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ABSTRACT: A general class of tests designed to detect conditional mean

misspecification for cross section or time series applications is proposed.

The tests are derived from a particular application of the encompassing

principle. The resulting conditional mean encompassing (CME) tests contain

as special cases a version of the Lagrange Multiplier test for nested models,

a new test in the presence of nonnested alternatives, and a version of the

Durbin-Wu-Hausman test that compares two weighted nonlinear least squares

estimators. The tests are valid without any assumption on the conditional

variance of the dependent variable and can be computed using any

/T- consistent estimators. Moreover, CME tests for nonlinear, dynamic models

are computable from linear least squares regressions.





1. Introduction

This paper develops a general class of tests intended to detect

misspecification of a conditional expectation for cross section or time

series models. The approach is based on the encompassing principle (Hendry

and Richard (1982), Mizon (1984), and Mizon and Richard (1986)) in the sense

that it exploits certain implications of estimating an alternative model when

the model taken to be the null is true. However, for nonlinear, dynamic

models the present application of the encompassing principle results in

"conditional mean encompassing" (CME) tests that are more operational than

the "complete parametric encompassing" (CPE) tests proposed by Mizon and

Richard (1986). In particular, there is no need to solve for the

"pseudo-true value" of the estimator from the alternative model, nor does one

need to compute the null limiting distribution of the estimator in the

alternative model. Both of these tasks can be difficult in the context of

nonlinear regression with dependent observations.

The main results of the paper can be briefly summarized. For nested

hypotheses the CME test is asymptotically equivalent to the Lagrange

Multiplier (LM) test. For nonnested models, the CME test is based on the

correlation between the residuals under the null and the gradient of the

alternative regression function. The results of Wooldridge (1988) are

applied throughout to produce tests that can be computed from linear

regressions but do not maintain homoskedasticity or other second moment

assumptions under H
n

. Further, the test statistics can be computed using any

/T-consistent estimators. These features make the tests applicable in

situations more general than the usual LM test and standard tests of



nonnested hypotheses.

When the approach is extended to weighted nonlinear least squares (WNLS)

estimation, a statistic that is asymptotically equivalent to the

Durbin (1954) - Wu (1973) - Hausman (1978) (DWH) statistic that compares two

WNLS estimators can be shown to be a special case. Again, because this test

is a special case of the general approach, the form of the statistic proposed

here is regression-based but does not require either estimator to be

relatively efficient under H
ft

. Additional robust tests in the presence of

nonnested alternatives are available from WNLS estimation.

2. Setup and Motivation

Let ( (y z ): t—1,2,...} be a sequence of random vectors where y is a

scalar and z is a lxK vector of conditioning variables. In a time series

co

x
t

ntext, let x
fc

= C^^t-l 'Vl ^'V ° r X
t

" ^t-l'Vl ^l'V ° r

53 (y r -]>y r o v
-i

) be the set of predetermined variables. The choice of

x depends on whether there are, in addition to past values of y , other

conditioning variables {z }, and on whether or not the researcher wishes to

condition on contemporaneous z . Including the entire observed past history

of { (y z )} or (y ) in x restricts the analysis to cases where one is

interested in getting the dynamics of the conditional mean correctly

specified. In a cross section context, set x = z and assume that the
t t

observations are independently distributed.

Suppose that one is considering the following parametric model for

E(y
t
|x )

{m
t
(x

t
,
Q ): a e A, t=l,2,...}, A C R

P
. (2.1)



The null hypothesis that (2.1) is correctly specified for E(y |x ) is stated

formally as

H : E(y |x ) = m (x ,q ) , for some a S A, t-1,2, . .

.

(2.2)

A general approach to testing the validity of H- is to compare the

performance of model (2.1) in light of alternative parametric specifications

for E(y |x ) . Let

(M
t
(x

t
,£): P 6 B, t-1,2,...}, B c R

Q (2.3)

be another such parametric family. In what follows, m may or may not be

nested within /i . The idea is to look for departures from H
n

in the

"direction" of model (2.3), which for convenience is labelled the

"alternative model." It is sometimes useful to refer explicitly to the

specific alternative hypothesis H :

H
x

: E(y
t
|x

t
) = ^(x^^), for some

q
e B, t-1,2

Under H and standard regularity conditions the nonlinear least squares

A

estimator a is weakly consistent for a ; under further regularity
A

conditions, /T(q_ - a ) is asymptotically normal or at least (1). Explicit
T o J J

p

regularity conditions are not provided here; one set of sufficient conditions

is contained in Wooldridge (1988).

