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Peter Diamond and Joel Yell in

Massachusetts Institute of Technology

1. Introduction

Analyses of general equil ibrium with imperfect transactions take two

different forms. The first posits a schedule of transaction costs and makes

no further modifications in the Walrasian mechanism for attaining equili-

brium. (For examples, see Foley (1970), Hahn (1971) and more recently

Fischer (1982).) The second focuses on the problem of coordinating tran-

sactions, rather than upon their costs. Studies of search equilibria

(e.g., Diamond (1982, 1984, forthcoming), Mortensen (1982a, b), Weibull

(1982)) are examples of this second approach.

This paper continues the exploration of transactions coordination

models. In the models discussed here, transactions occur only at meetings

2
between a buyer and seller selected at random. As in the earlier work

cited above, we make the crucial simplifying assumption that individuals

explore transactions opportunities one at a time. In particular, economic

Diamond (1982) presented a search model of a production economy with
inventory levels restricted to and 1. Here, we consider continuous
rather than discrete levels of inventory. The introduction of continuous
inventories enables us to analyze price setting behavior. To deal with the

mathematical complexities that continuous inventories entail, we restrict
ourselves to discussion of an exchange economy. An interesting feature of

the analysis is the absence of the multiple equilibria that appear in the

production economy.

2
We make the simplifying assumption that traders pair at random in the

belief that the results of our analysis would not change significantly
under a regime of systematic search, such as the one discussed by Salop
(1973). We briefly consider matching technologies better than random ones
in Section 5. We do not consider repeat transactions.
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agents experience a Poisson process in which transactions opportunities

.irrive at a mean rate that depends on the transactions technology am

the collective behavior of all agents in the economy. We confine our

analysis to a pure exchange economy without credit, and to circumstances in

which there is an incentive to make transactions as rapidly as possible. A

deeper understanding of economies with this simple structure may help in

analyzing more complicated and realistic models in which credit, production

opportunities and intertemporal preferences play their appropriate roles.

Our objective is to describe price setting in a barter economy. We

elicit conditions for the existence of steady-state equilibria and analyze

optimal price setting by sellers. We show that when equilibria exist, they

are unique. Moreover, we conclude that the greater the capacity of the

transactions technology to allocate consumer goods, the lower the

equilibrium price. We also consider equilibrium distributions of inventory

for different arbitrarily set prices. We find that higher equilibrium

prices are associated with larger inventories.

In Section 2 we set out a simple, deterministic Robinson Crusoe

economy that introduces our basic technological assumptions. Throughout

this paper, we assume that inventory accumulates smoothly, and we model

consumption as a process in which discrete bundles of goods are consumed at

discrete times. In Section 3, we modify the Crusoe economy by introducing

a stochastic technology for converting inventory to consumable goods. We

model the arrival of consumption opportunities as a Poisson process and

calculate the steady state inventory distribution. Section 4 exhibits the

expected lifetime utility in our stochastic Crusoe world as a function of
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the level of initial inventories. Section 5 begins an equilibrium

analysis of a model of stochastic pairwise trading. We relate an

individual's ability to trade successfully to two factors controlled by the

assumed search technology: the rate at which trading partners are located;

and the equilibrium probability that a randomly selected partner has an

inventory sufficient to enable him to consummate a transaction. We discuss

the distribution of inventories and the aggregate lifetime utility in a

steady state equilibrium. The analysis in Section 5 assumes that trading

occurs at a relative price of one. In Section 6, we distinguish between

buying for consumption and selling for the purpose of increasing inventory.

This permits introduction of a (uniform) trading price different from unity

and enables us to compare steady states of the economy associated with

different trading prices. Higher trading prices result in greater stocks

of inventories and are in this sense less efficient. In Section 7 we

describe optimal individual price setting in an economy with many profit

maximizing firms. We show that price is higher the greater the incoming

flow of consumption goods relative to the potential capacity of the economy

to distribute goods to consumers. We conclude in Section 8 with a

discussion of directions for further research.

2. Robinson Crusoe Economy

To introduce the technology and display our notation, we begin with a

simple Robinson Crusoe world. Crusoe is immortal. He receives consumable

goods continuously from nature at a rate a. His consumption is not
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continuous, however. He derives utility from consumption of discn

bundles of size y. Each consumption bundle carries u units of

3
instantaneous utility. Crusoe has a lifetime utility that depends on his

consumption path, from the present to the indefinite future. If

consumption occurs at discrete times t, , t
?

, ..., lifetime utility is

W = u Z e"
rt

i , (2.1)
i

where r is a positive utility discount factor. Given positive r, it is

desirable that consumption take place as early in history as possible.

Our assumptions enable us to specify Crusoe's inventory of goods as a

function of time. Let Crusoe's initial endowment of goods, x~, lie between

and y. On our assumptions, inventory grows linearly at the constant rate

a until it reaches y. Crusoe then consumes a bundle of size y, and his

inventory drops to zero. Crusoe's inventory at time t is therefore

x(t) = x
Q

+ at - y Int((x
Q
+at)/y), (2.2)

where Int(z) is the integer part of z. On the other hand, if Crusoe's

initial inventory exceeds y, he draws it down (at an infinite rate) until

it drops below y, after which the pattern described by (2.2) is repeated.

From (2.2), observe that in the Crusoe universe there is an equal

probability of an inventory level x at any value between and y, at any

time picked at random in the distant future. We may choose the equivalent

3
In later sections, we introduce transactions and assume utility in an

amount u accrues when there is a successful purchase.
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interpretation thai, in a steady state, there is a population of <.r\r

(normalized to one) whose inventories are distributed uniformly between

and y, with mean y/2.

