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Abstract

This paper develops a theory of high and low (extremal) quantile regression: the

linear models, estimation, and inference. In particular, the models coherently com-

bine the convenient, flexible linearity with the extreme-value-theoretic restrictions on

tails and the general heteroscedasticity forms. Within these models, the limit laws for

extremal quantile regression statistics are obtained under the rank conditions (exper-

iments) constructed to reflect the extremal or rare nature of tail events. An inference

framework is discussed. The results apply to cross-section (and possibly dependent)

data. The applications, ranging from the analysis of babies' very low birthweights,

(5, s) models, tail analysis in heteroscedastic regression models, outlier-robust infer-

ence in auction models, and decision-making under extreme uncertainty, provide the

motivation and applications of this theory.
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1 Introduction

Regression quantiles, Koenker and Bassett[48], represent a flexible and informative

method of regression analysis as they describe the conditional distribution of the re-

sponse variable Y given covariate X , without imposing rigid distributional assumptions.

The goal of this paper is to model and make inference on the extremal {near- extreme

high or low) regression quantile functions. In essence, they represent the models of

the extremal values of Y conditional upon X. For example, the near-extreme 0.1-th

conditional quantile function describes the values below which Y falls with probability

10% given values of X.

Modeling high or low conditional quantiles is motivated by many examples. Some
include: (i) in micro- economics: (5, s) models of investment, inventory, employment

shortages; auction models, reservation wage equations; (ii) in finance, micro- and

macro-economics: decision-making under extreme uncertainty, where good risk mea-

sures are vital for the purposes of insurance, safety-first resource allocation, and man-

agement of risks; and many others.

The ordinary extremal quantiles, the models and the sample analogs, have been the

main subject of classical and modern extreme value theory, which forms an important

field of applied and theoretical statistics.'^ The theory was developed by Von Mises,

Prechet, Fisher, Gnedenko, Smirnov, de Haan, and many others. The ordinary sample

quantiles have an immense inference role, providing the estimators of the tail index

and other tail functionals (Pickands[57], Hill[40], Dekkers and de Haan[21]). Analogous

motivations underlie the present analysis as well.

In this paper we study the extremal (high and low) conditional quantiles - the linear

models and the sample regression analogs. In particular, the models coherently combine

convenient, flexible linearity with the extreme-value-theoretic restrictions on tails and

the general heteroscedasticity forms. Within these models, the limit laws for extremal

quantile regression statistics are obtained under the rank conditions constructed to

reflect the extremal or rare nature of tail events. The goal is the practical, important

problem of modeling and making inference on the .3-th and lower and .7-th and higher

regression quantiles, as well as conducting the tail inference, in the common economic

data sets.^ {Our target is not the "exotic" 0-th quantile.)

The rank conditions approximate the degrees of lack of data or extremality pertinent

to the inference about the quantiles of interest. Define rank r as the quantile index r

times the sample size T. The extreme and intermediate rank conditions apply to the

cases where index t is extremal (e.g. .1, .2) and is low (r is small) or not low {r is large)

relative to the sample size T.^ Formally, the sequence of the quantile index-sample size

pairs {tt,T) is an extreme rank sequence if

(i) Tr \ 0, TrT -^ k> 0,

and an intermediate rank sequence if

{ii) T-r \ 0, TtT —> GO.

-As of today, thousands of papers are devoted to the extreme value theory. Many excellent books

give systematic treatments. See e.g. [7], [64], [65], [52], [33], [34], [26], [73].

^Say with T < 3000, and typical number of regressors, 5—10 and higher.

"•Heuristically, r is number of observations to make inference on the r- regression quantile.



Because the principles (i) and (ii) constructively exploit that the relevant data is

formed by the tail events and, or is scarce, they lead to

a. asymptotic distributions that either fit the finite-sample distributions better or

are more parsimonious than the conventional approximations,

b. important tail inferences, based on the extremal regression quantiles.

In evaluating these concepts, it is important to keep in mind that these alternative

sequences are designed to yield better approximations in given practical problems with

given sample sizes, even when the quantile index is not very low. And, in case(a), it is

completely irrelevant whether or not future sampling will lead to samples conforming

to these sequences or not.

The concepts (i) and (ii) are well motivated by the intellectual and practical success

of the extreme value theory, which focused on the ordinary sample quantiles. The con-

cepts are also similar in spirit to other "alternative" asymptotics, e.g., GMM when the

number of moment conditions is large; weak instruments theory, where the instruments

are weakly correlated with the regressors; near-to-unit root theory; and, generally, the

theory of statistical experiments.

The organization and contribution of this paper is eis follows:

1. Section 2 demonstrates the relevance of the problem in economic analysis.

2. Section 3 introduces the principles of extremality for the regression quantiles -

namely that of the intermediate and extreme rank sequences.

3. Section 4 develops the models of the extremal (low) conditional quantiles. They

coherently combine the linear functional forms with the extreme-value-theoretic re-

strictions, and lead to non-degenerate, parsimonious limit distributions. The models

are distribution-free and flexible, allowing for sophisticated effects of covariates on the

shape of the conditional distribution (the scale, kurtosis, skewness, etc.). Importantly,

these models do not admit reductions to the classical one-sample case (by removing the

conditional mean and/or scale).

4. Within the formulated models, section 5 provides the asymptotic limit theory

for the sample regression quantiles under the extreme rank condition, tT —) fc > 0.^

The Hmit is driven by a stochastic integral of a "residual" function with respect to a

Poisson point process.

5. Section 6, using additional tail restrictions, provides the asymptotic distributions

of regression quantiles under the intermediate rank condition, tT —> oo,r -^ 0. The

limit is normal, with variance parsimoniously determined by the tail indices. This

enables a very practical inference. (In contrast, the conventional theory requires the

nonparametric estimates of the conditional density functions evaluated at the extremal

quantiles). This provides a regression analogue of fairly recent results of Dekkers and

de Haan[21].

^This paper is not about t = 0, the linear programming estimator (also called 'extreme regres-

sion quantile'), considered in Feigin and Resnick[29], Portnoy and Jureckova[60], Chernozhukov[12],

Knight[47] within the location-shift model (Covariates only affect the location but not the scale, shape

or tail of the conditional distribution.) The estimator, defined as max A''/3 s.t. Yt < Xtf),Vt and useful

as a boundary estimate, can't be used at all in the present context. We look at different estimators

(high and low regression quantiles) that have very different asymptotics and applications [t > (T is

finite); see examples 2.1-2.4, where the support is unbounded or "boundaries" depend on unobserved

variables]. We also develop and operate with very different models.



6. We conclude by discussing an inference theory and an empirical paper [15].

Also relevant are the works of Smith[73], Tsay[75], and references therein, who
develop the models of exceedances over high constant thresholds. The parametric

likelihood of the Pareto family is used to describe such data, and parameters are made
dependent on regressors. It should be clear that the goals, models, and methods of

this paper are quite different. Our analysis should be viewed as complementing the

study of the central rank regression quantiles, with the motivation stemming from the

wide use of quantile regression in data analysis in econometrics and statistics.

2 Econometric Applications

Quantile regression is a popular tool in econometric applications. See Abadie et al.[l],

Buchinsky[9], Chamberlain[ll], Poterba and Rubin[61], and the review of Koenker and

Hallock[50]. Our results can be useful in about any such application, since our focus is

the inference about high and low conditional quantiles (say .7 and higher and .3 and

lower, in a typical data-set), recognizing the extremality and/or scarcity of the tail

events. Important inferences about the tail shapes can be made as well. There are

many examples, where high or low quantiles are of particular interest. For example,

Abreveya[2] and Koenker and Hallock[50] characterize the economic determinants of

babies' very low birth-weights through the near-extreme conditional quantiles (.05 and

below). Deaton[20] examines food expenditure of Pakistani households by the .1-th and

.9 -th conditional quantiles. The following presents a brief discussion of some others.

Example 2.1 (Determinants of Generalized {S,s) Models.)

The (5, s) theory is widely used in the firm-level microeconomic studies, including

the analysis of durable good inventories, employment shortages, and investment in

capital goods. Lumpiness of adjustments, a main prediction, is well documented. E.g.,

Arrow et al. [5], Scarf[71], Rust and Hall[37], Aguirregabiria[3], Caballero [10].

In the (5, s) theory, a firm allows a state variable Vj (capital stock, inventory) to fall

until it reaches a lower barrier, s{Xt), at which point the stock is replenished (jumps)

to an upper barrier, S{Xt). Such decisions are optimal in general settings (Hall and

Rust[38]). Xt may include prices and other variables that affect the firm's beliefs

about future sales and costs (e.g. industrial production and commodity price indices,

interest rates). Assume that {Yt,Xt) are observed for a cross-section of firms. Absent

unobserved heterogeneity, s{Xt) and S{Xt) are exactly the minimal and maximal con-

ditional quantiles of Yt, given A''^. Otherwise, s{Xt) and S{Xt) are still strongly related

to the extremal conditional quantiles.

To address the unobserved heterogeneity, Caballero and Engel[10] introduce the

stochastic barriers [s{Xt) — Vt,S{Xt) + et] with unobserved time- and firm- specific

random components et,Vi. They propose probabilistic adjustment models (hazard

functions) to describe the evolution of Yt across firms and or times. In such models, the

high and low conditional quantiles also describe the probabilistic rules. For example,

the inventory variable Yt is below the .1-th conditional quantile only with probability

10%, given A'(. Inference about such functions is exactly our area of focus. More
generally, we can map quantile functions into hazard functions, and vice-versa.

Apart from descriptive analysis, extremal quantile regression can estimate the de-



Figure 1: (S,s) model with stochastic bands [s(.Y) — v,S{x) + e], where & and v are the

unobserved firm and time specific random components. Panel (A): Data on a single firm may

be generated by discrete sampling from the time path of (Yi,Xt). E.g. Rust and Hall[37].

Panel (B); Data {Yi,Xi) may be generated as a cross-section of plants. E.g. [3], [10],

terminants of the {S{x),s{x)) functions. Specifically, suppose that

[s{Xt)-vt,S(Xt) + et]

constitute the adjustment barriers, with Vt,et > 0,s(A'j) < S{Xt) a.s., so that the

interval is non-empty. The timing is continuous. If Yj hits the lower bound s{Xt) —Vt,

it is adjusted to the upper bound S{Xt) + et- Pairs {Yt,Xt) are the observed draws of

different firms (or a panel, stationarity assumed). For brevity, let's focus on s{X).

Suppose Vt and et are independent of Xt,^ then for c > 0:

P{Yt < s{Xt) - c\Xt) = EPiXt - s{Xt) < -c\Xt,c< Vt) P(c < vt)

+ EP{Yt - s{Xt) < -c\Xt,c> Vt) P{c > Vt).

By construction P{Yt — s{Xt) < —c\Xt,c > vt) = 0. Additionally, impose the following

tail homogeneity condition: for all c > sufficiently close to Uj:^

PiYt - s{Xt) < -c\Xt,c< Vt) = a{vt - c). (2.1)

Thinking of Yt — [s{Xt) — vt] as a positive "duration" variable, (2.1) states an "ac-

celerated failure time" model for the tail (which is more general than in [10]). (2.1)

imposes no restrictions on the central features of the conditional distribution of Yt,

which is reasonable, since the (5, s) theory does not relate the central features to the

adjustment barriers. For example, the symmetry or homoscedasticity assumptions are

unreasonable. This implies that for — c low enough and some low constant (p{c)

P{Yt - siXt) < -c\Xt) = (Pic),

or, equivalently, that for small r >

QY,{r\Xt = x) = s{x) - c{t)

This is reasonable, since S{X),s(x) incorporate the barrier component that depends on X. Nev-

ertheless, we can allow e,v to be dependent on A'. A note is available upon request.

^= can replaced by ~, as c increases.



is the T-th conditional quantile of Yt given Xt- Therefore, s{x) equals the low (extremal)

conditional quantiles up to an additive constant. Notably, it is not possible to estimate

s(x) off the central features of the conditional distribution of Yt-, as discussed above.

The inference about Qy{t\X) for low values of r is exactly our area of focus. The
analytical examples of Rust and Hall suggest that linear/polynomial functions are

excellent descriptions of (s(x),5(x)) functions.

Example 2.2 (Tail Analysis in Regression Models) The tail shape (index) of the

conditional distribution is important in the regression analysis. For example, the thick-

tailed distributions favor the LAD and other estimators more than the OLS. Thus,

knowing the tail index helps determine better estimators. On the other hand, the tail

shapes are important in describing the large insurance claims ([26]), the analysis of

the long and short term survival and durations ([49], [42]), and financial data (e.g.

Mandelbrot[54], Fama[28], Kearns and Pagan[45], Danielsson and de Vries[17]). In

the non-regression setting, the tail index estimators of Hill and Pickands have been

countlessly used in the empirical analysis. However, estimation of the tail index in the

presence of the shape heteroscedasticity (scale, skewness, kurtosis, and other forms) is

largely an open, difficult problem. Our results allow one to construct the regression

analogs of the Pickands and Hill tail index estimators, based on the extremal regression

quantiles, which specifically adapt to the shape-heteroscedastic setting, and are simple

in practice. Section 7 off'ers a discussion, and [15] provides an empirical application.

Example 2.3 (Decision Making under Extreme Uncertainty) Risk is a key

subject of non-financial and financial decisions, insurance, and regulation. Both the

firms and the regulators are seriously concerned about extreme risks - the tail events

that can wipe out capital, hindering liquidity or solvency.

An important branch of economics literature is devoted to safety-first decision mak-

ing. See Roy[68], Telser[74], Pyle and Turnovsky[63], Bertail et al[8] and others. In

this approach, the decision-makers (firms, investors, regulators) solve either:

1. max z, or 2. max /^(q),

where If (a) is the random payoff (e.g. private or public benefits and profits) to the

decision a (technology, portfolio composition, buffer stocks, quality/quantity of food

control); z is the safety margin or disaster level of the payoff; r is the probability

of the disaster or of exceeding the margin, set to be small; fi is the mean of ^''((q);

(5y,(a)(T|Xi) is the conditional r-th quantile function of Yt{a) given .Y(, the vector of

variables representing the current state. QYt(a)iT\Xt) < i is the conditional (extremal)

quantile constraint, requiring the disaster probability to be small: P{Yt{a) < z\Xt) <
T. This presents a problem of inference concerning the conditional extremal quantiles.

