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I. Introduction

Cooperation and mutual advantage are often limited by the presenee of

private information. A classic example is adverse selection in insurance

markets. Vhen agents interact in circumstances in which there is private

information, Bayesian equilibrium is usually taken as the solution concept.

Such an approach takes as fixed the structure of private information; but in

fact it is clear that agents will sometimes want to give away their secrets

and be able credibly to do so.

For example, in the following "cooperation game" (Parrell, 1982) the

only Bayesian equilibrium^ involves no cooperation, and gives payoffs of

zero for the two players, whatever the actual levels of the "cooperation

costs" y., which may in fact be close to zero.

I's move

K

II' 6 move

c[ooperatej N[ot cooperate]

•(1-71. "I -3^2) (-71 »0)

(0, -7,) (0,0)

Here y, is information private to player i; y^^ and y2 are independently

uniformly distributed -on (O, 1 .000001 ). (The result is more general: see

Farrell, (1982).) Yet we would not expect such a poor outcome from two

rational people involved in this game, unless we forbade all communication

between them. Even quite simple communication can lead to a better outcome,

in this game. 2 In this paper I examine the extent and the effects of
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communication (without commitment) in general games.

A related problem is known as "mechanism design." A mechanism is a

function from T " Tj^ x...x T , the space of full descriptions of private

information, to distributions of outcomes. The standard mechanism design

problem has private information but no private actions. A central

authority, either disinterested or equipped with powers of commitment not

given to the agents themselves, can commit himself to a rule, describing the

outcome as a function of messages he receives. Agents may of course be

induced to lie if certain rules are chosen. A rule, and a Bayesian

equilibrium in the game induced among the agents, determine a mechanism.

The problem is: what mechanisms can be implemented in this way? The basic

result is the revelation principle: every feasible mechanism is equivalent

to a full-revelation mechanism, i.e. one in which each agent voluntarily and

truthfully reveals his entire private information to the central authority.

A variation on this literature (see e.g. Laffont and Maskin (1982); Myerson

(1983)) discusses the case in which the center is not an omnipotent

authority but only a mediator who controls the communication, while agents

have private actions: a version of the revelation principle applies there

too. It says that without loss of generality we can further assume that

each agent, told only his proper action, will obey. (Actually, the

distinction is not as clear as might be thought, since most power comes from

control of communication: a dictator seldom does what he wants done, but

rather sends messages which make it in the perceived interests of others to

implement those decisions.)
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What vill happen If there is no such discreet and dislntereated

mediator? Often there ie not, either because everyone available Is Involved

In the outcome, or because the cost of finding and checking a discreet and

disinterested person is excessive for the problem at hand. In fact, one way

to view our problem is as part of the question, "When will agents appoint a

mediator; and how much power will they give him?" (it should be noted that

the "mediator" need not be a person: one could use a properly programmed

computer. But this solution is seldom adopted.)

In Section II, I introduce a notion of mechanism feasibility without a

mediator, appropriate for the case in which agents can together commit

themselves to a format for communication. It is unlike the standard problem

with a mediator, because players are cautious about how much they say, since

it becomes public knowledge: there is no revelation principle, because the

interested agents cannot commit themselves to ignore information. I show by

example that this makes a real difference to the class of feasible

mechanisms. In other words, the mediator's function cannot always be

decentralized, even if that function is only collection and dissemination of

information, not decision. Another way of viewing the problem is to

describe the outcomes of G which become equilibria when arbitrary payoff-

irrelevant choices are added.

In Section III, I address the more difficult case in which agents

cannot commit themse^-ves to limiting communication. This requires

.eliminating some perfect Bayesian equilibria as implausible; I offer what I

believe is a new criterion which seems to conform well to intuition about

this type of Implausibility. (The criterion is also useful in examining the
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relevance of communication for disequilibrium, work I am pursuing in a

related paper.) This leads to a smaller class of equilibria, which I call

"language-proof," and a corresponding class of feasible equilibrium

mechanisms, which I call "variable-structure communication-feasible" (VSCF).

Some examples are presented.

The purpose of this work is to understand the effects of decentralized

communication, and the value of being able to centralize it. We already

have fairly well-developed notions of what can be expected to happen without

communication, and of what is feasible with an ideal mediator. In this

paper I address the intermediate case, in which there can be communication

among players (who share a language), but there is no mediator.

II. Fixed-Structure ComniuTiication-FeaBible (FSCF) Mechanisms

A group of agents, numbered 1, 2,..., n, are to play a game G with

incomplete information: agent i has private information t. e T.. There is

no mediator to help them make joint use of their information; however, they

are alone together in a room for some while before G begins - and, if G is

sequential, between moves - and they can talk. What will be the outcome?

As usual in this literature, I look for equilibria,^ though of course

the precise game of which we look for equilibria is yet to be specified. I

will also assume that anything said by one player is heard by all. This is

restrictive^ if n > 2^

Consider the process of communicating, and playing G, as an "extended

game" or "communication version of G," which we can call G'. We look for

perfect Bayesian equilibria in G', and call the resulting mechanisms "fixed-

structure communication-feasible" (FSCF) mechanisms in G. There will of
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course be many posslbllltleB for G' , some differing only inessentially, and

others perhaps leading to quite different mechanisms. For the purposes of

this section, we include them all. This is intended to capture the idea

that, while the structure of G itself may be exogenous, we have no basis yet

for considering one possible communication version G' rather than another.