One may also calculate Crusoe's lifetime utility W(x
n

) as a function

of his initial inventory, x~. Let x =0. Because it takes y/a units of

time to accumulate a consumable bundle of size y, and consumption is

repeated at equal intervals y/a into the future, (2.1) tells us Crusoe's

lifetime util ity is

W(0) = u e-^l-e-^ 3 ]" 1
. (2.3a)

If x
n

lies between and y, the consumption path is the same as it would be

if Crusoe started with zero inventory at a time x„/a earlier. Thus,

W(x
Q

)
= W(0)exp(rx /a) x

Q
<y, (2.3b)

and W is convex between and y. If x
n

is greater than y, we have

W(x
Q

)
= u Int(x

Q
/y) + W(x -ylnt(x /y))

= u Int(x
Q
/y) + W(0)exp[r(x -yInt(x /y))/a]. (2.3c)

From (2.3c), we observe that W(x
n )

- u Int(x
n/y)

is a periodic function.

Lifetime utility W(x„), as specified by (2.3), is therefore neither concave

nor convex in x
n , a characteristic of the models analyzed in this paper.

As in the standard continuous consumption model, the one-person Crusoe

economy is equivalent to an Arrow-Debreu economy. Assume trade is

instantaneous. Let the population be composed of identical agents who do

not choose to consume what they themselves are capable of producing. Then,

under the assumption that each consumption bundle is composed of y units

from the same supplier, trade takes place in discrete
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bundles of size y. Accumulation of y units of inventory then leads to the

inventory and consumption behavior described by (2.1-3). The presence of a

present discounted val je, lifetime budget constraint does not change this

story, but effectively introduces an interest rate r as a consequence of

linear intertemporal indifference between present and future consumption.

In Sections 5-7, we explore models in which trade is not

instantaneous, and the transactions rate is endogenous. Our assumption of

an endogenous transactions rate distinguishes the work presented here from

4
conventional Arrow-Debreu analyses. As a prelude, we consider in Section

3 a stochastic variant of the Crusoe economy that leads conveniently to the

more complex analysis that follows.

3. Stochastic Crusoe Economy

We now change the underlying technology to allow for a preparatory

stochastic process before consumption can occur and again explore inventory

behavior over time. As in Section 2, we let inventories increase

continuously at a constant rate, a. We add, however, the new assumption

that a bundle of y units of a good must be processed in home production

before it is ready for consumption. The home production process has the

following form: each bundle of y units is set aside for ripening; only one

bundle can be processed at a time; ripening is stochastic; and the arrival

of ripeness obeys a Poisson law with rate b. Consumption takes place

immediately after a bundle is ripe. This stochastic Crusoe economy is

4
Not every .model with a finite transactions time differs from an

Arrow-Debreu model. With an exogenous distribution of the time needed to

deliver goods to the market, one can distinguish produced from marketed
goods and apply the standard analysis in terms of marketed goods. An
interesting model of this sort has been studied by Lucas and Prescott
(1974).
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equivalent to an Arrow-Debreu economy in which ripening represents a

stochastic technology for delivering goods to consumers, and "trade" is

instantaneously coordinated once an agent reaches a market.

In the stochastic Crusoe economy, an inventory less than y grows at

the rate a. Once y is exceeded, there is a probability per unit time, b,

of a stepwise drop by an amount y. We introduce scarcity into the economy

by assuming

a<by. (3.1)

Equation (3.1) tells us individuals are capable of consuming more rapidly

than the rate at which inventories grow. It will be shown explicitly

below that this scarcity condition is necessary if the economy is to

possess a stationary equilibrium. The quantity a/by is the ratio of the

rate of inflow of endowment to the potential rate at which goods can be

ripened if sufficient capacity is available. In a steady state, the rate

of ripening must equal the rate at. which endowment arrives. Therefore, we

shall refer to a/by in the discussion below as the capacity utilization

ratio.

Assume the economy consists of a large number of individuals, distin-

guished from each other only by their inventory holdings. Denote by F(x)

the steady-state equilibrium distribution of inventories, with associated

density F'(x). Consider the flow of agents with given inventories along

the (positive) x-axis. By definition, all contributions to this flow sum

to zero in a steady state. We shall derive the equilibrium condition and

solve for F(x).

At inventory level x, the flow of agents to the right is aF'(x). On

the other hand, the flow to the left, is given by the rate b times the total

number of agents to the right of x with inventories capable of ripening and



therefore of dropping below x. This is b[F(x+y) - max[F(x) ,F(y)]] , the

number of inventory holdings at least as large as y, lying in the interval

(x,x+y). Equating rightward and leftward flows, we observe that the

5
equilibrium distribution of inventories satisfies

aF'(x) = bF(x+y) - bF(y); x<y (3.2a)

aF'(x) = bF(x+y) - bF(x). x>y (3.2b)

These are linear, first-order differential equations with advanced

arguments. We seek a continuous solution F(x) such that F(0)=0, and

F(°") = l- Given these boundary conditions, the solution is unique.

Equation (3.2b) is independent of (3.2a). Yet the solution of (3.2a)

depends on the solution of (3.2b). Thus, we attack (3.2b) first.

kx
Substituting e

v

for F(x) in (3.2b), we see that F(x) has exponential form

provided the rate constant k satisfies the characteristic equation

ak = b(e
ky

-l). (3.3)

By using Rouche's Theorem (e.g., Titchmarsh, 1932, chapt. 3), or simply by

diagramming the complex k-plane, we find that (3.3) has only one (real)

root k* with negative real part. This suggests the trial solution

5
More general non-steady paths are described by a Fokker-Planck (or

forward Kolmogorov) equation of the form

3f(x,t;x
Q

) 3f (x,t;x
Q )

= -a

3t 9X

+ b[f(x+y,t;x
Q

) - 9(x-y)f(x,t;x )],

where f(x,t;x„) is the probability that an agent with initial inventory x
n

has inventory x at time t, and where 0(z)=l for positive z, and 0(z)=O for
z negative. This equation is analyzed in Yell in and Diamond (1983), where
we. consider the welfare consequences of an improvement in the search
technology.
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F(x) H(constant)exp(k*x). Making this substitution in (3.2b), we obtain

F(x) = 1 - [l-F(y)] exp[k*(x-y)]. x>y (3.4)

The boundary value F(y) is set by solving (3.2a) and enforcing continuity.

