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ABSTRACT: This paper develops tools for analyzing properties of stochastic

objective functions which take the form V(x,0) = ju(x,s)dF(s;Q). The paper

analyzes the relationship between properties of the primitive functions, such as utility

functions u and probability distributions F, and properties of the stochastic objective.

The methods are designed to address problems where the utility function is restricted

to lie in a set of functions which is a "closed convex cone" (examples of such sets

include increasing functions, concave functions, or supermodular functions). It is

shown that approaches previously applied to characterize monotonicity of V (that is,

stochastic dominance theorems) can be used to establish other properties of V as well.

The first part of the paper establishes necessary and sufficient conditions for V to

satisfy "closed convex cone properties" such as monotonicity, supermodularity, and

concavity, in the parameter 0. Then, we consider necessary and sufficient conditions

for monotone comparative statics predictions, building on the results of Milgrom and

Shannon (1994). A new property of payoff functions is introduced, called l-

supermodularity, which is shown to be necessary and sufficient for V(x,Q) to be quasi-

supermodular in x (a property which is, in turn, necessary for comparative statics

predictions). The results are illustrated with applications.
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1 INTRODUCTION

This paper studies optimization problems where the objective function can be written in the form

V(\,Q)=\u(x,s)dF(s;Q), where u is a payoff function, F is a probability distribution, and 8 and s

are real vectors. For example, the payoff function u might represent an agent's utility or a firm's

profits, the vector s might represent features of the current state of the world, and the elements of x

and 6 might represent an agent's investments, effort decisions, other agent's choices, or the nature of

the exogenous uncertainty in the agent's environment.

Problems which take this form arise in many contexts in economics. For example, the theory of

the firm often considers firm choices about investments which have uncertain returns. And strategic

interaction between firms often takes place in an environment of incomplete information, where each

firm has private information about its costs or inventory. Examples include signaling games and

pricing games. In another example, there is a large literature concerning the comparative statics of

portfolio investment decisions and decision-making under uncertainty, where the central questions

concern how investment responds to changes in risk preferences, initial wealth, characteristics of the

distributions over asset returns, and background risks. 1

The goal of this paper is to add to the set of methods which can be used to derive comparative

statics predictions in such problems. To that end, the paper develops theorems to characterize

properties of the objective function, V(x,0), based on properties of the payoff function, u. Economic

problems often place some structure on the payoff function; for example, a utility function might be

assumed to be nondecreasing and concave, while a multivariate profit function might have sign

restrictions on cross-partial derivatives. These assumptions then determine a set U of admissible

payoff functions. This paper derives theorems which, for a given set U, establish conditions on

probability distributions which are equivalent to properties of V(x,9). The paper focuses on sets of

payoff functions, U, which are restricted to satisfy "closed convex cone" properties, that is,

properties which are preserved under affine transformations and limits; examples include the

properties nondecreasing or concave.

We proceed to analyze properties of V in two steps. The first step is to characterize conditions

under which V satisfies "convex cone" properties. For example, we characterize how restrictions on

sets of payoff functions, U, correspond to necessary and sufficient conditions on probability

distributions such that V is supermodular in G, so that investments 0-, and Oj are mutually

1 For examples, see Rothschild and Stiglitz (1970, 1971), Diamond and Stiglitz (1974), Eeckhoudt and Gollier (1995),

Gollier (1995), Jewitt (1986, 1987, 1989), Kimball (1990, 1993), Landsberger and Meilijson (1990), Meyer and

Ormiston (1983, 1985, 1989), Ormiston (1992), Ormiston and Schlee (1992, 1993), Ross (1981).



complementary for i&j. Building on these results, the second part of the paper then focuses on

characterizing the conditions (single crossing properties and quasi-supermodularity2
) which have

been shown to be necessary and sufficient for comparative statics predictions (Milgrom and

Shannon, 1994). Although single crossing properties and quasi-supermodularity are not closed

convex cone properties, we show that the techniques developed for closed convex cones can be

generalized to analyze comparative statics properties.

Consider first the analysis of closed convex cone properties of V. Since such properties are

preserved by arbitrary sums, closed convex cone properties of w(x,s) in x are inherited by V. It is

somewhat more subtle to analyze properties of V in 0, while exploiting restrictions on the set of

admissible payoff functions, U. If the property of V which is desired is monotonicity, we can build

on the existing theory of stochastic dominance. A stochastic dominance theorem gives necessary and

sufficient conditions on F(s;0) such that V(x,Q) is nondecreasing in 0, for all payoff functions u in

some set U. Thus, each set of payoffs U induces a partial order over probability distributions. This

paper begins by introducing some abstract definitions which formalize an approach to stochastic

dominance which has been used implicitly, and less often explicitly, in the literature.

An initial result in this paper is that stochastic dominance orders can be completely characterized

in the following way. Instead of checking that V(x,0) is nondecreasing in for all u in U, it is

necessary and sufficient to check that V(x,Q) is nondecreasing in for all m in some other set T. We
Such a theorem is useful if T is smaller and easier to check than U, so that the set T can be thought

of as a set of "test functions." We characterize exactly how small T can be: in order to be a valid set

of test functions for U, the closed convex cone of T must be equal to the closed convex cone of U. In

particular, T might be a set of "extreme points" for U. For example, when U is the set of univariate,

nondecreasing functions, we can use a set of test functions T which contains all indicator functions

for upper intervals, and the constant functions 1 and —1. Applying this approach yields the familiar

First Order Stochastic Dominance Order, which requires that F(s;Q) is nonincreasing in for all s.

The approach to stochastic dominance based on convex cones has been applied in previous

studies (for example, Brumelle and Vickson, 1975) to characterize monotonicity of V(x,Q) in for a

few commonly encountered classes of payoff functions on a case by case basis.3 This paper

formulates and proves general theorems about the approach, and establishes that it can be also be

used to check other properties of V in 0. In particular, building directly from our results about

2 Formal definitions are given in Section 3.1.

3 Independently, Gollier and Kimball (1995a, 1995b) have advocated a more abstract approach to stochastic dominance

theorems analogous to the one in this paper. In contrast to Gollier and Kimball, this paper focuses on characterizing a

wide variety of properties of V in G. Further, we provide necessary conditions for a set of functions T to be a valid set of

test functions for U, an exercise which requires us to identify the "right" topology of closure for this purpose.



stochastic dominance, we show that if the property we desire for V (call it property P) in is a closed

convex cone property, the "test functions" approach described above is also applicable. Further, for

a subset of these closed convex cone properties, we show that the approach cannot be improved

upon.

Thus, the paper establishes several potentially interesting new classes of theorems, such as

"stochastic supermodularity theorems" and "stochastic concavity theorem." The stochastic

supermodularity theorems can be used to prove comparative statics predictions in decision problems

and games. For example, they can be used to show when two risky investments are complementary

in a firm's profit function, or when investments by two firms are strategic substitutes or

complements.

In Section 3, we build on this approach to characterize comparative statics properties of V. We

begin with the case where x and 6 are scalars, and study conditions under which the optimal choice

of x is nondecreasing in 0. A sufficient condition for comparative statics predictions is that V is

supermodular; but if supermodularity is the desired property, we can simply take the first difference

of V in x, and apply the theory of stochastic dominance described above, based on the properties of

u(xH,s)-u(xL,s). However, it will also be useful to characterize the necessary and sufficient condition

for comparative statics, the single crossing property (which requires that the incremental returns to x

cross zero, at most once and from below, as a function of 6). We establish that the conditions

required for single crossing are in general weaker than those required for supermodularity. But, a

surprising result is that if our set of admissible payoff functions U is large enough to include at least

two functions u and v, where m(a^,s)-m(^,s)=1 and v(jc
w
,s)-v(jc

l,s)^-1, then no weakening of the

conditions on F can be obtained by considering single crossing as opposed to supermodularity.4 In

other words, if U is large enough in the sense just described, then the optimal choice of x is

nondecreasing in 6 for all ueU, if and only if V(x,0) is supermodular for all wet/. Since

supermodularity is much easier to check than single crossing in this context (in particular, existing

stochastic dominance theorems may be applied), knowing that it is necessary for some classes of

problems is useful.

Our final goal is to characterize comparative statics properties of the function V in x or 0.

Milgrom and Shannon (1994) identify a necessary condition for the optimal choices of x
x
and x2 to

jointly increase in response to an exogenous change in some parameter 6: V must be quasi-

supermodular in (x}yK2). However, this property is not preserved by convex combinations, and thus

quasi-supermodularity of w(x,s) in x is not sufficient to establish that V is quasi-supermodular. This

4 Thus, we have uncovered the general principle underlying the results of Ormiston and Schlee (1992), who establish

essentially this result for a few specific classes of payoff functions.



paper identifies a new property, which we call /-supermodularity, that is in fact necessary and

sufficient to guarantee that V is quasi-supermodular. This property is closely related to quasi-

supermodularity, yet is preserved by convex combinations. Unfortunately, like quasi-

supermodularity, it may be difficult to check.

The paper proceeds as follows. Section 2 considers properties of V in based on the set of

admissible payoff functions U. Section 3 considers comparative statics properties of V. Section 4

concludes.

2 PROPERTIES OF V(x,0) IN 9

This section begins by studying monotonicity of V in 0. In this context, we develop the main

mathematical constructs and lemmas required for what we call the "closed convex cone" or "test

functions" approach to characterizing properties of stochastic objective functions. We then proceed

to apply the techniques to characterize other "closed convex cone" properties of V in 0, and we

identify a set of properties for which this approach cannot be improved upon.

2.1 A Unified Frameworkfor Stochastic Dominance

This section introduces the framework which we will use to discuss stochastic dominance theorems

as an abstract class of theorems, and to draw precise parallels between stochastic dominance

theorems and other types of theorems.

