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Abstract

We analyze the subgame-perfect equilibria of a game where two agents bargain in order to

share the risk in their assets that will pay dividends once at some fixed date. The uncertainty

about the size of the dividends is resolved gradually by the payment date and each agent has his

own view about how the uncertainty will be resolved. As agents become less uncertain about

the dividends, some contracts become unacceptable to some party to such an extent that at

the payment date no trade is possible. The set of contracts is assumed to be rich enough to

generate all the Pareto-optimal allocations. We show that there exists a unique equilibrium

allocation, and it is Pareto-optimal. Immediate agreement is always an equilibrium outcome;

under certain conditions, we further show that in equilibrium there cannot be a delay. Finally,

we characterize the conditions under which every Pareto-optimal and individually rational

allocation is obtainable via some bargaining procedure as the unique equilibrium outcome.

JEL No: C78, D89.

Keywords: Bargaining, Risk-sharing, Delay.



1 Introduction

Consider two risk-averse agents who want to share the risk in their assets. Assets will pay

dividends only once, at some fixed date i. As in Wilson (1968), each agent has his own beliefs

about the dividends, but no agent has any private information. 1 Which contract will these

agents agree on, and when will they reach an agreement? What are the determinants of

"bargaining power"? These are the questions we ask in this paper. One might find it obvious

that, given a sufficiently rich set of contracts, the agents will immediately agree on a Pareto

optimal contract. We will show that this is true - but there are some interesting details to it.

In this environment, any allocation feasible at the beginning remains feasible until the end,

and the agents are indifferent about which date they agree on any given allocation. Thus, the

set of payoffs does not shrink as time passes and there is no discounting to create impatience for

agreement. Instead, as time passes, some uncertainty about the dividends is resolved, making

some of the contracts individually irrational for some agent, given the agent's expectations

about how events will proceed. This reduces the scope for insurance. (Eventually at date i

agents lose all insurance opportunities; autarky is the only individually rational contract left.)

This loss of contracting opportunities leads agents to agree early on.

One can imagine many bargaining problems where such lost contracting opportunities are

the major costs of delay - not discounting by the agents or some material losses. For example,

many wage contracts are negotiated before the current contract expires. Thus, until the current

contract expires, a major part of the cost of delay is the lost insurance opportunities between

the workers and the firm against fluctuations in the labor market. 2 Sometimes, agents may

also hold incompatible beliefs about the size of the gains from trade and each agent's outside

options. Our analysis here may be helpful in analyzing such problems.

Our efficiency and immediate-agreement results are as follows. Assuming that all Pareto-

optimal allocations can be generated by contracts throughout the bargaining process, under any

sequential bargaining procedure with immediately expiring offers, the following are true: There

exists an equilibrium where agents reach an agreement immediately; any subgame-perfect

equilibrium is payoff-equivalent to this equilibrium (Theorem 1); and the equilibrium allocation

is unique and Pareto-optimal when the first offer is made (Theorem 2).
3 Furthermore, except

'Under these conditions, assuming that a Pareto-optimal allocation rule is employed, Wilson (1968) charac-

terizes the conditions under which the group can be represented by an expected-utility maximizer.
2 Another example: it is common in legal practice that the settlement is negotiated while parts of the case are

litigated. As each decision is made in court, some uncertainty about the eventual payment by the defendant is

resolved, making certain settlement agreements individually irrational for certain parties. (In wage bargaining,

delaying agreement may also result in the costly delay of some decisions the parties might want to take after

the agreement. In litigation, the legal fees are also very large.)
3The proof of Theorem 1 is somewhat more involved than the argument that, given a sufficiently rich set of

contracts, the agents can imitate any delay by writing a contingent contract that requires at each contingency



for the trivial case where autarky is initially Pareto-optimal, immediate agreement is the

only equilibrium outcome, provided each agent can make an offer with positive probability

throughout (Theorem 3).

These results clarify certain results in the bargaining literature. Excessive optimism is

presented as an explanation for delays by many authors, such as Hicks (1932), Landes (1971),

Posner (1974), Farber and Bazerman (1989), and Yildiz (2001). They demonstrate that, if each

agent has excessively high expectations about his prospects in case of a delay, then delay may

be necessary in equilibrium. Here, under the condition that agents can generate all the Pareto-

optimal allocations throughout, we show that immediate agreement is always an equilibrium

outcome, and is in fact the only equilibrium outcome for generic cases. Therefore, the delay

results from the authors' restrictions on the set of contracts. Moreover, in order to satisfy

our condition, all we need is risk-sharing agreements about the dividends and side-bets on

the events about which our agents have distinct beliefs. Therefore, their results are based

particularly on their implicit assumption that side-bets are not feasible.

We show that the continuation value of an agent at the beginning of any given date is the

sum of the rents he expects to extract when he makes offers in the future, plus his expected

utility of consuming the dividend paid by his own asset. The value of the rents is determined

by the way uncertainty is resolved. After a substantial resolution of uncertainty, a substantial

group of the potential contracts become individually irrational, and thus not viable. Therefore,

agents who make offers prior to such resolution of uncertainty extract substantial rents. For

instance, in the canonical case analyzed in Section 5, revealing an informative signal at some

time t rather than s is equivalent to transferring the gain from trade associated with this signal

from the agent who makes an offer at s — 1 to the agent who makes an offer at t — 1.

Many axiomatic bargaining solutions have the property that, if an agent becomes more risk-

averse, then he becomes worse off while his opponent becomes better off. The same property

holds in the Rubinstein-Stahl model for the instantaneous risk-aversion. In our model, the

impact of risk aversion is ambiguous. If the total wealth in society is risky, risk aversion of an

agent may hurt his opponent. Hence, this property exhibited (and sometimes postulated) in

axiomatic bargaining models is not confirmed here.

Finally, even though we allow our agents to hold different beliefs, this is not the main

attribute of our model. In fact, the earlier versions of this paper assumed that the agents hold

the same beliefs.

The outline of the paper is as follows. In the next section we lay out our model. In Section

3, we present examples with delay and inefficiency. We present our main results in Section 4.

In Section 5, we derive the solution in closed form for a canonical case; we illustrate our results,

that they write the very contract they would have written in the case of delay. This argument implicitly assumes

that there exists an essentially unique equilibrium in the continuation game, a result that needs a proof.



and discuss the effects of risk aversion. In Section 6, we present a monotonicity property of

the equilibrium and characterize the allocations that can be the equilibrium outcome for some

bargaining procedure. The appendix contains the proofs omitted in the text.

2 Model

In this section we lay out our model. For some (possibly large) ( £ N, we take T = {t G

N|0 < t < t} to be the time space, where N denotes the set of all non-negative integers. At

each date t G T, a signal Y
t
becomes publicly observable and remains observable thereafter.

Writing Y = {Y , ...,Yi) and Y l = (Y , • • • ,Yt ), we designate y = {ys } s(zT and y
l = {ys }s<t as

the generic realizations of Y and Y l

, respectively.

We have one consumption good, which will be consumed at date t, and two agents, whose

set will be denoted by N = {1,2}. Each agent i has a strictly concave and strictly increasing

Von-Neumann-Morgenstern utility function u l
: R —> R. We write Pl

(-{y
1

) for the beliefs of i

at y
l

, and Px
for his prior beliefs. We assume that P 1 and P are equivalent. That is, they

assign zero probability to the same events. We write E %

[-|y*J
and E1

for the expectations with

respect to Pl

(-|y
f

) and P l

, respectively.

Given any i G N, for some x l G R, we take [x\oo) as the set of feasible consumption

levels for agent i and write A' for the set of all (risky) consumption functions, i.e., the random

variables xl
: y >—> x 1

(y) G [x%co) that are integrable with respect to P l
. Each agent i G N

has an asset that pays only one dividend D 1 G X 1

, which will be paid at i. There is no market

at which our agents can trade.

By an allocation, we mean any x G A" 1 x A'
2 with x l

(y) + x2
(y) < D 1

(y) + D2
(y) at

each y. Here, xz

(y) denotes the consumption of agent i when the realization of Y is y. By

a contract x[y l

] at a given y
l

, we simply mean the restriction of an allocation x to the set

{y'\y's
— Vs for all s < t} of all continuations of y

l
. Clearly, an allocation x is the mutual

extension of contracts x[y*]. We write X [y*] for the set of all contracts at y
l and X for the

set of all allocations. We take some Ct [y
£

]
C A [y

f

] as the set of feasible contracts at y*

and write Ct
CI for the set of allocations generated by the contracts in Ct [y

l

]
(The set of

feasible contracts may be strictly smaller due to some additional constraints.) We finally write

C = (Co, •• ,Cf)-

We will analyze the game G (C, p) in which the following is common knowledge: At each

t, first the signal Yt is observed and an agent pt (y
l

) G N is recognized. Then, the recognized

agent offers a contract x [j/]. If the contract is accepted by the other agent, they sign the

contract, yielding payoff E1 \ul (x [y
{

] ) |y'] for each i ; otherwise, the offer expires and they

wait until the next date, except for date t, when the game ends and each i consumes D l

(y).

