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1 INTRODUCTION

This paper studies optimization problems where the objective function can be written in the form

V(8) = \jt{s)dF{s\6), where ;ris a payoff function, F is a probability distribution, and 6 and s are

real vectors. For example, the payoff function n might represent an agent's utility or a firm's profits,

the vector s might represent features of the current state of the world, and the elements of 6 might

represent an agent's investments, effort decisions, other agent's choices, or the nature of the

exogenous uncertainty in the agent's environment.

The economic problem under consideration often determines some properties of the payoff

function; for example, a utility function might be assumed to be nondecreasing and concave, while a

multivariate profit function might have sign restrictions on cross-partial derivatives. These

assumptions then determine a set IT of admissible payoff functions. We might then wish to answer

questions such as: Is a set of investments 6 is worthwhile? Are there decreasing returns to those

investments? Does one investment increase the returns to another investment? To answer those

questions, we need to know whether V(Q) satisfies the appropriate properties, i.e., nondecreasing,

concave, or supermodular. 1

The goal of this paper is to develop methods such that, given a particular property P (such as

nondecreasing), a set of admissible payoff functions II, and a parameterized probability distribution F,

we can determine whether the following statement is true:

J
7i(s)dF(s;6) satisfies property P in 6 for all n in IL (1.1)

That is, given P and II, we wish to describe the set of probability distributions which satisfy (1.1).

This paper restricts attention to the case where the properties P and sets II are "closed convex

cones." We define a property P to be a "Closed Convex Cone" (CCC) property if the set of functions

which satisfy P is closed (under an appropriate topology), positive combinations of functions in the set

are also in the set, and constant functions are in the set. Important examples ofCCC properties include

nondecreasing, concave, supermodular, any property which is defined by placing a sign restriction on

a partial derivative, and combinations of these properties. Thus, if the payoff function represents a

consumer's utility, II could be the set of univariate, nondecreasing, concave payoff functions; if the

1 Intuitively, a function is supermodular if. given any two arguments of the function, increasing one increases the returns

to increasing the other. When the function is differentiable, this amounts to positive cross-partial derivatives between
every pair of arguments. Supermodularity is important in the context of comparative statics (see Topkis (1978),
Milgrom and Roberts (1990, 1994), Milgrom and Shannon (1994)).



payoff function represents a firm's profits as a function of two complementary quality innovations, n

could be the set of bivariate, nondecreasing, supermodular payoff functions.

For sets II and for properties P which are CCC, this paper develops a characterization of which

probability distributions satisfy (1.1). Checking (1.1) directly is difficult because, in general, If might

be a very large set. Thus we ask, When is it possible to find a smaller set of payoff functions, denoted

T, so that for any probability distribution F, statement (1.2) below will be true if and only if (1.1) is

true?

J
7t(s)dF(s;8) satisfies property P in 6 for all % in T ( 1 .2)

We can think of T as a "test set" for II: ideally, T is a set of payoff functions which is smaller and

easier to check than II, but it can be used to test whether
J
7C(s)dF(s;0) satisfies property P in 6, given

only the information that K is in the larger set II.

Using these ideas, we can restate the goal of the paper: we want a theory which helps us determine

the best "test set" for a given II. We proceed in two steps. First, we examine the case where the

property P is "nondecreasing"; second, we study other CCC properties. The first case has been the

focus of the literature on stochastic dominance, where different authors have studied different sets II.2

This paper unifies and extends the existing literature on stochastic dominance, providing an exact

characterization of the mathematical structure underlying all stochastic dominance theorems. We
further provide an algorithm for generating new stochastic dominance theorems which relaxes the ad

hoc differentiability and continuity assumptions which are common in this literature.3 In the second

part of the paper we show that the methods from stochastic dominance can be applied to characterize

when V{6) satisfies other properties P, including concavity and supermodularity.

We now provide an overview of our results. In the first part of this paper, we show that for the

property nondecreasing, if II is a closed convex cone and contains constant functions, then the best T

is the set of "extreme points" of II. Just as a basis generates a linear space via linear combinations, so

a set of extreme points generates a closed convex cone via positive linear combinations and limits.

Thus, we show that if we know only that a payoff function k lies in the closed convex cone II, and we

want to know if V(6) is nondecreasing, it is equivalent to check that V(0) is nondecreasing on a smaller

2In particular, the univariate stochastic dominance problem has been studied by Rothschild and Stiglitz (1970, 1971) and
Hadar and Russell (1971); notable contributions to the multivariate problem include Levy and Paroush (1974), Atkinson
and Bourguignon (1982), and Meyer (1990). Shaked and Shanthikumar (1994) provide a reference book on the subject of
stochastic orders and their applications in economics, biology, and statistics.
3Brumelle and Vickson (1975) take a first step towards relaxing these assumptions and identifying the mathematical
structure behind stochastic dominance; in contrast to their work, which provides only sufficient conditions for a
stochastic dominance relationship, this paper provides an exact characterization of all stochastic dominance theorems.



set of payoff functions, the extreme points of n. It will often be much easier to verify monotonicity of

V(6) for the set of extreme points of n than for n itself. In this paper, the procedure of using the

extreme points of n as a test set for II will be referred to as the "closed convex cone" method of

proving stochastic dominance theorems.

Examples from the existing stochastic dominance literature, which are special cases of this result,

include First Order Stochastic Dominance (FOSD), where n is the set of univariate, nondecreasing

payoff functions, and Second Order Stochastic Dominance (SOSD), where TI is the set of univariate,

concave payoff functions. In the case of FOSD, the set of extreme points is the set of one-step

functions which are zero up to some constant, and one thereafter. These are pictured in Figure 1 . In

the case of SOSD, the set of extreme points is the set of "angle," or "min" functions, pictured in Figure

2, where each function takes the minimum of its argument and some constant.

The closed convex cone method for stochastic dominance has been recognized and explored in the

context of particular sets of payoff functions (Topkis, 1968; Brumelle and Vickson, 1974; Gollier and

Kimball, 1995).4 However, this paper goes beyond the existing literature in two respects. First, by

developing appropriate abstract definitions to describe stochastic dominance theorems, we are able to

make general statements about the entire class of stochastic dominance theorems, including those

which have not yet been considered in the economics literature. Second and more important is the fact

that we prove a new result about this class of theorems: we prove formally that the "closed convex

cone" approach to stochastic dominance is exactly the right one. By this we mean that (1.1) and (1.2)

return the same answer for every probability distribution F if and only if the closed convex cone of T

(union the constant functions, if these are not in T) is equal to IT; no other T's will always make (1.1)

and (1.2) equivalent. In this case, clearly the smallest set which generates II is the best set to check.

The second part of this paper shows that the "closed convex cone" method can also be applied to

characterize other properties of V(6). We ask two questions: First, for what properties P is the closed

convex cone approach valid? And second, for what properties P is the closed convex cone approach

exactly the right one, as in the case of stochastic dominance? We first show that if P is a CCC
property, then the closed convex cone approach can always be used to characterize when V(6) satisfies

P. We then find a subset of CCC properties, which we call "Linear Difference Properties," for which

we can show that the closed convex cone approach is exactly the right one for checking whether V(0)

satisfies P. Examples of Linear Difference Properties include monotonicity, supermodularity,

concavity, and properties which place sign restrictions on partial derivatives. Combinations of these

properties, however, are not in general Linear Difference Properties, although such combinations are

4Independently, Gollier and Kimball (1995) argue for what they call the "basis approach" to stochastic dominance.
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CCC properties. Table I summarizes properties which are CCC properties and Linear Difference

Properties.

TABLE

I

LINEAR DIFFERENCE PROPERTIES AND CLOSED CONVEX CONE PROPERTIES

Property Closed Convex Cone Linear Difference Property

Nondecreasing Yes Yes

Supermodular Yes Yes

Concave/Convex (Multivariate) Yes Yes

Sign Restriction on a Partial Yes Yes

Derivative

Constant Yes No

Nondecreasing and Concave Yes No

Arbitrary Combinations of Yes No

CCC Properties

Arbitrary Combinations of Yes No

LDP Properties

For many sets of payoff functions, n, which are commonly studied in economics, the existing

literature on stochastic dominance has implicitly identified the extreme points of those sets. In such

cases, the problem of characterizing a Linear Difference Property (such as supermodularity) becomes

quite straightforward: simply look to the the existing literature to find the appropriate test set, T, for the

set of payoff functions II under consideration. Then, using the results of this paper, we know that

(1.2) characterizes the set of parameterized probability distributions for which the stochastic objective

function will be supermodular for all payoff functions in II.

We illustrate this technique by showing how the closed convex cone approach can be used to

characterize the property supermodularity for several important classes of payoff functions. These

results can in turn provide sufficient (and sometimes necessary) conditions for comparative statics

conclusions. In particular, we examine applications in principal-agent theory, welfare economics, and

the study of coordination problems in firms.



This paper proceeds as follows. In Section 2, we introduce a motivating example, the problem of

a risk-averse agent's choice of effort. In this problem, we characterize the properties nondecreasing,

concave, and supermodular for the agent's expected utility function. Our general analysis of stochastic

dominance takes place in Section 3. We provide an exact characterization of stochastic dominance

theorems, highlighting the important role played by linearity of the integral. We further extend our

result to incorporate "conditional stochastic dominance." Section 4 develops characterizations of other

properties of
f
7t(s)dF(s;d) and provides applications of the property supermodularity. In Section 5,

we analyze conditions under which functions of the form
J
K(x,s)dF(s;6) are supermodular or

concave in (x,d), showing how to apply stochastic monotonicity results to this problem as well.

Section 6 concludes.

2 MOTIVATING EXAMPLE:

A RISK-AVERSE AGENT'S CHOICE OF EFFORT

In this section, we present a motivating example, where we analyze how a risk-averse agent's choice

of effort affects her expected payoffs, and how that choice of effort interacts with exogenous

parameters which describe the probability distribution. Formally, we characterize the properties

nondecreasing, concave, and supermodular for the agent's expected utility function. These results are

specific examples — examples where the payoff function is nondecreasing and concave — of a

stochastic dominance theorem, a "stochastic concavity theorem," and a "stochastic supermodularity

theorem." These examples illustrate the parallel structure underlying the three classes of theorems.

Consider a risk-averse agent whose utility {it) depends on the output of a stochastic production

technology, where the output is denoted s. Suppose that the agent's effort (c) affects the probability

distribution of s. Further, consider a parameter twhich represents exogenous changes in the stochastic

production technology. For example, a change in t might represent a worker moving from one job to

another. Then, we can write the agent's problem as follows:

max
f
k(s) • dF(s;e,t)-c(e)

First observe that it is not trivial to verify that V(e,t) = \it(s) dF(s;e,t) is nondecreasing in effort:

an increase in effort which is productive on average might not increase expected utility if the effort also

increases the riskiness of the distribution. Second, note that if V(e,t) - c(e) is concave in effort, then

the first order conditions (FOCs) characterize the optimum, a property which is useful in the analysis

some economic problems, such as principal agent problems. Further, if V(e,i) fails to be concave in

e, then there exists some linear cost function c(e) = ae such that the FOCs fail to characterize the

optimum. Finally, observe that if V{e,i) is supermodular, then the optimal choice of effort, e*(t), is



nondecreasing in t. If V(e,t) fails to be supermodular, then even if V is concave, there exists some

linear cost function c(e) = ae such that e*{i) fails to be nondecreasing in t (this follows from

Milgrom and Shannon (1994); see Theorem A.l in the Appendix). Thus, the requirement that V(e,t)

satisfies the property supermodular (or concave, respectively) is sufficient for the desired economic

conclusion, and further it cannot be relaxed as long as we require that the conclusion holds for all

linear cost functions.

Let us first identify conditions under which V(e,i) is nondecreasing in e. The following well-

known result is adapted from the Rothschild and Stiglitz (1970, 1971) work on stochastic dominance

(where we suppress t in the notation):

Proposition 2.1 The following two conditions are equivalent for all probability distributions

F(-,e):

(i) For all K nondecreasing and concave, \lt(s) dF(s;e) is nondecreasing in e.

(ii) The following are satisfied:

(a) \sdF(s;e) is nondecreasing in e.

a

(b) For all a, -\F(s;e) is nondecreasing in e.

Intuitively, for a risk-averse agent who likes income, effort will increase expected utility if and only if

effort increases the mean income (condition (ii)(a)) and reduces the "risk function" (condition (ii)(b)).

This result is often used in the finance literature; it has been called Second Order Monotonic Stochastic

Dominance (SOMSD).

In this paper, we will work with a restatement of Proposition 2.1, which emphasizes that

conditions (i) and (ii) are actually symmetric conditions. The following proposition is equivalent to

Proposition 2.1 (where A1 be the space of probability distributions defined on SR, and Si indicates the

extended real line, that is, SR u {-00,
00}):

Proposition 2.1' The following two conditions are equivalentfor all F(-;e)eN:

(i) For all n in the set Yl
SOM = [ti\k : SR -»% nondecreasing, concave},

J 7t(s) dF(s;e) is

nondecreasing in e.

(ii) For all yin the set TSOM = {y\y(s) = min(a,s), a e 9t}, jy(s) dF(s\e) is nondecreasing

in e.



Conditions (i) and (ii) of this Proposition simply restate conditions (i) and (ii) of Proposition 2.1,

except that we have replaced -JF(s;e) with jmin(a,s)dF(s;e) in condition (ii). It is

straightforward to verify (using integration by parts) that the former term is nondecreasing if and only

if the latter term is. This condition is not usually associated with SOMSD (see Brumelle and Vickson

(1975) for an exception). This way of writing the SOMSD theorem illustrates the mathematical

structure underlying the stochastic dominance theorem. As written in Proposition 2. 1', the result says

that instead of checking that j n(s) dF(s;e) is nondecreasing in X
for all payoff functions in the

relatively large set, II
50M

, it is equivalent to check that \y(s)dF(s;e) is nondecreasing in e for all

payoff functions in the smaller set, TS0M .

The two sets of payoff functions are pictured in Figure 2. The relationship between the two sets of

payoff functions can be described as follows: T1
S0M

is equal to the closed convex cone of the set which

is the union of TS0M and the functions y{s) = 1 and y(s) = -1. That is, by taking positive combinations

and limits of sequences (or nets) of elements of the latter set, we can generate any function in TI
SOM

,

which is itself a closed convex cone. In Section 3, we will show that this "closed convex cone"

relationship between Tl
SOM and rSOM holds for all stochastic dominance theorems.