A

Whether or not H is also true, the NLS estimator /3 for model (2.3) can

be computed by solving

T
2

min I (y - „(x ,/3))\ (2.4)

P& t-1

A

White and Domowicz (1984) have shown that, under H
n , /3 generally converges

in probability to a nonstochastic sequence (/3 : T-1,2,...) c B which has the



following optimality property: {3 solves the nonstochastic minimization

problem

T

min I E[(y - « (x. ,/3))
2

] . (2.5)

,0GB t=l

A

Further, /T(/? -
ft ) typically has a limiting normal distribution. When the

A

models are nonnested the asymptotic covariance matrix of /T(/9 - /3 ) can be

fairly complicated, especially in time series contexts. (This is because the

implied errors {y - p (x ,/3 ) : t=l,.,T) do not constitute a martingale

difference sequence under H thus, they are usually serially correlated).

Tests that require calculation of the asymptotic covariance matrix of

A

/T(/3 - ) and/or characterization of the pseudo-true value function /9
=

b (q ) are unattractive from a computational viewpoint. The complete

parametric encompassing tests of Mizon and Richard (1986) have this feature

for nonlinear dynamic models. The next section develops simple,

regression-based tests which require only that /T(/? - /3 ) = (1) and
A

/T(q_ - a ) - (1) under H.

.

lop
3. A New Test Based on the Encompassing Principle

The basis for the tests derived here is the statistical optimality of

the sequence (/3 : T=l , 2 , . . . } . In particular, the idea is to exploit the

testable implications of /9 solving the minimization problem (2.5); it is

here that the encompassing principle is invoked.

Define the residual function for model (2.1) as e (a) s y. - m (x ,a)

.

t u t t

Under Hn the true errors e = e (a ) are defined and E(e |x ) =0.
t t o t' t

Therefore, under H_

,



E[(y
t

- M
t
(x

t
,£))

2
]
- E[(m

t
(x

t
,o
o
)- M

t
(x

t
,/3))

2
] + E[(e°)

2
] (3.1)

- E[(m (a )- »(/3))
2

}
+ E[(e°)

2
].tot t

Assume that fi (x ,) is differentiable on int(B)
, {/S°: T-1,2,...) C int(B)

uniformly in T, and derivatives and expectations can be interchanged. Then

ft must solve the first order condition

1
T

T I E[7 /i

t
(^°)'(m

t
(Q

o
)- /i

t
(£°))] - 0, (3.2)

where V u (y9) = V u (x ,/3) is the lxQ gradient of fi (x ,/3) . Equation (3.2)

is a testable implication of performing NLS on model (2.3) when H
n

is true.

To operationalize (3.2), remove the expectations operator and replace the

unknown values a and R by consistent estimators under H_ . Initially, let
A A

q and denote the NLS estimators; however, the robust testing procedure
A A A

subsequently derived is valid if a and /? are any estimators such that /T(q
a

- a ) = (1) and /T(5_ - fl°) = (1) under H. . In certain cases it isop lip U

computationally convenient to use estimators other than NLS for both the null

and alternative models. An example is provided in section 4.

A computable statistic is the Qxl vector

-] 1 A A A

T" I v^M
t
(^T

)' [m
t
(Q

T
)- M

t
(/?
T )] (3.3)

-1 -1- A A A

= " T" I V^
t
(^

T
)'[(y

t
- n.

t
(Q

T
)) - (y

t
- M

t
(/?
T ))]

(3.4)

= - I'^Vt^'S (3-5)

where e * y^ - ni (x .<*_ ) , t=l,...,T are the residuals for model (2.1).
t- c tz r i

A

Equation (3.5) follows from (3.4) and the first order condition for 8„.



Thus, the optimality criterion leads to a test based on the covariance of the

gradient of the alternative regression function (i and the residuals fitted

under H The statistic (3.5) is seen to be of the conditional moment form

analysed by Newey (1985), Tauchen (1985), White (1987), and others. In order

to distinguish the tests based on (3.5) from the complete parametric

encompassing tests of Mizon and Richard (1986), the former will be called

"conditional mean encompassing" (CME) tests. A CME test is simply a

Newey-Tauchen-White conditional moment test using V fi as the

misspecification indicator.

