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1. INTRODUCTION

In static oligopoly models in which output is the strategic variable, it is

t3rpically assumed that the firms' output choices are made at an instant in time.

This is equivalent to assuming either that production is instantaneous or that a

firm is committed to producing its entire chosen output. Furthermore, although

the order in which the firms make these decisions will usually have a large

impact on the outcome (compare the Coumot (1838) and Stackleberg (1954)

outcomes), the order is usually exogenously specified. This paper presents a

model in which production is time-consuming and where firms can modify their

production plans at various times during the production period. Although the

production of all firms is assumed to take place contemporaneously, under certain

circumstances identified here, one firm may achieve a de facto first-mover

advantage. In addition, "degrees" of first-mover advantage emerge endogenously.

The model is essentially a Coumot model in structure with the exception

that the single output choice is replaced by a sequence of output choices. Thus

this is basically a one-period game with markets clearing only once. Only one

aspect of the dynamics of these markets is studied here, namely the time consumed

in production. The fact that markets clear only once provides the firms with a

commitment to sell everything they produce since unsold goods cannot be carried

to a later period. (An explicit multiperiod model with inventory is presented in

Saloner (1983)). This considerably simplifies the analysis and focuses attention

on the production decision.

The methodology adopted in this model corresponds closely to that developed



in Spence (1979) and Fudenberg and Tirole (1981) with two exceptions: (i) the

focus here is on production rather than investment, and (ii) the model presented

here employs a discrete-time formulation. In the spirit of those models we

assume that the amount any firm can produce in a production "sub-period" is

bounded above, (if it is unbounded then the standard Coumot model emerges.)

Consequently it is the relative production rates of the firms that are important

in determining the outcome.

We show that a firm with a relatively high rate of production has a degree

of first-mover advantage over its opponent. Indeed if the relative rates of

production become arbitrarily large, the firm with the higher production rate

gains an absolute first-mover advantage as in the Stackelberg model. On the

other hand, if the firms are sjnmnetric both in costs and speed of production, the

Coumot outcome emerges. The outcome varies continuously as the relative

production rate varies between these extremes. Thus the degree of first-mover

advantage and hence the appropriate oligopoly solution are endogenously

determined and are quite simply related to the production capacity of the firm.

An important result that allows us to refer to the outcome is that here

there is a unique perfect equilibriiim path for production. This is in contrast

to the multiplicity of equilibria that arise in the Fudenberg and Tirole model.

The uniqueness derives from the finite time-horizon rather than the discrete-time

formulation. The infinite-horizon setting of the Fudenberg and Tirole model

admits implausible perfect equilibria in which each firm invests forever. Given

that a firm's opponent is investing, to continue to invest as well is an optimal

response. While equilibria of this kind are implausible and uninteresting in



themselves, since they are perfect equilibria they can be invoked as perfect

equilibrium strategies off-the-equilibrium-path in other equilibria, i.e. the

threat to invest forever if an opponent deviates from some specified strategy is

credible. These threats can thus be used to sustain other equilibria. The

finite-horizon employed here, in contrast, does not admit threats of that kind

and hence eliminates equilibria sustained by them. The result is a unique

equilibrium for each set of values of the firms' production rates.

The final result of the model is that unlike the standard static models, the

notion of the firm's "size" (as measured by its maximum production rate) takes on

some meaning. "Larger" firms in terms of production rates, ceteris paribus , also

account for larger shares of total output. Thus if two firms merge, since their

combined production rate is at least the sum of their individual production

rates, the merged firm will be larger in a meaningful sense. Consequently it is

quite simple to generate examples in which firms find it profitable to undertake

mergers that result in a decrease in aggregate consumer surplus. This is in

contrast to mergers in the Cournot model where a merger essentially results in

the disappearance of one of the merging firms.