Our models are flexible (central features of the distribution do not determine the tail

features) and specifically exploit the extremality and scarcity of the tail events.

In Chernozhukov and Umantsev [15], we apply the present results.

Safety-first decisions are very important in the finance industry, where quantiles

(value-at-risk) are the required measures of the high level infrequent risk, used to de-

termine the capital requirements and other external and internal purposes. See [25],

[56], [27], [35], among others, for a sample of illuminating research as well as reviews.

Value-at-risk is computed as the level below which the (daily or weakly) return is only



1% or 5% of the time (.01-th and .05-th quantiles). Again, this is a problem concerning

the conditional extremal quantiles.

Example 2.4 (Simple Robust Inference in Boundary-Dependent Models)
Parametric boundary dependent likelihoods, arising in the models of job search and

auctions (see [16], [31], [23], [41], [36] for a sample of remarkable works) take the form:

L{Pn) - ^in/(y<|A-,,7,/^) • l(lt > x[p),

t

where /(A','/3|.Y(,7,^) > a.s. and is finite. /? and 7 are the boundary and shape

parameters, respectively. Linearity of the boundary is not essential (see below).

Likelihood procedures, e.g. ML, estimate 7 and /? jointly. The estimates $ are

characterized by d = dim(A') constraints, Yt = X[p, where Yt is among the extremal

values of Yt, [23] and[41]. For example, mini^TYt is the boundary estimate in the no-

regressor case. Therefore, having a few outlier observations Y° (such that Y° < X[(i,)

severely biases and renders inconsistent the estimates of both P and 7. The outliers arise

as misrecordings of the bid with a low probability (not the usual additive measurement

error) or bid mistakes. Bajari[6] offers a substantive analysis, suggesting outliers are

responsible for drastic overestimates of the mark-ups in prominent auction studies.

Suppose the number of outliers Y° is bounded by a constant K , independent of T.

Consider the r-th near-extreme regression quantile estimator x'/3(t) of the boundary

x'P, with quantile index r = M/T, M ~ InT. Asymptotically x i-> x'/?(r) passes above

the outliers, and is T/ In T-rate-consistent. Substitute ^(t) into L{P,^) and estimate

7 via ML. The resulting estimator of 7 is efficient. Chernozhukov and Hong[14] offer

an analysis. Although we focus on the linear boundaries, a non-linear extension in this

model is straightforward. Regardlessly, the linear forms include the polynomial and

piece-wise linear specifications, approximating the smooth parametric functions as well

as we like.

3 Extremal Quantiles and Rank Sequences
This section defines the linear regression model, the sample regression quantiles, the

extreme and intermediate rank concepts for these statistics, and the tail types.

3.1 Extremal Conditional Quantiles

Suppose Yt is the response variable in K, and Xt are the conditioning variables in

K^ . The r-th conditional quantile function Qy{t\x) is a function q{x) that satisfies

the relationship P{Y < q{X)\X) = r. For instance, (5y(.25|a:) and Qy(.l|x) are the

conditional first quartile and decile functions. Formally,

Qy{T\x)=Fy\T\x),

where Fy'(|x) is the inverse of Fy-(|i). Our focus is exclusively on modeling and

making inference on the extremal conditional quantile functions:

Qy(t\x), where r is near 0.

The formal concept of extremality or nearness will be developed later.



3.2 Linear Quantile Regression Model

In this paper we consider the hnear model for quantiles of interest I

Qy{T\x)=F-'{T\x)=x'^[T), Vt€I, (3.2)

where /?() is an unknown function of r. Here it is necessary that (3.2) holds for

1= [0,77], where?? > 0. (3.3)

If T] is small, the linearity is assumed only for low quantiles, and not necessarily for

other quantiles. We cissume that X has (or is trimmed to) a compact support X.

The model (3.2) is implied, for instance, by the classical linear location-scale models

with unknown error distribution, but is considerably more flexible in the sense that the

shape of the conditional density may change with the covariates. X may incorporate a

wide array of polynomial and other transformations of the observed covariates. On its

basis, in section 4, we develop the models with the extreme-value-theoretic restrictions

on the conditional tails.

Note the approaches to linear modeling. One approach assumes linearity of a single

or few quantiles (Buchinsky[9], Horowitz[43], Powell[62]). Another approach (Koenker

and Machado[51]) assumes the linearity of all quantile functions, I = [0, 1]. The "local

in r linearity" assumption made here is closer to the first approach.

Despite convenience, having linearity for several r may pose an avoidable caveat

(the curves may cross). First, X is often a transformation of the original covariates,

so the curves are non-linear in the original space (see [49]). Second, given compactness

of support X, the linear model is always coherent. Take a countable, possibly finite

collection of non-crossing curves {x h^ x'P{Ti),i G J} with domain X. Define x >-->

x'/3(t) for other r by taking appropriate convex or linear combinations of these lines.

By construction, the fines cross only outside X. This also defines the conditional c.d.f.

3.3 Sample Regression Quantile Statistics

Suppose we have T observations {Yt,Xt}. In the no-covariates case the sample r-th

quantile P{t), is generated by solving the problem

t=l

where Pt{x) = {t — 1{x < 0)) x. Koenker and Bassett[48] extended the concept to the

regression setting by solving

T

min TpriVt-X^li). (3.4)

The /?(r) that solves (3.4) has the equivariance and robustness properties of the ordi-

nary sample quantiles; in particular, (i) regression equivariance, (ii) scale equivariance,

(iii) equivariance to (full rank) linear transformations of X, (iv) invariance to pertur-

bations of y^t without crossing the hyperplane x'${t). The solutions x'${t) to (3.4) (if

unique) pass through d points {Yi, Xt) and the function r 1-^ X'/3{t) is monotone in r.



3.4 Extremes, Near-Extremes & Data Scarcity

We view the sample regression quantiles as order statistics in regression settings. For

a given sample of size T, the r-th sample regression quantile is seen here as the rT-th

order statistic. Henceforth, we shall refer to tT as to the rank or order.

Definition 3.1 (Rank Conditions) The sequence of quantile index-sample size pairs

{tt,T) is said to be:

(i) an extreme rank sequence, if t-j- \ 0, TtT —> A; > 0,

(ii) an intermediate rank sequence, if Tt \ 0, TrT —> oo,

(ii) a central rank sequence, if r is fixed, and T —^ oo.

Even though (i) and (ii) make r sample size dependent, to simplify we write r instead

of Tt- Because principles (i) and (ii) constructively exploit that the relevant data is

formed by the tail events and, or is scarce, they lead to

a. asymptotic distributions that either fit the finite-sample distribution better or,

giA'en the same approximation quality, are more parsimonious relative to the

conventional central rank approximations (Koenker and Bassett[48], Powell[62])

b. important tail inference procedures, based on the sample regression quantiles.

See example 2.3 and section 7.

Concepts (i) and (ii) are well motivated by the intellectual and practical success of

extreme value theory, which focused on the ordinary sample quantiles. These con-

cepts are also similar in spirit to other types of "alternative" asymptotics, e.g. GMM
when the number of moment conditions is large, or, generally, the theory of statistical

experiments.

In evaluating these concepts, it is important to keep in mind that these alternative

sequences are designed to yield practically better approximations even when the quan-

tile index is not very low. And, in case (a), it is completely irrelevant whether or not

future sampling will lead to samples conforming to these sequences.

To clarify (a), consider a simple example with no X. Suppose, with an i.i.d.

sample {Ut,t < T = 200}, we wish to infer about the quantiles with indices r =
.025, r = .1, r = .2, r = .3. The estimators are the order statistics (sample

quantiles) [^(5), t/(20); t^(40)7 f^(60)- Suppose the distribution F^. has an algebraic tail

F^{x) ~ (—a;)~^/^,^ = 1 ais X \ —00. Figure 5 compares the conventional central

rank approximation VT {U^rT) - F~^{t)) -^ N (0,r(l - t) /f^ {Fu (t))) , where fu = F^,

with the intermediate rank one: ariU^^r) — F~^{t)) —> N{0,^^/{m~^ - 1)^),(4 =
— l,m > 1), ot = VrT/F'^irriT) — F~^(t)), and the extreme rank approximation:

T^^'^{U(rT) — F~^{t)) —> -fc~'/^ — r^'^^, where Tk is a gamma random variable with

degree k (sum of k standard exponentials, section 3.6).

Quality-wise, the extreme rank approximation, which exploits both the extremality

and scarcity of tail events, beats the normal quite considerably (displays A-C). Only for

a fairly non-extreme quantile, r = .3, does the normal approximation achieve roughly

the same quality. At the same time, the intermediate rank approximation, which ex-

ploits the extremality of relevant events, is very close to the central rank approximation

(displays D-F), but enjoys greater parsimony and ease of inference. The tail index ^ is

ea^y to estimate, and the scaling Oj- is estimated by the sample interquantile spacing



(see section 3.6). This may be preferred to the nonparametric estimation of the density

function evaluated at the low quantile (with the scarce tail data), as required in the

central rank theory. See [13] for a Monte-Carlo regression example.

3.5 Tail Types, Support Types, and Classical Limits

The following definitions are important in the sequel.

Definition 3.2 (Types of Support) In view of linearity, we say Fy{-\X) has:

• finite support, if Qy{0\X) > — oo, a.s.

• infinite support, if Qy{0\X) = — oo, a.s.

Definition 3.3 (Tail Types, Tail Index, Regular variation) Consider a random
variable U with distribution function F^, with lower end-point Xf equal or — oo. F^

has the tail of the extremal types 1, 2, or 3 if for [/ ~ ^ if f/g —> !]

typel:(^ = 0) : as « \ or - oo, F„(f -|- x£(<)) ~ Fu(i)e"^, Vx £ K,

type 2: (^ = -) :a.st\ -oo, x'^Fuit) ~ Fu{tx), Vx > 0, a > 0, (35)

type 3; (^ = — ) : as i \ 0, x" Fu{t) ~ F^itx), Vx > 0, a > 0.
a

where i{t) = J Fu{v)dv/Fu{t), for t > x/, cf. [52]. Enclosed in the brackets in (3.5)

is the tail index (,, which determines the tail type.

Equation (3.5) defines type 2 distributions as regularly varying functions at -co

with index —1/^ = —a, (algebraically and near-algebraically tailed at —00, in more

intuitive terms). (3.5) also defines type 3 distributions as regularly varying functions

at with index — 1/^ = a > (algebraically and near-algebraically tailed at a finite

end point, taken as 0). The type 1 class includes exponentially and near-exponentially

tailed distributions. For future reference, note these conditions imply that the quantile

function F^^{t) is regularly varying at with index —(,. E.g. [26].

Classes 1-3 contain most of smooth distributions with rare exceptions. See [26].

The tail types determine the limiting distributions of order statistics under extreme

and intermediate ranks. In our setting, they will have a similar role as well. For later

comparisons, let us review the non-regression results.

3.6 Limit Distributions of Ordinary Sample Quantiles

Extreme Rank Statistics. Consider the order statistics f/(i) < ... < [/(jt) from the

i.i.d. sample Ui,...,Ut, distributed according to law Fu, with the lower end-point x/

equal or —00. The extreme value theory described the existence and forms of the

non-degenerate limit laws for the properly normalized order statistics:



A. tau=.025, T=200, rank=5 B. tau=.2, 1=200, rank=40 C. tau=.3, T=200, rank=60
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Figure 2: Displays A-C: QQ-plot of Extreme and Central Rank Approximations.

The dashed line "- - -" is the central approximation, and the dotted line " " is the extreme

rank approximation. The true quantiles of the exact sampling distribution are depicted by the

solid line " "
. The central rank approximation varies from very bad to bad for low quantiles

T = .025 and r = .2 and becomes comparable to the extreme rank approximation only at

T = .3. Displays D-F: QQ-plot of Intermediate and Central Rank Approximations.

The dotted line " " now denotes the intermediate rank approximation. The theoretical

central and intermediate rank approximations have approximately the same performance for

T = .1,.2,.3, (using m — 2,1.5,1.25). The practical advantage of the intermediate rank

approximation is the parsimony and eaise of estimating nuisance parameters. [Replications

= 10,000. QQ plots are over the 99% range.]
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For fixed k, the limit laws of type 1- 3, were identiiied in the literature as:

InTk, for type 1 tails,

Jfc = < — r,. "
, for type 2 tails,

for type 3 tails,

(3.6)

k '

with the canonical scalings given by:

type 1: ar

type 2: aj-

type 3: ar

lli[F-'{^)l bj

-yF-'ir) '
6^ = 0,

b-r = 0.

(3.7)

Note that when k = I, the type 1 law in (3.6) is called Gumbell, type 2- Frechet, type 3

- Weibull. Typically, the results state the distribution functions of Jk, but more recent

treatments formulate the results in the above form (e.g. Example 4.2.5 in [26]), which

helps explain our results.

Intermediate Rank Statistics. One of most general and fairly recent treatments of

the intermediate order statistics is the work of Dekkers and de Haan[21]. Using slightly

stronger restrictions on the tails, discussed below, they found that the limit laws are

normal, but the limiting variance depends on the extremal tail types through the tail

index ^, as A; = [tT] -^ oo (Theorem 3.1):

/tT

Fu'{2t)-F-\t)
[/,(IrT}} F,\:\r)) N 0,

e
(2-«-l)2

(3.8)

The scaling a-p can conveniently be replaced by VtT/{U^2[tT]) ~ U^^rT]) without affect-

ing the result, and operationalizing the inference.

4 The Extremal Regression Quantile Models

Here we construct the linear models of low (extremal) conditional quantiles, which allow

flexible covariate effects on the distribution, and coherently combine the tail conditions

leading to (i) non-degenerate asymptotic distributions and congenial inference proce-

dures, (ii) good approximations to the sampling distributions, and (iii) a framework

suitable for inference about tails in shape-heteroscedastic models.