Thus our definition is intended to capture all outcomes that are self-

enforcing with some communication structure, (in Section III, I distinguish

some implausible structures.) I now give the formal definition.

A game G ' is a communication version of G if it is a sequential game of

incomplete information, with the same spaces T of private information, and

has the following properties:

(i) The possible histories (paths) in G' are the possible histories

(paths) in G, but with (perhaps) some extra moves, which I call "message

moves," inserted.

(ii) The payoffs from a history in G' are just the payoffs obtained by

"condensing" to a G-history by ignoring the message-moves, and combining the

G—moves with the private information as if the G-history had happened in G.

In other words, the message-moves are "payoff-irrelevant." (However, this

does not mean that their presence does not affect payoffs!)

(iii) There is perfect information concerning the messages sent in

message-moves. In other words, when player i sends message m. at a given

point, that fact then becomes common knowledge.

In a communication version of G' of G, each vector of decision rules,

and in particular each perfect Bayesian equilibrium, determines a mechanism

in G, that is, a function m: T •* A(a), where a(a) represents the space of

distributions on A = A, x...xA , the outcome space. A mechanism m is called
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fiied-Btrueture communication-feasible (FSCF) if it arises from a perfect

Bayeaian equilibrium in some communication version G' of G.

¥e observe:

(1

)

Every perfect Bayesian equilibrium mechanism of G is also FSCF.

This is immediate: set G' G.

(2) In general, the class of FSCF mechanisms is strictly larger than

the class of perfect Bayesian equilibrium mechanisms. An example is

provided by the cooperation game (page 2). It is easy to see that if each

player has a chance to communicate one binary message, the following

mechanism will arise in an equilibrium:

(C,C) if both the y. are less than or equal to 1.

(N,N) otherwise.

(5) Every FSCF mechanism is feasible using commimication via a mediator,

i.e. incentive-compatible in the sense of Myerson (1985). This is

immediate, since the mediator can promise to mimic any FSCF mechanism. An

example of a Myerson incentive-compatible mechanism which is not FSCF is

given below. Vith the kind of public communication I consider, only certain

kinds of information about T = T,x...xT can be communicated: I call this
1 n

"announceable" information. In the example below, the desired mechanism

depends on certain non-announceable information being communicated.

¥e can view the 'difference between these two classes of mechansims as

representing the value (to the players) of having available a suitable

mediator, if without a mediator they can agree on and commit to a

communication structure.
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Announceable Information

Even if we ignore incentive constraints, not all possible systems of

partial or total public revelation of _t e T can be generated by sequences of

public announcements. The essential point is this: It is impossible to

have the extent of i's revelation depend on what i reveals, and the extent

of j's revelation depend on what i reveals. This can make certain desirable

outcomes infeasible, as in the case of the "strength and weakness" example

below. It is a problem that a mediator can overcome, by having both i and J

reveal their information privately to him. In this sub-section, I describe

the class of revelations, or information systems, which can emerge from

public communication. This should prove a useful step towards classifying

the rSCF mechanisms, although the interrelationship with incentive problems

is likely to be difficult. It will also address more directly the class of

problems in which (i) lying is detectable and adequately punishable ex-post,

but (ii) private actions cannot be controlled, so that it may be desirable

to arrange for less than complete revelation. Then we can predict the

outcome from each posterior on _t, and the class of feasible distributions of

posteriors (if below) then gives the class of feasible distributions of

outcomes.

Describing Revelation Systems

For our present purpose, we ignore the Cartesian product structure of T

(T = T,x...zT ), and simply list the elements: T •= {t^,...,t }. We assume

that, before receiving private information, everyone has the same prior ji =

{%.,..., Ti ) on T; that is,

rt. = prior probability that t is the true state.
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Revelations will update these beliefs. ¥e model this as follows. Define

the simplex S as:

S - {(pi,--.,Pjj): Pi 1 0; 2 Pi • 1}-

Consider probability distributions on S. The prior jt is represented by the

distribution all of whose mass is concentrated at the point ji e S. Any

revelation corresponds to a mean-preserving spread on S. For instance,

suppose that with probability p(m.|t ) , if t is the true state, message j

is the result, (i^l , . . . ,lt; j"1 , . . . ,m) . The the posterior probability of t ,

if m. is heard, is

pUJt"]p[t^]

p(m^^|t^)Tii

N

I p(m |t^)Tt.

and we represent this message system by the following distribution on S: A

H

probability mas pLmJ -
I p(m.|t )'JI. is attached to the point jD(m.) =

(p[t |m.], p[t |m.],...,p[t |m.]). It is easy to check that this'

distribution is a mean-perserving spread of ji, and that (using Bayes' rule)

one can recover the initial data p(m.|t ) from the distribution.
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Proposition 1 . Assume that the agents' information ;)ointly determines t e

T, so that, if all were revealed, no uncertainty about t would remain. Then

(incentive constraints aside) a mediator can construct a (partial)

revelation mechanism for each distribution on S which is a mean-preserving

spread of %•

Proof ; I restrict the proof to distributions with finite support

(_£,... ,p )_< S. It would not be hard to extend it to general

distributions. To achieve the distribution with weight q. on jd (i«1,...m),

the mediator (having collected all private information, and therefore

knowing t ), announces message "j" with probability p[j|t J, where

.i,.- - - -^-

p[3lti].ihiliJ2LLl.!i!i

By construction, this will indeed generate the right posteriors. ¥e

need only check that ^ p[j|t ] = 1 for each i:

but this follows since the mean of the assigned distribution is u.

