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BAND SPECTRUM REGRESSIONS*

Ever since Hannan [11 ] first proposed regression analysis in the

frequency domain, economists have been intrigued by the idea and have

particularly explored its applications for distributed lag analysis,

see Hannan [9], [10], Sims [13 1.. Dhrymes [1], Fishman [5] and many

others. Less attention has been lavished on static models and altogether,

few useful empirical applications of spectral regressions have been

found. The explanation for this centers on: (1) the need for large

amounts of data, (2) somewhat complex computations involving judg-

mental parameters such as spectral windows and truncation points, and

(3) rather minimal payoffs in terms of the gain in efficiency over

comparable time domain techniques.

In this paper, I will argue against all three of these points

by showing that frequency domain regressions have the standard small

sample properties, that these do not require spectral windows, and

computationally these procedures are easy to use, and most important,

that they lead to very natural and simple solutions to such difficult

problems as errors in variables and seasonality. In Section I, the

theory of models using the full spectrum is restated in a slightly

new fashion, Section II presents the comparable results for band

spectral models with some tests of this specification, Section III

describes the applications of these models to economic problems, and
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IV describes simple computational techniques. Section V applies the

method to a test of the permanent income hypothesis.

I. Full Spectrum Regressions

If we define the row vector w^ as

,.y (, i0 k 2i9 k (T-I)i8 k \
(1) wk = M, e k

, e V-.,e v k
l

where
k

= 2 TTk/T, then for a variable x
t ; t = 0, 1 , . . . ,T-1, w

kx/yT~

is the k^ element of the finite Fourier transform of x where x is a

column vector. The periodogram of x is defined as

(2) f x (0 k
)= |wkx|

2

and the cross periodogram between x and z is

(3) f„(0
k ) = (w kx)

+ (w
k z)

where t means the complex conjugate of the transpose.*

The periodogram is well known (for example, see Jenkins and Watts

[12]) to be a biased estimator of the spectrum. It is however asymp-

totically unbiased but inconsistent as the variance of each spectral

estimator does not shrink as the sample becomes infinite. It is this

inconsistency which forces the use of spectral windows or periodogram

averaging to obtain spectral estimators. As we are concerned with the

properties of our regression and only incidentally with spectral esti-

mates we will not find it necessary to use these techniques.

Here of course as wkx is only a scalar so the transpose is irrelevant.



(4)

Letting

W =

w^

w,

w^

\

Wt-i/

it is easily shown (Wahba [14] ) that the normal trigonometric identities

insure that the columns are orthonormal so that WW^= I = W+W and W is

a unitary matrix. Writing the vector 3c as the Fourier transform of x

times yf we can transform a multivariate regression equation

(5) y = xp +e

to obtain

(6) y = x p + e

Model (6) is a regression equation with complex random variables but

fortunately this does not affect the standard results of classical

regression models. The error properties of T are given by

(7) var(e) =Eee t

= E We g+w t

= WEe e+W+

= CT
2WfiWt

and if fi = I then T is a complex spherical disturbance vector.

This can of course be a distributed lag model but we assume that we have
the same number of observations on all variables in contrast to some
frequency domain analysis.



Assuming x (and therefore x) iadependent of e, the Gauss-Markov theorem

implies that the BLUE of (6) is

(8) $ = (#x)*x^

with variance-covariance matrix

(9) var p= (x^x)"
1
a
2

.

As there is only one BLUE of (5), the estimator (8) must be just OLS;

and upon substituting for x and y, we see that the unitary property of

W guarantees this.

The estimator in (8) can be written in terms of the periodogram

as

n -i

(10) S fxs («

k = o

T

E f,
k=0

where fxx (0) is a matrix of cross periodograms at each frequency and

fx (0) is a vector of cross periodograms. Clearly, unsmoothed periodo-

grams are required in estimating the parameters of the regression model.

The estimator is consistent, not because each periodogram element ap-

proaches its spectral value, but because the sum of the elements ap-

proaches the sum of the spectral values which is just the total variance

of the variable.