We allow for multidimensional payoff functions and probability distributions, using the

following notation: the set of probability distributions on 9T is denoted A" , with typical element

F:9T —> [0,1] . Further, for a given parameter space 0, we will use the notation A"Q to represent the

set of parameterized probability distributions F:9?" X0-»[O,1] such that such that F(;0)e A" for

all 0g 0. With this notation, we formally define a stochastic dominance theorem.

Definition 1 Consider a pair of sets ofpayofffunctions (U, T), with typical elements m:9?" —> SR . The

pair (U,T) is a stochastic dominance pair iffor all parameter spaces with a partial order and all

FeA"e ,

ju(s)dF(s;6) is nondecreasingfor all ueU, ifand only if

J
t(s)dF(s;d) is nondecreasing for all teT. ,

Definition 1 clarifies the structure of stochastic dominance theorems. These theorems identify

pairs of sets of payoff functions which have the following property: given a parameterized

probability distribution F, checking that all of the functions in the set {ju(s)dF(s;Q)\u e u\ are

nondecreasing is equivalent to checking that all of the functions in the set <At(s)dF(s;6)\t e T\ are

4



nondecreasing. Stochastic dominance theorems are useful because, in general, the set T is smaller

than the set U.

Definition 1 differs from the existing literature (i.e., Brumelle and Vickson, 1975), in that the

existing literature generally compares the expected value of two probability distributions, say F and

G, viewing
J
u(s)dF(s) and

J
u(s)dG(s) as two different linear functional mapping payoff functions

to 9t. In contrast, by parameterizing the probability distribution and viewing
J
u(s)dF(s;6) as a

bilinear functional mapping payoff functions and (parameterized) probability distributions to the real

line, we are able to create an analogy between stochastic dominance theorems and stochastic

supermodularity theorems, an analogy which would not be obvious using the standard constructions.

The utility of this definition will become more clear when we formalize the relationship between

stochastic dominance and stochastic P theorems, for other properties P (such as supermodularity).

The first goal of this section is to identify necessary and sufficient conditions for the pair (U,T) to

be a stochastic dominance pair. We will build on the concept of a closed convex cone, where a set G
is a closed convex cone if g\ g

2

e G implies a g
l

+ fig
2

e G for a and P positive, and further G is

closed in a the appropriate topology. Thus, an example is the set of nondecreasing functions. The

set ccc(G) is defined to be the smallest closed convex cone which contains G. Let {1,-1} denote the

set containing the two constant functions, {u(s) = l} vj{u(s) = -i). Then:

Theorem 1 Consider U,T sets of bounded, measurablefunctions, and consider the weak topology. 5

Then (U,T) is a stochastic dominance pair ifand only if

ccc(Ukj {1,-1}) = ccc(Tu {1,-1}) (2.1)

Remark: Ifwe eliminate the requirement that F is a probability distribution in Definition 1,

condition (2.1) can be replace by ccc{U) = ccc(T).

We begin by interpreting Theorem 1; the following subsection establishes the proof in some

detail.6 First, observe that unless T is a subset of U, there is no guarantee that stochastic dominance

theorems provide conditions which are easier to check than
J
u(s)dF(s;6) nondecreasing in for all

ue U. For example, U might be a set which is not a closed convex cone (such as the set of single

crossing functions, that is, functions which cross zero once from below). Its closed convex cone

5 The weak topology is formally defined below in Section 2.2; it is the weakest topology which makes
jB
u(s)dF(s)

continuous in both u and F.

6 In the context of specific sets of payoff functions U, the existing literature identifies similar conditions for the

corresponding stochastic dominance theorems, though a different topology is used. For example, Brumelle and Vickson

(1975) argue that (2.1) is sufficient for several examples, using the topology of monotone convergence. In this paper,

using the abstract definition we have developed for a "stochastic dominance pair," we are able to formally prove that the

sufficient conditions hypothesized by Brumelle and Vickson (1975) are in fact sufficient for any stochastic dominance
theorem, not just particular examples. Further, the result that (2.1) is also necessary for (U,T) to be a stochastic

dominance pair is new here.



might be much larger (for the case of single crossing functions, the closed convex cone is the set of

all functions). In that case, it might by difficult to find a subset, T, of that closed convex cone for

which is easier to check that expected payoffs are nondecreasing in 9. Thus, (2.1) indicates that

stochastic dominance theorems are most likely to be useful when U is itself a closed convex cone.

When U contains the constant functions and is a closed convex cone, (2.1) becomes:

U=ccc(T\j{1-1}) (2.2)

In principle, the most useful T is the smallest set whose closed convex cone is U. However, in

general, there will not be a unique smallest set. A set E{U) is a set of extreme points of U if, for all

u,v in E{U), no convex combination of u and v is in E{U). For simplicity, we will also consider only

sets of extreme points which are closed. For example, if U is the set of nondecreasing functions on

9?, E(U) is the set of indicator functions {

1

M , a e 9? } ?

Finally, because (2.2) is necessary and sufficient for (U,T) to be a stochastic dominance pair

when U=ccc(Tu {1,-1} , we know that we cannot do any better than letting The a set of extreme

points of U.

Table I summarizes the main stochastic dominance theorems which have appeared in the

economics or statistics literature to date. There are potentially many other univariate stochastic

dominance theorems as well (for example, theorems where the set of payoff functions imposes

restrictions on the third derivative of the payoff function); our analysis will indicate how these can be

generated.

TABLE I

STOCHASTIC DOMINANCE THEOREMS*

:
Sets of Payoff Functions, U Sets of Test Functions, T Condition on Distribution

for Stochastic Dominance

0)
U F0 m {u|w:9t -> 91, nondecr.} TF°={t\t(s) = l

la „ )

(s), ae*} -F(a;0)Tin0Va.

(ii)
U so m {u\u:<R -> % concave} Ts° = {t\t(s) = -s}

u{r|f(s) = min(a, s), a e 9?
j

-\
a

_F{s,6)ds

,

\'_F{s,e)ds^ in 6\fa.

(iii) U S0M =\u
u: 91 —> 5R, nondecr. , 1

concave !

Tsou = j,|,(5)
_^^ 5)> Q g <RJ -j"_F(s,6)dt Tin0Va.

7 Notice that there are many possible sets of extreme points. We could consider, for example, only indicator functions

of sets bounded by rational numbers. And we could multiply the indicator functions by a positive constant.



(iv)

(•

h:9?
2 —> 91, nondecreasing,]

supermodular | t

'(^2)= 1|^.-)(*l>- :lt-,^.)(*2).l

a,,a
2
e9?

J

F(ap a2 ;0)

-F(a,;0)-F(a
2 ;0) Tin

0; -F(a,;0), -F(a
2 ;6)

T in V(a,,a 2)-

(v) [u\u: 9t
2 —> 9?, supermodular}

t

'(^2) = V.-A)' 1!*,.-)^)']
>

a
x
,a

2
e 91

t\t(Sl ,s2
)= -l

la ^ Sl ), a,e9l}

"(V s
2 )= "W)^' «

2
e^}

F(ap a2 ;0) Tin 0;

F(a,;0), F(a
2
;0) const

in V (ai,a2).

(vi) [u\u: 9J
2 —> 9?, nondecreasing}

t

f(s,,s
2 )
= 1A (5,,^2 ), whereAc9t2

]

and 1A (5,, 52 ) nondecreasing
j

f
<*F(s,0) Tin0VAs.t.

l A (5,,s2 ) is nondecr.

The next section introduces the details of the mathematical results underlying Theorem 1 , and

further proves two lemmas which will be used throughout the paper.

2.2 Mathematical Underpinnings and a Proof of Theorem 1

We begin by proving some general mathematical results about linear functional of the form judm.

Our results are variations on theorems from the theories of linear functional analysis, topological

vector spaces, and linear algebra; the main contribution of this section is to define the appropriate

function spaces and topology and restate the problem in such a way that we can adapt these theorems

to solve the stochastic dominance problem. One feature highlighted by this analysis is there is no

"art" to finding the right topology or notion of closure in the context of stochastic problems: the right

topology is simply the weakest one which makes the functional
J
u dm continuous. By appealing to

the work of Bourbaki (1987) in linear functional analysis, we highlight the simplicity and generality

of the closed convex cone approach.

We will work with a class of objects known as finite signed measures on 9T , denoted ftp. Any

finite signed measure m has a "Jordan decomposition" (see Royden (1968), pp. 235-236), so that

m = m+ -mr, where each component is a positive, finite measure. We will be especially interested

in finite signed measures which have the property that jdm = 0, so that jdm+ =jdm~ . Denote the

set of all non-zero finite signed measures which have this property by ^*; we are interested in this set

because elements of this set can always be written as fi = j[Fl — F2
], where it is a positive scalar,

and F 1

and F1
are probability distributions; likewise, for any two probability distributions F 1

and

F2
, the measure F 1 -F2

e ^*.



In this section, we will prove results which involve inequalities of the form
J
u dm>0, where

me^. Since positive scalar multiples will not affect this inequality, and because the integral

operator is linear, we can without loss of generality interpret this inequality as

Jw(s)dF'(s) > Jw(s)dF
2
(s) for the appropriate pair of probability distributions. The former notation

will be easier to work with in terms of proving our main results, and further it will be useful in

proving results in Section 4 about stochastic P theorems for properties P other than "nondecreasing."

Let P* be the set of bounded, measurable payoff functions on 9T . Define the bilinear functional

p:£>" x ^f -> SR by /5(u,m) = \udm. Then /?(?>",%*) is a separated duality: that is, for any fl, * fl2 ,

there is a we?5* such that /3(«,m
I
)^/3(w,m2 ), and for any u

x
^u

2 , there is a me%* such that

P(u}
,m) ^ P(u2

,m). s Our choice of (P*,2#*) is somewhat arbitrary: all of our results hold if we let A"

be a subset of measurable payoff functions on 9T and we let B" be any subset of %*, so long as

PiAn,B") is a separated duality. For consistency we will use the pair (P*,^1
) in our formal analysis.