Q.E.D.

How, in general, it will not be the case that every distribution with

mean it^ can arise by public announcements. To understand this, recall that

no one player has all the information, in general. (if one does, then the

problem disappears.) Thus, for each player, h, there are states t ,t which

are indistinguishable. Therefore no announcement by h can change the

relative probabilities p /p • , .
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Definition . Let d be a distribution on S, attaching weight dCjg) to each

point of a finite support {£ » • • • t£ ) • Let h represent an agent

(h=l ,2, . .. ,n) . A distribution d' is an h-stretch of d if it can be obtained

from d by the following changes:

k k k
For each point 2. » take some of the weight d(2. ) from 2. » and

h k
distribute it within the set D (2. ) = {_£ e S: if i and j are

k k
indistinguishable to h, then p./p- " Pj/p-}» in such a way as to leave the

mean at 2. •

The idea of this is that h can make different announcements depending on

what has already been announced (i.e. the different _£ 's), but this

announcement can depend only on his own information. (At the cost of some

slight increase in complexity, one could consider distributions with general

supports.) There is perhaps a slight loss of generality from the fact that

we allow h's announcement to depend only on beliefs just before his

announcement, not on how those beliefs were arrived at. I suspect this will

not matter much.

Definition : A distribution d on S is announceable if it can be obtained,

starting from 11, by a sequence of stretches.

Proposition; Hot every distribution on S with mean n is announceable.
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Proof ; Rather than constructing the simpleBt counterexample, we discuss a

more general class. Suppose there are n players, and T can be written as

T^x.-.tT , where h knows t, e T, , and where t, is independent of t, (k*h).in h h h k

Suppose T contains r members ( it would be easy to allow |T,
|

* t^. |, but

still not worth the effort). Write p(i. ,i_, . . . ,i ) for the probability that

tj^ " ij^, t2 "= i2f • • » I "t-, " i„» where 1 <_ i|,...,i <_ r. Then by

independence, if 2. ^^ ^^^ prior,

p(i^ ,...,i^)p(i^' .i^,-..,!^)

where, for each h, j, and j' are i, and i' but not necessarily respectively.

Moreover, this relationship is preserved by every stretch, that is, by every

individual revelation. To see this, fix h, and suppose (without loss of

generality) that j = i ,
j' = i/. Starting with a 2. satisfying (I ),

suppose _£* is given weight in an h-stretch. Then we know, since (i. ,...,i )

and (j^,...,j ) are indistinguishable to h, that

p' (i. ,...,i^) p(i, ,...,i )
1 n _ I n /^^

and likewise that

p'(i' ,...,!') p(i' ,...,i')
I n I n i~\—rr-n rr-r ^ —

T~^< n-r . - \j)
P IJ^f'.Oj^-' PU^ >••• » Jj^/'

Since we can express (I ) as

—r-- :—r = —T-m ttt-' (4)
pU^f'»2j^) p(i^,...,i^;
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it follows that the same relationship (4) must hold for £* . Thus, (l ) holds

for every point ^ e S which is given weight in an announceable distribution.

This proves the Proposition; it also tells us that announceable

distributions are supported on the subset of S on which all relationships of

the form (l ) hold.

For example, consider the case n = 2, r = 2, which we will discuss

below in the "strength & weakness game." Then we have just one constraint,

namely

P(1,1) p(2,2) - p(l,2) p(2,l)

or, writing V for 1 ("weak") and S for 2 ("strong"),

p(w,w) p(8,s) = p(w,s) p(b,w) (5)

Bevealing "whether or not both are weak" involves putting weight on a point

with

p(w,w) = (6)

p(w,b) •= p(s,w) >

which does not satisfy (5). Thus, that information can not be revealed,

even approximately, with any sequence of (stochastic) announcements. It

would be desirable to characterize the announceable distributions on S. At

present, we only have two necessary conditions:

(i) . the mean of the distribution must be jt.

(ii) the support must be contained in the smallest set which contains

Tt and which contains D i^) whenever it contains ^ e S, and for all h.

It seems clear that these conditions are not sufficient, however.
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Application: Bargaining, Tvo-Sided Uncertainty .

In bargaining, each of the two players has private information about

hie own value of the item they are bargaining over. One question we might

ask is: Would it be possible for the players first to find out, jointly,

whether or not there are potential gains from trade? If player 1 is

initially the owner of the item, and has value Vj^ for it, while player 2 has

value Vj , we ask whether it can be made common knowledge whether or not V2 >

V| . This amounts to announcing the distribution:

Prob[v2 > v^ ] at the point E((vj^ ,V2) jvj > Vj^) e S

Prob[v2 £v^j at the point E((v2,V2)|v2 <_v^) e S.