Now, let us ask a different, but related, question: When is
J
x(s) dF(s;e) concave in effort? This

problem was addressed by Jewitt (1988), who analyzes conditions under which the First Order

Approach (FOA) to analyzing principal-agent problems is valid. The FOA requires that if the agent's

FOCs are satisfied, then the agent's choice of effort must be optimal. Extending Jewitt' s analysis, we

can show that the sufficient conditions he derives are in fact necessary.5 The following result is

analogous to Proposition 2.1:

Proposition 2.2 The following two conditions are equivalent for all F(;e)e A1

:

(i) For all % in the set Yl
S0M

, \k(s) • dF(s;e) is concave in e.

(ii) For all yin the set TSOM
',

\ y(s) dF(s;e) is concave in e.

Proof: This will be established as a simple corollary of Theorem 4. 1 below, together with

Proposition 2. 1

.

Q.E.D.

5Jewitt first derives conditions under which the agent's utility function is increasing and concave in output, given the
optimal contract; he then addresses the question of concavity of the expected utility function in effort. It is only the latter

question which we study here.



Proposition 2.2 says that expected payoffs are concave in e for all payoff functions in USOM
if and

only if expected payoffs are concave in e for all payoff functions in TSOM
. Again, this theorem is

useful because condition (ii) is easier to check that condition (i): the set rSOM
is much smaller.

Condition (ii) can be interpreted as requiring that there are decreasing returns to e in terms of

increasing the mean and decreasing the "risk function." Note that the pair of sets of payoff functions,

(nSOM
, TSOM

), is the same in both propositions.

Now we turn to ask a final question: When is the optimal choice of effort monotone nondecreasing

in t, which parameterizes the stochastic production technology? More precisely, how can t affect the

probability distribution over output in such a way that monotonicity of the optimal effort in t is

ensured, without any additional information about the cost of effort function or the agent's

preferences? This question has not been answered in the existing literature; thus, the following

proposition provides a new insight into the comparative statics problem. Note that this proposition is

true irrespective of whether expected utility is monotone in effort.

Proposition 2.3 The following three conditions are equivalent for all F(-;e,f)e A1
:

(MCS) For all costfunctions c and all K in Il
SOM

, e'(t) = argmax\K(s)dF(s;e,t)-c(t) is
e Js

monotone nondecreasing in t.
6

(i) For all n e Tl
S0M

, \K{s)dF{s;e,t) is supermodular in {e,t\

(ii) For all ye TS0M
, jy(s) dF(s;e,t) is supermodular in (e,t).

Proof: The equivalence of parts (MCS) and (i) follows directly from Milgrom and Shannon

(1994), as stated in Theorem A. 1 in the Appendix. The equivalence of (i) and (ii) will be

established as a corollary of Theorem 4.1 below together with Proposition 2.1.

Q.E.D.

The formal definition of supermodularity (and the comparative statics theorem which relies upon it)

can be found in the Appendix. Intuitively, V(e,t) is supermodular if t increases the returns to effort.

Proposition 2.3 provides necessary and sufficient conditions for monotone comparative statics in this

problem. If (ii) is violated, then we can construct payoff functions and cost functions such that the

choice of effort is not monotonic in t. Thus, we have identified the exact conditions which ensure

monotone comparative statics. Condition (ii) requires that e and t are complementary in terms of

increasing the mean of the probability distribution and in terms of reducing the risk. The intuition is

straightforward: since a risk-averse, income-loving agent likes high expected returns and low risk (as

"In general, the optimal e may be a set. Then, this theorem requires that the set be nondecreasing in the Strong Set

Order, as defined in the Appendix.



shown in SOMSD), variables which are complementary in increasing the mean and decreasing the risk

are complementary in increasing expected utility of such an agent. Note that if either one of e and /

does not affect the mean or the riskiness of the agent's income, the corresponding complementarity

conditions are satisfied trivially.

Notice that Propositions 2.2 and 2.3 have a structure which is very similar to the existing

stochastic dominance result, as stated in Proposition 2.1. In Section 3, we will build a framework for

analyzing Proposition 2.1 and other stochastic dominance theorems. In Section 4, we will formalize

the relationship between Propositions 2.1 through 2.3.

3 MONOTONICITY OF STOCHASTIC OBJECTIVE FUNCTIONS

The goal of this section is to provide a unified framework for analyzing stochastic dominance

theorems. In Section 3.1, we introduce a framework which incorporates the existing stochastic

dominance literature, arguing that each stochastic dominance theorem describes a relationship between

two sets of payoff functions. In Section 3.2, we prove a result which characterizes a mathematical

relationship between two sets of payoff functions which is equivalent to the relationship determined by

the stochastic dominance theorem. Section 3.3 extends the result to the case of conditional stochastic

dominance.

3.1 A Unified Framework for Stochastic Dominance

In this section, we introduce the framework which we will use to discuss stochastic dominance

theorems as an abstract class of theorems, and to draw precise parallels between stochastic dominance

theorems and other types of theorems.

Let us first consider another well-known example of a stochastic dominance theorem, First Order

Stochastic Dominance (FOSD). This theorem can be stated as follows (where IA (s) is the indicator

function for the set A):

Proposition 3.1 The following two conditions are equivalent for all F(;0)e A1

:

(i) For all n e nTO s {k\k : 9i -»% nondecreasing},
J
K(s)dF(s;6) is nondecreasing in ft

(ii) For all y e TFO m {y\y(s) = IM (s), a e Sfi}, jy(s)dF(s;6) is nondecreasing in ft

This theorem has the same structure as the SOMSD theorem, Proposition 2.
1

'. The sets of payoff

functions are illustrated in Figure 1. This theorem says that instead of checking that expected payoffs

are nondecreasing in 8 for all nondecreasing payoff functions, IF , it is equivalent to check that

expected payoffs are nondecreasing in 6 for all payoff functions in the set TFO
, the set of indicator
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functions of upper intervals. The latter set of payoff functions is much smaller, and so condition (ii) is

easier to check that condition (i); condition (ii) can be reduced to a restriction which requires that

1 - F(a;6), the complement of the cumulative distribution function, is nondecreasing in 8 for a e 9?.

The latter requirement is the more standard way of stating FOSD.

There are many other examples of stochastic dominance theorems, some with multiple random

variables; we will discuss other examples below in Section 4.5. In general, stochastic dominance

theorems all have a parallel structure, as illustrated in Propositions 2.1' and 3.1. However, different

stochastic dominance theorems are characterized by different (11,0 pairs. The SOMSD theorem states

that the pair (USOM
, TSOM ) satisfies a particular relationship; the FOSD theorem states that the pair

(IT™, rF0
) satisfies the same relationship. To make this relationship precise, we introduce a formal

definition of the statement "A pair of sets of payoff functions, (n,D, satisfies a stochastic dominance

theorem." If that statement is true, then we will say that (11,0 is a stochastic dominance pair. We

will use the abstract definition to make statements about the class of stochastic dominance theorems,

and how that class of theorems relates to other classes of theorems. We allow for multidimensional

payoff functions and probability distributions, using the following notation: the set of probability

distributions on SR" is denoted A", with typical element F:SRn —»[0,1]. Further, for a given

parameter space 0, we will use the notation A"e to represent the set of parameterized probability

distributions F : 9?" x -» [0,1] such that such that F(;0) e A" for all ds 0.

Definition 3.1 Consider a pair of sets ofpayofffunctions (TI,r), with typical elements

K : 9T —> SR and y : 9?" —> SR. The pair (II,T) is a stochastic dominance pair if conditions (i)

and (ii) are equivalentfor all parameter spaces with a partial order and all F € An

e :

(i) For all ttgU,
j
n(s)dF(s;6) is nondecreasing in 6.

(ii) For all y eT,
J
y(s)dF(s;6) is nondecreasing in 6.

Further, we define the set I.SDT to be the set of all (11,0 pairs which are stochastic dominance pairs, as

follows:

25Dr = {(II,r)|(n,r) is a stochastic dominance pair}

Thus, when a given (11,0 pair is a stochastic dominance pair, we write (II,T) e ZSDr .

Definition 3.1 clarifies the structure of stochastic dominance theorems. Stochastic dominance

theorems identify pairs of sets of payoff functions which have the following property: given a

parameterized probability distribution F, checking that all of the functions in the set

lAn(s)dF(s\6)\iz e II > are nondecreasing is equivalent to checking that all of the functions in the set

11



(fy(s)dF(.s;0)|y er| are nondecreasing. Stochastic dominance theorems are useful because, in

general, the set T is smaller than the set II.

We can think of this definition as a statement about the equality of two sets. First, let us define the

set of admissible parameter spaces for the property "nondecreasing" together with probability

distributions parameterized on those spaces as follows:

VND = {(F,0)|© has a partial order and F e An

e j

Now, we can rephrase the definition as follows: (11,0 is a stochastic dominance pair if

j(F,0) € V n

NM 7r(s)dF(s;d) is nondecreasing on V/r e Ili =

|(F,0) e V n

ND\JY(s)dF(s;0) is nondecreasing on Vy e Ij

Definition 3.1 differs from the existing literature (i.e., Brumelle and Vickson, 1975), in that the

existing literature generally compares the expected value of two probability distributions, say F and G,

viewing
J
7t(s)dF(s) and

J
7t(s)dG(s) as two different linear functionals mapping payoff functions to

Si. In contrast, by parameterizing the probability distribution and viewing
J
n(s)dF{s\6) as a bilinear

functional mapping payoff functions and (parameterized) probability distributions to the reals, we are

able to create an analogy between stochastic dominance theorems and stochastic supermodularity

theorems, an analogy which would not be obvious using the standard constructions. The utility of this

definition will become more clear when we formalize the relationship between stochastic dominance

and stochastic P theorems, for other properties P (such as supermodularity).

To provide specific examples of pairs of sets of payoff functions which satisfy stochastic

dominance theorems, we summarize three univariate stochastic dominance theorems in Table It. There

are potentially many other univariate stochastic dominance theorems (for example, theorems where the

set of payoff functions imposes restrictions on the third derivative of the payoff function); however,

we will simply report the three most familiar univariate stochastic dominance theorems here.

12



TABLED

COMPONENTS OF UNIVARIATE STOCHASTIC DOMINANCE THEOREMS"

Sets of Payoff Functions, II Sets of Payoff Functions, T

(i) U F0 = {n\n : SR -> % nondecreasing} rF°={r\y(s) = I
[a „ )

(s),aeX}

(ii) n5° s {n\n : SR ->% concave} rS0
={Y\Hs) = -s} i

u{y|y(.y) = min(a,s), aeSRJ

(iii)
Yl

SOM = \n
k : SR —» SR, nondecreasing, 1

concave

r«w _
|y|y(j) _ min(fl,s), a e 9?}

Each (II,r) pair in Table II is a (univariate) stochastic dominance pair.

Table II (iii) corresponds to a SOMSD theorem, as shown in Proposition 2.
1

', while Table II (i)

corresponds to a FOSD theorem, Proposition 3.1. Let us now illustrate the interpretation of Definition

3.1 and Table II with a third example: Second Order Stochastic Dominance (SOSD), shown in Table II

(ii). It is known that
J
K{s)dF{s;8) is nondecreasing in 6 for all univariate, concave payoff functions

if and only if \min(a,s)dF(s;d) is nondecreasing in 8 for all aeSi, and \sdF(s;6) does not

depend on 6. Observe that both y(s) = s and y(s) = -s are included in Tso ; this forces the mean of

the distribution to be both nonincreasing and nondecreasing, and hence constant in 6.

There are many other stochastic dominance theorems in addition to the univariate examples given

above. Levy and Paroush (1974) derive results for bivariate functions, while Meyer (1990) extends

these results and examines some multivariate stochastic dominance theorems as well. We will report

some of these results in Section 4.5, where the main objective is to apply these results to problems of

stochastic supermodularity.

3.2 Exact Conditions for a Stochastic Dominance Theorem

In this section, we study necessary and sufficient conditions for the pair (11,1") to be a stochastic

dominance pair. We want to specify the exact mathematical relationship which is equivalent to the

statement that (II,T) e Zsor . We will first discuss our result and its implications; then, in Sections

3.2.1 and 3.2.2, we will provide the mathematical arguments underlying the result.

The main result of this section is that (II, T) e I,SDT if and only if the following statement is true:

the closure (under an appropriate topology) of the convex cone of IIu {1,-1} is equal to the closure

13



(under that topology) of the convex cone of Tu {1,-1}, where {1,-1} denotes the set containing the

two constant functions, {n{s) = 1} u {it{s) = -1}. We formalize this using the following notation:

cc(nu {1,-1}) = cc(ru {1,-1}) (3.1)

In the context of specific sets of payoff functions n, the existing literature identifies similar, but

stronger sufficient conditions for the corresponding stochastic dominance theorems, using a more

restrictive notion of closure (i.e., a topology with more open sets) than the one which we will identify

below. For example, Brumelle and Vickson (1975) argue that (3.1) is sufficient for the {Yl,T) pairs

shown in Table II to be stochastic dominance pairs under the topology of monotone convergence. In

this paper, using the abstract definition we have developed for a "stochastic dominance pair," we are

able to formally prove that the sufficient conditions hypothesized by Brumelle and Vickson (1975) are

in fact sufficient for any stochastic dominance theorem, not just particular examples. Further, the

result that (3.1) is also necessary for (Tl,T) to be a stochastic dominance pair is a new contribution of

this paper.

We now argue that this result tells us when we cannot do better than the closed convex cone

method. First, observe that unless T is a subset of n, there is no guarantee that stochastic dominance

theorems provide conditions which are easier to check than
J
7C(s)dF(s;0) nondecreasing in 6 for all

jrell. For example, n might be a set which is not a closed convex cone. Its closed convex cone

might be much larger, and it might not be possible to find a subset, T, of that closed convex cone for

which is easier to check that expected payoffs are nondecreasing in 6. Thus, (3.1) indicates that

stochastic dominance theorems, as defined in Definition 3.1, are most likely to be useful when II is a

closed convex cone. For example, in the case of FOSD, we consider the set of payoff functions II
F0

.

It is easy to verify that positive scalar multiples and convex combinations of nondecreasing functions

are nondecreasing functions, as are limits of sequences or nets of nondecreasing functions. Finally,

constant functions are also in IT
F0

.