We now define the appropriate topology, where would like to find the coarsest topology (that is,

the topology with the fewest open sets) such that the set of all continuous linear functionals on P*

(the dual of P*) is exactly the set {/?(-, m)|m e 3£'}; this is the weak topology cr(P*,%*) on P*. By

Bourbaki (1987, p. n.43), this topology uses as a basis neighborhoods of the form

N(u; £, (m, , . .
.
,m

k )) = 1 u max]fi(u - u,m
j )| < e >, where there is a neighborhood corresponding to each

finite set (m,,...,m
t
)c3£* and each e>0.

Given a set UeP*, the dual cone of the set U, denoted if, is defined by U={m:
J
u(s)dm(s)>0 for

all u e U}. Likewise, for a set M of measures, the dual is M'={u: ju(s)dm(s)>0 for all meM}. If

M=lf, we refer to M*=lf* as the second dual of U. Bourbaki (1987) shows that dual cones can be

characterized in the following way:

Lemma 1 Consider (P*,^) with the weak topology. Suppose UcP1 and McTW. Then U is a closed

convex cone. Further, U *=ccc(U) and M**=ccc(M).

Lemma 1 can be related to our condition (2.1) in the following way.

Lemma 2 ccc(T)=ccc(U), ifand only if U'=f'.

Proof: Suppose ccc(T)= ccc(U). By Lemma 1, T"=ccc(T)= ccc(U). Also by Lemma 1, if and

T are closed convex cones, and thus U'"=U and t"'=T . Taking the dual of

8The boundedness assumption guarantees that the integral of the payoff function exists. It is possible to place other

restrictions on the payoff functions and the space of finite signed measures so that the pair is a separated duality, in

which case the arguments below would be unchanged; for example, it is possible to restrict the payoff functions and the

signed measures using a "bounding function." For more discussions of separated dualities, see Bourbaki (1987, p. 11.41).



f'=ccc(U)=U** yields f"=U***. Now suppose f=U*. Then it follows that f'=U*\ which

by Lemma 1 implies ccc(T)= ccc(U).

Lemma 2 refers to a condition which is close, but not exactly the same as, (2.1): the constant

functions are not included. The following Lemma specializes Lemma 2 to the case where we restrict

attention to measures me^*, and states the result in a way which will map most closely into our

stochastic dominance formulation. The proof of this Lemma is based directly on the Hahn-Banach

theorem, rather than relying on Lemma 2, in order to clarify the structure of the result and the role of

the constant functions in the analysis.

Lemma 3 Consider a pair ofsets ofpayofffunctions (U, 7), where U and T are subsets ofP*. Then

thefollowing two conditions are equivalent:

(i) {me$'\ludm>0 Vwe U] = {me$'\judm>0 V«g7"}.

(ii) ccc(U U{1 -1}) = ccc(T U{1,-1})

.

Proof of Lemma 3: First consider (ii) implies (i). We begin by establishing that:

\me$"\\udm>Q Vwe£/} = {mef\judm>0 Vmeccc(£/u{1,-1})}. (2.3)

Since U<zccc(U u{ 1,-1}) , it suffices to show that |X is in the RHS set of (2.3) whenever it is

in the LHS set of (2.3). It follows for the constant functions because
J
dm = -j dm = 0. This

follows for positive combinations of functions in U u{l,-l} because Jw, dm > and

J«2 dm>0 implies J[a,w, + a2
u
2
]dm = a

l
ju

l
dm + a

2
ju

2
dm>0 when a,,a 2

>0. It

follows for the closure of the set because we have chosen the weakest topology such that

J
u dm > is continuous in u, and for a continuous function, f{A) c /(A)

.

Under the hypothesis that ccc(U u{ 1,-1}) = ccc(!Tu {1,-1}) , we can apply (2.3) replacing U

with T to get the result.

Now we prove that (i) implies (ii). Define U = ccc{U u {1,-1}) and f = ccc(Tu {1,-1})

.

Suppose (without loss of generality) that there exists a u e U such that iiif . We know that

the oiP*^) topology is generated from a family of open, convex neighborhoods. Recall

from above that the set of continuous linear functionals on V* is exactly the set

{/?(-, m)\m e %"}. Using these facts, a corollary to the Hahn-Banach theorem implies that

since T is closed and convex, theie exists a constant c and a m, eW (a separating

hyperplane)- so that /?(«, nu)>c for all ue T , and j3(«, nu)<c.

Since {1,-1} ef and is T convex, Oef as well. Thus, /3(0,m,) = 0>c. Now we will

argue we can take c = without loss of generality. Suppose not. Then there exists a uef



c
such that c < P(u,nu) = c < 0. Choose any positive scalar p such that p > — > 1 (which

c

implies that pc < c ). Since f is a cone, pw e f . But, (5(pu,nu) = pc < c, contradicting the

hypothesis that /J(w,m.) > c for all u e U. So, we let c = 0.

Because {1,-1} e f , and p\w,m.) > for all ue f , we conclude that p\l,m») = -/3(l,m.) = 0,

and thus
J
dm, = 0.9 So, m, e £" , and we have shown that

J
w dm, > for all u g f , but

judrtu < 0, which violates condition (i).

The proof uses a separating hyperplane argument, and thus the topology, which determines the

meaning of closure, is critical for determining the form of the hyperplane. By appropriately

choosing the topology and the two spaces of functions, Lemma 3 has produced the following result:

if (ii) fails, there exists a measure m.e£* such that judnu>0 for all u e ccc(Tu {1,-1}) , but

j udrtu < for some u € ccc(U u {1,-1}) . This m. is the separating hyperplane. 10

The key consequence of our construction is that m.e$?, which implies that there exists F 1

and

F 1
such that am.=F

1-F2

for some a>0. Thus, this separating hyperplane can be used to generate a

counterexample to a stochastic dominance theorem, by letting 0={9„,0J, and letting F{-\Q^=F* and

F(-;6,)=F
2

. Then, we have \ u(s)dF(s;Q) nondecreasing in 9 VmgT, but \u(s)dF(s;Q) is

decreasing for ugU. This counter-example establishes the proof of Theorem 1

.

Theorem 1 makes use of the weak topology, which might be less familiar than some others; in

particular, some existing stochastic dominance theorems have been proved by showing that the

closure under monotone convergence of the convex cones of the two sets are equal (Brumelle and

Vickson, 1975; Topkis, 1968). However, by definition, the weak topology is the coarsest topology

such that (5(-,m) is continuous. Thus, if ccc(U u{ 1,-1}) = ccc(Tu {1,-1}) for some other topology

which makes /J(-,m) continuous, (2.1) will follow for the weak topology.

2.3 Other Closed Convex Cone Properties ofV(x,B) in 6.

This subsection derives necessary and sufficient conditions for the objective function, ju(s)dF(s;d),

to satisfy properties P other than "nondecreasing in 9," for example, the properties supermodular or

concave in 9. We ask two questions: (i) For what properties P is the closed convex cone method of

9See also McAfee and Reny (1992) for a related application of the Hahn-Banach theorem, where the separating

hyperplane also takes the form of an element of £*.

10 Notice that if F is not restricted to be a probability distribution, it is not important that m&%*, and thus Lemma 2

establishes the remark following Theorem 1.
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proving stochastic P theorems valid? (ii) For what properties P can we establish that the closed

convex cone approach is exactly the right one, as in the case of stochastic dominance?

To begin, we introduce a construct which we will call stochastic P theorems, which are precisely

analogous to stochastic dominance theorems. We are interested in properties P together with

parameter spaces Q P which are defined so that, given a function h:Q p
—>9? , the statement "h(Q)

satisfies property P on f
" is well-defined and takes on the following values: "true" or "false." Let

P denote the set of all such parameter spaces Q p . When P represents concavity, Q p can be any

convex set,, while for supermodularity, it must be a lattice. Further, for a given property P, we will

define the set of admissible parameter spaces together with probability distributions parameterized

on those spaces:

Vn

P
s {(F,e p )\Q P e QP and F e An

Qp }
.

Definition 2 Consider a pair ofsets ofpayofffunctions (U,T), with typical elements «:9t" —> 9? . The

pair (U,T) is a stochastic Ppair iffor all (F,Q P ) eVp :

J
u(s)dF(s; 6) satisfies property P on Qp for all ue U, ifand only if

J
u{s)dF(s; 8) satisfies property P on Op for all ueT.

With this definition in place, it will be straightforward to show that the closed convex cone

method of proving stochastic dominance theorems can be extended to all stochastic P theorems, if P

is a closed convex cone property, or a "CCC property," defined as follows:

Definition 3 A property P is a CCC property if the set offunctions g:Q P
—> 9? which satisfy Pforms

a closed convex cone, where closure is taken with respect to the topology ofpointwise convergence,

and ifconstantfunctions satisfy P.

Note that we are using closure under the topology of pointwise convergence for properties P,

while we are using closure under the weak topology (as defined in Section 2.2) for sets of payoff

functions, U and T.

The properties nondecreasing, concave, and supermodular are all CCC properties, as is the

property "constant." Further, any property which places a sign restriction on a mixed partial

derivative is CCC. Finally, since the intersection of two closed convex cones is itself a closed

convex cone, any of these properties can be combined to yield another CCC property. For example,

the property "nondecreasing and convex" is a CCC property.

The following result shows that the closed convex cone approach applies to CCC properties.

Theorem 2 Suppose property P is a CCC property. If (U,T) is a stochastic dominance pair, then

(U,T) is a stochastic P pair. Equivalently, if ccc(U u {1,-1}) = ccc(Tu {1,-1}) , then (U,T) is a

stochastic P pair.

11



We establish a series of implications, referring to the following condition:

J
u(s)dF(s;Q) satisfies P (2.4)

First, (i) (2.4) holds Vu e T implies (ii) (2.4) holds \/u e TU { 1,-1 } , because
\s

dF(s;8) = l,

and constant functions satisfy P by definition.