Reading off F(x+y) from (3.4) and substituting the result in (3.2a), v/e

have the density

F'(x) = (b/a)[l-F(y)][l-e
k
* x

J. x<y (3.5)

Integrating (3.5), the associated distribution is

F(x) = (b/(ak*))[l-F(y)]U-e
k
* x

+k*x], x<y (3.6)

where we have used F(0)=0. Setting x=y in (3.6) and using (3.3), one

observes that continuity of F(x) requires

l-F(y) = a/(by). (3.7)

The quantity l-F(y) is the probability that a randomly chosen individual is

not stocked out. Equation (3.7) therefore restates our scarcity assumption

(3.1) in probability terms and confirms that (3.1) is required for the

existence of a steady state equilbrium.

In Figure 1, we have plotted the density F'(x). From (3.3) and (3.8),

one observes that apart from an overall scale factor y, F'(x) is a one-para-

meter family of density functions specified by the capacity utilization

ratio z=a/(by). Differentiating (3.3) with respect to z, we have

Indeed, an intuitive argument that assumes there is a steady state
equilibrium leads directly to (3.7). One observes that in in a steady
state, (3.7) is equivalent to the statement that the flow of goods into
inventory, a, equals the expected flow of goods out of inventory,
by[l-F(y)]. Equation (3.7) can also be derived formally by integrating
(3.2) over the interval (0,°°).
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d(k*y)/dz = k*y(l-z+zk*y)
_1

> 0. (2.

Equation (3.8) implies that if the inflow of goods, a, increases, the rate

constant k* decreases in absolute value, and the distribution of inventory

holdings acquires a flatter right-hand tail. This behavior is shown in

Figure 1, where F' is plotted for two different values of z. On the other

hand, an increase in the expected outflow, by, increases the absolute value

of k* and shrinks the right-hand tail. A change in y accompanied by a

proportional change in a corresponds to a change in the units in which

goods are measured. From (3.3), such a change leads to an inverse pro-

portional change in k*, in which k*y remains constant.

If we use (3.4,5) to compute the mean inventory, we obtain

x = y/2 - 1/k*. (3.9)

The term y/2 in (3.9) represents goods in process. If b were indefinitely

large, an agent's inventory level would drop to zero immediately on reaching

y, and the steady-state mean inventory would be y/2, as in the deterministic

world of Section 2. Equation (3.9) shows that the consequence of assuming

a finite transaction time is lower efficiency, manifested by a shift of

mean inventory upward by -1/k* from the deterministic value. From (3.8)

and (3.9) we observe that the more rapid ripening caused by a larger

meeting rate b decreases average inventories, while a greater input rate of

goods, a, increases average inventories.

4. Expected Lifetime Utility

We turn now to an evaluation of consumption patterns in terms of
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lifetime utilities. We discount utility as before at a constant rate r.

We will show that, as in Section 2, the expected present discounted value

of lifetime utility is neither concave nor convex as a function of initial

inventories. We give an explicit expression for lifetime utility for

completeness. No further use is made of this expression in this paper; we

reserve detailed welfare analysis for separate treatment.

To fix ideas, we first compute the present discounted value of the

lifetime utility of an agent whose initial inventory is infinite. Given

our assumptions, such an individual takes advantage of every consumption

opportunity. The probability of an act of consumption in an infinitesimal

-rt
time interval dt is b dt, and the payoff is u e . Assuming an initial

infinite endowment, the expected present discounted value of utility is

oo

W(«) = bu/ e"
rt

dt = bu/r. (4.1)

To compute W(x
Q

) for a finite initial endowment x
Q

, we express

lifetime utility as the summed product of the Poisson jump probability

-rt
b dt, the payoff [u e ], and the probability,

T f(x,t;x
Q

) dx,

that an agent with initial endowment x~ has an inventory greater than y at

time t:

oo oo

W(xn )
= bu / e"

rt
/ f(x,t;x n ) dx dt. (4.2)

A derivation of the results of this section is presented in Yellin
and Diamond (1983)
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Using (4.2) and the homogeneity and additivi ty of the underlying

stochastic process, one derives differential equations that determine W(x):

rW(x) = aW'(x); x<y (4.3a)

rW(x) = aW'(x) + b[u+W(x-y )-W(x)] . x>y (4.3b)

Equations (4.3) are dynamic programming relations. They equate the

discount rate times expected lifetime utility to the expected flow of

utility plus the expected value of capital gains from changes in inventory.

The asymptotic limit W(°°) given by (4.1) is reconfirmed on inspection of

(4.3b). In Figure 2, we exhibit the shape of W(x), as given by (4.3).

Note the monotone increasing behavior as x increases, and also the upper

bound on W that results from the scarcity condition (3.1).

