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ABSTRACT: This paper develops necessary and sufficient conditions for

monotone comparative statics predictions in several classes of stochastic

optimization problems. The results are formulated so as to highlight the tradeoffs

between assumptions about payoff functions and assumptions about probability

distributions; they characterize "rninimal sufficient conditions" on a pair of

functions (for example, a utility function and a probability distribution) so that the

expected utility satisfies necessary and sufficient conditions for comparative statics

predictions. The paper considers two main classes of assumptions on primitives:

single crossing properties and log-supermodularity. Single crossing properties

arise naturally in portfolio investment problems and auction games. Log-

supermodularity is closely related to several commonly studied economic

properties, including decreasing absolute risk aversion, affiliation of random

variables, and the monotone likelihood ratio property. The results are used to

extend the existing literature on investment problems and games of incomplete

information, including auction games and pricing games.
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1. Introduction

Since Samuelson, economists have studied and applied systematic tools for deriving

comparative statics predictions. Recently, the theory of comparative statics has received renewed

attention (Topkis (1978), Milgrom and Roberts (1990a, 1990b, 1994), Milgrom and Shannon

(1994)), and two main themes have emerged. First, the new literature stresses the utility of having

general and widely applicable theorems about comparative statics. Second, this literature

emphasizes the role of robustness of conclusions to changes in the specification of models,

searching for the weakest possible conditions which guarantee that a comparative statics

conclusion holds across a family of models. The literature shows that many of the robust

comparative statics results that arise in economic theory rely on three main properties:

supermodularity, 1 log-supermodularity, and single crossing properties.

In this paper, we study comparative statics in stochastic optimization problems, focusing on

characterizations of single crossing properties and log-supermodularity (Athey (1995) studies

supermodularity in stochastic problems). Two main classes of applications motivate the results in

this paper. The first concerns investment under uncertainty, where an agent makes a risky

investment, and her choice varies with her risk preferences or the distribution over the uncertain

returns. Second, the paper considers games of incomplete information, such as pricing games and

first price auctions, where the goal is to find conditions under which a player's action is

nondecreasing in her (privately observed) type. One reason such a finding is useful is that Athey

(1997) shows that whenever such a comparative statics result holds, a pure strategy Nash

equilibrium (PSNE) will exist.

The theorems in this paper are designed to highlight the issues involved in selecting between

different assumptions about a given problem, focusing on the tradeoffs between assumptions about

payoff functions and probability distributions. The general class of problems under consideration

can be written U(x,0) = fu(x,s)f(s,6)dju(s), where each bold variable is a vector of real numbers, x

represents a choice vector, and 6 represents an exogenous parameter. For several classes of

restrictions on the primitives (u and/) which arise in the literature, this paper derives necessary and

sufficient conditions for a comparative statics conclusion, that is, the conclusion that the choices x

are nondecreasing with 6.

The analysis builds on the work of Milgrom and Shannon (1994), who show that a necessary

condition for the optimal choice of x, x*(0), to be nondecreasing in is that U(x,0) satisfies the

single crossing property in (x;0). In this paper, we show if we desire that comparative statics hold

not just for a particular utility function, but for all utility functions in a given class, it will often be

1 A positive function on a product set is supermodular if increasing any one variable increases the returns to

increasing each of the other variables; for differentiable functions this corresponds to non-negative cross-partial

derivatives between each pair of variables. A function is log-supermodular if the log of that function is

supermodular. See Section 2 for formal definitions.



necessary that U(x,&) satisfies a stronger condition than single crossing. Once the desired property

of U(x,0) is identified, it remains to find the "best" pair of sufficient conditions on u and/ to

generate the comparative statics predictions. Most theorems in the paper are stated in terms of

what we call "minimal pairs of sufficient conditions": they provide sufficient conditions on u and/

for the comparative statics conclusion, and further, neither of the conditions can be weakened

without strengthening the condition on the other primitive.

We begin by studying log-supermodular (henceforth abbreviated log-spm) problems. Log-spm

primitives arise naturally in many contexts: for example, an agent's marginal utility u'(w+s) is log-

spm in (w,s) if the utility function satisfies decreasing absolute risk aversion, and D{p;z) is log-spm

if demand becomes less elastic as e increases. A density is log-spm if it has the property affiliation

from auction theory or if it satisfies the monotone likelihood ratio property.

Log-supermodularity is a very convenient property for working with integrals, because (i)

products of log-spm functions are log-spm, and (ii) integrating with respect to a log-spm density

preserves both log-spm and single crossing properties. However, a critical feature for our analysis

of log-supermodularity and the single crossing property in stochastic problems is that (unlike

supermodularity), these properties are not preserved by arbitrary positive combinations.

The first main comparative statics theorem of the paper is established in two steps. We begin

by showing that log-supermodularity of U(x,0) is necessary to ensure that the optimal choices of x

increase in response to exogenous changes in 6 for all payoffs u which are log-spm. We then

establish necessary and sufficient conditions on the density/ to guarantee this conclusion: /must be

log-spm as welL The results can be applied to establish relationships between several commonly

used orders over distributions in investment theory; they can also be used to show that decreasing

absolute risk aversion is preserved when independent or affiliated background risks are introduced.

We further consider a more novel application, a pricing game between multiple (possibly

asymmetric) firms with private information about their marginal costs. The analysis characterizes

conditions under which each firm's price increases in its marginal cost. Finally, we show that the

results can be used to extend and unify some existing results (Milgrom and Weber, 1982; Whitt

(1982)) about monotonicity of conditional expectations; these results are applied to derive

comparative statics predictions when payoffs are supermodular.

Our second set of comparative statics theorems concern problems with a single random

variable, where one of the primitive functions satisfies a single crossing property and the other is

log-spm. We study necessary and sufficient conditions for the preservation of single crossing

properties, and thus comparative statics results, under uncertainty. The results are extended in

order to exploit the additional structure imposed by portfolio and investment problems. Further, in

a first price auction with heterogeneous players and common values, the results imply conditions

under which a player's optimal bid is nondecreasing in her signal. Finally, in problems of the form



]v(x,y,s)dF(s,0), we characterize single crossing of the x-y indifference curves; the results are

applied to signaling games and consumption-savings problems.

The results in this paper build directly on a set of results from the statistics literature, which

concerns "totally positive kernels," where for the case of strictly positive bivariate function, total

positivity of order 2 (TP-2) is equivalent to log-spm. Lehmann (1955) proved that bivariate log-

supermodularity is preserved by integration, while Karlin and Rubin (1956) studied the

preservation of single crossing properties under integration with respect to log-spm densities. A
number of papers in the statistics literature have exploited this relationship, and Karlin' s (1968)

monograph presents the general theory of the preservation of an arbitrary number of sign changes

under integration. Following this, Ahlswede and Daykin (1979) extended the theory to

multivariate functions, showing that multivariate total positivity of order 2 (MTP-2) is preserved

by integration. Karlin and Rinott (1980) present the theory of MTP-2 functions together with a

variety of useful applications, though comparative statics results are not among them. Thus, it is

somewhat surprising that results developed primarily for other applications have such power in the

study of comparative statics. Only a few papers in economics have exploited the results of this

literature. Milgrom and Weber (1982) independently discovered many of the features of log-spm

densities in their study of affiliated random variables in auctions. Jewitt (1987) exploits the work

on the preservation of single crossing properties and bivariate log-spm in his analysis of orderings

over risk aversion and associate comparative statics; he makes use of the fact that orderings over

risk aversion can be recast as statements about log-spm of a marginal utility.2

This paper extends the existing literature in several ways. The results from the statistics

literature identify a set of basic mathematical properties of stochastic problems. This paper

customizes the results for application to the analysis of comparative statics in economic problems,

especially in relation to the recent lattice-theoretic approach, and develops the remaining

mathematical results required to provide a set of theorems about "minimal pairs" of sufficient

conditions for comparative statics results. Each theorem is illustrated with economic applications,

several of which themselves represent new results. Further, we identify the limits of the necessity

results: we formally identify the smallest class of functions that must be admissible to derive

necessary conditions. The applications are chosen to highlight the extent to which the additional

structure available in economic problems allows the stated conditions to be weakened, and they

motivate several extensions to the basic theorems that exploit additional structure.

In the economics literature, many authors have studied comparative statics in stochastic

optimization problems in the context of classic investment under uncertainty problems,3 asking

2 See also Athey et al (1994), who apply the sufficiency conditions to an organizational design problem.

3 Some notable contributions include Diamond and Stiglitz (1974), Eeckhoudt and Gollier (1995), Gollier (1995),

Jewitt (1986, 1987, 1988b, 1989), Kimball (1990, 1993), Landsberger and Meilijson (1990), Meyer and Ormiston



questions about how an agent's investment decisions change with the nature of the risk or

uncertainty in the economic environment, or with the characteristics of the utility function. This

paper shows how many of the results of the existing literature can be incorporated in a unified

framework with fewer simplifying assumptions, and it suggests some new extensions.

This work is also related to Vives (1990) and Athey (1995), who study supermodularity in

stochastic problems.4 Vives (1990) shows that supermodularity is preserved by integration (which

follows since arbitrary sums of supermodular functions are supermodular). Athey (1995) also

studies properties which are preserved by convex combinations (including monotonicity and

concavity), showing that all theorems about monotonicity of ]u(s)f(s;Q)ds in correspond to

analogous results about other properties "P" of ju(s)f(s;Q)ds in G, in the case where "P" is a

property which is preserved by convex combinations, and further u is in a closed convex set of

payoff functions. However, the necessary and sufficient condition for comparative statics

conclusions emphasized in this paper is a single crossing property, which is not preserved by

convex combinations; thus, different approaches are required in this paper.5 Independently,

Gollier and Kimball (1995a, b) have also exploited convex analysis, developing several unifying

theorems for the study of the comparative statics associated with risk.

The paper proceeds as follows. Section 2 introduces definitions. Section 3 explores log-spm

problems, while Section 4 focuses on single crossing properties in problems with a single random

variable. Section 5 concludes and presents Table 1, which summarizes the six main theorems

about comparative statics proved in this paper. Proofs not stated in the text are in the Appendix.

2. Definitions

The following two sections introduce the main classes of properties to be studied in this paper,

and links them to comparative statics theorems. It turns out that some of the same properties,

single crossing properties, supermodularity and log-supermodularity, arise both as properties of

primitives, and as the properties of stochastic objective functions which are equivalent to

comparative statics predictions.

2.1. Single Crossing Properties

We will be concerned with a variety of different single crossing properties, detailed below.

Definition 1 Lef g:9?-»$R. (i) g(t) satisfies weak single crossing about a point to, denoted

WSCl(t ), ifg(t)<0for all t<t , and g(t)>Ofor all t>t , while g(t) satisfies weak single crossing

(1983, 1985, 1989), Ormiston (1992), and Ormiston and Schlee (1992, 1993); see Scarsini (1994) for a survey of

the main results involving risk and risk aversion.

4 See also Hadar and Russell (1978) and Ormiston (1992), who show that the theory of stochastic dominance can be

used to derive comparative statics results based on supermodularity.

5 The single crossing property is only preserved under convex combinations if the "crossing point" is fixed; see

Section 5 and Athey (1998) for more discussion of this point.



(WSC1) if there exists a to such that g satisfies WSCl(to).

(ii) g(t) satisfies single crossing (SCI) in t if there exist t '<to" such that g(t)<Ofor all t<to, g(t)=0

for all to'<t<t ", and g(t)>Ofor all t>t ".

(Hi) h(x,t) satisfies single crossing in two variables (SC2) in (x;t) if, for all xh>Xl,

g(t) = h(xH ;t) - h(xL ;t) satisfies SCI. WSC2(t ) and WSC2 are defined analogously.

(iv) h(x,y,t) satisfies single crossing in three variables (SC3) if h(x,b(x),t) satisfies SClforall

git)

PL

Figure 1: g(t) satisfies SCI in t.

The definition of SCI simply says that g(t) crosses zero, at

most once, from below (Figure 1). Weak SCI allows the

function g to return to after it becomes positive. Single

crossing in two variables, SC2, requires that the incremental

returns to jc cross zero at most once, from below, as a function

of t; it is used to derive comparative statics results in non-

differentiable problems or problems which are not quasi-

concave. Milgrom and Shannon (1994) show that the set

argmax h(x,t) is monotone nondecreasing in t for all B if and only if h satisfies SC2 in (x;t);6 this
xefl

result will be applied repeatedly throughout the paper.7 Finally, Milgrom and Shannon (1994)

show that for suitably well-behaved functions, SC3 is equivalent to the Spence-Mirrlees single

crossing property, that is, hi(x,y,t)/\h2(x,y,t)\ nondecreasing in t.