Second, (ii) implies (iii) (2.4) holds Vm e cc( Tu {1,-1} ), because the integral is a linear

functional and P is a CCC property.

Third, (iii) implies (iv) (2.4) holds Vw e ccc{Tu {1,-1} ). To see this, recall that a subset of a

topological space is closed if and only if it contains the limits of all the convergent nets of

elements in that set. Since the linear functional P(-;p.) is continuous for all \i, for any net ua

in Tu {1,-1} such that «„-»«, then given 6 , J
wa (s) dF(s; ) —>

J
u(s) dF(s;

6

) . Since

P is a CCC property, and
J
u(s)dF(s; 6) is the pointwise limit of a net of functions which

satisfy P, then
J
u(s)dF(s; 6) satisfies P as well.

Finally, (iv) implies (2.4) holds Vm e U, by the hypothesis of the theorem and since

Uczccc(U u {1,-1}) . Precisely analogous arguments establish the symmetric implication.

This theorem generates many new classes of stochastic P theorems, where the (U,T) pairs which

have been identified in the large literature on stochastic dominance are also stochastic P pairs. As a

special case, this theorem generalizes a result by Topkis (1968), who proves that the (t/,7) pair

corresponding to nondecreasing functions and indicator functions of nondecreasing sets,

respectively, is a stochastic P pair when P is a CCC property.

2.3.1 Some Simple Examples

Using Theorem 2, we can apply the results of Table I to problems of stochastic supermodularity.

Consider the following optimization problem:

maxz \u{s)dF(s;z,t)-c(z)

In our first example, the optimizer is a firm making investments in research and development (z)

to improve its production process, and in particular it searches for ways to reduce its unit production

costs (s). The returns to research and development are uncertain, and the probability distribution

over the firm's future production costs is parameterized by t. Suppose that the firm's payoffs are

nonincreasing in its production costs, and that the firm's investment has a cost, c(z). Then, Theorem

2 (together with a comparative statics theorem of Milgrom and Shannon (1994)) implies that

investment (z) is nondecreasing in t for all c and all u nonincreasing, if and only if F(s;z,t) is

12



supermodular in (z,t). Intuitively, the goal of the firm's investment in research is to shift probability

weight towards lower realizations of its unit cost. When F is supermodular, the parameter t indexes

the "sensitivity" of the probability distribution to investments in research: higher values of t

correspond to probability distributions where research is more effective at lowering unit costs.

In the second example, we consider a risk-averse worker's choice of effort (z), as in the classic

formulation of the principal-agent problem (Holmstrom, 1979). Let s represent the agent's wealth

(which might be determined by a sharing rule, though we will not model that here), let z be the

choice of effort, let c(z) be the cost of effort, and let t be a parameter which describes the job

assignment or production technology. Then expected utility (ignoring c(z) for the moment) is

nondecreasing in z for all u nondecreasing and concave, if and only if z shifts F according to second
pa

order monotonic stochastic dominance, that is, F(s;z,t)ds nomncreasing in z for all a.
Js=—«•

Next, observe that the optimal choice of effort is nondecreasing for all c(z), if and only if

-J F(s;z,t)ds is supermodular in (z,t) for all a. Finally, consider the analogous "stochastic

pa

concavity" result: expected utility is concave in z if and only if — I F(s;z,t)ds is concave for all a.

The latter result is particularly useful, since it can be used to establish that the First-Order Approach

is valid in the analysis of principal-agent problems. In fact, Jewitt (1988) establishes just this result,

applying the more standard approach of integration by parts.

2.3.2 Necessary and Sufficient Conditions for "Stochastic P Theorems"

This section considers the question of whether the "test functions" approach can be improved

upon for "stochastic P theorems," when P is a property other than nondecreasing. To be more

precise, it will be helpful to introduce some additional notation. We let SJD7- be the set of (U,T)

pairs which are stochastic dominance pairs, and we let Zspr be the set of all stochastic P pairs for

some property P. Then, observe that we have not established that 1LSPT
= Z

5/57
for arbitrary closed

convex cone properties P. This opens the door for the possibility that one could check a stochastic P

theorem for a set U without necessarily checking all of the extreme points of U, E(U). Our final

endeavor in this section is to identify which properties P are such that (U,T) satisfies a stochastic P

theorem ifand only if (2.1) holds.

To see an example where (2.1) is too strong, consider a simpler example of a CCC property, the

property "constant in 6." Take the case of U F0
, the set of all univariate, nondecreasing payoff

functions, and the set f = -U F0
. The pair (U F0 ,f) satisfies a "stochastic constant theorem," since

lu(s)dF(s;0) is constant in 9 if and only if -lu(s)dF(s;6) is constant in 6. However, U FO ,f)

clearly is not a stochastic dominance pair.

13



In general, the result that X
5/,r = JLSDT is useful because it may be easier to verify whether or not

(U,T) is a stochastic supermodularity pair by drawing from the existing literature on stochastic

dominance. For example, if the characteristics of a set U are determined by an economic problem,

and this set U has been analyzed in the stochastic dominance literature, then the corresponding

stochastic supermodularity theorem is immediate. This allows us to bypass the step of checking

whether U and T have the same closed convex cone directly (further, most of the stochastic

dominance literature does not make such a statement explicitly).

We begin this section by giving an example of a second property, supermodular, for which (U,T)

are a stochastic P pair ifand only if ccc(U u {1,-1}) = ccc(Tu {1,-1}) . Recall that, in Lemma 3, we

showed that if ccc(U u {1,-1}) ^ccc(Tu {1,-1}), there exists a m*e^* (normalized so that

jdm?=l) such that $udnu>0 for all u e ccc(T kj {1,-1}) , but \udnu<0 for some

ueccc(Uv {1,-1}). This nu, our separating hyperplane, can be expressed as the difference

between two probability distributions. But, observe that it can also be expressed as follows:

nu = \[ng + n£ —nu -nu].

Now, let QSPM = {G
1 vG 2

,*)
1

,*)
1 aG 2

,6
2
}. Define a parameterized distribution, G(;G), as

follows: G(;G 1 vG 2
) = G(;G 1 aG 2

) = 7^, and G(;Q 1

) = G(;Q2
) =-^—. Then, \udnu>0 if

J
dnC ) dnC

and only if Jw dG(;Q) is supermodular, since the latter entails

J
u(s)dG(sid

1 v G 2
) -

J
u(s)dG(sid 1

) +
J
u(s)dG(s& a G 2

) - J
u(s)dG(s$ 2

) > .

Thus, we can conclude that for this G, \udG(;Q) is supermodular for all u e ccc(Tu {1,-1}) , yet

J
u dG(;Q) fails to be supermodular, and we contradict the definition of a "stochastic P theorem."

The critical feature of supermodularity in this example is that the separating hyperplane, an

element of ^*, can be used to generate the needed counterexample to the stochastic supermodularity

theorem. More generally, we will define a set of properties called Linear Difference Properties

(LDPs), properties which also have this feature.

The first important attribute of LDPs is that they can be represented in terms of sign restrictions

on inequalities involving linear combinations of the function evaluated at different parameter values.

For example, g(G) is nondecreasing on if and only if g(Q
H
)-g(Q

L)>0 for all G" >G L
in 0.

This statement specifies a set of inequalities, where each inequality is a difference between the

function evaluated at a high parameter value and a low parameter value. To take another example,

g(6) is supermodular on if and only if g(Q* vQ 2)- g(Q*) + g(Q
} aQ2)- g(Q

2)>0 for all G',6
2

in

14



0. Again, this statement specifies a set of inequalities, this time involving the sum of two

differences.

In both cases, we can represent every inequality by the parameter values and the coefficients

which are placed on the corresponding function values. For example, for the property

nondecreasing, each inequality involves the coefficient vector (1,-1) and a parameter vector of the

form (G^G*-

), where 1 is the coefficient on g(Q
H

) and -1 is the coefficient on g(Q
L
) . Thus, g(G)

is nondecreasing on if and only if for all vector pairs (a, <]>) =
( (1,-1) , (G

w
, G

L
) ) such that G

w > 6^

,

^T._ a, g(fy) = g(Q
H
)-g(Q

L)>0 . Likewise, in the case of supermodularity, we are interested in

vector pairs of the form (cc,<|>) = ((1,-1,1,-1), (G
1 ve2

,e',e' aG 2
,G

2
)). In this case, g(Q) is

supermodular on if and only if, for all such vector pairs,

Xt,«i g(
î
) = g(Q

l vQ 2 )-g(Q 1

) + g(Q
1 AG 2 )-g(G 2 )>0. More generally, consider the following

definition.

Definition 4: A property P is a linear difference property if, for any parameter space Q P e@p ,

there exists a positive integer k and a collection ofpairs of vectors, @q , where

@,Q
e
c I (a,(|)) a G SR*, ]£._, a, = 0,

(f>
e 0™ \, so that conditions (i) and (ii) are equivalentfor any

g:Q P ^3i:

(i) g(Q) satisfies P on Qp .

(H) lUargi^ZOforall (a,«))) e eQf

The definition of &Q builds directly on the above discussion; we will refer to &Q as the "linear

inequality representation of P on P
." Note first that in the construction of CQ , we have allowed

the coefficients a to vary with the vectors of parameters; this will be useful when we show that

multivariate concavity has a linear inequality representation. In the above examples, nondecreasing

and supermodular both have linear inequality representations. In the case of nondecreasing, given a

parameter space QND ,

<?e ND
= {(oc,40|a = (1-D; 4> = (6",G L

); 6"^ e GND ,
6" > Q L

}.

For the property supermodular, given a parameter space QSPM , the appropriate set is

^esw = {(«,(t))|a = (l-U-l);
<t>
= (G' vG 2

,G
1

,G
1 aG 2

,G
2
); G',G

2 €05PA,}.