4.1 Model 1: Tail Homogeneity

Consider a probability space (fJ, T, P), possibly indexed by T. To impose a constructive

tail condition, define a reference error term as

U = Y -X'Pr, (4.9)

where x i-> x' l3r is the reference line chosen so that the error U satisfies the tail homo-

geneity condition (i) in assumption 1. The existence of such a line is an assumption;

the examples below highlight its constructive role.

11



In the bounded support case, it is convenient to choose the reference Hne as

Pr = ,5(0), (4.10)

so that [/ = y — X'P{0) > has the end-point by construction. (In the unbounded

support case, x'P{0) = — oo and is not suitable as a reference line).

Assumption 1 (Model 1: Tail Homogeneity) In addition to linearity (3.2):

(i) there is a real-valued U and reference line x'Pr of the form (4.9)-(4.10) s.t.

as z \ — oo (infinite support) or as z \ (finite support), uniformly in x € X.

Fu is a distribution function with type 1,2, or 3 tails.

(ii) the support ofX is (or trimmed to) a compact subset X of IR'*.

(Hi) the distribution function ofXt, Fx , with support X and mean px, is nondegen-

erate in W^. The first component ofX is 1. px = (1,0, ...) w.l.o.g.

Assumption l-(ii), compactness, is essential; otherwise, the limits may change de-

pending on the tail behavior of X . l-(iii) precludes non-degeneracies.

Assumption l-(i) requires the tails of the suitably defined error term U to be in the

domain of the minimum attraction which is fairly broad with rare exceptions (section

3.5.) In this sense the model is distribution-free. l-(i) also requires the tail of the

conditional distribution function of U to be approximately independent of X. This

incorporates the case of independent U and X as strictly a special case. Indeed, l-(i)

requires only that there is a reference error U in (4.9) such that the extremal (small)

values of [/ are approximately independent of A'. This allows general global dependence

of U on X , such as shape heteroscedasticity.

Example 4.1 (Classical linear model) Suppose the quantile function is

QAr\X)=X'a-i-F~\T), (4.11)

which corresponds to the model Y = X'a -\- U, where U is independent of X and e.g.

EU = 0. This clearly is a special case of Model 1 with the reference line x'a. Yet this

example is narrow and "trivial" in the sense that the extremal features are determined

by the central features of the distribution, and there is "nothing to estimate" (all slope

coefficients ^_i(r) equal a_i.) To defend the "trivial" model, note it underlies much
of the (central) quantile regression inference, Koenker and Bassett[48], because it often

plausibly approximates the exact distribution of regression quantiles, even though the

model itself is unrealistic (Koenker and Hallock[50]).

Example 4.2 Consider the bounded support case. The 0-th quantile function is

Qy{0\X) = X'j3{0), which is our reference line X'(3r. By assumption l(i),

P(Y - X'/?(0) < l\X) ~ Fu{l) = Ti, asl\0,

which implies that the paths of the extremal quantile functions x h^ x' P{ri) are ap-

proximately parallel to that of a; i-> x'/3(0). This model is not "trivial" in the sense

12



of Example 4.1, because the extremal quantiles and the reference line are determined

only by the extremal features of the conditional distribution. The model does not re-

strict other quantiles, allowing for general shape- heteroscedasticity. For example, a

collection of quantile curves {x !-> Qyiqlx), <? £ C} with the central indices C may have

complicated non-parallel paths, allowing for complicated effects of covariates on the

conditional density shape (kurtosis, skewness, and other effects), as in Figure 3. Con-

sequently, this model does not admit reductions to non-regression models by removing

a conditional location and scale from Y.

Quantiles
..••6C(3/^|x)

"~
--

l^-
-
^—-^'^

0,( 1 1 X )= X b(t). Low Ouanttle

Reference Line

Figure 3: Example 4.2: Extremal conditional quantile function x i-> x P{t)

is approximately parallel to the reference line x >-> x pr (equal to the mini-

m£il quantile x'P{0) in the bounded support case). Other quantile functions

are unrestricted, allowing for complicated forms of global heteroscedastic-

ity. The model does not admit the reduction to a non-regression model by

removing the conditional median (or mean) and/or scale from Y variable.

Example 4.3 Consider the unbounded support. For some reference line x i-> x'pr, by

assumption l(i),

P{Y - X'pr < l\X) ~ Fu{l) = Ti, a.sl\ -DO,

which implies that the paths of the extremal quantile functions x M- x'I3{ti) are ap-

proximately parallel to that oi x i-^ x'Pr- This model is also not "trivial" in the sense

of example 4.1, because the extremal quantiles are determined only by the extremal

features of the conditional distribution. As in example 4.2, the model does not restrict

any other features of the distribution, allowing for general forms of global heteroscedcis-

ticity. Thus it is irreducible to a non-regression model.

Note that examples 4.2 and 4.3 demonstrate that the linear location-scale models

are neither implied by Model 1 nor imply Model 1. Thus Model 1 is of its own nature,

crafted to yield non-degenerate, parsimonious limits. Unlike the location-scale models,

Model 1 admits general global heteroscedasticity, allowing covariates to affect the shape

of the conditional distribution.

4.2 Model 2: Congenial Tail Heterogeneity

We suggest a model that, while flexibly accounting for the dependence of the tail on

covariates, exhibits simplicity, enabling an explicit, practical limit theory for both the

extreme and intermediate rank sample regression quantiles.

13



Assumption 2 (Model 2: Congenial Tail Hetrogeneity) Suppose assumption 1

holds, except l-(i) is replaced by the following tail condition:

Fy{z\x) ~ K{x) Fu{z), asz\-ooorz\0, (4.12)

uniformly in x £ X, Fy, has type 1-3 tails, K{-) is assumed to be a positive continuous

function on X, bounded above and away from zero, normalized so that K{fix) = 1 (or

at any other reference point x^ 6 X).

Just like Model 1, Model 2 is distribution-free, since F^ is not assumed to be para-

metric, and it allows the general (shape) forms of global heteroscedasticity. Unlike

Model 1, Model 2 allows for richer effects of covariates on tails.

The imposed tail condition may seem an unconventional way to introduce het-

eroscedasticity. Yet, in many regards, it is more flexible and constructive than the con-

ventional location-scale modeling, as explained below. The proposed modeling strategy

is motivated by the closure of the domains of minimum attraction under tail equiva-

lence, and is fully consistent with linearity.

Indeed, Lemma 10, characterizes this model in detail: (i) implications for the quan-

tile coefficients of the linear model, (ii) limits of ratios of spacings between the con-

ditional quantile functions, and (iii) many other properties needed for inference. Im-

portantly, we deduced that the linearity assumption and (4.12) jointly imply that A'(-)

can be represented as

{e~^ "^ for type 1 tails,

{x'c)°' for type 2 tails, (4.13)

{x'c)~°' for type 3 tails,

where fi'^c = 1 for type 2 and 3 tails, and /z'^c = for type 1 tails. In Model 1,

c = for type 1 tails, and c = (1,0,...)' = e'j for type 2 and 3 tails. We call c the

tail heterogeneity index. It measures the strength with which X shift the tails of error

terms U. Note that x'c > uniformly on X for types 2 and 3 by assumption.

It is plausible that (potentially) the non-parametric function K{-) in (4.12) is in

fact a transformation of the linear index x'c determined by the tail index ^. Recall

(, = (for type 1 tails) and £, = 1/a and — 1/q for type 2 and 3 tails, respectively. This

assumption leads to parsimonious, convenient limits for regression quantiles.

The following examples illustrate the model's flexibility.

Example 4.4 (Linear Location-Scale Model) Assume for X'j > a.s.

Qy(r|x) = x'Q + x'7-F-'(r), (4.14)

corresponding to the location model Y = X'a -\- X'-y V, where V is independent of

A'^ and, say, has mean and variance 1. Assume F^ has the extremal tail type with

^ ^ 0. Then for the reference line x'a and U = Y — X'a = X'-y - V

P{X'-f V < l\X) ~ (X'7)-^/^ - F^il), as / \ -co,

so the conditions of Model 1 are satisfied with F^ = Fy. The location-scale model

imposes two stringent restrictions: (i) the extremal features of the distribution are

14



largely determined by the (central) location and scale parameters: /3(t) = a+7-F~^ (r),

and (ii) the covariates are limited to affect only the location and scale of the conditional

distribution, precluding the shape effects like skewness or kurtosis.

Example 4.5 Model 2 requires that for some reference line x'/J^

P{Y - X'pr < l\X) ~ K{x) Fu{l), as / \ or - cx),

which implies that the paths of the extremal quantile functions x M- x'P{ti) are no

longer parallel to that of x h-)- x'Pr- (The crossing of lines is precluded because the

assumption is consistent with linearity, Lemma 10). This model is not as restrictive

as example 4.4. First, the extremal quantiles (and the reference line) are determined

only by the extremal features of the conditional distribution. Second, the model allows

for general global heteroscedasticity - the entire shape of the conditional density may
change with covariates (scale, skewness, etc), including the tails.

Figure 4: Example 4.5. Extremal quantile functions x i-> x'/3{t) are no

longer approximately parEillel to the reference line x >-> x'fir, over X, allow-

ing the tail heteroscedasticity. Other quantile functions are unrestricted,

allowing for complicated forms of global heteroscedasticity as well. The

extremal features of the model, including the reference lines, are not deter-

mined by the central features.

This discussion concludes the construction of our models. In principle, it should be

possible to further relax the modeling assumptions, particularly in the nonparametric

direction, but a good deal of caution is needed to assure the joint coherency of the

tail conditions, functional dependence of the quantile curves on regressors, and non-

degeneracy of the limit distributions. Note that the obtained models are coherent,

flexible, distribution-free, lead to non-degenerate, parsimonious limit distributions, and

provide a convenient framework for inference about the tails.

5 Asymptotics under Extreme Ranks
Recall that the approximation concept of extreme ranks requires tT —> fc > 0. Here

we state the distribution results for Models 1 and 2 and explain their barest essence,

while leaving proofs and some generalizations to the appendix.

5.1. A Sketch. First, obtain a finite-dimensional {fidi) weak limit Qco() of the

finite-sample, suitably scaled, objective functions {Qt{-)}- Qoo is defined by a point
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process that "counts" the "extremal events." Then, the normalized regression quantile

statistic, Zx, an argmin of Qt, will converge in distribution to a random variable Zoo,

the argmin of Qoo, by convexity of {Qt] and Qoo-

For brevity, we confine our discussion to type 3 tails. Consider the statistic

Zr = ar{P{T)-l3{0)),

where Ct- is the canonical scaling in section 3.6, defined in terms of the function F,, in

assumption 1 or 2. Zt optimizes the rescaled by a^ objective function in (3.4):

T

Qt{z) = J2 ('rPr [Ut - X^z/a-r) - a^rUt), (5.15)

where Ut = Yt - A'j'/?(0) > Q a.T\d z = ar{l3 - I3r)- We subtracted the "smoother"

X^j rUtCiT, which brings a key continuity property and stabilizes Qt- Clearly this does

not affect the argmin Zr- [The "smoother" for type 1-2 tails is more involved; Lemma
1. Incidentally, the conventional central rank stabilization by ^jPr(t/tar) is bad, for

it sends the objective to +00, let alone continuity.] Hence

T

Qt[z) = -TtX'z - J2l{Utar < X[z) {Utar - X'^z). (5.16)

t=i

This function is convex. Notably, it is constructed as a continuous functional of

the point process defined next. The fi-di distribution of Qt is defined by that of

{Qt{zj),J < l] for any finite (z_/, j < /). Since A' —>• /xx, and tT —> k (for j < I) :

T

Qt{zj) = -kn'xZj - ^ l{UtaT < XtZj)[Utar - X[zj) + Op(l). (5-17)

t=i

The limit behavior of Qt is determined by the point process N that assigns mass to

measurable sets A by:

r

N(^) = Y^ \{{arUt,Xt} e A), for AcE= [0,oo) x X.
(=1

The point process N is a measure defined by its random points (atoms) {aT.Ut,Xt,t <

T) (See Definition A.l, B.l). We find that Qt{-) is an integral of a residual function

with respect to the point process, which seems to be special to this problem.

Point process theory is the bread-and-butter of extreme value theory,^ [26], and is

useful here. Indeed, a Lebesgue-Stieltjes integral f gdN of N with points {Xj} is :

j 9{x)dN{x) = Y^g[X,).

®Point process theory was developed by Kallenberg[44], Resnick(65] and others in considerable gen-

erality. Applications are numerous in statistics. For example, Feigin and Resnick[29] approximate the

constraints of the linear programming estimators; also Knight[46] ; Emrechts et al.[26] and Resnick[65]

show how point processes may be used in related applications, particularly the exceedance processes,

extremal processes, and record values.
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Convergence of such integrals, for continuous maps x M- g{x} that vanish outside

compact sets, metrizes weak convergence of point processes (Definition A. 2.) So we

represent {Qt{zj),J < I) as an integral

Qt{zj) = -kn'xZj + [{I - x'zj^dNil,!) + Op(l), (5.18)

where (/ — x'z)"" is the "residual" function. Lemma 2 proves {Qt{z),J < l) \s a.

continuous map of the point process N, so its weak limit is determined by that of

N. Notably, to obtain continuity for various tail types, the construction of point

process N requires a careful choice of the underlying topological space E (and additional

transformations of Qt for types 1 and 2).

The weak hmit (Def. A. 2) of N in Model 2 is a Poisson process N, Lemma 6:

oo

i=l

where {Ji,Xi] are random points defined as

(j„ Xi, i>l) ^(A^'cLf , Xi, z>l),

Vi=£i +... + £i, i >1,
(5.19)

where {£i} are i.i.d. exponential random variables with mean 1, {Xi} are i.i.d. with

law Fx , distributed independently of {£i}, and c is the tail heterogeneity parameter.

In Model 1, because c = (1,0, ...), a natural simplification occurs:

A;'c=l,Vi. (5.20)

The first result, explained in Lemma 6, is not self-evident, while (5.20) is fairly intuitive.