When IT contains the constant functions and is a closed convex cone, (3.1) becomes:

n = cc(ru{l,-l}) (3.2)

In principle, the most useful T is the smallest set whose closed convex cone is II. However, in

general, there will not be a unique smallest set. To see this, consider the case of FOSD, where the set

rFO contains indicator functions of upper intervals. By taking limits of sequences of convex

combinations of elements of TFO u {1,-1}, and appropriately scaling these functions, we can generate

any nondecreasing function. However, we can also define the set tFO = {y\y(s) = I
[a „,($), a e q\,

where Q represents the rationals, and note that nF0 = cc(fF0 u {1,-1}) . While fF0 c TFO
, in

14



practice the smaller set fF0
is not any easier to check. Thus, stochastic dominance theorems are

generally stated so that T is the smallest closed set whose closed convex cone is II; we will call such a

set the "extreme points" of II.

Finally, because (3.2) is necessary and sufficient for (H,T) to be a stochastic dominance pair when

n=cc(IIu{l,-l}), we know that we cannot do any better than letting T be the set of extreme points

of II: there is no smaller or easier-to-check closed set of payoff functions, f, such that (II, f) is a

stochastic dominance pair. This is what we mean when we say that we have proved that the closed

convex cone method is the "right" approach.

In the next two subsections, we prove that (3.1) characterizes stochastic dominance pairs.

Consider the problem of ordering two probability distributions, F 1 and F2
, where we say that a set of

payoff functions II orders F 1 higher Gower) than F2
if \7r(s)dF\s) > (<)\x(s)dF

2
(s) for all K in II;

if neither inequality holds for all n in II, then we say that the distributions are not ordered by II. In

Section 3.1.1, we first show that II orders two distributions exactly the same as the set

cc(IIu{l,-l}). We then show that two sets, II and T, order arbitrary pairs of probability

distributions in the same way if and only if (3.1) holds, that is, their closed convex cones are the

same. In Section 3.2.2, we use these results to prove the characterization of stochastic dominance

pairs according to (3.1).

3.2.1 The Main Mathematical Results

We begin by proving some general mathematical results about linear functional of the form

\Kdfi. Our results are variations on standard theorems from the theories of linear functional analysis,

topological vector spaces, and linear algebra; the main contribution of this section is to define the

appropriate function spaces and topology and restate the problem in such a way that we can adapt these

theorems to solve the stochastic dominance problem.

We will work with a class of objects known as finite signed measures on 9t", denoted W. Any

finite signed measure \i has a "Jordan decomposition" (see Royden (1968), pp. 235-236), so that

fi = /i
+ — it , where each component is a positive, finite measure. We will be especially interested in

finite signed measures which have the property that \d/i = 0, so that \d/i
+ = \dfi~ . Denote the set of

all non-zero finite signed measures which have this property by ^»; we are interested in this set because

elements of this set can always be written as \i = —[F1 - F2
], where it is a positive scalar, and F1 and

F2 are probability distributions; likewise, for any two probability distributions F1 and F2
, the

measure F1
- F2e £«.
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In this section, we will prove results which involve inequalities of the form \n d/i > 0, where

fi eg*. Since positive scalar multiples will not affect this inequality, and because the integral operator

is linear, we can without loss of generality interpret this inequality as jJt(s)dF
1

(s) > J7t(s)dF
2
(s) for

the appropriate pair of probability distributions. The former notation will be easier to work with in

terms of proving our main results, and further it will be useful in proving results in Section 4 about

stochastic P theorems for properties P other than "nondecreasing."

Now let us begin our formal analysis. Let P* be the set of bounded, measurable payoff functions

on 9?". Define the bilinear functional f5:P' x%" -»SR by /J(7T,/i) = jady.. Then f}{P",7X«) is a

separated duality: that is, for any &* (J?, there is a n eP* such that j3(7T,/i,) * Pix,^), and for

any it
x
* n

2 , there is a \i eW* such that fi{Kv ii) * /J(7T
2 ,/0-

7 Our choice of (P",3£") is somewhat

arbitrary: all of our results hold if we let A" be a subset of measurable payoff functions on 9?" and we

let Bn be any subset of Tff, so long as p\AnJBn
) is a separated duality. For consistency we will use the

pair {P*,WP) in our formal analysis.

We now construct our topology, where would like to find the coarsest topology (that is, the

topology with the fewest open sets) such that the set of all continuous linear functionals on P* (the

dual of P*) is exactly the set {/J(-,//)|/ie2£*}; this is the weak topology a{P',tKH) on P*. By

Bourbaki (1987, p. 11.43), this topology uses as a basis neighborhoods of the form

N(7z;£,(Hi,—,Hk )) = \ft max|/J(7T

-

7t,fl,)\ < £ k where there is a neighborhood corresponding to each

finite set (/^,...,^t ) <zW and each e > 0. We will return to clarify the relationship between this

topology and other topologies in the discussion following Theorem 3.4, below.

Let cc(A) denote the convex cone of a set A, and let A denote the closure of A (where the

topology is understood to be a^P*,?^) in the discussion below, unless noted). We now use the fact

that the functional P(7t,^i) = \ndii is linear and continuous in its first argument to prove the following

simple lemma. The proof of this lemma is elementary, but we state it here because all of the

mathematical results in this paper build upon it.

Lemma 3.2 Consider a set ofpayofffunctions II cP». Then the following two conditions are

equivalentfor all jl &g>:

(i) For all n e II, \nd\i> 0.

7The boundedness assumption guarantees that the integral of the payoff function exists. It is possible to place other
restrictions on the payoff functions and the space of finite signed measures so that the pair is a separated duality, in which
case the arguments below would be unchanged; for example, it is possible to restrict the payoff functions and the signed
measures using a "bounding function." For more discussions of separated dualities, see Bourbaki (1987, p. n.41).
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(ii) For all 7tecc(Uu {1,-1}), jnd/i>0.

Proof: First, we show (i) implies (ii). Fix a measure fieg'. Then the following implications

hold:

For all K ell, jndn>0

=> Forall ;rellu {1,-1}, J;rd/i>0

(Since
J

d[i = -j dji = 0).

=> Forall ff€cc(nu {l.-l}), J^d//>0

(Since [tt, rf/z > and
J
n2 dfi>0 implies

J
[a,^, + a

2
7T

2 ] d/i = a^TTi d\i + a
2 \n2 dfi>0

when a,,a2
>0).

=> For a// K ecc(IIu{l,-l}), J7rd// >

(Recall that for a continuous function/, /(A) c /(A). The implication then follows because

the half-space [x e 9^|jc > 0} is closed, and the linear functional P(;/l) is continuous for all /*.)

That (ii) implies (i) follows because IT c cc(II u {1,-1}). £?.£.£>.

Lemma 3.2 can be restated another way: the set of measures // e^» for which jndfi > for all 7T e II

is exactly the same as the set of measures [i e£* for which Jtt^ > for all it e cc(Il u {1,-1}).

Formally,

{/i€^-|J^d/x>0 V;renj = {//Gf* IJ^rd/t >0 V;recc(IIu{l,-l})}

As discussed above, because positive scalar multiples do not reverse the inequalities and because

the functional fi is linear in its second argument, the latter equality is equivalent to the following:

FKF^A^JTrdF^JKdF2 Vn e III = If^F2 eA^TtdF1 ZJndF2 V/r e cc(IIu {!,- 1})

That is, for any two probability distributions, II orders the two distributions exactly the same as

cc(IIu{l,-l}).
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Building from this lemma, we turn to prove the main mathematical theorem underlying the

characterization of stochastic dominance theorems, as well as the characterizations of other properties

in Section 4. This theorem makes use of the linearity of the functional /J(tt,jU) in n. The proof that

(ii) implies (i) relies on Lemma 3.2, while the proof that (i) implies (ii) makes use of a standard

separating hyperplane argument. Note that the choice of topology, which determines the meaning of

closure, is critical for the application of the separating hyperplane theorem.

Theorem 3.3 Consider a pair of sets ofpayofffunctions (II, I*), where II and T are subsets of

Pt
. Then the following two conditions are equivalent:

(i) lii€$'\J7tdn>0 V;rell} = j/ie£-|Jy^>0 Vyerj.

(ii) cc(U u {1,-1}) = cc(r u {1,-1}).

Proof: First consider (ii) implies (i). Suppose that cc(IIu {1,-1}) = cc(Tkj {1,-1}). Then

we have:

j// e 2'|Jffd!/i £ VTrellj

= |/X6f*|J^d//>0 V;recc(IIu{l,-l})j

(By Lemma 3.2.)

= In e-f^jydfi > V76cc(ru{l,-1})}

(By assumption.)

= {nep\jydfi>0 Vyer}

(By Lemma 3.2.)

Now we prove that (i) implies (ii). Define II = cc(U u {1,-1}) and F = cc(T u {1,-1}).

Suppose (without loss of generality) that there exists a y e f such that y e fl . We know that

the (XP'&P) topology is generated from a family of open, convex neighborhoods. Recall

from above that the set of continuous linear functionals on P» is exactly the set

{p(-,H)\fi sTX'}. Using these facts, a corollary to the Hahn-Banach theorem8 implies that

8See Dunford and Schwartz (1957, p. 421), Kothe (1969, p. 244) for discussions of the relevant theorems about the
separation of convex sets. See also McAfee and Reny (1992) for a related application of the Hahn-Banach theorem, where

the separating hyperplane also takes the form of an element of J*.
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since fl is closed and convex, there exists a constant c and a fi. e7JF (a separating

hyperplane)so that P(x,n.) > c for all it e ft, and /J(y,//,) < c.

Since {1,-1} € fl and is fl convex, € fl as well. Thus, /?(0, /x.) = > c. Now we will

argue we can take c = without loss of generality. Suppose not. Then there exists a n e fl

c
such that c < /?(#,//.) = c < 0. Choose any positive scalar p such that p > — > 1 (which

c

implies that pc<c). Since fl is a cone, pit € ft. But, f}(pk,iL.) = pc<c, contradicting the

hypothesis that /J(7T,/i.) > c for all K e ft. So, we let c = 0.

Because {1,-1} e ft, and fi{n,^u)> for all n e ft, we conclude that /3(1,//.) = -p\l,/i.) = 0,

and thus j J^, = 0. So, fi.eg', and we have shown that \7tdfi, > for all 7T g ft, but

J
yrfyU, < 0, which violates condition (i). Q.E.D.

The proof of Theorem 3.3 is analogous to the proof of the "bipolar theorem" from the theory of

topological vector spaces (see Schaefer, 1980, p. 126). This result is different because W, not £", is

the dual of the space P"; this accounts for the inclusion of the constant functions in condition (ii) of

Theorem 3.3.

As above, we can restate condition (i) of Theorem 3.3 as follows, without loss of generality:

If ,F2 e A"

I

\kdFl > \izdF2 Vtt e nj = If 1

,F2 e A"

I

jydF1 > jydF2 Vy e T

j

The theorem first states that if two sets of payoff functions have the same closed convex cone, then

they will order any pair of probability distributions the same way. Second, the theorem states that if

two sets of payoff functions order all pairs of probability distributions the same way, those two sets of

payoff functions must have the same closed convex cone.

3.1.2 Exact Characterization of Stochastic Dominance Theorems

Building from the mathematical results of the last subsection, we now state the main result of

Section 3. This theorem applies Theorem 3.3 to give necessary and sufficient conditions for a pair

(Il,r) to satisfy a stochastic dominance theorem.

Theorem 3.4 Consider a pair of sets ofpayofffunctions (II, T), where II and T are subsets of

P1
. Then the following two conditions are equivalent:

(i) The pair (II,T) is a stochastic dominance pair.

(ii) cc(nu {1,-1}) = cc(T u {1,-1}).
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Proof: To see that (ii) implies (i), fix a pair (11,0 and assume that (ii) holds. Consider an

arbitrary probability distribution F(;0) e A", and choose 8H > 6L . Define F1 = F(;6H ) and

F2 = F(;0L ). Let // = F 1 - F2
, and note that /I 6 £*

.

Now, note that Theorem 3.3 implies that

For all Ten, \itd(Fl - F2
) >

<=> For allyer, \yd{F x - F2
) >

Since this must be true for all 6H >6L , then (II,r) is a stochastic dominance pair.

To see that (i) implies (ii), note that if (ii) fails, then (without loss of generality) there exists

some y e f such that y e fl . But then, by Theorem 3.3 there exists a iu e £* so that

jndfi, > for all it e ft, but Jyd/x. < 0. Let fc = jd^: = jdfc . Let = {6L ,6H }, where

6H >6L , and define a parameterized probability distribution as follows: F(;6H ) = j/C and

F(;0L ) = j/z;. But then,
J
n(s)dF(s;9) is nondecreasing in for all ^ 6 II, while

\y{s) dF(s;d) is strictly decreasing in 6. Q.E.D.

Theorem 3.4 provides an algorithm for generating stochastic dominance theorems, and for

checking whether (11,0 pairs satisfy stochastic dominance theorems. It gives the weakest possible

sufficient conditions on a particular (n,r) pair to guarantee that it is a stochastic dominance pair: if

cc(II u {1,-1}) * cc(Tu {1,-1}), then there will always exist a parameterized probability distribution

such that
f
y(s)dF(s;d) is nondecreasing in 8 for all y e T, but

J
n(s)dF(s;6) is strictly decreasing in

6 for some 7ren.

However, Theorem 3.4 makes use of the weak topology, which might be less familiar than some

others; for this reason, we will now discuss the relationship between closure in the weak topology and

closure in other topologies. In particular, some existing stochastic dominance theorems have been

proved by showing that the closure under monotone convergence of the convex cones of the two sets

are equal (Brumelle and Vickson, 1975; Topkis, 1968). This raises the question, what is the

relationship between those results, and results using the notion of closure under the weak topology?

The following corollary answers that question.

Corollary 3.4.1 Let T be any topology on P> such that the junctionals {/J(-,//)|/l € w\, are

continuous linearJunctionals. Suppose that (11,0 is a pair of sets ofpayofffunctions, each in p:
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If cc(Ilu{l,-l}) T =cc(ru{l,-l}) T (closure taken with respect to t), then (11,0 « a stochastic

dominance pair.