2.2. Log-Supermodularity and Related Properties

For bivariate functions, supermodularity and log-supermodularity are stronger than SC2.

Supermodularity requires that the incremental returns to increasing x, g(t) - h(xH ;t) - h(xL \t) ,

must be nondecreasing (rather than SCI) in t; log-supermodularity of a positive function requires

that the relative returns, h(xH ;t)/h(xL ;t) , are nondecreasing in t. Thus, as properties of objective

functions, both are sufficient for comparative statics predictions. The multivariate version of

supermodularity simply requires that the relationship just described holds for each pair of variables.

Topkis (1978) proves that if h is twice differentiable, h is supermodular if and only if -^- h(x) >

for all i &j. If h is positive, then h is log-spm if and only if log(h(x)) is supermodular.

The definitions can be stated more generally using lattice theoretic notation. Given a set X and

a partial order >, the operations "meet" (v) and "join" (a) are defined as follows:

xvy = inf{z|z>x,z>y} and XAy = sup{zjz<x, z<y} (for 9T with the usual order, these

6 Notice that the comparative statics conclusion involves a quantification over constraint sets. This is because SC2

is a requirement about every pair of choices of x. Many of the comparative statics theorems of this paper eliminate

the quantification over constraint sets. Instead, the theorems require the comparative statics result to hold across a

class of models, where that class is sufficiently rich so that a global condition is required for a robust conclusion.

7 Shannon (1995) establishes a related result for WSC2, namely, WSC2 is necessary and sufficient for the existence

of a nondecreasing optimizer.



represent the component-wise maximum and component-wise minimum, respectively). A lattice is

a set X together with a partial order, such that the set is closed under meet and join.

Definition 2 Let (X,>) be a lattice. A function h:X-^>SR is supermodular if, for all x,ysX,

h(x v y) + h{x a y) > h(x) + h(y) . h is log-supermodular (log-spm)^ if it is non-negative, 9 and,

for all x,y<=X, h(x v y) • h(x a y) > h(x) h(y)

.

Log-supermodularity arises in many contexts in economics. First, supermodularity and log-

spm are both sufficient conditions for comparative statics predictions (Topkis (1978); Milgrom and

Shannon (1994)). Further, observe that sums of supermodular functions are supermodular, and

products of log-spm functions are log-spm; thus log-spm is a natural property to study in

multiplicatively separable problems. Now consider some examples where economic primitives are

log-spm. A demand function D(P,t) is log-spm if and only if the price

elasticity, e(P) = P- DP(P,t)/D(P,t) , is nondecreasing in t. A marginal utility function U'(w+s) is

log-spm in (w,s) (where w often represents initial wealth and a represents the return to a risky

asset) if and only if the utility satisfies decreasing absolute risk aversion (DARA). A parameterized

distribution F{s;8) has a hazard rate which is nondecreasing in if 1-F(s;0) is log-spm, that is, if

f(s; 0)/(l - F(s; 0)) is nonincreasing in 0. In their study of auctions, Milgrom and Weber (1982)

define a related property, affiliation, and show that a vector of random variables vector s is

affiliated if and only if the joint density, /(s), is log-spm (almost everywhere).

Finally, log-supermodularity is closely related to a property of probability distributions known

as monotone likelihood ratio order (MLR). When the support of F(s;0), denoted supp[F], 10 is

constant in 0, and F has a density /, then the MLR requires that the likelihood ratio

f{s;0H )j f(s;0L) is nondecreasing in s for all H > L , that is,/is log-spm 11 However, we wish

to define this property for a larger class of distributions, perhaps distributions with varying support

and without densities (with respect to Lebesgue measure) everywhere. 12

Definition 3 Let C{s;0H,0L ) =-j{F(s;0L ) + F(s;0h )). The parameter 0indexes the distribution

F(s;0) according to the Monotone Likelihood Ratio Order (MLR) if, for all H > L ,

dF{s\0)l dC(s;0H,0L ) is log-spmfor C-almost all Sh>sl mlR2
.

8 Karlin and Rinott (1980) referred to this property as multivariate total positivity of order 2.

9 We include non-negativity in the definition to avoid restating the qualification throughout the text. Although

supermodularity can be checked pairwise (see Topkis, 1978), Lorentz (1953) and Perlman and Olkin (1980)

establish that the pairwise characterization of log-spm requires additional assumptions, such as strict positivity (at

least throughout "order intervals").

10 Formally, supp[F] =$ F(s + e) - F(s - e) > Ve > 0}

.

11 Note that the MLR implies First Order Stochastic Dominance (FOSD) (but not the reverse): the MLR requires

that for any two-point set K, the distribution conditional on K satisfies FOSD (this is further discussed in Athey

(1995)).

12 In particular, absolute continuity of F(-;dH) with respect to F{-;6d on the intersection of their supports is a

consequence of the definition, not prerequisite for comparability.



Note that we have not restricted F to be a probability distribution.

This paper further makes use of an ordering over sets when studying sets of optimizers of a

function and how they change with exogenous parameters, as well as in applications where

parameters or choice variables change the domain of integration for an expectation. The order is

known as Veinott's strong set order, defined as follows:

Definition 4 A setA is greater than a set B in the strong set order (SSO), written A>B, if, for any

a in A and any binB, avb gA and a /\b gB.A set-valuedfunction A(t) is nondecreasing in

the strong set order (SSO) iffor any th > vl, A(th)> A(tl). A set A is a sublattice ifand only if

A>A.

If a set A(r) is nondecreasing in r in the strong set order, then the lowest and highest elements

of this set are nondecreasing. 13 Any set [a^bj x [a^fcj is a sublattice of SR
2

, and further such a

set is increasing (SSO) in a, and bi, i=l,2. These properties arise both in the study of comparative

statics (see Topkis 1978) and in our analysis of Section 3.

3. Comparative Statics with Log-Supermodular Payoffs and Densities

This section considers objective functions of the form U(x,O)=\u(x,s)f(s,0)dfi(s).

Throughout the paper, we assume that u and /are bounded, measurable functions, bold variables

are real vectors of finite dimension, and ju is a non-negative cr-finite product measure. We thus

allow for the possibility that \sfdfj. is a probability measure, but do not require it.

In this section, we will focus on problems where one or both of the primitives, u and /, are

assumed to be non-negative and log-spm. Applications to investment problems and pricing games

are provided in Sections 3.1 and 3.2, while problems with conditional expectations are considered

in Section 3.3. The question we seek to ask in this context is a question about monotone

comparative statics: that is, when does the following condition hold?

x(6)= argmaxU(x,0)=\ u(x,s)f(s,9)d^(s) is nondecreasing in 0. (MCSa)

By Milgrom and Shannon (1994), (MCSa) holds and further x* is nondecreasing in B, if and only if

U is quasi-supermodular in x14 and satisfies SC2 in (x;0). Since an empty set is always larger and

smaller than any other set in the strong set order, we do not state an assumption about the

existence of an optimum (following Milgrom and Shannon (1994)). In our context, however, we

wish to allow for some generality in the specification of the primitives. Thus, we ask, when does

(MCSa) hold for all u in some class of functions? We begin by considering the question for the

class of log-spm u. The following result is the first step in the analysis of this question.

Lemma 1 Suppose u andfare nonnegative, and uf>Ofor son a set ofpositive fi-measure. Then

(i) (MCSa) holdsfor all u(x,s) log-spm, ifand only if(ii) U(x,0) is log-spmfor all w(x,s) log-spm

13 For more discussion of the strong set order, see Milgrom and Shannon (1994).

14 IfX is a product set, U is quasi-supermodular if and only if it satisfies SC2 in each pair (x&j).



Proof: If U(x,&) is log-spm, then it must be quasi-supermodular, which Milgrom and Shannon

(1994) show implies the comparative statics conclusion. Now suppose that U(x,0) fails to be

log-supermodular for some u. Our assumptions imply U(x,0)>O. Consider first xe9?
2

. Then,

there exists an xw > xu, xw > x2l and#/ > 6l such that U(xihJC2h,0h)IU{xujcw,8h) <
U(xwJC2l,6l)IU{x\lJC2l,9l). Lety=U(xiLjC2L,0L)/U(xlHj:2L,&L)>O. Then, let b{x{) = 1 ifx&XiH,

and b(xiH) = y. Since log-supermodularity is preserved by multiplication, v{x,-)su{x,-)-b{x{) is

log-supermodular. But then, V{xwJC2h,6h)IV{xilJC2h,6h) = yU(xwJC2H,6H)IU(xiLjC2H,dH) < 1 =

YU(XihJ2L,6h)/U(XilJC2L,0h) = V(xlHr>C2L,0L)/V(XlLr>C2L,0L). ThuS, V{X\H^2L,6L) = V{XlL^2L,6L)

while V(x\HJC2h,0h) < V(xil*K2h,0h), violating quasi-supermodularity and thus the comparative

statics conclusion. The argument can be easily extended to multi-dimensional x.

From Milgrom and Shannon's result, it follows that Lemma 1 (ii) is equivalent to the statement

that U(x,0) is SC2 in (x;0) for all w(x,s) log-spm. This is somewhat surprising since log-spm is a

much stronger property than SC2. However, the result then motivates the main technical question

for this section: when is U(x, 6) log-spm, given that one of the primitives is log-spm?

Observe that characterizing log-spm of U is non-trivial, since the function ln(-) is not a linear

function. Thus, it is not immediate that properties that hold for ln(w) will hold for

ln(j"w(x,s)/(s,#)d/i(s)). To address this problem we introduce a result from the statistics

literature, which will be one of the main tools in this paper.

Lemma 2 (Ahlswede and Daykin, 1979) Considerfour nonnegative functions, h
(
(i=l,...,4),

where h^.W —> 5R. Then condition (L2.1) implies (L2.2):

h\(s) /^(s') < h2
(s v s') -fc4 (s as') forju-almost all s,s'e9T (L2.1)

J/il
(s)rf/i(s)-J/22(s^(s)^J^(s>/Ms)-J^(s)rfMs). (L2.2)

Karlin and Rinott (1980) provide a simple proof of this lemma. They further explore a variety

of interesting applications in statistics, though they do not consider the problem of comparative

statics. While we will use this result in a variety of ways throughout the paper, the most important

(and immediate) consequence of Lemma 2 for comparative statics is that log-supermodularity is

preserved by integration. To see this, set

k(.s) = g(y,s), h2(s) = g(y',s), fh(s) = g(y v y',s) , and fk(s) = g(yAy',s).

Then (L2.1) states exactly that #(y,s) is log-spm in (y,s), while (L2.2) reduces to the conclusion is

that jg(y,s)d{i(s) is log-spm in y. Recall that arbitrary sums of log-spm functions are not log-

spm, which makes this result somewhat surprising. But notice that Lemma 2 does not apply to

arbitrary sums, only to sums of the form gty.s
1

) + #(y>s
2
), when g is log-spm in all arguments.

The preservation of log-spm under integration is especially useful for analyzing expected

values of payoff functions. Since arbitrary products of log-spm functions are log-spm, a sufficient

condition for Jw(x,G,s)/(s,x,0)d//(s) to be log-spm is that k(x,0,s) and/(s,x,0) are log-spm

Karlin and Rinott give many examples of densities that are log-spm, and thus preserve log-spm of



a payoff function. 15

Despite the fact that log-spm of primitives arises naturally in many economic problems, it is

still somewhat restrictive. Thus, we consider the issue of necessary conditions for log-spm to

hold. Before stating the necessity theorem we introduce a definition that will allow us to state

concisely theorems about stochastic objective functions throughout the paper. All of the results in

this paper concern problems of the form ju(x,s)f(s,Q)d^(s) , and in such problems, we wish to

find pairs of hypotheses about u and / which guarantee that a property of £/(x,0) will hold. We

thus look for what we call a minimal pair of sufficient conditions, defined as follows:

Definition 5 Two hypotheses H-A and H-B are a minimal pair of sufficient conditions (MPSC)
for the conclusion C if: (i) Given H-B, H-A is equivalent to C. (ii) Given H-A, H-B is equivalent

toC.