Note that N(.4) = J2i<T ^iWTU(i),X^iy} € A), where [/(,) is i-th rank error, and Xu\ is

the corresponding covariate. Vector [arU^i),! < q)
—

> {t\''^ ,i < q) (Section 3.6), and

is asymptotically independent oi Xi by Assumption l-(i) in Model 1, which explains

the form of (5.19) and (5.20) for Model 1. (This is not a proof). Lemmas 5-6 provide

the proof for Model 2 (and 1 by implication) using the Kalenberg's theorem, Meyer's

conditions, and a series of compositions and transformations of a canonical Poisson

process (Def. A.4 provides a background).

We conclude that the fidi weak limit of {Qt} is/CX)
(jf - x'z)~dN{j,x) = -kfjLxZ + ^(Ji - X[z)~

.

Therefore, we obtain by convexity Lemma 1 in the appendix (Theorem 5 in Knight[46])

the limit distribution for Zt, provided (5oo() has a unique argmin a.s. and is finite on

an open non-empty set (verified in Lemma 2 and 11). Hence

Or (/?(r) - /3(0)) -^ Zoo = argmin Qoo(2)- (5.21)
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Finally, Lemma 10 shows that ax(/3(0) -/?(r)) -> fc»c in Model 2 ( c = ej = (1,0,...)'

in Model 1) so that

a^(4(r)-/3(r)) -k° C + Zn

5.2. Results for Models 1 and 2. The above discussion hopefully provided an

intuitive explanation of the foregoing formal results for Models 1 and 2 (Theorems 1

and 2). The proofs are in the appendix. To state the result, suppose we have / sequences

{Ti,i < 1} such that t,T —> ki, so we index the normalized regression quantile statistic

as Zriki), for both T < oo and T = oo. Define

Zrik) = ar (/3(t) — Pt — br^i ) ,
for type 1 tails,

Zrik) = ar (/3(r) - Pr) ,
for type 2 & 3 tails.

Also define the centered statistic

Z^{k)=ar[p{r)-P{T)).

The canonical constants {a-j-jbr) are defined in (3.7) in terms of functions F^, which

are defined in Assumptions 1 and 2 along with the error term Ut and Pr-

The key point process, N() = 5I(<t ^{{ariUt - 6t),^Y(} € ) weakly converges (Def.

A. 2) to N( ) = ^i>i l{{Ji,Xt} € •) by Lemma 4-6, with points {Ji,Xi} defined as:

(j„ Xi, i > l) = <

(ln(rO + A'/c, Xi) for type 1,

(r7^/"A7c, Xi) for type 2, i>l (5.22)

(rJ/^-Y/c, a;) for type 3,

where {Ti,i > 1} = {X!,<i^j'* — 1}! l^j) i^ ^^ i.i.d. sequence of unit-exponential

variables; {Xi} is an i.i.d sequence with law Fx- In Model 1, the dependence between

Ji and Xi naturally disappears in view of assumption l-(i):

X-c = for type 1 tails, Vz,

(5.23)
-Y/c = 1 for type 2 & 3 tails, Vi.

Theorem 1 (Extreme Rank Asymptotics in Model 1) Suppose Assumption 1 and

that (a) {Yt,Xt} is an i.i.d. or stationary sequence, satisfying the Meyer conditions,

Lemma 6; (b) at least one component of X is absolutely continuous, if d > 2. Then

as tT -^ k,T -^ oo, (k = ki, ..., ki), for a.e. k >

Zrik) —> Zoo{k) = arginf — kpi'^z + I l{u,x'z)dN{u,x)\,

where l{u, v) = l(u < v){v — u), and the distribution of points {Ji, Xi] ofN is defined

in (5.22)-(5.23). Furthermore, {ZT{ki),i < l) -^ [Z^{ki),i < l),

Z^{k) ^ Z'^ik) = Z^{k) - c{k),

and [Zj-{ki),i < I) —> [Z^{ki),i < I), where c{k) = Ink ei, for type 1, —k^~ei, for

type 2, and k=ei , for type 3 tails.
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The asymptotic distribution is that of the random variable Zoo(fc). The density of

Zoo can be simulated. Analytical formulae for this density are given in Remark 5.1.

Remark 5.2 explores the connections to the classical results.

Theorem 2 (Extreme Rank Asymptotic in Model 2) Suppose the assumptions

of Theorem 1, with Assumption 2 replacing Assumption 1. The statement of Theorem

1 remains valid, with points {Ji, Xi} ofN defined in (5.22) and the centering constants

c(fc) defined as follows: c(fc) = Infcei + c, for type 1, —k'^c, for type 2, k=c, for type

3 tails.

We stated the result for Model 2 separately in order to emphasize the model's

congeniality. It exhibits simplicity, while alkwing flexible dependence of the tail on

covariates. Both Models 1 and 2 allow us to fully characterize the limit process N,

which defines a parsimonious limit distribution in terms of only two parameters - the

tail index ^ and tail heterogeneity index c (known for Model 1). The scaling constants

Ut are of the same form for both models.

Note that Theorems 1-2 allow for weakly dependent data as well. The point of

this paper (by far) is not about dependent data, but since the proof takes only an

additional half-page, we thought it shameless not to state the result. The imposed

Meyer conditions require strong-mixing and no-clustering of the data sequence. See

Lemma 5. Notably, because rare events separate in time, all the hmits are identical to

those of an independent sequence. This is analogous to the results of Robinson[66] on

kernel estimation, where the relevant local events are asymptotically independent.

Again, it is not our goal to dwell on technicalities, but it is reasonable to examine

the density of Zoo- If it is simple (it's not), it should be very useful in practice.

Remark 5.1 (Asymptotic Density) Let H be the set of all d-element permutations

of integers 1,2,.... Let X{h) and J{h) be the matrix with rows Xt,t G h and vector

with elements Jt,t e h, respectively. {Jt} are absolutely continuous, conditional on

{Xf}. Conclude, mimicking computations of the gradient and finite-sample density

for quantiles in Koenker and Bassett[48]: a. An argmin of Qoo takes the form z =
X{h)~^J{h) (passage through d-points) and it is unique iff

oo

Ch[z) = [kpx - Y. 1('^' < K^)Xi)'X{h)-^ e D = (0, 1)^ (5.24)

t=i

and is non-unique if Cft(^) G dV. If Xt has an absolutely continuous component,

AetX{h) is absolutely continuous {detX(h) is a volume of the parallelogram formed

by X{h)) so that Cft(z) G dV w.p 0; b. Given (5.24), the density of Zoo is

fz^z) = e[Y^ /,,,„,,„ (A'(/i)'z) |det X(h)\ PiCniz) € V\{Xt},h)],

where fjfH)\x{h) is the conditional on X{h) joint density of J{h).

Remark 5.2 (Relating to Classical Theory) P{Chiz) £ 'D\{Xt},h) is hard to ob-

tain explicitly. It simplifies in the no-X case, X = 1, P ((h{z) € T^\h) = 1, if /i = [k],

0, if not. k must be a non-integer for uniqueness. Hence fzad^) =
/j(|-ti)(^),

which is

the limiting distribution of the [/c]-th order statistics in the i.i.d. samples.
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6 Asymptotics under Intermediate Ranks

The intermediate rank concept requires t —> 0,tT -^ oo. In this section we first state

the results for Models 1 and 2, followed by a brief explanation.

6.1 Results for Models 1 and 2. In addition to assumptions 1 and 2, we require

existence of density fu{-\x) or, equivalently, of dF~^{T\x)/dT = x'dp{T)/dT. This

density should posses enough smoothness. We also need the conditional density tail-

equivalence, an assumption that strengthens the tail equivalence of the conditional

distribution functions in Models 1 and 2.

Assumption 3 (Density Conditions) (i) In the Model 1, as t \0

dr dr

uniformly in i £ X, and in Model 2,

dF-'{T\x) dF-\T/K{x))
dr dr

(6.25)

(6.26)

(ii) dF^ ^ {T)/dT is regularly varying at with exponent — ^ — 1, cf. section 3.5 (denote

5F-HT)/ar e 7^_5_l;.

Assumptions 3(i) and 3(ii) are both constructive and general. Assumption 3(i) is

a stronger density analog of the tail equivalence conditions imposed on Fu{t\x) in

Assumptions 1 and 2. Assumption 3(ii) is an analytical smoothness condition on the

density. It was first proposed in the non-regression context by Dekkers and de Haan[21],

who also show that the exceptions among the smooth distributions are rare.^

Fix a reference index sequence {r} such that r \ and tT —> oo. Consider I

sequences {rZj},i < k, and define Zt = (aT{li)[P(hr) - P{liT)],i < k), where

ar (0 = V^l^i'x iPimlT) - P{It)) ,

for positive / and m > 0, ^ 1. Set Or = aT(OI'=i

•

Theorem 3 (Intermediate Rank Asymptotics in Model 1) Suppose Assumptions

1 and 3 hold, and that {Yt, Xt } is an i.i.d. or stationary series, satisfying the conditions

of Lemma 9, then as tT —^ oo,r \

a,(/3(r)-/?(r))-AAf(0,V), V = Q^' ^^_f_ i)2
'

(6.27)

where Qx = EXX'. Z^- -^ N{0,n), Qij =Vx mm{l,,lj)/^/lJ]. Furthermore, ar{l)

can be replaced by VtIT/X' [PimW) — P{It)) without affecting the result.

Remark 6.1 It may be useful to have the same normalization a^- in place of Cril)

for the joint convergence in distribution. This is possible by noting that ar/ciTil) —

>

l-^/Vl. Then (arifiihT) - /3(/,r)),f < n) ^ N{0,E), S,, = QijiUlj)-^ / y/lj].

®To see the plausibility, take near-algebraic and differentiable near finite or infinite lower end-points

distributions: Fu{z) = Cz-i/<(lnz)^ as z \ or F„(z) = C(-z)- Ve(ln[-z])^ as z \ -oo, K eW.
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Theorem 4 (Intermediate Rank Asymptotics in Model 2) Suppose Assumptions

2 and 3 (where appropriate) iiold, and tiiat {Yt,Xt} is an i.i.d. or stationary series,

satisfying conditions of Lemma 9. The results of Theorem 3 remain valid, with the

variance matrix V taking the form

e

Qh = E[HiX)]-'^XX', where H{x

(m-« -1)2'

x'c for type 2 and 3, and 1 for type 1 tails.

Because the intermediate rank theory exploits the extremality of the relevant events,

the limit is defined only by the tail parameters. Unlike the extreme rank approxima-

tion, the condition relies on the relative abundance of the relevant tail events, which

leads to normality. This produces a convenient theory, on which an effective and prac-

tical inference can be based, as further discussed in Section 7. Theorems 3 and 4

create a bcisis for a series of results that give consistent estimates of the important tail

parameters (Section 7, Remark 6.2).

Lastly, dependent data is handled as well. Even though this is not the main focus

of the paper, the proof is very short using the local CLT of Robinson[66](see Lemma
9). Notably, the resulting limit is the same as for the independent data (due to the

separation of the tail events in time).

6.2. A Sketch. This provides a brief explanation of the result. The key difficult steps

are treated in the appendix. Lemmas 7-10. Our approach substantively differs from

the ingenious proof of Dekkers and de Haan[21] for the unconditional case. They use

the Renyi representation of order statistics, an approach that can not be applied here.

The normalized statistic Zt = aj-(/3(T) — P{t)) minimizes

Qr(z) = ^[Y.Pri^t-X[l3ir) Pr{Yt-X^/3{T))).

We seek to find its finite-dimensional weak limit Qooi'), so that by convexity we may

conclude argmin Qt{z)

Qt(z) =
"^

-I-

/tT

1

—> argmin Qoo(z). Write

T

^(r - l[Yt < XtP{T)])Xiz
(=1

T

Y,Mz)[{yt-XtP{T)]ar-.X'tz] vv; z + Gr(z),

where p,(z) = (l(y, < X^P{t)) - l{Yt < X;/?(r) + X^z/ar)).

Lemma 8, eq. (C.47), proves that Assumptions 3(i) and 3(ii) delicately imply

EMz) = 0{h{F-'{r))-a-'). (6.28)

This equality is not self-evident; in fact, it is counter-intuitive since ar may be con-

verging to zero. Lemma 8, eq. (C.52), also shows that due to Assumption 3-(ii)

m~^
fu{F-'{T))

F^HmT)-F-'{T) 1

<
(6.29)

21



for all TO > 0, ^ 1, as r \ 0. Then, by compactness of X,

Var Gr{z) = O (^fu{F-'{T))a-A = o(l). (6.30)

Lemma 9 handles the dependence. Thus Gt{z) — E Gt{z) —> 0. Lemma 8, using

Assumptions 3 (i) and (ii), proves that

E[Gr{z)]^^z'QHZ-
m -«-l

<
= -z'J{m.)z, for any z, (6.31)

where Qh is defined in Theorem 4. For Model 1, this simplifies Qh = Qx-
Assumption 3 is instrumental in verifying (6.31) and (6.28), which is the most

difficult and important part of the proof.

By the Lindeberg CLT or Robinson's local CLT for dependent data, Lemma 9,

Wr^Woo=N{0,Qx), (6.32)

and Ya.T{Wj.) —> Qx Because of the separation of the tail events in time, dependence

ceases to matter in the limit. Notably, the Liapunov and other central limit theorems

which require strictly more than two bounded moments do not apply.

Therefore, the finite-dimensional weak limit of Qt{') is

Qoo(2) = W^z + ^z'J{m)z. (6.33)

Since Qt and Qco are convex and a.s. finite, and Qoo is uniquely minimized at Z^o =
— J~^{Tn) Woo = Op{l), we conclude Zj. —> Z^ by convexity Lemma 1. The joint

convergence follows similarly by considering a sum of scaled objective functions, and

proceeding as above.

Lastly, the scaling a^ can be replaced by its empirical analog:

X'(/?(mT) - /3(t)) _ X'{fi{jnT)-^{mT))

lJ,'x{P{mT) - /3(r))
-

ii'xiPimr) - ^(r))

X'(^(r) - /3(r)) X'(/?(mr) - ^(t)) „
~'

. / /ol \ oi^w ' -'1

(6.34)

^i'^ {0{mT) - P{t)) /x'^ {P{mT) - /3(r))

since the first two elements on the r.h.s. are of order Op{-^=^) = Op(l).