In a nested hypotheses framework, where m (x ,a) = \x (x ,r(a)) for some

differentiable function r: A -* B, the statistic

T A A

T"
1/2

t
I
i

VA (^T
)'e

t
(3.6)

is closely related to the statistic underlying the Lagrange Multiplier test.

A A

Equation (3.6) leads exactly to the LM test if /3„ in V ai {ft ) is replaced by
T p t T

A A

the constrained estimator r(a ) . When the unconstrained estimator /9 is used

the resulting statistic is asymptotically equivalent to the LM statistic

under the null hypothesis and under local nested alternatives.

In general, even if m is not nested within p.
,

(3.5) is the covariance

that arises in the construction of the LM statistic for testing exclusion of
A

V /j (/3 ) in the regression (2.1). More precisely, consider the LM test for

S = in the artificial regression model
o °

A

Yr
- m (x ,a ) + V n (p )S + error (3.7)

t utO ptiO t

2 2One candidate test statistic is the TR form of the LM test, where R is the
u u

uncentered r-squared from the regression



e. on V m V « t=l ,T. (3.8)
t a t p t

A

Unfortunately, even when a is the NLS estimator of a , the resulting

statistic does not always have a limiting chi-square distribution under H

It is true that if a is the NLS estimator then under

HI: Hn holds and V(y |x ) = a
2

, some a
2

> 0, t-1,2 (3.9)
t t o o

2 2
TR obtained from (3.8) has an asymptotically v distribution (assuming that

V „u does not contain redundancies with respect to V m ) . However, the
P^t y at'

assumption of conditional homoskedasticity under H is frequently implausible

in economic applications, especially when y is a nonnegative variable.

Further, by definition, a conditional mean hypothesis imposes no restrictions

on the conditional variance. One goal of this paper is to develop tests

based on (3.5) that do not make additional second moment assumptions under

H_. This is straightforward since the statistic (3.5) is of the general form

that I have considered elsewhere (Wooldridge (1988)). The following
A A

procedure, which first purges from V p its linear projection onto V m , is
p t a t

valid under the regularity conditions of Theorem 2.1 in Wooldridge (1988):

PROCEDURE 3.1:

A A

(i) Obtain a and /3 by NLS, or some other procedure such that
A A A

/T(q - a ) = (1) and /T(p\_ - 0°) = (1). Save the residuals e = y -lop lip C c
A A A A A A

m,-(x ,0 and the gradients V in = V m (q_) and X = V n V p. (p ) ;tci tt t tt t 1 tptptl
(ii) Run the multivariate regression

A A

A on V m t-1, . .
.
,T

t at
A

and save the lxQ vector residuals, say {_;



(iii) Run the regression

A A

1 on e £ t=l, .
.
,T

t
s
t '

2 2
and use TR = T - SSR as asymptotically * under H

n , where SSR is the sum of

squared residuals. Let V m° = V ni (a ) , A° V.u = V u (/9„) and defineQtQtOtptptl
{£ : t=l,...,T) to be the residuals from the population regression

A° on V m°, t=l , . .
.
,T, (3.10)

t at
-1

T
and let E = T" £ v ( e °£°) • If (S„: T-1,2,...) is not uniformly positive

t=l
t C

A

definite in T for T sufficiently large then some elements of A are redundant

A A

with respect to V m ; the redundant elements in A should be discarded and
q t t

the degrees of freedom reduced accordingly. "

Typically it is obvious upon inspection whether redundancies appear in

A

V u . A simple instance is when both models are linear and contain

overlapping regressors , a case considered more fully in the following

section.

The robust procedure not only has a limiting chi- square distribution

under H in the presence of heteroskedasticity (conditional or unconditional)

of unknown form, but it also remains asymptotically efficient in the event

that V(y |x ) is constant. More precisely it is shown in Wooldridge (1988)

that under alternatives local to H that maintain conditional

homoskedasticity , the robust form of the test is asymptotically equivalent to

the more traditional regression test (3.8); robustness is obtained without

sacrificing asymptotic efficiency under ideal conditions. It follows that

any asymptotic power calculations under local alternatives and

homoskedasticity for the nonrobust statistic also hold for the robust



statistic. But the robust test has the further advantange of having an

asymptotic noncentral chi-square distribution under alternatives local to H
n

when heteroskedasticity is present.