This definition introduces a phrase to describe the idea that we are looking for a pair of

sufficient conditions that cannot be weakened without placing further structure on the problem. In

some contexts, H-A will be given (such as an assumption on u), and we will search for the weakest

hypothesis H-B (such as an assumption on f) which preserves the conclusion; in other problems,

the roles ofH-A and H-B will be reversed. Though there is no logical requirement that part (ii) of

Definition 5 will hold whenever (i) does, the main results of this paper satisfy all three parts of the

definition. This definition is used to state the following theorem.

Theorem 1 Suppose «:9l' x 9T -> <R+ and f : SR" x 9T -^ 9? + , where n>2 implies l,m >2. Then

(A) w(x,s) is log-spm a.e.-^i; and (B)f(s,Q) is log-spm a.e.-ju; are a MPSCfor (C)

ls
u(x,s)f(s,Q)dfi(s) is log-spm in (x,0).

Remark Theorem 1 requires that x has at least two components (1=2) ifn>2, so that the class of

u's is sufficiently rich to make log-supermodularity offin s a necessary condition. However,

even in cases where n>2 and 1=1, log-supermodularity off in (si, 0) is necessaryfor the

conclusion (Tl-C) to hold whenever (Tl-A) does.

Theorem 1, which is proved formally in the appendix, states that, not only do (A) and (B) imply

the conclusion, but neither restriction can be relaxed without placing additional restrictions on the

other primitive. While in Theorem 1, the conditions on u and/ are the same (log-spm), in our

subsequent theorems we will pair different conditions, such as single crossing and log-spm for

different conclusions. Together with Lemma 1, this result can be used to provide necessary and

sufficient conditions for comparative statics conclusions. Before proceeding to that result, we

develop the proof of Theorem 1, and identify its limitations.

The proof of Theorem 1 can be understood with reference to the stochastic dominance

15 For example, symmetric, positively correlated normal or absolute normal random vectors have a log-

supermodular density (but arbitrary positively correlated normal random vectors do not; Karlin and Rinott (1980)

give restrictions on the covariance matrix which suffice); and multivariate logistic, F, and gamma distributions have

log-supermodular densities.



literature, and more generally Athey (1995), which exploits a "convex cone" approach to

characterizing properties of stochastic objective functions. Athey (1995) shows that in stochastic

problems, if one wishes to establishes that a property P holds for U(x,0) for all u in a given class 71,

it is often necessary and sufficient to check that P holds for all u in the set of extreme points of 7i.

The extreme points can be thought of as test functions; for example, when % is the set of

nondecreasing functions, the set of test functions is the set of indicator functions for sets Li(s) that

are nondecreasing in s. Athey (1995) shows that this approach is the right one when P is a

property preserved by convex combinations, unlike log-supermodularity.

Despite the fact that the "convex cone" approach does not apply directly here, an analogous

intuition can still be developed. Consider the hypothesis that the set of "test functions" for log-

supermodular functions is the set of indicator functions of the form lBt00 , where B
e (x) is defined

to be a cube of length e around the point x. This set of test functions will certainly yield Tl-B as a

necessary condition for Tl-C: only if /(s,0) is log-supermodular almost everywhere-n will

Jslfli
(x)(s)/(s,8)rf//(s) be log-supermodular in (x;0). But, it remains to establish that this set of

test functions satisfies Tl-A. The following lemma can be used:

Lemma 3 The indicatorfunction 1a(i)(s) is log-spm in (s,r) ifand only ifA(z) is nondecreasing

(strong set order). Further, 1a(s) is log-spm in s ifand only ifA is a sublattice.

Proof: Simply verify the inequalities and check the definitions. 1a<i)(x) is log-spm in (s,z) if

and only if: 1.. .(svs')-l,,, .(sas')^I,., ^s)-1,, ,(s')- The definitions imply that if the

right-hand side equals one, the left-hand side must equal one as well. Likewise, 1a(s) is log-

spm in s if and only if: 1A (s v s') -1a(sas')>1^ (s) • 1A (s') . Again, this corresponds exactly to

the definition.

It is straightforward to verify that sets of the form x,[a,,&] are sublattices, as desired. Further,

such sets are nondecreasing (strong set order) in each endpoint. Lemma 3 leads to an important

role for the strong set order and sublattices in the analysis of stochastic optimization problems.

Lemma 3 will also be useful in many applications, for example (as the pricing game of Section 3.2)

when the choice variables or parameters affect the domain of integration.

The analogy to the "test functions" approach, and thus the proof of Theorem 1, can be made

complete with the following lemma.

Lemma 4 (Testfunctionsfor log-spm problems) Define the set

V(P)={h:3x and 0<e</3 such that w(x,s)= 1 B<r (x) (s)

}

.

Then U(x,Q)=ju(x,s)f(s,Q)dju(s) is log-spm in (x,0) whenever u(x,s) is log-spm a.e.-/x., ifand

only if for some fi>0, U(x,Q) is log-spm whenever ue7(J3).

Lemma 4 establishes the limits of Theorem 1 by identifying which additional regularity properties

of u will change the conclusion of Theorem 1. For example, the elements of 7(/?) are clearly not

monotonic, and thus Theorem 1 does not hold under the additional assumption that u is

nondecreasing. In contrast, we can clearly approximate the elements of 1(J5) with smooth
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functions, so smoothness restrictions will not alter the conclusion of Theorem 1.

Together, Lemma 1, Theorem 1, and Lemma 3 can be used to establish the first main

comparative statics theorem of the paper, which states necessary and sufficient conditions for

comparative statics in problems with log-supermodular payoff functions.

Corollary 1.1 (Comparative Statics with Log-Supermodular Primitives) Considerfunctions

w:M
l xMmxW^W+f:M\Vim

->M+,Aj
:V{-+2*\j=l,..,J. Let A(x) = r^.=1 y A'(r,). Letx(Q,x,B)

= argmaxxeBW(x,0,T)=JseA(T) w(x,Q,s)f(s;6)dju(s)

.

(1) (Necessary and sufficient conditions) Suppose A(x) is a sublattice, Qe% and l>2 ifn>2.

Then x*(9,1,1?) is nondecreasing in 6 for all w log-spm, if and only iff is log-spm a.e.-/u on A(t).

(2) (General sufficiency) x\Q,x,B) is nondecreasing in (Q,x,B) ifwandfare log-supermodular,

and, for each j, A J(Tj) is nondecreasing (strong set order) in xr
Proof: (1) Necessity: by Lemma 1, the comparative statics conclusion is equivalent to log-

supermodularity of Win (x,0). Then we can apply Theorem 1. Sufficiency follows by: (2)

Since products of log-spm functions are log-spm, the function

w(x,Q,s)f(s;Q)-l Alr is)-L ; ,
,<s) is log-spm in (s,x,G,x) by Lemma 3.

A (r,) A \Tj)

Note that the objective function analyzed in Corollary 1.1 is not a conditional expectation, since

we have not divided by the probability that se A(x). Further, observe that (1) is not stated in terms

of a minimal pair of sufficient conditions. The reason is that Lemma 1 only yields necessary

conditions for comparative statics if we quantify over all payoffs «(x,s), where u contains the

choice variables. In general, log-spm is sufficient, but not necessary, for MCSa.

While Corollary 1.1 is straightforward given the building blocks outlined above, it shows that

problems a structure commonly encountered in economic theory can be analyzed by checking a

few simple conditions. The following applications illustrate the theorem.

3.1. Applications to Investment Under Uncertainty

An immediate implication of Corollary 1.1 is that a ratio orderings over distributions,

commonly used in the literature on investment under uncertainty, can be easily compared: loosely,

integrating a function makes it more likely to be log-spm. If a distribution satisfies the MLR order

(that is, the density is log-spm), then the corresponding cumulative distribution function F(s;0) will

also be log-spm,16 which can be shown to be stronger than First Order Stochastic Dominance.

This will in turn imply that J^ F(s; G)ds is log-spm, which is stronger than Second Order

Stochastic Dominance if #does not change the mean of s.

More generally, we can consider any ratio ordering which specifies that g(s)/h(s) is

nondecreasing in s for g,h>0. The easiest way to fit this into our framework is to define u(x,s) on

16 See Eeckhoudt and Gollier (1995) who term this the monotone probability ratio (MPR) order, and show that an

MPR shift is sufficient for a risk-averse investor to increase his portfolio allocation.
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{0,1 }x<R, and let u(x,s) = g(s) if jc=1, and let u(x,s) = h(s) if jc=0. Then, ]ff(s;6) is log-spm and

g(s)/h(s) is nondecreasing in s, E[g{s)\6]IE[h{s)\6\ must be nondecreasing in 9. Further, Theorem

1 shows that log-spm of/ is the weakest condition which preserves every ratio ordering.

An example from the economics of uncertainty is the Arrow-Pratt coefficient of risk aversion,

R(w;u)= -u"(w)/u'(w). Suppose that an agent has decreasing absolute risk aversion (DARA) and

faces a risk ^ with distribution F(s;0). Let U(w;0) = lu(w+s)f(s;&)ds, and observe that u'(w+s) is

log-spm if and only if R(w;u) is nonincreasing in w (DARA). Theorem 1 then implies that in

response to an MLR shift in the risky asset s, the agent will be less risk averse when considering a

new, independent risk. But, observe that the fact that w and s enter u additively precludes the test

functions of Lemma 4, so necessity cannot be obtained using Theorem 1 for risk averse agents.

A further consequence of Theorem 1 is that orderings over risk aversion and related properties

are preserved with respect to background risks. Let U(w) = \u(w+s)f{s)ds. If R(w;u) is decreasing,

it then follows from Theorem 1 that U'(w+t) will be decreasing as well, implying that R(w;U) is

decreasing. Similar analyses apply to other ratio orderings, such as Kimball's (1990) decreasing

prudence condition, 17 where prudence is defined by -u"\w)lu'\w). li More generally, we can

consider orderings of utilities over risk aversion (not just those induced by a shift in wealth). Let 6

parameterize the agent's risk aversion directly, and let U(w,&) = ju(w+s;0)f(s)ds. Then if

R(w;u(-;0)) is nonincreasing in w and 0, U inherits these properties, so that R(w;U(-;0)) is

nonincreasing in 6 and w. Other ratio orderings can be similarly analyzed.

Finally, Theorem 1 allows us to consider more general background risks, those which might be

statistically dependent on the risk of primary interest. Let z be the "primary" risk, and let s be a

vector of assets in which the agent also has a position, represented by the vector of positive

portfolio weights a. The agent's utility is given by U(z, 6) = \u(z+a-s;0)f(s\z)ds. Suppose that the

risks are affiliated, that is,/(s,z) is log-spm. But, applying the multivariate Theorem 1, the agent's

risk aversion with respect to z (that is, R(r,U,0)) will be nonincreasing in 6, if u satisfies DARA

and decreases risk aversion. An alternative, but distinct sufficient condition requires that the

conditional density ofy=a-s given z, g(y\z), is log-spm.

This analysis thus provides several extensions to the existing literature. Jewitt (1987) showed

that the "more risk averse" ordering is preserved by a MLR shift in the distribution, while Pratt

(1988) established that risk aversion orderings are preserved by expectations. Eeckhoudt, Gollier,

and Schlesinger (1996) provide additional conditions on distributions under which a FOSD shift in

a background risk decreases risk aversion for a DARA investor. The above analysis generalizes

17 Kimball (1990) shows that agents who are more prudent will engage in a greater amount of "precautionary

savings" when anticipating future uncertainty.

18
It is interesting to observe that since a smooth function g(x+y) is supermodular if and only if it is convex, these

results can also be proved using the fact that log-convexity is preserved under expectations (Marshall and Olkin,

1979); but, the correspondence between convexity and supermodularity breaks down with more than two variables.
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these results by showing that all of the results extend to other ratio orderings, such as prudence,

and further risk aversion orderings are preserved by affiliated background risks for DARA
investors.

3.2. Log-Supermodular Games ofIncomplete Information

This section establishes sufficient conditions for a class of games of incomplete information to

have a PSNE in nondecreasing strategies. Consider a game of incomplete information between

many players, each ofwhom has private information about her own type, U, and chooses a strategy

XiU). Vives (1990) observed that the theory of supermodular games (Topkis, 1979) can be

applied to games of incomplete information. He showed that if each player's payoff i>,(x) is

supermodular in the realizations of actions x, the game has strategic complementarities in

strategies %,{tj) (that is, a pointwise increase in an opponent's strategy leads to a pointwise increase

in a player's best response). This in turn implies that a PSNE exists.