For completeness, we give the explicit solution of (4.3) for W(x). By

inspection, the solution of (4.3a) is the simple (convex) exponential

W(x) = W(0)e
rx/a

, x<y (4.4a)

just as in (2.3b). Since W is convex over the region x<y, increasing and

bounded above, it is neither convex nor concave. For x greater than y, we

may integrate (4.3b) stepwise to obtain

W(x) = A. + W(0)e
r(x"^ )/a

+(-b/a) j ^(ml^C (x-jy)
m

e
(r+b) (x"^ )/a

,

J m=0
J_m

jy < x < (j+l)y. (4.4b)
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In (4.4b),

A. = (bu/r) [1- (b/(r+b)) J
]. (4.4c)

J

The continuity of W(x) in x yields

-(b/a)C
1

= W(0)(e
ry/a

-l) - ub/(r+b); (4.4d)

(-b/a)
j+1

C
j+1

= -u[b/(r+b)]
j+1

+ W(0Re
ry/a

-l]

+e <
r+b)y/a (W Vc. v>! . (4.4e)

m=0 J
"m

There remains the unknown lifetime utility, W(0), of an agent whose

initial endowment is zero. From (4.2) we obtain after some calculation

(Yell in and Diamond, 1983)

W(0) = e"
ry/a

W(y) = u e
" ry/a

[l-e"
ry/a

]

_1
[(l-e" Q )/(r/b+l-e" Q

)] , (4.5)

where Q is the unique positive root of the characteristic equation

e"
Q
-l = r/b - (a/by)Q (4.6)

of (4.3b). On comparing (4.5) with (2.3a), we observe that introduction of

a finite transactions rate results in the appearance of the factor

1-e /(r/b+l-e ), which lowers W(0) below the deterministic value (2.3a).

This is consistent with the efficiency loss that must follow from the

introduction of a stochastic process in which transactions are not

instantaneous. From (4.6), as the meeting rate b increases, Q increases,

the new stochastic factor approaches 1, and W(0) tends asymptotically to

the Crusoe value (2.3a).



Se.irch Economy

Rather than placing Robinson Crusoe in an Arrow-Debi nnomy where

trade is perfectly and instantaneously coordinated, let us now place him in

an exchange economy where the problem of finding a trading partner replaces

the ripening process. To begin, let us assume that meetings between pairs

of agents represent two independent random draws from the population, and

that such meetings occur at the rate b'/2 per capita. Each such trade

permits both traders to consume. Then each individual experiences meetings

at a rate b' -- the number of agents per meeting, 2, times the meeting rate

per capita, b'/2. On the other hand, not every transaction can be

consummated, for each individual meets with a partner who has sufficient

inventory to trade in a fraction [l-F(y)] of his meetings. Thus, each

agent experiences an effective arrival rate of trading partners

b = [l-F(y)Jb\ (5.1)

Equation (5.1) shows that while b depends on the exogenous technology

for bringing agents together, it also depends on the endogenous

distribution of inventory holdings. In particular, in the Arrow-Debreu

economy analogous to the Robinson Crusoe economy analysed in Sections 3 and

4, the Poisson parameter b, governing the time it takes to deliver goods to

market, is exogenous. In a search model, however, success in finding a

trading partner is sensitive to the availability of partners, and the

Poisson rate b is partly endogenous.

If we assume, as in Sections 2 and 3, that agents continuously receive

goods at the rate a, then the steady-state distribution of inventories



satisfies (cf. (3.2))

aF'(x) = b'[l-F(y)][F(x+y) • F(y)]; x<y

aF'(x) - b'[l-F(y)][F(x+y) - F(x)]. x>y (5.2b)

Wo analyze (5.2) below.

One can also generalize to search technologies that lead to higher

probabilities for successful transactions than does random pairing. Let

the fraction of meetings that result in successful transactions be h. In

general, h will be an increasing function of U-F(y)], the fraction of the

population holding inventory greater than the minimum necessary for

entering into transactions. If all [l-F(y)] individuals capable of trading

have equal probabilities of a successful pairing, then each agent

experiences trading opportunities at an arrival rate

b = b'h(l-F(y))/[l-F(y)]. (5.3)

Given random pairings, h = [l-F(y)] . Thus, the presence of agents unable

to trade slows the trading process. If, on the other hand, the search

technology is such that those unable to trade do not slow the search for

trading partners, h = [l-F(y)]. These are polar cases. We may plausibly

expect h(x) to be a function (defined on the unit interval) that lies below

x and above x . In terms of h, the equilibrium relations (5.2) become

aF'(x) = b'h(l-F(y))[l-F(y)]-
1
[F(x+y) - F(y)]; x<y (5.4a)

aF'(x) = b'h(l-F(y))[l-F(y)]"
1
[F(x+y) - F(x)]. x>y (5.4b)
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We now analyze the random search model described by (5.2). We will

show that the solution of (5.2) is identical to the Crusoe solution

(3.4,6), provided that the rate parameter b in Section 3 is replaced by the

parametric combination [ab'/y] , and that the scarcity condition a<b'y is

imposed. It is natural to ask whether by proper choice of parameters one

can find a solution of the linear equations (3.2) that satisfies the

nonlinear equations (5.2). Recall from (3.7) that continuity of F(x)

requires

1 - F(y) = a/(by). (5.5)

Combining (5.5) with the rate relation (5.1), we obtain

b = [ab'/y]*. (5.6)

Making the replacement (5.6) in (3.3, 3.4, 3.6), and substituting the

resulting distribution F(x) into (5.2), one confirms that a solution for

the nonlinear random matching problem has been obtained, provided a<b'y.

We state without proof that any nontrivial solution of (5.2) is unique.

Other search technologies may be analyzed by combining (5.5) with the rate

relation (5.3).

One may extend this analysis to aggregate lifetime utility. In steady

state equilibrium, the aggregate per capita consumption rate equals a, the

aggregate per capita incoming flow of goods. Thus, the aggregate per

capita flow of utility is ua/y, a quantity that is independent of the

meeting rate b
1

and, more generally, of the pairing technology h(x) intro-

duced in (5.3). The present discounted value of aggregate instantaneous

utility, W
fi

, equals expected lifetime utility summed over all agents.