If in the original model (5) the disturbances were not spherical,

then (7) must be examined more carefully. If end effects in the

description of the disturbance are unimportant, either because fi is de-

fined as a circulant (Wabah [14]) or because T is large (Grenander and



Szego [7]) then W n

W

+ = diag f (9 ) where the diagonal elements are the

values of the spectrum of e evaluated at the T harmonics. Therefore by

constructing a matrix A with diagonal elements equal to erf
2

{9), we

can multiply (6) by A and produce spherical disturbances. Thus (6),

(8), (9) and (10) become respectively:

(11) Ay =Axp + A?

(12) p = (x + A + Ax)'
1
(x t A t Ay)

(13) var(p) = (x AtAx)"
1
a
2

(14) p

T-l

E
k=0
E f„(e

t )
f
e*(e k ) E f^ejf^ej

k =

The problem of non-spherical disturbances in the time domain is seen

to be merely a problem of heteroscedasticity in the frequency domain,

and is therefore easier to handle in full generality.

To make this estimator operational, it is necessary to use an

estimate of f
£ (9) from a first stage consistent estimate of the

disturbances. It is generally assumed that this should be a consistent

estimator of f (0) at each frequency which requires the use of spectral

windows, or equivalently, averaging over sections of the periodogram

which are assumed to be smooth. The author knows of no careful examin-

ation of the properties of the various smoothing techniques for this

special case although Duncan and Jones [ 2 ] suggest a one pass estimator

which estimates the A' s simultaneously by assuming the spectrum to be constant

in sections and then using the estimated variances to correct for the

heteroscedasticity

.



II. Band Spectrum Regressions

For reasons which will be argued in Section III it may be useful

to specify that a model applies for some but not all frequencies.

Constructing a T XT matrix A with 1's on the diagonals corresponding

to included frequencies and zero' s elsewhere, a natural specification

is

(15) Ay = Ax p + AT, E(Ae')(A'e') = a
2k , x and 7 independent.

A is idempotent and symmetric, so (ll)-(l3) describe this estimator

except that A A = A. The periodogram version can be written more con-

cisely by defining X' as the sum only over the included frequencies

specified by A.

(16) $ = [2'f x (e k )]z'fxy(e k )

The estimator (12) will only be real if the matrix A has a symmetry

axis which runs from northeast to southwest. That is, if frequency

component k is included, then T-k must be included. Economically this

merely means that both sines and cosines are to be included at each

frequency. To establish this fact we define the T XT matrix C as:

/

17 C =

1 •o

. . .
•

1

• . 1

1

'
'•

1 o • . . .

and employ the notation that a bar means the complex conjugate. We first

observe the important symmetry property that W = CW and therefore



x = (Wx) = Wx = CWx=Cx as long as x is real. Since CC = I, x + Ay =

x+C C ACCy = (Cx) + C AC Cy = x + Ay = (x f Ay) as long as C AC = A which is

the symmetry condition described. The other term of the estimator is

real by the same argument.

The Gauss-Markov theorem assures that this estimator is best linear

unbiased under the restrictions of A. However, if A is not a valid

restriction then this estimator is inefficient relative to OLS. The

more data points are excluded the more inefficient is the estimator

and therefore there is a trade-off between efficiency and the possible

bias due to misspecification.

A test of the exclusions is therefore necessary. Fortunately it

is available in exactly the form always used in the time domain. The

estimator of (3 is of course normal as long as y is normal. In addition,

e is normal (complex) as it is a linear combination of normal random

variables. The residuals can be written as

(18) Au= Ay-Axp = (A- A^x+Ax)'1 ? + A)y = My = M~ .

M is Hermitian (m"1" =M), idempotent and has rank equal to its trace.

The trace of M is T - K where T is the number of included frequencies

(the rank of A) and K is the number of regressors. An unbiased estimator

of a
2 is therefore

(19) s
2 = (Au) + Au/T'- K

which is used in the standard tests of hypotheses and which is distri-

buted as *
T _ K

over its degrees of freedom.



A test of the exclusions A is obtained directly by following

Fisher [4] in his exposition of the classic Chow tests. Replacing the

word Hermitian for symmetric, unitary for orthogonal, and t for ' the

argument is unaffected. Thus, letting u be the unrestricted fre-

quency domain residuals obtained in this case by using only some

frequencies (u*"Au) ) and u be the restricted residuals from forcing

the p' s to fit all frequencies, the statistic

(go) F = C^ + ^- u^+u*) /(trM-trM*)

is distributed as F with tr M - tr M * and tr M * degrees of freedom under

the null hypothesis.