In contrast, if we consider the same problem but assume that V;(x) is log-spm, it is no longer

true that the game has strategic complementarities in stategies in the sense just described.

However, we can instead take a different approach: Athey (1997) shows that a PSNE exists in

games of incomplete information where an individual player's strategy is nondecreasing in her own

type (i.e. xfoFy^Xfot)), whenever all of her opponents use nondecreasing strategies.

Formally, suppose that h(t) is the joint density over types. Let player /'s utility be given by

v,(x,t) (so that opponents' types might influence payoffs both directly and indirectly, through the

opponents' choices of actions). Thus, a player's payoff given a realization of types can be written

Ui(Xi£)=v,{Xi,%-i(t-i),t). Taking the expectation over opponent types yields the following expression

for expected payoffs: £/,(*,•,?,) = Js_ >

«f (Xi,t)^(t-;|fl-)<A-/. The following result gives sufficient

conditions for a player's best response to nondecreasing strategies to be nondecreasing.

Proposition! Let /z:9T—>9?+, where h(t) is a probability density. Assume that h has a fixed,

convex support. For i=l,..,n, let hi(Li\ti) be the conditional density o/t_, given u, and define

payoffs as above. Then (i)for all i, #(?,) = argmax^ U(x„t
t ) is nondecreasing (strong set order)

in tifor all %,{%) nondecreasingforj*i, and v,- log-spm, ifand only if(ii) h(t) is log-spm almost

everywhere-Lebesgue on the support oft

Proof: Sufficiency follows from Lemma 2 and Milgrom and Shannon (1994). Following the

proof of Theorem 1, it is possible to show that Uifati) is log-supermodular for all ut(xt,t) log-

supermodular, only if, for all t^. > t*, and all t," > t,
L

, hi (X"i\t?)hi{t':i\th > k (t^t"MtH
i\t,

L
)

.

But, since for a positive function, log-spm can be checked pointwise, this condition holds for

all i if and only if ft is log-spm. Apply Lemma 1

.

Spulber (1995) recently analyzed how asymmetric information about a firms' cost parameters

alters the results of a Bertrand pricing model, showing that there exists an equilibrium where

prices are increasing in costs, and further firms price above marginal cost and have positive

expected profits. Spulber' s model assumes that costs are independently and identically distributed,
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and that values are private; Proposition 1 easily generalizes his result to asymmetric, affiliated

signals, and to imperfect substitutes. Let v,(x,t) = (x,—r,)A(x), where x is the vector of prices, t is

the vector of marginal costs, and D,(x) gives demand to firm i when prices are x.

By Theorem 1, the expected demand function is log-spm if the signals are affiliated, each

opponent uses a nondecreasing strategy, and Z),(x) is log-spm. The interpretation of the latter

condition is that the elasticity of demand is a non-increasing function of the other firms' prices.

Demand functions which satisfy these criteria include logit, CES, transcendental logarithmic, and a

set of linear demand functions (see Milgrom and Roberts (1990b) and Topkis (1979)). Further,

when the goods are perfect substitutes, expected demand is also log-spm. To see this, note that

when each opponent uses a nondecreasing strategy, expected demand is given by

AU)j
t
.,l,

2(,2)>, i

a2)-l
;rn( ,n)>Xi

(r2 )/z(t_ 1
|r1yt_ 1

and the set {ty. %j(tj)>Xi} is nondecreasing (strong set order) in X\ when Xi is nondecreasing.

Then, by Lemma 3 and Corollary 2.1, expected demand must be log-spm when the density is.

Thus, a PSNE exists in nondecreasing pricing strategies whenever marginal cost parameters

are affiliated and demand is log-spm and continuous, or in the case of perfect substitutes.

3.3. Conditional Stochastic Monotonicity and Comparative Statics

Corollary 2. 1 applies to stochastic problems where the domain of integration is restricted, but

not to conditional expectations. Conditional expectations of multivariate payoff functions arise in

a number of economic applications, such as the "mineral rights auction" (Milgrom and Weber,

1982). This section studies comparative statics when the agent's objective takes the form

U(x,aA(T))=hu(x,s)f(s\0,A(T))dM(s)=jA(T) u(x,s)- •f

08'? dfi{8).

The comparative statics condition of interest in this problem is

x*(6,T,B)=argmaxxeB U(x,(M(t)) is nondecreasing in (0,r). (MCSb)

Before proceeding, we need another definition: we say that u(x,s) satisfies nondecreasing

differences in (x;s) if u(x
H
,s)-u(x

L
,s) is nondecreasing in s for all x

H
>x

L
. In terms of the vector s,

this assumption is clearly weaker than log-supermodularity of u in s, since no assumptions on the

interactions between the components of s are imposed; however, nondecreasing differences is

neither weaker nor stronger than log-spm, unless u satisfies additional monotonicity restrictions.

Our focus on supermodularity of U(x,6\A(t)) in the study of comparative statics in problems

for this class of payoff functions is motivated by the following result (Athey, 1995), which is

analogous to Lemma 1: for a given t, U(x,0A{t)) satisfies SC2 in (x,&) for all u which satisfy

nondecreasing differences in (x;s), if and only if U(x,QA(t)) in (x;0) is supermodular for all u which

satisfy nondecreasing differences in (x;s).

Of course, U(x,9A{r)) is supermodular in (x,6) if and only if U(x
h
,9A(t)) -£/(/, <9IA(r)) is

14



nondecreasing in for all x
H
>x

L
, and thus the problem reduces to checking that

G(0\A(t)) =
jA

g(s)f(s,0\A(T))dju(s) is nondecreasing in and r for all g nondecreasing. The

following theorem applies to this problem:

Theorem 2 Consider f-M n+l -» 9?+ . Then (A) g:S -» 9? is nondecreasing a.e.-^i; and (B) /(s; 0)

is log-spm a.e.-ju; are a MPSCfor (C) G{0\A{r)) is nondecreasing in r and for all A(t)

nondecreasing in the strong set order.

Theorem 2 is a generalization of a result which has received attention in both statistics and

economics (Sarkar (1968), Whitt (1982), Milgrom and Weber (1982)). 19 To see the proof of

sufficiency using Lemma 2, consider the case where g is nonnegative. Consider rH> rL and H > 0l,

and define the following functions:

hL (s) = g(s)-lSz A(ZL) (s)-f(s;0L ) , /k(s) = lse/Hr„,(s)- f(s;0H ) ,

h3 (s) = g(.s)-lSGA(lH) (s)-f(s\0n), and fuis) = l^r^s)- f(s;0L )

.

It is straightforward to verify under our assumptions that ft1 (s)-/j2 (s') < ^(svs')-ft,(sAS
r

) (using

Lemma 3 and the fact that log-spm is preserved by multiplication); thus, Lemma 2 gives us

Rearranging the inequaHties gives the desired ranking, G(0l\Al)<G(0h\Ah).

The stochastic monotonicity results can then be exploited to derive necessary and sufficient

conditions for comparative statics conclusion in problems of the U{x,0,z). In particular, we have

the following corollary:

Corollary 2.1 (Comparative Statics with Conditional Expectations) Consider any A(r), and

suppose F(s,0) is a probability distribution. Then MCSb holdsfor all u which satisfy

nondecreasing differences in (s;0), ifand only if f(s,0) is log-supermodular a.e.-ju.

Finally, we examine the limits of the necessity part of Theorem 2. The counter-examples we

construct require us to condition on an arbitrary sublattice. If the economic problem places

additional structure on the set A, log-spm is no longer necessary. Consider a particular case which

arises very commonly in applications (such as auctions): assume there is a single random variable,

and let A(t)=1 {j<T } . In this case, log-supermodularity of the density is not necessary for monotone

comparative statics predictions, but instead, we require the distribution to be log-spm.

Corollary 2.2 Consider a probability distribution F(s\0), se% and restrict attention to

Mi)=1{s<t\. Then MCSb holdsfor all u(x,s) supermodular, ifand only ifF(s;0) is log-spm.

4. Comparative Statics with Single-Crossing Payoffs and Densities

This section studies single crossing properties in problems where there is a single random

19 Sarkar (1968) establishes sufficiency, and Whitt (1982) studies conditions under which G(QA) is increasing in 6

for all sublattices A; Milgrom and Weber (1982) study conditions under which G(6L4) is increasing in 6 and also in

a limited class of shifts in A.
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variable. Multivariate generalizations of the results are sufficiently restrictive that they are not

considered here. However, many problems in the theory of investment under uncertainty,

auctions, and signaling games can be fruitfully analyzed with a single random variable.

Problems of the form U(x,0)=ju(x,s)f(s;0)dju(s), where all variables are real numbers, are a

special case of those considered in Section 3. This section seeks to relax the assumption that both

primitives are log-spm In particular, we consider the weaker assumption that u(x,s) satisfies SC2

in (x;s). Problems which fit into this framework include mineral rights auction games and

investment under uncertainty problems. The problem of interest is

x*(6,B)=aigmaxxeB U(x,0)=ju(x,s)f(s;0)d{i(s) is nondecreasing in 0. (MCSc)

Our results from Section 3 give some initial insight into this problem: they imply that a

necessary condition for (MCSc) to hold for all u which are SC2 is iha.tf(s,0) is log-spm. a.e.-|i.

To see this, observe that since SC2 is weaker than log-spm, if (MCSc) holds for all u(x,s) which

satisfy SC2, then (MCSc) must hold for all u(x,s) log-spm. By Corollary 1.1, this implies that

f{s,6) is log-spm a.e.-jj.. However, since SC2 is weaker than log-spm our results from Section 3

do not establish that u SC2 and /log-spm are sufficient for (MCSc). To analyze this question, it

will be useful to transform the problem by taking a the first difference with respect to x, since

U(x,0) and u(x,s) satisfy SC2 if and only if, for all xh>Xl, U(xh,0)-U(xl,0) and u(xh,s)-u(xl,s)

satisfy SCI. Thus, we study conditions under which G(0)=j g(s)k(s,0)d/i(s) satisfies SCI in 0.

Section 4 proceeds as follows. Section 4.1 analyzes SCI of G{0) and applications which are

most easily analyzed from that perspective, such as the portfolio problem. This section develops

the main technical ideas of Section 4. Section 4.2 considers (MSCc) directly, and provides

additional applications. Section 4.3 considers comparative statics using the Spence-Mirlees single

crossing property (SC3). The main results are summarized in Table 1 in the conclusion.

4.1. SCI in Stochastic Problems

The main result of this section finds the minimal sufficient conditions for our single crossing

conclusion.

Theorem 3 Let K(s;0) be a distribution. (A) g(s) satisfies SCI in (s) a.e.-jJ-°; and (B) K(s;0)

satisfies MLR; are a MPSCfor (C) G{0)=\ g(s)dK(s\0) satisfies SCI in 0.

Extensions to Theorem 3:21 Theorem 3 also holds if: (i) there exists k and ju such that

K(s;0)=
j

s

_oo
k(t,0)d^(t) for all 9, in which case (B) is equivalent to k is log-spm a.e.-/i;

(ii) g depends on directly, under the additional restrictions that g is piecewise continuous in

20 We will say that g(s) satisfies SCI almost everywhere-// (a.e.-//) if conditions (a) and (b) of the definition of SCI

hold for almost all (w.r.t. the product measure on SR
2
induced by //) (sH,sd pairs in 9*

2
such that sh>sl-

21 A version of this theorem which gives minimal sufficient conditions for strict single crossing is provided in

Athey (1996).
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and g is nondecreasing in 6 (see also Theorem 5 belowfor another sufficient condition);

(Hi) g(s) satisfies only WSC1, provided supp[K(s;0)] is constant in 0.

The theory of the preservation of single crossing properties under uncertainty has a long

history in the statistics literature. Karlin and Rubin (1956) establish sufficiency, and Karlin (1968)

(pp. 233-237) analyzes necessary conditions,22 under the absolute continuity assumption of

Extension (i) and some additional regularity conditions (including the assumption that has at

least three points).23 When A!" is a probability distribution, the ex ante absolute continuity

assumption may be undesirable; however, if k represents a utility function, it is the right

assumption.