Derivation of the limiting distribution of the CME statistic under

alternatives local to H„ is fairly standard and is only sketched. For the

present purposes, a sequence of local alternatives to H_ is characterized

by a sequence of minimizers (a • T=l,2,...) of

T

min
aeA t-1

T

T"
1

I E[(y
t

- m
t
(x

t
,a))

:

satisfying /T(o_ - q._) =0 (1), /T(a* - a ) = 0(1), andlip 1 o

T

T
" 1/2

I E[7^
t
(^)'e

t
( Q*)] - 0(1).

Letting £ again denote the residuals under Hn from the population regression

of A t on V m (a ) , under standard regularity conditions it is straightforward
t a t o ° J °

to show that

r l/2 lrl - T-WlC-.* + o (i)tt " t t T>

t=l t-1 p

under the sequence of local alternatives. Thus, letting n =

1/2
T T

T* /
I E(Z°'e*) = 0(1) and H° - T"

1
I V(eV) (E° is computed under Hn ) , it

t-1 t-1

follows that the CME test has a limiting noncentral chi-square distribution

. , _ * o-l *
with sequence of noncentrality parameters (tt 'E n } . For particular

*
alternatives 7r can be further simplified, but this is not attempted here.

Incidentally, unlike the robust test, the local distribution of the nonrobust

test under heteroskedasticity is typically unknown.



Another useful property of the robust procedure is that it is valid when

any /T-consistent estimator of a is used in step (i) . This is in contrast

to traditional testing procedures, where the limiting distributions of

statistics typically depend on the limiting distribution of /T(a - a ) (an

exception is Neyman's C(q) test). This added flexibility of the robust

procedure allows simple, regression-based tests in situations where standard

approaches can be computationally difficult.

It should be emphasized that the CME test was derived under the

assumption that H is true. Another approach to comparing nonnested models

is to allow both models to be misspecified under the null. Rossi (1985)

offers a Bayesian approach to model selection when neither model is assumed

to be true. Vuong (1989) considers a generalized likelihood ratio approach

which assumes that neither model is correctly specified under H but that, in

a well-defined statistical sense, they explain the data equally well.

A

Before turning to some examples, note that /3 can be any estimator such

that /T(£ - /3 ) = (1) for some sequence Ifi } C int(B) uniformly in T. If

(/3 ) does not have the optimality properties based on (2.5) then the test

statistics is not derivable from (3.3) - (3.5). Nevertheless, the test based

on Procedure 3.1 could be a useful diagnostic.

4. Examples of Nonnested Tests

Because the heteroskedasticity-robust Lagrange Multiplier statistic has

been considered elsewhere (Davidson and MacKinnon (1985) , Wooldridge

(1987a)), this section focuses on the application of CME tests to model

specification testing in the presence of nonnested alternatives.

10



Example 4.1 : The most well-known application of nonnested hypotheses testing

is to two competing linear models with different regressors. In particular,

m (x ,q) = x ,q (^-1)
t t tl

M
t
(x

t
,/?) = x

t2
(4.2)

where x . and x . are lxP and 1x0 subvectors of x , with lag lengths
tl t2 x

t
' b o

independent of t. Assume that there are a sufficient number of past

observations to start the indexing in (4.1) and (4.2) at t = 1. Let w be

the lxM vector of regressors in x . but not x , . Then the form of the test6 t2 tl

which assumes homoskedasticity in addition to H (see (3.8)) is simply the LM

test for 6 = in the model
o

E(y
t
|x

t
) -x

tl
a
o
+w

t2
5
o

t-1,2,.... (4.3)

Under H' the LM test is asymptotically equivalent to the standard Wald test

for exclusion of w In models with nonrandom regressors, the F-statistic

as a test in the presence of nonnested hypotheses has been studied

extensively by, among others, Ericsson (1983) and, more recently, as a

special case of the CPE test by Mizon and Richard (1986). The CME test is

the same whether or not x contains lagged dependent variables or other

random regressors. To ensure that the test has correct asymptotic size in

the presence of heteroskedasticity , Procedure 3.1 can be applied with V m =
J a t

x n and A = w „ B
tl t t2

Example 4.2 : Suppose that y > 0, and consider the following competing

models for E(v |x )

:

J
t' t

ni (x^,a) = w q (4.4)
t L. t

^(x ,£) = exp(wfi) (4.5)
1- t u

11



where w is lxP. Again, in a time series context, assume that w has a lag

length independent of t. Note that even though y > the linear model (4.4)

cannot be ruled out a priori. In contrast, a normality assumption for y is

untenable, and so it is not imposed under either model.