III. Applications

In the time domain it is very common to exclude some periods such

as wars or strikes because they do not conform to the model. Sometimes

these exclusions are tested and sometimes tests for broad structural

shifts over time are conducted. However, there is little discussion

of whether the same model applies to all frequencies. It may be too

much to ask of a model that it explain both slow and rapid shifts in

the variables, or both seasonal and non-seasonal behavior. It is at

least reasonable to test the hypothesis that the same model applies

at various frequencies.

Furthermore, since the typical spectral shape of economic variables

(Granger [6]) has a strong peak at low frequencies, these periodogram

components completely dominate the parameter estimates. Often the



sum of only the first three or four periodogram elements gives the

same estimate as does the full OLS. This is merely an observation that

the fitted line will pass exactly through an outlying value of x.

While this experimental design gives relatively confident parameter

estimates, we have little information about the fit if in fact the

specification is not valid for the outlying x. Thus, it may be very useful

to test the inclusion of the long term fluctuations in the model.

The relatively large literature on seasonal adjustment suggests

that there may be no unique best way to seasonally adjust data; some

procedures extract too much, and others too little, and in general

there is much concern for what is done to the other components of

the series. In a careful discussion of seasonal adjustment, Grether

and Nerlove [ 8 ] point out that

"the idea that an economic time series may be divided
meaningfully into several unobserved components appears
to have been firmly established in Economics since the
time of Jevons. In itself, the division. . .is of little
significance; it is, rather, that the components are
themselves ascribable to separate and distinct groups
of causes or influences."

It may be reasonable to estimate a different model for seasonal and

non-seasonal components, rather than to attempt to extract exactly

the seasonal portion. At least the exclusion of all seasonal components

from the model presents a method for avoiding the question of seasonality.

As an example, suppose we have monthly data so that the seasonal

frequencies and their harmonics have periodicities of 12, 6, 4, 3, 2.4,

and 2 months. If it is assumed that the seasonality has been extremely
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regular over the sample period, it is enough to eliminate these six

data points and their 5 symmetrical counterparts of the A matrix.

*

However, if the seasonal factors are assumed to be slowly changing

then a narrow hand around each harmonic should be extracted. The

more flexible the desired version of seasonality, the wider should be

the excluded bands. This approach to seasonality has the additional

merit that as more flexible seasonal assumptions are adopted, the final

degrees of freedom of the regression are correspondingly decreased.

A second class of models for which band spectral regressions

are an appropriate estimation technique, are errors -in-variables

models. In general, we need additional information to form consistent

estimates of these models, whether it be variance information or properly

specified instrumental variables. Very often it is reasonable to describe

the additional information in terms of the frequency decomposition of

the variance of the measurement error. If the error component is assumed

to be confined to a particular frequency band, then a natural procedure

is to eliminate that frequency band from the regression. This is

essentially the technique used by Friedman in defining permanent income

as a moving average of measured income. This filter eliminated high

frequency noise which he calls the transient component of income.

To be specific, suppose

(21) y = xp + e; z=x+v,

As Chris Sims has pointed out to me, this is exactly comparable to
using 11 seasonal dummies in the time domain.
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where x is unobservable but z can be measured. Assuming that z is

independent of € and that v has no variance at some frequencies

(notice that we do not need to assume that v is independent of x) we

can construct the matrix A which includes only frequencies where the

variance of v is zero. The bd as of the estimator corresponding to (12)

is

E(p - p) = ECz+ A z)'
1
z + Avp .

If the expected value of the square of v is zero then v must be iden-

tically zero at that frequency and therefore the bias is zero. This

implies that v is a process with a deterministic component. To avoid

this assumption, consider a sequence of models where z has an ever in-

creasing signal to noise ratio in the included frequencies. The upper

bound on the bias depends on this ratio and tends toward zero in the

limit. This argument provides a justification for eliminating some

frequencies even though the variance of v is not assumed identically

zero at the included frequencies on the grounds that the signal of these

frequencies is much stronger than the noise component.

IV. Computational Considerations

The procedures described in the previous sections are direct

analogues of OLS where Fourier transforms replace the real data. Most

regression programs do not allow complex data; however, by simple pre-

processing of the real data, the same results can be obtained.

