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ABBTRACT

A model of market—making merchants who buy from suppliers

and sell to consumers is treated as a two-stage Bertrand game.

Winner—take-all competition -for the inputs distinguishes these

models -from -fixed or -flexible capacity models. When stocks are

acquired in the -first stage, followed by sales to consumers, a

Subgame Perfect Nash Equilibrium (BPNE) exists if and only if

the elasticity of demand at the Walrasian price is at least

unity; in that case, the unique SPNE is Walrasian. On the

other hand, when forward contracts are sold to consumers in the

first stage, followed by acquisition of stocks, a unique SPNE

always exists and is Walrasian.

DEC 3 1986

RSeSWED



1. INTRODUCTION.

Consider a model o-f merchants who obtain stock from

suppliers and resell it to consumers. Suppose the merchants

face Bertrand price competition on both sides. Such a model of

"Bertrand merchants" is a possible way to endogenize the role

of the Walrasian auctioneer in a pure exchange economy.

Indeed, a typical story of how markets reach equilibrium

involves the notion of arbitraging middle men. But before such

a story can be given a rigorous foundation, we must have a

sensible solution to the Bertrand pricing game.

One of the troublesome aspects of Bertrand price

competition with capacity constraints is the absence of a pure-

strategy Nash Equilibrium <NE) . Only recently has it been

shown that even a mixed—strategy NE exists in general CDasgupta

and Maskin (19B2)3. While the discontinuous behavior of

consumers (everyone going to the seller with the lowest price

no matter how small the price difference) may be somewhat

unrealistic, such behavior is not the cause of the lack of a

pure—strategy NE. Consumer behavior can be smoothed and still

no pure-strategy NE will emerge (unless there is sufficient

smoothing to make the profit functions concave). It is the

natural non-concavity of the Bertrand seller's profit function

that rules out pure—strategy NE. Simply assuming away this

non—concavity is not a satisfactory solution.
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There are two interesting special cases in which Bertrand

competition does have a pure-strategy NE. The first case is

when total capacity is at least twice the quantity demanded at

the Walrasian price. Then the Walrasian price is the NE

strategy for every seller. The second case is when total

capacity does not exceed the monopoly quantity. Then the

market clearing price (which is the capacity-constrained

monopoly price) is the NE strategy -for every player. These two

cases suggest that bringing in the choice of capacity might

alter the outcome. Indeed , Kreps and Scheinkmann (19B3) show

that in a two-stage game o-f capacity choice -followed by

Bertrand price competition, the unique perfect NE is the

Cournot outcome.

Since the acquisition of stock is analogous to capacity

choice, one might reasonably hope that the NE of a model of

"Bertrand merchants" would have a sensible outcome, in contrast

to the fixed capacity case. This paper investigates such a

model

.

First, consider a two-stage game in which stocks are

acquired in the first stage and sold in the second stage. The

supply function and the demand function are non-stochastic and

common knowledge to all merchants. Each merchant sets (1) a

bid price for the first stage and (2) an ask price for the

second stage conditional on everyone's stocks. Sufficient

regularity is assumed to ensure a unique Walrasian price (i.e.
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the common bid and ask price that equates supply and demand)

and a unique "sales revenue maximizing price" (i.e. the price a

monopolist would charge in the second stage with no capacity

constraints). Assume that initial inventories of stock are

zero for all merchants. For example, merchants upon waking up

in the morning go to the farmers and obtain fresh produce, and

then travel to the city to sell this fresh produce to urban

consumers. Assuming that the produce perishes overnight, the

merchants' inventories would be zero every morning. 1 Also

assume that there are no binding capacity constraints on the

amount of stock any merchant can acquire during the first

stage. The highest bidder acquires all the stock. In the

event of equal bids, the supplies are allocated equally among

all merchants. In the second stage, the consumer sales are

rationed "uniformly" (see section 2) .

I will show that there exists a Sugame Perfect NE (SPNE)

of this two-stage game if and only if the Walrasian price is at

least as great as the sales revenue maximizing price

(equi valently , if and only if the elasticity of demand at the

Walrasian price is at least unity). When a BPNE exists, the

SPNE bid and ask prices are the Walrasian price, and this

Walrasian outcome is the unique SPNE outcome . (In this case,

the SPNE price also happens to be the price which drives all

1 This dynamic story is told solely for the purpose of
motivating the assumptions of the one-shot two-stage game. The
repeated version of the game will be briefly addressed at the
end of the paper.
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merchant pro-fits to zero.) This result holds for any number of

merchants greater than one.