If the linear model is taken as the null and homoskedasticity is

2
maintained, the CME test is an LM-type test based on TR from the regression

A A

e
t

°n w
t

, exp(w /3 )w t=l,...,T, (4.6)

A A A

where e^ y^ - w q_ and a_ is the OLS estimator of a under H_ . Under H_
t J t t T T o U

9 A
and homoskedasticity, TR -+ v . Because homoskedasticity is not always a

reasonable assumption for nonnegative economic variables, the

heteroskedasticity-robust approach might be particularly useful. In

Procedure 3.1 simply set V m = w and A = exp(w /L,)w .

m
K J at t t

FV
t
pT t

Example 4.3 : Frequently researchers are interested in comparing linear and

log-linear regression models. Although this is certainly in the spirit of

comparing linear and exponential forms for E(y |x ), linearity of

E(log y |x ) need not imply that E(y |x ) has an exponential form, nor vice

versa. To compare linear and log- linear models a further assumption is

needed under the log- linear model. Many tests assume that

2 2log y lx^ N(w 5 ,a ) , some 8 € A, some a > . (4.7)
t t - too o o

Here it suffices to make the weaker assumptions

E(y
t
|x

t
) = exp(w

t
Q
o

) (4.8)

S(y
t
|xJ = exp[K

Q
+ E(log yt

|x
t )]

(4.9)

2
for some k > 0. If (4.7) holds it is well known that k - a /2 in (4.9).

O

12



The conditional mean of log y under (4.8) and (4.9) is

E(log y t
|x

t
) - a

Ql
- k

q
+ a^w^ + ... + a

op
w
tp

w 6 .

t o'

where it has been assumed that w = 1. Testing the log- linear model against

the linear alternative is very simple. First, let 8 and log y be the OLS

estimator and fitted values from the regression

log y
t

on w
t

t=l T.

Compute an estimate of exp(/c ) and predicted values of y from the OLS

regression of y on exp[log y ]
(without an intercept). Let k. and y be the

estimator of k and the fitted values of y , respectively, and define the

A A A A

residuals as e = y - y . Then simply apply Procedure 3.1 with V m = y w

A

and A = w . Note that the computations required for the test can be done

entirely by linear least squares regressions. Also, the implicit estimator
A A

for q
q

,
a = (5

1
+/c ,5 „ , . . . , 5 ) , has no particular optimality properties

even under conditional homoskedasticity
,
yet the test is asymptotically

equivalent to the procedure which uses the NLS estimator of a .

This test requires only the additional assumption (4.9) to compare

linear and log- linear regression models, and not the stronger assumption

(4.7). If (4.7) is believed to be true then this test cannot be optimal; the

only information about y that is used is the exponential form of the

conditional expectation, so that additional information about the conditional

distribution of y given x is ignored. The strength of the current approach

is that it does not require distributional or second moment assumptions under

either model. The Cox (1961,1962) test, which requires distributional

assumptions under H as well as K. , can be quite difficult to compute (see

13



Aneuryn- Evans and Deaton (1980)).

The procedure that takes the linear model as the null hypothesis (and

does not impose distributional or variance assumptions under the null) is the

A

same as Example 4.2, except that ft is constructed from a log- linear OLS

regression as above rather than NLS . Compared with procedures that impose a

plausible distribution of y |x in the linear model, the current approach is

more robust and computationally much easier. H

5. Extension to Weighted Nonlinear Least Squares

The approach of section 3 extends directly to the case where one or both

models are estimated by weighted NLS (WNLS) . Let

(m
t
(x

t
,a): a e A) th

t
(x

t
"*> : 1 e T] (5 - L)

and

lA*
t
(x

t
,0): p 6 B) (r

?t
(x

t
,5): 6 e A) (5.2)

be the "competing" models, where h and tj are weighting functions such that

h-

t
(x 7) > 0, rj (x 6) > 0. It is important to stress that the null

hypothesis is the same as in section 3, i.e.

H : E(y |x ) = m (x .a ) for some a S A, t=l , 2 , . . .

.