The process p = (p , ... ,pj) is called the recognition process.



We assume4 that P 1

(p t
= i\y

s
) = P2

(pt
= i\y

s
) = p\ (y

s
) for some p\ (y

s
) at each t and

y
s

. We call any full list p = {p\ {y
s

)} s it
of such probability assessments a bargaining proce-

dure. We assume that p and D are independent and that p\ (y
s
) depends only on the history

{pt
, (yo, • • • ,yt')}t'< s

°^ recognized agents. We finally assume that p is affiliated: when an agent

is recognized at a given date, he will be, if anything, more likely to be recognized in the future.

The set of all such bargaining procedures is denoted by V.

Optimality, side bets, risk-sharing agreements Given any y
f

, an allocation x is said to

be Pareto- optimal at y
1

iff

[3i € N, tfVtoly'] > £?*[«*(a)Iy*]] =» [Sj 6 iV, ^'[«»'(£)|y*] > E*[v?{x)\y*\]
,

almost surely, for each allocation x £ X. That is, the (conditional) probability that we can

improve both agents' expected utility at y
J

is zero. An allocation is said to be Pareto- optimal

iff it is Pareto-optimal at the beginning. We say that C is Pareto-complete iff Ct contains all

Pareto-optimal allocations for each t G T.

Our next lemma states that C is Pareto-complete whenever all risk-sharing agreements and

side-bets are available. Let us consider some objective components of uncertainty separately,

and write each Yj as (Yj,Yt) where the agents have a common prior on Yt, which contains

information about some objective aspects of uncertainty. Likewise, we write each y as (y,y)-

Lemma 1 Let X = {x G X\x(y,y) = x(y',y) V(y,y',y)}. If D G X, then (X,...,X) is

Pareto-complete.

That is, Pareto-optimal contracts do not refer to Y = (Y ,

.

.. ,Yj) MY does not affect the

dividends and if agents hold common beliefs about Y . Put differently, so long as we can write

contracts on all the events that are relevant for the dividends (so that they can share all the

risk) or the events about which the agents have distinct beliefs (so that they can bet), we can

generate all the Pareto-optimal contracts.

3 Examples of delay and inefficiency

Two properties of the bargaining procedures in this paper are essential: (i) they are sequential

and (ii) the offers expire immediately. In addition, we assume that (iii) C is Pareto-complete.

Under these conditions, we will show that all equilibria are equivalent to an equilibrium where

players immediately agree on an allocation that is Pareto-optimal when the first offer is made.

All the regularity conditions we are about to assume are here to simplify the exposition. They are only used

in Theorems 3 and 4 (see Yildiz, 2000).



(We will further show that this is the only equilibrium outcome for generic cases.) Now, we

will demonstrate that these conditions are not superfluous.

Our first example demonstrates that, when C is not Pareto-complete, we may have delay

and inefficiency in (the unique) equilibrium. In this example, we restrict our contracts to the

sales contracts. A sales contract can be represented by the amounts of equity shares Agent 1

owns in the assets, and a consumption-good transfer from Agent 2 to Agent 1.

Example 1 (The set of contracts is Pareto-incompleteJ Take T = {0,1,2}. p = p2
= 1,

and p 1
= 2. For each i, take x 1 = and u l (x !

)
= \fx l

. Take Yq a constant, and D (as a

function of Y\ and Y2 ) as in the following table.

Y2 = H >2 = L

Yi = l (16,9) (16,0)

Yi = 2 (9,16) (0,16)

We take Pl

(Yi = i) = 1 and P 1 (Y2 = H) = P 1 (Y2 = L) = 1/2 for each i.
5 We assume that

only sales contracts are feasible.

At date 2, each agent knows the true state, hence any trade will be just a transfer from some

agent i to the other, which is not individually rational for i . Hence, if they have not agreed by

date 2, they will not trade. Thus, Agent 1 will accept an offer at t = 1 iff it gives him at least

the expected utility of consuming his own asset. Moreover, at t = 1, the optimal contracts are

sales contracts where any agent's equity shares in two assets are the same. Hence, at t = 1,

Agent 2 will offer the Pareto-optimal sales contract that gives Agent 1 his continuation value.

The offer will be accepted. When Y\ = 1, the asset of 1 will pay 16 for sure, yielding expected

utility of \/l6 = 4. Then, Agent 2 will offer 64/81 of each asset to Agent 1, yielding payoff

vector (4, \/l5/2). When Y\ = 2, if Agent 1 consumes his own asset, his expected utility will be

only \/9/2 + \/0/2 = 3/2. In that case, Agent 2 will offer 1/9 of each asset to Agent 1, yielding

payoff vector (3/2, 3%/2). At t = 0, Agent 1 is certain that Y\ = 1 and he will get 4. Likewise,

Agent 2 is certain that Y\ = 2 and she will get 3v2- But the best sales contract at t = is

no-trade, yielding expected payoff (4, 4) >C (3/2, 3\/2)- Therefore, they disagree at t = 0.

Yielding payoff vector (4,3v2), the equilibrium is Pareto-inefficient. If Agent 1 owned both

assets when Y\ = 1 and Agent 2 owned both assets when Y\ = 2 (the sales contracts available

at each t G {1,2}/. the payoff vector would be (9/2,9/2).

Note that there is no allocation generated by feasible contracts at t = that Pareto-

dominates the equilibrium allocation. Therefore, the inefficiency is not caused by delay.

Recognizing that the Pareto-dominating contracts will be individually irrational when they

5 For simplicity, we take P l

(Vi = i) = I for each i, when P 1 and P2
will not be equivalent. For sufficiently

small € > 0, P* (Vi = i) = 1 — e would also work.



become available, agents agree on a Pareto-dominated contract. Note also that, if C were

Pareto-complete, the contract that gives the entire wealth to the agent i with Y\ = i would be

feasible at t = 0; and agents would agree on this contract at t = 0.

When the bargaining procedure is not sequential, there may be multiple equilibria. In that

case, the equilibria in future subgames may depend on the play at the beginning; and this may

cause a disagreement at the beginning. This is demonstrated in our next example. (Whenever

a subgame possesses multiple equilibria, none of which dominates the other, we can add a prior

date and construct a subgame-perfect equilibrium of the new game with delay.)

Example 2 ("The bargaining procedure is non-sequential. ) Take T = {0,1,2}, xl = 0, and

u 1 (x 1

) = vx 1 for each i. Let Yq be a constant, Y\ and Y2 be identically and independently

distributed, each taking values of and 1 with equal probabilities. Take D = A(Y\,1 — Y\) so

that the social wealth D 1 + D2 = 4 is riskless. At dates and 2, we have sequential bargaining

procedures with p = p2
= 1. At t = 1, simultaneously, each agent offers a feasible contract. If

they offer the same contract, it becomes enforceable; otherwise, they wait until date 2.

If they have not agreed by date 2, they do not trade, and each gets v4/2 + v0/2 = 1. There

are multiple equilibrium substrategies at t = 1. In one of them, agents agree on the riskless

allocation (1,3), where agents 1 and 2 consume 1 and 3 (for sure), respectively. In another one,

they agree on the riskless allocation (3,1). One can check that the following is an equilibrium.

7/Yi = or Agent 1 offers (4,0) att = 0, agents agree on the riskless allocation (3,1) at t = 1;

they agree on (1,3) otherwise. At t = 0, Agent 2 accepts an offer x iff E v? > y/3; and

Agent 1 offers (4,0), which is rejected. [This is an inefficient equilibrium; it selects (1,3) and

(3, 1) with equal probabilities.]

Finally, our next example demonstrates that, if the offers lived longer, the equilibrium

outcome might necessarily be inefficient.