Heuristically , the reason -for the non-existence case is

that (i) an outcome with positive monopoly profits cannot be an

equilibrium because the merchants would out bid each other,

each believing he would be a second stage monopolist; Cii) in

the limit of such a bidding war where expected monopoly profits

are zero, the merchants share the second stage and get negative

expected profits, so the limit bids are not a BPNE either.

Analysis of a discrete version of the game, in which bid

strategies are limited to a finite partition of the price space

with finer and finer partitions, suggests that when the

Walrasian price is less than the sales revenue maximizing price

(elasticity less than unity) consumers will generally be at the

mercy of a monopolist.

The non-existence result disappears under a particular

first-stage allocation scheme. In the case of equal bids,

instead of equal division of the stocks suppose all stocks are

allocated to only one merchant chosen randomly. Then the "zero

monopoly profits" outcome (the limit described above) is the

unique SPNE outcome. That is, prices are bid up to the point

of driving all monopoly profits to zero, and consumers face the

randomly chosen monopolist who charges the sales revenue

maximizing price.
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The second model considered is like the -first except that

the stages are reversed. Merchants sell forward contracts to

consumers for delivery, and then go to the suppliers to obtain

the needed stocks. A penalty for default is imposed sufficient

to prevent defaults. The unique SPNE outcome of this two stage

game is Walrasian ; i.e. the bid and ask prices equal the

Walrasian price. The sales revenue maximizing price (and

elasticity of demand) no longer plays a crucial role. This

result holds for any number of merchants greater than one.

The Walrasian outcome in the forward contracting model

when the elasticity of demand is less than unity stands in

sharp contrast to the former model without forward contracts:

both (i) non-existence when bidding ties are resolved by equal

allocation, and (ii) the zero monopoly profits outcome when

bidding ties are resolved randomly. This contrast makes it

tempting to suggest that one might find more forward

contracting in markets for which the elasticity of demand at

the Walrasian price is less than unity since consumers would

have an incentive to change the game.

These results are also dramatically different from the

results of the fixed capacity models and the capacity choice

models CBenoit and Krishna (19B5); Kreps and Scheinkman (1983);

Vives (19B3)3. In those models the outcome is either

monopolistic or Cournot , not Walrasian. The important modelling

difference is that the latter models involve no competition for
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the inputs , while the Bertrand merchant model has "winner—take-

all" competition -for the inputs . The lesson is that the input

side of the market can have significant e-f-fects on the nature

of the output equilibrium. Assuming unrestricted availability

of inputs at a constant marginal cost may generate singular

results. The different outcomes indicate also an incentive for

vertical integration.

The paper is organized as follows. Section 2 sets out

the notation and basic assumptions; it also shows that uniform

rationing is essentially the same as proportional rationing

with resale by consumers. Section 3 analyzes the case of a

single monopolist in order to provide a benchmark for

comparison. Section 4 develops the model without forward

contracts, and section 5 develops the model with forward

contracts. The results are discussed in section 6. Several

involved proofs are gathered in an Appendix.

2. NOTATION and RATIONING SCHEMES.

Let (pb i , p«± ) denote the bid and ask prices respectively

of the i th* merchant. These prices are the strategy variables

of the merchants. Given a bid price p tol , the merchant acquires

whatever stock the suppliers are willing to provide at that

price. Let x± denote the stock on hand of the i th merchant

after the first stage. Given p«i , the merchant sells whatever
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stock the consumers are willing to buy (up to x t ).

Let S(p) denote the supply function of the suppliers and

let D(p) denote the demand function of the consumers. Assume

that both are continuously dif f erentiable with S' > > D '

.

The requirement that the supply function be upward sloping and

not vertical will be relaxed in sections 4 and 5 after the main

results are presented.

Assume that there is a unique Walrasian equilibrium price

p= such that D(pc:) = S(pc ) . Further assume that the sales

revenue function pD(p) is strictly concave, so there is a

unique sales revenue maximizing price p.