(5.3)
u t t t t o o

It is not assumed that h^(x^,7) is a correctly specified parameterized

version of the conditional variance of y given x under H„ (i.e. it is not
-'t

& t

assumed that b. (x .7 ) is proportional to V(y Ix ) for some 7 S T) .ttO rr w t I t
/ i

Instead, assume that there are estimators of the nuisance parameters 7 and 5

such that

14



/T(7T - 1°) = 0(1), A(5 - 6°) = 0(1) (5.4)lip I 1 P

where (7T ) and (5 } are nonstochastic sequences. First suppose that a is

the WNLS estimator that solves

T

min I (y - m
t
(x

t
,cr) )

2
/h

t
(x

t
, 7 ) . (5.5)

qGA t=l

The WNLS estimator based on model (5.2) solves

T

min I (y - u (x J))
2
/r, (x i ). (5.6)

0£B t«l

A

The solution to (5.6), again denoted /? is generally such that

A(/3
T

- /3°) = 0(1) (5.7)

where /3 solves the nonstochastic minimization problem

T

min I E[(y - u (x ,/?) ) A? (x ,
5°)

] .

peB t-1

Under H

E[(Y
t

" ^
t
(x

t
,/3))

2A
t
(x

t
,5°)] (5.8)

= E[(m
t
(a

o
)- M

t
(y9))

2
/'?

t
(5°)] + E[ (e°)

2
/r,

t
(S°) 1 •

The appropriate first order condition for /3 is

T-^E[y
t
(^)'(mt (ao

). M
t
(^))A

t
(5°)] -

and the relevant statistic is

T

T
= T"

1
! [h^( 7

)" 1/2 (h ( 7 )A (5„))V u^(fl )]'h^(7T
)" V2 e

r, ti tltlpti tl t

T
- T

_1
X [h;

1/2
AT ]'h"

1/2
e^ (5.9)

t=l ^ T J
t t

15



where e = y - m (a„,) and

A A

x
t
- (WW (5 - 10)

A A

If the models are nested and h = tj then (5.9) leads to a statistic that is

asymptotically equivalent to the usual LM statistic in the context of WNLS

.

More generally, (5.9) suggests basing a test on the correlation of the

A
-1/2

A A
-1/2

A

weighted indicator h A and the weighted residuals under H„ , h e .

A

Note that the indicator A is a particular weighting of the gradient of the

alternative regression function. If instead of H
n

the null hypothesis is

2
H": H_ holds, and for some 7 e I\ a > 0, (5.11)
U U 00

V(y |x ) = a\ (x ,7 ) , t-1,2, . . .w
t' t o t t'

J

o' '

A

then, assuming now that 7 is a /T-consistent estimator of 7 , a simple

regression test using the weighted residuals as the dependent variable is

A
-1/2

A ~ A
-l/2

A ~ A
-l/2"

available. Let e^=h / e,Vm =h ' V m , and X = h ' \ =
t t tat t at t t t

A -1 . r\ A A

(h / r
l t )^n^ r

- The LM-like test is obtained by running the regression

S on V m , A t=l T (5.12)
t q t t '

2 2and using TR as asymptotically v under H" (assuming no redundancies in A )

.

The following procedure is valid whether or not (h (x ,7): 7 e T) contains a

version of V(y |x ) under H

PROCEDURE 5.1:

A

(i) Let q be any /T-consistent estimator of a under H_ , and let
A A A A A A

P be an estimator such that /T(/8„, - '
B°) =0 (1). Compute a_ , h , V m , e ,

•L TTp T t a c tAA A A AA A A -. m rt A

PT . V V u and A^ - (h /r, )V « (fl ) . Define I - h" / e V 5 -
1 t p t C ttpti t t tac

h"
1/2

V m , and A = h"
1/2

A
;t Q t t t t
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(ii) Run the regression

A on V m t=l , .
.
,T

t a t

and save the residuals, say f ;

(iii) Run the regression

1 on e
t?t

t-1 T

2 2
and use TR = T - SSR as asymptotically v-> under H. . Again, delete any

redundant elements in A and reduce the degrees of freedom as needed.
t

&

The weighted NLS extension allows simple robust tests for a wide variety

of models. In particular, quasi-maximum likelihood estimation (QMLE) of a

linear exponential family is accomodated because the QMLE is asymptotically

equivalent to a particular WNLS estimator with estimated weights (see

Gourieroux, Monfort, and Trognon (1984)).

