric regression quantiles; for 6 in (-x, l), the

corresponding scalar k-da governing the power of the regression

quantile test is given by Koenker and Bassett to be

(4-4) <jjp
= 2[Ti(e)]^[(i-cx)*(n(e)) + (a/o)<^(Ti(e)/a)]^/(i-e)(2e-i) .

Koenker and Bassett compared the scalar k,

corresponding term k„^ for a heteroscedasticity test using squared

residuals from a preliminary least squares fit of equation (2.1), a test

closely related to those investigated by Breusch and Pagan [l979] and

White [l980j. More generally, tests for heteroscedasticity can be based

on the sample correlation of p(u.) with the regressors z. , where

u.h = y . - x.'e(.50) is the least squares residual and p(«) is an even

function. To obtain a test with more asjnnptotic power than the squared

residual regression test for (heavy-tailed) nonnormal disturbances, we

might choose, say, p(u) = |u|° for 1 < a < 2 rather than a = 2.

The test statistic for this type of test is

(4.5) T = nE^
,

P P

the sample size n times the constant-adjusted E of the regression

of p(u ) on z.. Bickel [1978] has obtained the asymptotic properties



of such tests when it is assumed that v •= B , for v defined in
o

Assumption S, but his results can be extended to the more general linear

scale model of Assumption S. With some additional regularity conditions

(such as the boundedness of E[p(£;.)] ) which can be verified for the

cases we consider here, the test statistic T of (4.5) can be shown to
P

have a limiting noncentral chi-square distribution with (p -
1

)

degrees of freedom and noncentrality parameter

(4.6) 6p E [Eip'U^)c^f[VB.v{f>U^))T\^^^)'{^D-\')i^^^)

p o o

under the conditions of Theorem 1

.

In our application we focus attention on the squared residual

regression test (p(u) = u , versions of which have been considered by

White [l980] and Breusch and Pagan [l979]) and the more "robust" test

which uses absolute residuals (i.e., p(u) = lu|, as in Glejser [1969]

ana Bickel [i97B]). lor the former test, the scalar < = Kpt, i
P

4 .w ,,. . f 2 ,N>2 ,1-1

SE

(4.7)
<sjj

= 4[3(1 ^ a(c^ - 1))/(1 ^ aic - O)^ - 1
]'

when the errors are contaminated Gaussian, while for the latter test,

K = K.T> for "this distribution is
p AS.

U-B) K^ = U(1 - a(o^ - 1))/2(1 + a(o - D)^ - 1 T^ •

The local power of the squared residual regression, absolute

residual regression, regression quantile, and asymmetric least squares

tests may be compared by computing their Pitman asymptotic relative

efficiencies (AEEs); since the limiting degrees of freedom for all of



these test statistics are equal, these AREs are just the ratios of the

respective noncentrality parameters, which in turn reduce to the ratios

of the respective < coefficients. However, the noncentrality

parameters of the regression quantiles and asymmetric least squares

tests depend upon the particular weights (e and t , respectively)

chosen. Rather than considering the AREs for these tests for a range of

weights, we consider only the weights [l - e, e] »= [.14, .86] for the

regression quantiles test and [l - x, t] *= ['42, .58] for the

asyimnetric least squares test. These values of e and j were

selected after a preliminary calculation of the weights which maximized

the respective noncentrality parameters in a grid search for each a

and a considered; the results of this optimization are given in Table

1. As the table shows, the optimal 6 values are typically between .75

and .90, and decrease as a and a increase (although there is a sharp

reversal in this pattern for values of a near .50). The optimal

values of t for the asymmetric least squares test are usually between

.51 and •75 1 and also typically decrease with increasing a and o-

The average of the optimal e values is .86 and the average of the

optimal T values is .58.

It is important to note that the value of the noncentrality

parameter is usually quite insensitive to moderate perturbation of the

weights from their optimal values. For example, for the regression

quantiles test, when a = '05 and a = 5, use of e "= -86 rather than

the optimal e = -89 results in an efficiency loss of only 5 percent

(though for a = 0, the efficiency loss rises to 18 percent, with

optimal e = .93).

Table 2 gives the AREs of the regression quantile, asymmetric least



squares, and absolute residual regression tests, all relative to the

squared residual regression test. One striking feature of this table is

the nearly identical performance of the absolute residual regression

test and the asymmetric least squares test. The ARE of the asymmetric

least squares test never differs from the ARE of the absolute residual

regression test by more than two percent. Also, both of these tests are

more efficient than the squared residuals regression test except when ex

and are large (or when a •= O). The ARE of the asymmetric least

squares test is small for o = 2, but increases substantially as a

increases.

Another interesting feature of Table 2 is the behavior of the AREs

of the regression quantile test. For 0=2 the squared residual

regression test is always more efficient than the regression quantile

test, and for c - 3 the asymmetric least squares (or absolute residual

regression) test is efficient relative to the regression quantile test.

For 0=4 and a = 5» the regression quantiles test is the most

efficient of all tests considered when a is between 5 and 20 percent;

for Q = 4, however, its efficiency gain over the asjnmnetric least

squares test is not particularly large, amounting, for example, to 28

percent at q = .10.