The ask price subgame with quantity constraints must

specify a rationing scheme that determines which consumers are

able to purchase from the lowest priced merchant, for example

from merchant 2 when pm i > p»3 . The uniform rationing scheme

would take the stock of merchant 2 and distribute it uniformly

among all consumers. If D(p,y) is the representative demand

function with fixed exogenous income y, then the residual

demand facing merchant 1 is DLp^i , (p«i~p«a)

x

3+y 3 - x = . Letting

B = SD/dy, the first—order approximation of residual demand is

D(p«i,y) - x 3 + B <p«x-p-.= )x 3 - <1>

The proportional rationing scheme would take a randomly
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chosen representative -fraction a o-f the consumers and satisfy

their demand completely; a = mi n Cx 3 /D (p«=) , 1 > . Residual demand

for merchant 1 is (l-a)D(p«i) provided that resale by the lucky

consumers is not permitted. In the absence of such

prohibition, the lucky consumers would be willing to resell the

quantity x 3 - aDCp.i , <p«i-p«3 > x 3 /oc +y3. Then, the residual

demand facing merchant 1 would be

(l-a)D(p.i ,y) - x 3 + KD[p.i,(p«i-p«2 )x2/a +yl

8 D(p^!,y) - x a + £(p«i-p«3 >x 3 , (2)

Note that the first-order approximations of residual

demand, (1) and (2), are identical. In other words, proportional

rationing with resale is essentially equivalent to uniform

rationing. 3 As is often done te.g. Kreps and ScheinkmanU, we

will assume that /? is negligible.

3. BENCHMARK MONOPOLY OUTCOME.

As a point of reference it is useful to know how a

monopolistic merchant would set prices. Biven a bid price p to ,

=Proportional rationing wi thout resale was studied by Beckman
(1965) and recently by Allen and Hellwig (19B4). Davidson and
Deneckere (19B2) discuss the implications of this scheme in a
capacity choice game similar to Kreps and Scheinkman. The NE of
our merchant game under this rationing scheme remains an open
question.
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stocks at the end of the first stage would be x = S(pb ). Then,

in the second stage, sales would be minCD <p*») ,x> . Hence, total

profits from both stages are

rr(pt.,p») = p^min^D <p»> ,x> - p toS(p& ) . (3)

It is straightforward to show that the monopolist will

always want to clear the market exactly, which implies that the

price strategies are confined to the set such that D(p.) =

SCpt,). By the assumptions on supply and demand and the

implicit function theorem, there is a continuously

dif f erentiable function g(-) such that DEg(pt,)? = S(pb ), and

g'(pto) = B'(pto )/D'(g) < 0. This locus is shown in Figure 1

where it is drawn as a fairly straight line.

The optimum bid price is that which maximizes TrCpt, ,g <p*J 3

= Cg(pt>) - pt»3S<p to ). The first-order conditions are

(1 - g')S(pfe) = Cg(p to ) - pb DS'(pb ) ,
(4)

which is the price version of marginal revenue equals marginal

cost. Let p tom denote the solution, and p*m = g(p tom ). Figure 1

depicts these for the case in which a unique solution exists.

It is noteworthy that p*.m is higher and pbm is lower than the

sales revenue maximizing price p. This follows because

marginal cost is positive for the former and zero (by

definition) for the latter. It is also noteworthy that p«m is
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higher and p„m is lower than the Walrasian price p= . This

follows because the right-hand-side of eq(4) is zero when p to =

p=, while the left-hand-side is positive.

4. DUOPOLIST MERCHANTS WITHOUT FORWARD CONTRACTS.

Let us first consider the case of two merchants and later

generalize to N =± 2 merchants. The solution is derived by

backwards induction. Given stocks (xi,x 3 >, the merchants face

Bertrand price competition for consumers in the second stage.

For any ask prices (p»i,p«2), let zi (p. t ,p.s ) be the resulting

sales for merchant i.

z i (p«i ,p*a) =

min(x i ,D (p«i ) > , if P-i < P*:

min{xi,max[D(p«i)/2,D(p«i)-x 2 ]}, if p«± = pm3

rain{xi,inaxCD(p«i)-Xa,0]} , if P«i > P«:

Similarly for the second merchant. We assume here "uniform"

rationing and negligible income effects, which (as seen in

section 2) is equivalent to proportional rationing with

consumer resale. This subgame has been thoroughly analyzed by

Kreps and Scheinkman (1983). In particular, they prove that

there is a unique (equilibrium) expected revenue function.
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Let ERi(xi,x 2 ) be this expected revenue -from a second

stage NE. Note that ERi <0,x 3 ) = 0, for any x a . In other

words, zero stocks always yields zero second stage revenue.

Further, ER3 (B,x a ) = M(x a ), where M<x) s maxtpD(p) ! D(p) ^ x>

is the maximum monopoly revenues attainable with stock x. In

other words, if some merchant has zero stocks, then the other

merchant is a monopolist in the second stage.