We will outline the proof in the text. The sufficiency proof is surprisingly simple, and our

applications will show that it can be easily modified to produce extensions of Theorem 3. In

addition, in this section (as we did in Lemma 4 and Section 3.3), we identify the smallest class of

functions which is required to generate the counter-examples used to prove necessity; this will be

useful for analyzing the tradeoffs between alternative assumptions on primitives. In Section 4.1.1,

we illustrate in applications how additional commonly encountered restrictions on g or k can be

used to relax (T3-A) and (T3-B).

Consider first sufficiency. Suppose for simplicity that k(s,0)>O. Define l(s)= k(s;0H)/k(s;0L ),

which (4.1-B) guarantees is nondecreasing. Notice first that, for a given H >9L ,

\g(s)k(s;6H )dn(s)= J
g(s)(k(s;0H )/k(s;0L))k(s;0L)d^(s) . Let s be a point where g crosses

zero. Then:

J
g(s)k(s; 6H )dn(s) = J

g(s)l(s)k(s- eL)d/t(s)

= -JIk(*)|'(*)fc(s; eLw(s) + \l
g(s)i(s)k(s- eL)dfi{s) (4. i)

^ -l{sa )\
s

^\g{s)\k{s-eL)dfi{s) + l(So)Jlg(s)k(s;0L)d{i(s) = l(so)lg(s)k(s-0L)dju(s)

The second equality holds because g satisfies SCI, while the inequality follows since monotonicity

of / implies the following condition, which is necessary (4.1) to hold:

l(s) < l(so) for s<so, while l(s) > l(s ) for s>s - (4.2)

(4.2) requires that the likelihood ratio l(s) satisfies WSCl(so). (In Section 4.1.1 below, we will

show how fixing the crossing point can allow us to exploit (4.2) as a sufficient condition). If, in

addition, /(so)<L then
j
g(s)k(s;0H )d/*(s)^Q implies ]g(s)k(s;0L)dju(s)<jg(s)k(s;0H )dju(s);

this case arises when jfcfa;^) is a probability distribution (not a density). In that case, if l(s) is

nondecreasing, it must always be less than 1, which is its value at the highest s.

The necessity parts of this theorem can be proved by constructing counterexamples, which

22
1 am grateful to an anonymous referee who directed me to this theorem.

23 The necessity proof provided in Karlin (1968) is designed to solve a much more general problem (about the

preservation of an arbitrary number of sign changes, and thus it requires additional regularity assumptions and a

complicated construction.
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place all of the weight on the failures. Thus, the proof of Theorem 3 makes use of the following:

Lemma 5 (Testfunctionsfor single crossing problems) Define the following sets:

0iP)- {§' 3a,b>0, fi>s,8>0, andsL<sH s.t. g(s)=-afor sg(sl-s,sl+s) and

g(s)=bfor sg(sh-s,Sh+s), \g\<<5 elsewhere, and g satisfies SCI

}

"%(fl)- {k- 3<2>0, ft>£>0 and s s.t. k(s)=afor s&(s -e,So+e), and k-Q elsewhere}.

Then Theorem 3 holds if, for any P>0, (4.1 -A) is replaced with (4.1A ') g(s)e#(fi); Theorem 3 also

holds if (4.1 -B) is replaced with (4. IB') k(s,6)&1i:(p).

As in Theorem 1, placing smoothness assumptions on g will not change the conclusion of

Theorem 3, but monotonicity or curvature assumptions will. If monotonicity of one of the

primitives is assumed (for example, if k is a probability distribution, not a density), then the

necessity parts of the theorem break down, as shown in Section 4.2.1.

Now consider how the counter-examples are used. If g fails (T3-A), then there is sL < sH such

that g(sz.)>0, but g(sH)<0, on sets SL and SH of positive measure //. But then, k(s;0) can be defined

so that k(s;6H) places all of the weight on high points sH, while k(s;$L) places all of the weight on

the low points sL. This function is log-spm, but G(9) fails SCI since g does. If A; fails (T3-B), then

there exist two sets of positive measure, SH and SL, such that increasing places more weight on SL

relative to SH- Then we can construct a g(s) that is negative on Sl, positive on Sh, and close to

zero everywhere else.

However, the proof of necessity of (T3-B) involves some additional work. Theorem 3 does

not place ex ante restrictions on how supp[AXs;#)] moves with 6. The restrictions implied when

(T3-C) holds whenever (T3-A) does are summarized in the following Lemma.

Lemma 6 If j
g(s)dK(s; 6) satisfies SCI in 6 whenever g satisfies SCI in s, (i)for all 6h>9l,

K(s;Gh) is absolutely continuous with respect to K(s;0L) on (infssupp|X(.s;ft/)], sup ssupp[^T(5';ft.)]),

and (ii) supp[K(s;0)] is nondecreasing in the strong set order.

The following applications show how additional structure present in particular problems can be

exploited; they also generalize the result to allow k to cross zero.

4.1.1. Extensions and Applications to Investment Problems

This section uses Theorem 3 to analyze two classic problems, the portfolio investment problem

and the decision problem of a risk averse firm We develop extensions to Theorem 3 which allow

us to generalize several comparative statics results previously established only for special

functional forms.

Consider first the standard portfolio problem, where an agent with initial wealth w invests x in

a risky asset s, and receives payoffs u((w- x)r + sx) . The first order conditions are given by

J
u'dw- x)r + sx)(s - r)f(s,6)ds

.

(4.3)

Notice that s-r satisfies single crossing, and further, the crossing point is fixed at sv=r for all utility
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functions. This section identifies how (T3-B) can be weakened using this additional structure. We
begin with an additional definition.

Definition 5 We will say that k(s;0) satisfies weak single crossing of ratios about so, denoted

WSCR(so) if(i) l(s ) = lin\_„
o
k(s,0H )/k(s,0

L
) exists, (ii) supp[K(s,0)) is nondecreasing in the

strong set order, (Hi) either k>0 or k satisfies WSCl(so), and (iv) k(s, 0H)lk{s, 6>l) - l(s ) satisfies

WSCl(so)fors where k(s;eL)k(s\0H)>O.

While the WSCRfao) condition may appear unfamiliar, it is potentially quite useful. In

particular, it allows that the function k could itself cross zero, though we will not exploit that fact

until the next subsection. To start, we observe that if k is nonnegative, then k(s,0) satisfies

WSCR(so) for all So if and only if A: is log-spm. Further, WSCR(so) can be satisfied if k(s,0H) and

k(s, 6l) cross exactly once, at Sq. If A: is a probability distribution and the mean of s does not change

with G, it is known that such a single crossing property of the distribution implies that 9 indexes k

according to second order stochastic dominance.

To see how the weak single crossing property of ratios can be used to establish single crossing

conclusions, recall that the inequality in (4.1) holds whenever (4.2) holds. However, for a fixed A'o

and for k>0, (4.2) is equivalent to WSCRfao). Thus, if we know that g satisfies WSCl(s<>), (4.1)

will hold whenever k(s,0) satisfies WSCR(so).

Theorem 4: Suppose that supp(K) is constant in 6 and k is nonnegative. Then (A) g(s) satisfies

WSCl(so) in (s) a.e.-ju, and (B) k(s;0) satisfies WSCR(s ) a.e.-//, are a MPSCfor (C)

G(0)=jg(s)k(s,0)dfi(s) satisfies SCI in &.

Consider how this result relates to Theorem 3. If we relax (T3-A) to allow for WSC1 around

any point, we must strengthen (T3-B) so that k is restricted to be log-spm. Consider an

application of this result. In the portfolio problem, we can apply Theorem 4 to (4.3), letting g=s-r

and k=u'f. Then the optimal portfolio allocation x*( 6,B, r) is nondecreasing in 6 whenever f(s,0)

satisfies WSCR(r). But, if we desire a comparative statics result for all r, log-supermodularity off

will be required. In many problems the relevant range for the risk-free rate may be smaller than the

support of the risk-free asset, and thus Theorem 4 has content.

The portfolio problem has been widely studied. However, far fewer results have been obtained

for more general investment problems, where potentially risk-averse firms invest in a risky projects

n(x,s), or make pricing or quantity decisions under uncertainty about demand. Suppose that an

agent's objective is as follows: max^z, ju(7r(x,s),0)f(s,O)d^i(s), and the solution set is denoted

x*{6JB). Thus, ;r represents a general return function which depends on the investment amount, x,

and the state of the world, s. The agent's utility depends on the returns to the project as well as

some exogenous parameter 0, which might represent initial wealth or some other factor relating to

risk aversion. Notice that in this problem, the crossing point of % is not automatically determined

as in the portfolio problem.
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When this objective function is differentiable, it suffices to check that the marginal returns to jc,

denoted j ul (7!:(x,s),0)7rz (x,s)f(s,0)dju(s) , satisfy SCI. However, we might also wish to allow

for the possibility that the agent faces discrete choices between investments, or that the function n

is endogenously determined (so that regularity properties of n cannot be assumed). To analyze

this problem, we introduce another extension to Theorem 3, as follows:

Theorem 5 Suppose that (i) supp(K) is constant in 0, (ii) g(s, 0) satisfies WSCR(so) a.e.-fifor all

0; and (Hi) k(s, 0) is log-spm a.e.-ju. Then G(0)=j g(s,0)k(s, O)dju(s) satisfies SCI in 0.

Proof: Consider the case where g crosses (otherwise, the expectation is always non-

negative) and £=0 only at s=s , and k>0; the other cases can be handled in a manner similar to

the proof of Theorem 3. Then, we extend (4.1) as follows:

jg(s;0H)k(s;0H )dM(s)

= lim^^^ J g(s;0L)k(s;0L)dM(s)
"*<> g{s\0L)k(s;0L )

J

The inequality follows, as in Theorem 3, because g satisfies WSClfao), and gk satisfies

WSCRfao) since g and k do.

Proposition 2 Consider the problem max \u(7r(x,s),0)f(s,0)d/x(s) . Assume that u(y,0) is

increasing and differentiable24 in y and n(x,s) is nondecreasing in s. Then:

(A) 7i(x,s) satisfies SC2 in (x;s) a.e.-/i, and (B) u
t (y,0)f(s,0) is log-spm. in (s,y,0) a-e.-^i,25 are a

MPSCfor the conclusion (C) x*(0,B) is nondecreasing in 0.

Proof: (A) and (B) imply (C): If % is differentiable in x and B is a convex set, we can analyze

whether fu^n^x, s),0)xx (x, s)f(s,0)d{i(s) satisfies SCI. We can let g=Kx, and let k=u x -f, and

apply Theorem 3. Now consider the investor's choice between two values of x, xH > xL .

Then, let g(s,0) = u{n{xH,s),0)-u{n{xL,s),0), and let k(s;0) =f(s;0). First, observe that SC2 is

preserved under monotone transformations, so that if u is nondecreasing in its first argument,

then by (A), u(n(x,s),0) must satisfy SC2 in (x;s), and g{s,0) satisfies SCI in s. Now, consider

conditions under which g(s,0) satisfies WSCR(5 ). Let s be the crossing point of nx. First

restrict attention to s>so, where M.Xh,s) >7i(xl,s). Define h(a,b,0)=j
=a
Ui(y,0)dy , and note that

h is log-spm in (a,b,0) for all a<b, by Corollary 2.1 and (B). This in turn implies that

g{s,9)=h(n(xL,s),7i(xH,s),9) is log-spm in (s,0) on s>So since n is nondecreasing in s, and thus

g(s;0H )/g(s;0L ) is nondecreasing in s on s>So. On the other hand, if s<So, n(XH,s)<n(xL,s), and

g(s,0)=-h(7i(xH,s),7i(xL,s),0). Then, g{s\0H )jg{s;0L ) is nondecreasing in s on s<so since h is

log-spm, and WSCR(.So) holds. Then apply Theorem 5. Necessity follows by Theorem 3 for

the case where % is differentiable; the proof is omitted for the more general case.

24 This is not essential but it simplifies the proof.

25 If u is not everywhere differentiable in its first argument, the corresponding hypothesis can be stated as follows:

[u(yH,0)-u(yL,8)]-f(s;0) is log-supermodular in (yL,yH,6,s) for all yL < yH.
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Hypothesis (B) is satisfied if (i) 6 decreases the investor's absolute risk aversion, and (ii) 6

generates an MLR shift in F. This result provides a general statement of two basic results in the

theory of investment under uncertainty, illustrating that log-supermodularity is behind the

seemingly unrelated conditions on the distribution and the investor's risk aversion. The proof of

Proposition 2 further highlights an application of the tools from Section 3.