Proof: T is finer than o(p*pK?) (by Bourbaki, TVS n.43). For any set A in "P*, we know

AcAr cAff
. Taking closures in (RP'W) of each set, we conclude that Ac = A T

. Thus, if

cc(nu{l,-l}) r =cc(ru{l,-l}) T ,then cc(nu{l,-l})a =cc(ru{l,-l}) ff
. This implies

that (Il,r) is a stochastic dominance pair by Theorem 3.4. Q.E.D.

To see the intuition behind this result, first note that, given two topologies T, and r2, where z, is

coarser than 12 (written T, c T
2 ), the closure of a set A under %2 ( -A*2

) is contained in the closure ofA

under t, (

A

T
> ). This is true because the finer topology has more closed sets; A Tl

is a closed set under

T2, but since x2 is finer, there might be a closed set which is a strict subset of A T
< but that still contains

A.

Since the weak topology is coarser than any topology which makes the linear functionals /?(7T,/x)

continuous in n, the closure of a set of payoff functions under monotone convergence is contained in

the closure of the set under the weak topology. Thus, if the closed (under monotone convergence)

convex cones of two sets of payoff functions are the same, then the closed (under the weak topology)

convex cones of those two sets of payoff functions will be the same. This tells us that checking that

the closed (under monotone convergence) convex cones of two sets of payoff functions are the same is

sufficient to establish that the two sets of payoff functions satisfy a stochastic dominance theorem.

Thus, in practice, when checking whether (TIT) satisfy sufficient conditions for a stochastic

dominance theorem, it is possible to check whether the closure of the convex cones of the two sets are

equivalent, using any topology which is convenient (provided of course that the topology guarantees

continuity of the functional /?(•,/*))• The topologies of monotone convergence, dominated

convergence, and uniform convergence are examples of topologies which might be useful in

applications.

Remark 1

We have characterized the relationship between Y1
S0M and TSOM as follows:

nsou = cc(nsoM u !!_!}) = cc(Tsom u [i-i])

Since much of the existing literature involves integration by parts, it is useful to illustrate the

relationship between integration by parts and our characterization. We can view the integration

by parts as a means of discovering the extreme points of a set of payoff functions which forms

a closed convex cone.

In the case where the distribution function is continuous and differentiable with respect to

the parameters, the payoff function is differentiable, and the random variable has compact
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support [0,J], both Propositions 2.1' and 3.1 can be proved directly by first rewriting

expected profits using integration by parts, and then taking the partial derivative of this

expression with respect to the parameter(s). It is the integration by parts which determines the

relationship between US0M and FSOM , and establishing this relationship plays a direct role in

the proofs of both Propositions 2.1' and 3.1. We can rewrite the functional

P(7Z,F) =
J'

7t(s)dF(s) as follows, using integration by parts:

f 7C(s)dF(s)
Js=0

= \k(s) - n\s) s + s
f
' n"(s) ds] • f dF(s) (3.3)

Js=0 J Js=0

+ 7r\s)\
S

sdF(s)-\
S

k"{s)\
S

min(s, v)dF(v)ds
Jj=0 Jj=0 Jv=0

Note that the functions y(s) = s and y(s) = min(a,s), which determine the set of functional

TSOM
, appear in this expression, as do the functions n' and 7t", which characterize the set of

payoff functions, Tl
SOM

. In fact, we can see that the functional
f

K(s)dF(s) is the limit of a
Js=0

sequence of positive combinations of the expected value of the functions in TSOM
, plus linear

combinations of
J

dF(s). The set Tl
SOM

is defined so that %' and -n" are positive; thus,

the functions y{s) = s and y(s) = min(a,.s) are positive in TS0M . The constant functions {1,-

1 } are included because f dF(s) is constant at 1 , but the coefficient
Jj=0

\k(s) - 7t'(s) s + s
J*

iz"(s) ds

can be positive or negative.

To see how this is used in the study of monotonicity, note that we can evaluate the

functional given in (3.1) at a parameterized probability distribution F(;0) (i.e., take

P(n,F(;d))) and then differentiate, as follows:

-§}Jlo
n(s)dF(s;d)

(3.4)

= k'(s) -^jsdFisid) -Ho
n"(s)

Jq JJ
min(s, v)dF(v;6)ds

This expression can be used to prove the SOMSD theorem directly. If the mean and

j^Tmn(v,s)dF(v;0) are nondecreasing in 6, then for any nondecreasing, concave payoff

function, this expression is clearly positive. On the other hand, if the mean or

j^min(v,s)dF(v;9) were decreasing in 8 somewhere, we could construct a nondecreasing,

concave payoff function which put all of the weight on the failures. What the integration by

parts shows us is that instead of checking that /J(tt,F(;0)) is nondecreasing in 6 for all

it 6

n

S0*f
(the left-hand side of (3.4)), we can check that p(y,F(;6)) is nondecreasing in 6

for all y e rS0M
(as motivated by the right-hand side of (3.4)). This is useful because the
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second set of conditions is easier to check. The constant functions {1,-1} from above do not

appear in TSOM because [ 1 -dF(s;&) = 1 is always constant in 0. We emphasize the fact that the
Jj=0

sets US0M and T50M are determined by the integration by parts (equation 3.3), not by the

subsequent differentiation with respect to the parameters of the distribution.

In an analogous way, we can evaluate the functional
f

n(s)dF(s) at the parameterized
Js=0

probability distribution F(;0
X
,62 ), using equation (3.3), and take the mixed partial derivative:

The proof of the stochastic supermodularity theorem follows similar arguments to that of

SOMSD. This example clarifies the relationship between the new stochastic supermodularity

theorem and the existing stochastic dominance result.

3.3 Conditional Stochastic Dominance

In this section, we show that Theorem 3.4 can be extended to the case of "conditional stochastic

dominance theorems." We will use the following notation:

f dF(t;6)

G(S;6,K) =±£^
J

dF(t;6)

jx(s)dF(s,6)

\dF(s,6)

seK

We now introduce an object which is analogous to a stochastic dominance theorem:

Definition 3.2 Consider a pair of sets ofpayofffunctions (II, T), with typical elements

it : SR" -> SR and y : 9?" -» SR. Let K be a collection of subsets of 9?". Then the pair (TIX) is a K-

conditional stochastic dominance pair if conditions (i) and (ii) are equivalent for all with

a partial order and all F : 9T x -> [0, 1] such that such that F{;6) e A" :

(i) For all neU. and all KeK, k{G\K) is nondecreasing in 6.

(ii) For all yeT and all KeK, y(6\K) is nondecreasing in 6.

We now extend Theorem 3.4.

23



Theorem 3.5 Consider a pair of sets ofpayofffunctions (Yl,T), where II and T are subsets of

P1
. Let K he a collection of subsets of 9t\ where 9?" € K. Then the following two conditions

are equivalent:

(i) The pair (TIT) is a ^-conditional stochastic dominance pair.

(ii) cc(II u {1,-1}) = ccOTu {1,-1}).

Proof: We can apply the proof of Theorem 3.4 almost exactly. Let n^ = {n IK \n e II}, and

likewise for Tk. Then note that cc(Ilu{l,-l}) = cc(T u {1,-1}) implies that

cc(UK u{IK ,-IK }) = cc(TK u {IK ,-IK }) for all K. Then, for every K we apply Theorem 3.4,

(ii) implies (i). To show that (i) implies (ii), the arguments of Theorem 3.4 can be used to

show that if (ii) fails, then (i) must fail for the case where K = 9?". Q.E.D.

One example of a conditional stochastic dominance theorem which has appeared in various forms in

the literature (see Whitt (1982)) involves the set of nondecreasing payoff functions, as follows:

Theorem 3.6 The following conditions are equivalent:

(i) For all it : 9?" —» 9? nondecreasing and all sublattices #c 91", k(6\K) is nondecreasing

in 6.

(ii) For all increasing sets Ac 9?" and all sublattices isfc 9?",
f dG(s;6,K) is
JAnK

nondecreasing in 6.

Proof: Apply Theorem 3.5 together with the fact that

cc({k\k nondecreasing} u {1,-1}) = cc({IA \IA (s) nondecreasing} u {1,-1}). Q.E.D.

This theorem is usually proved using algebraic arguments; but using the results of this paper, we see

that it follows as an immediate corollary of Theorem 3.5. First, take the case where n-1. Then

condition (ii) is equivalent to requiring that F(s;6) satisfies the Monotone Likelihood Ratio (MLR)

Order (for a proof, see Whitt (1980)), defined as follows:

Definition 3.2 The parameter 6 indexes the probability distribution F(;6) e A1 according to

the Monotone Likelihood Ratio Order (MLR) if, for all 6H > L, there exist numbers
-oo<a<b<°° and a nondecreasingfunction h : [a,b] -» 9? such that F(a;6H ) = 0, F(b;6L ) = 1,

and
jK

dF(s;dH ) = jK
h(s)dF(s;GL )forall K^[a,b].

When the support of F is constant in 6, and F has a density/, then an equivalent requirement is that/

satisfies the Monotone Likelihood Ratio Property (MLRP), as follows:

f(s
H
;6)

f(s
L
;6)

is nondecreasing in 6 for all s11 > sL
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Milgrom (1981) introduced the MLRP to the economics literature in the context of signaling

problems. The density /satisfies the MLRP if and only if the log of the density is supermodular. The

MLR implies FOSD (but not the reverse); that is, if F(s;6) satisfies MLR, then the distribution F(s;6)

is decreasing in flpointwise. FOSD does not place any restrictions on the movements of F(s;6) apart

from the restriction that changes in 6 do not cause the distribution to cross. The MLR, on the other

hand, requires that for any sublattice K, the distribution conditional on K satisfies FOSD.

Now, suppose that n > 1 . If we assume that the vector s is a vector of affiliated random variables

(see Milgrom and Weber (1982), who define affiliation and show that if the distribution has a density,

the log of that density must be supermodular9), then condition (ii) requires that each marginal, Ffaid),

satisfies MLR. The most general case, where the vector s is an arbitrary vector of random variables,

has not to our knowledge been analyzed in the literature.

We have presented Theorem 3.6 to illustrate the relationship between several existing results. The

framework developed in this paper shows that the proof of Theorem 3.6 is an immediate consequence;

previous analyses have relied on more complicated arguments. But, Theorem 3.6 is just one example;

in his analysis of firm entry and exit in a dynamic environment, Hopenhayn (1992) derives another

conditional stochastic dominance result, which he terms monotone conditional dominance. This result

considers the case of n = IlFO and K is the set of indicator functions of upper intervals. Our theorem

shows how to generate other conditional stochastic dominance theorems as applications arise.

4 OTHER PROPERTIES OF STOCHASTIC OBJECTIVE FUNCTIONS

This section derives necessary and sufficient conditions for the objective function, j 7c(s)dF(s;&) , to

satisfy properties P other than "nondecreasing in 0," for example, the properties supermodular or

concave in 8. We ask two questions: (i) For what properties P is the closed convex cone method of

proving stochastic P theorems valid? (ii) For what properties P can we establish that the closed

convex cone approach is exactly the right one, as in the case of stochastic dominance?

We proceed as follows. In Section 4.1, we introduce notation and definitions which extend our

stochastic dominance framework to "stochastic supermodularity theorems," and for arbitrary properties

P, "stochastic P theorems." Section 4.2 answers question (i), showing that the closed convex cone

approach to proving stochastic dominance theorems is valid for all "stochastic P theorems," where P is

a CCC property. In Section 4.3 we introduce a new class of properties, Linear Difference Properties

(LDPs), which is a subset of CCC properties. We show that examples of LDPs include convexity,

9In fact, Milgrom and Weber (1982) also show that, for general distributions, affiliation is equivalent to log-

supennodularity of the SR" derivative on a product measure.
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supermodularity, and all properties which place a sign restriction on a derivative (refer to Table I for a

summary of CCC properties and LDPs). Section 4.4 addresses question (ii), proving that the closed

convex cone approach is exactly the right one for all stochastic P theorems when P is an LDP. Section

4.5 applies the results of this section to the case of supermodularity, providing examples of (11,1")

pairs from the stochastic dominance literature (which are also stochastic supermodularity pairs, by our

main result) and discussing applications of stochastic supermodularity theorems.

4.1 Stochastic Supermodularity Theorems and Stochastic P Theorems

We now introduce a construct which we will call stochastic P theorems, which are precisely

analogous to stochastic dominance theorems. Let us begin with a specific example, stochastic

supermodularity theorems. Using two parallel definitions, we will be able to identify the close

relationship between the stochastic dominance theorems and stochastic supermodularity theorems.

Stochastic dominance theorems focus on monotonicity of expected profits with respect to a single

parameter, while stochastic supermodularity theorems examine whether increasing one parameter

increases the returns (in expected profits) to increasing the other parameter (recall that supermodularity

can be checked pairwise). Proposition 2.3 is an example of a stochastic supermodularity theorem.

The following definition is precisely analogous to Definition 3.1:

Definition 4.1 Consider a pair of sets ofpayofffunctions (II, F), with typical elements

it : 9T —> 9? and y : 9?" —» 91. The pair (II,T) is a stochastic supermodularity pair if

conditions (i) and (ii) are equivalentfor all lattices © and all F e A"e :

(i) For all n sU,
f
Jt(s)dF(s;6) is supermodular in 6.

Js

(ii) For all yeT,
[
y(s)dF(s;6) is supermodular in 6.

Further, we define the set ZJ5r to be the set of all (II,r) pairs which are stochastic supermodularity

pairs, analogous to "Lsm . To place our example from Proposition 3.3 in this framework, the pair

(USOM ,rSOM)ismI.
!lsr

.

When comparing Definition 3.1 (stochastic dominance theorem) and Definition 4.1 (stochastic

supermodularity theorem), it is helpful to recall that stochastic dominance theorems and stochastic

supermodularity theorems are both characterized by (11,0 pairs corresponding to sets of linear

functionals of the form f5(K,-), which are then composed with parameterized probability distributions.

Thus, it is possible to compare the two types of theorems directly, even though in a stochastic

dominance theorem, the parameter space is any set with a partial order, while in a stochastic dominance

theorem, the parameter space is any lattice.
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More generally, we can define a class of theorems called Stochastic P Theorems, which are

defined for an arbitrary property P. We are interested in properties P together with parameter spaces

Qp which are defined so that, given a function h : P
—> 9t, the statement "h(6) satisfies property P

on 0/' is well-defined and takes on the following values: "true" or "false." Let Qp denote the set of

all such parameter spaces 0,, . Further, for a given property P, we will define the set of admissible

parameter spaces together with probability distributions parameterized on those spaces:

Vn

P = {(F,ep )\ep e ep and F e A%
p }

.