The last display states that a population quantile spacing can be replaced by its

empirical analog, which is remarkably useful for inference purposes (Section 7). This

property is unexpected at a first sight, see Remark 6.2.

Remark 6.2 (Empirical Regression Quantile Spacings.) Note that (6.34) does

not follow from the convergence of P{t) to P{t) under intermediate ranks, because

l3(mT) — /3{t) may be converging to or diverging to infinity, as r \ 0. Furthermore,

when y/rTIn'^[[i{mT) — /3(r)) —> 0, /3(t) does not converge to /3(t). Indeed, take F^

in Assumption 1 to be of type 2. Then ^'xiPimr) - /?(t)) ~ t~=C{t), for some slowly

varying function L at 0. Then if {tt] satisfies r = cT~^, X £ (0, 1), and if r~j > a > 0,

then VrT/fi'yr (P{mT) — /3(t)) —^ 0. That is, divergence arises when r ^ fast, and

the tails are sufficiently thick. Notably, (6.34) remains valid.
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7 Inference

The focus of this paper is the modehng and distribution theory for the extremal (high

and low) regression quantiles. It is also desirable (but not feasible) to address all

practical issues related to confidence intervals, hypothesis testing, and tail inference

within the present paper. These questions are partly addressed in [13], and we hope to

pursue them in future work. Here, we present a brief discussion of these issues.

7.1 Quantile Spacings and Tail Inference. Estimation of the tail index is an

important problem in the statistics of extreme values, as discussed in Example 2.3.

The tail parameters also enter the limit distributions obtained earlier. The following

results show how to estimate them by the sample regression quantile spacings.

Consider the following statistics

_ x'0{mT)-0{T)) _ x'iPjmlT) - /?(/t)) . _ x'ipjmlr) - pjlr))
'^ -

x'iPimr) - /3(t)) '
^^•'•' " ±'{p{mT) - P{t)) '

^^'•' "
x'(/3(mT) - ^(r))

"

Theorem 5 (Regression Quantile Spacings and Tail Inference) Under the

assumptions of Theorem 3 or 4, as t \ 0, tT -^ oo, V/, m > 0, m ^ 1, x, x G X

(i) ^ -^ 1,

(ii) Px,i,i - Px,x,i -^ 0, /9x,i,; -^ l~^ [H{x)/H{x)] (cf. Thm 4). In particular,

0") ^^ i^lnP.xx, ^ C,

(jv) p^ Y 1
—> x'c, uniformly in x ((, ^ Oj.

(v) for TT = li'^ Qjj^ Qx QJi^Hx ,l = m = 2,if VtT{Px,x,i - limr Px,x,i) -^ 0,

^^(^-^^-^^T'"- (2(2^-1) In 2)^

Theorem 5 is a simple corollary of Theorems 3,4 and Lemma 10. (i) is by the

same steps as equation (6.34), and (i) implies (ii)-(iv), using the properties (v)-(vi) in

Lemma 10. Uniformity in x in (iv) follows from the linearity of Px^x,\- (^) follows

from Theorems 3 and 4 by the delta method. The results can be strengthened to the

uniform convergence in /, m, x (Chernozhukov[13]).

Theorem 5 shows that the regression quantiles spacings of the intermediate ranks

consistently approximate the population spacings (result (i) and (ii)) which reveal the

tail indices (results (iii) and (iv)).

Results (iii) and (v) may be especially emphasized, because the inference concerning

the tail index is one of the most important problems in the statistics of extreme values,

[26]. The proposed estimator ^ is a regression generalization of Pickand's estimator, if

I = m = 2}^^ ^ consistently estimates the tail index ^ in the heteroscedastic regression

Models 1 and 2. In fact, since ^i'xE{XX')''^ px = 1 (normalize ^x = (1,0, ...)), in

'"Going back to Pickands, such a choice is due to practical reasons but may vary in appHcations.
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Model 1 77 = 1, so that variance equals that of Pickand's estimator in the setting with

no regressors, [26]:

^2(22^ + 1 ^1)

(2(2«- 1) In 2)2'

Thus, unlike Pickand's and other unconditional estimators, ^ specifically adapts to

the presence of covariates that affect the scale and shape of the conditional density. And
even when covariates do not matter, there is no efficiency loss in using our estimator

rather than that of Pickands.

7.2 Confidence Intervals. We offer only a brief discussion, whereas details and an

empirical application can be found in [13] and [15], respectively. For brevity (and all

practical purposes) assume that the tail index ^ 7^ 0.

Resampling. Subsampling, Romano et al.[58] , is a simple, practical way of con-

structing the confidence intervals. The validity of subsampling is not immediate in our

setting, since our statistics may be diverging. However, a simple modification brings

its validity, Chernozhukov[13]. Another, different modification was proposed by Bertail

et al.[8] for the ordinary sample quantiles and can be adapted here. In the empirical

work, subsampling generates well-behaved, sensible confidence intervals ([15], [8]).

The nonparametric bootstrap fails in the extreme rank case. (A well known counter-

example is that of extreme order statistics.) For the intermediate rank case, the boot-

strap may work, at least when Oj- —> 00, since the statistic of interest is approximately

an average. However, a simple bootstrap is unlikely to offer intervals of good quality,

so that a smoothing as in Horowitz[43] may be needed. Recently Bickel and Sakov[69]

have shown that for the case of sample median subsampling (with replacement) does

better than the simple bootstrap. This might carry over to the intermediate rank cases.

Analytical Confidence Intervals: Intermediate Case. In the intermediate

rank theory, the confidence intervals are simple to obtain. Theorem 5 provides the

estimators for the tail index ^ and the index x'c. The scaling constant a-j- can be

replaced by its empirical analog, see Theorems 3 and 4. This fully operationalizes the

intervals. The simplicity, convenience, and parsimony of the limit make it a significant

competitor of the central rank theory for quantiles in the range up to .25-. 3, across

common data sets. Chernozhukov[13] offers a monte-carlo confirmation, employing

designs with different tail types, continuous and discrete covariates. These intervals

out-perform the central ones (employing the methods in [50], built in S-I-).

Analytical Confidence Intervals: Extreme Rank Case. In this case the confi-

dence intervals are involved but worth the trouble (Figures 2 and 5). First, approximate

the distribution of N. N is a Poisson Process, so its Laplace functional is

*n(s) = -Eexp g{u,x)d'N{u,x) = exp - / (1 - e ^^'''^^)dm^^c,F^{u,x)

for measurable, continuous functions g, vanishing outside the compacts sets, where

m^_c,Fv(^) = -E'[N(>1)|^, c,Fx] is the intensity measure of N, defined in Lemma 6.

\Pn(3) is a continuous function of ^,c,Fx- Thus the distribution of J gdN can be

consistently estimated by that of J gdNs ^ ^ .
, where N; ^ ^ is the Poisson process with

the intensity measure tu;
^ ^ . The infinite sum J gdN; ^ ^ can be approximated by a
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finite sum, so that the distribution of Z^ can be obtained by monte-carlo/' as in Fig. 5.

To estimate the scaling Oj., we can rely on the unconditional case, [26], [8]. Employing

the approximation //'^(/^(mr) — /3(t)) ~ c{rn~^ — 1)t~^, project X'{p{mT) — /3(r)) on

c{m^^ — \)t~^ for different r and m to get c, and set a-r = c(l/T)^^. If tT grows

polynomially fast, ax far —> 1. [This should suffice in most practical cases; in very

large samples, we may further refine this as r{Tn,T) ~ C{m~^ — l)r~^(— Inr)^ etc.]

7.3. Which theory? Let us consider the examples in Figures 4 and 5, and look

at the following factors: (i) the number of regressors, (ii) the theoretical quality of

approximations, and (iii) the convenience and ease of estimating nuisance parameters.

First of all, covariates reduce the effective sample size. To that end, the concept of

the effective rank is useful. The effective rank, r, is the ratio of the rank to the number

of regressors, tT/d.}^ To motivate this, consider a simple "regression" quantile problem

in a sample of 1000 observations and 10 dummy regressors, in which the target is the

.2-th conditional quantile function. The estimate is the 20-th lowest order statistics

in each of 10 subsamples corresponding to the dummy variables. Figure 2 (A-C),

corresponding to this example, suggests the normal approximations are much worse

than the extreme rank one. So if r is less than or equal to 25 — 40, the Figures 2 and

5 (A-C) prefer the extreme rank approximation for the quality reasons.

When the effective rank r is above 25 — 40, the normal intermediate or central rank

approximations appear sensible. Irrespective of the sample size, the intermediate rank

theory (in principle) should not be useful for the central quantiles (our modest examples

suggest the range (.3,. 7)). However, irrespective of the sample size, the intermediate

rank theory is more useful for the high and low conditional quantiles (r < .3, r > .7)

because of the simplicity of estimating nuisance parameters.

Because the intermediate rank theory exploits the extremality of the relevant events,

it provides an approximation conveniently defined by the tail parameters (in contrast,

the conventional theory requires the nonparametric conditional density function eval-

uated at the high or low quantile, which is hardly estimable with the scarce tail data

and many covariates). Of course, if we fix r and let the sample size go to infinity

the central rank theory will dominate quality-wise, but the theoretical gain should be

very small (Figure 5, D-F). In summary, we believe that the intermediate rank theory

does better that the conventional theory at offering a more qualitative and practical

approach to making inference on high and low conditional quantiles.

7.4 Other Results. In [13], we have further explored the asymptotic questions by

looking at the empirical processes of the form (o7.(/3(r/) — /3(r/),Z G £1, C C (0,oo).

The convergence to either Gaussian or non-Gaussian processes have been demonstrated.

These results have many practical applications in estimating tail parameters. Some

hypothesis testing and refinements of tail estimators in Theorem 5 are also explored.

''To obtain the theoretical approximation, (a) simulate (Ji,Xi),i < n\ where Xi are drawn from

Fx , Ji are simulated as defined in Theorems 1 and 2. (b) solve Zoo.n = a^rgmin^"_j pf;/^{J^ — X'-z);

repeat (a) b times. 6 and n should be large. In practice, A', may be drawn from the empirical dis-n

f-n Fx, and J, are drawn as defined in Theorems 1 and 2, replacing ^.A'^'c with l^,X'^c.

'^A more refined version may be TTId times the determinant of the correlation matrix of A'. If

covariates are independent, this will give tT.
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Conclusion

The present work provides a theoretical framework for studying the conditional ex-

tremal response - the near-extreme conditional quantile functions. We developed the

models that coherently combine the linear forms with flexible heteroscedasticity and

extreme-value-theoretic restrictions. We suggested and motivated the concepts of ex-

tremality or data scarcity for regression quantiles - the intermediate and extreme rank

sequences. We obtained the limit distributions under each of these sequences.

The numerical examples in Figures 2 and 5 suggest that these distributions approx-

imate the finite-sample distributions better or as well as the conventional theory, for

quantiles in the range .01 - .3 (in samples of common size). These distributions are

conveniently determined only by tail parameters. These tail parameters are easy to

estimate (unlike nonparametric conditional density evaluated at near-extreme quan-

tiles, required in the conventional theory.) We also provided the tail estimators which,

unlike the widely-used Pickands and other classical procedures, specifically adapt to

the setting where covariates affect location, scale, and shape of conditional density.

The relevance of these results stems from both the motivation for quantile regression

models in data analysis and the importance of tail inference. The motivation was to

explore many more features of the conditional distributions than just the center. For

example, Abreveya[2] and Koenker and Hallock[50] characterize the economic determi-

nants of babies' very low birth-weights through the near-extreme conditional quantiles

(.05 and below). Deaton[20] examines the food expenditure of Pakistani households

by the .1-th and .9 -th conditional quantiles. In our work, [15], we study the economic

determinants of very high risk of an oil-producer's stock price. We find that the market

factor is an unambiguously strong determinant, whereas other factors are not. Thus

the level of extreme risks are mainly determined by the general economic activity. We
also find and characterize the tail thickness of the conditional distribution, using the

procedures developed here. Presently, Chernozhukov and Hong[14] are considering the

robust estimation of the auction models, discussed in Example 2.4.

We shall (and hope others will) further address the inference questions, such as

confidence intervals, hypothesis testing, and tail inference procedures. Over more than

fifty years, an elaborate theory of inference based on the ordinary sample quantile has

been developed, [26], and now forms an essence of the extreme value theory. Further

progress is possible by building on these developments.
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A. tau=.025, T=500, rank=1i B. tau=.1 , T=500, rank=50 C. tau=.2, T=500, rank=100

-5 5 -3-2-10 1 2 3

D. tau=.1, T=500, rank=50 E. tau=.2, T=500, rank=100 F. tau=.3, T=500, rank=150

in
1

o

^7

/

?

/

-2-10 1 2 -1.0 0.0 1.0

Figure 5: A simulation example for a classical model: Y = X'a + U, U has the algebraic

tail F{u) ~ u~^'^ as u \ oo, ^ = 1. X],X2 are symmetric Beta variables (normal looking,

but with bounded support), X3 and X^ are dummy variables. The results are for one of

coefficients (others are similar). T=500. Replications = 5,000. Displays A-C: QQ-plot of

Extreme and Central Rank Approximations. The dashed line "- - -" is the central

approximation, and the dotted line " " is the extreme rank approximation. The true

quantiles of the exact sampling distribution are depicted by the solid line " "
. The central

rank approximation varies from very bad to bad for low quantiles r = .025 and r = .1

and becomes comparable to the extreme rank approximation only at r = .2. Displays D-
F: QQ-plot of Intermediate and Central Rank Approximations. The dotted line

" " is now the intermediate rank approximation. The theoretical central and intermediate

rank approximations have approximately the same performance for r = .1, .2, .3, (using m =
2, 1.5, 1.25). The practical advantage of the intermediate rank is the parsimony and ease of

estimating nuisance parameters.
[ QQ plots are over the 99% range.]
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APPENDIX. The appendix gives proofs for Theorems 1-4 in the text (Corollciry 1 and 2),

and studies Models 1 and 2 in detail. It first develops a set of simple "high-level" conditions,

that give the requisite convergence results. These conditions are verified for Models 1 and

2, leading to fairly compact proofs of Theorems 1-4. In addition, these conditions enable

an extension of the applicability domain beyond Models 1 and 2, by only supplying the key

convergence results (e.g. CLTs etc). We also include some background material.