The analysis of this section establishes several generalizations of the existing investment

literature. This literature typically considers the problem where the objective is differentiable and

strictly quasi-concave. Landsberger and Meihjson (1990) shows that the MLR is sufficient for

comparative statics in the portfolio problem, and Ormiston and Schlee (1993) show that arbitrary

comparative statics results are preserved under the MLR, and suggest a behavioral relationship

between risk aversion and the MLR. A few papers consider comparative statics when 7i(x,s) =

h(x)s, as in Sandmo's 1971 classic model of a firm facing demand uncertainty. The focus of

Milgrom's (1994) analysis was to show that comparative statics results derived for the portfolio

problem also hold for Sandmo's model. Proposition 2 extends the analysis further, highlighting the

fact that supermodularity of k, but not multiplicative separability, is critical for the comparative

statics conclusions of Proposition 2.26 Thus, the comparative statics results from portfolio theory

and Sandmo's model can be extended to more general models of firm objectives.

4.2. SC2 and Comparative Statics

The main comparative statics Theorem of Section 4 follows immediately from Theorem 3:

Corollary 3.1(Comparative Statics with Single Crossing Payoffs) (A) u(x,s) satisfies SC2 in

(x;s) a.e.-.p. and (B) K{s;8) satisfies MLR; are a MPSCfor (C) MSCc holdsfor all sets B. 27

Corollary 3.1 has an interesting interpretation. Recall that SC2 of u(x,s) (condition C3.1-A) is

the necessary and sufficient condition for the choice of x which maximizes u(x,s) (under certainty)

to be nondecreasing in s. Thus, Corollary 3.1 gives necessary and sufficient conditions for the

preservation of comparative statics results under uncertainty.28 Any result that holds when \y is

known, will hold when s is unknown but the distribution of s experiences an MLR shift. Further,

MLR shifts are the weakest distributional shifts that guarantee that conclusion. The result is

illustrated with two examples.

26 Building from a paper by Eeckhoudt and Gollier (1995) for portfolio problems, Athey (1998) uses the techniques

of this paper to extend this result to incorporate the restriction that investors are also risk averse; under that

condition, it follows that the restriction that/ is log-spm can be weakened to allow that only the distribution, F, is

log-spm.

27 The quantification over constraint sets B can be dropped for the conclusion that (B) is necessary.

28 Jewitt (1987) and Ormiston and Schlee (1993) also give this interpretation in their analyses. Ormiston and

Schlee (1993) explicitly analyze the preservation of comparative statics with respect to MLR shifts, and further

show, under additional regularity assumptions, that single crossing of u is a necessary condition for the result to

hold for all MLR shifts.
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4.2.1. The Choice of Distribution and Changes in Risk Preferences

This section considers the consequences for Corollary 3.1 of placing additional assumptions on

risk preferences. The context is a problem where the choice variable is a parameter of a

probability distribution (for example, the agent chooses effort in a principal-agent problem, or

makes an investment decision), and the exogenous parameter describes risk preferences. Corollary

3.1 can then be applied systematically to provide succinct proofs of some existing results, and

further to suggest some new ones.

Formally, let u{s,6) be an agent's utility function, and let f(syc) be a density with an associated

probability distribution F(s;x) =
$ x f(t;x)dju(t). The agent solves maxxeB ]u(s,$)f(s;x)dju(s).

This is an example where it is useful to have results that do not rely on concavity of the objective:

concavity of the objective in x requires additional assumptions (see Jewitt (1988) and Athey

(1995)), which may or may not be reasonable in a given application.

We will now study several sets of sufficient conditions for the agent's objective to satisfy SC2

in (x;0), each corresponding to different classes of applications. For simplicity, consider the case

where u satisfies enough regularity conditions so that the integration by parts is valid. Then:29

arg maxxsB ju(s, 0)f(s; x)dji(s) = arg maxxeB - jus (s, 0)F(s; x)ds

= argmax^b us (s, 6)\sf (s; x)ds + juss (s, 0)\*=s
F(t; x)dt ds

The following result follows directly from these equations and Corollary 3.1. Of course, it can

be further extended to allow for restrictions on higher order derivatives.

Propositions Consider thefollowing conclusion: (C)x*(0,B)=argmaxx€BJs
u(s,O)f(s;x)d^(s) is

nondecreasing 6 for all B. In each of thefollowing, (A) and (B) are a MPSCfor (C):

Additional Assumptions A B

(i) u(s,d)>0, and {s\u(s,&)*0} is constant in 6. u(s,6) is log-spm. a.e.-{i. f(s;x) is WSC2 in (x;s) a.e.-fi

W) us(s,0)>O, and {s\us(s,0)*O} is constant in

e.

u£s, 6) is log-spm. in

(s,-6)a.e.-n.

F(s;x) is WSC2 in (x;s) a.e.-Lb.

(Hi) \sf(s\ x)ds is constant in x, w„<0, and

{s\uss(s,0)*Q} is constant in 6.

1 uss(s,0)\ is log-spm. in

(s,-6) a.e.-fu.

\l^F(t\x)dt isWSC2in

(x;s) a.e.-Lb.

In each of (i)-(iii), the fact that (B) is necessary for the conclusion to hold whenever (A) holds

relies crucially on the nonmonotonicity of the relevant function in (A). Thus, while the sufficient

conditions and the necessity of (A) in each case are quite general, one should be more careful in

drawing conclusions about the necessity of (B). However, there are applications that are

appropriate for each of these results. Consider each of (i)-(iii) in turn.

29 The notation s. and s indicates the bounds of the support of F.
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To begin, compare (i) with Corollary 3.1: the single crossing condition on the payoff to the'

project is replaced by a single crossing condition on the density. Case (i) might apply if a principal

is restricted to offer a stochastic mechanism to an agent, and the uncertainty is about the allocation

that will be received.30 The payoff u is log-spm when higher types have a larger relative return to

s. When the support of s is fixed, WSC2 of a probability density is equivalent to weak single

crossing of ratios (WSCR), which is stronger than FOSD but weaker than the MLR.

Now, consider Part (ii). Hypothesis (A) requires that the agent's Arrow-Pratt risk aversion is

nondecreasing in #(i.e., us is log-spm in (s,-0)). Further, (B) requires that the distribution F(s;x)

satisfies WSC2 in (x;s). That is, F(s^H) crosses F(s%) at most once, from below. Under this

assumption, it is possible that increasing x decreases the mean as well as the riskiness of the

distribution; that is, it might incorporate a mean-risk tradeoff.

In case (iii), the agents are restricted to be risk averse. We see that x always increases with an

agent's prudence (as defined in Section 3. 1) if and only if j^ F(v, x)dv satisfies WSC2 in (x;s).

Of these results, only (ii) has received attention in the literature. Diamond and Stiglitz (1974)

established the sufficiency side of the relationship, and many authors have since exploited and

further studied the result (such as Jewitt (1987, 1989)). The example further illustrates how

Jewitt's (1987) analysis of risk aversion relates to this paper: Jewitt (1987) shows that (A) is

necessary and sufficient for (C) to hold whenever (B) does.

4.2.2. Mineral Rights Auction with Asymmetries and Risk Aversion

This section studies existence of a PSNE in nondecreasing strategies in Milgrom and Weber's

(1982) model of a mineral rights auction, generalized to allow for risk averse, asymmetric bidders

whose utility functions are not necessarily differentiable, reserve prices may differ by bidders, and

when bidding units may be discrete.31

The analysis begins with the case where there are two bidders; difficulties will arise when we

consider n asymmetric bidders. Suppose that bidders one and two observe signals s
{
and s

2 ,

respectively, where each agent's utility (written {4(£t,£i,£2)) satisfies

Ui(bj,su s2) is nondecreasing in (-&,, s
l
,s

2 ) and supermodular in (bi,sj),j=\,2. (4.4)

The signals have a joint density h{si,si) with respect to Lebesgue measure, and the conditional

density of s-i given si is written f-,{s-i\si). To see an example where assumption (4.4) is satisfied, let

u
i
(b

i
,s

l
,s

2
)=j Ui(y - bt)g(y\su s2)dv , where v is affiliated with si and 52, and «. is nondecreasing

30 Such uncertainty might arise if the principal cannot observe the agent's choice perfectly, or if the principal must

design an error-prone bureaucratic system to carry out the regulation.

31 As in the pricing game studied in Section 2, this is not a game with strategic complementarities between players

bidding functions, so Vives (1990) may not be applied to establish existence of a PSNE.
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and concave.32

When player two uses the bidding function J3(s2 ), then the set of best reply bids for player one

given her signal (s
t
) can be written (assuming ties are broken randomly):

b'
{
(s\) = argmaxj^ u

l
(bu s

l
,s2 )lbl>/KS2) (s2)fz (s2 \s l

)ds2 +jl2
Ul(bl

,s
l
,s2 )lbl=mSi) (s2)f2(s2\s l

)ds2

When bidder two plays a nondecreasing strategy, (4.4) implies that bidder one's payoff

function given a realization of s2 satisfies WSC2 in (t\; s2 ) . The returns to increasing the bid from

bL to bH are strictly negative for low values of s2 , when the opponent bids less than be, the returns

are increasing in to on the region where raising the bid causes the player to win, where she would

have lost with be, and the effect is zero for s2 so high that even bH does not win. For each bid, the

returns are increasing in s2. This yields (using Extension (ii) to Theorem 3, and Corollary 3.1):

Proposition 3 Consider the 2-bidder mineral rights model, where the utilityfunction satisfies 4.4

above, the joint density h is log-spm almost everywhere (affiliated), and the support of the

random variables is fixed. Suppose that bidder 2 uses a strategy fhisi) which is nondecreasing in

S2. Then biiSi) is nondecreasing (strong set order) in Si.

Athey (1997) shows that in auction games such as the first price auction described above, a

PSNE exists if the conclusion of Proposition 3 holds, and further, the type distributions are

atomless and affiliated, and either the players choose from a finite set of bids (i.e., bidding in

pennies) or else w, is continuous.

What happens when we try to extend this model to n bidders? If the bidders face a symmetric

distribution, and all opponents use the same symmetric bidding function, then only the maximum

signal of all of the opponents will be relevant to bidder one. Define sm = max(s2,..,sn). Milgrom

and Weber (1982) show that (si,sm) are affiliated when the distribution is symmetric. Further, if

the opponents are using the same strategies, whichever opponent has the highest signal will

necessarily have the highest bid. Then we can apply Proposition 3 to this problem exactly as if

there were only two bidders. Unfortunately, the results do not in general extend to n-bidder,

asymmetric auctions with common value elements. Under asymmetric distributions (or if players

use asymmetric strategies), affiliation of the signals is not sufficient to guarantee that the signal of

the highest bidder is affiliated with a given player's signal.

The conclusions we can draw about the equilibria of auction games based on Proposition 3 are

stronger than those available in the existing literature, which has typically considered only

continuous bidding units, and either symmetry or stronger distributional assumptions, such as

private values or independent signals.33

32 To see why, note that Sj and Sj each induce a first order stochastic dominance shift on F, and «. is supermodular

in (bh v). By Athey (1995), supermodularity of the expectation in (bj,si) and (bh sj) follows.

33 See Lebrun (1996), who uses a differential equations approach to derive existence in an asymmetric independent

private values auction.
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4.3. SC3 and The Spence-Mirrlees Single Crossing Property (SC3)

This section extends the results about single crossing to consider single crossing of indifference

curves, providing general comparative statics theorems and applications to an education signaling

game and a consumption-savings problem. The SM single crossing property is central to the

analysis of monotonicity in standard signaling and

screening games, as well as many other mechanism

design problems. The SM condition for an

arbitrary differentiable function h : 9?
3
-» 9? that

satisfies -§;h(x,y,t)* is given as follows:

&h(x,y,t)/\§h(x,y,t)\ is nondecreasing in

t. (SM)

When the (x,y) indifference curves are well

defined, SM is equivalent to the requirement that

the indifference curves cross at most once as a function of t (Figure 2). We will make use the

following assumption which guarantees that the (jc,y)-indifference curves are well-behaved (it is

also possible to generalize SM to the case where h is not differentiable, but we maintain (WB) for

simplicity):

h is differentiable in (x,y); -^h(x,y,t) * ; the (;c,y)-indifference curves are closed curves. (WB)

Milgrom and Shannon (1994) show that under (WB), (SM) is equivalent to SC3 (Definition 1).