Definition 4.2 Consider a pair of sets ofpayofffunctions (IT,r), with typical elements

K : SK" —> 9? and 7:9?" —> 9?. The pair (II,O w a stochastic P pair if conditions (i) and (ii) are

equivalentfor all (F,QP ) e Vp :

(i) For all 7teTl,
j
7t(s)dF(s;6) satisfies property P on ©p .

(ii) For all yeT,
f
y(s)dF(s;6) satisfies property P on 0„.

Js

For example, for a stochastic concavity theorem, 0,, can be any convex set, and condition (i) of

Definition 4.2 is interpreted, "For all tt e n,
J
n(s)dF{s;6) is concave in 6." As in the case of

stochastic dominance, we let I.SPT be the set of all stochastic P pairs for a given property P. Also

analogous to stochastic dominance, we can rewrite the requirement of Defintion 4.2 as follows:

l(F,e) e Vp\J7t(s)dF(s;6) satisfies P on Vtt e nj

= |(F,0) e v;\jy(s)dF(s;G) satisfies P on V/ € rl

In the next section, we show that the closed convex cone method of proving stochastic dominance

theorems can be extended to all stochastic P theorems, ifP is a closed convex cone property.

4.2 The Closed Convex Cone Approach is Validfor all CCC Properties

In this section, we identify a class of properties, which we call "Closed Convex Cone" (CCC)

properties, such that the following statement is true: for all properties P which are CCC, if a pair (IIJ)

is a stochastic dominance pair, then (tl.D is a stochastic P pair; thus, for all CCC properties, the

closed convex cone method of proving stochastic P theorems is valid. This result is useful because it

allows us to use the existing theorems from the stochastic dominance literature to generate many new

classes of theorems. CCC properties are properties are defined as follows:
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Definition 4.3 A property P is a CCC property (written P eCCC) if the set offunctions

g Qp
—> SR which satisfy P forms a closed convex cone, where closure is taken with respect to

the topology ofpointwise convergence, and if constant functions satisfy P.

Note that we are using closure under the topology of pointwise convergence for properties P,

while we are using closure under the weak topology (as defined in Section 3.1.1) for sets of payoff

functions, n and T.

The properties nondecreasing, concave, and supermodular are all CCC properties, as is the

property "constant." Further, any property which places a sign restriction on a mixed partial derivative

is CCC. Finally, since the intersection of two closed convex cones is itself a closed convex cone, any

of these properties can be combined to yield another CCC property. For example, the property

"nondecreasing and convex" is a CCC property. This property is

useful in the context of comparative statics for the following reason. Consider two functions,

/i:SR—»SR andg:9?" —>SR. If h(x) is convex and nondecreasing, and g(y) is supermodular and

monotone (nondecreasing or nonincreasing), then h(g(y)) is supermodular. Thus, if f K(s)dF{s\6) is

nondecreasing and convex in 6 for all n in II, and 6 is in fact determined by 6 - g(y) (where g is

supermodular and monotone), then
J
7t(s)dF(s;g(y)) is supermodular in y.

Now we prove a result which builds from Theorem 3.4:

Theorem 4.1 Suppose property PeCCC. If (11,0 is a stochastic dominance pair, then (H,T) is

a stochastic P pair. Equivalently, if cc(Jlu {1,-1}) = cc{T u {1,-1}), then (FIX) is a stochastic P
pair.

Proof:

For all it ell, ^K{s)dF(s;0) satisfies P.

=» For all n e II u {1,-1}, fK{s)dF(s;0) satisfies P.
Js

(Since
J
dF(s;6) = 1, and constant functions satisfy P, for all P eCCC).

=> For all n e cc(Jl u {1, -1} ), J
x(s)dF(s;6) satisfies P.

(Since jn^s) dF(s;6) satisfies P and jn2 (s) dF(s;6) satisfies P implies

\[ajz
x
(s) + a2K2 {s)] dF(s;6) = ax

\n
x
{s) dF(s;6) + a2JK2 (s) dF(s;6) satisfies P for

a,,a2
> 0, since P is a CCC property).

=> For all K e cc(IIu {1,-1}),
J
n(s)dF(s;0) satisfies P.
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(Recall that a subset of a topological space is closed if and only if it contains the limits of all the

convergent nets of elements in that set. 10 Since the linear functional fi(;fi) is continuous for

all 11, for any net Ka in cc(Il u {1,-1}) such that na
—> n , then given 6 ,

JKa (s) dF(s;6 ) -» $7i(s) dF(s;6 ) (Kothe, 1969, p.l 1). Since P is a CCC property, and

[ 7t(s)dF(s;6) is the pointwise limit of a net of functions which satisfy P, then j K(s)dF(s;0)

satisfies P as well.)

=> For all yecc(ru{l,-l}),
J
y(s)dF(s;6) satisfies P.

(By Theorem 3.6, since (n.O is a stochastic dominance pair.)

=> For all y e T, j y(s)dF(s;6) satisfies P.

(Since T Q cc(Tu {1,-1}))

.

Precisely analogous arguments establish the symmetric implication. Q.E.D.

This theorem generates many new classes of stochastic P theorems, where the (11,0 pairs which have

been identified in the large literature on stochastic dominance are also stochastic P pairs. As a special

case, this theorem generalizes a result by Topkis (1968), who proves that the (11,0 pair corresponding

to nondecreasing functions and indicator functions of nondecreasing sets, respectively, is a stochastic

P pair for P in CCC.

What we have shown in this section is that ifP is a CCC property, and l,
spT

denotes the set of all

stochastic P pairs, then £
JDr

c Z
Jpr

. However, note that not all properties P in CCC are such that

YSDT = EJ/T . In Remark 2 at then end of Section 4.4, we argue that when the property P is

"nondecreasing and convex," then Z
JDr

c ^
SFr

- For now, let us consider a simpler example of a

CCC property, the property "constant in 6." Take the case of IT
F0

, the set of all univariate,

nondecreasing payoff functions, and the set T = -ITro . The pair (ITFO , T) satisfies a "stochastic

constant theorem," since j 7t(s)dF(s;d) is constant in 6 if and only if -\n(s)dF(s;d) is constant in 6.

However, (I1 F0 , T) clearly is not a stochastic dominance pair. The next section identifies a class of

properties which will satisfy equivalence relationships.

10See Kothe (1969, pp. 10-11) for a proof of this statement.
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4.3 Linear Difference Properties

This section characterizes a subset of CCC properties, which we call Linear Difference Properties

(LDPs). These properties are interesting because, as we will show in Section 4.4, for all P in LDP,

T. =£ (4.1)

Combining (4. 1) with Theorem 3.4, we can conclude that, just as in the case of stochastic dominance,

the "closed convex cone" method is exactly the right one for the study of stochastic P theorems when

P is an LDP. That is, if Pe LDP, then (II,O e Zs„ if and only if cc(IIu{l,-l}) = cc(ru{l,-l}).

Important examples of LDPs are supermodular and concave; others are summarized in Table I.

Supermodularity is important because of its role in the analysis of monotone comparative statics

predictions. We also emphasize the result about concavity, since concavity and convexity are also

frequently encountered in economic contexts; for example, if an objective function is concave, then the

First Order Conditions characterize the optimum. Further, concavity can be used to establish the

existence of supporting prices in a resource allocation problem.

The result described in equation (4.1) is useful because it may be easier to verify whether or not

(II,T) is a stochastic supermodularity pair by drawing from the existing literature on stochastic

dominance; by (4.1), checking to see if (II,D is a stochastic dominance pair answers the same

question. For example, if the characteristics of a set II are determined by an economic problem, and

this set II has been analyzed in the stochastic dominance literature, then the corresponding stochastic

supermodularity theorem is immediate. This allows us to bypass the step of checking whether II and

r have the same closed convex cone direcdy (further, most of the stochastic dominance literature does

not make such a statement explicitly).

We now begin to build our formal definition of Linear Difference Properties (LDPs). The first

important feature of LDPs is that they can be represented in terms of sign restrictions on inequalities

involving linear combinations of the function evaluated at different parameter values. For example,

g(0) is nondecreasing on if and only if g(6
H

) - g(d
L
) > for all 6" > 6

L
in 0. This statement

specifies a set of inequalities, where each inequality is a difference between the function evaluated at a

high parameter value and a low parameter value. To take another example, g(d) is supermodular on

if and only if g(6
x v 6

2
)- g(6') + gtf

1 a02 )- g(d
2)>0 for all 6\6

2
in 0. Again, this statement

specifies a set of inequalities, this time involving the sum of two differences.

In both cases, we can represent every inequality by the parameter values and the coefficients which

are placed on the corresponding function values. For example, for the property nondecreasing, each

inequality involves the coefficient vector (1,-1) and a parameter vector of the form (d
H
,8

L
), where 1 is

the coefficient on g(d") and -1 is the coefficient on g(6
L
). Thus, g(6) is nondecreasing on if and
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only if for all vector pairs (a,<f>) = ((1,-1) , (0
H
,0

L
)) such that 6

H >6 L
,

^aig{<b)
= g{e

H )-g{eL
)>Q.

Likewise, in the case of supermodularity, we are interested in vector pairs of the form (oc,<p) =

((1,-1,1,-1),(0' v02
,0\0' a02

,0
2
)). In this case, g(d) is supermodular on if and only if, for all

such vector pairs, £*
=]
a, •

g(<t>, ) = g(6
l v6 2 )- g(0' ) + g(6

l a 2
) - g(6

2
) > .

Motivated by this discussion, we present the following definition.

Definition 4.4: A property P has a linear inequality representation iffor any parameter

space Q
p
eQP , there exists a positive integer m and a collection ofpairs of vectors, &Q , where

CQ c j(a,(|>)|a 6 9?
m

,
<f>
e 0™ |, so that conditions (i) and (ii) are equivalentfor any g :

p
—» St:

(i) g(6) satisfies P on F .

M S"=i a <
*(*)* ° f°r al1 («•® e <?*, •

The definition of CQ builds directly on the above discussion; we will refer to C% as the "linear

inequality representation ofP on P
." Note first that in the construction of CQp , we have allowed the

coefficients a to vary with the vectors of parameters; this will be useful when we show that

multivariate concavity has a linear inequality representation. In the above examples, nondecreasing

and supermodular both have linear inequality representations. In the case of nondecreasing, given a

parameter space QND ,

ee„ = {(a,0)|a = (l,-l); = (0",0
L
); e\6L e®m ;

6" >6L
).

For the property supermodular, given a parameter space QSPM , the appropriate set is

4^= {(a.0)|« = (1-1,1-D; *={& v02
,0\0' a02

,0
2
); 0\0

2 e0sm }.

Note that all properties which have a linear inequality representation are CCC properties, so long as

V " a
{

= . Observe that in the examples of nondecreasing and supermodular, the components of a

sum to zero. It is easy to show that if X,1ia'

= ^' t^ien X,=iai
'*> can ^e rePresented as a linear

combination of differences between x,'s. We will require ^ _ Ofj = in our formal definition of an

LDP, motivating the word "Difference" in the name.

Proposition 4.2 If property P has a linear inequality representation and jl. 0?j =0, then

PeCCC.
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Proof: Consider 0,, € P . If g{6) is constant in d on QP , then J,", «,- *(# ) = for all

(a,<p) ege , and thus g(0) satisfies P on f by Definition 4.4. Now suppose that g,(0)

and g2 (0) satisfy Pon0r Then for any (a,0) e C%r
and any a„a,>0,

X* i

a
> hsM) + <hS2 (<k)]=<h Zilia> sM) + a2Z™ia -

•&(#). which is nonnegative by

assumption and by Definition 4.4. This argument can be extended to sequences or nets of

functions which satisfy P. Q.E.D.

Our properties of interest, LDPs, are a subset of those properties which have linear inequality

representations and satisfy ]£* a
t

= (thus, all LDPs are also CCC properties):

Definition 4.5: P is an LDP (written PeLDP) if(l) P has a linear inequality representation,

and (2) for any parameter space Q
p
eQP , if we take the linear inequality representation &Qf of

P on Q
p , then each pair (a,(t>)e0ep satisfies the following two conditions:

<A) X>i=°-

(B) If we let Qp ={$,$,, ...,0m }, then given any Fe A" , there exists a (G,QP )<= Vp such that

Q
p
c Q

p , G agrees with F on Qp ,and (i) and (ii) are equivalentfor any 7teP*:

(i) J7t(s)dG(s;6) satisfies P on ©
p

.

<u> J,l i

a
i
J7t(s)dG(s;(ti

t
)>0.

Now let us interpret condition (B) of Definition 4.4 (we will explain why this requirement is

necessary in the following section). Part (B) requires that for each vector pair (a,0), there exists an

appropriate parameter space and probability distribution so that the inequality corresponding to (a,(j))

is critical in deterrnining whether
j
7C(s)dG(s;8) satisfies P for arbitrary payoff functions n. Part (B)

is not trivial because, for some properties P, ©p e Qp . That is, the property P is not always well-

defined on the restricted parameter space which is defined by the components of 0.

We illustrate Definition 4.5 with several examples.

Example 1 Nondecreasing is an LDP.

Proof: We argued above that nondecreasing has a linear inequality representation and that

Part (A) is satisfied. To see (B), pick a 0^, e 0^ and define CBmd
as above. Then take a

vector pair (a,<f>) = ((1,-1), (0",0
L
)) and define 0^ = {d

M
,6

L
}. Then, given any

parameterized probability distribution Fe A%m , we can let G=F. Then
f
K(s)dG(s;d) is
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nondecreasing on QND if and only if ^™ a
i
\7t(s)dG(s;

l̂
) =

jn(s)dG(s;6
H )- J7t(s)dG(s;6

L
) > 0, as required. Q.E.D.

Example 2 Supermodular is an LDP.