The -first stage acquisitions, given pure strategies

(Pbi)Pbz) and Bertrand competition are denoted by xi (pt»i ,pba) •

X i (pt»x , Pto=t> =

S(p tol ) , if p& i > pb3

B(p to i)/2 , if ptol = p to3

if P»ai < Pt.a.

The outcome is "winner take all" (except in the event of equal

bids) where "all" entails not only the first stage acquisitions

but also the prize of being a second stage monopolist. In the

event of equal bids, the merchants share the supplies equally. 3

The alternative of breaking a bidding tie by choosing a winner

randomly will be considered later.

Let Fi denote a cumulative probability distribution which

3The results &re robust to allocations "nearly" equal in the
event of bidding ties.
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characterizes merchant i's first stage mixed strategy. These

mixed strategies may include a countable number of atoms

(probability mass concentrated on a point). Let tp*> denote

the collection of prices for which some merchant has an atom,

and let Fi k denote the probability mass at p*. It is also

notationally convenient to let S* denote S(pb ) , and //(p) =

MCS(p)D - pS(p), the net profits to the winner bidding p

(assuming no ties). Because of the possibility of atoms, the

cumulative distributions are not necessarily continuous from

below. Let Fj. (p
—

) denote the limit as prices approach p from

below; that is, the probability that pb ± < p. Obviously,

Fi (p
-

) = Ft (p) if and only if there is no atom at p.

Given this notation, the total expected profits from

(Fi,Fa ) are given by

Ein(F 1 ,F3 ) = ; :/y(pb x)F2 (pb x-) 3dF :

E*<:ER 1 i:S,< /2,S.</2D - p^S^/2>F il«F=^ .

(5)

For the analysis, it is convenient to define p such that

// (p) = 0; i.e. the highest bid price that will yield non-

negative profits for the winner. Clearly, the support of the

optimal F± cannot include any prices greater than p.

Lemma 1 . A necessary condition for Fi to be a SPNE strategy is

that all mass be concentrated at p".
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PROOF: (1) Suppose both merchants have an atom at p* < p.

Merchant 1 can do better by moving this atom up to pk+f but

still less than p" and less than the next atom (pk+i) if there

is an atom at a higher price. This claim is established in two

steps. First, -from Kreps and Scheinkman (1983) f it can be

shown that ERi<x,x) £ li(2x)/2 Csee Lemma A of Appendix 1.

Second, using this fact and eq(5) note that for small £ the

gains from such a move are on the order of //(p*) while the

losses are on the order of half that. Therefore, there can be

no matched atoms below p in a SPNE.

(2) Next consider the necessary requirements for Fi on

C0,p*) . Since F x must be a best response to F= , the integrand

of the first line of eq<5) must be independent of p to ± on the

support of Fi, which implies

F= (pt,i
_

) oc l//i(p to i) . (6)

The further requirement that F3 be non-decreasing puts a lower

bound on the support at least as great as the monopoly price of

section 3. An equation analogous to (6) must hold for F x . Let

£i denote the lower bound of the support of Fj. . Suppose £± =

2=». Then eq(6) requires Fi to have an atom at p_i ,

contradicting step (1) above. Suppose £=> < j3i < p. But note

that merchant 2 can do better by putting all the probability

mass lying below p_i at p_±+G for some G > 0. We can pick 6 so

there is no atom at p_i +6, hence zero probability of a tie.
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Moving mass from below to above (3j (but still below p) gives

merchant 2 a positive chance of winning and gaining positive

monopoly profits (since p_a < p) . In other words, the

assumption that p_2 < p_i < p leads to a contradiction. Assuming

that max {p_± > < p, the only remaining alternative is p_i < p_^ <

p. But with the same arguments we can derive a symmetric

contradiction. Therefore, we must have p_i = p for both

merchants. The conclusion is that a SPNE strategy must be

degenerate with all mass at p. Q.E.D.

From eq (5) , the expected profits from this pure strategy

are Err = ERCS (p) /2,S (p) /2H - pS(p)/2, dropping subscripts because

of symmetry. Recalling that ER(x,x) *= M(2x)/2, we have Err -

tMCS(p) 3-pS(p)>/2 = //(p)/2 = 0. Clearly, if this Err < 0, then

no SPNE exists because the merchants can simply bid zero and

secure a return of 0.