Example 3 ('The offers live longer.) Take T = {0,1}, and assume that the offers made at

t = expire at the end of date 1. Let p = 1 so that Agent 1 makes the offer at 0. Given any

offer x 7^ D of Agent 1, the best response of Agent 2 is to wait until date t = 1 and to accept

the offer iff' x2
(y) > D2

(y). Hence, for any offer x, Agent 1 would consume min{a; 1
,Z)

1
} and

Agent 2 would consume max{x2 ,D2
}. In that case, Agent 1 would offer x = D. Therefore,

there is no trade in equilibrium..

Similarly, allowing the offers to live one period in Rubinstein's (1982) model, Avery and

Zemsky (1994) show that the steady-state subgame-perfect equilibrium may be inefficient. In

many situations some information may arrive before the offer expires. This adds an option

value for waiting, and causes inefficiency. (In an earlier version of this paper, we show that, if

C is Pareto-complete, and the offers live one period, the equilibrium allocation will be Pareto-

optimal when the first offer expires, that is, conditional on the signal observed.)



4 Equilibrium

In this section we analyze the subgame-perfect equilibria of a game G(C,p) with Pareto-

complete C. We first construct an equilibrium where agents reach an agreement immediately.

All the equilibria yield the same equilibrium allocation, which is Pareto-optimal when the first

offer is made. We show further that immediate agreement is the only equilibrium outcome if

there are some gains from trade and each agent is likely to make an offer throughout. Finally,

we derive an equation determining an agent's equilibrium payoff in terms of the dividends and

the sequence of expected rents.

As usual, a strategy of an agent is a complete contingent-plan that determines the offer the

agent makes when he makes an offer, and whether he accepts or rejects an offer made by the

other agent. We require an agent's offers at various y
l
of a given date t to be measurable. A

strategy profile s = (s^s ) is a subgame-perfect equilibrium (henceforth simply equilibrium)

iff the strategies are best response to each other in each subgame.

We first present two preliminary results used in our construction. Our first. Lemma states

some familiar properties of optimization with increasing functions.

Lemma 2 Let C be Pareto-complete. Given any distinct i,j 6 N, any t, any y
l

, and any

v = (is
1
lu

1
(z

1

) Ij/'I ,E2
[u

2
(z

2
) |y

{

]) with z = (z
1^ 2

) £ X, the optimization problem

max #V(sV])|y*] subject to Ej [u3 (x3
{y

1

}) [if) > r }
(1)

xly'lSCtly 1

]

has an (almost surely) unique solution x t [v, i; y
l

], which does not depend on C'. Write ml
(v; y

l

)
=

E1^1 (x\[v,i\y t

\) \y
l

]
for the maximum. Then, the following are true.

1. xtfwjijy'] is Pareto-optimal at t;

2. the constraint is binding, i.e., E] uj [xllv^ytyj \y
l vJ : and

3. ml {v;y l
\ > vi

, where the inequality is strict whenever z is not Pareto-optimal at y
l

.

Given any two dates t.s E T with t < s, consider a collection {2:[y
s

]} vs of contracts at

s, indexed by the continuation y
s of y

l
until s. Write x\y l

for the mutual extension of these

contracts. At each y
s

, x\y
l
requires agents to write x[y s

}. We call x\y l preemptive, for x\y
l

is equivalent to offering the continuation in advance to preempt the delay. Our next Lemma

states that x\yl
will be a contract at y

l
in all cases of concern.

Lemma 3 Take any t € T, and let v [y
s

]
= (E 1

[u
x
(z

1

) \y
s

]
,E2

[u
2
(z

2
) \y

s
\) at each y

s
for

some (z
1
,^

2
) G X. Then, we can select a family xs [v [y

s
]
,i;y

s

)
of solutions (indexed by y

s
) so

that their mutual extension will also be an allocation.



Construction of an Equilibrium For a given G(C,p) with Pareto-complete C, we now

construct a subgame-perfect equilibrium, where the agents reach an agreement immediately.

We use backward induction. If the agents have not agreed by t, at t , agent j ^ pi (y) will

accept an offer x(y) iff x? (y) > D-7
(y). This inequality holds only when xk (y) < Dk

(y) for

k = Pf{y)- Hence, k will offer xi{y) = D(y). There will be no trade. Each will consume his

own asset, independent of which contracts were offered at previous dates. The continuation

value of an agent i at the beginning of t will be

V?[yt^)=V\u l (V)\y 1-^. (2)

Given any date t < t , assume that an allocation xt+ i £ X will prevail at date i+1, indepen-

dent of which contracts were offered (and rejected) before. Write V +̂1 (y
t

) = E l
\u

l
(x\+1 ) |y

£

]

for the continuation value of any agent i at the beginning of t + 1. Given that agent j ^

Pt (y*) ge*s ^+1(2/') when he rejects an offer xjfy'], it is a best response for him to accept

xtly
1

) iff -E7-
7' [u-7"

(rc^ [j/*] ) |j/*] > V
t

J

+1 (y
t
). Given this response, if agent k = pt (y*) offers a

contract xt [y
{

], then his expected utility-level will be Ek
[u

k (xk [y
t

])\y
t

] if E^ [u^ (xjly
1

})^
1
]
>

^t+i(2/*)i and Vt+iiv*) otherwise. To maximize this expected utility level, he will either offer

xt[Vt+ i(y
t ),k]y t

}, the best acceptable offer, and get mk
(Vf+ i(7/*); 2/*), or will offer some un-

acceptable offer and get VJ
fc

(y*). By Lemma 2.3, mk
(Vt+i(y

t

);y
t

) > Vk
+l (y

l

), hence offering

xt {Vt+ i(y
t ),k;y t

] is a best response for k. Agent k offers x^Vt+iQ/^fc;?/*], and the offer is ac-

cepted. Since xt+i £ X, by Lemma 3, we can choose contracts xt[Vt+i(y
{

), k;y
l

] at all sample

paths y
1
in such a way that their mutual extension forms an allocation, yielding a (preemptive)

contract x t [Vt+i, k; -]|y
t_1

at y . We choose them so. If agents do not reach an agreement by

date t, allocation xt[Vt+i, pt ; } (which is xt\Vt+\,i; -]|y
t_1 when pt (y

{

)
= i and xt[Vt+i,j; -]|y

when pt (y*) = j) prevails at t. This allocation is once again independent of which contracts

were offered previously. Since u %

(a^[Vt+i,i; ]) = ml

(Vt+ \;-) and u1

^x\[Vt+ i,j; ]) = ^t+i(')>

the continuation value of an agent i at the beginning of t is

KV" 1

) = &[*? (Ft+1 ;y
4

) l^ct^ly*-
1

] + E1^ (y
4

)
l{p

t^)^}l3/
t_1

] (
3)

at each y
t_1

.

By backward induction, this procedure gives us a subgame-perfect equilibrium s of G(C, p).

According to s, at any y', an agent j ^ pt (y
l

) accepts an offer xt[y'] iff E^ [u^ (xjly
1

])^] >

VJ+ 1 (y
t

), and agent i = pt (y
4
) offers x\\yt+\,i; •], where the process V= {Vt }teT is the unique

solution of (2-3). Our next theorem states that s is essentially the only equilibrium.

Theorem 1 Let C be Pareto-complete. Then, the strategy profile s is a subgame-perfect equi-

librium of game G(C,p). Moreover, for any subgame-perfect equilibrium of G(C,p), the vec-

tor of continuation values at the beginning of any date t with y
t_1

(before Yt is observed) is

Vt (y
t_1

). After Yt is observed, the continuation value of an agent i is mx
(Vf+i(y

i

);y
t

) if

Pt (y
l

)
=

*> and ^1+1(2/') otherwise.



That is, any equilibrium is payoff equivalent to s. Moreover, according to s, the agents

reach an agreement t = 0, so long. as the space of feasible contracts is Pareto-complete, e.g., so

long as all side-bets and all risk-sharing agreements are feasible. (Therefore, the delay results

cited in the Introduction are based on the authors' exclusion of some of these contracts.)

In any equilibrium, by Theorem 1, when agents learn which of them is to make the first

offer, the continuation values are m% (V\(y°);y ) and V^(y°) where pQ (j/°) = i ^ j. By Lemma

2.1, this is a Pareto-optimal expected-utility level. Since the utility functions are strictly quasi-

concave, it is uniquely obtained by xo[V\,p (j/°) ;y ]. Therefore, {xo[Vi,/? (j/°) ''V°}} o is the

unique equilibrium allocation. It is Pareto optimal at y°, when they learn which player makes

the first offer. Before they learn y°, however, agents are uncertain of which xo[V\,p (y°) ;y°]

will prevail. When xo[V\,p (y°) ;y°] varies as Yq takes different values of yo, the uncertainty

about xo[Vi,p (•) ; •] may hurt our risk-averse agents, causing some inefficiency. In order to

avoid this ambiguity in measuring efficiency, we will state our efficiency result for the case that

Yq is constant.