These results on the ARE of the regression quantile test relative

to the squared residual regression test are quite different from those

reported in Koenker and Bassett [ 1982a]. For example, when e = .TSf

the relative scale a is five, and there is 20 percent contamination,

we find the ARE of the regression quantile test to be 1.64, rather than

the "40+" figure reported previously. This difference is explained by

an error in equations (4-12) and (4.14) of Koenker and Bassett



[1982];— the term corresponding to K^-n in these expressions is

"4[Var(E^^)]"''" instead of the correct k^r = 4[e(e^ )^]^[ Var( c^ ^) ]"''

•

This omission overstates the ARE of the regression quantile test for

o > 1, particularly when the contamination percentage a is large;

hence the "iso-efficiency" contours of Figures 1 and 2 of Koenker and

Bassett [ 1982a] should actually be shifted upward and "U" shaped, with

the ARE of the regression quantile test sharply declining as the

distinction between the "contaminating" and "contaminated" distributions

of the error vanishes.

It should be noted, however, that for sufficiently large a and

sufficiently small a> dramatic efficiency gains of the regression

quantiles test to the other procedures are attainable. For example, for

a = .0125 and a = 10, the ARE of the regression quantile test is

20.80, over twice as large as that for the asyinmetric least squares and

absolute residual regression tests. This value rises to 62.42 when a

increases to 50, representing a twenty-fold improvement over the other

procedures; the improvement, though, drops off quite rapidly as a

increases. Thus the regression quantile test should perform very well

for large data sets which contain a few sizable outliers (perhaps due to

key^junching errors).

5' A numerical Example Revisited

Turning now to a more practical comparison of the performance of

the tests considered above, we consider the food expenditure/income

example of Koenker and Bassett [ 1982a]. A surprising feature of their

analysis of this example was that, while the scatter diagram of the

observations and fitted regression quartile lines suggested



heteroscedastic disturbances (with scale increasing as income

increased), the regression quantile test they preformed could not re;iect

the null hypothesis of homoscedasticity at an (asymptotic) 5% level. As

the results below demonstrate, this inability to reject homoscedasticity

is due to the lack of precision of the quartile estimation for these

data; the asymmetric least squares slope coefficients, while exhibiting

less movement across the j weights considered, do provide stronger

evidence of the heteroscedasticity suggested by casual inspection of the

data.

Of the 235 budget surveys considered by Koenker and Bassett, only

224 of the observations were readily available for our calculations; on

the (reasonable) presumption that this subsample is representative of

the entire sample, we have computed the asymmetric least squares

estimators for weights x = .42, .50, and -58. The classical least

squares estimate of the slope coefficient (t = .50) is .847, which

approximates the regression quantile slope for the lower quartile. The

asymmetric least squares slope estimates for t = .42 and t = .58 are

.841 and .854, respectively; the iterative procedure described in

Section 2 above was used to calculate these estimates, and converged in

four iterations for both weighting factors. Calculation of d(x) and

c(t» e) of section 4 for this example produced the following estimate

of the I matrix for (b(-42), b(.50), b(.58)):

2.00 1.92 1.85

(5-1) Z = 1.92 1.87 1.81

1.85 1.81 1.77

Thus, while the differences in the asymmetric least squares slope

estimates are an order of magnitude smaller than the corresponding



quartile estimates, the asymmetric least squares estimates display-

higher correlation across weights, so that their differences (used to

construct the heteroscedasticity test statistic) are very precisely

estimated.

The dependent variable z. (log income) has

(5.2) I
(x - xf = 42.76

i=1

for this example, so setting

1 -1

(5-3)
1 -1

,
5' = (.841, .847, .854)

the test statistic of (3.17) is calculated to be T „ = 10.517 here;

2
since the upper ^% critical value of a -^ random variable is 9.21, the

null hypothesis of homoscedasticity is rejected at standard significance

levels using the asymmetric least squares test.

In order to include the absolute and squared residual regression

tests in this comparison, we also consider the regression quantile and

asymmetric least squares tests which use

(5.4) A = [1 -l]

as the difference matrix, i.e., the regression quantile test based upon

g(.25) - g(-75) and the asyiometric least squares test using

g(.42) - g(.58). With the covariance matrix estimate for "moderate"

smoothing reported by Koenker and Bassett, the regression quantile test

statistic is computed to be 3.644, which again is not significant

(relative to a -^ distribution) at the 3% level. On the other hand,

the corresponding asymmetric least squares test statistic is 9-898, with

marginal significance level less than ^%. The absolute residual



regression and squared residual regression test statistics — n times

2
the constant-adjusted K of the regression of the absolute or squared

residuals on x. and a constant — are 10.494 and 13-304, respectively.

Thus application of these more common procedures provides even stronger

evidence of heteroscedasticity for this example.