Proposition 1 . If pe < p, then no SPNE exists. -*

"While I believe that SPNE are the most relevant and
interesting, it is noteworthy that Lemma 1 and Proposition 1

apply to all NE. To see this recall that the difference
between a SPNE and a non-SPNE is that the latter involves
strategies off the equilibrium path that are not NE of the
subgames and which act as threats affecting the equilibrium
outcome. Intuitively, however, there are no effective threats
in this merchant game. The only way one merchant can affect the
other in the second stage is to have some stock, which entails
a bidding tie. But any such threat is nullified by a higher
bid by the threatened party unless both are already bidding p.
But the latter case is moot because neither would want to bid p
in the first place. A formal proof could be provided.
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PROOF: First recall that sales revenue for the winner of the

first stage is p,min{D(p«) ,x}, so for x ^ D<0), the maximum

second stage revenue is pD(p). Given pe < p, i-f p= were the

winning bid, then x = S(pc ) > D(p), which implies that M(x) =

pD(p), which is strictly greater than pcD(pc ). Hence, ^(pc ) =

M(x) - PerS(pc ) > p^CDCpc:) - S(p= )] = 0, so p must be greater

than p= . Moreover, the ask price associated with bid p is p.

In other words, if the merchants bid p, then Ett - 0, with

equality iff both ask p in the second stage. However, the

Bertrand NE of the second stage will have both merchants

putting probability mass at prices below p. To see this, note

that by undercutting, a merchant can nearly double his

revenues; hence, both playing pure strategies p cannot be a

second stage NE, and no merchant will put positive probability

on any p > p. Therefore, Ett < 0, which completes the proof.

Q.E.D.

Figure 1 depicts the locus of Err = 0, with p occurring at

the right—most point on this locus above the 45 line. All

points between this locus and the p« axis and above the 45

line yield positive profits to the winner.

The reason for non-existence is that the sum of the payoff

functions, Etti + Err= , is not upper semi -continuous, thus not

satisfying the conditions for Theorem 5 of Dasgupta and Maskin

tin particular, see their Example 3D. This can be illustrated

by looking at a discrete version of the game in which the
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strategies are limited to a -finite partition o-f the price

space, making the partitions finer and finer with the continuum

as the limit. The mixed-strategy equilibria of the discrete

versions converge to a pure—strategy of asking the sales

revenue maximizing price and bidding high enough to drive

expected profits to zero. In the sequence, the merchants are

second—stage monopolists with probability approaching one, but

in the limit they are in a symmetric N-player second stage

Bertrand game with negative expected revenues. In the original

game, these pure strategies do not constitute a SPNE because

each merchant can ensure himself of non—negative profits by

bidding zero. This analysis suggests that when the Walrasian

price is less than the sales revenue maximizing price,

consumers will generally be at the mercy of a monopolist.

Proposition 2 . If p«= - p. there exists a unique SPNE. The

corresponding strategies are (i) to bid p^± = P=, and (ii)

given first stage stock acquisitions, to play second stage

NE strategies. In equilibrium, p«± = p= (= p) for both

merchants.

PRDDF: Given p&1 = p= for both merchants, the unique NE of the second

stage is p^, ± = p= yielding Err = 0, as anticipated. To see this

notice that undercutting p= will yield losses since pc was the

cost, and pricing over pc will also yield losses because p is

the sale revenue maximizing price. Then bidding and asking pc
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is a SPNE. Next note that p" = pc , and hence, no other bids could

be SPNE strategies. (Any bid yielding positive expected pro-fits

will be defeated by a slightly higher bid until all expected

profits are driven out.) Thus, bidding and asking p= is the

unique SPNE outcome. Q.E.D.

Figure 2 depicts the case o-f Proposition 2. The Ett =

locus is non—positively sloped at (p«=,p«=), which graphically

shows why p = p= .

It should be noted that p £ pe does not imply that the

monopoly price o-f section 3 is less than or equal to p= .

Indeed, as noted in section 3, the opposite is generally true,

regardless o-f the relation o-f p and p= . This -fact is also

shown in Figure 2.

Under the assumption that pD(p) is strictly concave, we

can restate Propositions 1 and 2 in terms of the elasticity of

demand evaluated at pc . Let 71= denote this elasticity

(expressed as a non-negative number). Then, p £ p,= iff n= =^

1. In other words, a SPNE exists only for markets with

sufficiently high elasticity of demand at the Walrasian price.

Otherwise, a SPNE does not exist, and the analysis of the

discrete version on a partitioned price space with finer and

finer partitions suggests that either consumers will almost

surely face a sequence of monopolists, or. perhaps

intermediation by merchants will simply not occur.
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Propositions 1 and 2 hold -for any number of Bertrand

merchants greater than one. The proofs mimic those given

above; details are in the Appendix.