Observe that in the examples of nondecreasing and supermodular, the components of a sum to

zero. It is easy to show that if X,*=i a, = , then £*
=1
a

(
. jc, can be represented as a linear

combination of differences between jc,. 's. This motivates the word "difference" in the name, since

the definition requires X*=i ot.=0.
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Lemma 4 Ifproperty P is a linear difference property, then Pe CCC.

Proof: Consider Q P e<dp . If g(9) is constant in on 0,, , then X*=i a , ' £(<t>,)
= for all

(a,§) e &e , and thus g(9) satisfies P on <3 P by Definition 3. Now suppose that g :
(9)

and g 2 (9) satisfy P on 0,, . Then for any (a,§) e &e and any a,,a,>0,

Zli «/ • [«ift Ofc ) + a
2ft (<t>i )] = «i Xti «, ft (<fc ) + «

2 S=i «, ft (<t>, ) .
which is nonnegative by

assumption and by Definition 3. This argument can be extended to sequences or nets of

functions which satisfy P.

The last condition we require may be more difficult to check.

Definition 5 A property P satisfies the single inequality condition if, for any me^ and any

wiSR"—>SR, there exists (F,0) e Vn
P such that \udm > ifand only if ju(s)dF'(s;9) satisfies P on 0.

The single inequality condition is satisfied if for each vector pair (a,<}>), there exists an

appropriate parameter space and probability distribution so that the inequality corresponding to

(a,<})) is critical in determining whether \u(s)dG(s;Q) satisfies P for arbitrary payoff functions u. It

is a strong condition: it is what we verified in the discussion of supermodularity at the beginning of

this subsection. While the single inequality condition may seem close to the desired conclusion, we

have been unable to find alternative conditions which are easy to verify (though see the working

paper (Athey, 1995) for assumptions which are "more primitive.") One issue is that the property P is

not always well-defined on the restricted parameter space which is defined by the components of a

single vector 0.

Consider several examples which serve to illustrate the single inequality condition. We have

already established that nondecreasing and supermodular satisfy the condition. Next, observe that

any discrete generalization of a sign restriction on a mixed partial derivative can be represented in a

manner analogous to our representation of supermodularity at the start of this subsection. Finally,

we consider concavity.

Example: "Concave" satisfies the single inequality condition.

Proof: Let CV = [9,1] . Define G(;G) = G(;l) = 7^-7 , G(; 9) = (1 - 29)7^+ 29 "'

jdirC jdnC \dmt

for0<9<l/2, and G(-; 9) = (29 -1)7^— + (2-29)-^- for 1/2<9<1. Then, fw(s)JG(s;9)
\dmt \dmt Js

fails to be concave if
J
u(s)dG(s;j) < j j u(s)dG(s;0) + \ j u(s)dG(s;l) . But, with the above

definition, this holds if
J
u(s)dmt < \ J

u(s)dnu +jj u(s)dtru , or J
u(s)dnu < .
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It is interesting to note that in general, the intersection of two properties which satisfy the single

inequality condition does not necessarily satisfy the single inequality condition. However, since the

intersection of two CCC properties is a CCC property, we can always apply the closed convex cone

approach for the intersection of two LDP properties that satisfy the single failure condition. Given

this, it is interesting to note that supermodularity, which for a suitably differentiable function /(x) can

be defined as requiring that -^^-f(x)>0 for all i±j, is in fact an LDP and satisfies the single

inequality condition. This is true because supermodularity is a property which (i) can be defined on

an arbitrary lattice and (ii) when the lattice has four or fewer points, supermodularity of a function on

that lattice can be expressed in terms of a single inequality, so that the single inequality condition

can be satisfied.

We now state the final result of this section, which is that if P is an LDP and satisfies the single

inequality condition, then the same mathematical structure underlies the stochastic P theorem as a

stochastic dominance theorem.

Theorem 3 IfP is an LDP and the single inequality condition holds, then conditions (i)-(iii) are

equivalent:

(i) (U,T) is a stochastic P pair.

(ii) (U,T) is a stochastic dominance pair.

(ii) ccc(C/u{l,-l}) = ccc(ru{l,-l}).

Proof: Lemma 4 implies that P is a closed convex cone property. Theorem 1 establishes the

equivalence of (ii) and (iii), and Theorem 2 gives (iii) implies (i). So it remains to show that

(i) implies (iii). Suppose (iii) fails, and there exists a 5 e U such that u g T (the sets are

short-hand for the closed convex cones, as in Lemma 3). Then by the proof of Lemma 3,

there exists m, e £* such that
J
u dm, > for all uef , but J

udm. < . By the single

inequality condition, this implies that there exists (F,Q) e "D
n
P such that

J
u(s)dF(s;Q) fails P

on 0, but
J
u(s)dF(s;Q) satisfies P for all we f

.

The consequence of Theorem 3 can be stated as follows: if P is an LDP and satisfies the single

inequality condition, then ZJFT
= HSDT . This result establishes that the closed convex approach to

stochastic P theorems exactly the right one for this class of properties. Note that Theorem 3 holds

without any assumptions about continuity, differentiability, or other such properties. Assumptions

on sets of payoff functions might be relevant for a particular stochastic dominance pair (U,T); these

assumptions would then be inherited by the corresponding stochastic supermodularity theorem.

Linearity of the functional l%u,m) in m, however, is critical.
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In the next section, we discuss applications of some of the new stochastic supermodularity

theorems which can be derived using Theorem 3.

2.4 Applications: Stochastic Supermodularity Theorems with Supermodular Payoffs

This section explores applications of the new stochastic supermodularity theorems which follow

from Theorem 3. By Theorem 3, each of the (existing) stochastic dominance results corresponds to a

(new) stochastic supermodularity result, which may then be applied to solve comparative statics

problems.

Consider Table I (v), which gives the stochastic dominance theorem for bivariate, supermodular

payoff functions. The set T in Table I (v) contains both the indicator functions for each upper

interval of the random variable s, , and the negative of the indicator functions for each upper interval.

Thus, the corresponding stochastic dominance theorem requires that the marginal distribution of

each random variable is unchanged by the parameter 6. This condition is required because a

supermodular function does not necessarily satisfy any monotonicity properties. In particular, a

supermodular function might be additively separable, and monotone decreasing or monotone

increasing. Thus, an FOSD shift in either marginal distribution will raise expected profits for some

supermodular payoff functions, and lower expected payoffs for others.

Now, consider a partition of the space (j
,

,,52 )gSR
2

into four quadrants, delineated by the axes

5,= a, and s
2
=a

2
. Then the requirement that the function

JJ
l[aix) (s 1

)-l
[a2 „ )

(s
2
)-dF(s

l
,s

2 ;6)

must be nondecreasing in 6 specifies that 6 shifts probability mass into the northeast quadrant.

When the marginal distributions are constant in 6, that is equivalent to requiring that F(aua2;6) is

nondecreasing in 6. We will refer to this type of shift as an increase in the "interdependence" of the

random variables; such a shift is beneficial when the random variables are complementary in

increasing the payoff function.

The intuition for the stochastic supermodularity theorem for the set of supermodular payoffs

builds directly from the stochastic dominance intuition. For two parameters to be complementary in

increasing the expected value of a supermodular payoff function, they must not interact in the

marginal distribution functions, and further they must be complementary in increasing the

interdependence of the random variables.

To see a special case of how Table I (v) might be used, consider the following example. A firm

engages in product design for a product with two components, and the random variables, s
i
and s

2 ,

represent the qualities of the two components. The components fit together in such a way that

increasing the quality of one component increases the returns to quality in the other component. The
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two product design teams work to develop the two different components. Each team's output is

stochastic, but the outputs of the two teams are correlated (perhaps due to realizations of random

events which affect the whole firm, or due to communication between the two teams).

Suppose the firm wishes to set target qualities (or incentive contracts) for each group, where an

increase in the target quality increases the expected quality the group will produce. The above result

gives necessary and sufficient conditions for supermodularity of the firm's objective. This result

would be interpreted as follows: increasing the target quality for one group increases the returns to

increasing the target quality of the second group. Further, in response to an exogenous decrease in

the cost of producing quality for team one, then the firm would find it optimal to raise the targets for

both teams.

The conditions for "stochastic supermodularity" can be verified in a specific functional form

example. Suppose that the random variables have a bivariate normal distribution with a positive

covariance ((s
x
,s2 ) ~ 5V7V(/x

1
,// 2 ,(7;

! ,0'
2
,ct

12 ); G 12 >0). Then checking the conditions given in

Table I (v) establishes that if u is supermodular, the expected profits are supermodular in the means

of each marginal distribution. That is, J u(s
1
,s2)dF(s1

,s2 ;fi l ,n2,an ) is supermodular in (jj,,,|i2 ),

for all u supermodular, if G
12
> . Intuitively, when the payoff function is such that under certainty,

one random variable increases the returns to the other, then in a stochastic environment, raising the

mean of one random variable increases the returns to raising the mean of the other. Further, since

the random variables have a positive covariance, increasing the mean of one does not decrease the

effectiveness of the other in terms of shifting probability weight into regions where the random

variables realize high or low values together. Of course, the requirement that the parameters do not

interact in the marginal distribution functions is satisfied in this example. Thus, in the product

design example, we conclude that if the outputs of the product design teams are joint normal with

positive correlation, the target qualities of the two teams will be complements in the firm's profit

function.

Now we turn briefly to multivariate, supermodular payoff functions. Multivariate payoff

functions pose a particularly complicated problem because changes in the joint probability

distribution can potentially affect the co-movements of many random variables simultaneously; thus,

the high-order mixed partial derivatives between all of the arguments of the payoff function are

relevant for stochastic dominance results. However, it is often difficult to place economic

interpretations on such derivatives. One approach, followed by Meyer (1990) in the context of an

application to income inequality, is to consider objective functions where higher-order derivatives

are assumed to be zero. Meyer (1990) considered supermodular objectives where interactions

between three or more variables are ruled out. Supermodular payoffs of this form can be used to
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represent a social welfare function that is averse to inequality. Our results could be used in that

context as well; a stochastic supermodularity theorem could be used to check when two policies are

complementary in increasing expected social welfare.