Theorem 2 LetC be Pareto-complete. Then. G(C,p) admits a unique equilibrium allocation,

which is Pareto-optimal at y . This allocation is Pareto-optimal at the beginning whenever Yo

is constant.

We have seen in Example 1 that, when the space of contracts is Pareto-incomplete, some

delay may be necessary for reaching an agreement. When the space of the contracts is Pareto

complete, there exists a (preemptive) contract at t = that imitates such delay, as the delayed

equilibrium allocation is unique. Therefore, even though the unique equilibrium allocation

is reachable via contracts at t = 0, it is not clear that these contract are not preemptive,

imitating a delay. Theorem 2 implies that, typically, the contracts written in equilibrium

are not preemptive. For, by the syndicate theory, Pareto-optimal contracts use the minimal

information about the total wealth and the discrepancy between the agent's beliefs. When

there is a common prior, they depend only on the sum D l + D2
. Our next example clarifies

this matter further and motivates our next theorem.

Example 4 For any large, even integer t, let Y = (Yq ... , Y{) be identically and independently

distributed, each Yt taking values of and 1 with equal probabilities. As in Example 2, take

D = 4 (Yi, 1 — Yj) and set u l (xl
) = vx! for each i. First consider the bargaining procedure

with alternating offers where Agent 1 makes offers at even dates. Att — 1, Agent 2 offers the

riskless allocation (1,3), which is accepted. This allocation is already Pareto-optimal. Hence,

there are multiple equilibria yielding the same allocation: at each t < t — 1, the recognized

agent offers the riskless allocation (1,3), and the other agent accepts this offer only at some

t* <i- 1.



Now consider the recognition process according to which Agent 1 makes an offer at t iff

y t
= 0. Note that p\ = p\ = 1/2 for each t. Under this procedure there is a unique equilibrium.

At i — 1, if recognized, agents 1 and 2 will offer (3,1) and (1,3), respectively. The offer will

be accepted. Hence, at the beginning oft — 1, the risky allocation that gives (3,1) and (1,3)

with equal probabilities will prevail. Thus, at t — 2, the recognized agent will offer the other

agent his continuation value, (l + \/3) /2 and keep the rest, which is larger than (l + \/3) /2.

Therefore, a risky allocation prevails att — 2, too, yielding ((1 + \/3)/2,4 — (1 + \/3)/2) and

(4 — (1 + v3)/2, (1 + v3)/2) with equal probabilities. Repeating this procedure, one can see

that, at each date, a risky allocation prevails, leading agents to reach an agreement at the pre-

vious date, in which the randomly determined proposer gets a somewhat larger share. Therefore,

there is a unique equilibrium, which yields immediate agreement.^

Therefore, under this random recognition procedure, the immediate agreement is not merely

an imitation of a delay, as delay is no longer a possible equilibrium outcome. This is generally

true in our model:

Theorem 3 Let p be a bargaining procedure with p\ (ps ) G (0,1) throughout. If D is indepen-

dent ofYo and not Pareto-optimal initially, then the unique equilibrium path-of-play is that at

t = the recognized agent i offers the contract xo[Vo,i; <fi]
and the other agent accepts the offer.

The rationale behind Theorem 3 is as follows. When there are gains from trade, the

recognized agent will get some positive rent at some history y
l

. Since either agent is likely to

be recognized at t, at the previous date there is a need for insurance against the risk associated

with the allocation of this rent. When only one of the agents can get a positive rent when he

is recognized, he faces a risk of whether he will be recognized so that he will get the rent, a

risk that can be shared. When both agents can get a positive rent when they are recognized,

they face uncertainty about which agent will get the rent; and once again they would like to

share the risk. In either case, there is a gain to be realized at t — 1, allocating a positive rent to

the agent recognized at t — 1. Applying the same argument inductively, one can conclude that

there are gains to be realized at 0, in which case delaying agreement will cause an inefficiency

(when the first offer made), which cannot be an equilibrium outcome according to Theorem

2. That is, when there are gains from trade, a strictly stochastic bargaining procedure will

generate a positive risk (and thus a positive cost of delaying agreement) throughout the game,

rendering delay impossible as an equilibrium outcome.

Note that, as t
— oo, the equilibrium allocation approaches to (2,2), while the alternating-offer procedure

always yields (1,3). These two procedures thus yield very different outcomes in our model - whereas they yield

similar outcomes in Rubinstein's (1982) model with discounting.
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Summary In our model the set of feasible outcomes does not necessarily shrink as time

passes. Yet, we are able to pin down a unique (Pareto-optimal) allocation as an equilibrium

outcome. Here, revelation of some information makes certain contracts individually irrational

for some parties, and therefore not viable to society as a whole, a phenomenon known as the

Hirshleifer effect. This happens to such an extent that at date t the only individually rational

allocation is D itself. This sets further restrictions on the set of viable allocations at the

previous date, through Lemmas 2 and 3. The inductive application of this procedure gives us

a unique (Pareto-optimal) level of utilities at the beginning of the game. Risk-aversion shows

up at this stage and tells us that the contract must also be unique, and further requires that,

generically, there is no delay in equilibrium.

Equilibrium payoffs and rents In any equilibrium, given any y
l

, an agent i € N gets

rri
1 (Vt+ i(y

t

);y
t
) if he is to make an offer at y', and gets only V

t

'

+1 (y
(

) if he is not to make an

offer at y
l

. Hence, the recognized agent i = pt (y
(

) extracts a (non-informational) rent

R\ (y
4

)
= m< (Vt+ifo*);^) - V^fe,*) > 0. (4)

Together with D, these rents determine the equilibrium payoffs. Substituting (4) in (3), we ob-

tain I? [y
t- 1)=Ei

[R\ (y
{
) l{Myr)=l} \y^}+E l

[vy+1 (</) ly'"
1

]. Since V? = (u1 (D 1

) ,u2 (D 2
)),

this yields

Vt {y*- 1

) =£# I** (y
s

) i wy*)=oly
t_1

] + E' W (
Di

) ly
t_1

] (
5

)

s=t

for each t £T. Equation (5) displays the determinants of bargaining power in this environment.

It states that the continuation value of an agent is the sum of the rents he expects to extract

in the future when he is recognized, plus his expected utility from consuming the dividend his

own asset pays. These rents will be decoupled in our next section.

5 Equilibrium in a Canonical Case

In order to illustrate some of the basic ideas in this paper, we analyze the equilibrium in the

following canonical case. We assume that our agents have a common prior and the credit

constraints are not binding, i.e., the set of feasible consumption levels is E.

We take ul
(x) = — exp(-aix) for some a* > for each i e N. We let Y = {Yt : t e T]

be independently distributed where each Yt takes values in R2
, E[Yt ]

= at every f > 0, and

Yq e M2
is a constant. We take D = Y$ + Y\ + + Y{ so that as time passes agents learn the

independent increments in the dividends. Finally, we take a purely deterministic bargaining

procedure, and write Ti[t) = {s € T
\ ps

= i, s > t] for the set of all future dates at which

agent i is to make an offer.
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Notation The total wealth is denoted by W = D 1 + D2
. We define the certainty equivalent

CE\[x 1

}
of any xi

for any agent i at any date t as CE^x*] = (u
1 )' 1

(E l

[u
1 (x 2

)
\Y , ...,Yt]).

When x1
is a function of (Yt+i,. .. ,Yj), it is stochastically independent of (Yo, . . . ,Yt ), and

hence

CE\[xl

)
= -— \ogE[exp(-aiX

1

)]
= M[x l

]{ai ). (6)
Oii

In Figure 1, we plot the equilibrium contracts {x t }t&T in terms of their certainty equiv-

alents computed at date 0. In this figure, the vector of certainty equivalents of any given

allocation x t of the form x t
= E[D\Yq, . . . ,Yt ] + f(Yt+ i,. . . ,Yt_i) stays under the line l t , where

E[D\Yo, . . . ,Yt] = Yo + Y\ + + Yt . Note that lt moves inwards as t increases. At t, they

consume D, which is depicted at the origin. Assume that Agent 2 makes an offer at i— 1. He

offers to share the unresolved risk Y^ + Y 2
optimally, and takes all the rent. The certainty

equivalent of this allocation is found by going up until we reach the line lf—i- At i — 2, Agent

1 now offers to share the risk Y^_
x
+ Y^_, as well. He now extracts all the rent of agreeing

one day earlier. Hence, the vector of certainty equivalents for this contract is found by going

horizontally until we reach the line ^— l- Using this algorithm until we reach the line Iq, we

find the certainty equivalents of the contract signed at t = 0.