Defining

(22) x* = W+ AWx
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which is a real T element data vector obtained by taking the inverse

Fourier transform of the Fourier transform times A, we can rewrite

(11)-(13) as:

(23) y* = x*p +e*

(24) p = (x x ) x y

(25) var(p) = (x*
/

x*)"
1

cr
2

The conventional regression packages will therefore provide band

spectral or generalized least squares regression output if the data

is transformed by (22).

The sampling statistics are however slightly incorrect if A is

not of full rank. Eu*u* = (j
2 (T'-K) while the regression program will

use T instead of T' . The use of this type of seasonal adjustment must

be accompanied by a decrease in the degrees of freedom.

In the errors-in-variables models however, a slightly different

procedure may be desired. If eq. (21) can be written as

(26) y = x*p+e

OLS on this model gives the same estimate as (24) since

x*ty* = x+W+AWW+A+Wy

= x+W1" A A+ W y

= x*+y

and A Is idempotent and symmetric. The appropriate error measure is now

u' u/T - K as an estimate of a
2 and thus the package output is correct as

given. If (26) is not appropriate, then the estimate of a
2 will alone
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be affected and will be an overestimate. Filtering only the exogenous

variables in order to remove the effects of errors at some frequencies

does not alter the statistical properties of the conventional regression

output except that included in the standard error is a component of the

measurement error.

A variation on the filtering procedure will therefore not affect

the validity of the regression result. A useful alternative form of

filtering when only a small band is to be left in the variable is the

band filtering procedure suggested by Granger and Hatanaka [6] which

consists of first demodulating the series by multiplying by a sine and

cosine wave of constant frequency. These results are then filtered with

a low pass filter and finally the two series are remodulated by multi-

plying by the same sine and cosine series. This corresponds to the

inclusion of a band of frequencies using weights which are not neces-

sarily zero or one. In some respects this filter is easier to apply

than' the ones described above and has given useful results in other

studies [2].

V. Another Test of the Permanent Income Hypothesis

Friedman hypothesized that permanent consumption was a linear

function of permanent income. However , the relation between tran-

sitory income and consumption was not as clear and, in fact, the

propensity to consume out of transitory income is often assumed to be

zero. Noticing that transitory components of a series are primarily high fre-

quency components, the Friedman hypothesis suggests that regressions

using only high frequency components would behave differently from
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those with only low frequencies. In particular , the marginal pro-

pensity to consume would be substantially lower.

In a simple test of the hypothesis that permanent and transitory

components have the same MPC, quarterly data on money income and con-

sumption from the first quarter of 1946 through the third quarter of

1971 were examined using the techniques described above. The transient

component was assumed to be that part with frequencies higher than

two years per cycle. This meant that one quarter of the data points

were in the portion of the spectrum generating the permanent series

and the rest generated the transient series. By variance, however,

the low frequencies are by far the most important in both of these

series.

The results are given in the table. The original series were

set to have mean zero but a constant was included to adjust for round

off errors. It was always very small and is not reported; similarly

no degree of freedom is extracted for its estimation.
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Table 1

Estimates of the Marginal Propensity to Consume

M. P. C St. Error

All . 89541 .00293

Transitory
(high frequency)

.89397 . 01056391

Permanent
(low frequency)

.89545 .01095428

T-Stat D.F. SSR

305. 4 101 1815.670

84.6 75.5 366.290

81.7 24.5 1449.230

1,100 = .0065 for testing different specification. Forming the F

statistic from (20) we get the extraordinarily low value of .0065.

Clearly, it is not possible to reject at any reasonable level the

hypothesis that the propensity to consume differs between permanent

and transitory series. The sum of squared residuals is remarkably

similar in the pooled and unpooled case.

To examine whether the particular choice of a dividing point was

responsible for the startling result, the gain or transfer function

from income to consumption was calculated. This indicates the static

regression coefficient, frequency by frequency, as long as the series

are in phase. It can be interpreted as the long run multiplie at that

frequency. This is shown in Figure 1. While there is some

variation with frequency, it is not substantial and in general this

very simple consumption function exhibits a great deal of stability.

In particular, it does not appear to be true that higher frequencies

have a smaller or even more erratic gain.
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