Therefore, in a steady state equilibrium we have
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W
n

= ua/(yr) = / W(x) F'(x)dx, (5.7)
u

where W(x) is the individual expected lifetime utility given an initial

inventory x, and F(x) is the solution of (5.4).

Though steady state aggregate lifetime utilities are independent of

the arrival rate b', economies that have different search technologies (and

therefore different arrival rates b') differ from each other in important

ways. In particular, the equilibrium distribution of inventory holdings,

F(x), differs among such economies. Recalling (3.8-9), we confirm from

(5.6) that average inventories, y/2-l/k*, increase as the exogenous part,

b
1

, of the rate of meetings decreases. The expected lifetime utility from

holding a given initial inventory level also varies with the meeting rate.

In particular, expected lifetime utility increases with an increased

meeting rate, at each level of initial inventory. This can be reconciled

with the constant average utility (5.7) by observing that the steady state

distribution of inventory holdings shifts to the left for successively

larger meeting rates.

6. Trading Prices

We now modify the model of Section 5 so as to allow consideration of

price-setting behavior. In this section we calculate the steady state

distribution of inventories for arbitrary uniform prices. In Section 7 we

analyze equilibria with many profit maximizing firms.

Thus far we have assumed that the only reason for a failure to trade

o

is that either potential partner to a transaction is stocked out. Under

o

Therefore we have assumed the double coincidence of wants is always
satisfied.
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that dssumption, we have imposed the rule that all trade takes place 01

one- tor-one basis -- with each partner trading and receiving y units of the

universal consumption good. If, however, we impose instead the rules of

specific bargaining theories such as those of Raiffa or Nash (cf. Luce and

Raiffa (1957)), then trade cannot be one-for-one except under special

circumstances. In particular, given the Raiffa bargaining solution, both

parties to any trade have equal gains of utility. However, in one-for-one

trade between two agents with inventories x, and x~, equal utility gains

imply

u + W(xry) - W( Xl )
= u + W(x

2
-y) - W(x

2
). (6.1)

The function W is non-linear. For any x, , (6.1) therefore can be satisfied

only for exceptional values of x~, in particular for x, = x
?

.

The straightforward generalization of our model of one-for-one trade

is to allow different prices in different trades. This would reflect the

reality of price distributions. Such a generalization greatly complicates

the analysis, however, and we take an alternative approach. We explore a

simple institutional setting in which equilibrium is achieved at a uniform

relative price different from unity. When trade occurs, y units are

"purchased" for consumption, and the buyer "pays" p units which are added

to the inventory of the seller. The inventories of any two traders are

therefore assumed to be perfect substitutes in future trades. To maintain

the price interpretation, we further assume p is greater than y. Any trade

now involves one randomly selected buyer and one randomly selected seller.

Thus, one can thfnk of the population of economic agents as a set of pairs,

with one member of each pair available to buy and one to sell.



With only these changes in the model, individual inventories would be

subject to a Poisson process compounded from distinct stochastic buying and

selling behaviors. Inventories would have jump increases by steps p-y, and

jump decreases by steps p, in addition to increases at a constant rate due

to the arrival of endowment. The presence of jump increases greatly

complicates the analytic problems discussed in Sections 3-5, and we make no

attempt to analyze such a two-jump process. Instead, to retain the picture

of uniform inventory growth and discrete inventory outflows, we simplify

further by introducing an intermediary that smooths increases in inventory

by providing insurance against the random proceeds of the selling process.

We shall refer to our intermediating institution as the "firm." It

operates under the following rules. Agents receive inventory from nature

at a constant rate a'. Also, every agent is employed by the firm and

receives "wages" at a rate a-a'. Each agent therefore experiences a

continuous growth of inventory at the overall rate a, which is now

endogenous. The firm sets the price at which its workers offer goods for

trade. It also sets its wage rate a-a' equal to the flow of profits per

worker. Wages are paid independent of an agent's success in selling and

whether or not she or he possesses the minimum inventory necessary to

g
consummate transactions. Furthermore, inventories are made available for

trade, even though there is no return to making them available. In

9
If wages depend on whether inventories are above or below y, purchase

and consumption by an agent with inventory between y and y+p will lower
subsequent wages. Therefore, in order to compute the equilibrium distri-
bution of inventories, it becomes necessary to determine the set of
inventory levels at which consumption opportunities are taken.

To compensate separately for labor and for inventories would
introduce an interest rate into the model.
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addition, provided his inventory exceeds p, an agent expet

tunii ies to purchase bundles of size y for consumption at the price p,

times set by a Poisson process characterized by the rate b, which is

determined endogenously. Each act of consumption, as before, results in

instantaneous utility u. Finally, we shall assume that profits from a

sale, p-y, are instantly transmitted to the firm's central accounting

office for redistribution as part of the wage flow a-a'. Then the dis-

tribution of inventory available for sale is identical to the distribution

12
of inventory available for purchase. Indeed, the distributions of

inventory and the levels of expected utility are the same as those analyzed

in Sections 3 and 4, except that price p plays the role of commodity bundle

size y. Inventories grow continuously at the rate a, while decreasing in

jumps of size p at times determined by a Poisson process with rate b.

To proceed with the steady state analysis, we consider the

determination of b, which is the endogenous arrival rate of purchase

opportunities. The expected rate of successful purchases is [1-F(p)]b. In

general, this rate depends on the percentage of agents who are able to buy,

[l-F(p)], and the percentage able to sell, U-F(y)]. As discussed in

Section 5, we may write the fraction of meetings that are successful as

h(l-F(p) ,1-F(y) ) , and define the rate of meetings per capita as b'. Then we

This model can be reinterpreted as a monetary structure in which
paper money is backed one hundred percent by loans collateralized on

inventories, and no interest is paid on these "deposits." We leave the

analysis of a more general economy with interest rates for later work. The
introduction of interest greatly complicates the equations for the

distribution of- inventory holdings.