6. Conclusions

From the results of Section 4, we conclude that, on grounds of

asymptotic relative efficiency, the asymmetric least squares or absolute

residual regression tests are preferred to the regression quantile test

for contaminated Gaussian distributions with small to moderate relative

scale, while the regression quantile test would be preferred if the

percent contamination is not large but relative scale is large. The

similar performance of the absolute residual regression test — a

"robust" version of the squared residual regression test — and the

asymmetric least squares test ~ a "less robust" version of the

regression quantile test — indicates that the relative performance of

"residuals" tests to "location" tests of heteroscedasticity is entirely

explained by the robustness of the criterion function involved in the

estimation method, and is not a result of the "specification test" form

of the regression quantile and asymmetric least squares tests of

homoscedasticity. Given the computational convenience of the absolute

residuals regression test, and the similar AREs of the absolute residual

and asymmetric least squares tests, the former appears to be the

preferred test for heteroscedasticity in the presence of contaminated

disturbances, except when the contaminating distribution has very long

tails, when the regression quantiles test would be preferred.



FOOTNOTES

1/ This research was supported by National Science Foundation Grant

SES-8309292 at the Massachusetts Institute of Technology. We are

grateful to Anil K. Bera, Jerry Hausman, Roger Koenker, Richard

Quandt, and participants at workshops at KIT and the 1983

Econometric Society Winter Meetings for their helpful comments. We

also thank Roger Koenker for providing the data used in Section 5

below.

_2/ Equivalently, we could define P^(X) = [Pg(>^)] , for Pq(')

defined in (2.4) and t = e2/[e^ + (I - 6)^].

3/ To see this, note that the function m(t) is differentiable in t

with dli(T)/dT = e|e^ - m(t)|-[(1 - t)f(p(t)) + T(i - F(y(T))] > 0.

4^/ It is also possible that a heteroscedasticity test based upon

differences of location measures would reject due to

misspecification of the regression function. An interesting avenue

of research would be a comparison of the power of such tests to the

tests of nonlinearity studied by Bickel [l978], which involve

regressions of odd functions of the residuals on transformations of

the regressors. It is not clear whether a location measure test

would have reasonable power against this latter type of

alternative.



5/ However, Koenker and Bassett [ 1982b] have recently shown how

estimation of the density function of the errors can be avoided

when testing linear hypotheses concerning e(.50) through use of

the Lagrange multiplier form of the test statistic, and their

approach can apparently be adapted to the present case.

_6/ Roger Koenker has pointed out that this error was originally

brought to his attention by Alistair Hall at Warwick University.



Table 1

Optimal Values of Regression Quantile (Asymmetric Least Squares)

Weights for Various Contaminated Gaussian Distributions

Relative

Contamination
Scale 2 1 4 1

Percentage a

.05 •92 (.78) •90 (.61) • 90 (.51) 89 (.51)

.10 91 (.73) .88 (.52) .87 (.51) 87 (.51)

.15 90 (.70) .87 (.51) .85 (.51) 84 (.51)

.20 89 (.67) .85 (.51) .83 (.51) 82 (.51)

•25 88 (.66) .84 (.51) .82 (.51) 80 (.51)

•30 88 (.66) .83 (.51) .80 (-51) 79 (.51)

• 35 87 (.66) .82 (.51) .79 (•51) 77 (.51)

.40 87 (.66) .81 (.51) .77 (.51) 76 (.51)

.45 87 (.66) .80 (.51) .97 (.51) 97 (.51)

.50 87 (.66) •97 (.52) •97 (.51) 97 (-97)



Table 2

Local Efficiencies of Tests Relative to Squared Residual Regression Test

Relative Contamination Regression Asymmetric Absolute Residual
Scale o Proportion Q Quantile Least Squares Regression

1 - .57 .88 .88

2 .0125 .66 .99 -98
.025 .72 1.07 1.06
.05 .82 1.17 1.16
.10 .92 1.26 1.25
.15 .94 1.26 1.26
.20 .92 1.24 1.24
.25 .88 1.21 1.20
30 •83 1.17 ' 1.17
.40 .74 1.10 1.09
.50 .66 1.04 1.03

.0125 1.12 1.55 1.54

.025 1.46 1.86 1.85

.05 1.79 2.04 2.04

.10 1.84 1.90 1.90

.15 1.64 1.68 1.69

.20 1 -40 1.50 1.51

.25 1.17 1.37 1.37

.30 .98 1.26 1.26

.40 .68 1.11 1.11

.50 .51 1.02 1.02

.0125 2.23 2.71 2.70

.025 2.95 3. 08 5. 08

.05 3.30 2.88 2.89

.10 2.83 2.20 2.21

.15 2.19 1.76 1.78

.20 1.67 1.49 1.50

.25 1.25 1.31 1.32
•50 •92 1.19 1.20
.40 .50 1.04 1.04
•50 .34 .95 .95

.0125 4.10 4.29 4.29

.025 - 5.07 4.27 4.28

.05 4.96 3.36 5.39

.10 3^62 2.22 2.24

.15 2.54 1.68 1.70

.20 1.78 1.39 1.41

.25 1.22 1.22 1.23

.50 .81 1.10 1.11

.40 .34 .96 • .97

.50 .26 .89 .90
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