Proof: We argued above that supermodular has a linear inequality representation and that Part

(A) is satisfied. To see (B), pick a ®SPM e QSPM and define <?e as above. If we take a

vector pair (a,0) = ((l.-l.l.-l),^ v0 2
,0\0' a 2

,0
2
)), we can define BSPM =

{0
1 v 2

,0',0' a e
2
,0

2
}. Then, if we take any Fe A"^ , we can let G=F. Then

J
7t(s)dG(s;8) is nondecreasing on ©SPM if and only if

^lai
J7r(s)dG(s-4) =

jn(s)dG(sfi
] ve2

)-J7t(s)dG(s^) + J7t(s)dG(sfi
l Ae2

)-jx(s)dG(sfi
2)>0. Q.E.D.

Requirement (B) does rule out certain properties, however. For example, nothing in the definition

of a linear inequality representation rules out the following scenario: the same parameter vector

appears twice in ^e , but with two different parameter vectors, a1 and a2
. In that scenario, condition

(B) (ii), which might only involve a> but not a2
, would not be sufficient to check the property P on

the parameter space defined by the componenets of
<f>.

Take the example "constant." The linear

inequality representation of this property is as follows:

4»o.= {(a.0)|a = (l-D; 4> =(02

); 6\6
2 eQCNS }.

However, there is no way to verify that an arbitrary function is constant using just one inequality. If

we let QCNS = {fl'.fl
2

} and take any probability distribution with that parameter space, we cannot verify

whether j 7t(s)dG(s;8) is constant in 6 by checking that ^™ aA 7t(s)dG(s;<k) =

\ 7t(s)dG(s;6
l

) -
J
7t(s)dG(s;6

2 )>0. The reverse inequality must be checked as well.

We now give several other important examples of Linear Difference Properties.

Example 3: "Concave" is an LDP.

Proof: To see part (A) of the definition of LDP, given any convex set ©cy, let

ee„= {(a,0)|a = (l,-A,A-l); = (A0'+ (1- X)d
2
,0\d

2
); Ae(0,l); d\62 eQ^}.

Then g(G) is concave on CT if and only if g(X0
l + (1 - A)0

2

)
- Xg(8

l

) - (1 - X)g(6
2
) > for

all A e (0,1) and all 8\82
<= 0^, which in turn is true if and only if V" a, •

g(<f\)
= for all

(a,0)in£e .
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Now we examine part (B). For any (a,<j)) in C%ol , let 0^ = {$, $>,$,} and let 0^, =convex

hull(0^ ). Let A = -«2- Then take any Fe An
: , and define a parameterized probability

distribution Ge A^ so that G agrees with F on 0^ . Then, for any A e (A, 1), let

g(-;A0,+(1-A)&W—^F2 +—4 ^'» and for any Ae(0,A),let
V '1 — A 1 — A

11 1

g(;A^ + (1-A)4u = Fi +—F\ This is a piecewise linear mapping through G(-;<j\).

Then,
J
7r(s)dG(.s;0) is concave on CT if and only if

jx(s)dG(s;<t\)- XJ7t(s)dG(s;(t)2 )- (1 - X)\K{s)dG{s;<^) > 0.

as required. Q.E.D.

We now consider properties which place a sign restriction on an arbitrary partial derivative. First,

we treat the discrete generalizations of such properties. To do so, we introduce the following notation:

u' =(0,..,1,0..,0), where the 1 is in the ith component of the vector, and

£J(x) = f(x)-f(x-eu
i

). Note that, for a sufficiently differentiable/on SR\ -&^f(x)>0

everywhere if and only if, for all ev .,ek >0 and all x, A'e -A* f(x)>0. Thus, for arbitrary

functions /, we will refer to the latter condition as DPit, the discrete generalization of the property

Example 4: Any discrete generalization of a sign restriction on one mixed partial derivative is

an LDP.

Proof: We have already proved that supermodularity is an LDP, which implies that DP2, the

discrete generalization of a^r/00 ^ 0, is an LDP. We will consider DP3, the discrete

generalization of 5 1 s f(x) > 0; other mixed partials are analogous. To see part (A) of the

definition of LDP, given any DP3 e QDP3 , let

a = (1,-1,-1,-1,1,1,1,-1);

r
e, e-e,u\ e-^u2

, e-e3
u\

(a,0)0 =
- £,«' - e2

u
2

,
- £,«' - eju

3
,

- e2u
2 - e

3
u

3
,

-£M e.u'

e
i
e SR++ ; e D„; <pi

e Dn , i = 1....8

Then g(0) is satisfies DP3 on O„ if and only if A'
£ A

2

ej
A3

ej g(0) > for all e
i
e SR++ and all

e D„, which in turn is true if and only if ^^a^ 7c(s)dG(s;<l\) > for all (a,<f>) in Cq
dp
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Now we examine part (B). For any (a,<f>) in C,Q
DPi

. let QDP3
= {$,..,^}. DP3 is well-defined

on this set. Then take any Fe A"^ , and let G=F. Then,
J
Jt(s)dG(s;6) satisfies DP3 on

eDP3 if and only if A'
£
A\

2
A\

3

g(d) > for all e, € SR++ and all € D„ such that $ e
D/>3 ,

which reduces to V " a, f K(s)dG(s;<j}l )
> 0, as required. Q.E.D.

Example 5: Any sign restriction on one mixed partial derivative is an LDP.

Proof: Let us consider the property A ^ A /(*) - 0- P311 (A) follows immediately from

Example 3, by the definition of DP3. Now, fix (a,0) in C%D^ , and let DF3 = {$,..,$,}. Part

(B) requires the construction of a new parameterized probability distribution on the space

QDPi , which we now define to be the simplex generated by ©DP3 . In other words,

eDP3
= jdaA,,..,^ e [0,1] s.t. £*

=1
A,. = 1 and £*

=I
A,# =

0J.
Then, we can construct a

continuous vector-valued function x '•

®z>/>3
~~

* [0>1]
8
so mat f°r any ^ ®d/>3 >

V £ (0) • $ = 0. Then take any take any Fe An
: and define a parameterized probability

A^i—l ©dm

distribution Ge A"q so that G agrees with F on eD„ , and further,

G(;0) = V Xi(0) ' ^( »^) • Note that this function is indeed a probability distribution. It is

then straightforward (albeit tedious) to verify that, for any n,
J
7C(s)dG(s;d) will then satisfy

DP3 on eDPi (and thus ^J.^ J
7t(s)dG(s;d) > 0) if and only if

=̂
a

i
jn(s)dG(s;(t\) > 0,

as required. Q.E.D.

It is interesting to note that in general, the intersection of two LDPs is not itself an LDP. For

example, the property "nondecreasing and concave" is not an LDP. This is because part (B) of the

definition of LDP requires that any single vector pair (a,<f>) must be critical for determining whether

the property holds for some parameterized function. However, it is not possible to check

"nondecreasing and concave" with a single inequality. This differentiates LDPs from CCC properties,

where the combination of any two CCC properties is CCC (refer to Table I for a comparison between

the two classes of properties). On the other hand, since LDPs are a subset of CCCs, the intersection

of two LDPs is a CCC property; thus, the closed convex cone approach will always be valid for finite

combinations of LDPs. Given this discussion, it is interesting to note that supermodularity, which for

a suitably differentiable function /(.x) can be defined as requiring that -^rf(x) > for all i rf, is in

fact an LDP. This is true because supermodularity is a property which (i) can be defined on an

arbitrary lattice and (ii) when the lattice has four or fewer points, supermodularity of a function on that
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lattice can be expressed in terms of a single inequality, so that part (B) of the definition ofLDP can be

satisfied.

The next section proves that the closed convex cone method of proving stochastic P theorems is

exactly right for LDPs.

4.4 LDPs Satisfy the Necessary and Sufficient Conditions for the Closed Convex Cone

Approach

To begin, we recall from Section 3.1.1 that (Jl,T) is a stochastic dominance pair if and only if the

following equality holds (recalling that £" is the set of finite signed measures /x such that
J
d\i = 0):

{//

e

p^xdp > V^en} = (/ie $'\\yd^L > Vy e r} (4.2)

This is true because every measure which is a difference between two probability distributions is in

£", and further every element of £" has a representation as a (scaled) difference between two

probability distributions; thus, £" is the "right" set of measures to check when we are interested in the

property "nondecreasing," which involves pairwise comparisons between probability distributions.

Other properties, however, might correspond to sets of measures other than £". Let us now

consider how the relationship between IT and T changes if we choose a different set of measures. Let

S' be an arbitrary subset of the set of finite signed measures, 7K'. The following equation then

describes a relationship between a (11,0 pair which is a variation on the relationship described in

(4.2):

l[i e S-\JKdn > \/k e n| = l/j. e S'ljydn > Vy eA (4.3)

If a property P has a corresponding set of measures S' such that (II,O are a stochastic P pair if and

only if (4.3) holds (analogous to the case of the property monotonicity and (4.2)), then T.SDT = IJ/T if

and only if (4.2) and (4.3) are equivalent. The following lemma tells us which sets S* will be such

that (4.2) and (4.3) are equivalent; this in turn can be used to determine which properties P are such

Lemma 4.3 Condition (ii) implies (i), and further, if cc(S~) = -cc(S'), then (i) implies (ii):

(i) (4.2) and (4.3) are equivalentfor all (fl,0 pairs.

(ii) cc(S') = f .

Proof: Fix a (TI,0 pair. First, note that (4.3) is equivalent to the following:
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{// e cc(S'ijjcdfi > V;r e Til = {// e cciS'jj[yd/i > V/ € rl (4.4)

That (4.4) implies (4.3) is clear; that (4.3) implies (4.4) uses straightforward linear algebra

arguments similar to those ofLemma 3.2.

Next, observe that (4.2) is equivalent to (4.4) under condition (ii); thus, condition (ii) of this

lemma implies condition (i).

Now, suppose that (ii) fails and cc(S') = -cc(S'). We will show that (4.3) can be true even

when (4.2) fails. Without loss of generality, consider a nonzero V€ ^" such that vg cc(S')

(and thus -vg cc(S')). Note first that this implies (recalling that c{A) denotes cone ofA)

c(v)ncc(Sm
) = and c(-v)r\cc(S') = 0. (4.5)

Denote the dual cone of v as follows:

d(v)= lneP'\J7zdv>o\

And denote the dual cone of d(v) as follows:

d(d(v)) =l^e wMizdn > V;r e d(v)\

By a corollary to the Hahn-Banach theorem (see Schaefer, 1980, p. 126) d(d(v)) =

cc(v) = c(v) . Let n = d(v) and let T = -FI. Observe that d(-Il) = c(-v). Then, by (4.5),

(4.4) is satisfied for this (H,T) pair because both sets are empty. However, it is clear that

cc(nu{l,-l}) * cc(Tu{l,-l}) . But then, Theorem 3.3 implies that (4.2) must fail.

Q.E.D.

Thus, if cc{S') = £", then the closed convex cone method is exactly the right one for checking

whether (4.3) holds; that is, (4.3) holds for a (II, T) pair if and only if

cc(Il u {1,-1}) = cc(Tu {1,-1}). Further, Lemma 4.3 says that if our set of "test" measures, S', is

such that cc(S') leaves out a measure in f and the negative of that measure, then there will exist a

pair of sets of payoff functions so that (4.2) and (4.3) return different answers. Recall that, if a

measure separates two sets, the negative of that measure will separate the sets as well.

Lemma 4.3 motivates our definition of what we will refer to as Z-Properties, that is, the largest set

of properties such that ZSD7 = ~LSPT . We are looking for properties P which correspond to sets of

measures S'p which satisfy Lemma 4.3 (ii), and further are such that (4.3) holds for S' = S'p if and

only if (Il,D is a stochastic P pair.
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Definition 4.6 A property P is a I-Property iffor every positive integer n there exists a set of

measures S'p such that cc(S') = f , andfurther statements (A) and (B) are true:

(A) For any (F,0)e Vp , there exists a set Sn

p c5J so that the following two conditions are

equivalent for any 7te P':

(i) J7tdfi>0 VfieS;.

(ii)
J
7t(s)dF(s;6) satisfies P on 0.

(B) For any ji e S'p , there exists a pair (G,0)e T>
n

p
so that the following two conditions are

equivalent for any K& V:

(i) jnd^i>0.

(ii) 1 7t(s)dG(s;6) satisfies P on 0.

This definition formalizes what it means for a property P to "correspond" to a set of measures S'
p

.

There are two parts to this definition. Part (A) guarantees that, given a (Tl,T) pair, if (4.3) holds, then

(n,r) is a stochastic P pair. It says that any time we are given a parameterized distribution F and need

to check whether
f iz(s)dF(s;d) satisfies P, we can reduce that problem to checking whether
Js

[ndji > for all \x in some subset of S'
p

. Part (A) guarantees that S"p is "big enough," and we can

think of (A) as defining a mapping from V
p

to subsets of S'p . Part (B) guarantees that, if (n,0 is a

stochastic P pair, then (4.3) holds. It requires that for each element of S"p , we can find some

parameterized probability distribution so that \n(s)dG(s;d) satisfies P if and only if
J
Kdfi > . This

part requires that S'p is not "too big," and we can think of (B) as describing a mapping from S'p to

V.
p

We now prove a lemma which is used to prove that all LDPs are Z-properties. This lemma shows

that a set of measures which can be written as a linear combination of differences between probability

distributions has a cone (and thus closed convex cone) equal to f.

Lemma 4.4 Given any positive integer m>\ and any nonzero vector of constants ae 9i
m such

that ^r.tt, =0, define the following set:

JTa = {^F\...,Fa e A" s.t. // =£>(
F'}

Then ^"= c(£ ).
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Proof: First, pick ve c(
â ), and note that probability distributions are finite signed

measures. Then, for some b>0 and some F\...,F
m
e A"

,

jdv = jdb ^or.F' = b
/̂

oc
i
jdF i = b •]£ Of. = 0, and we conclude that ve £».

Then, pick fie ?. Let I
+ = [i e l,..,m|a, > 0} and let /" = {/ e l,..,m|a,. < 0}. Then define

fc = ]£ or, = —2^ or,. . Now consider the Jordan decomposition of /x, /* = fi
+ - fi~ , and define

ie/* ie/~

a =
f dfi

+ = \dfi~ . Finally, define F" = -ft and Fn = -fi~ for /' = l,..,m. Then, let
J J a a
m

v = ^cc
t
F', and note that fi=— ve ^ , which in turn implies that fie c{J"

a ) since — is

positive. Q.E.D.

Theorem 4.5: IfP is an LDP, then P is a Z-property.