In what follows, {yfjXf} is a (triangular) sequence of random variables taking values in

R' X R'' and defined on probability space {^,T,P), possibly indexed by T. The outer P* and

inner P. probability measures are defined in [76]. Q-mixing or strong mixing is defined e.g.

in[18]. Use Fu{z\x) to denote Fu,{z\Xt = x) in the sequel. Unless otherwise stated, k, K, C
and their modifications are generic constants.

A Useful background

A.l Point processes

These definitions, collected for the reader's convenience, may be found in [65] and [52].

Definition A.l (Point Measures, Mp(E)) Let £ be a locally compact topological space

with a countable basis. Define £ to be the Borel cr-algebra of subsets of E. A point measure

(p.m.) p on {E,£) is a measure of the foUowdng form: for {xi,i > 1}, a countable collection

of points (called points of p), and any set A^ £:

p{A) = Y^l(x,eA).
i

If p{K) < cx), for any K C E compact, then p is said to be Radon. A p.m. p is simple if

p{x) < 1 yx €. E, and is compound otherwise. Let Mp{E) be the collection of all Radon

point measures. Sequence {pn} C Mp{E) converges vaguely to p, if J fdp^ —) J fdp for all

functions / € C^{E) [continuous, non-negative, and vanishing outside a compact set] (cf.

Leadbetter et.al.[52]). Vague convergence induces vague topology on Mp{E). The topological

space Mp{E) is metrizable as a complete separable metric space. Mp{E) denotes such a metric

space hereafter. Define Mp{E) to be the cr-algebra generated by the open sets.

Definition A.2 (Point Processes: Convergence in Distribution.) A point process

(PP) in Mp{E) is a measurable map

^.{^,T,P)^{Mp{E),Mp{E)),

i.e. for every elementary event u) G ft, the realization of the point process N(u;) is some

point measure in Mp[E). Thus, the concept of convergence in distribution (in law, weak

convergence) of the point process Nn taking values in Mp{E) is the same as for any metric

space, cf. [65]: we shall write

N„ => N in Mp{E)

if Eph{^r,) -> Eph{^) [i.e. /^^ /i(N„(u;))dP(u;) —> J^h(N{io))dP{Lo) ] for all continuous

and bounded functions h mapping Mp(E) (or M+{E)) to R. This implies that if Nn => N in

Mp{E),

f f{x)dNn(x) -^ / /(x)dN(x)
JE JE

for any / G Ck{E) by the continuous mapping theorem.



Definition A. 3 (Poisson Point Process or Random Measure (PRM)) Point process

N is a PRM in Mp{E) with mean intensity measure m defined on {E,£), if

(a) for any F & £ and any non-negative integer k

p(N(^) ^k) = l
«"'"'^'"^(^)Vfc! if m{F) < <x,,[0 if m{F) = oo,

(b) for any A: > 1, if (Fj,i < k) are disjoint sets in £, (N(Fi),j < k) are independent.

Definition A.4 (Compositions and Transformation of PRM) To. construct our limit

processes, the following are helpful (see Proposition 3.7 and 3.8 in Resnick[65].)

1. (Canonical PRM) The PP with points {r,,j^ 1} in Mp{E), where E = [0,oo), F, =

S,<i ^j> {^i} 3-re iid. unit exponential, is PRM with mean measure m{du) = du on {E,£).

2. Let {Vi,i > 1} be i.i.d. random variables with law Fv, taking values in (5,5), satisfying

definition A.l, then the PP with points {5,, V,,i > 1} is PRM in Mp{E') with mean measure

m{du, dv) = du x Fv (dv) on (£', £') = {E x S,£ x S).

3. Let Ni be a PRM in Mp(£'i) with points {Gi,i > 1} and mean measure mi on {Ei,£i).

Then the PP N2 with points defined by {T(g^),i > 1}, where T : {Ei,£t,) i-> (£2,^2)

is measurable, is PRM in Mp{E2) with mean measure m{dg) = mi o T~^{dg) defined on

(E2,£2).

A. 2 Convex Semi-Continuous Objectives

The following result is from Knight[46]. It allows for general discontinuities and R - valued

objective functions. The result is embedded by Knight[46] into the framework of stochastic

equi-sem,i- continuity of the objective functions, which gives an elegant way of transforming the

weak finite-dimensional (fidi-) convergence of objective functions into the weak convergence

of argmins, provided the sequence of agrmins is Op{l). In case of convexity one has s.e.-sc.

Related literature is [67], [70], [22].

Lemma 1 ( Knight[46], p.12 ) Suppose {Qt} is a sequence of lower-semi-continuous (Isc)

convex R-vaJued random functions, defined on R , and let V be a countable dense subset of

R . If Qt fidi-converges to Qoo in R on V where Qoo is Isc convex and finite on an open

non-empty set a.s., then argmin Qt(z) —> axgmin Qoo{z), provided the latter is uniquely

defined a.s. in R"*
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B Proofs for section 5, extreme ranks

B.l Details and definitions

Definition B.l (Key Point Process, Space E) The key PP in Mp{E) is

N() = ^ liariUt - 6t), A',) G •}; (B.35)

The mis-en-scenes 1-3 define (1) the mecisurable spaces {E,£), (2) the reference error Ut, (3)

restrictions on the constants aT,bT, and (4) the rescaled estimators

2.E2= [[-cx,,(»]\{0}]

xX, Ut=Yt-X'tl3r,

ZT = ar{P{r)-pr),

br =0, ar > 0.

1. El = [—00,00) X X,

Ut=Yt-X't^r,

-6x61), ar > 0;

3. E3 = [0, 00) X X,

Ut=Y,~ X[p. > 0,

br =0, Or > 0.

where /3r = /3(0) in the finite support case; ei = (1, 0, ..., 0)'; X is a compact subset of R"* s.t.

Jft 6 X Vi. CT-algebra £ on E \s generated by the opens sets of E.

Mis-en-scene 1, 2, 3 suit the case of Fut{-\Xt) with type 1 tails (finite and infinite support

CEises), type 2 tails (infinite support), type 3 tails (finite support), respectively. The scaling

constants (ot,6t) for Models 1 and 2 are in the main text, section 3.6. They conceivably

differ in other cases.

Remark B.l (Compactification) The choice of E\, E2, E3, that is their topology, is impor-

tant and simplifies the proofs considerably. We assume that the topology on E2 and E\ is in-

duced via a standard two- and one-point compactification respectively (so that e.g. [—00, a] xX
is compact in E2 for o < and m E\ for any a < 00.)

Definition B.2 (Limit Point Process.) We require that N => N in Mp{Ei),

00

N() = ^l{(J„;f.)6}, (B.37)

1=1

where {Ji,Xi} are random vectors in Et [i = 1,2,3), finitely-valued a.s.

Definition B.3 (Normalized Statistics and Limit.) Given the definition of the quantile

regression estimator, the rescaled statistic Zt in (B.36) solves;

T

Zt = argmin {QT{z,k) = ^p.r{aT{Ut - br) - X'tz)} (B.38)

[write either z = ariP — Pr — brSi) or z = ariP — Pr)] The weak hmit Z will solve

Z= axgmin {^Qcxi{z,k) = —knxz + j l{u,x' z)dN{j,x)}, (B.39)

where l{u,v) = l(w < v){v — u), nx = plim X. Since N £ Mp(Ei), Qoo{-,k) is well defined

and finite on an open non-empty subset of R , under the conditions stated below.

Definition B.4 (Essential Uniqueness.) Let IC = {K\,K2) s.t. k £ IC. Given w € Q,

let JCb{w), the break-points, be the set oi ki, €^ IC s.t. argmin.g^j (3oo(2, fc(,) is not unique in

R''. For any u;, ICb{w) / due to the piece-wise linear form of the objective [see gradient

conditions in Remark 5.1). We require the essential uniqueness: either (i) k ^ Kb w.p. 1

or (ii) Lebesgue measure of K.b is zero, w.p.l.
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B.2 Basic conditions for nondegenerate asymptotics

The BC axe formulated as general but constructive conditions that (i) lead to short proofs of

Theorems 1 and 2, (ii) allow to extend the applicability beyond Models 1 and 2, by supplying

only the requisite limit laws, such as the convergence of a point process.

Condition 1 BC.l (Key Point Process) There exist constants {ar^br} and Ei of the forms

in (B.36) s.t. point process N, defined in (B.35), converges weakly to N in Mp{Ei),

N => N. (For E2 we only require N(- fl E'2) ^ N(- n E2) in MpiE'^), where E'2 =
[-00,0) X X). Points of N are R''+'-vaiued a.s.

BC.2 (Stability and Compactness) {Xt}, {Xi} have the support contained in a compact set

X C R''. The non-degenerate limit empirical distribution functions of {Xt} and {X,},

Fx and Fx , exist with support in X. jFx has mean px

BC.3 Design Conditions: (1) Essential uniqueness holds. (2) For space E2, Z'j-x < and

Z'X < 0, Vi £ X, w.p. —> 1.

BC.4 For appropriate Ej, one of the following is true (for c(k) £ R''): (i) ariPir) — (3r
—

brei) -^ c{k), (ii) ariPir) - (3r) ^ c(fc), (Hi) ar{l3{r) - /?(0)) ^ c(fc).

Remark B.2 1. BC.l is the key. We verify it for Models 1 and 2 under dependence conditions

ruling out the clusters of extremes. By supplying further convergence results, one can extend

the applicability to a bigger variety of data (e.g. panels). 2. BC.2 requires {^Yt}, the properly

scaled regressors, and {Xt} to have basic stability properties. Limit empirical distribution

functions are known to exist under general conditions. The compactness condition is required

for establishing the continuity of the mapping of N to the rescaled statistic. Relaxing this

condition may alter the limits. BC.2 allows trends, e.g. if Xt = t/T, Xt has the support in

[0, 1], and the limiting empirical distribution is uniform. 3. Condition BC.3, given BC.2, is

plausible (see section E). 4. Condition BC.3(2) is automatic in the main text but probably

may not hold more generally. It requires that for space E2, suiting type 2 tails, the reference

line (w.l.g. the line can be chosen to be above median), is below or equal to the low rank

sample regression quantiles in the compact set X with arbitrarily small probability as T -^ 00.

5. BC.4; For Models 1 and 2, the constants c{k) are stated in Theorems 1 and 2 and derived

in Lemma 10.

Lemma 2 (Weak Convergence under Extreme Ranks) BC.1-3 imply as tT —> fc,r —

>

00 (for appropriate space E)

Zt —> Z = argmin < Qoo(z) = -kp'xz + / l(u,x' z)dN(u,x) >,

zeK'' JE '

for almost every k, where l{u,v) = l(u < v)(v — u) and N is defined in (B.37). This result

could be stated in terms of the centered statistics. If BC.4 also holds, then

forZ^ = aT0{T)-l3{T)), Z^t ^ Z^ = Z - c{k).

Proof: (1) Because tT —> k, take r = k/T w.l.o.g. in sequel. First, stabilize QT(z,k) in

(B.38) by subtracting a term that does not affect optimization:

QT(z,k) = -kX'z + Y,h(arl,Ut - 6t),Xz),
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where li{u,v) = l(u < v){v — u) — l{u < —5){— S — u), for 5 > 0. Such a renormalization

makes the proof short, since Qt now becomes a (to be shown) continuous functional of N:

QT{z,k) = -kX'z+ f kiJ,x'z)dN{j,x). (B.40)

Part (2) shows that the fidi weak hmit of Qt is a convex function in z:

Q^{z,k) = ~kfi'xz+ lsU,x'z)dN{j,x). (B.41)

Qt{z, k) is convex VT, since it is a sum of convex functions in z. Qt{-, k) is continuous, hence

l.s.c. VT. By the convexity Lemma 1, for a.e. A: >

Zt ^ Z = aigmmQoo{z,k), (B.42)

provided: (a) there is a non-empty open set Zo s.t. Qo:,{z,k) is finite a.s. ^z G Zq, and (b) Z
exists and is a.s. unique for a.e. k > 0. (a) is shown in peirt 2 of this proof, (b) simply follows

from BC.3(1), since Z = argmin ^Qoo{z,k), for Qoo defined in (B.39). Indeed, Qoo{z,k)

differs from Qoc{z, fc) by A = f^ l{j < -S){-S - j)dN{j, x) = T,i:j.<-6(-^ - -^0, which is

independent of z and |A| < cxd a.s.
'*

(2) Here we verify that

(i) Qao{-,k) is indeed a fidi distributional limit,

(ii) there is an open non-empty set Zo s.t. Qoa{z,k) is finite a.s. for all z £ Zo-

(i)- Qoo{-,k) is a weak fidi limit of {Qr(-,fc)} iff for any finite collection {zj,j < I)

ipTiz^k), j<i)-u (Qoo{zj,k), j<iy

Since X' Zj
—

> n'xZi, we only need to verify:

(^ j ls{u,x'zj)dN{u,x), j <l^ -^ n ls{u,x'zj)dN(u,x), j < / ). (B.43)

Define the mapping from Mp{E) to R' (for Ei = Ei,E'2,orEz)

Ti:N>-^r/ h{u,xZj)d:Si{u,x),j<l\

(a) Consider Ei. The map (u,x) i-> ls{u,x'zj) is in Ck{E\), since it is uniformly contin-

uous on E\ by construction and vanishes outside the compact subset K in Ei:

K = [— oo,max(K;, —6)] x X, where k, = max x z.
xsx,.e{z,,...,z,}

K is compact in Ei since « < oo by BC.2. Hence by construction N >-> Ti (N) is continuous

from A4p(Ei) to R'. Thus N => N in Mp{E) implies Ti(N) -^ Ti(N) by the continuous

mapping theorem.