2. THE MODEL ¥ITH TIME-CONSUMING PRODUCTION

This paper is concerned with providing a means of characterizing a timing of

moves that neither endows one of the firms with an absolute first-mover advantage

in production (as does the Stackelberg model) nor robs both firms of any first-

mover advantage (as does the Coumot-Nash model). The method of doing this

closely follows the methodology for studying the investment rates of firms in a



growing industry developed by Spence (1979) and refined by Fudenberg and Tirole

(1981 ). In order to focus on the production timing issue, this paper analyzes a

single-period model.

The model has the same basic structure as the standard static quantity-

setting models. There are two major differences. Firstly, the ouptput and sales

decisions of the firms are made separate.^ Secondly, production is assumed to

take time. Formally, the production period consists of T sub-periods with

production being allowed each sub-period. After the production period is over

the firms then make their decisions about how much to sell. Thus each firm

chooses a sequence {q. , q-,..., q^, x } where q. is the output of firm i in sub-

period j and X is the amount put up for sale by firm i. The firms make each

sub-period choice simultaneously knowing the entire history of all firms' choices

to that stage.

Clearly if both firms have unbounded rates of production, each firm can

carry out its total desired production in the first sub-period and the situation

would be no different from the standard Coumot model. Instead we will assume

that there is some upper bound on the production rate, Q , for each firm such

that q <_ Q Vi and s, and we assume constant returns to scale up to Q . Our

intention is not to impose capacity constraints but rather differential rates of

production. Accordingly we will assvmie that TQ is "large" for all i. (if we

define the Stackelberg outcome with Firm i as leader as S = (S,, S„), as will be

apparent shortly, for our purposes capacity constraints will not be binding if

TQ > S for i=1 and 2). We will ignore the complicating factors of inventory

carrying costs and discounting during the production period, both in order to

focus on the speed of production and for simplicity.



The standard static best-response functions serve as useful benchmarks. We

1 2
refer to these as R and R . The equilibrium strategies will result in discrete-

S 3

jump production paths moving out from the origin in a northeasterly direction.

We will refer to such a path as a production growth path (PGP). We are

t-1 .

interested in the properties of equilibrium PGP's. Let li.
~

J^ 1 (for t
t 3

3 = 1

1,....,T), i.e. (q, , q. j is the point in output space that the PGP has reached at

time t.

Several benchmark regions will prove useful in what follows. These are

illustrated in Figure 1 along with a tjrpical PGP.

—FIGURE 1
—

1 2
Regions A,B, & C all lie within the outer envelope of R and R . The borders of

the regions are defined by the Nash and Stackelberg points

.

The equilibrium concept used is that of a pure strategy Perfect Nash

equilibrium. Equilibrium strategies will be denoted by superscripting variables

with a star. Where it is important to include the border of a region within that

region, the closure will be denoted by a bar. The intuition underlying each

result is given in the body of the text and proofs are provided in the appendix.

Lemma 1

:

If any equilibrium PGP reaches region D, both firms cease production.

Lemma 1 states that if an equilibrium PGP "jumps over" the outer envelope of



the best-response functions, all production must cease thereafter. The argument

relies on the finite time-horizon and uses a simple backwards-induction argument.

If the PGP has crossed both firms' best-response functions at the beginning of

the final sub-period, in the final sub-period it will be a dominant stategy for

both firms to produce nothing. Thus, under the assumption that it is common

knowledge that there will be no production in the final sub-period, regardless of

the players' actions in all the previous sub-periods, it will again be a dominant

strategy to produce nothing in the second-to-last period, and so on.