12
In a more general model with delays in transmitting goods within the

firm which are different from delays in transmitting purchasing ability,
the equilibrium conditions determining inventory available for sale differ
from those determining inventory available to finance purchases.
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have the rate relationship

[1-F(p)]b = b'h(l-F(p),l-F(y)). (6.2)

Consider the following two polar cases. First, the ability to find a

supplier may be independent of the distribution of available inventories.

This occurs if demanders are instantly redirected to suppliers who are

adequately stocked. Then h = l-F(p), and

(A) b = b". (6.3)

On the other hand, meetings between pairs of agents may be purely random,

without redirection to adequately stocked sellers. In this case, h is the

product of l-F(p) and l-F(y), and we have

(B) b = Ll-F(y)]b'. (6.4)

It is plausible that the dependence of b on F(x) lies between these two

polar extremes, with some delay in finding an adequately stocked supplier,

but better than random search.

The two polar possibilities, (A,B) lead to different relationships

between inventories and prices. We will now show that the more efficient

technology A described by (6.3) results in mean inventory proportional to

price. On the other hand, the less efficient technology B described by

(6.4) results in less than proportional growth of mean inventory as a

function of price. We begin by analyzing the dependence of the distri-

bution of inventories on the endogenous rate b. The resulting equations

hold for both search technologies.

The trading rules of the firm introduced above tell us that the price

p plays the role of the consumption bundle size y in the equilibrium

analysis [cf. (3.2-8)] that fixes the inventory distribution F(x). In



particular, the condition (3.7) for the continuity of F(x) tells us that

the fraction <>f agents who are able to buy satisfies

l-F(p) = a/(bp). (6.5)

Replacing y by p and x by y in (3.6) and using (6.5), the fraction of the

population able to sell is

l-F(y) = l-[pk*]
_1

[l-e
k*y+k*y], (6.6)

where k* is the unique real, negative root of the characteristic equation

ak* = b(e
k
*
p -l). (6.7)

Furthermore, from (3.8), mean inventory becomes

x = p/2-l/k*. (6.8)

We shall use (6.7) to compute the change in mean inventory (6.8) -- in

particular in -1/k* -- as p increases.

To proceed, we first eliminate the endogenous growth rate a from

(6.7). The rate of growth of inventories satisfies the firm's budget

constraint. This is the requirement that wages equal profits, which here

takes the form

a-a' = (p-y)b[l-F(p)] = a(p-y)/p, (6.9)

where we have used (6.5). From (6.9), we see that the ratio

a/p = a'/y (6.10)

13
is independent of price. Therefore, the real wage,

13
Equation (6.10) is equivalent to the assertion that in a steady

state the aggregate accumulation of goods equals the aggregate consumption
rate: a' = b[l-F(p)]y = ay/p.
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(a-a')y/p = a'(p-y)/p, rises monotonical ly from zero at p=y. Using (6.10),

the characteristic equation (6.7) becomes

a'k*p/y - b(e
k * p -l). (6.11a)

Technology A. Given the more efficient technology described by (6.3),

b is independent of p and may be replaced by b' in (6.11a), yielding

a7(b'y) [e
k * p -l]

_1
(k*p) = 1. (6.11b)

Comparing (6.11b) with the Crusoe result (3.3), we observe that with search

technology A, the present model differs from the model of Section 3 by the

replacement of the Crusoe rate constant k* by the new value k*y/p.

Introduction of the uniform relative price, p, therefore shifts the entire

inventory distribution to the right. Moreover, (6.11b) tells us that for

fixed a'/(b'y), k*p is fixed and negative, and (-k*~ ) is proportional to

p. The mean inventory level, p/2-l/k*, therefore is proportional to price.

Reinterpretation in money terms lends insight into the efficiency

properties of a steady state economy mediated by search technology A. With

either technology, this model can be reinterpreted as describing an economy

with commodity-backed money, in which commodities are available for sale,

but money, rather than commodities, is used for purchases. With technology

A, essentially the same steady state as under the pure inventory model can

be achieved by introducing money that is only partially backed by

commodities. In particular, with technology A, buyers are instantly

redirected to adequately stocked suppliers, and the arrival rate of

consumption opportunities therefore is not affected by inventories in

excess of y/2 per capita -- the minimum mean inventory necessary for the

accumulation process prior to "ripening" described in Section 3.

Therefore, with partially unbacked money, the same distribution of money
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holdings as given by (6.11b) can be achieved, while restrictii

inventory to y/2. This is the familiar gain of efficiency from eliminating

stocks of commodities whose only role is to back the money supply.

Technology C. In the model of random meetings described by (6.4), the

relationships among price, the shape of the inventory distribution, and the

mean inventory level are more complex. The exponential rate k* decreases

with p for low prices sufficiently near the zero-profit point p=y, but

increases with p for higher prices. Mean inventory increases monotonical ly

in p. In contrast to the behavior that obtains with technology A, average

inventories rise less than in proportion to p.

A heuristic explanation is as follows. The introduction of a price p

(greater than y) effectively divides the population of agents into three

groups. These groups have inventories: (I) less than y; (II) between y and

p; (III) greater than p. For p=y, no agents fall into Group II, and the

inventory distribution is therefore identical to the two-group distribution

(3.4, 3.6), as modified by the parametric substitution (5.6) derived in

Section 5. For p greater than y, two effects increase the net meeting rate

b, tending to increase the absolute magnitude of the rate constant k* and,

therefore, to shift the inventory distribution above p to the left. First,

wages are positive, speeding up the movement from Group I to Group II.