The following result takes an alternative approach, studying the case where the random variables

are independent.

Theorem 4 Let s be a vector of independent random variables. Further, suppose that is a vector of

parameters such thatfor i=l,...,n, the marginal distribution ofsi is given by F^s^d.). Then the

following two conditions are equivalent:

(i) For all supermodular payofffunctions u:3i
n —>S{, ju(s)dF(s;0) is supermodular in 6.

(ii) Either (a) or (b) is true:

(a)Fori = l,..,n,F
i
(a

i
;6?)>F

i
(a

i
;ej-) V6» >0f, Va.eSR.

(b)For i = U,n, ^(a
{
;0*)<JF;(a.;0f) V0,">0f, Va,e<K.

Proof: For all (ij) pairs, rewrite the expectation as

J J^;»,.*JWif (i.xf
;e.w)-^;«,)

: ^ii;Oy).
*I'SJ

Sr\d

Note that the inner integral is supermodular in ($,-,$,) since supermodularity is preserved by

sums. Apply Table I (v) and check that the supermodularity condition on the distributions

reduces to (ii) (a) or (b).

This result says that parameters which induce FOSD shifts in independent random variables are

complementary in increasing the expected value of supermodular payoff functions. 11 Thus, if a

payoff function is supermodular in a group of random variables, increasing one variable in the

stochastic sense (of FOSD) is complementary with increasing the others stochastically as well.

Returning to the joint normal distribution, if the random variables are independent, the conditions are

satisfied when 6k
represents the mean of random variable sh

Theorem 4 result has potential applications in the study of coordination problems in firms (recall

the product design example from above) as well as in general investment problems. Athey and

Schmutzler (1995) apply this result to analyze a firm's choices over investments in product design

and process innovation.

11Since a supermodular function is also supermodular in the negative of all of its arguments, we allow for either case

(ii)(a) or (ii)(b) in Theorem 4.6.
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3. COMPARATIVE STATICS PROPERTIES OF V(x,Q) IN (x,0)

This section builds on the analysis of Section 2 to characterize interactions between components

of x and components of in the function V. Particular emphasis will be placed on properties which

are necessary and sufficient for monotone comparative statics predictions.

3.1 Definitions

Since this section will focus on properties relevant to comparative statics predictions, we begin by

introducing several relevant definitions. Given a set X and a partial order >, the operations "meet"

(v) and "join" (a) are defined as follows: x v y = inf{zjz > x, z > y} and x a y = sup{z|z < x, z < y}

.

A lattice is a set X together with a partial order, such that the set is closed under meet and join.

Definition 6 Let (X>) be a lattice, (i) Afunction h:X->Sl is quasi-supermodular if, for all x,yeX,

h(x a y) - h(y) > (>)0 implies h(x v y) - h(x) > (>)0 . (ii) hissupermodularifforallx,yeX,

h(x v y) + h(x a y) > h(x) + h(y) . (Hi) Ifh is nonnegative, it is log-supermodular (log-spm) 12
if, for

allx,yeX, h(xvy)-h(xAy)>h(x)-h(y). (iv) h has increasing differences in (xk ;x_k ) if

h(x",x_k ) — h(xk ,x_k ) is nondecreasing in x_k for all xk >xk .

We will be particularly interested in the special case where our function of interest is bivariate.

In that case, if h is smooth, supermodularity corresponds to the restriction that -^-h(x)>0 (Topkis,

1978); h is log-supermodular if log(/j) is supermodular. Equivalently, supermodularity requires that

h(x",x2 ) — h(x(',x2 ) is nondecreasing in x2 for all x" >jc,
l

, and log-supermodularity requires the

same of h(x",x2 )/h(x(-,x2 ). Quasi-supermodularity (Milgrom and Shannon, 1994) requires

something weaker: the incremental returns, h(x" ,x2)-h(x[,x2 ), must satisfy a single crossing

property. The following definition lays out several variants of single crossing properties which will

be useful in our analysis.

Definition 7 LetX and be partially ordered sets, (i) g(6) satisfies single crossing (SCI) in 6 if,

for all 6H>9L, g(6L)>(>)0 implies g(d„)>(>)0. (ii) h(x,6) satisfies single crossing ofincremental

returns (SC2) in (x;6) if, for all xH>x[/ g(0) = h(xH ;6)-h(xL ;9) satisfies SCI.

Topkis (1978, 1979) introduced some basic comparative statics theorems based on

supermodularity. Building on his work, Milgrom and Shannon (1994) show that

x*(0,i?) = argmax/i(x,0) is nondecreasing in (0,2?) in the "strong set order" 13 if and only if h is
xeB

quasi-supermodular in x and satisfies SC2 in (x;0). If xe 9?, the result simply requires that h satisfies

12 Karlin and Rinott (1980) called log-supermodularity multivariate total positivity of order 2.

13 A>B in the strong set order if, for any aeA and beB, avb&A and ciAbeB.
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SC2 in (x;0). Thus, we will focus special attention on necessary and sufficient conditions for V(x,6)

to satisfy SC2 in (x;0).

3.2 Stochastic Single Crossing when Primitives Form a Closed Convex Cone

The last subsection motivates the study of necessary and sufficient conditions for V(\,G) to

satisfy SC2 in (x;0). Since this property does not concern interactions between components of x or

components of 0, we change notation to consider properties of V(x, 6), where the italic variables are

real numbers. In this context, it is clearly equivalent to study when V(x, 0) satisfies SC2, and to study

when V(xH ,d)-V(x L
,d) = l[u(x

H ,s)-u(x L
,s)yiF(s;d) satisfies SCI in 6.

However, in other contexts, we might wish to study SC2 of V(x,0) in (6;x), or quasi-

supermodularity of V(x,6). Thus, we present a theorem which allows the roles of the utility function

and the probability distribution to be interchanged: we analyze
J
u(s)dK(s;6) , but do not restrict K to

be a probability distribution.

Theorem 5 Suppose that ccc(T)=G. Let K(;ff) be a signed measure. Then thefollowing two

conditions are equivalent:

(i) V(6)=
J
g(s)dK(s; 6) satisfies SCI in 6for all ge G.

(ii) For all 6,^.QL, there exists a X>0 such that

jt(s)dK(s;6H)>k jt(s)dK(s;dL ) for all teT(that is, K(s,6H) - X-K(s,e,) e T).

Proof: Observe that (a) V{ej>Q implies V(6H)>0 for all ge G, if and only if (b) ge G and

geK(s,6,)' implies V(6H)>0, if and only if (c) K(s,9H) e (K(s,0,)' n G)' = ccc(K(s,0,) u G').

(The latter equality follows because (^(s.flj u G*)* = ^(s,^* n G", simply applying

definitions, and G is assumed to be a closed convex cone, so that G=G"). In turn, (c) holds if

and only if (d) K(s,8H) = A, ^(s,^ + a m(s) for some m(s)e G*, and some a,A^0. But then,

I
g(s)dK(s;6H ) =X j g(s)dK(s;6 L ) + a

J
g(s)dm(s). Since f=G' by Lemma 2, and

J
g(s)dm(s)>0 by definition of G\ it follows that

J
g(s)dK(s;0H ) >X J

g(s)dK(s;d L )

.

Now suppose that A^O, and suppose that ViO^O for some ge G. Then, we can find a K(s,6H)

e f such that
J
g(s)dK(s;dH )=0. But fc=Q implies that K(s,0H)-X K(s,6H)e f as well. Then,

we have V(0J>O and V(6H)=0 for some ^(s,^) where tf(s,0w)-A K(s,0H)e T, contradicting

the definition of SC 1

.

Closely related results have been applied in the economics literature by a few authors; we first

interpret the theorem, and then return to discuss the literature in the next subsection.
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Sufficiency in Theorem 5 (that is, (ii) implies (i)) is straightforward. If (ii) holds, then whenever

jt(s)dK(s;6 L)>(>)0, it will follow that j t(s)dK(s;6H )>XJ t(s)dK(s;6 L )>(>)0. Taking convex

combinations and limits of sequences or nets of these r's yields the implication required.

Now consider necessity. To recast the result in a more familiar form, consider taking the

infimum of j g(s)dK(s;6H ) with respect to g, where g is restricted to lie in G (a closed convex cone),

subject to the constraint that j g(s)dK(s;6 L )>0. Then, if the single crossing property holds, the

infimum must be nonnegative. This implies that there must exist a Lagrange multiplier X such that

inf jg(s)dK(s;6H )- Xj g(s)dK(s;6 L ) > 0.
geG

Then it will follow that there exists a X such that

jg(s)dK(s;dH )-Xjg(s)dK(s;0 L )>O for all geG.

Of course, this is equivalent to checking that K(s;6H )-XK(s;6L )sG'. Finally, we can apply

Lemma 2, which establishes that G* =T* when ccc{T)=G.

Clearly, Theorem 5 and Theorem 1 are very closely related. If we relax the restriction in

Theorem 1 that F is a probability distribution and apply it to the problem above, stochastic

monotonicity requires that K(s,6H) - K(s,6,) e T'. In contrast, Theorem 5 requires that there exists a

positive A such that K(s,6H) - X-KfaGJ e T\ The latter condition is less stringent, and yields a

weaker conclusion (single crossing as opposed to monotonicity).