Consider an alternative first-stage allocation scheme that

does not ensure equal stocks for both merchants in the event of

equal bids. In particular, suppose one of the merchants is

chosen at random, say with probability oc t (0,1). This winner

gets all the stock and is a monopolist in the second stage.

The reader can verify that Lemma 1 continues to hold, so the

only possible SPNE strategy is to bid p. However, now the second

stage outcome in the event both merchants bid p is not a

Bertrand game, but instead is a monopoly with revenue MCS(p)3.

Expected profits are Err = «/u (p) = 0, as anticipated by the

merchants. Therefore, p is a SPNE outcome even when pc < p.

Since p = p= when p«= ^ p, the unique SPNE outcome has bids of p"

followed by the monopolist ask price (constrained by stocks

S(p)>. This is reminiscent of Demsetz's (1968) conjecture that

competition for a monopoly license will drive rents to zero.

The specifications of section 2 rule out the cases of

vertical and horizontal supply. The case of vertical supply

goes through provided that D(0) exceeds the fixed supply, which

ensures that p= > 0. This condition avoids the discontinuity

in supply at p to = 0. When this condition is not fulfilled, we

essentially have a horizontal supply at zero marginal costs.
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The case o-f horizontal supply defines a distinctly di-f-ferent

game, since the bidding subgame no longer has the winner—take-

all characteristic. In particular, we get the Kreps and

Scheinkman "capacity choice" game in which there is no

competition for inputs and the outcome is Cournot. Thus,

unrestricted availability of inputs at a constant marginal cost

is a singular case.

5. DUDPDLIST MERCHANTS WITH FORWARD CONTRACTS.

Reversing the stages of the previous game results in a

model of merchants who first sell forward contracts to

consumers and then obtain supplies to fill these contracts.

Bertrand price competition is assumed in both stages. In

addition, the penalty for default is assumed to be sufficiently

severe to prevent any default in equilibrium.*

Obviously, the monopolist solution to this forward

contract model is exactly the same as described in section 3

(with the order reversed). The duopolist solution, however, is

different from section 4.

=An intermediate result could probably be obtained in a model
in which each merchant had exclusive access to some supplies
while both could buy also in a common market.

*A penalty that gives a defaulting merchant a non—positive
payoff will suffice to deter default. This assumption also
rules out threats off the equilibrium path involving default.
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The -first stage is now the consumer market. Since there

are no capacity constraints in forward contracts, the lowest

ask price gets all the orders; there is no need for a rationing

mechanism when ask prices differ. In the event of equal ask

prices, assume (for now) that orders &re split equally. 7' Let

yt (p«uP«a) denote the realized orders in stage one.

D(p«i) , if p«i < p« :

yi'p.nP.z) = -< D(p„,i)/2 , if p«x = p« :

, if P«i > P«a .

As in section 4, let Xi< , ) denote the realized stock,

now from stage two. The no—default condition requires that

yi (paiiP«z) - x i <p«»i ,Pt. = ) . Conditional on the first stage

play, no—default puts the following requirement on second stage

bids of merchant 1 (and symmetrically for merchant 2):

(i) If p«i < p^a, then either (a) p toi ^ S~ x CD (p.»i ) U and

Pt.i > Pt,2, or (b) pb i = S-*C2D(p«i> 1 = pt,a-

(ii) If p.i = p«= , then p to i =s max {S-x CD (p«i > ,p to3 }

.

(iii) If p« ! > pa2 , then ptoi is unrestricted.

S_1 (x) is the bid price that will result in supply x in a

''Both proportional and uniform rationing would have equal
sharing in this case since both have equal potential capacity,
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monopoly setting. It exists and is unique whenever S' > as

assumed.

Condition (i) says that when a merchant wins the -first

stage subgame, then he must bid sufficiently high to secure the

necessary supplies to fill his orders. Condition (ii) says

that when both merchants share the orders, each must bid

sufficiently high to fill his orders. Condition (iii) is

superfluous, since if a merchant loses the first stage subgame,

he would not want any supplies. Subgame perfection requires

that ptoi < Pu=. For the same reason, (i) <b) is also

=uperf 1 uous

.

Define strategy <r± as follows: (1) p*± = pc ; and (2) p to i.