Being agnostic about whether the family {h (x ,7): 7 e D contains the

conditional variance of y under H allows for possible improvements over NLS

(although this is in no way guaranteed!) while guarding against inference

with incorrect asymptotic size due to a misspecif ied variance. Moreover,

nothing is lost in terms of local power if the weighting function happens to

be correctly specified for the conditional variance. In other words, the

robust procedure is optimal (in the class of WNLS procedures) if h (x 7) is

a correctly specified version of V(y |x ), and so h (x ,7) should reflect the

researcher's best guess for V(y |x ).
t t

As an illustration, consider the analysis of count data. One might

believe that a conditional Poisson distribution provides a better

approximation to the second moment of y than, say, the assumption of
t

homoskedasticity . However, the assumption that the conditional mean and

17



variance are equal (or proportional) is not one on which conditional mean

specification testing should rely. And if the mean and variance do happen to

be equal, nothing is lost asymptotically by using the robust procedure.

If the nonrobust tests had the ability to systematically detect

violation of the conditional variance assumption then the nonrobustness

criticism would be somewhat mitigated. However, the nonrobust conditional

mean tests (and the robust forms proposed in this paper) are inconsistent

against the alternative

H£: H
Q
holds but V(y |x ) * a\ (x ,7) for all 7 e T, a

2
> 0. (5.13)

Consequently, one should not expect to detect departures from the conditional

variance assumption by using nonrobust conditional mean tests. Under H the

actual size of the nonrobust test can be larger or smaller than the nominal

size, and it is difficult if not impossible to determine a priori which is

likely to be the case.

The asymptotic local distribution of the CME test for WNLS is analogous

to the NLS case. The indicator A = (h /n )V„u now replaces V„u . With
t

v V 't' p^t F pt
this modification the same calculation works if e and £ are simply weighted

by h
t

Turning now to an example of an CME test for a weighted NLS problem,

again consider testing an exponential versus linear regression model.

Example 5.1 : The competing models are

m (x ,q) = exp(w^a) (5.14)

u (x ,/?) - w B. (5.15)

18



Suppose that the test which takes the exponential model as the null is to be

based on a weighted sum of squared residuals. In particular, let the

weighting function be the square of the regression function: h (x ,7) =

2 2
[exp(w a) ] . It is important to stress that [exp(w a )] is not assumed to

be proportional to V(y |x ) under H
n

, although this of course is not ruled

out.
A

The estimator a can be the NLS estimator, or the WNLS estimator which

solves
1 A

min I (y
t

- exp(w q)) /h^.

qgA t=l

In the context of Example 4.3 under (A. 8) and (4.9), a computationally

convenient estimator is obtained from the log-linear regression. For any

A.

/T- consistent estimator a define the weighted residuals and weighted

- "-1/2 A
-

A
-l/2 *

A

gradient ase = h e , V m = h V m - exp(-w cO exp(w q_)w - w The6 t t tat t a t ^ t T ' * t T t t

"-1/2
indicator is A " w , and the weighted indicator is A s h w^ =

t t & t t t

exp(-w a )w . These quanitities are then used in Procedure 5.1.

Note that in the setup of Example 4.3 all computations can be carried

out by OLS . Also, the weights can be easily computed as h =

2
[exp(log yt )]

"

Consideration of weighted NLS introduces a possibility not allowed in

the framework of section 3. Provided that h and n are sufficiently
t 't

J

different one can take a = /} and /x (x ,fl) -° m (x ,a). That is, suppose one

does not have a particular alternative to m^ in mind (either nested or

nonnested) , but instead another WNLS estimator is used to detect

misspecification of m_ . This application of the Durbin-Wu-Hausman

19



methodology has been considered by White (1980) in the context of NLS on

cross section data. It can be shown that, when h (x ,7) is correctly

specified for V(y |x ), the statistic obtained from the regression (5.12) is

asymptotically equivalent to the DWH statistic that compares the difference

of the two WNLS estimators and exploits the relative efficiency of the WNLS

A

estimator based on h (for a similar result, see Ruud (1984)). The robust

approach obtained by setting \x - m in Procedure 5.1 does not require either

estimator to be relatively efficient under H„ , but it is still asymptotically

equivalent to the usual DWH test in the event that h (x ,7) is correctly

specified for V(y |x ).

6. Comparison with Other Related Nonnested Hypotheses Tests

Davidson and MacKinnon (1981) (DM) suggested a method for testing

nonnested, nonlinear regression models which has proven to be useful in

practice. Their approach can be derived from the general framework of Cox

(1961,1962) under normality and homoskedasticity

.