This section characterizes the SM single crossing property for objective functions of the form

V(x, y, 0) = js
v(x, y, s)f(s;0)dp(s) , with the following theorem (analogous to Theorem 3).

Theorem 6 Assume that v : 5R
3 —» 9? satisfies (WB). Then (A) v(x,y,s) satisfies SC3 a.e.-p,

and.(B)f(s;&) is log-spm a.e.-ji, are a MPSCfor (C)
]s
v(x,y,s)f(s;9)dp(s) satisfies SC3.

Corollary 6.1 (Comparative Statics and the Spence-Mirlees SCP) Theorem 6 also holds if4.7-C

is replaced with (C) x*(Q,B)= arg max,eB Jv(*, b(x), s)f(s; 0)dp(s) is nondecreasing in 6for all B

and all &:<R-*9?.

Theorem 6 is closely related to Theorem 3, although the class of payoff functions considered is

more restrictive. Sufficiency in Theorem 6 can also be shown using Lemma 2. Let:

hx(s)=\vy (x,y,s)\f(s;6L ) , h2(s)=vx(x,y,s)f(sr,eH ) h3(s)= Vjc(x,y,s)f(s;0H ) , h4(s)=\vy (x,y,sj{f(s;0L ),

and note that A and B imply:

vx (x,y,sL ) f(sH;0L ) <
vx(x,y,sH ) f(sH ;6H )

i
i

i

i

(4-5)
\v
y
(x, y,sL )\ f(sL;0L ) \v

y
(x,y,

s

H )\ f(sL ;0H)

This in turn implies by Lemma 2 that £ V(x,y,0L )/\§V(x,y,0L -\ <J: V(x,y,0H )/\§ V(x,y, H \.

This theorem can be applied to an education signaling model, where x represents a worker's

choice of education, y is monetary income, and is a noisy signal of the worker's ability, s (for
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example, the workers' experience in previous schooling). If the worker's preferences u(x,y,s)

satisfy SM and higher signals increase the likelihood of high ability, the worker's education choice

will be nondecreasing in the signal #for any wage function w(x).

In another example, consider a variation on the standard consumption-savings problem. Let z

denote an agent's initial wealth, and let x denote savings and b(x) the (endogenously determined)

value function of savings. The agent further has a non-tradable endowment (0) of a risky asset (s),

where the value of 5
1

is unknown at the time that the savings decision is made. The probability

distribution over s at the time the savings decision is made is given by F(s;6). The parameter

might represent the quality or quantity of an exogenously (or previously) determined endowment.

The agent's utility given a realization of s is u(z + s-x,b(x)) , which is assumed to be

nondecreasing. Then, our agent solves max je[0 , z] \u(z + s-x,b{x))dF{s;6). Then, the following

two conditions are a minimal pair of sufficient conditions for the comparative statics conclusion

that savings increases in &. (A) the marginal rate of substitution of current for future utility, uju2 ,

is nondecreasing in s, and (B) F satisfies MLR. Thus, a FOSD improvement in the distribution

over the consumption good does not necessarily increase savings.

5. Conclusions

The goal of this paper has been to study systematic conditions for comparative statics

predictions in stochastic problems, and to show how the results can be used in economic

applications. As such, this paper derives a few main theorems (summarized in Table 1) which can

be used to characterize properties of stochastic objective functions that arise frequently in the

context of comparative statics problems in economics. The properties considered in this paper, the

various single crossing properties and log-supermodularity, are each necessary and sufficient for

comparative statics in an appropriately defined class of problems. Several variations of these

results are also analyzed, each of which is motivated by the requirements of different economic

problems. Because the properties studied in this paper, and the corresponding comparative statics

predictions, do not rely on differentiability or concavity, the results from this paper can be applied

in a wider variety of economic contexts than similar results from the existing literature.

It turns out that a few results from the statistics literature are at work behind the sufficient

conditions for all of the properties studied in this paper. This is especially surprising because the

statistics literature did not emphasize comparative statics. However, the common structure

underlying the results in this paper provide a useful perspective on the relationships between

seemingly unrelated problems. Building on the results from statistics, this paper characterizes the

conditions which economists can use directly for comparative statics predictions.

Finally, this paper focuses on results about necessity as well as their limitations, sharply

defining the tradeoffs that must occur between weakening and strengthening assumptions about

various components of economic models. These tradeoffs are highlighted in Table 1, which
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further provides guidance about which properties will be most appropriate in different classes of

problems. Thus, together with Athey (1995)'s analysis of stochastic supermodularity, concavity,

and other differential properties, the results in this paper can be used to identify exactly which

assumptions are the right ones to guarantee robust monotone comparative statics predictions in a

wide variety of stochastic problems.
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Table 1: Summary of Results

Thm# A: Hypothesis

on u (a.e.-//)

B: Hypothesis on/ \ <2: Conclusion

(a.e.-//)

MCS: Equivalent Comparative

Statics Conclusion

Thml;
Cor 1.1

m(x,s)>0 is log-

spm.

y(s,9) is log-spm. !u(x,s)fls,Q)d/j(s) is log-

spm. in (x,6).

arg max Ju(x,s)/(s,0)d/Xs)

tin(9,B).

Thm2;
Cor 2.1

w(x,s) is spm.

in (x,sd V i.

j{s,Q) is log-spm.
Ja«(x,s)t d//(s)

lf(s,0)ds

is spm. in (x,8,A).

arg max Ja"(x,s) -. d/Xs)

T in (9Aff)-

Thm3;
Cor 3.1

w(x,.y) satisfies

SC2 in (x;s).

j{s,6) is log-spm.

satisfies SC2 in (*;#).

arg max lu{x,s)f{s, 9) d/j(s)

tintfforallfl.

Thm6,
Cor 6.1

u(x,y,s)

satisfies SC3.

f(,s,0) is log-spm. Iu(x,y,s)fis,0)dfj(s)

satisfies SC3.

arg max lu(x,b(x),s)fis, 0)d/4.s)

tin#forall&:<R->.9L

Extensions: assume, in addition, that supp[F(s;0)] is constant in 6.

Thm4
u{x,s) satisfies

WSC2(^ ).

j{s,0)>O satisfies

WSCR(so).

Su(x,s)f{s,d)d{j(s)

satisfies SC2 in (x;0).

arg max ju(x,s]f{s, 0) d/x(s)
mB

t in 6 for all B.

Thm5
u(x,s) satisfies

WSCR(.y ).

j{s,0) is log-spm. iu(.x,s)f{s,0)d^s)

satisfies SC2 in (x;d).

aigmaxSu(x,s)f{s,0) dp(s)
xeB

tin for all 5.

In each row: A and B are a minimal pair of sufficient conditions (Definition 5) for the conclusion C;

further, C is equivalent to the comparative statics result in column 4.

Notation and Definitions: Bold variables are vectors in 91"; italicized variables are real numbers; /is non-

negative; spm. indicates supermodular, and log-spm. indicates log-supermodular (Definition 2); sets are

increasing in the strong set order (Definition 4); SC2 indicates single crossing of incremental returns to x,

and SC3 indicates single crossing of x-y indifference curves (Definition 1); WSC2(s ) indicates weak SC2

with a fixed crossing point, s (Definition 1); WSCR(^ ) indicates weak single crossing of ratios at a fixed

crossing point s (Definition 5). Arrows indicate weak monotonicity.
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6. Appendix

Proof ofLemma 4 and Theorem 1: Sufficiency in Theorem 1 follows from Lemma 2;

sufficiency in Lemma 4 will follow from Lemma 2 since the test functions are log-spm by Lemma
3. Necessity in Lemma 4 will be established below in (1) and (2), noticing that our counter-

examples come from the relevant set. Necessity in Lemma 4 implies necessity in Theorem 1. We
will treat necessity for/, the argument for u is of course analogous:

(1) «=1: Let v{A\9)=\
A
f(s;0)dju(s) . Pick any two intervals of length e, such that Sh{s) > Sl(s)

and SH{s)r^SL(s)=0. Let u(xl,s) = 1SlU) (s) , and let u(xh,s) = 1Sh (C)
(s) . Then

ju(xL ,s)f(s,0)d/t(s) = v(SL\0) and ju(xH ,s)f(s,0)d/x(s) = v(SH \O). Since u is log-spm then

ju(x,s)f(s,0)dju(s) must be log-spm by (C),i.e., v{Sh,0h)v{Sl,0l)>v{Su0h)v{Sh,0l). Standard

limiting arguments (i.e. Martingale convergence theorem as applied in the appendix of Milgrom

and Weber (1982)) imply \hatf(s,0) must be log-spm //-almost everywhere.

(2) n>2: Let v{A\0)=j
A
f(s;Q)dju(s) . We partition 9?" into n-cubes of the form

[h - jr , (h + 1) -57] x • • [in ~ ir > (in + 1) -jr] > and let Q'(s) be the unique cube containing s. Consider a t,

and take any a,b £91". Further, let X = {y, z, y v z, y a z}, where each element ofX is distinct.

Define u(x,s) onX as follows: w(y,s) = le .w (s) , u(z,s) = l
ff(b) (s) , «(y v z,s) = lG . (avb) (s) , and

w(y a z,s) = le , (aAb) (s) . It is straightforward to verify that u is log-spm. If J«(x,s)/(s,0)a?//(s) is

log-spm, it follows that v(Q' (a v b)|9 v 9') • KG' (a a b)|0 v 9') > v{Q' (a)|9) • KG' (b)|9') for aU

9,9'. Since this must hold for all t and for all a,b, we can use the Martingale convergence theorem

to conclude that /(a v b)|9 v 9') • /(a a b)|9 a 9') > /(a|9) • /(b|9') for //-almost all a,b (recalling

that // is a product measure).

Proof of Theorem 2: (A) and (B) imply (C): Sufficiency is shown in the text for g>0. If g is

bounded below, let M inf{s(s)}
sea

; otherwise, letM be an arbitrary positive constant, and apply

the same arguments with g(s)+M, taking the limit asM approaches 00 if g is unbounded below.

(A) and (C) imply (B): Consider a,b such that vL(Q' (b)) • vH {Q' (a)) > (otherwise there is

nothing to check) and such that each element of {a,b,avb,aAb} is distinct. Let Q'(s) be the unique

cube containing s defined in the proof of Theorem 1, and let , and let Ah={ Q'(a),Q'(avb) } and

AL={G'(b),G'(aAb)}. Choose g(s) = lc(s) so that Q'(avb),Q'(b) c C and Q'(aAb),Q'(a) <£ C, and

further so that lc(s) is nondecreasing. Then, G(-\AH, 0h)>G(-\Al, 0h) if and only if

Li* g(s)f(s;0L)d/j(s) jseAH
/(s; H )dju(s) < Jse/1„

^(s)/(s; 0„)dfi(s) jseAL
/(s; L)d/i(s) , which

reduces to:

vz

-(G'(b))-[v
w
(G'(avb)) + vH(G'(a))]<v

H
(G'(avb))-[v

L
(G'(b)) + vt

(G'(aAb))].

Simplifying gives vL(Q'(b))-vH (Q'(a))< vH (Q'(avb))- vL
(Q

t

(a/\b)). Since this must hold for

all t and all a, b, we conclude \haXfl$,0) must be log-spm for //-almost all a,b and all 0.

(B) and (C) imply (A): Consider a < b and let AL=Q'(a) and A^=Q'(b). Then G(-\AH)>G(-\AL) if and

only if Jsee , (a)
s(s)/(s|0,G'(a))rf//(s) ^LG1(b)

s(s)/(s|0,G'(b))rf//(s) , which is true for all a<b and

all t if and only if g(a)<g(b) for // -almost all a<b.

Proof of Corollary 2.2: (ii) implies (i): Since [l/F(a;0)]j
s

^l t<a (t)dF(t,0) is a probability
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distribution for all a and 0, we can apply a result from Athey (1995): G{0\a) is nondecreasing in

and a and all g nondecreasing, if and only if G{ 0\a) is nondecreasing in for all a, all g(s)= lsib (s)

,

and all b. Rewriting the latter condition, we have [1/F(a; 0)]j°dF(s; 8) nondecreasing in and a

for all b<a, which is true if and only if 1- F(b;0)/F(a;0) is nondecreasing in <9for all b<a. Log-

spm ofF and the fact that F is a distribution yield the result.