'^Indeed, in case of E3, j > 0, hence A = 0. In case of £1, E2, note (i) N(A') < 00 a.s. for all K
compact by definition of N £ Mp{Ei). K = [—00, —8\ x X is indeed a compact subset of E2 or E3,

cf. remark B.l, so #{i : Ji < —(5} < 00 a.s., (ii) points {J,} of N are real-valued by BC.\. (i) and (ii)

imply |A| < 00 a.s. by BC.l.
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(b) Consider E3. Map (u,x) i-^ l{u,x'zj) is in Ck{E^): it is uniformly continuous on £3

by construction and vanishes outside the compact subset K in E3:

A' = [0, max(/t, — 5, 0)1 x X, where «; = max x z.
xSX,^S{zi,.-.,z,}

K is compact in E3 since k < 00 by BC.2. Therefore, by construction N 1—> T3(N) is

continuous from MpiEs) to R'. Hence N => N m MpiEi) implies TaCN) -^ T3(N).

(c) Consider £2- We claim it suffices to show the weak fidi convergence (B.43) only for

points Zn = {z : x' z < 0, Vi G X}, since Zt and Z belong to such set w.p. —) 1, as T —> 00,

by BC.3. This claim is verified in Remark B.3. Note that map {u,x) t~> ls{u,x' z) is in Ck(E'2)

if 2 € Zn , since it is uniformly continuous on E'2 by construction and vanishes outside the

compact subset K in E'2:

K = [— 00, max(ft, —S)] X X, where k = max x z.
xex,=g-{zi,...z|}

K is compact in E2 since k < and z € Zjw- Hence N i-> T2(N) is continuous from Mp(E'2)

to R'. Hence N ^ N in Mp{E'2) implies TjCN) -^ T2(N).

(ii). To show (ii), pick distinct {z\, ...,zi,l > d+1), so that the convex hull Z of these points

is non-empty and has positive Lebesgue measure in R'' ; for £21 additionally require zt £ Zn
for each i (possible by compactness of X). Define Zo as the interior of Z. By construction

Zq is an open, bounded, non-empty subset of R''. For any z 6 Zo, (m, i) h-> ls{u,x'z) is in

CK{Ei), by the arguments in (i), which implies J^ ls{u,x'z)dl^{u,x) is finite a.s. To check

this note (a) ls(u,x'z) G CxiEi) implies #{i : lf,{Jt,X[z) / 0} is finite a.s. and (b) ls{u,x'z)

is bounded on EiM

Remark B.3 Consider E2- We claimed it suffices to show the weak fidi convergence {B.43)

only for points Zn = {z : x' z < 0,V2: G X}, since Zt and Z necessarily belong to such set

w.p. -^ 1 by BC.3. Consider the objective functions:

QT{z,k,e)= Qrizjk) + <f>{supx'z < -e),
lex

Qoo{z,k,e) = Qoo{z,k) + 4>{supx'z < -e),
i£X

where (f>{A) = 0, if A is true, (f>{A) = 00 if not. They are convex and l.s.c. by construction,

finite on an open non-empty set by the earlier arguments in part 2(ii) of the proof and by

compactness of X (so that it is possible to choose points z s.t. sup3.gx ^'^ < —e). Hence

by the convexity lemma 1, Z^ = SiTginm^QT{z:,k,e) —> Z^ = a.Tgin\u.QoD{z,k,t) by the

fidi weak convergence demonstrated in the proof of Lemma 1, part 2 (c); except if Zj is

s.t. (/)(supj.gx ^'zj < — e) = 00, QT{zj,k,t) = 00 —> Q{zj,k,t) = cx3 in R trivially. Next

choose t small s.t. the probability that Z^ and Z" differ from Zt and Z, respectively, is as

asymptotically small as desired by BC.3(2). This shows Zt —> Z.

Next let Zt(A;) = argmin.g„d(5r(z, fc) and Z{k) = argmin.g|gdQoo(z, fc).

Lemma 3 BC.1-BC.3 imply Zt = {ZT{kj)',j < I)' -U Z = {Z{kj)\ j < I )'.

Proof: Zr G argmin ,^f^dxlQT{zl,kl) + ... -t- QT{zi,ki), for z = (21,..., z;). Since this

objective is a sum of objective functions in Lemma 2, it retains the properties of the elements

summed. Therefore the argument of Lemma 2 applies.
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B.3 Limits in Models 1 and 2

Lemma 4, Resnick[65], states conditions (B.44) and (B.45) for convergence to a simple point

process N in Mp{E). Lemma 5 shows (B.45) suffices for weakly dependent data. Lemma 6

verifies (B.45) and finds the limit N in Models 1 and 2. Corollary 1 gives Theorems 1-2.

Lemma 4 (Resnick[65], 3.22) Suppose N is a simple point process in Mp{E), T is a basis

of relatively compact open sets s.t. T is closed under finite unions and intersections, and for

F eT, P(N(aF) = 0) = 1. Then N => N in Mp{E) if for VF e T:

lim P[N(F) = 0] = P[N(F) = 0], (B.44)
T—)-oo

lim FN(F) = FN(F) < oo. (B.45)
T—*oo

Remark B.4 In our case, T consists of finite unions and intersections of bounded open

rectangles in Ei, E2, E3. Remark B.l gives the topology of Ei, E'2, E3.

We impose the Meyer[55] conditions on our "rare" events

AJ{F) = {weQ: iaT{Ut-bT),Xt) e F}.

Lemma 5 (Poisson Limits) Suppose that for any F ^ T, the triangular sequence of events

[[Aj{F),t <T),T> 1} is stationary and a -mixing with the mixing coefficient Q7-(), (B.45)

holds, and there exist sequences of integers ipn,n > 1), {qmn > 1) ,
{t„ — n(pn +qn),n > 1):

as n -^ 00, for some r > (a) n''a(„(g„) —> 0, (b) gn/pn —> 0, pn+i/pn —> 1, and (c) that

Ip. = Ef=r'(Pn - i)PiA''{F) n A\l,{F)) = o(l/n). Then in Mp{E), N ^ N, a PRM with

mean measure m : m{F) = limT->oo EV^{F).

Proof. For any F : m{F) > 0, limr-^tx, F[N(F) = 0] = P[N(F) = 0] = e~'"'^\ by

Meyer's theorem[55]. The same also holds for F : m(F) = 0, since FN(F) —> implies

F(N(F) = 0) -> 1 [N(F) is integer-valued]. Conclude by lemma 4 and definition of PRM.

Remsirk B.5 /p„ — o(l/n) prevents clusters of "reire" events A^ (F). It eliminates compound

Poisson processes as limits. The Meyer condition generalizes Loynes[53]. Leadbetter et al[52]

offer generalization, distributional mixing, not suited when we have X

.

Lemma 6 (Limit N in Models 1 and 2) Under Assumption 2 or 1, and dependence con-

ditions in lemma 5, for the canonical constants (aT.fcr) defined in terms of Fu in section 3.6,

N => N in Mp(E,), a PRM with mean measure defined on E(E\,E'2,orE3) as:

m.{du,dx) = K(x)h(du) x Fx(dx),

where h{u) = e" for type 1, h(u) = (
— u)'" for type 2, and h(u) = u° for type 3 tails. Points

(JijXi) ofN have the representation

{J,,X,,i > 1) = (h-'{T,/K{X,)),X„i > 1),

where h~' is the inverse of h, F, = £^1 -I- ... -1- £^j,i > 1 ({£i} are i.i.d. standard exponential),

and {Xi} are i.i.d. r.v. with law Fx , independently distributed from {F,}.

In view of the form of K() (Lemma 10, see assumption 2), the points of N are

(J„X„i>l) =
(ln(rO + A'/c, X,) for type 1,

(-r~''°X;c, X) for type 2, i > 1 (B.46)

(ry'^X^c, X) for type 3.
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Proof of Lemma 6: By Lemma 4 and 5, this reduces to verifying that the mean intensity

measure iJN(F) converges to m{F), limx -E'N(F) = rn{F) for all F in T, which follows by

straightforward calculations. To show the second part, construct a PRM with the intensity

measure 7ti(). At first, define a canonical homogeneous PRM Ni with points {r,,i > 1}

(defined as above). It has the mean measure mi{du) = du on [0,oo), e.g. Resnick [65].

Secondly, by the (Composition) Proposition 3.8 in [65], the composed PP N2 with points

{Fi, A", } is PRM with the mean measure

m2{du,dx) = du X Fx{dx)

on [0,00) X X, because {A'l} are i.i.d. and are independent of {F,} (see Def A. 4). Finally,

the PP N with the transformed points {T(Fj, .f,)}, where

T: (u,a;)H-> {hr '^ {u/K {x)) , x)

,

is PRM with the desired mean measure on £ x X

m(dj,dx) = m2 oT~^{dj,dx) — K{x)h{dj) x Fx{dx),

by the Transformation Proposition 3.7 in Resnick[65] (see Def. A.4).

Corollary 1 (Theorems 1-2) Lemma 3-6, Lemma 10, and section D verified the conditions

BC.1-4 (El, E2, E3 suit the tail types 1-3.) Hence we have Theorenis 1-2.

C Proofs for section 6, intermediate ranks

C.l Basic conditions for a normal limit

Define the following key variables:

Wr{l) = ^LV {It - l(y, < Al/3(r/))) Xt,

Gt{1,z) = -^y^it{l,z) [-X'tz + (Yt - Xtl3{Tl))aT{l)]
,

where ^,(/,z) = {\(Yt < X,'/3(rZ)) - l{Yt < X[l5{rl) + X[z/aT{l))).

Condition 2 There exists a sequence {aril)} such that as tT -^ oo,r \
BC*1 (Analytical Tail Property) limr EpGt{1, z) = \z' J{l)z, J{1) is invertible V/ > 0.

BC*2 (LLN) \\Gt{1, z) - EpGt{1, z)\\ ^ for any fixed I and z.

BC*3 (CLT) {Wrih), ...Wrilm)} -A N{0,g) for any finite collection < U,i < m.

Remark C.l 1. The (properly sCeJed) objective function is Wril)' z-\-Gt{1,z). The BC im-

ply its linear-quadratic normal limit, as in the main text. 2. The analytical condition BC*1

is most important. Under independence it implies BC*2,while BC*3 holds by Lindeberg-

Feller. To check, write Gt{z,1) = -?^ X!( ^'(^' 0> BC*1 requires Ert{z,l) ~v'rT-ic. By

compactness of X and binomiality of rt (a binomial variable times a bounded variable):

vca:CiZj^.iTt{z ,1)

[

VVt) = 0{Ert{z,l)/T) = 0(i/y^) -> 0. BC*1 is purely analytical. Section

C.2 verifies BC*1 in Models 1 and 2 under the additional assumption 3. 3. Many CLT/LLN
carefully imply BC*1 and BC*2 (e.g. [18], [24], [32]). Carefulness means CLTs should require

no more than two asymptotically bounded moments of Wt{1). E.g. Liapunov, L2 mixingale,

and NED CLTs don't apply; but Lindeberg and Li -mixingale CLTs do. In Lemma 9 we adapt

the local CLTs in Robinson [66], designed for kernel estimators.
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Lemma 7 (Weak Convergence under Intermediate Ranks) BC*1- BC*3 imply,

as rT -> oo, r \ 0: (ot(/,)(/3(/.t) - /3(/ir)),i < m) -U N{0,n), Qij = J"' (/,)5.j >/"'('; )

Proof. Case of m = 1 is notationally identical to the proof stated after Theorem 3 in the

main text, which required only the conditions above. The (joint convergence) proof for tti > 2

is very analogous, so the undue repetition is avoided.

C.2 Limits in Models 1 and 2

This section verifies that the conditions BC*1 and BC*2 hold in Model 2 (and 1)

Lemma 8 (Analytical Tail Property) Under assumptions 1 or 2 and 3, BC*1 holds, with

J{1) given in Theorems 4 and 3 for Models 2 and 1, respectively.

Proof: Suppress I (I = 1). Write E(Gt{z)) = eL, ^7^ + 7=^. ^^here r]t = fit{Yt -

XtP{T))aT- Use Ft and ft to denote Fu,{-\Xt) and fu,{-\Xt):

^^ ^ -^E\Ft[Ft-Hr)] - Ft[Ft-\r) + ^]| \X'tz\

VtT VtT ciT

= -^£| 1
(z Xt)

<f) 1 ._E\MKlil)l\.^,'Xt)' (C.47)
VtT a.T

_ 1 F-\mT)-F-\T) ,2

(3) 1 1 |m"^ - 1
I

/„ „/ -r ^ t~ ^^ Tjiv \ \ c
^ XtXtZ, uniformly m t.

1 H{At)\ -t, I

Equality (1) is from the definition of 1/ot = o{F~^ {mr) — F~^{t)) and a Taylor expansion.

The equivalence (2) is by the assumed (Assumption 3) regular variation and uniform in t tail-

equivalence: l//t(F,"'(T)) ~ dF-^iT/K{x))/dT € 7^_5_l. Pick x = ^x so that K{x) = 1

for now. By the definition of regular vaxiation, locally uniformly in / [uniformly in I in any

compact subset of (0, 00)]

fu(F-'{lr))^l^+'f^{F-\r)). (C.48)

I.e. locally uniformly in I

fu{F:\r) + [F-\lT) - F-\t)]) ~ l^^' fu{F-\r)). (C.49)

Hence for any Zr —> 1,

fu{F-\r) + [F-'ilrr) - F-\t)]) ^ fu{F-\T)).

Hence for any sequence Vr = o{[F~^{mT) — F~^{t)\) with 0<7n7^1,asr\,0:

fu{F-\r) + v^)^f^[F-\r)),

because for any such {vt} we can find a sequence Zt —> 1 s.t. {vr} = {[Fu^ [Itt) — F~*(r)]}.