Lemma 1 establishes that the first sub-period in which the PGP enters the

region beyond the outer envelope of the best-response functions is also the last

sub-period in which there is production. This result is used in Lemma 2 to

establish that an equilibrium PGP will never terminate in the interior of that

region, i.e. if an equilibrium PGP reaches D it must terminate _on the outer

envelope of the best-response functions. By Lemma 1 it is common knowledge that

any PGP entering region D will terminate on entry. But given this, the last firm

to produce a positive output can increase its payoff by reducing its output

slightly in the last sub-period in which it produced a positive output. Provided

the amount by which this production choice is decreased is sufficiently small,

after that production has taken place the PGP will be in D and thus (by Lemma 1 )

will be the terminal point. Since this new terminal point will be closer to the

firm's best-response function, this point is preferred by the firm. This result

is given as Lemma 2:

Lemma 2

:

No equilibrium PGP ends in the interior of region D.

The argument behind Lemma 1 is straightforward but it does display the



essential difference between the finite-horizon and infinite-horizon versions of

the model. In the infinite-horizon version there are perfect equilibrium paths

in which both firms produce as rapidly as possible, even beyond both of their

best-response functions. Not only does this mean that there can exist equilibria

with terminal points in region D, but 'early-stopping' equilibria in which the

firms stop production before the outer envelope of their best-response functions

is reached can also be sustained. In these early-stopping equilibria both firms

threaten to continue production into region D if both firms do not stop at the

target early-stopping point. Since there do exist perfect equilibria that have

paths into region D, these threats constitute credible off-the-equilibrium path

strategies and indeed are mutually self-enforcing. If one of the firms deviates

by producing beyond the target point, it will then be rational for it to

participate in its own 'punishment'. In the finite-horizon model, by contrast,

there are no equilibrium paths that lead into region D and hence threats to carry

production into that region are not credible. As Lemma 3 shows, a major

consequence of this is that the 'early-stopping' equilibria disappear.

Lemma 3

:

Any equilibrium PGP ends in D.

It is straightforward to show that an equilibrium PGP cannot terminate

before the inner envelope of the best-response functions. At such a terminus,

given the point reached by its opponent, each firm would prefer to have attained

a larger aggregate output. However by assumption both firms have sufficient

capacity to have produced more. Thus consider the last sub-period for which one

of the firms failed to produce to its sub-period capacity, Q . That firm can

improve its outcome by increasing its output in that sub-period. Notice that in



30 doing it need not be concerned that it will be 'punished' for this action

since along the original path its opponent was already producing to capacity from

that time on.

It requires a more detailed argument to show that there cannot ezist early-

stopping equilibria on the inner envelope, or between the inner and outer

envelopes, of the best-response functions. In the previous case both firms would

have preferred larger outputs at the terminal point. In this case this is true

for only one firm (say Firm 2). Further it does not follow immediately that Firm

2 should raise its output in the last sub-period for which it produced less than

2
Q since Firm 1 may be able and willing to respond with larger outputs in the

subsequent sub-periods. In fact however (as is shown in the proof) a

sufficiently small deviation by Firm 2 will not trigger an unfavorable response

by Firm 1 . The logic of the proof uses the fact that if Firm 1 had a credible

response of this kind to a very small deviation, it would have wanted to adopt

this course of action as its strategy along the equilibrium path. (The formal

proof checks that there is a deviation of c > sufficiently small to make Firm 2

better off without triggering an unfavorable response by Firm l).

/

Lemmas 1, 2 and 3, taken together, imply that any equilibrium PGP, if

1 2
one exists, terminates on the outer envelope of R and R . In fact an

s s

equilibrium does exist and it is just the discrete-time analog of the equilibrium

in Spence's model (1979). Roughly speaking, in equilibrium both players produce

as rapidly as possible until the outer envelope of the best-response functions is

reached at which time both stop (or until one of the players reaches his

Stackelberg outcome in which case he stops and the other continues until his



best-response function is reached). Formally, however, the point at which a

beat-response function is "reached" is not well-defined in a discrete-time model

since it may be "jumped over". The following proposition provides the necessary

formalization to take account of this.