However, if G contains the constant functions and K is a probability distribution, it turns out that

Theorem 1 and Theorem 5 coincide. In particular, we have the following corollary:

Corollary 5.1 Suppose that {
1,-1 }e G and G=ccc(T\j{ 1,-1}). Supposefurther that j dK(s; 6) is

constant in 6. Then

(i) V(6)=j g(s)dK(s; 0) satisfies SCI in 6 for all ge G, ifand only if

(ii)
J
t(s)dK(s;d) is nondecreasing in 8 for all te T.

Proof: Clearly, (ii) implies (i), since (ii) implies that condition (B) of Theorem 5 holds when

fc= 1 . If { 1,-1 }e G, then condition (B) of Theorem 5 requires that
J
dK(s; 6H)>lj dK(s; 9L )

and jdK(s;0H)<X jdK(s;8L ). This holds only if j dK(s;dH )=X jdK(s;dL ). 1ffdK(s;0) is

constant in 6, then it must follow that X=l.

This result is potentially quite powerful, since it implies that in many problems, single crossing

holds for all payoff functions in the desired class if and only if the probability distribution is ordered

according to stochastic dominance. Thus, Corollary 5.1 reduces a potentially more difficult problem
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to a well-studied problem. For example, it implies that if F is a probability distribution,

J
g(s)dF(s;d) satisfies SCI for all g nondecreasing, if and only if F is ordered according to FOSD.

Likewise,
J
g(s)dF(s;6) satisfies SCI for all g concave, if and only if F is ordered according to

SOSD. Below, we will apply this result to comparative statics problems.

3.2.1 Relation to the Literature

The approach used in our formal proof of Theorem 5 builds on the approach taken in a note by

Jewitt (1986) to characterize the notion of "more risk averse" (Ross (1981)). Gollier and Kimball

(1995 a, b) also prove this result for the case where seSR or seSR
2

and s independent. They call the

"diffidence theorem." The Gollier and Kimball's diffidence theorem can be stated in our language

as follows (taking h, a density, as given, and assuming that seSR): ]k(s,6)h{s)ds - \k{s,6)f{s)ds

satisfies SCI in for all densities/, if and only if there exists a X>0 such that $h(s)k(s,6H)ds
— k(s,dH)

> X [\h{s)k{s,6
l
)ds - k(s,6,)] a.e. We can place their result in the above framework as follows. If we

fix some probability density h(s) and consider G={g:g=h-f for some probability density/}, then we
can let T(G

h)
= {g:g(s)=h(s)-l

(a_ea+e) (s) for £>0, aeSR}. When we restrict attention to a single

random variable, their result is equivalent to Theorem 6. Their method of proof is different from the

one used here.

Gollier and Kimball show that a wide variety of problems in the- theory of investment under

uncertainty can be usefully studied with the diffidence theorem, and their papers provide many

examples and applications. To see the simplest example where the diffidence theorem applies, let 6

index preferences. Then SCI of jh(s)k(s,G)ds — y{s)k(s,6H)ds is interpreted as follows: if an agent

with preferences 6L likes the gamble corresponding to density h better than gamble corresponding to

/, all agents with preferences 6^>6L will also prefer gamble h to gamble/

The contribution of Theorem 5 thus is to provide a statement and formal proof of the theorem at

the appropriate level of generality for our purposes, using the basic theorems of topological vector

spaces, and then derive theorems which establish its consequences for comparative statics analysis.

Thus, we extend the domain of applicability of the tools, and show that these tools can be usefully

connected to Milgrom and Shannon (1994)'s methods for comparative statics analysis. Of particular

interest is Corollary 5.1, which does not appear in the previous literature; this corollary, which gives

conditions under which stochastic dominance and stochastic single crossing are equivalent, will

imply that in many economic situations, comparative statics theorems based on supermodularity of a

stochastic objective cannot be improved upon. This is taken up in the next section.
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3.3 Single Choice Problems and Comparative Statics

This section examines conditions under which V(x,6f)=j u(x,s)dK(s;0) satisfies SC2 in {x;6),

which is necessary and sufficient for comparative statics in univariate choice problems. Since we

allow for K to be a signed measure (not necessarily a probability distribution), our analysis applies to

problems where the choice variable affects either a probability distribution, or a utility function.

Corollary 5.2 Let K be a finite signed measure, and let UuT be sets ofpayofffunctions mapping

9t*—>SK such that ccc(Ui)=ccc(T), and let U2 ={u:Xx3i
k—»SR: X a partially ordered set, and

u(xH,s)-u(xL,s)e Ut for all xH>xL ).

(A) x'(6)=aigmaxA u(x,s)dK(s;6) is nondecreasing in 8 for all ue U2 , ifand only if there exists a

A>0 such that j t(s)dK(s;0„)>X jt(s)dK(s;0L ) for all te T.

(B) Suppose that F is a probability distribution, and that { 1,—1 }e U x
. Then

x\ff)=argmaxI \ u(x,s)dF(s;6) is nondecreasing in 6 for all us U2 , ifand only if jt(s)dF(s;6) is

nondecreasing in 6 for all te T.

Proof: Follows from Theorem 5 and Milgrom and Shannon (1994), except for the following

caveat: Milgrom and Shannon (1994) show that SC2 is necessary for the conclusion that

x'(d,B) is nondecreasing in (x,B). The quantification over B can be dropped in our case

because we are asking that the comparative statics result hold for all ue U^, and thus,

effectively, for all constraint sets B.

To see how this result could be applied, consider first part (A), and suppose an agent must

choose between two distributions. We wish to characterize how the choice of distributions changes

with a parameter of the agent's preferences. Let/be a density for the probability distribution F(s;x),

and suppose that x indexes F according to FOSD, so that F^^^fajxJ. Suppose for the moment

that de{dudH }. Then Corollary 5.2 (A) tells us that
J
g(s;d)f(s;x)ds satisfies SCI for all such F, if

and only if there exists some A>0 such that g(s,0H)—Xg{s,6,) is nondecreasing in s. Another way to

state the condition is that g(s,6H) must be a convex combination of g(s,6,) and some other

nondecreasing function: that is, g(s,6H) is "more nondecreasing" than g(s,0,). If we consider instead

distributions which are indexed according to Second Order Stochastic Dominance, the corresponding

result is that
J
g(s;6)f(s;x)ds satisfies SCI for all geG, if and only if there exists some A>0 such

that gis^-Xgis^J is concave in s. That is, g(s,6H) is "more concave" than gis^J. The latter

result is due to Ross (1981), and Jewitt (1986) showed how the method used in Theorem 5 can be

used to establish Ross' result.

Now consider part (B) of the Corollary. Checking that ][u(xH,s)-u(xL,s)]dK(s;0) is

nondecreasing is equivalent to solving the stochastic dominance problem analyzed in Lemma 1.
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Examples of payoff functions u(x,s) such that the set Ui={g: g(s)=u(xH,s)-u(xL,s) for some x„>x
L }

satisfy the conditions of Corollary 5.2 (B) include supermodular payoffs and payoffs where

u(xH,s)-u(xL,s) is nondecreasing and concave. Ormiston and Schlee (1992) show, using different

techniques, that the stochastic dominance orderings are necessary for comparative statics in a few

specific classes of payoff functions; thus, Corollary 5.2 (B) identifies the general principle behind the

results.

To see how this result might be applied, consider a noisy signaling game, as studied by Maggi

(1996). Suppose that there are two firms, a first mover and a second mover, and each firm chooses

the quantity to produce. The first mover has private information about his own marginal cost, y.

After observing y, the first mover chooses a quantity (#,), but the second mover observes only a

noisy signal (z) of the incumbent's choice. The second mover forms a posterior F{q
{ \z). Suppose

that 712(^1,^2) is the expected profit to the entrant when the quantities chosen are q x
and q2 , and

suppose (as is usual in such models) that 7I2 is submodular. Then the second mover's best policy is

given by

q2(z)=aig max f n2 {qx ,
q)dF(q

l
I z)

.

1

Then, Corollary 5.2 (B) establishes that q2{z) is nonincreasing in z for all t^ submodular, if and only

if F(qi\z) is ordered according to FOSD. Now consider the first mover's problem. Let the first

mover's profits be given by Ttiiqi.q^f), and assume that this function is submodular. Then, the first

mover's policy is given by

?i(7)=arg max
J

7T, (q, q2 (z), y)dG{z\ q)

.

1

Then, by Corollary 5.2(B), #,($ is nonincreasing for all 7C, submodular and for all q2 nonincreasing, if

and only if and G{z\q) is ordered by FOSD. By Athey (1997), whenever each player's best response

function is nondecreasing, a pure strategy Nash equilibrium exists in this game (also see Vives

(1990) for an existence result for supermodular games with incomplete information).

While it might seem that most economic problems fall under the domain of Corollary 5.2 (B), the

following subsection discusses a class of payoffs which does not satisfy the relevant assumptions.

3.3.1 Single Crossing at a Point and the Portfolio Problem

It might at first seem that most sets of payoff functions which arise in economics contain the

constant functions. However, portfolio theory motivates a class of payoff functions which does not:

the class of functions which cross zero at a fixed point. In particular, consider the following

optimization problem:
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max
f
u(xs + (1 - x)r)dF(s; 6)

.

xe[OM J

This is the standard portfolio problem. In this problem, the marginal returns to investment for a

given realization of s are given by (s-r)u(xs+(l—x)r). When utility is nondecreasing, this function

crosses zero from below, and it always crosses at the same point: s=r. Let us say that a function g

satisfies weak single crossing at s if s>(<)s implies g(s)>(<)0. Notice that, while the set of single

crossing (SCI) functions is not a closed convex cone, the set of functions which satisfy weak single

crossing at s is a closed convex cone. Further, observe that a set of "test functions" for this set of

functions can be described as follows (for some P>0):

T(s ;$)={t: BasSi, £,5<|3 such that t(s)=(l-2l{s<s })(l{min(a-e,s )<s<max(a+£,s )}+6)}

Notice that the constant functions are not in this set of test functions, and thus Corollary 5.1 and

Corollary 5.2(B) do not apply.