¥e ask whether this distribution is announceable. Suppose we can choose

'^11' '^12 (possible values of v^) and V2p V22 (possible values of V2) such

that all four combinations are possible, and such that

V2i > vn

^22 < Vii

^21 < ^12

V22 < V12

Then we are asking for an information system which puts positive weight on a

posterior with positive weight on (V]_i»'V22) smi zero weight on each of the

other three combinations. But, with independent values, this is not

announceable. The desirable information would, however, be extractable with

a mediator (truthtelling would be an equilibrium), and so this shows the

problems generated by decentralized communication.



15

Announcability and Incentive-Compatibility

So far, in discussing announceability, I have ignored incentive

problems. In order to deal with games of public communication, however,

even in the "classical" case in which there are no private actions, we must

consider the incentives to lie.

Consider a mechanism which is incentive-compatible in the usual sense

with a mediator, so that no player wishes to lie to the mediator. Suppose

also that the information needed to implement the mechanism is announceable.

Does it follow that the mechanism can be implemented using only public

communication? In general the answer is no. The reason is that, in the

usual incentive-compatibility calculation, incentives to lie are calculated

(for each player) on the basis of his own private information only.

However, in using public communication to generate an announceable

revelation, some players will hear some information about others before

making their own revelations. Thus they know more when considering whether

to lie, and this means that a stronger incentive-compatibility criterion is

needed. If truthtelling is a dominant strategy, that is sufficient, but

that is relatively rare. Likewise, if the revelation is announceable

simultaneously, the standard condition is sufficient.

The Strength/weakness Game; An exam-pie showing •positive value of a

mediator.

In this game, there is useful information which cannot be conveyed

between the two players because it is not announceable. Moreover, no

announceable refinement of the desired information can be communicated,

because of incentive-compatibility problems. Thus the only communication-
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feasible mechanisms involve not communicating that information (in this

example, the only information).

There are two players, I and II. Each observes whether he is weak (w)

or strong (S). The types are independent, and the probability of S exceeds

one half. Each player has two moves, called X and Y. The payoffs are as

follows (l chooses the row, II the column):

Both Strong ; Both Weak ;

X Y X Y

X

Y

(1,1) (0,0)

(0,0) (0,0)

X

Y

(0,0) (0,0)

(0,0) (1,1)

I strong, II weak :

X Y

I weak, II strong ;

X Y

X

Y

(0,0) (-2,0)

(1,-2) (-2,-3)

X

Y

(0,0) (-2,1)

(0,-2) (-3,-2)

Consider the following desirable mechanism: Each player plays X, unless

both players are weak, in which case each plays Y. This is incentive- •

compatible using a mediator: Each player reveals his type to

the mediator, who announces "play Y" only if he heard two "V" messages. If

no such aimouncement is heard, each player is content to play X; if it is,

each wishes to play Y, provided he believes the other player told the truth

to the mediator. It is also straightforward to show that truthtelling is a

Bayesian equilibriiom, ^ given the mediator's rule.
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However, the information "whether or not both are weak" is not an

announceable partition, and so cannot be communicated without a mediator.

Moreover, the players cannot use a refinement: a weak player will not be

prepared to announce his weakness first to the other, since the potential

loss if the other is strong outweighs the potential gain if the other is

also weak. The point is that, if II believes I is weak, he will play Y.

This is desirable for I if and only if in fact both players are weak.

However, it is impossible, without a mediator, for a weak I to make his

revelation conditional on II also being weak. Thus, in this game, the

opportunity for communication will not be taken unless there is a mediator

available.
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III. Language-proof Equilibria and Variable-Structure Communication-

Teasible (VSCF) Mechanisms

In the example presented above, a mediator can facilitate

communication which will not occur without him. However, in other cases too

much communication may be at once harmful and tempting, and a mediator's

role may - paradoxically - be to prevent inappropriate communication. In

this section, I offer a new theory of when (absent a mediator) unauthorized

communication may be expected. This leads to the idea of a language-proof

equilibrium, and a VSCF mechanism: one in which no unauthorized

communication will happen. Intuitively, an equilibrium which is not

language-proof is only self-enforcing if agents are somehow physically

unable to make claims which will be believed if made, and which are worth

making if true. Unless there are ways of committing agents not to engage in

such unauthorized communication, an equilibrium (in the perfect Bayesian

sense) which is not language-proof is not self-enforcing, and therefore does

not properly implement the corresponding outcome rule r: T - A(a). Thus,

we have a- class of rules called variable-structure communication-feasible

('VSCr), which can be implemented by language-proof equilibria. Every VSCF

Tu.le is FSCF, but the converse is by no means true. Allowing for the

possibility of unauthorized communication reduces the class of self-

enforcing communication structures, and hence the class of feasible rules.

Thus, the difference between perfect Bayesian equilibrium and language-

proof equilibrium, or between FSCF and VSCF, is that, in the former, it is

assumed that agents can commit themselves to a format of communication - in

particular, sometimes to remaining silent. When such commitment is

impossible, we are led to the class of language-proof equilibria and the

corresponding class of VSCF rules.
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When Communication May be Inappropriate, But Tempting

Consider a game with two players, I and II, and let I have private

information. Even if I's revelation of his information is voluntary and

desirable for him, it may harm II. Of course, II likes having information,

but he may dislike the effects of I's knowing he (ll) has the information.

Thus, .II o£in-be better^off. if communication is infeasible.