Consider the PGP that results when both players produce as rapidly as

possible, and then "connect the dots". Define the player whose best-response

function is the last to be crossed to be the 'outer' player (if the connected PGP

passes through N both players are 'outer' players). Without loss of generality

assume that player 2 is the outer player. Let sub-period l[j] be the first sub-

period during which the outer [inner] player can 'reach' his best-response

function if the inner [outer] player produces nothing in that sub-period. ^ The

following proposition describes an equilibrium PGP:

Proposition: The following strategies form a perfect pure-strategy Nash

equilibrium: Case (a) - The connected PGP passes to the southeast of S :

Player 1 produces as rapidly as possible until he has produced S.. Player 2

produces as rapidly as possible until he has produced S-.

Case (b) - The connected PGP passes to the northwest of S.

:

for t<j: q^*= q\ i=1,2

for t>j: if j<l, q. = (E ) (q. + Q )-q
J '^ J J

2* ^2
q. -Q
1*

f
-1*1

if Kj, q^ = max {0, N^
-q-^^ }

2*
. r„2 ,-1*s „ 1 _ -2*

q^ = min [R^ (q^ ), N2} q-,_
•
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Some typical equilibrium PGP's are illustrated in Figure 2 (with 'dots'

connected)

•

—FIGURE 2—

Notice that in the special case in which Q~> II. for both players, the Nash

1 2
outcome results as would be expected. Further, in Case (b) as Q and Q

approach zero with Qp/Q^ remaining constant, the equilibrium PGP approaches

2
the straight line connecting the origin and R with slope Qp/Q., i-e. the

continuous-time limit of this discrete-time model is the point on the outer

envelope reached when both firms produce as rapidly as possible. This is the

outcome used in Spence's (1979) continuous-time model and one point in the

continuum of equilibria that exists in the Fudenberg and Tirole (1981) model.

As the proof of the proposition illustrates, not only are those

strategies mutual best-response but either player can guarantee at least this

equilibrium outcome by playing the suggested strategy. Since any equilibrium

outcome must lie along the outer envelope of the best-response function and

because the players' interests are strictly opposing along this outer

envelope, this equilibrium is also the unique equilibrium PGP.

In this model the relative rates of production determine the outcome. If

the production rate of one of the firms is sufficiently large relative to its

opponent, it will be able to achieve its Stackelberg outcome and it will

effectively have a first-mover advantage. As the ratio Q2/Qi rises, the

equilibrium outcome changes continuously from S^ to S^. The Coumot-Nash outcome



^

FIGURE 2
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has no special significance and emerges only when the relative rate of production

of Finn 1 to Finn 2 is in the ratio N^/Nj.

As was mentioned in the introduction, the fact that the outcome depends on

the relative rates of production means that the concept of 'size' takes on some

meaning here. Suppose that when two finas merge that the production rate of the

merged entity is the sum of the individual rates. In this case the new finn will

be 'larger' than the merging firms and may attain a more dominant position in the

industry.

As an example consider an industry of three firms where the rates of

production are in the ratio Q-'-:Q^:Q^ = 2:1:1. Let all the firms have constant

marginal costs (normalized to be zero) and suppose the industry inverse demand

function is P = 15-q, where q = q]^+q2'*'q3 is "t^s total industry output at the end

of the period. The outcome in this model has qj^
= 6, q2=q3 = 3, P = 3»

consumer surplus of 72 and profits of 18, 9 and 9 for Finns 1, 2 and 3

respectively. Suppose now that Firms 2 and 3 merge to form Firm 0. In this case

the rates of production of Firms and 1 are equal. The equilibrium outcome has

qo ~ li ~ 5, P = 5, consumer surplus of 50 and profits of 25 for each firm.

Notice that Firm earns more than the sum of the pre-merger profits of Firms 2

and 3' Thus an incentive to merge exists and the merger leads to a decrease in

both consumer surplus and social welfare (as measured by the sum of consiuner and

producer surplus).