Second, whatever the price level, members of Group II are unable to

purchase goods, and are therefore prevented from dropping into Group I.

However, for p sufficiently large with respect to y, we pass to a regime in

which Group I is negligible. Thus, for large p there is a two-group

dynamics in which p effectively plays the role of y in the model of Section
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3, and -1/k* is proportional to p, just as it is when ienl

technology A is in operation.

Lemma 1. When search technology B is in operation, the exponential

constant k*(p) decreases as p increases from the zero-profit point p=y,

reaches a minimum at some value p=p
Q

, and then increases for all greater p.

On the other hand, the quantity pk* decreases monotonical ly in p,

approaching a constant (negative) value for sufficiently large p.

Proof. Lemma 1 can be confirmed analytically by substituting (6.4) and

(6.6) into (6.11a), and using (6.7), deriving an implicit equation for k*:

l-F(y) = [a'/(b ,

y)][e
k * p -l]"

1
(k*p) = l-( l-e

k
*
y+k*y)/(pk*) . (6.12)

Rewrite the last equality in (6.1?) in the form

^(k'y) " R
2
(k*p), (6.13)

where

R
T
(x) =

1 + x - e
x

; (6.14a)

R
2
(x) = x[l + (a7(b'y))x(l-e

x
)

-1
]. (6.14b)

From (6.14a), we observe that R-,(x) is negative, monotone increasing and

concave for nonpositive x, with R, (0)=0. From (6.14b), provided the

scarcity condition z'=a'/b'y <1 holds, R (x) is convex and has two roots,

one at zero, the other at a negative value greater than -1/z'. Moreover,

By differentiating (6.14b), we obtain

R
2
'(x) = [a'/(b'y)](l-e

x )" 3 [2(l-e
x
+xe

x
)

2
+x

2
e
x
(l-e

x
)] > 0,
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RA(x) is positive at the zero-profit point p=y, where R,(x)=R
?
(x).

These characteristics of the R.(x) are shown in Figure 3. The

derivative dk*/dp obtained from (6.13), k*RA[yRj -pRA]~ , is negative

(positive) when the derivative R~(k*p) is positive (negative). Therefore,

dk*/dp is negative for p sufficiently near the zero-profit point p=y, as

Lemma 1 asserts. For sufficiently large p, the solution k*p of (6.13)

occurs where R~(k*p) is negative, and dk*/dp is positive. The derivative

of k*p with respect to p, k*yRj[yRj-pR,!,]~ , is positive, consistent with

the less than proportional growth of -1/k* anticipated above.

The dependence of k* and k*p on p is exhibited in Figure 4.

Lemma 2. The price response of mean inventory,

dx/dp = 1/2 + k*"
2
dk*/dp, (6.15)

is positive for all allowed p.

Proof. One confirms this result by differentiating (6.13). We have

?
dk* R' (k*p)

dp k*y Rj(k*y) - k*p R£(k*p)

= R£(k*p)[k*y(l-e
k
*
y

)
- k*pR£(k*p)]

_1
. (6.16)

To prove that mean inventory increases with price, we must show that

k*~ dk*/dp is greater than -i. From (6.15), the critial region in p is the

One checks the sign of R
?

at p=y by using R,(x)=R
?
(x) to eliminate

(a'/(b'y)) from the expression for RA(x), obtaining

RA(x) = x
_1

[x(l+e
x

) + 2(l-e
x
)]

at the zero-profit point.
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one in which dk*/dp is negative. Recalling Figure 3, this is the region in

which R' is positive. Differentiating (6.16) with respect to k*y, we have

sign _!__ [ k
*~2 dk_*] = sign [k*y[(l-e

k
*
y

)

2
R"/R' + e

k *y R']]. (6.17)
d(k*y) dp

Since R~ is convex, the sign of (6.17) is negative, and k* dk*/dp takes

its lowest value at the zero-profit point p=y. From (6.13), we may write

x 2
a'/(b'y) r [(l-e )/x] at p=y. Substituting this result in (6.16), we have

2
,* l+e

x
+2(l-e

x
)/x

k*^-^- =
, (6.18)

dp -2xe-2(l-e
x

)

where p=y, and x=k*p. It is straightforward to confirm that the right hand

side of (6.18) exceeds -I for all negative x, and thus that mean inventory

increases monotonical ly with p.

Lemma 3. With technology B, the net meeting rate b increases with p.

Proof. From (6.12) and (6.4), we have

-(kp)'(l- e
kp

+ kp e
kp

)

d/dp log b(p) = d/dp log [l-F(y)] =
. (6.19)

-kp(l-e
kp

)

By inspection, the denominator of (6.19) is positive. From Lemma 1, -(kp)'

k n k n
is also positive. The remaining quantity (1-e H+kpe p

) is positive also:

it is monotone decreasing for negative kp and vanishes at kp=0.

7. Price Determination

To close this analysis, we study a many-firm model in which we
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derive profit maximizing, equilibrium prices. We separately analyze *>

existence of an equilibrium price for each of the search technoloi

(A,B), and we also examine the dependence of the equilibrium prices on the

capacity utilization ratio z'=a'/b'y. It will be shown that the condition

on z' for the existence of an optimal price is more stringent than the

scarcity condition of Section 3 that the capacoty utilization ration is

less than 1.

Let us assume there are a large number of identical, though

independent firms that have no price reputations, and that consumers

solicit prices at random, one at a time. With sufficiently many firms,

there is no link between profits and perceived demand. Thus, firms will

set a price, p', that maximizes aggregate perceived profits (see, e.g.,

Burdett and Judd (1983), Diamond (1971)). Perceived profits per arriving

customer equal (p
1

-y ) [ 1 -F(
p

' )] , where the distribution of purchasing power,

F, satisfies (3.4) and (3.6), with p substituted for y. That is, perceived

profits equal the product of the profit per sale and the fraction of

arriving customers who are potential active buyers.