We compute that the equilibrium allocation at any date t £ T is

xl = E[D*\Y ,...,Yt } +
a-i

+

(W
CX\ + Ot-2

- E M
s£Tj(t)

E M
sST,(t)

E[W\Yo,...,Yt})

'(Ys+l +^s+U
OLi

a.\ + «2

Oti

a\ + Q2
(Ys\i+Yss+l)

(a*) - M [Yi+1 ]
(a,)

(«i), (7)(
aj)-M yd

where i,j € N with i ^ j. (One can easily check the validity of (7) by induction.) Note that

the share of the social risk W — E[W\Yo, , Yt ] borne by agent i at any optimal risk-sharing

scheme is Q1+Q2 (W — E[W\Yq, . .

.

, Yt]). At any s € Ti(t), in order to insure himself against

his individual risk Y"/+1 , agent j is offered to bear - °'

a (Y +̂l + Y2
+1 ) in addition to the risk

- °'
a (W — jB[W| Yb, • - , Ys+ i]) that he would bear if they were to agree at the next date. Since

the agent i makes an offer that can be rejected only by delaying the agreement until s + 1, he

extracts the entire value M ai+Q2 (*?+!+ ys

2

+ i) (<*j)-M Y3
(ctj) of this transaction for

agent j. This value is the certainty equivalent of the extra risk that agent j bears, minus the

certainty equivalent of the risk that agent j avoids. Thus, (7) is read as: The consumption

allocated to an agent at some t is the certainty equivalent of his own asset's dividend plus the

optimal risk that he shares, minus the rents that he pays to the other agent when the other

agent makes an offer (in the future), plus the rent that he extracts from the other agent when

he makes an offer (in the future).

12



^2r^2

l CE l
[ij

Figure 1: The sequence of the equilibrium contracts in the space of certainty equivalents

computed at t = 0.
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Using (7), we compute7 that

CEl{xl]=CEHD>}+ Y, GB , (8)

s£Ti(t)

where CE^D*] = E[D<\Y , ...,Yt ]
+ £ s>t M [Y*+1 ]

(on) and

gs = m [y;Vi + ys\i} (-^-) ~ \m f^il («;) + M [YJ+1 ]
(a,)] . (9)

Given that they will share the risk optimally, the value of the increment Y*+1 + Y2
+1 in total

wealth for the agents at date s is M [Yg+1 + Y
2
+1 ]

( a
X

+a j
, the certainty equivalent of Y*+1 +

Y2
+1 with respect to the group's surrogate utility-function of Wilson (1968). If they were not

able to share the risk, the value of the increments Y*+l and Yj+1 in the social wealth would be

only M Xs+i (
aj) + M \Y*+l \

(cti). Therefore, Gs is the gains from sharing the risk in Ys+j,

optimally Therefore, (8) states that, in CE terms, the consumption that our equilibrium

allocates to agent i at date t consists of what he already owns and the sum of gains from

(optimal) trade when he makes offers in the future. Equation (8) is similar to (5). Moreover,

in CE space we have transferable utility, which allows us to decouple the gains from trade at

each date from the rest of the problem.

Observations Firstly, being able to make an offer prior to an important information-revelation

strengthens the position of a bargainer. To see this, let Y= (Yo, . .
.

, Ys ,Ys+ i + Z, Ys+2, , Yd
and Y* = (Y , . ..YS*,YS.+1 + Z,Ys . +2 , . . . ,Ys,Ys+1,Ys+2 , . .. ,,Y{) be such that {Yx , ...,Yh Z}

is independently distributed and ps
. ^ ps . If we replace Y with Y* , then CEPs ' {xq

3*} increases

by G[Z] =M{Z l + Z2

] (^j) - [M [Z*] (a,-) + M [Z J

]
(a z )} , while CEP-[3%] decreases by

the same amount.

Second, if we replace a bargaining procedure p with p by changing p\. = to p\» = 1 at

some t* for some i, then CE l
[x ] increases by Gr- [Cf. Theorem 4 below.]

Third, any Pareto-optimal allocation is approximately obtainable via a deterministic bar-

gaining procedure as long as information arrives smoothly. Assume that Y\, . . . ,Yf are identi-

cally distributed with variance a2
/t. Then, given any Pareto-optimal and individually rational

allocation x S X and any e > 0, there exists a t such that we can find a deterministic bar-

gaining procedure p that yields |CE'[xq] — CE*[a;*]| < e for each i € AT as long as t > t. To

do this, letting Ai,A2 G R be such that Ai ICE 1 ^ 1
]
- CE l [D l

}\
= A2 \CE

2
[x

2
]
- CE2 [D2

]\

and Ai + A2 > 0, we write n for the integer part of A ^A
t. We consider the bargaining

procedure p with p\ = 1 iff t < n. Now, by (8), CE x

[xl) - CE l [D l

]
= nG = (n/t)G

7 By independence, CE\[ 1̂ {W - E[W\Y
,

. .
. ,K])] = E s>,M [^j(l?+i + *H-i)] («)• Als°-

M
[ ai

°
8

Q2
a:| (qi) + M

I oi
°'
a2 xl (q2 ) = M [x]

( a
°'
+

°
a
2

, ) at any x. Substitute these equalities in (7).
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and CE2
[x

2
)
- CE 2 [D2

}
= (1 - n/t) G, where G = ]T

S
G S is the total gain from trade. Thus,

|C£'[if)] -CE l
[x

l

)\
= (^Ali-n) G/t < G/i, where the right hand side goes to as i -* oo.

[Cf. Theorem 5 below.]

The impact of risk aversion Many axiomatic bargaining solutions have the property that,

if a bargainer gets more risk-averse, then he becomes worse off, while his opponent benefits from

this. Examples of such bargaining solutions are Nash (1950), Mashler-Perles (1980) and Kalai-

Smorodinsky (1975). Roth (1985) shows that Rubinstein's bargaining model has the same

property if we consider "instantaneous risk-aversion." 8 We will now show that this property

does not hold in our model, where the bargaining is driven by risk aversion itself.
9

In our model, risk-aversion of an agent may hurt or benefit his opponent. To see this, note

that an increase in a
;
affects CEl[x\] through G s for s e Xj(£). As a_j increases, on the one hand,

M Y/+1 («_,) decreases, which increases G s . On the other hand, M \Y}+1 + Y?+1 ] ( a
Q l

+a )

decreases, which results in a decrease in Gs . Either of these effects can be dominant: If D 1 +D2

is constant, the latter is identically 0, hence, the risk aversion of j benefits i. If D3 is a constant,

the former is identically 0, thus an increase in olj renders CEj[xJ] lower, i.e.. risk-aversion of

j hurts i. Intuitively, the decrease in M \Y}+ \
+Y

s+i] ( a
^

+a )
's ^e ^oss ^^ aSent j's ^sk-

aversion causes to society, part of which is borne by agent i; and the decrease in M y/+1 (aj)

is the decrease in j's reservation value, which strengthens Vs position in bargaining.

In order to demonstrate which effect is dominant in which cases, let Ys+ \ be a bivariate

normal random vector with variance-covariance matrix
<7 j ro-\Oi

ra\Go o2
Then, we have

M [y;+1 ]
(a) -- -\cto-2 and M [Y}+l +Y2

+l ]
(a) = -\a(o\ + o\ + 2ra

x a2 ). Substituting

these equalities into (9) and differentiating with respect to a
} , we find that Gs (and hence

CEl\x\\) is increasing in q^ iff

r < r = [i
(a£)\^ 11. IZi

2 K ai,I <*i 0"i 2 a
j

(10)

8 See Roth (1985) for the references to these results. In contrast with these results, White (1999) shows that

adding a non-contractible background-noise to an agent's consumption would make him better off, leaving his

opponent worse off.