Proof: Let A = (a|30p e Qp s.t. (a,<p) ege }, and define SP
= U <, (where ^ is defined

in Lemma 4.4). Then, by Lemma 4.4 and since oris nonzero by the definition of C% , c(s£)

= U c«) = r-
OEi4

Part (A): For any (F, SP )e Vn

p , let S£ = lfi\fi = X^,a.
F( ^') for some (a'0) e ^e, }• Then

conditions (i) and (ii) of part (A) are equivalent by the definitions of Sp and &Q .

Part (B): Take a fie S'P . By definition, there exist H\..,Hm e A" and P e P such that

jU =^(

"

]

a,H' for some (a,<p)egep . Take this (a, <p), and define ©,,={$, ..,0m }. Now

define a parameterized probability distribution Fe A": such that F(-;$ ) = i/' . Then by part

(B) of Definition 4.5, there exists a (G,QP ) e t>p such that F = G on P and, for any tt e V*,

j n(s)dG(s;d) satisfies P on 0^ if and only if
î

^a
i
\n{s)dG{s;(fO > 0. But by the

definition of G, and since ft = ^T™ or,F(-;$) , the latter condition is true if and only if

J
k dfi > , as required. Q.E.D.

We now state the final result of this section, which is that if P is a Z-property, then the same

mathematical structure underlies the stochastic P theorem as a stochastic dominance theorem. It is

interesting to note that this theorem can be proved without reference to any of the results in Section 3;

there is no topology specified in the result and no discussion of the closed convex cone relationship
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between IT and T. 11 The relationship between the different classes of theorems relies solely on the

linear structure of the integral.

Theorem 4.6: If P is a IrProperty, then conditions (i) and (ii) are equivalent:

(i) (n,D " a stochastic P pair.

(ii) (E[,r) w o. stochastic dominance pair.

Proof: Fix (Jl,T). Recall that we can rewrite condition (i) as follows:

|(F,0) e "Dp\J7T(s)dF(s;6) satisfies P on V;r e nj

l(F,Q)evMr(s)dF(s;e) satisfies? on ©Vyerj (4.6)

We now argue that (4.6) is equivalent to (4.7):

jv e s;[fTtdv > \/k e nj = {v e r;[fydv > Vy e rj (4.7)

First, let us prove that (4.7) implies (4.6). Pick any (F,0) e V
p

. Part (A) of the definition of

a Z-property implies that there exists a set S
p
c S'p such that

J
7t(s)dF(s;6) satisfies P on

Vffell if and only if j^dfj. > V/i e S£, V^gII. But, by (4.7), the latter statement is true

if and only if \ydfi > V/i e S
p , Vy € T. Finally, applying part (A) of the definition of a E-

property again, this is equivalent to
f
y(s)dF(s;6) satisfies P on Vy e T.

Now, let us argue that (4.6) implies (4.7). Pick any lieS'p . Then, by part (B) of the

definition of a Z-property, there exists a (G.0,,) eVp so that
J
ndji > Vtt e n if and only if

jn(s)dG(s;d) satisfies P on \/k e n. By (4.6), this is equivalent to j y(s)dF(s;6)

satisfies P on Vy e T . But, applying part (B) of the definition of a Z-property again, this

is equivalent to f yd\i > Vy e I\

Finally, we can apply Lemma 4.3 to conclude that (4.7) is equivalent to:

\n e ^nd\i > Vtt e III = \a e ^|Jyd/i > Vy e rj (4.8)

Recall from Section 3.1.1 that (4.8) is equivalent to the statement that (11,0 is a stochastic

dominance pair. Q.E.D.

1

J

Although we refer to Lemma 4.3 in the proof of Theorem 4.6, we only use (ii) implies (i) of that Lemma, which does
not rely on the choice of topology.
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The consequence of Theorem 4.6 can be stated as follows: ifP is a E-property (and thus ifP is an

LDP), then ZSFr
= ZJDr . This result together with Theorem 3.4 establishes that the closed convex

approach to stochastic P theorems exactly the right one for this class of properties:

cc(Uu {1,-1}) = cc(Tu {1,-1}), if and only if \ K(s)dF(s;8) satisfies P V^ell exactly when

J
y(s)dF(s;9) satisfies P Vy € T. This result then generates entirely new classes of theorems, only a

few of which have appeared in the economics literature to date.

Note that Theorem 4.6 holds without any assumptions about continuity, differentiability, or other

such properties. Even the restrictions on the boundedness of the payoff functions have been

dropped. 12 Assumptions on sets of payoff functions might be relevant for a particular stochastic

dominance pair (n,0; these assumptions would then be inherited by the corresponding stochastic

supermodularity theorem. However, the relationship between stochastic dominance and stochastic

supermodularity is defined exactly by (4.1) without any restrictions beyond the structure imposed by

Definitions 3.1 and 4. 1 . Linearity of the functional f%7t,fi) in \L, however, is critical.

In the next section, we discuss applications of some of the new stochastic supermodularity

theorems which can be derived using Theorem 4.6.

Remark 2

We argued in Section 4.3 that combinations of LDPs are not themselves LDPs (or Z-

Properties). In this remark we use an example which we call NDC, the univariate, discrete

version of "nondecreasing and convex," to illustrate what goes wrong when properties are

combined. The minimal set on which NDC will be considered well-defined is a 3-point subset

of the real line (otherwise convexity is not well-defined).

So, what we want to show is that the fact that (11,0 is a stochastic NDC pair does not

necessarily imply that cc(II u {1,-1}) = cc(Fu {1,-1}).

The linear inequality representation ofNDC is as follows:

4w= {(a,0)|a = a,l-A,-l);
<f>
= {6\6

2M +(1-A)02
); Ae(0,l); ^16^]

u{(a,0)|a = (1,-1,0);
tf>
= (0\0

2
,0

3
); Ae(0,l);

1 >02
; d\d

2 *®NDC}

Consider the case where the parameter space is a 3-point subset of the real line. The main
problem is that checking that a function is nondecreasing and convex on that space requires

three inequalities. Given that, the intuition about why NDC fails to be a Z-Property as follows:

12We must, however, be careful so that the probability distributions and payoff functions are chosen to make the

expected value of the payoff function well-defined.
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suppose cc(n u {1,-1}) * cc(T u {1,-1}). This inequality can hold if there is only one point in

cc(riu{l,-l}) but outside cc(ru{l,-l}), and in that case the Hahn-Banach theorem

guarantees the existence of only one measure which is a separating hyperplane. However,

generating a parameterized distribution which contradicts the hypothesis that (ITX) is a

stochastic NDC pair requires three distributions corresponding to the three points in the

parameter space; these three distributions will in turn induce three measures, as specified in the

linear inequality representation of C%

4.5 Applications of Stochastic Supe/modularity Theorems

In this section, we explore applications of the result that HSDT = SJJT , that is, the result that the set

of stochastic dominance pairs is the same as the set of stochastic supermodularity pairs. We look at

stochastic dominance pairs from the existing literature and interpret the new stochastic supermodularity

theorems which can be derived from these. We show how these new theorems can be used to derive

sufficient, or necessary and sufficient, conditions for monotone comparative statics predictions in

several economic examples.

4.5.1 Examples of Univariate Stochastic Supermodularity Theorems

We have already discussed univariate stochastic dominance theorems at some length. Using Theorem

4.6, we can apply the results of Table II to problems of stochastic supermodularity. Recall that the

example of the agent's choice of effort, discussed in Section 2, uses the stochastic supermodularity

theorem corresponding to Table II (iii); the equivalence of parts (i) and (ii) in Proposition 2.3 follows

as a direct corollary of Theorem 4.6. We can analyze other properties P in an analogous way.

Let us now consider a second example. Suppose that a firm chooses to invest in research and

development (denoted r) to improve its production process, and in particular it searches for ways to

reduce its unit production costs (denoted ceSR+ ). The returns to research and development are

inherently uncertain, and the probability distribution over the firm's future production costs is

parameterized by t. Suppose that the firm's payoffs are nonincreasing in its production costs, and that

the firm's investment in r has a cost, k(r). Then the firm's expected profits can be written as follows:

J7C(c)dF(c;r,t)-k(r)

Now we address the comparative statics question: What are necessary and sufficient conditions for

the optimal investment in research to be monotone nondecreasing in the shift parameter t, for all

investment cost functions kl

Proposition 4.7 The following three conditions are equivalent:
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(MCS) r'(t) = argmax
|
7t(c)dF(c;r,t) - k(r) is monotone nondecreasing in tfor all cost

r Jc

functions k and all Jt nonincreasing.

(i) 7t(c)dF(c;r,t) is supermodular in (r,t)for all it nonincreasing.
Jc

(ii) For all ce Si + , F(c;r,t) is supermodular in (r,t).

Proof: Theorem A.l in the Appendix establishes that (MCS) is equivalent to (i). Theorem

4.6, together with Table II (i), establishes that (i) holds if and only if

-J
I
lb
,„)(c)dF(c;r,t) = -1 + F(b;r,t) is supermodular in (r,t) for all be SR+ . Q.E.D.

Thus, for any parameter t which is complementary with r in terms of increasing the probability

distribution pointwise, increasing t will lead to an increase in the optimal choice of r. Further, no

other class of shifts in the probability distribution will always increase the firm's choice ofr.

Intuitively, the goal of the firm's investment in research is to shift probability weight towards lower

realizations of its unit cost; the parameter t measures the "sensitivity" of the probability distribution to

investments in research. Higher values of t correspond to probability distributions where research is

more effective at lowering unit costs.

4.5.2 Examples of Bivariate Stochastic Supermodularity Theorems

The stochastic dominance theorems for bivariate payoff functions are perhaps less familiar, but they

also fit in the framework of Theorem 4.6; in the existing literature, the proofs of the continuous

versions of these theorems use integration by parts. Levy and Paroush (1974) and Atkinson and

Bourguignon (1982) first reported these results for continuous objective functions; Meyer (1990)

extends some of their results to discrete problems. Table HI summarizes the stochastic dominance

results. By Theorem 4.6, each of the (existing) stochastic dominance results corresponds to a (new)

stochastic supermodularity result, which may then be applied to solve comparative statics problems.
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Sets of payoff functions, n Sets of payoff functions, T

(i)
[n:\7t : SR

2 —> % nondecreasing}

f
7(5,,52)= /A (5,,52 ), whereAcSR2

]

and 7^ (s, , 5
2 ) nondecreasing J

(ii)

1-

7T : SK
2 —> 9t, nondecreasing,]

supermodular
J

{r|r(W2)= /
la„-)^i)- /

[ a2 .-)(-
s2). o^eS*}

(iii)
[k\k : 9?

2 —» SR, supermodular}

^{r|r(^»s2 ) = - /
[a2,.)(*2 ). <h e *}

Table III Bivariate Stochastic Dominance/ Supermodularity Theorems

Each (Il,r) pair in Table HI satisfies a (bivariate) stochastic dominance theorem as well as a

(bivariate) stochastic supermodularity theorem.

Table HI (i) is simply a bivariate generalization ofFOSD (this result also generalizes to the multivariate

case). We will discuss the results associated with Table HI (iii) carefully, and the intuition for Table

III (ii) is similar. First, we will interpret the stochastic dominance theorem associated with Table IE

(iii); then, we will consider the stochastic supermodularity theorem.

The set T in Table HI (iii) contains both the indicator functions for each upper interval of the

random variable j, , and the negative of the indicator functions for each upper interval. Note that

J J Iia„-)(s\)dF(sv s
2 ) = /^(a,), where F

x
(s

x
) is the marginal distribution of sv Since we have not

specified whether the payoff function 7ris monotonic, it is not possible to verify whether changing the

marginal distribution will raise or lower expected profits. Thus, if a shift in the probability distribution

must raise expected payoffs for all supermodular payoff functions, that shift in the distribution must

not affect the marginal distributions (i.e., 7<| (a, ;0) must be constant in 6 for all a, )

.

Now, consider a partition of the space ($,, s2 ) e 9t
2
into four quadrants, delineated by the axes

s
l
=a

l
and s2 = a,. Then the requirement that the function u Iiai

^)(Si)Ilaj^)
(s2)-dF(sl

,s2 ;0)

must be nondecreasing in 6 specifies that 6 shifts probability mass into the northeast quadrant. We
will refer to this type of shift as an increase in the "interdependence" of the random variables; such a

shift is beneficial when the random variables are complementary in increasing the payoff function.

The intuition for the stochastic supermodularity theorem corresponding to Table HI (iii) is similar:

for two parameters to be complementary in increasing the expected value of a supermodular payoff
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function, they must not interact in the marginal distribution functions, and further they must be

complementary in increasing the interdependence of the random variables.

To see a special case of how Table HI (ii) might be used, consider the following example.

Suppose that we are interested in the set of bivariate, supermodular payoff functions. Suppose further

that the random variables have a bivariate normal distribution with a positive covariance

((s,,.s
2 ) ~ BVN(^,fi2,af,Gl,au ); an >0). Then checking the conditions given in Table IE (ii)

establishes that the expected profits are supermodular in the means of each marginal distribution. That

is, j 7T(s
l
,s

2
)dF(s

]
,s

2
;/i

]
,/i7 ) is supermodular in (/z,,/^), for all K supermodular, if an >0.

Intuitively, when the payoff function is such that under certainty, one random variable increases the

returns to the other, then in a stochastic environment, raising the mean of one random variable

increases the returns to raising the mean of the other. Further, since the random variables have a

positive covariance, increasing the mean of one does not decrease the effectiveness of the other in

terms of shifting probability weight into regions where the random variables realize high or low values

together. The requirement that the parameters do not interact in the marginal distribution functions is

satisfied trivially.

Let us apply this to an economic problem, in particular a coordination problem within a firm.

Suppose that the normally distributed random variables, 5, and s2 , represent the qualities of two

different components of a final product. The components fit together in such a way that increasing the

quality of one component increases the returns to quality in the other component. (For example, the

fidelity of the amplifier in a stereo system is complementary with the fidelity of the tuner). Suppose

that two product design teams work to develop the two different components. The qualities which

each team will be able to achieve is stochastic, due to the inherent uncertainty in innovative activity, but

the outputs of the two teams are correlated (perhaps due to realizations of random events which affect

the whole firm, or due to communication between the two teams).

Now consider the firm's problem of setting target qualities (or incentive contracts) for each group,

where an increase in the target quality increases the expected quality the group will produce. The

above result states that increasing the target quality for one group increases the returns to increasing the

target quality of the second group. Thus, if there is an exogenous decrease in the cost of producing

quality for team one, then the firm will find it optimal to raise the targets for both teams.