In fact, I and II may both be better-off. We can construct examples in

which, if I discovers a "good" state, he wants to tell II, but, if he

discovers a "bad" state, he wants II to remain uncertain. If it is common

knowledge that communication is feasible, however, II will not remain

uncertain if he hears no "good" message; he will conclude that the state is

"bad." In some cases, this can mean that both players, ei-ante, would

prefer that there be no communication channel. (See Appendix.) However,

they may be unable to arrange this.

Thus, it can happen that desirable mechanisms are ruled out by agents'

inability to commit themselves to not communicating, or to restricted forms

of communication. In this section, I discuss when and why a perfect

Bayesian equilibrixim may be vulnerable to unauthorized communication. To

discuss this, it is not enough to ask whether the equilibrium is robust to

the addition of more communication channels, as one might think. The reason

is that every equilibrium is robust in that sense, but in an unconvincing

way.

If we add message channels, there is always an equilibrium in which the

sender fills the channels with messages indistinguishable from those he

might use to communicate, but actually uncorrelated with any relevant

information, and for those who receive these meaningless "messages" to

ignore them.
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(Technically, let G' be a communication version of a game G, and let E

be any perfect Bayesian equilibrium of G'. Now let G" be another

communication version of G, but with more message opportunities. (G" is a

communication version of G'.) Then there is a perfect Bayesian equilibrium

E' in G", in which all the additional channels are filled with "noise" as

above, and which gives the same results as E.) ..
-

These equilibria, which might be called "noisy" equilibria (because the

communication channel is effectively destroyed by the noise), are widely

regarded as implausible. Kalai and Samet (1983) impugn the "persistence" of

a noisy equilibrium. The view I take here is intuitively based on the idea

that message-sending is very slightly costly, so that an agent wishing to

convey no information will simply remain silent. (As Lehrer once said, "If

people can't communicate, the very least they should do is to shut up.")

This brings us to the second way in which a communication channel can

be neutralized in perfect equilibrium. It is always an equilibrium for no

message to be sent, if the response to any message would be to ignore it -

in other words., not to understand it. If one believes that meaning is

generated only in an equilibrium, it is reasonable to believe also that any

new "unauthorized" messages will not be iinderstood, since they do not occur

(and thus acquire meaning) in equilibrium. Thus the standard approach is

internally consistent, and is appropriate when there is no world outside the

game. In this paper X take a different approach, and assume that there is a

sufficiently' rich and flexible language already in place. This makes it

natural to place certain restrictions on interpretation of messages. In

particular, a message which satisfies a certain condition ( self-signaling )
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iB plausible, and I assume that such a message will be not only understood

but believed. In some perfect Bayesian equilibria, there are self-signaling

messages, which disrupt the equilibrium. I say those equilibria are not

language-proof , and therefore not self-enforcing.

o— -- Informally, I assume that the messages to be -considered are messages of

q
the form "t. e S," where S is a non-empty subset of i's information set T.

.

I assume that, for every such S, there is a message m(S) which is not

sullied by being used with noise, or as a lie, in the equilibrium; and that

it is common knowledge that the dictionary meaning of m(s) is that t. e S.

This "dictionary meaning" is understood to be the meaning of m(s) if there

were no lies. Since lying is possible, there is no guarantee that m(s)

would be used to mean S; however, this is a focal meaning, from which

worrying about lies can begin.

Assum-ption ; If an equilibrium is such, and S _< T. is such, that i

prefers to have other players believe S (rather than equilibrium beliefs)

precisely when t. e S, then S is self-signaling , and m(S) is interpreted to

mean t. e S, and this is common knowledge.

Thus an "equilibrium" in which S is not meant to be communicated, but

in which S is self-signaling, will not survive. If there is no such S, I

say the equilibrium is language-proof . This means that, for every

unauthorized message,* there is some reason not to trust it.

In the formal definition below, I consider the simple case in which

only player 1 can communicate, and only before G begins. (Later, I discuss

extension.)
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In this si-iplest case, we can "collapse" the problem to a payoff

function u^(S^,tj^), giving 1 'b (expected) payoff as a function of his true

private information t^ e T^ , and of the subset S^^ _< 1^ to which all other

players' beliefs have been restricted by their interpretations of what

player 1 has said. This function is supposed to be common knowledge; notice

also that- is is defined even when t^ { ^i* since 1 could lie.

Take an non-empty S^^ i.*^!' ^^^ define: •*

S* = {t^: u^Cs^.t^) > Ui(P(ti),ti)}, where P(t^) is the information

conveyed about t^ in equilibrium P(«).

If Sf _< Sj^ , we say Sj^ is credible . If S* _>. Sp we say S^^ is unconcealed .

If S* = S. , we say S^ is self-signaling . (Notice that it is precisely the

change in beliefs itself that changes the payoff, not an exogenous cost.)

The interpretation is that the message "t, e ^i>" ^^ich does not occur in

equilibrium, will be sent precisely when it is true. To check whether a set

S-^ is self-signaling requires only public information. I define an

equilibrium ?(•) to be language-proof if there exists no self-signaling S^.

A mechanism in a game G is VSCF if it can be implemented by a language-proof

equilibrium in some communication version G'.