Now because (a): i/ftiF^^ir)) ~ dF~^(T/K{x))/dT uniformly in t by Assumption 3, and

(b): fu(F-^lT/K)) ~ {l/K)^+^fu{F-\T)), locally uniformly in I and uniformly in K e

K-x. = {K{x) ' X 6 X} [compact by assumptions on K{-) and X], by (C.48); the equivalence

(2) in (C.47) now follows uniformly in t.
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The equivalence (3) in (C.47) follows from(C.50)-(C.52). At first, by assumption /((Ff ' (r))

dF-\T/K{x))ldT = \/{K{x)fu\F-\T/K{x))]}, uniformly in t. Hence, uniformly in x = Xt:

F-'imr) - F-\t) F" '{mT)-F-\r)

r{ft[FrHr)])~' riK(x)f4F-'{r/K{x))])-'

But by Lemma 10(v) and Fact D.l(ii), uniformly in x € X:

F-\mT)-F-\r)

(C.50)

F-'(mT/K(x)) - F-'{t/K{x))

where H{x) = 1 if ^ = 0, H{x) = x'c if C / 0. And

F^'{mT/K{x))-F-\T/K{x)) _ /"" ^F"' (t/X(x))]

1/H{x), (C.51)

r MF-'(
-/i fu[F-'(.

ds
r{K{x)U[F-\r/K{x))])-^ J, U[F-\stIK{x))]

«r
(C.52)

dls

where the equivalence (1) is by the assumed regular variation property (C.48).

Finally, calculations for the term -7^ are analogous to (C.47), using change of variables:

F — p'.YtXt'z, uniformly in i (C.53)
y^T 2T H{Xt)\ -^

Combine (C.53) and (C.47) to conclude.

Lemma 9 (CLT & LLN) Assume Model 2 and Assumption 3. Let {Yj,Xjy_^ be a sta-

tionary Q-inixing triangular sequence, (i) If Oj = Oij'"^), 4> > 2, and for any K sufBciently

close to 0"*" or —00, uniformly in t and s > 1, tiiere is C > 0, independent ofK s.t. (Pt denotes

P{\:F,),Tt=a{{Y,,X,y_-^)):

Pt{Ut < K, Ut+s <K)< CPtiUt < Kf, (C.54)

BC*3 holds with Q^-, = Qx uimihjj)/ y/U]. If (C.54) is dropped, BC*3 still holds with

g,j = hmr Ep{l,)p{lj), p{l) = si- EisilJ'i), st = {l[Yt < X',(S{It)] - Tl)Xt/yM. (ii) If

a, =0{j~'^),4>> Y^, <7 < 1, andr'"T/r-> 0, then BC*2 holds.

Remark C.2 (C.54) means the extremal events should not cluster too much. It may be

refined slightly along Watts et. aI.[77](no-cov case). (C.54) is analogous to the local no-

clustering conditions of Robinson[66] (A7.4., p. 191) in the context of kernel density estimation.

Proof of Lemma 9: (i) {WTili),i < m} suits the CLT of Robinson[66). His condition A7.1

(with q = 0), A7.2, and A7.3. axe satisfied automatically. The assumed mixing condition

implies 5Z°li jo:j < 00, which implies his condition A3. 3. Lastly, condition (C.54) insures

A7.4. If (C.54) does not hold, apply theorem of M.I. Gordin (see [39], p. 137). It is easy to

check, using the assumed condition and the classical Ibragimov inequality [18], that {st,Tt}

is stationary Lj-mixingale of size -1, and F||Wt(0I|2 < K: uniformly in T, thus F||Wt(OIIi <
K' . This verified the conditions of the Gordin theorem, (ii) Suppress I in notation (irrelevant).

Var{GT(z)) = r~'0(Vor(/ii) -I- 2^jj.^j Efiifii+k), for /i( defined earlier. By binomiality of

Pt and the calculations analogous to those in Lemma 8 (denote by || ||r,p the Lr{P) norm);

Var(Mt) = 0(\\MU.P) = 0{MF-'(T))a-') = 0(^7JT),

||(,i,^i + .)||:,P = 0{al--\\p,\\r,p\\pi\]p.p) = 0(q]-^||^,||].p) = O (al--(^)-/=)

(for l/p+ 1/r- = 7 6 (0, 1), p > 1), by Ibragimov ineq-ty ([18]). So Var{GT{z)) = o{l).

Corollary 2 (Theorem 3 and 4) Lemmas 7, 8, 9 yield theorems 3 and 4.
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D Properties of Models 1 and 2

This section derives the essential properties of Models 1 and 2. Denote by M any compact

subset of (0, co) that does not contain 1. Let T be the set of quantile indices {t : t = st' , s £

C], where C is any fixed compact subset of (0, oo), and t' is the reference index \ 0.

Lemma 10 (Properties) Assumption 2 and linearity [Qy, (T\Xt = x) = x (3{t)] imply

(i) K(x) is a function of linear index K(x'c) defined after Assumption 2, section 4.

(a) Centering constants c{k) are those stated in Theorem 2. (Theorem 1 for Model 1).

Uniformly in (/, m, r, i) 6 A/ x 71/ x T x X, as r' \ 0:

(Hi) For n = c_i/(m"^ - 1) if ^ 7^ 0, ^ = c-i/ In m if E, = 0,

/?i(r)-/?i. ~ F-'{t), (D.55)

/3_i(r)-/3_i. ~ ^[F->(mr)-F-'(r)], (D.56)

also if^ # ;3_i(r) -/3_i. ~ c-iF-'(r);

^"'^
l,'A0(mT) - I3{t)) ^\ (x-,.x)'i^ .fe = 0,

^"""^

x'{p{mT)-0{r)) j x'c if^ ^ 0,

x'(/3(mr)-/3(r)) m-^ - 1

^'''^
:c'(/3(Zr)-/?(r)) ^ M - 1

' ^^-5^'

We need a few facts. Note that these aire for low, not high, quantiles. Write Fu € D(H^),

if Fi is a cdf in the domain of minimum attraction with the tail index ^ (Def. 3.2). Write

Fu G 7?.-,(0), if Fu is a regularly varying function with exponent 7 at 0.

Fact D.l (On Regular Variation) Uniformly in (m, I, r) e A/ x A/ x T, as r' \ 0,

(i) If Fi{z) ~ F2{z) as z\ or -00 and Fi e Z^C/Ze), tiien; F2 6 Z)(/fJ, Fi-'(t) ~

Fj-'M, F-\mr) - F'^ir) ~ F2-'(mr) - F^'ir), and F-\F-' e 7e_5{0).

fiij Suppose Fu{z\x) ~ ii'(x)Fu(2) as 2 \, or —00 uniformly in x G Xfcompact) as 2 \
or —00, and K{-) > is continuous and uniformly bounded away from zero and above.

Then F~'(r|i) relates to F~^{t/K(x)) as in (i) uniformly in i G X.

(Hi) ^v"J('"")--fV'(^) ^ nLllz_l if F„ G D(//.).

fivj —^— "'
_,
—-—^-^ —> In 771 if Fu G D{Ho), where £ is auxiliary function in section 3.6.

Except for (ii), (i)-(iv) are found in the texts on extreme values - [19], also [65j, [52], [26]. (ii)

holds from (i) pointwise, and uniformly - by linearity of F^,^ {t\x) in x and compactness ofX..

Proof of Lemma 10. Here 'locally uniformly' means 'uniformly in [l, m, r, x) G M x M x

T X X, as r' \ 0'. Recall also (i — fJ.x)i = by assumption (.V includes the intercept).

First, note /^'x(/3{t) — Pr) = 0i{t) — /3ir = F~^ (rlfix) ~ F~^(t) by assumption. And

(x-/.x)'(/?(r)-/3.) _ , F-'{t\x)-F-'(t)

~ F.-Hr/K(x))-F-\r)

Fu\mT)-F-'{T) ^ y

~ ^^'^•^^^j^ — locally uniformly = B(x),
m~5 — 1
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which follows from the facts (ii) and (iii). Since < B(x) < oo, (D.60) implies

\(x - iix)'A{t) - B(x)\ -^ locally uniformly, (D.61)

and that, since (x — iix)~i ranges over a non-degenerate subset of R"*"'

,

,4-1 (r) —> k(77?,) locally uniformly, (D.62)

where K[m) is a constant vector. Hence B{x) is affine in x on X.

If ^ = 0, conclude B{x) = — lnA'(i)/lnm = c{x — ixx)/ inrn, that is K{x) = e~^ "^

on X where n'xc = 0, i.e. ci = 0. If C / 0, conclude B{x) = (A'(i)« - l)/(m"^ - 1) =
c(x — fix)/{m.^^ — 1), that is K{x) = (x'c)''^ on X, where /i'x-c = 1, ci = 1 {fix = (1, 0, ...)).

By the assumption on K{), x'c is uniformly bounded on X; for types 2 and 3, x'c is also

uniformly positive on X. This shows claim (i).

Claim (iv) is verified by substituting the forms of K{x) found into {D.60).

Claim (iii) follows directly from (D.60), (D.62), and the preceding paragraph. [Note also:

F-'(mr) - F-\t) ~ (m"« - 1)F-\t) if C / 0, locally uniformly].

Claim (ii). If ^ 7^ 0, by claim (iii) uniformly in k in any compact subset of (0, 00) as

r -+ 00

arm^) - 0r) ~ a.cF-^(|) = cF"' (^)/F-' (i) ~ fc-«c, (D.63)

since by the fact (i) F~' G 7^-^(0). If ^ = 0, by claim (iii), facts (i) and (iv), and the definition

of vector c (ci = 0), uniformly in k in any compact subset of (0, 00) as T —> 00

aT(/3(^)-/3r-6Tei)~

^(j4^[=(f.-(e|)-F,',i))+e.(f,.,i)-F,.(i,)] (D-6fl

—> c In e + ei In fc = c + ei In fc.

Claim (v) holds pointwise in x by facts (ii) and (iii). Since the ratio on the l.h.s. in (D.58) is

linear in x and X is compact, it also holds uniformly in x G X.

Finally, combine fact (iii) with claim (v) to have claim (vi).

E Design for Extreme Ranks
This design condition insures the essential uniqueness needed for Theorems 1 and 2.

Condition BC.3* (Sufficiency for Uniqueness & Op(l))

(a) For any set X in X s.t. L dFx > and any ki , e > 0, there is K2 large s.t.

N([-oo, Ko] X X n F) > /ti w. pr. > 1 - e . (E.65)

(b) Fx has an absolutely continuous component (if d > 2), and {J,} are continuously dis-

tributed cond'l on {Xi}. Fx is non-degenerate in R''. Normalize ^x = (1,0, ...)'.

Remark E.l Assumptions (a) and (b) trivially hold for all of the limit Poisson RM obtained

in Lemma 6 (for Tms 1 and 2). One continuous covariate insures a.s. uniqueness.

Fact E.l (About Nondegeneracy) Nondegeneracy of distribution function F with support

5 C R means that for some positive constants 5 and K 3 sets Ri, i < K that cover S s.t. for

any c : ||c||2 > 1, Bi : /^^ dF > and x'c > S\\c\\2 for all x 6 Rt; cf[60].
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Lemma 11 (Essential Uniqueness and Tightness) Under BC.3*, for /C = [Ki,K2]

(i) k ^ K-b w.p.l. if d > 2, and Leh{K.b) = 0, if d = 1 (no-covaiiate case),

Oi)sup,^^\\zim = op-{i).

Proof of (i) The assumption (i) and the gradient conditions for (B.39) in the Remark 5.1

in section 5 [appHcable given the tightness (ii)] insure that for any given k, k £ Kb w.p. 0, if

d > 2. When d = 1, ICb consists of integers {1, 2, ...} fl /C.

Proof of (ii) Select z^ £ R'^ s.t.

sup
keK

Qoo{z^,k) = -kti'xz^ + f l{u,x'z^)d'N{u,x]
JE

Op.{l). (E.66)

(E.66) is possible as shown in the Proof of Theorem 2 and because k^xx enters Qoo linearly.

By the linearity and convexity, if zi and 22 are s.t. (E.66) holds, (E.66) also holds for any 23

in the convex hull of 21,22.

Consider ball B{M) with radius M, centered at z' , and let z{k) = z' + 6(k)v{k), where

v{k) is a unit direction vector s.t. ||t'(A;)||2 = 1, and 5{k) > M for any k. k and v{k) are not

fixed. By convexity in 2, for all fc G AT

J^{Qo.{^{k),k)-Q^{zf,k))>Q^iz'{k),k)-Q^{zf,k), (E.67)

where 2' (k) is a point of boundary of B{M) on the line connecting z{k) and z. We will prove

that for any K and e > there is M large s.t.

F.( inf Qooiz'{k),k) > K) >l-e. (E.68)

(E.68), combined with (E.66), implies r.h.s. of (£.67) > C > w.p. cirbitrarily close to 1 for

M large enough, which verifies claim (ii) of the lemma.

Thus it remains to verify (E.68). For any direction v{k), as M —> 00,

• (a) fi'xz'(k) = z({k) + vi{k)- M, 1 > vi{k) > 0,

• (b) iJ.'xz'{k) = z{{k) + vi{k)-M, -1 <t;i(A;) < 0.

(Cases (a) are the worst). Fix some ni > 1. In view of (a) and (b), because vi(k) < 1, it

suffices to show that: for any K and e > 0, uniformly in fc G /C

-KiM + / l(u,x'z'{k))dTSS{u,x) > /C w. pr. > 1 - e , as M -> 00, (E.69)

Eind therefore (E.68). Hence it suffices to show that uniformly in A; € ^ for some K2 > ti

l{u, x'z' {k))dN(u, x) > K.2M — K3 vf. pr. > 1 — e , as M -> 00, (E.70)LIE
where fta is some constant. By Fact E.l, for any direction v(k) : ||v(A:)||2 = 1, fc G /C, there is

^i(k,v) = {i 6 X : x' z' (k) > K4M} s.t. J„dFx > 0, K4 > 0, and at most K such sets %,(k,v)

correspond to all possible directions v{k) : \\v(k)\\2 = 1 and k € IC. Hence for any (z'{k),k)

as M —> 00

[ l{u,x'z'(k))dN{u,x)> [ {x'z'(k)-u)+d'N(u,x)
Ib y£n[-oc«5]xXi,i.„) (E.71)

> N(£; n [-00, Ks] X X,(fc,„))(K4M - K5)+ .

By BC(3*) (a), we can select «5 large enough s.t. N(£' PI [— 00, /ts] x Xi) > «;2/«4 for all

i < K w. pr. > 1 — e . Now let M -^ 00.
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