°One can check that the certainty equivalent of an agent is decreasing with his own risk-aversion. But this

hardly implies that he is in a weaker bargaining position, as the certainty equivalent of his consumption would

still decrease even if his consumption had not changed at all. In comparing a player's equilibrium welfare-levels

as his own risk-aversion changes, we clearly perform an interpersonal comparison between the two selves of

the agent, each self having a different utility function. We can safely say that an agent gets worse off as he

becomes more risk-averse, only if each self finds the agent's consumption worse under higher risk-aversion. Since

the equilibrium outcome is Pareto optimal, the more risk-averse self will find himself worse off only when his

risk-aversion benefits his opponent.
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Here, an agent benefits from the risk aversion of his opponent when r is small enough, the

case when the social cost of this risk-aversion is not significant. Moreover, the upper bound f

increases with both cvj/a, and o~j/oi. An intuition for this observation comes from insurance:

As an insured becomes more risk-averse, we expect the insurer to benefit. On the other hand,

if the insurer is the one who becomes more risk-averse, we would not expect the other party

-the insured- to benefit. As Qj/ojj and <Jj/<Ji increase, agent i becomes the insurer and benefits

from the risk aversion of agent j.

6 Monotonicity and Obtainability

In this section, we present two results about the equilibrium. The first one is an extension of

a result in Merlo and Wilson (1995) and Yildiz (2001) to our model. It states that an agent

cannot lose when he becomes more likely to make an offer in the future. This fact will also

help us in proving our second result. The second result states that any individually rational

and Pareto optimal allocation is obtainable as an equilibrium outcome of some bargaining

procedure iff "the first-mover advantage" is not too large, i.e., the uncertainty resolved at

t = 1 is not substantial.

Given any peP, let us write Uq (p) for the vector Vq of equilibrium-continuation values at

the beginning for game G(C,p) where C is Pareto-complete.

Theorem 4 Given any two bargaining procedures p,p £ V with p\ > p\ at each t £ T for some

i £ N, we have U l

(p) > Ux

{p) and U3
{p) < U3

(p) for j ^ i.

Merlo and Wilson (1995) provide a counter-example, showing that this result cannot be

extended to more than two agents in their model. An increase in the probability of recognition

for an agent, say 1, decreases the continuation value of another agent, say 3, which may in

turn increase the continuation value of some other agent, say 2; and this may hurt agent 1.

Using an example in which the agents may have different beliefs about the recognition process,

Yildiz (2001) shows that the conclusion of this teorem would not be valid if the recognition

process were not affiliated.

Given any (Pareto-optimal and individually rational10 ) allocation x £ X, can we find a

bargaining procedure p£V that gives us x as its equilibrium allocation (of game G(C,p))? If

such a bargaining procedure p exists, then we will say that x is obtainable (via p).

We will now answer this question. To this end, take any i £ N, and set V% = {p^P\pq = 1}.

The best bargaining procedure for agent i (by Theorem 4) is p [i] £ V\ that recognizes agent i

with probability 1 at each history and date. Under p[i], agent i extracts all the rent, leaving

agent j with his reservation utility-level. On the other hand, by Theorem 4, the bargaining

10 That is, Ei
[«' (x

{

)] > E i
[u

{

(D')] for each i.
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£/o(p[2])' U {V2 )

Uo(p[2))

Uo(P[l})

Figure 2: Obtainable utility levels. The disagreement utilities are at the origin.

procedure minimizing C/q over Vx is p[i] € Vi where p[i\\ is 1 when t = 0, and otherwise.

Under p[i], i makes only the first offer. (In that case, at date t = 1, agent j can extract the

entire rent, leaving agent i indifferent to consuming D, when both agents know y
1

. At date 0,

agent i extracts the remaining rent, which is associated with the uncertainty in y .)

Theorem 5 Let C be Pareto- complete. Every Pareto- optimal and individually-rational allo-

cation is obtainable iffU^ (p[i]) < Uq (p[j]) for some i ^ j.

The condition that Uq (p[i]) < Uq (p[j]) for some i ^ j expresses that it is not the case

that, for some agent, the worst outcome when he moves first is better than the best outcome

when he does not, i.e., the first-mover advantage is not too large. Therefore, Theorem 5 can be

read as: Every Pareto-optimal and individually-rational allocation is obtainable so long as the

first-mover advantage is not too large. The first-mover advantage is large when a substantial

part of uncertainty resolved at date t — 1. If this is the case, then many axiomatic bargaining

solutions that select centrally located utility pairs, such as the Nash bargaining solution, will

not be obtainable.

When uncertainty is resolved smoothly, the first-mover advantage will be small, and there-

fore every Pareto-optimal and individually-rational allocation will be obtainable.
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The proof is illustrated in Figure 2. Given any i, since Uo is continuous and Vi is connected,

UoiVi) is a connected set with the end-points Uq [p[i]) and Uo(p{i\), which we computed

above. By Theorem 2, Uo (Vi) is on the Pareto-frontier, hence it is the part of Pareto-frontier

connecting these two end-points. Moreover, any bargaining procedure p G V can be written

as a convex combination of two such bargaining procedures p [1] £ V\ and p[2) € Vi, where

p [j] is the same as p after j is recognized at 0, but recognizes j at with certainty. Then,

by linearity, L^o (V) is the convex hull of Uq (V\) U Uo (V2), as shown in the figure. Since the

agents are strictly risk averse, the Pareto-frontier is strictly concave, hence the set of Pareto-

optimal payoff vectors in Uq (V) is Uo (V\) U Uo (V2)- This set contains all the Pareto-optimal

and individually rational payoff vectors if and only if Uo (p [2]) is to the right of Uq (p [1]), the

characterizing condition in our Theorem.

7 Conclusion

Consider a two-person risk-sharing problem where the agents' beliefs may differ but there is no

private information. Assuming that a Pareto-optimal sharing rule is employed, Wilson (1968),

in his seminal paper "The theory of syndicates", shows that the group can be represented

by an expected-utility maximizer only if the agents hold the same beliefs or the sharing rule

happens to be linear. Since there is a continuum of Pareto-optimal and individually rational

allocations, we would expect the agents to allocate the risk through negotiation. But, if the

agents hold different beliefs, the negotiation may yield Pareto-suboptimal outcomes. Therefore,

the Pareto-optimality assumption of Wilson (1968) may not hold.

In this paper, confining ourself to sequential bargaining procedures with immediately ex-

piring offers, we show that the equilibrium allocation will be Pareto-optimal and that there

will be no delay for generic cases, provided there is a sufficiently rich set of contracts to gen-

erate the Pareto-optimal allocations throughout the negotiation -an implicit assumption in

Wilson (1968). This result strengthens Wilson's theory by predicting its Pareto-optimality

assumption.

The allocation chosen by the group in equilibrium depends on the way uncertainty is to

be resolved. For example, in Section 5, where the agents hold the same beliefs and the sharing

rule is linear, revealing an informative signal at some time t rather than s is equivalent to

transferring the gain from trade associated with this signal from the agent who makes an offer

at s — 1 to the agent who makes an offer at t — 1. Since the decision of an expected utility

maximizer is typically independent of such details, this suggests that we may not be able to

find an expected-utility maximizer that represents the group even if the agents hold the same

beliefs. This may strengthen Wilson's negative result.
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A Proofs

This section contains the proofs omitted in the text. Throughout these proofs, we will use the fact that

C is Pareto-complete iff, given any x £ X and any y
4

, there exists a feasible allocation x £ Ct such that

Ei
[u

i
(xi

)\y
t

]
> Ei

[u
i {xi

)\y
t

] at each i £ N.

Towards proving Lemma 1 , write each P 1 asPxP", where P is the common prior associated with

Y. Given any (i,x\?/), we define the conditional marginals E l
[x'|i/] (y) — f-x

1 (y,y) dP l

(-\y
l
) and

Ei [x
i

\y
t
](y) = f-f.x

i (y,y)dP(-\yt
).

Proof. (Lemma 1) Take any y
1 and any x £ X. Since .r

1 + x2 < D 1 + D2
, ft [x^y*] + ft [x

2
\y

f

]
<

ft [D l

\y
l

] + ft {D'\y
1

}. Moreover, when D £ X, ft [£>V] = D for each i £ N, hence ft [x^y 1

] +

ft [x
2
\y'} < D 1 + D2

. Thus, (ft [x
1

^/] ,ft [x
2
|j/]) £ X. But, by Jensen's inequality, Ei [^(x 1

)^} =

&\E [u« (x
!

) |y*] |y
(

]
< #[«*(£ [ily*])^] = £*[«<(£ [*|»*])|y*] for each i € JV. Therefore, (X,...,J?)

is Pareto-complete.

Proof. (Lemma 2) Since (u1
, u2

) is increasing, the optimization problem (1) corresponds to the

optimization problem

max w1
subject to w3 > vJ (11)

w£U(C t ;y<)

in the utility space where U(Ci ;y
t

) = {w £ R2
|3x[j/] £ Cife*] s.t. w;

1 < £' l
[u

I
(.r

I

[j/

1
])|?/'] Vi £ JV}.