4.5.3 Examples of Multivariate Stochastic Supermodularity Theorems

Multivariate payoff functions pose a particularly complicated problem because changes in the joint

probability distribution can potentially affect the co-movements of many random variables

simultaneously; thus, the high-order mixed partial derivatives between all of the arguments of the
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payoff function are relevant for stochastic dominance results. However, it is often difficult to place

economic interpretations on such derivatives; thus, when analyzing multivariate problems, it is useful

to impose additional structure. First, we discuss the case with multivariate statistical dependencies, but

we restrict the interactions between variables in the payoff function. 13 Then, we discuss the case

where multivariate interactions are permitted in the payoff function, but the random variables are

constrained to be statistically independent.

To begin, following Meyer's (1990) work on stochastic dominance, we examine pairwise

separable payoff functions. We define pairwise separable functions as functions which can be written

7t(s
l

, s2 , . .
.
, s

n ) =^^ k'
1
{s

t
,, Sj

,

) . It turns out that the results reported in the bivariate case generalize to

this set of functions, since (using the linearity of the integral operator) we can write the expected value

of a pairwise separable payoff function as the sum of the expected values of bivariate payoff functions.

If each bivariate problem is supermodular (monotonic), then the sum of them will be supermodular (or

monotonic) as well.

There are potential applications of these theorems in welfare economics; for example, Meyer and

Mookherjee (1987) and Meyer (1990) discuss applications of bivariate and pairwise separable

stochastic dominance results to welfare economics. Consider a social planner who values equity

between agents in the economy. Meyer and Mookherjee (1987) and Meyer (1990) argue that this can

be represented as a social welfare function, W(sv ...,sn ), which is supermodular in (s
x
,...,s

n ), the

vector of individual agents' incomes; Meyer (1990) proposes the simplifying assumption that

W(sv ...,s
n ) be pairwise separable. These authors then ask the question, What types of shifts in the

probability distribution over consumer incomes will improve expected welfare of the social planner?

In this context, Table HI (ii) shows that a shift in the distribution of income which holds the marginal

distributions fixed, but increases "interdependence" between the random variables, increases expected

welfare.

By Theorem 4.6, we can build from these results to perform comparative statics analysis,

addressing the following questions: When will two social policies which affect the joint distribution of

agents' income be complementary? For which exogenous shifts in the distribution of income will the

social planner tend to increase her use of a particular policy? If the social welfare function is also

monotone in each agent's income, the answer to these questions will be determined by checking

supermodularity conditions on the joint distribution of each pair of random variables, as shown in

Table III (ii). Thus, two policies which are complementary in (1) increasing the interdependence of

l3In the next subsection, we will take the opposite approach, eliminating the multivariate statistical dependencies while

allowing for multivariate payoff functions.
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utilities in the economy and (2) improving each agent's marginal distribution of income, will be

complementary in increasing expected welfare. (The case where the two policies do not interact in

determining the marginal distribution of each agent's income is clearly a special case of the second

restriction).

In the previous example, we restricted the multivariate interactions in the payoff function in order

to analyze problems where there are statistical dependencies between several random variables. Now,

we torn to show that when a subset of the random variables are statistically independent from the rest,

it often possible to allow for more complex interactions in the payoff function.

When one or two random variables are independent of the others, we can apply the univariate and

bivariate stochastic dominance/supermodularity theorems described above. To see an example of this,

consider rewriting a stochastic objective function as follows

Note that monotonicity as well as supermodularity are preserved by integration, so that

supermodularity in of the inner integral in the above expression will guarantee that the objective

function is supermodular in 0.

In the following example, we use this technique to derive a useful result for multivariate,

supermodular payoff functions and independent random variables.

Theorem 4.8 Let s be a vector of independent random variables. Further, suppose that is a

vector ofparameters such thatfor i=l,...,n, the marginal distribution of Sj is given by F^s^Bj).

Then the following two conditions are equivalent:

(i) For all supermodular payoffJunctions ;r:SR" —»9t, \n(s)dF{s;6), is supermodular in

e.

(ii) Either (a) or (b) is true:

(a) For i = l,..,n, JT(q;6f ) > ^(a,;0/-) V0,H > 0/-, Va, e SR.

(b) For i = \,..,n, ^(a,;0/O < ^(a,;0/-) V0," > 0/-, Va,. e SR.

Proof: For all (ij) pairs, rewrite the expectation as

jn(Sn\ii>Si>Sj)dFnX(j (s„ Ky;8nKq) dFis&ydFiSjtfj).
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Note that the inner integral is supermodular in (sit Sj). Apply Table HI (ii) and check that the

supermodularity condition on the distributions reduces to (ii) (a) or (b).

This result says that parameters which induce FOSD shirts in independent random variables are

complementary in increasing the expected value of supermodular payoff functions. 14 Thus, if a payoff

function is supermodular in a group of random variables, increasing one variable in the stochastic

sense (of FOSD) is complementary with increasing the others stochastically as well. This result has

potential applications in the study of coordination problems in firms (recall the product design example

from above) as well as in general investment problems. Athey and Schmutzler (1995) apply this result

to analyze a firm's choices over investments in product design and process innovation.

5 SUPERMODULARITY OF Jk(x,s) dF(s;6)

This section studies the relationships between the parameters which enter the payoff function (jc) and

the parameters which shift the probability distribution (6). To begin, in Section 5.1 we will consider

interactions between the components of the vector x; in Section 5.2, we will study supermodularity of

the objective function in (x,&).

5.1 When is \K(x,s)dF(s) supermodular in x?
Js

As noted in Section 2, arbitrary sums of supermodular functions are supermodular. Thus, if

h : Y x S —» SR is supermodular in x, then h(y;

s

l

) + /i(y;s
2
) is supermodular in y. Using this fact, we

can show that the integral (over a subset of the arguments) of any supermodular function is

supermodular in the remaining arguments. So, if n(x,s) is supermodular in x for all s, then

|
it{x,s) dF(s) is supermodular in x as well. 15 Further, there is no weaker property of k(x, s) which

guarantees supermodularity of the objective function for all distribution functions. To see this,

suppose that iz(x,s) is not supermodular in x for a particular vector s°. Then, consider the

distribution function which places all of the probability weight on s°: clearly the expected value of

7t{x,s) will not be supermodular in x in that case.

14Since a supermodular function is also supermodular in the negative of all of its arguments, we allow for either case
(ii)(a) or (ii)(b) in Theorem 4.6.

15Note that weighting the payoff function by a nonnegative function which does not depend on x does not disturb the

supermodularity in x.
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5.2 When is \7t{x,s)dF(s\Q) supermodular in (x,6)7

We have already analyzed interactions between the components of x and between the components of 6.

Since supermodularity can be checked pairwise, we focus on an arbitrary pair (x,&), suppressing all

other parameters in our notation. In turns out that finding the relevant conditions for supermodularity

in this case is especially straightforward. For reference, we state the following simple lemma.

Lemma 5.1 Let An{s) = n{x
H
,s)-n{x

L
,s). Then \7t(x,s)dF(s;d) is supermodular in (x,0) if

and only if j A;r(s) • dF(s;8) is monotone nondecreasing in 6 for all xH > xL
.

In this way, we rephrase a problem of supermodularity as a problem of monotonicity, and we can

exploit the existing body of stochastic dominance and other stochastic monotonicity results.

To show how this can be used, we present the following theorem, which is based on a stochastic

monotonicity result.

Theorem 5.2 Let s be a vector of independent random variables. Then the following two
conditions are equivalent:

(i) For all Tt : SR x SR" —» SR such that K is supermodular in (x,s
t ) for i = l,...,n,

\7t(x,s)dF(s;d), is supermodular in (x,6).

(ii) For i = l,...,n, F^arf") < ^(a,;0L ) V0" > L
, a. € SR

Proof: Pick xH > xL
. Using Lemma 5.1, if n=l, then this theorem is equivalent to a FOSD

theorem. Now suppose that the theorem holds for n = m and consider n = m + 1. In the

continuous case, we can write

£iJA7C(s)dF(s;e)

=£ J JA7C(s)-dF^m(s^m ;6)- dFm+1 {sm+1 ;6)

J ae
\An{s)-dF^m {Km ,d) dFm+1 (sm+1 ;6)

-

1 Jiw-^^^i^^^A
Using a similar approach to the proof ofFOSD, we can establish that under the inductive

hypothesis, this expression is positive for all nondecreasing Atc(s) if and only if

ie ^fi+i fam+i #) - (In particular, Ak{s) could be constant in the first m arguments, or be

non-zero only at a point where %

F

m+l (sm+1 ;6) > 0). Thus, by induction, the theorem holds.
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This result shows that, when maximizing the expected value of a supermodular function, increasing a

parameter of the payoff function is complementary with a FOSD increase in all of the random

variables. 16

6 CONCLUSIONS

In this paper, we have created a framework for analyzing stochastic dominance theorems. The existing

literature proves stochastic dominance theorems in an ad hoc manner, either making use of

assumptions about the differentiability of payoff functions or else resorting to discrete distributions.

This paper formally proves that these assumptions are unrelated to stochastic dominance conclusions.

Using linear functional analysis, we prove a result which underlies all stochastic dominance theorems,

and further generalizes to conditional stochastic dominance theorems as well.

Once we have developed the unifying framework for stochastic dominance, we then draw

analogies between theorems about stochastic dominance and what we call stochastic P theorems,

which are theorems that characterize when a stochastic objective function satisfies a given property P.

We show that when P is a "Linear Difference Property," the same mathematical structure underlies

stochastic P theorems as stochastic dominance theorems. Examples of Linear Difference Properties

include supermodularity, concavity, and properties which place a sign restriction on a mixed partial

derivative (see Table I). Thus, this paper generates entire new classes of theorems, providing a

complete characterization of a variety of properties in stochastic optimization problems.

Our result about Linear Difference Properties is important because it not only tells us where to look

for results about stochastic supermodularity and concavity (that is, the stochastic dominance literature),

but it also tells us that there is no other place to look. Thus, if we can show that there is no general

stochastic dominance result, we will not be able to find a general stochastic supermodularity or

concavity result. In a precise way, Theorem 4.6 says that the stochastic supermodularity and

concavity problem has already been solved, to the extent that the stochastic dominance problem has

been solved.

The theorems presented here have a structure which will be useful in evaluating robustness in

applications. In particular, the theorems give necessary and sufficient conditions on probability

distributions for a property to hold for all payoff functions in a given set; thus, we can verify

robustness of comparative statics results across the relevant set of payoff functions. This contribution

is especially useful in an area of inquiry where many economic theories currently rely on functional

forms. For example, the methods of this paper allow us to systematically verify whether monotone

16Hadar and Russell (1978) and Ormiston and Schlee (1992) show that this is true for the case with only one random
variable.
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comparative statics derived in models with specific functional forms and probability distributions are

robust. Further, applying these methods to particular economic models help us pinpoint the critical

properties which must hold for a given monotone comparative statics hypothesis to be true.

Finally, we note a caveat to our analysis: because the techniques in this paper exploited the linearity

of the integral operator, we examined only properties and classes of payoff functions which are closed

convex cones. However, some properties we encounter frequently in economics are not preserved by

positive combinations and sums. Athey (1995) characterizes one such property, the single crossing

property, in stochastic optimization problems.
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APPENDIX

To begin, we present some basic definitions from lattice theory. The operations "meet" (denoted

a) and "join" (denoted v) are defined as follows: for x,x' eX,

x v x' = inf{z\z ^ x and z ^ *'}

x/\x' = sup{z|z < x and z ^ *'}

where the operations of supremum and infimum are defined using a given order. For the case of SR"

with the usual order, join is the component-wise maximum, and meet is the component-wise

minimum. A lattice consists of space and a partial order where the meet and join always exist. We

will often be interested in subsets of lattices which have a special structure:

Definition A.l A set K cX is a sublattice of a lattice X if x,x' e K implies that x v x' e K
and x a x' e K.

For example, any set [a, , a
2 ] x [b

x
,b2 ] is a sublattice of SR

2
.

In the study of monotone comparative statics, it is useful to be able to compare sets, such as

constraint sets or sets of maximizers of a function. The following definition provides a partial order

over sets.

Definition A.2 A set AcX is higher than a set 5cX in Veinott's strong set order, written

A>B, iffor all xeA and yeB, xvyeA and xAyeB.

If A = [a,,^] and B = [bub2 ] are intervals of the real line, then A > B implies that a, > b
x
and

a
2
>b

2
. In general, A > B implies that the lowest element ofA is higher than the lowest element of B,

and the highest element of A is higher than the highest element of B. The order is not reflexive in

general; A > A if and only ifA is a sublattice.

We now formally define supermodularity:

Definition A.3 A function h-.X—tSi is sup ermodular if'for all x,x'eX,
h(x) + h(x') < h(x v x') + h(x a jc').

It turns out (Topkis, 1978) that a function is supermodular if and only if its arguments are pairwise

complementary in the sense that increasing one increases the returns to increasing the other. For a

twice differentiable function, this reduces to nonnegative cross-partial derivatives between each pair of

variables. Supermodularity has many useful properties; for example, arbitrary sums of supermodular

functions are supermodular. 17

1 'Another useful property is that the maximized value (with respect to a subset of the variables) of a supermodular
function is supermodular. This property makes supermodularity easy to work with two-stage optimization problems.
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We now report a result which illustrate the usefulness of supermodularity in the study of monotone

comparative statics.

Theorem A.l (Milgrom and Shannon, 1994) Conditions (i) and (ii) are equivalent,

(i) The function h(x,t) is supermodular.

(ii) For all functions g' : X' —» SR, the set of x-maximizers

x\t,K) = aigmax[h(x,t) +

g

l

(x
t
)-\ 1- £"(•*,,)] is monotone nondecreasing in (t,K).

Further, if X c SR, then (i) is equivalent to (Hi):

(Hi) For all functions g.X—> SR, the set of x-maximizers x*(t) = argmax[h(x,t) + g(x)] is
xeX

monotone nondecreasing in t.

Theorem A.l states that if h is supermodular, then the comparative statics conclusion (ii) holds;

further, if we would like to guarantee that the comparative statics prediction holds for all additively

separable cost/benefit functions g', then h MUST be supermodular.
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