This defines what is self-enforcing when it is common knowledge that

players are rational, have a language in common, and are used to people

speaking the truth except when it would benefit them to lie. Allocations

we normally consider equilibra may not be self-enforcing in this sense. ^^ I

now give some applications of the definition.
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Application 1 ; Uniform Preferences .

¥e say 1 's preferences are uniform if, for all t^, tl t T^ and for all

non-empty S^ , Sl _< T^,

UiCS^.t^) > Ui(SJ,t^)

implies

u^iSj.tp > Uj,(SJ,t^3. , ^_ „ ...K,. ...... =

One might expect that, if preferences are uniform, every equilibrium is

language-proof: intuitively, it would seem, nothing can be signaled. This

is not quite true, as shown by the following example, in which player 1

observes the state (A .or B) , communication occurs, and player 2 chooses move

X, Y or Z: The payoffs are:

State A:

Move 1 'b payoff 2' payoff

X 3

Y

Z 1 2

State B:

X

Y

Z 1

3

2

In this game, t};iere is an equilibrium in which 1 tells 2 the true

state, 2 chooses X in state A, Y in state B, and in every state 1 gets 0. and

2 gets 3. This equilibrium is not language-proof: the set {A,B} ("I refuse

to tell you the state") is self-signaling. The unique language-proof '
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equilibrium involves no communication. (Compare this vith the example in

the Appendix, in which only one type prefers vaguer beliefs, and the unique

language-proof equilibrium involves full communication.)

Notice how, in this example, there is an implicit question of

commitment. The usual equilibrium story allows 2 to be "committed" to (say)

treating every unauthorized mesBage as- a statement that state A has

occurred. Although in equilibrium this commitment is never tested, there is

still a question of its credibility. 2 has to claim convincingly that he

will not understand if 1 announces "I won't tell you the state. Notice that

this is a good plan for me whichever state has happened." In requiring

Language-proofness, we do not allow 2 to convince 1 of such an inability.

Notice also that this example shows that a full-revelation equilibrium

is not, as might be thought, necessarily language-proof.

Returning to the general case of uniform preferences, it is true that

the only possible self-signaling set is 1^ itself. This shows that the no-

communication equilibrium is language-proof, and also that any equilibrium

in which there is at least one p. which is (non-strictly) preferred to T^,

is language-proof.

Many models in the literature involve uniform preferences. Signaling

models (Spence, Milgrom-Roberts , Kreps-Vilson-Milgrom-Eoberts), adverse

selection models (Akerlof, Vilson), and auction-sales models are examples.

The lesson is that payroff irrelevant ("costless") communication will not

disrupt any equilibrium. If the relevant class of possible messages are

such that, in some sense, indifference is not a real possibility (as in the

examples just cited) then payoff-irrelevant communication will not occur in

equilibrium, either.
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Application 2 (Cravford-Sobel)

Crawford and Sobel (1982) consider a stripped-down communication-in-

games model, in which one agent (R) has no private information, while the

other (S) has no payoff-relevant choices. (Green and Stokey (1980) also

considered such a model.) Crawford and Sobel show that there are a number

- o-f" equili'briar^differing in th« size of th« equilibrium partition of the

state space [0,1 J. I shall show that, at least in the example they work out

(their Section 4), no equilibrium is language-proof.

In the notation introduced by Crawford and Sobel, the state m is

distributed uniformly on [o,l]; the action y is chosen by E after hearing

S's message, and the payoffs are, for some given b > 0,

U^ = -(y-m)^

An equilibrium consists of a partition of [0,l] into intervals (because

of concavity). It is completely determined by a^^, where [0,aj^] is the first

of those intervals. I shall show that, unless a^^ <_ 4b, the equilibrium is

not language-proof. The condition a^^ <_ 4b is satisfied by the most-

informative equilibrium, and by no other.*

Take a Crawford-Sobel equilibrium, and ask whether there exists S =

[0,s) which is self-signaling (credible and unconcealed), where < s < a^^.

If so, it must be that, at m = s, the value to S of persuading E that m e S

*It is simple to show that, if a^^ and al correspond to different equilibria
then

I a^ - ai 1 > 4b

.
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is equal to the value of persuading him that m c [o,a^]. Simple calculatios

shows that this requires s " =• (a^^ - 4b). Clearly, then, a^^ > 4b if there

is to be such a self-signaling S. However, it is also simple to calculate

that, provided a^^ > 4b, S = [O, •^(a^ - 4b)) is indeed self-signaling. Thus

we have shown that every Crawford-Sobel equilibrium with a^^ > 4b fails to be

language-proof. -

Since the upper end of the interval is symmetric with the lower end

except for the fact that b > 0, consideration of possible self-signaling

sets of the form S = (l-s,1j can be expected to give the result that there

is always such a set. This is indeed the case.

To interpret this result in terms of evolution of language, suppose we

begin at ^a Crawford-Sobel equilibrium. In evolutionary terms, every S is

genetically, programmed to send message i when m t [a. , ,a J, and every E is

genetically programmed to take action y. = "pia. .
'*' ^j J °^ hearing message

i; and every mutation on the part of R, or S if it does not involve new

messages, is disadvantageous.