Firstly, [/(Cj;?/) = f/(^Y;j/*) for each CV,
11 hence, if exists, the solution nf(v,y') to (11) does not

depend on C( . Moreover, U {Xrf) = {(E^u^x 1

)^
1]^2^!2

)^*] )|s € X) is compact. 12 Hence,

a solution m l
(i';y*) to (11) (and thus a solution xt^ijy*] to (1)) exist. As we will see, it[u,i;y*] is

Pareto optimal at y*, hence xt[v,2;j/
(

]
is unique (almost surely), and is in Ct [y

1

]-

In the following, without loss of generality, we will take Ct = X. Towards proving part 1, sup-

pose that xj[i;,i;y'] is not Pareto optimal at y
l

. Then, there exists some x[y'] £ -X[j/']such that

Ei
[u

i (xi

[y
t

})\y
t
] > EV(aj[i;,t;y*])iy*] = rrffoy

1
) and E3 [u3 (x»V]) |y

4
]
> SV^^l/Wl.

and one of the inequalities is strict. Since xt[i>,z;y*] is a solution to the problem (1), we also have

E3 \u
l (x3

t
[v,i\y

t

])\y
<

]
> v3 , and hence we have E3 [vP (xJ [j/']) |y*] > uJ , i.e., x[y'] is feasible to the opti-

mization problem. Thus, E*[ul (x^y']) \y
l

]
< Tnl (v;yl

). Therefore, E^u 1 (x !

[y']) |y
(

]
= m l (v;y t

). Since

at least one of the inequalities was strict, this implies that E3 \u3 (xJ [j/

f

]) \y
l

]
> v3 . Since v? is increasing

and continuous, it follows that there exists some random variable 6 > such that xJ
[y*] — 6 > x1 and

E3 [u3
' (£%*] - 6) \y

l

\
> v3 . But then, for (x

l

[y']+M-V] -<5) € X[y*],we have j^V (
sVl + 6

) |y*] >

m,
(v;y

t

), which is a contradiction. Therefore, it[v,i;y
t

]
is Pareto-optimal at j/

f
. Part 2 of the lemma

can be proven by similar arguments to the last one. As for Part 3, since z £ X, m'^ujy') > v 2
. More-

over, since £t[v,i;y*] is Pareto-optimal at y
l and E3 [u3 (x^[v, i; y

1

})} = E3 [u3 (z3
) \y

t
), \im1 (v;y t

) = v\

then z will be Pareto-optimal at y
l

, showing the contrapositive of the last statement.

n To see this, take any w G U(X;yl

) so that w < (E 1
[u

1
(x

1

)\y
t

],E2
[u

2
{x

2
)\y

t

]) for some x 6 X. Since C
is Pareto-complete, there exists some x € Ct such that £'[u

l
(x')|i/

!

]
< E'\u

%

(x')\y
l

\ for each i € N. Thus,

iu < (£
,1

[«
1

(£
1
)|y'],E

2
[u

2
(i

2
)| 2/

1

]), showing that w £ c7(Ct ;j/'). Therefore, U(X;yl
) C L/(C,;y'). On the other

hand, C, C X, thus U(Ct \y
l

) C U{,X;yl
). Therefore, [7(C,;y') = t/(X;y').

'"Since u 1 and u2
are continuous and ^[y'] is closed, {/ (X;?/

J

) is closed. Moreover, given any x £ X, x > x.

Hence, i < xhuge = (D 1 +D 2 -i 2
, D l + D 2

-x}). Since u
1

is increasing, it follows that u' (x*) < Ei

[u
i

(x
i

)\y
t

]
<

EL

\p\xh*g*)\V
t
]- Therefore, U (X,y l

) is bounded.

I

1

)



Proof. (Lemma 3) Let us write x[y s
]
= x s [v,i;y

s
] for each y

s
. We want to select x[y s

] in such a

way that x € X. By construction, x > x and x 1 + x2 < D 1 + D2
. Hence, we only need to guarantee that

xk
is integrable for each k s N. Now, by Lemma 2.1, x[y s

] is Pareto-optimal. Thus, by the syndicate

theory, there exists some Ao > such that the equations

x(y;A) = arg max u1
(x

l)Px
(y\y

s
) + \u2(x2)P2

(y\y
s
) (12)

x 1 +x2 <W(y)
x k >xk

(at each continuation y of y
s

) and

*(A) = /"u'"(s»'(y; A))dP>(y|y
s

) = £>' («»") |y
s

] (13)

hold when A = Ao- We set x(y) = x(y;Ao). [We choose x(y;A) to satisfy Equation (12) at each y rather

than almost surely. Hence the phrase "we can choose" in the statement of Lemma.] Clearly, x(y;X)

is continuous in A. Hence, so is $. Thus, Ao that solves equation (13) is upper semi-continuous in

v3 = E3 [u3 (z-7
) \y

s
]. Since x(y) = x(y;Ao) is continuous in Ao, it will also be continuous in v3 =

E3 [u3 (z-7
) \ys \. Since E3 [u3 (z-7

) \y
3

\ is measurable, we conclude that x is measurable. Moreover, xk <

D 1 + D2 - x l € X k
for I £ N\{k} and hence Ek

[\x
k

\]
< \x

k

\

+ Ek [\D l + D 2 -x'\] < oo; and this

completes the proof.

Proof. (Theorem 1) We have already shown in the text that s is an equilibrium. Now, given any

equilibrium s*, we will show (via mathematical induction) that the vector of continuation values at the

beginning of any t is Vt . This is trivially true at t. Assume that it is true at some t + 1. Since s* is

an equilibrium, an agent j must accept an offer xt [y*] if E3 [u3 (xWy
1

])^
1

} > V
t

3

+1 (y
t

), and reject it if

E3 [uJ (xjly
1

] )\y
t

] < V/+1 (y*). Thus, j's action in s* can differ from his action in s only by rejecting an

offer xt [y'] when E3 [u3 (x^ly
1

})^} = V/+1 (y'). The only such distinction that can make a difference is

when j rejects xt [Vt+\(y
t ),i;y

t
]. Let us consider this case. If VJ+i is not Pareto-optimal at y', then

by Lemma 2.3, rn
l (Vt+ i(y

t

)\y
t
) > V7+1 (y*) where i = pt (y

t
). Since xt [Vt+1 (y

t
),i;y t

] is rejected, the

best response correspondence of i at y* is empty This contradicts the fact that s* is an equilibrium.

Therefore, when Vt+ i is not Pareto-optimal at y', Xt[Vt+ i(y
t
),i-y

t

] must be accepted, and hence s*

and s yield the same outcome at y*. On the other hand, when Vt+ i is already Pareto-optimal at y',

m*(Vt+ i(y t

); y*) > V
t

'

+l (y
t
). Hence, if j is to reject x t [Vt+ i(y

t ),i;yt
], the best response of i is to make

an offer that is to be rejected, yielding m l

(Vt+i(y
t

);y
t
) for i and V'/+1 (y

t
) for j - as in s. Therefore, in

either case, s* and s yield the same continuation values at y* (after the agent is recognized). Therefore,

at the beginning of t, they yield the same vector of continuation values, which is Vt (y
t_1

).

We now prove Theorem 3. Using the notation of Lemma 1, we take Y = p, and write each y*

as (pt ,y
l

) and each y as (p,y), where pt
is the history of the recognized agents. (Y consists of all

the information except for the recognition process.) The recognition process and the dividends are

stochastically independent, hence D £ X, i.e., D(p,y) = D(p',y) for each (p,p',y). The allocations

generated by contracts below will all be in X, hence the irrelevant argument p will be omitted. We
first prove the following Lemma.

Lemma 4 Let p 6 V be such that p\ (y
s

) € (0, 1) for each (i,t,y
s
). If R\ (y

l
) = for some y* with

i = Pt(y*) J
then

p3 (Rk
+l (y

t+l

)\ Pt^ )
=k] = *\y

t

)
= ^

for each j,k € N.
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Proof. We will prove the contrapositive. That is, assuming that

PJ
(/?f+1 (y'

+1 )i
{pt+i=fc}

7^0|y')>0 (14)

for some j, k € TV, we will show that R\ (y
l

)
> 0, where i = pt (y

(

). Since there are no rents at t, our

assumption holds only for t < t — 1. Considering any such t with (14), we take / / k. We take y
l and

its continuations y£
+1 and y\

+l
as generic realizations where pt+1 (y^

1

)
= k and pt+1 (y'

+1
)
= I. We

will simply write x t+l [y^
+1

]
for xt+l [Vt+2 (y[

+1
)
,fc,y^

+1
]. By Lemma 1, xt+l [y

l+ 1

}
<= .Y [y[

+1
]. We

define Xt+\ [y(
+1

]> similarly. Define x € X by setting

x(y) =pt

fc

(y<) zt+1 [y[
+l

} (y) + (l-pk
(y*)) xt+1 [y,'

+1
] (y)

at each continuation {p,y) of y*. By concavity, we have

E? [u* (5») |y*] > ^ [pf (j/*) a
1

(il+1 [y[
+1

])
(l - p* (y<)) + u' (x]+1 [y,*

1

]) |y*]

= p* (y
!