In this example the merger both destroys Firm 1 's leadership and reduces the

competitiveness of the industry. It is the combination of both of these effects
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that leads to the decrease in social welfare. To illustrate this, suppose

instead that Firms 1 and 2 merge to form a new Firm 0. In equilibrium qo = 9 and

q_ = 3- Thus the output of the merged firms is merely the sum of the pre-merger

firms' outputs. Accordingly prices and welfare are unchanged. The reason for

this is straightforward. In equilibrium Firm 3's output will be one-fourth of

the total, both pre- and post-merger. Thus from Firm y's perspective the PGP

remains the same. Further, in both cases Firm 3 is the 'outer' firm. Thus the

equilibrium, which is at the intersection of the PCP and the outer firm's best-

response function, remains unaltered.

Thus the example is not meant to illustrate that an incentive to undertake

welfare-reducing mergers always exists, but rather that a key ingredient to a

theory of mergers is a notion of firm size that is preserved (at least to some

degree) when mergers take place. In this model this is achieved by merging the

firms' production rates. More generally, merged firms should also be expected to

preserve existing customer relationships and brand loyalties.

3. CONCLUSION .

Traditional models of oligopoly usually do not embody any notion of firm

size. A result of this is the fact that firms that have equivalent cost

structures are placed in a symmetric position with respect to the shares of final

output that they command regardless of their capacities. Thus when two firms

merge the result is simply that one decision-making agent who was previously

active disappears. Therefore in a Cournot model with more than two S3nnmetric

firms, a merger by any two firms results in a decrease in profits to the merging
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firms. There are, however, a number of reasons why firm size may be important.

The reason explored in this paper relates to the relative speeds of production of

the competing firms in a model in which production is time-consuming. In such a

setting large firms, i.e., those with high maximum production rates, are able to

gain a degree of first-mover advantage. Other reasons for the importance of firm

size include customer loyalties that are not entirely lost when firms merge and

the reputations that the firms' products themselves enjoy. Any of these factors

will be sufficient for profitable mergers that are socially detrimental to be

possible.

It is not unusual for the number of equilibria in games with finite time

horizons to be much smaller than in their infinite-horizon counterparts. This

has been shown to be the case here and the factors leading to the difference have

been identified. However the reduction of the multiplicity of equilibria to the

unique equilibrium found here is only of interest if one is prepared to rule out

the perfect equilibrium strategies that give rise to the mutiplicity or if the

finite time-horizon intrinsically has more appeal. In product markets where

there are frequent model changes, either by the firms' choice or due to

obsolescence, the appropriate model has a finite time-horizon and thus also a

unique equilibrixim.

Finally, the model presented here provides a means of endogenizing the

degree of first-mover advantage a firm possesses in a quantity-setting oligopoly

model. A firm's degree of leadership or followership is linked here to its

production capacity. This raises a number of issues for entry deterrence and

strategic choice of capacity that have not been addressed here.
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APPENDIX

Lemma 1

;

If any equilibrium PGP reaches region D, both firms cease

-1* -2* -* i*
production (i.e. if q , q eD , q = Yt > s,i=1,2).

Proof; Without loss of generality, suppose that region D is reached on sub-

_1* _2*
period T-n. Consider sub-period T and suppose that (q^ , q )eD. Since both

firms are on or beyond their best-response functions it is a dominant

i*
strategy for each to set q,^

= 0. Now consider suD-period T-1 and suppose

/-I* -2*
that (q , q .)eD. Regardless of the move made in sub-period T-1 at sub-

-1* -2*
period T we will have (q , q )eD. Therefore neither firm will produce in

sub-period T. Therefore the choices at time T-1 will not affect the choices

1* 2*
at time T. But then again q^ ,, q„ i~ ^^.6 dominant strategies. Clearly

this reasoning extends to any sub-period from T-n on. Q.E.D.