= S-*ED<p«»)3 if pm± £ p.j, and p tol e CB^" 1 CD (p.j ) 1 )

otherwise. To illucidate (2), note that when pmi < p«3 merchant

1 gets all the orders and bids S-1 CD(p«i)D; then merchant 2

can bid anything from up to but not including S— 1 CD(pm i)D

all of which give him no supplies. This leeway in the losing

bid implies a multiplicity of equilibrium strategies; but this

is the only non—uniqueness. The Malrasian outcome is defined

as p^± = Pc= = Ptn for all i.

Proposition 5 . The family of symmetric strategies {fi,f2}

coincides with the set of SPNE strategies, all of which

yield the Walrasian outcome.
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PROOF: (1) <r constitutes a NE. The payoffs are Err *= 0. If

p— ,. > p= , merchant 1 obtains no orders and under bids, yielding

a zero payo-ff , which is no better. If p-x < p= , then merchant

1 gets all the orders, and must bid at least S_x CD(p^i)3 which

is greater than pc ; hence, Ejr < 0. (2) <? is subgame perfect

because the specified p tot are NE of the second stage subgame.

If p—1 < p^a, then merchant 1 is the winner and he must bid at

least B-x CD(p«i)3. If p«± = p.2| then they share the orders

and must bid p to i = p to=e i S-1 CD (p«.i ) 3 ; while there are many

possible subgame NE in this case, only the minimum bid is

compatible with the equilibrium path. Finally, if p«i > p^a,

then merchant 1 loses and p toi < p to3 is optimal. (3) The

uniqueness proof is deferred to the Appendix. D.E.D.

Thus, we see that the Bertrand merchant game with forward

contracts yields the Walrasian price as the unique SPNE outcome

regardless of the relation of p= and the sales revenue

maximizing price p (or the elasticity of demand ne )

-

Proposition 3 extends to games with any number of

merchants greater than one. The proof mimics that given here.

Hence, "two" is sufficient for perfect competition .

B It should go without saying that while two is sufficient for
perfect competition is this abstract model, we are certainly
not suggesting that two is sufficient in reality. Numerous
"realistic" modifications (e.g. differentiation among the
merchants) would affect the results.
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This result is also robust to the allocation scheme in the

event o-f equal prices as long as both stages are coordinated;

i.e. in the event of equal ask prices if merchant 1 gets a

•fraction <x of the orders, then in the event of equal bids he

must get a of the supplies. Coordination is needed to avoid

defaults induced by the allocation scheme.

The extension of these results to the cases of vertical

and horizontal supply are also different from section 4. When

supply is vertical at S < D(0), the SPNE has p« t = p.! for both

players, but now we have a continuum of SPNE associated with

the multiplicity of second stage NE with both merchants bidding

a common price between and pc Essentially we have an

indeterminancy in who gets the surplus - the merchants or the

suppliers. When S ^ D(0) , we are really in the case of

horizontal supply, and Proposition 3 holds. Of course, if

supply is horizontal at p', then p= = p'.

6. DISCUSSION.

The notion of "market—making" merchants who buy from

suppliers and sell to consumers has been modeled as a two—stagt

Bertrand game. Remarkably, with one exceptiDn,' the SPNE prict
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are the Walrasian prices (when SPNE exists). This result holds

for any number of merchants greater than one. Thus, we have a

(albeit partial equilibrium) model in which the Walrasian price

arises not from the benevolent actions of a fictitious

auctioneer but from optimal price setting behavior of

merchants.

These results stand in sharp contrast to the results for

capacity—constrained Bertrand competition even with capacity

choice. The crucial difference is that in this paper there is

"winner—take-all" competition for the inputs, whereas in the

other papers either the inputs are taken as fixed or each

player has an independent source for capacity production CKreps

and Scheinkman (19B3); Vives (1983)3. The lesson is that it is

not safe to ignor the input side or simply assume unrestricted

availability of inputs at a constant marginal cost. Indeed,

the difference between the Cournot outcome (under the latter

assumption) and the zero—profit outcome indicates an incentive

for vertical integration.

It is surprising that without forward contracts, a SPNE

does not exist when n= < 1 and bidding ties are resolved by

equal allocation. In contrast, when there is forward

"'The lone exception is the game without forward contracts when
71= < 1 and bidding ties are resolved randomly, in which case
the SPNE outcome has non-Wal rasian prices. An alternative
characterization of the SPNE (when it exists) for the model
without forward contracts and any 71= is "zero merchant
profits".
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contracting, a unique SPNE always exists and it is Walrasian.