)
£< [«• (xj+1 [y^

1

]) |j/] + (1 - pf (y<)) £• [„• (il+l [y^]) |y<] = V
t\ Y (y*)

for each i € TV. We claim that E3 [u3 (x3
) |y'] > V/+1 (y*). In that case, Vt+ i (y*) is not a Pareto-

optimal utility pair at y
t

, thus by Lemma 2.3, m 1

(Vj+i (y*) ;y
(

)
> V?+1 (y

(

), showing that 7?J (y
l

)
=

™* (V't+1 (y
(

)
-y l

)
- V

t\, (y
f

) > for each i = pt
(y<).

Now we prove our claim. Since p is affiliated, by Theorem 4, we have V
t

k
+2 (?/fc

+1
) > ^t+2 (y'

+1
)'

where we use the convention that Vf+1 = 0. Hence, whenever -fi£+1 (yfc

+1
)

7^ 0, we have mk (Vt+ 2 (j/l

+1
) iyfc

+1
)

K+2 (J/1
+1

) + «f+i 00 > ^+2 K+1
) > Vfta (y?

+1
). showing that xt+1 [y£

+1
] + xt+l [yj

+1
]. This

inequality holds for each component, as x}+l + x2
+1 = D l + D2

. Since pj
-'

(y
4

) G (0, 1) and uJ is strictly

concave, we therefore have u3 {x3 {y)) > p
k
(y

(

) u
l (x3

t+1 [y[
+1

] (y)) + {l - p
k
(y

1

)) uJ"
(.^+1 [yj:

+1
] (y))

at each continuation (p,y) of y'. Thus, by (14), E3 [u3 (x3
) \y

l

] > p
k
(y

f

) Ej lu
1 (x{+1 [yl

+1
]) |y'j +

(1 - p
k
(y*)) E3 [u3 (x>+] [y,

i+1

]) |y*] = V*
,
(y<). -

Proof.
(
Theorem 3) Suppose that there exists an equilibrium in which agents do not agree at

some history y°. Then, by Theorem 2, Vi(y°) is a Pareto-optimal utility level, thus Rq = 0. Thus,

by the previous Lemma, for each j,k £ TV, and each s > 0, P3 [Rk
(y

s
) l{Pa= t} = 0|y°) = 1, yielding

E3 [Rk
\ {f>3=k) \y°] = 0. Therefore, by (5), Vi(y ) = {E l

[u
l (D l

)\y°],

E

2
{u

2 (D2
)\y }), showing that D 1

is Pareto-optimal at y°. Since D is independent of Yq it must also be Pareto-optimal at the beginning

- a contradiction.

Proof. {Theorem 4) The proof is very similar to that of Proposition 3 in Yildiz (2001), and omitted

here.

We will now prove Theorem 5. To this end, given any set 5 C R2
, let us write Hull[S) for the

convex hull of 5, the smallest covex set that includes S. Note that Hull{Uo(V\ U Vo)} = {XUo(p [1]) +
(i - \)u (p[2})\\ e [o,i], P [i] e Pi, P [2] g v2 ).

Lemma 5 U (V) = M[(/o(PiUP2 )l.

Proof. Given any p&V, starting at history ho,i, the subgame of G(C,p) that starts at some y°

before the recognized agent makes his offer coincides with that of and G(C,p[io\), where %o = p (y°) and

p [io] e Vi such that p [io]| = Pt for each t > and i 6 TV, while p [io]o° = 1- Therefore, the utility level
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for an agent i at equilibrium consumption can be expressed as a mixture of [/q(p[1]) and Uq(p[2\) with

probabilities p\ and p
2
,
= 1 -pj. Therefore, U {p) = Po^(p[l]) + (1 -Po)t/ (p[2]) e Hull[U {PiL>P2 )}.

On the other hand, given any v = XU (p [1]) + (1 - X)U {p[2}) € Hull[Ua {P\ U P2 )}, we consider p € P
such that Pq = A and, at any p

s and any t > 0, p\{y
s
) = p[io\l iy

s
) f°r eacn i e N where i'o is the

agent recognized at according to y
s

. Once again, Uq(p) = Po^o(p[l]) + (1 — Po)Uo(p[2]) , showing that

v = U (p)eU (P). m

Lemma 6 rn
J
(i;;y') is a continuous function of v.

Proof. Given any y
l and any v € U (X,

y

l

), m^vip') = xasx^r)om (v) £', where Dom(v) = {£ =

(£ 1
[M

1 ox%*]|y t
],£'

t

2
[u

2 ox2
[2/]]|2/)|x[2/

t
] G Ct [y'],^ > v}. Note that Dom(v) is always non-empty and

compact. Moreover, since u1
is continuous, (v) => Dom(v) is clearly upper-semi continuous, and hence

by the Maximum Theorem ml
(u; y

l
) is a continuous function of v.

Lemma 7 Uq is continuous in p.

Proof. Using mathematical induction on t, we will show that Vi[p](p
t_1

) is continuous in p at each

t and y
t~ 1

Firstly, Vj[p](yt_1 ) = u'
l (D l

(y
t~ 1

)) is trivially continuous in p. Assume that Vt+ i[p](y 4
) is

continuous in p for each p* for some t < t. Since m 1

(-;y
t

)
is continuous, it follows that Fj (y

l

)
=

Tn1 (V4+ i[p](p
t
);p*) — V

t

I

+1 [p](y*) is continuous in p for each p* and each i £ N. Thus,

= pKp
4" 1)^ [/$ (y*) |pt =i ?

y*-1
] + £* [V^jW^JIy

1- 1

]

is continuous in p.

The payoff vectors from Pareto-optimal allocations form a connected curve PF in R2
, which we

call the Pareto-frontier. Given any two v,v £ PF, we write [v, v}pF = {v € PFIminlv 1
,?)

1
} < v 1 <

maxlt) 1
,!)

1
}} for the part of the Pareto-frontier connecting uto v.

Since Uo is continuous and Pi is connected, Uo{Pi) is also connected. But, by Theorem 2, we have

U (Pi) C PF. Thus,

U (Pi) = [Uo(2[i\),U (p\i])]pF- (15)

Using Lemma 5, we obtain the following lemma.

LemmaS U (P) n PF = U (P1 U P2 ) = [[/ (p [1]), U (p[1])]pf U [I7 (g[l]),£/o (PW)}pf-

Proof. We have C/ (P) n PF = Hull[U {Pi U P2 )] n PF = t/ (Pi U P2 ), where the first equality

is due to Lemma 5, and the second equality is due to the fact that we have strictly concave utility

functions yielding strictly convex set U[X] of materially-feasible utility levels. By (15), we further have

Uo(Pi U P2 ) = [U (P [1]), Uo (p [1])]pf U [U (p [1]), UQ (p [1])]PF . m

Proof. (Theorem 5) (See Figure 2 for illustration.) Firstly, the set of all Pareto-optimal and indi-

vidually rational utility levels is \Uo{p [l]),Uo (P[2])]pf- Thus, Every Pareto-optimal and individually-

rational allocation is obtainable iff [Uo(p[l]),Uo(p[2])]PF C U (P). This inclusion holds iff U {P\) n

U (P2 ) ^ 0- [If U {Pi) n U (P2 ) / 0, then by Lemma 8 we have U (P) n PF = U (Pi) U U {P2 )
=

[C/ (P [1]), t/ (p [2])]PF . Conversely, when U (Pi)nU (P2 ) = 0, by Lemma 8, [U (p [\}),U (p [2])] PF \[/ (P)

[t/o (p[l]),[/o(p[2])] PF /0.] But U (Pi)DUo{P2 )
^0iffL/o

1
(p[l]) <C#(p[2]), and this inequality holds

ifff/
2 (p[2])<C/2 (p[l]). .
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