The first-order condition for profit maximization,

l/(p'-y) = F'(p')/[1-F(p')] , (7.1)

instructs each firm to set a price that precisely balances its marginal

increase in revenue with the marginal reduction in its pool of buyers due

to a price increment. Such a balance can be achieved only if the

We assume,- as above, that wages equal profits and do not consider
more complicated wage contracts. Worker inventories must be unobservable
in order that wages are uniform. Wages will exhaust profits if firms have
free entry and the ability to attract a random selection of workers.



right-hand tail of the inventory distribution falls sufficiently fast.

From Section 3, we know that the right-hand tail flatten? as the capacity

utilization ratio increases. A priori, therefore, we expect that an

optimal equilibrium price will exist only if the capacity utilization ratio

z' does not exceed a critical maximum. As a corollary, we expect that the

higher the capacity utilization ratio, the higher the equilibrium price.

The same reasoning allows us to compare equilibrium prices for the two

different search technologies. We expect the more efficient technology A,

associated with a shorter right-hand tail, to result in a lower equilibrium

price.

Since we assume no collusion among firms, the derivative in (7.1) acts

only on the inventory level and does not take account of the structural

relationships between k* and z' derived in Section 6. The right hand side

of (7.1) is therefore simply minus the exponential rate constant k*

(cf.(3.4)), and we may write

k*p = -p/(p-y). (7.2)

The system is in equilibrium when p satisfies (7.2), and k* simultaneously

satisfies (6.11b) for technology A, or (6.12) for technology B. By

combining (7.2) with (6.11b) and (6.12) respectively, we obtain pairs of

equations that relate the equilibrium price to the capacity utilization

ratio z'. For technology A, we have, defining U=p/(p-y),

z
1

= aV(b'y) = (l-e"
U
)/U. (7.3a)

For technology B,

z' = (l-e"
U
)(2-e

1_U
)U"

2
. (7.3b)

Lemma 4. For both search technologies, there exists a unique equilibrium



if and only if the parametric condition

aV(b'y) < 1 - 1/e (7.4)

is satisfied.

Proof. The proof follows by observing, from (7.3), that z' is monotone

decreasing in U for both technologies, and takes its maximum value,

1-1/e, when U r l. From the monotonicity of z' in U, and the monotonicity of

U=p/(p-y) in p, it follows immediately that:

Lemma 5. For both search technologies, the optimal price p is a monotone

increasing function of the capacity utilization ratio a'/b'y.

The monotonicity of p excludes the existence of multiple equilibria

characterized by different prices but the same value of z'. We show the

behavior of the optimal price as a function of z' in Figure 5. Note the

singular behavior of p as z' approaches 1-1/e and also the higher equili-

brium price for technology B at each value of z' -- the comparative

behavior anticipated above.

To derive these monotonicity properties, one may sign and bound the

logarithmic derivatives of the right-hand sides of (7.3a,b). In the more
difficult case (7.3b), we have the logarithmic derivative

-U ri -U-,-1 1-UY- l-U-,-1 9/ll -Un -l-i-l 1-U 9/ll
e [1-e J + e L2-e J - 2/11 < e U-e J + e - 2/U.

The bound on the right side of this inequality is negative over the

relevant range U=p/(p-y)>L
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8. Conclusions

Using simple stochastic search models that permit explicit solutions,

we have explored the role of purchasing power in the determination of

steady state equilibria. In particular, we have examined the role of

economy-wide price setting as it affects the distribution of inventory

holdings, the aggregate level of inventories, and the aggregate

transactions rate. Simplicity is achieved by omitting many important

economic phenomena.

In sequels, we plan to study monetary models with the same structure,

as well as models incorporating interest paid on "deposits" of inventory.

In the interest models, we will introduce deaths and births, with "estates"

going to the government for redistribution. This will allow us to con-

struct models in which there are equilibrium steady states with a positive

interest rate. We will then modify the model of Section 6 to distinguish

wages from interest paid on inventories. In this way, we hope to analyze

the effects of price-wage-interest setting on the distribution of inventory

holdings, and therefore also on aggregate inventory levels and the aggre-

gate transactions rate. Once a model that includes interest rates is

constructed and solved, it should be possible to analyze a monetary economy

with alternative tradeable assets.
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Figure Captions

Figure 1. Probability density of inventory distribution defined by

equations (3.4,6) of text. Note the flattening and extension of the

right-hand tail as z increases.

Figure 2. Lifetime utility W as determined by dynamic programming

equations (4.3) of text, with parameters b=r=a/y. Inventory is measured in

units of commodity bundle size y.

Figure 3. Functions R, n(x) , as defined by equations (6.14) of text, for

the capacity utilization ratio z'=l/2. Shown is zero-profit root k£y=x of

Ri ( k Q.y)
= Ro(l<Qy). Note that this root lies to the right of the minimum in

R~(x), where dR~/dx is positive. Therefore, as shown in distorted scale in

inset, for p sufficiently small two values of p correspond to each root x

of R, (x)=R
?
(px/y) . Note that the derivative dx/dp is negative for p near y

and positive for large p, as shown explicitly in Figure 4.

Figure 4. Price behavior of k*y and k*p, as given by equation (6.13) of

text.

Figure 5. Optimum equilibrium prices as function of capacity utilization

ratio in many-firm model described in text. Curve A: efficient search

technology with instantaneous redirection of traders to adequately stocked

suppliers. Curve B: random search technology.
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