Furthermore, when SPNE does exist without -forward contracts

(i.e. when bidding ties Are resolved randomly), the consumer

-faces a monopolist. These results suggest an empirical

prediction. Specifically, we might find a greater prevalence

of -forward contracting when n«- < 1. Of course, there are many

other factors that might enter such as the durability of the

commodity and repetitions of the game.

While the paper focused on one—shot play of the two—stage

game, since the SPNE outcomes are unique, the same strategies

will constitute the unique SPNE of every finitely repeated

version of the game, and the outcome will be Walrasian in every

period (with the one exception noted) .
1<B A crucial assumption

in this extension to repeated play is that inventories not

accumulate from one period to the next. The effect of

inventory accumulation is the proper subject of future

research.

a,B0f course, the Folk theorems tBenoit and Krishna (19B5);
Fudenberg and Maskin (19S3)D tell us that collusive outcomes
can be sustained as perfect NE of infinitely repeated games.
However, I do not believe that we have sufficient understanding
of this discontinutiy at infinity to warrant putting much
credibility on those results for practical application.
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APPENDIX

Lemma A . Let x ± = x for all i, and let ER(x) denote ERi.(x,x).

For the Bertrand game in ask prices under uniform

rationing: ER(x) ^ M(2x)/2.

PROOF: Let it = D(p). Symmetry allows us to drop the subscript

i. (a) For x ^ xV2, p« = D_1 (2x) is the unique pure-

strategy NE. This -follows from Kreps and Scheinkman, Lemmas 2

and 3, since & is less than the Cournot quantity. Noting that

M(2x) = 2xp_ for x ^ £/2, we have that ER(x) = M(2x)/2. (b)

For x > fc/2, again from KS, Proposition 1, ER(x) =

max -tpCD (p) —x ]} , which defines the highest price, p(x), in the

support of the mixed-strategy. The first-order condition for

the maximum is that LD(p) — x + pD'(p)3 = 0. Differen

tiating ER(x) and using the F.O.C. gives ER'(x) = - p(x) < 0.

Hence, ER(x) < ER<£/2) = p*/2 = li(2x)/2 for x > £/2. D.E.D.

Extending Propositions 1 and 2 to N > 2 .

The key to Lemma 1 was Lemma A above. One can show

analogously that for any N ^ 2, ER(x) 4 M(Nx)/N. Then ER(x) -

xS-MNx) £ :M(Nx) - NxB" 1 (Nx) 3/N, so the overbidding argument

goes through. The rest is straightforward.
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Proof of Uniqueness Part o-f Proposition 3 .

(1) First we show there can be no other pure—strategy

SPNE. Suppose contrariwise that (p«i,p«=) is part of a pure-

strategy SPNE, and w.l.o.g. that p« t fc p-as- If p«3 < p«=, then

Err= < 0, which is clearly not optimal; hence, p*»a =s p= . If pm=

> pc, then Etti = if p«t > p«=, and EfTi = Cp«= -

g
-1 (p-=) ]D(pm3 ) /2 > if p«i = p«2 . But if merchant 1

undercuts p*»a ever so slightly, he can nearly double Etti;

hence, p«t ^ P~a > P= cannot be a NE. Since it has already

been shown that pc is the best response to p«= = pc , uniqueness

among pure—strategies has been established.

(2) Let Fi be a mixed-strategy probability distribution.

The preceeding argument can be used to show that there can be

no matched atoms at prices other than p,= . Then

EtnCF^Fa) = ; tCp.x- g- 1 (p.x) 3D(p.x) :i-F= <p«!) :>dF x .

Note that atoms at p= yield zero expected profits and so do not

affect the above equation. The term in braces O is negative

for pm± < pc , so not surprisingly the lower bound of the

support of F± is at least p= . Moreover, for Fi to be a best

response to F3 , the term in £> must be constant on supp Ft,

implying that

Fa(p.i) = l - TTi/KXp-i - g- 1 (p-i) :D<p«t)> ,

where m is the constant expected profits. Notice that F3 < 1
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for all permissible pm ± , provided tt x > 0; hence, there must be

an atom at the upper bound of supp Fa , contradicting the

preceeding argument. There-fore, m = 0, which implies that F3

is degenerate with all mass at p= .

(3) Having established that the <r± family of strategies

coincides with the set of SPNE strategies, we want to show that

they all yield the Walrasian outcome. On the equilibrium path,

p« ± = p= , and both must bid at least S-1 CD(p= )3 = pc Clearly,

if ptat. > Pc=, then profits are negative, so on the equilibrium

path Ptoi = Pc= for all i. Q.E.D.
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