1*
Lemma 2; No equilibrium PGP ends in the interior of region D (i.e. (q ,

2*
q ) E interior of D for any s).
s

Proof: Suppose that a PGP ends in the interior of region D. Let sub-period

3 be the last sub-period in which there was a strictly positive output by

-1 -2 -
either firm. Then it must be the case that (q , q ) eD by Lemma 1. But then

at best one of the folowing must have occured:

a) q^ < R^(qf) - q^ . for i or j, or (b) ll > R^(qi) and q^ > 0.

statement (a) merely says that at least one firm produced an output that took

it 'beyond' its best-response function. Statement (b) says that a firm
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already ' beyond' its beat-response function produced a positive output. In

case (a) this strategy is dominated by producing q^
= R {q_^) - q , and in

S S 3~ I

case (b) by setting q = 0. Q.E.D.

Leniina 3: Any equilibrium PGP ends in D (i.e. (q^, + q^ , q^ + q ) eC)

Proof: Suppose to the contrary that there is an equilibrium PGP that ends in

the interior of A,B or C. Suppose firstly that it ends within the inner12 i* i
enveloTJe of R and R . Consider the last sub-ueriod s for which q < Q for

3 s
- ^3

at least one i. (One such sub-period exists since TQ has been assumed to be

\ i*
sufficiently large.) This strategy for i is dominated by replacing q in its

sequence of moves by q^ = min (Q , qg + Rg (q^ "^ q^ ) - (q^ + q^). }•

(This simply says that player i can move the outcome in the direction of his

best-resDonse function.)

Suppose then that the PGP ends in the interior of B or C. This means

that the PGP crosses exactly one player's best-response function. Without

loss of generality let this be player 1. Consider the sub-period T.

i* 2* 2
Regardless of q_ , it was a dominant strategy for player 2 to set q_ = Q .

2* 2
Given that it was a dominant strategy for player 2 to set q_ =

, player 1

1*
must have set q„ = (for otherwise a reduction by player 1 would have

-2*
resulted in an outcome nearer his reaction function along the locus q_= q_ +

Q„). Consider sub-period T-1 and suppose that (q_ , q^, ) e B or C. Then it

2* 2must have been the case that q = Q . By the argument for period T player 1

1*
will set qm = if region B or C has been reached. But then for any choice

1* 2* 2
of q„ , it is a dominant strategy for player 2 to choose qm_< = Q since the
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-1* 1* -2* 2
outcome q„ = (q„ . + q_ + 0, q,- . + 2Q ) is preferable to the outcome q =

-1* 1* -2* 2 2v 2 2 2

(q^_^ +
q^_^

+ 0, q^_^ + q^_^ + q^) V q^_^ , q^ < Q . Extending this argument

backwards in time yields the conclusion that the first step into region B or

1* 2* 2
C and all succeeding steps must have had q =0 and q = Q . Now consider

1* 2* 2
the last sub-period s for which q ^^ and/or q i^ Q (such a sub-period

3 3

1*
exists for if q, = Yt, the PGP could not cross firm 1's best-response

1* 1*
function). If q * then firm 1 could do better by reducing q and if

2* 2 2*
q < Q firm 2 could do better by increasing q
3 3

The final possibility to consider is that the equilibrium PGP ends _on

the inner envelope of the best-response functions at a point other than N.

Suppose that there does exist such an equilibrium PGP and call the terminal

point A as in Figure 3'

—FIGUEE 5~

2* 2
Let sub-period s be the last sub-period for which q < Q • Let B =

-1* 1* -2* 2*
(q + q , q + q ) and let K be the point B shifted vertically by e. At

o 3 3 3

2 2*
point B change player 2's strategy for the rest of the game to q = q + e,

5 S

2 r 2 2-1* -2*1
q = min (Q , R (q ) - q. } Vt > s. Given this strategy of player 2, player

b 3 b X

1 can guarantee the outcome given by C in the figure by producing a total of

1*
(L - q ) in the remaining periods. It remains to show that player 1 can do

no better than C for if this is the case point C will result from 2's

suggested deviation, an outcome that is strictly preferred by player 2.