Athey (1998) shows that problems where payoffs (or incremental returns) are weak single

crossing about s can be analyzed using a different, and seemingly unrelated, set of tools. The

approach is based on the fact that single crossing properties are preserved when integrating with

respect to log-supermodular densities. While the statistics literature (for example, see the

introduction to Karlin and Rinott (1980)) has typically drawn sharp distinctions between methods

based on convex cones, and methods based on "majorization" (Marshall and Olkin, 1979), we will

now briefly establish a connection between the two approaches.

Consider the following result, also established in Athey (1998) using a different method of proof:

Corollary 5.3 Fix s and suppose k(s;6) is nonnegative, and supposefurther that k is continuous and

strictly positive at s for all 6. Then thefollowing are equivalent:

(i) J
g(s)k(s; 6)ds satisfies SCI for all g which satisfy weak single crossing about So.

(ii) For all 6H> 6U k(s; 6„)/k(s; 6L)-k(s ;6H)/k(s ;6L) satisfies weak single crossing about s

almost everywhere.

Proof: By Theorem 5 and using the set of test functions rCs ;P) for (3 arbitrarily small,

j g(s)k(s;6)ds satisfies SCI for all g which satisfy weak single crossing about s , if and only

if there exists A>0 such that fc(.s;0w)>AJfc(.s;&) for almost all s>s , and Jfc(.s;0w)<A.ifc(.s;ft,) for

almost all s<s . This implies that £(•?<>;fl^^Cs,,;^. Substituting and applying the definition

of single crossing gives the desired conclusion.

To interpret condition (ii) of Corollary 5.3, observe that k(s;8H)/k(s',dL) is a "likelihood ratio" for

the realization s of the risky asset. Condition (ii) requires that for realizations of s above the crossing

point, the likelihood ratio is greater than it is at the crossing point. Likewise, for realizations of s

below the crossing point, the likelihood ratio is lower than at the crossing point.
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To connect this result to results about log-supermodular densities, notice that if we do not specify

the crossing point of g in advance, then we will be forced to check that

k(s;dh)/k(s;6L)-k(s ;dh)/k(So,6L) satisfies weak single crossing about s for every possible crossing

point, s . But that is equivalent to checking that k(s;0h)/k(s;6L) is nondecreasing in s, or that it is log-

supermodular. Equivalently, k satisfies a monotone likelihood ratio property. Thus, despite the fact

that neither single crossing nor log-supermodularity are closed convex cone properties, Theorem 5

can be used to establish a result relating the two properties.

To see how this result can be applied, return to the portfolio problem. We conclude that an agent

will invest more in a risky asset in response to an increase in 6, if and only if 6 shifts the density of

asset returns according to condition (ii) in Corollary 5.3, when s =r. Athey (1998) provides further

applications.

3.4 Multivariate Choice Problems and l-Supermodularity

This section derives comparative statics properties of stochastic objective functions when the

decision-maker's choice set is a lattice (for example, a vector of real numbers). Consider first the

question of when U(x,&) is quasi-supermodular in x. In order to apply Theorem 5 to this problem,

we need to introduce two new properties.

Definition 8 For a given Ae 9?„ consider afunction h:X—>S{ (X a lattice). Then h is l-supermodular

at (x,y) with parameter X ifh(xvy)-h(x) > A[/i(y)-7i(XAy)] . Ifh:XxQ->% where is a partially

ordered set, then h{x,9) satisfies l-increasing differences (l-ID) on YxT with parameter X if, for all

x„>x
te Y and 0„>6>te V, h(xH,dH)-h(xL,dH) > XlKx^-hix^O,)]

.

It is clear that /-supermodularity implies quasi-supermodularity, which follows immediately from

the two definitions. Further, if h is bounded and quasi-supermodular, then for each (x,y), there exists

some A>0 such that h is /-supermodular at (x,y) with parameter A. But, a critical property of /-

supermodularity, as opposed to quasi-supermodularity, is that if, for a fixed A, two functions are both

/-supermodular with parameter A at (x,y), the convex combination of the two functions will inherit

the /-supermodularity property. In other words, the definition of /-supermodularity gives us a way to

make two quasi-supermodular functions comparable, so that we may take convex combinations

without upsetting quasi-supermodularity.

We will say that the function is /-supermodular on a sublattice Y if, for each x,y e Y, there exists

some A>0 such that the function is /-supermodular at (x,y) with parameter A, and likewise for /-ID.

Clearly, supermodularity is stronger than /-supermodularity, since the definition is satisfied for A=l.

However, /-supermodularity allows for some flexibility in the scaling of a function at different

points. For example, consider the sublattice y={(0,0),(0,l),(l,0),(l,l)} and a function h(x) which
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satisfies increasing differences in (x
t
\x2) on {0,1}x{0,1}. If the function is transformed by taking

(the same) affine transformation of both h(0,0) and h(l,0), increasing differences is not necessarily

preserved, while /-I.D. in (jc,;x2) will be. Intuitively, taking an affine transformation of h(-,Q) does

not affect the sign of the incremental returns to x,.

When attention is restricted to a four-point sublattice (i.e. {x,y,xvy,XAy}), log-supermodularity is

also stronger than Z-supermodularity for positive functions h. To see this, let X=h(x)/h(xAy).

However, since this constant depends on the choice of x and y, we cannot necessarily find a single

X for all (x,y) pairs in a given sublattice.

The following result characterizes quasi-supermodularity and the single crossing property in

stochastic problems (where, for a distribution K, jx is a measure such that K is absolutely continuous

with respect to ji and k is the density).

Theorem 6 Consider a lattice X. Let k:Xx9T—>9t. Suppose ccc(T)=G.

(A) Thefollowing conditions are equivalent:

(i) For every y,zeX, there exists a A>0 such that, for all teT, j t(s)k(x,s)diLl(s) is l-

supermodular at (y,z) with parameter X .

(ii) V(x)=j g(s)k(x,s)dn(s) is quasi-supermodular in x.

(B) Let Qbe a partially ordered set, and let fc:Xx0x9T—>%. Thefollowing two conditions are

equivalent:

(Hi) For every subset Y={xH,xL}cX such that xH>xL , and every subset V= { 6H,dL ) C0 such

that 6H>6L, there exists a X>0 such that, for all teT,
J
t(s)k(x,8,s)dfl(s) satisfies l-increasing

differences on YxT with parameter X.

(iv) V(x,8)=j g(s)k(x,e,s)dfi(s) satisfies SC2 in (x;6).

Proof: Consider part (A). V(x) is quasi-supermodular in x if and only if, for every sublattice

F={y,z,yAZ,yvz}cX, Jg(s)[£(y vz,s)-%s)]^(s)>(>)0 implies

I
g(s)[k(z,s)-k(y Az,s)]d^i(s)>(>)0. Applying Theorem 5, this in turn holds if and only if

there exists a X>0 such that
J
f(s)[fc(y v z, s) - k(y, s)]djiz(s) >Xj t(s)[k(z, s) - k(y a z, s)]d/i(s)

for all te T. But this in turn is equivalent to the requirement that
J
t(s)k(x,s)d^i(s) is l-

supermodular with parameter X at (y,z) for all te T. Part (B) is analogous.

The comparative statics consequence of Theorem 6 is that x\ff)^aigmaxx€Bj g(s)k(x,6,s)dfi(s) is

nondecreasing in (6,B) for all g<= G, if and only if (i) and (iii) are satisfied.

To interpret this result, consider first the case where G is the set of all probability densities, and

suppose n is Lebesgue. Then (i) requires that for y,zeX, there exists a X>0 such that k(x,s) is l-

supermodular at (y,z) with parameter X for almost all s. The order of the quantifiers is critical: there
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must be a single X for almost all s. As we discussed above, one sufficient condition is that k is

supermodular in x. Since sums of supermodular functions are supermodular, V(x) will clearly be

supermodular in x as well, a stronger result than is required.

To see another example, suppose that k is a density for the probability distribution F(s;x,0), G is

the set of nondecreasing utility functions, and we wish to check whether our choice of distribution is

nondecreasing in a parameter of the distribution. Then (iii) requires that, for all xH>xL and 6H>6L

there exists a ^>0 such that F(s;xL,6H)-F(s;xH,6H) > X[F(s;xL,dL)-F(s;xH,6L)] for all s. Alternatively,

we can interpret the condition as follows: the effect on the cumulative distribution of increasing x at

dH, F{s'^cL,6H)-F{s'^c„,0H), is equal to a convex combination of F(s;xL,6L)-F(s;xH,dL) and a difference

Hh(s)-Hl(s), where H is ordered by FOSD (Hh(s)<Hl(s)). Thus, we can interpret the result as

requiring that the shift in the distribution due to a change in x at Q„ is "more FOSD" than the shift

due to a change in x at 6L. It is interesting to return to the result of Theorem 1 as applied to the

property supermodularity and the set of nondecreasing functions: a necessary condition for V(x,ff) to

be supermodular for all g nondecreasing is that l-F(s-jc,0) is supermodular in (x,6) for all s. Thus,

the necessary condition for comparative statics is a bit weaker. This result could be applied to study

how a worker's choice of effort (x) varies with different task assignments (0).

4. CONCLUSIONS

This paper develops systematic tools for analyzing properties of stochastic objective functions, in

particular properties which are relevant to deriving comparative statics predictions. The paper

introduces abstract definitions which allow parallels to be drawn between classes of theorems, such

as stochastic dominance theorems and theorems which characterize other properties of stochastic

objective functions, in particular properties which arise in the study of comparative statics analysis

such as supermodularity, single crossing properties, and quasi-supermodularity. The main results are

then stated as mappings between two sets of functions (such as restricted classes payoff functions

and probability distributions), where the mappings provide characterizations of when a stochastic

objective function satisfies desired properties. The results can be applied to many economic

problems, including portfolio theory, investment games, and games of incomplete information.
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