Now suppose that when m z [a_,_. ,e.J (b-}t"1 ) and m > s, where (l-s) =

=-((l-a^ .) + 4b), S sends the message H, but also sends a further message

"+". The "richness" assumption states that this is possible. Initially,

this has no effect on S's expected payoff: the mutation is neither

advantageous nor disadvantageous. However, suppose that various mutations
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of E now arise, irith different conjectures about what should be inferred

from the signal "N*". Those whose conjectures closely enough approximate

"me (sjl]" will be favored. Moreover, as the proportion of those E's

grows, the pressure on S's will now be strictly in favor of the original

mutation. Thus, if that mutation managed to survive long enough for the R's

to respond, it will prove favorable.

In the human- language interpretaiton, suppose S sends an unexpected

message "I announce not only that m e [a^ ^,l], but also that m > s." R can

calculate that this is self-signaling, and this makes it plausible that he

will believe it. Hence, provided S is capable of saying what I just

described, the equilibrium will not survive.

A simpler example in which language-proof equilibrivun does not exist is

the following. Player 1 knows the. state (A or B) . Player 2 will take

actions X, 1, or Z according as he believes the state is A, is B, or is

uncertain. Payoffs to 1 are

A B

X

Y

Z

1

2

1

2

The no-revelation equilibrium is not language-proof ({B} is self-signaling),

while revelation is not an equilibrium.
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Application 3; The Cooperation Game . Consider the cooperation game (see p.

2) when F2(*) ^^ degenerate, so that y-j ^^ known and is less than 1.

Consider an uncommunicative equilibrium. If F^(l ) < yj, the only such

equilibrium is no cooperation. Thus, u^CT^Jj^) " for all y^. However, if

player 1 credibly announces Sj^ " (0,1 ), he gets more than if the outcome

(given common knowledge that y^ < 1 , yj < 1 ) is cooperation. If we allow

player 1's intended move to be communicated along with (or as part of) his

private information, the outcome will be cooperation if y^ < 1- Hence, the

uncommunicative equilibrium is not language-proof. This conforms to our

intuition that, in this game, an opportunity for communication will not be

wasted by going to the "noisy" equilibrium. I formalized this, using an

"infinitesimal cost of communication," in Farrell (1982).

A Refomulation: Coalition-Formation .

Some insight into the nature of language-proof equilibrium, and the

existence problem, may be provided by the following interpretation as a

coalition-formation problem.

T represents a set of players t, each maximising his own utility. In

an equilibrium, t will be in just one coalition, P(t), and his utility is

u(P(t),t). The function u(S,t), where t e T and ^ * S <_ 1, is eiogenously

given, and defined whether or not t e S.

A limited-language equilibrium is a partition of T into coalitions P,

such that, for all t, all P,

u(P(t),t) >_u(P,t),

' ,
,

13

where t e P(t;. Notice the difference between this and

u(P(t),t) > u(Pu{t},t)
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which would represent a straightforward condition "t does not prefer to join

some other coalition P." Here, instead, we can think of it as follows: The

treatment of members of a coalition depends on the set of its official

members. In equilibrium, all members must be official, but a player

deviating becomes an unofficial member. The function u(P,t), where t e P,

expresses the payoff to an unofficial member.

Now consider a different kind of deviation: forming a new coalition S.

If a new coalition is formed, there has to be an announcement to describe

its membership. Moreover, that announcement must be credible: that is,

given that the announcement describes the set of official members, a referee

checks that (i) all the official members really wish to join, and (ii)

nobody will wish to join unofficially. If the proposed coalition does not

meet these requirements, it is not allowed to form; if it does, then it is

allowed.

An equilibrium of this game is then a language-proof equilibrium of the

corresponding communication game.

This coalition-formation view is related to that of Myerson (I983b),

Section 7, but my concept of blocking by formation of a self-signaling

coalition does not fit into Myerson' s framework, because his Aziom 1

(Domination) fails to hold. The reason is this: A proposed equilibrium E

(in Myerson's terms, a mechanism p.) may be blocked by a self-signaling set

S. If E' is another equilibrium, worse for every type of player 1 than E,

then every t e S would prefer to defect to S, but so might some other types.

There is no guarantee in general that there will be any self-signaling S'

which blocks E'

.
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Generalizing the Definition

So far, I have only defined when an equilibrium is language-proof in

the case where just one player can communicate. It is not hard to

generalize this. First, consider the last point at which effective

communication is possible. The definition given above for player 1 must

hold for each player with a physical ability to communicate. Since we are

considering the last point at which communication can happpen, reaction to

unauthorized communication cannot involve further communication. Hence it

is relatively straightforward to define the payoffs.

Now, consider the time next before that, (if time is not discrete,

problems may arise.) Any communication, authorized or not, leads to a

subgame. ¥e require that the subgame be assigned a language-proof

equilibrium. Now evaluate any proposed communication using that behavior in

the subgame, and require that the second-level-up subgame be conducted in a

language-proof way.

Thus, language-proofness is defined recursively starting from the end.

One difficulty with this is that, if a subgame has no language-proof

equilibrium, we do not know what payoffs to assing to reaching it. This is

a problem even if we do not reach it in a proposed equilibirum. . The

question is, how do players, contemplating an unauthorized communication

which will lead to chaos (no language-proof equilibrium), evaluate that

option? In some fortunate cases we could use bounds on the payoffs, but

this will not generally suffice.
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Appendix

Example in vhieh too much information is revealed .