Given player 2's suggested strategy, the outcome will lie on the locus HIJ.
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All the outcomes on HI with the exception of C are dominated by C itself.

Suppose then that player 1 can force an outcome on IJ that is preferred by

player 1 to C i.e. that lies on IJ to the southwest of D. Note however that

starting from B even by producing as rapidly as possible player 1 cannot

attain an output of E. before player 2 attains an output of E-. This

follows since if this was possible, adopting that strategy at B would have

resulted in a superior outcome for player 1. Also, starting from K, player 2

can attain a total output of exactly C„. Therefore when player 2 adopts the

suggested strategy and player 1 produces as rapidly as possible, the PGP lies

on a dotted line originating at K and passing between H( e) and G(£). Call

2
the point at which this dotted line intersects R , P. The closest to J along

s

2
R that F can lie results when this dotted line passes through G when e=0

when G(0)hG'. Note that this value of F' is strictly less than E. by the

strict concavity of player 1 's profit fiHiction. Thus facing player 2's

suggested strategy, the best outcome that player 1 can attain is P' , strictly

less than E. . By choosing e>0 small enough, player 2 can ensure that F, <

D.and hence that C is preferred by player 1 to P. Thus player 2*3 deviation

results in point C which with e>0 is strictly preferred by player 2 to the

original outcome A. Q.E.D.

Proposition: The following strategies form a perfect pure-strategy Nash

equilibrium: Case (a) - The connected PGP passes to the southeast of S.: Player

1 produces as rapidly as possible until he has produced S,. Player 2 produces as

rapidly as possible until he has produced S .
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Case (b) - The connected PGP passes to the northwest of S,

for t<j: qj = o\ i=1 ,2

1* ? -1 /-?* ? 1*
for t>j: if j<l, q = (rJ) (q^ + 0'')-q

q. -Q
1*

r -1*1
if Kj, q^ = max (0, N^-q-j^

|

2*
r 2 -1* -2*

q-^ = iiin {Eg (q^ ), N^j "
q-j_

•

Proof of Proposition 1 (SKETCH ONLY): Consider case (b). (Case (a) is

obvious.) Firstly consider sub-period 1. By the argument of Lemma 1, once

2
R is reached both players will stop producing. If N can be reached within

sub-period 1 it is clearly a Nash equilibrium for the players to produce the

outputs that will take them to N (by the very definition of N). Suppose then

-1*
that q > N and that j=l. If player 1 produces nothing in sub-period 1 it

is clearly optimal for player 2 to produce up to his best-response function.

Similarly if player 2 produces up to his best-response function, since all

production will then cease (because of the requirement of perfectness) , it is

optimal for player 1 to produce nothing. (Any positive output would result

in a terminal point on a lower isoprofit curve for player 1
. ) Suppose then

2
that j<l. If player 2 produces Q player 1 can choose to produce an amount

2
that will bring the players exactly to R . Clearly player 1 would not choose

3

to produce any more than that. Further if player 1 produces anything less,

player 2 will produce a strictly positive amount in the following sub-period.

2
Since player 2 will not stop until R is reached, this outcome is strictly

s

worse for player 1 . Given this strategy of player 1 , player 2 can do no

2* 2
worse by setting q. = Q . Now consider any sub-period before j and suppose



iq

2
that player 2 produces less than Q^ in that sub-period. Given the strategy

of player 1 this means that when sub-period j is reached the outputs will be

at a point due south of where it would otherwise have been. By virtue of the

2
way sub-period j is played, the terminal point on R that is reached can be

no better for player 2. Similarly for player 1. Q.E.D.
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Notes

1. This follows the methodology used in Saloner (1983)»

2. This assumption follows the Fudenberg and Tirole (1981 ) model.

3. Formally, 1 is the smallest value of s such that

R (q* ) < q_ + Q when i is the outer 'Dlayer.
OS Os
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