Likewise, G(-|a) is nondecreasing in a for all g nondecreasing if and only if G(0\a) is nondecreasing

in a for all g(s)= ls>b(s) and all b<a. From above, we check that 1 - F(b; 0)/F(a; 6) is

nondecreasing in a, which is true since F is a distribution.

(i) implies (ii): Simply apply (i) for all b<a, which implies that 1- F(b;0)/F(a;0) is nondecreasing

in 6 for all txa. This is equivalent to log-spm of F.

Proof of Lemma 6: Pick 6H >9L . Define measures v/.and vh as follows: VL(A)=j
A
dK(s;0L )

and vh(A) = \A
dK{s;0H ). Define a = inf [s\s esupp[K(-;0H )]} and b = supl^s esupp[ £"(;#/.)]}.

Define h(s;0)=dK(s;0H )/dC(s;0H ,0L). Let D=supp[K(-;0L )]<Jsu-pp[K(;0H )]. Since the behavior

of h(s;0) outside ofD will not matter, we will restrict attention to D. The proof proceeds in

several steps.

Part (a): If a>b, then the conclusions hold automatically. Throughout the rest of the proof, we
treat the case where a < b.

Part {b): For any S = (sL ,sH ] c: [a,b] , vL(S) > implies that Vh(S) > 0. Proof: Suppose that vL(S)

> and Vh(S) = 0. Note that < K(sL ;0H ) since a<SL- If supTp[K(sL ;0H )]^SL, then define g as

follows. g(s)=-l for 5 g(-co,s l ), while g(s)=K(sL;0L)/vL ([sL ,<x>)) for s e[s L ,co). Otherwise,

define g as follows: g(s)=-l for s £(-<»,$*.), g(s)=K(sL ;0L )/vL (S) for .yeS, and

g(s)=.9 K{sl\9h)I^h{[sh,'x:>)) for 5 e[s//,oo) . Now, it is straightforward to verify that SCI is

violated for this g.

Part (c): For any S = (sL ,sH ] <- [a, b] , Vh(S) > implies that vL(S) > 0. Proof: Suppose that vh(S)

> and vL(S) = 0. If K(sL ;0L)=Q, then define g as follows: g(i')=-l for s e(-co,sH ) , while

g(s)=K(sH ;0H )/(2 V//([%,oo)) for s e[,S//,oo) . Otherwise, define g as follows:

^)=-Vl([^,°o))/^(^;^) for s e(-oo,sL ), g(s)=-v„([sH ,<x>))/vH (S) for seS, and g(s)=l for

se[jH,<»). Now, it is straightforward to verify that SCI is violated for this g.

Part (d): supp[AT(-;^w )]>supp[A!'(-;^L )] in the strong set order. Proof: Parts (c) and (d) imply that

vh is absolutely continuous with respect to Vl on [a,b], and vice versa. It now suffices to show

that if s' esupp[£(•;#/,)] and s"eswpp[K(-\0L )], and s">s', then

s',s"e supp[AT(-; L )]r\smpp[K(-; H )] . Since s<£ supp[#(-; L )] for all s>b, we may restrict attention

to s"<b. Likewise we may restrict attention to s'>a. But, if (as we argued in part (b)) vh is

absolutely continuous with respect to vl and vice versa on [a,b], then

supp[/sr(-;0w )]=supp[#(-;0L )] on [a,b], and we are done.

Lemma Al G{0)=\ g(s;0)k(s;0)d^(s) satisfies SCI in under the following sufficient

conditions: (i)(a) For each 0, g(s, 0) satisfies WSC1 in s a.e.-/i; for ju-almost all s, g(s, 0) is

nondecreasing in 0. (i)(b) k(s;0) is log-spm a.e-fi. (i)(c) Either g(s, 0) satisfies SCI in s a.e-fi, or

else supp[AT(-;#)] is constant in 0.
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Proof of Lemma Al: Pick H > L . Suppose that
J"
g(s;0L)k(s;0L)dju(s)>(>)O. Choose s so

that g(s,0L)>O for ju- almost all s > s and g(s, L ) < for //- almost all s < s ( s exists by the

definition of WSC1). Let s = min{5 > s and s €supp[K(-;0L )]} . First, note that if

So £supp[AT(- ;#«)], then supp[K(-;0H)]> s since supp[K(;0H)] is nondecreasing in the strong set

order (applying Lemma 6 and (i)(b)). This in turn implies that, for all s in supp[K(;0H)],
g(s, H ) > g(s, L)>O, which implies G(0h)>O. Further, if G(0l)>O, then we can conclude that

G(0h)>O by (i)(c). Second, observe that the case where s\xpp[K(;0H)]<so is degenerate, since this

would imply by the strong set order that supp[K(-;0L)]<so as well. But then our hypothesis that

G(0l) is nonnegative would imply that g(s,0i.)=O a.e.-// on supp[K(;0L)]. Since swpp[K(-;0)] is

nondecreasing in the strong set order, this in turn implies G(0h)=O by (i)(c).

So, we consider the third case where So e supp[AT(- ;#/)], but there exist s',s"e supp[AT(;ft/)] such

that s'<s <s". Notice that, by the strong set order, s\xpp[K(-;0H)]=s\xpp[K(-;0L)] on an interval

surrounding s • It further implies that g(s,0L)<O for all s e supp[K(-;0L)]\s\xpp[K(-;0H)] (because

everything in the set lies below suppfA^- ;#/)], which contains s ). By the same reasoning,

g(s,0O>O on supp[tf(-;6k)]\supp[#(-;&)].

Now, define a modified likelihood ratio / (s), as follows: / (s)=0 for s£supp[K(-;0L)],

1 (s)=k(s;0H )/k(s;0L ) for sesupp[K(-;0t)] and k(s;0L)>O, and then extend the function so that

/ (s) = maxiliml (s'),liml (s')j for SGSupp[K(-;0L)] and k(s;0L)=Q (recalling that the likelihood

ratio can be assumed to be nondecreasing in s on supp|X(-;ft.)] without loss of generality by

(i)(b)). Thus, we know / (f )>0, since s e supp[#(-;#z.)] and since supp|X(-;#/)]=supp[#(;#z.)]

on an open interval surrounding s . We use this to establish:

\g{s;0H )k{s;0H)d^s)>] g(s;0L)k(s;0H )dM(s)>S g(s;0j(s)k(s;0L)dM(s)

2 "^(*o)£ \g(s; L )\k{s;0LW(s) + /(£„)£ g(s\ L)k{s; L)dfi{s) = /(£„)/ gfr L )k(s; L)dju(s)

The first inequahty follows by the fact that g(s,0H ) > g(s,0L ) . The second inequality follows by

the definition of / (s) and since g(s,0L)>O on supp[AT(-;ft/)]\supp[AT(-;ft.)]. The equality follows by

WSC1 of g. The third inequahty is true because / (s) is nondecreasing a.e.-/i on supp|X(-;&.)]

since k is log-spm. The last equality is definitional. Thus, since / (s)>0, G(#l)>(>)0 imphes

G(6W)>(>)0.

Proof of Theorem 3 and Lemma 5: Sufficiency follows from Lemma Al . Necessity will follow

by constructing counter-examples from the relevant sets. Necessity of (T3-A) follows by

observing that for any sl<sh, if we let SL(e)= (s L - e,s L ] and SH (s) = (sH - e,sH ] , the function

fc(5,6
f')=l5L(£) , k(s,0

H
)=lSlli£) is log-spm. Thus, (T3-C) will imply that g is SCI a.e.-|a. Necessity of

(T3-B): Define a, b, h, and D as in the proof ofLemma 6. It suffices to consider log-spm of h.

First, notice that if a > b, then h(s,0) is log-spm a.e.-//. To see this, observe that a > b implies that

h(s;0H) = and h(s\0L) = 2 on supp[/sT(-; L )] , while h(s;0L) = and h(s;0H) = 2 on supp[#(-; H )]

.

This implies that h(s;0) is log-spm.

Now, suppose a<b. Let B = supp[K(-;0L)]r\supp[K(;0H )] , which we have shown is equivalent

to Dn[a,b]- Pick any sl,sh&B, and define SL(s)= (sL - e,sL ] and SH (e) = (sH -s,sH ], such that
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sH - e > s L . For the moment, we will supress the e in our notation. Suppose further that sl,sh^B,

but vH (SH )-v L (SL)<vH (SL)-vL (SH ). By definition, if s L > a , then vH ([a,sL -e])>0; then, by

absolute continuity, vL ([a,s L - e]) > and thus K(s L - s;

6

L ) > . Let g(s;8) be defined as

8 s e[sL,<x)\SH

follows: g(s;8) = <

s Vl([sl,co))-vl(Sh )

K{s L -s-eL )

-1 szSL

sgS„
[vl(Sh)

It is straightforward to verify that there exists a 5>0 such that the single crossing property fails

with this g. But this implies that for any s positive and in the relevant range,

Vh(Sh (£))• Vl(Sl(s)) ^ V/zOSl (£•))• vL(SH (e)) . But this implies that h{s;6) is log-spm a.e.-C on B.

Since supp[K(-;9H )]>supp[K(-;8L )] in the strong set order, this implies that h(s;6) is log-spm

a.e.-C on D.

Proof of Theorem 6: (i): Under the assumptions of the theorem, v(x,y,s) has SC3 if and only if

u(x,s;b) = v(x,b(x),s) has SC2 in (x;s) for all functions b. Furthermore, V(x,y,6) has SC3 if

and only if U(x,0;b) = V(x,b(x),0) has SC2 in (x;0) for all functions b. So, if we know that

v(;t,y,.s) has SC3, then u(x,s;b) has SC2 in (x;s) for all functions b. If k is log-spm &.e.-ju, then

Theorem 3.1 implies that U(x,&,b) has SC2 in (x;s) for all functions b. But this in turn implies that

V(x,y,0) hasSC3.

(ii): Consider anyf(s;0). Let F(s;8) = \

s

_aa f{t;6)din{t) . The working paper shows that if F(s;0)

does not satisfy (MLR), then there exists a continuous g which satisfies SCI so that \g(s)dF{s;9)

fails SCI (this is a continuous approximation to the test functions from Lemma 5). Consider this

function g. We know that, since g is continuous and crosses zero only once, it must be monotone

nondecreasing in some neighborhood of the crossing point/region. Now, define the following

points, which are the boundaries of the region where g(s) = 0: c = infSG^{s\g(s) - 0},

d = s\xp s(&{s\g(s) = 0} . Now, we can find a S> and two corresponding points,

cs = sup J<f{s\g(s) = -8} and ds = mfs>d {s\g(s) = 8} , such that (c,d)cz(cs,ds) and g is

nondecreasing on (c&ds). Let us define a new function, a(s), as follows: a(s) = 8 for s &{cs,dg),

a(s) = Igfa)! elsewhere. Now, pick any xH > xL , and let v(x, y,s) = x- g(s)/(xH -

x

L ) + a(s) y

.

Since a(s) and g(s) are continuous and a(s) > 0, v satisfies (WB). Finally,

%l%
= g(s)/((xH - xL ) oc(s)) is nondecreasing in s. Thus, v satisfies the assumptions of the

theorem as well as SC3. Now, lv(x,y,s)dF(s;6) satisfies SC3 if and only if iv(x,b(x),s)dF(s;0)

satisfies SC2 in (x;0) for all b. Let&(x) = 0. But, v(xH ,Q,s)-v(xL,0,s) = g(s), and by

construction \g(s)dF(s;&) fails SCI, which in turn implies that jv(x,O,s)dF(s;0) fails SC2 in (x;6).

Thus, Sv(x,y,s)dF(s;0) fails SC3.

(iii): If v(x,y,s) fails the SC3, then there exists a b(x) such that v(x,b(x)>s) fails SC2 in (x;s). But

then, Theorem 3 implies that there exists anf(s;0) which is log-spm a.e.-// such that

jv(x,b(x),s)f(s;0)d/i(s) fails SC2 in (x;0). We conclude that lv(x,y,s)f{s;0)d^s) fails SC3.
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