We construct* an example with the simplest possible private information

structure: one player (l) has one binary piece of private information: he

knows whether state 1 or state 2 has occurred . We need a game in which

player II 's action is different according to whether he knows state 1, knows

state 2, or knows nothing; moreover, I must behave differently (at least in

one state) when he knows II knows the state than when he (l) knows II does

not. Thus II must have at least three moves, and I must have at least two.

Consider the following sequential game. The payoff vectors are written

thus: (Payoff to I in state 1, to I in state 2, to II in state 1, to II in

state 2).

(0,0,0,0)

(3,-2,3,-2) (2,2,2,2) (-2,-10,-2,3)

*This example is based on one produced during a conversation with A.
McLennan, to whom I am grateful.
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Vithout cosmunlcation, a feasible nechanism is for I always to play

"down" and for II always to play "center." This gives each player a payoff

of 2.

However, suppose there is time and language available for I to communicate,

even though he has not intended to do so. The message "state 1 has

occurred" is self-signaling:

- credible , since if II believes it, he will play left if I plays down,

and this would be bad for Ij*

- unconcealed since 1^ can get 3 by persuading II of it, when it is

true.

Thus this equilibrium is not language-proof. In fact, the only

language-proof equilibrium involves communication of the state, and

outcomes:

• (down; left) in state 1

(across; right) in state 2.

This gives ex-ante payoffs (5/2, 5/2), strictly less than the payoffs

from the FSCF (no communication) mechanism mentioned above.
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FOOTNOTES

.1. In fact, this is the only rationalizable outcome (for definition, see

Bemheim, 1982) whenever y^ and yj have distribution functions Fp Fj on

(O,") such that F^(F2(x)) < x for all strictly positive x. See Farrell

(1982).

2. With one opportunity for player I to communicate a binary message, the

following allocation is an equilibrivim mechanism:

.(C,C) if both y^ <_ F2(1 ) and y2 <. 1

(C,N) if yi <_ Fjd) but y2 > 1

(H,N) otherwise.

¥ith one opportunity each (either simultaneously or sequentially) for a

binary message, the following is an equilibrium:

(C,C) if both the y. are _< 1

(K,N) otherwise.

3. I am not wholly convinced of the legitimacy of equilibrium analysis.

However, I use it for ease of comparison with other work such as Myerson

C'1'983). Two alternative justifications for treating equilibria are: (i)

perhaps these are agents drawn from a large population which has been

engaging in this interaction for a long time - the "biological" approach -

and (ii) perhaps, before coming to know their private information, the

Agents have non-bindingly agreed on how they will all behave. (Whether such

an agreement is plausible is a question I address in related work.)

4-. Thus two players can converse secretly without others knowing the fact;

or they can take care to be seen leaving the room together, or they can

recapitulate some part of their discussion later in public,...

5- Consider player I, and suppose he attaches probability p to the event
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"II is S." Suppose first that I is S. If he announces "S," he vill get no

further infomiation about II 's type, and he expects II to play X. So the

expected payoff from X is p, and that from Y is (l-p). Thus, having

truthfully announced "S," I would play X as intended, and would get an

expected payoff p (p > 1-p)«

On the other hand, if I is in fact S but announces "V," there is

probability p that he will find out that II has announced "S," which in

equilibrium I will take to indicate that II is in fact S. Since I knows

that II has no information about him (l), he will expect II to play X, and

will therefore play X himself, getting payoff 1 in this case. There is a

probability (l-p) that I will find out that II is ¥. In this case, II also

believes that I is V, and so II will play Y, thus giving I payoff -2.

Since p is greater than p + (l-p)(-2), when I is S he will report the

truth. Now suppose that I is in fact ¥. If he reports V, then, with

probability p, he discovers that II is S and that II will play X. This

enables I to get by playing X as he is meant to, and he would do no better

by playing Y. With probability (l-p), he discovers that II is also V, and

that II is going to play Y, as instructed; this makes it in I's interest

also to follow the instruction to play Y, and he gets 1.

Suppose that when I is V he reports S. Then he will discover nothing

about II 's type, but will know II will play X. This gives I a payoff of

whatever II 's type turns out to be. This is less than he can get by

reporting honestly, i.e. or 1 depending on II 's type.

7. See Farrell (1982).

8. This is not an innocuous assumption. It is equivalent to assuming that

communication is ruled out once the first move in G is made. I consider

removing this restriction below.
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9. I think this is no real loss of generality, since any randomizing device

could be included in T, , and also since I don't thijak 1 would ever choose to

randomize, as it would be unobservable.

10. We could use the condition "weakly unconcealed" obtained by weakening

the inequality in defining "unconcealed." But our purpose is to discover

whether there are facts that will emerge even if the intention is for

everyone to remain silent. Thus, we require strict inequality, representing

an unwillingness to do what was intended.

11. Requiring this just for some t^ t 3^, with equality for the rest, would

be inappropriate. If strict inequality holds for t^^ e S' Cs., with

equality for t^ e S^ \ Sl , it is Si that would be inferred if S^^ were

claimed. So we should consider whether the subset S,' is credible and

unconcealed.

12. Por a related approach, based on exploitation of opportunities to

"isBvent signals," see. McLennan (1983).

15. The Difference vanishes if (as in Crawford-Sobel, for instance) each t

is negligible in each coalition.
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