In the notation of this paper, the DM statistic is obtained by testing

6 = in the artificial model
o

A

y = (1-5 )m (x q ) + S u (x J ) + error (6.1)

The LM form of the test is particularly convenient since it requires only NLS

estimation of each model and then one auxiliary OLS regression. Let e = y
A

- m (x a ) be the residuals from the model under H . Then the LM approach

2
is to compute R from the regression

u °

A AAA
e on V m. , u - rri t-1 T (6.2)
t Q t t t
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2 2
and use TR as asymptotically x-, under H„ . Thus, the DM test is simply an

A A

omitted variables test of u - m in the nonlinear model
't t

y=m(x,a)+e. (6.3)y t t
K

t' o
J

t

The standard DM test, as well as the LM form in (6.2), is invalid in the

presence of heteroskedasticity . A robust version can be computed by
A

modifying the misspecification indicator in Procedure 3.1: simply set A =

A A A

H - m (see Wooldridge (1987b)). Because the robust version allows a and

A

P to be any /T-consistent estimators, a DM test for the log-linear versus

linear model can be computed entirely with OLS along the lines of Example

4.3.

A robust DM test based on WNLS estimation (and therefore for QMLE in a

linear exponential family) is also easy to obtain. Let the mean and

weighting functions be given by (5.1) and (5.2), with the null hypothesis
A A

taken to be (5.3). Then the indicator X for the DM test is the scalar A =
t tAAA A

(h /r) ) (u - m ). Note that the same reweighting of the indicator that

appears in the CME test also shows up in the DM test for weighted nonlinear

regressions. This misspecification indicator is used in Procedure 5.1 in

A A A

place of (h /ri )V „u .

Even though the DM test is only a one degree of freedom test, it is

always consistent against the alternative H
1

. In the case of unweighted NLS

,

consistency of the test follows if it can be shown that, under H..
,

I 1
T

lim inf T I E[(ax (0 ) - m (er°) )e_(cr°)
]

T-KO t=l
> 0. (6.4)

But e (a ) = y^ - m^(a°) = «„(5 ) + »AP ) - ^(a°), where e (0) - y rl-J- i_i_1 tO oO CI t t

*V(x ,0). Under H
1 , E(e°|x ) =0, so that

c »- l t t
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E[(M
t

(/3
o

) - m
t
(Q°))e

t
(Q°)] = EUp^fiJ -

^("J))
2
],

and (6.4) holds except in uninteresting degenerate situations.

The CME test has degrees of freedom that depend on the dimension of /3 in

the alternative model; without redundancies, the degrees of freedom equals

the dimension of /3 . The condition for consistency of the CME test against H.

is

lim inf
T->co

T
T"

1^ E[VA(^)'e
t

(a°) > 0, (6.5)

where
|

•

| now denotes Euclidean norm. Under H
,

E[y
t

c/» >'.
t («j)]

- E[y
t
^ )'(\^ ) - %(-t ))]

and the condition for consistency reduces to

1
T

I

lim inf T I E[V Mt (0 )'(Mt
03 ) - m (O)] > 0. (6.6)

T-*co t=l
"

I

For general u and m it is possible for (6.6) to fail. Nevertheless, for

linear models, (6.6) holds except in degenerate situations. Also, when m

and n are linear or exponential functions, (6.6) holds provided that the

regressors contain a constant. Consistency is easy to establish for the

LM-type tests that employ the NLS estimators since the regressors in the DM

auxiliary regression are linear combinations of the regressors in the CME

test regression. To verify consistency of the CME test for the more general

robust procedure, (6.6) can be demonstrated directly for all of the examples

in section 4.

The dimension of the space of alternatives against which the CME test is

consistent is greater than the corresponding dimension for the DM test. When
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the alternatives of interest consist only of the specified competing model

then the one degree of freedom test may be adequate. However, as a general

model diagnostic, the DM test may not have sufficient power against certain

alternatives of interest. For more on the issue of the "implicit null

hypothesis" of a test the reader is referred to Pesaran (1982) , MacKinnon

(1983, with discussion), Mizon and Richard (1986, section 4), and Davidson

and MacKinnon (1987). Characterizing the implicit null in a useful manner

for the CME test in nonlinear, dynamic models is difficult and is necessarily

done on a case by case basis. Mizon and Richard (1986, section 4) find the

implicit null of the DM and CPE tests for competing linear models with

strictly exogenous regressors; the same calculation works for the CME test in

this case.

As mentioned several times above, Mizon and Richard (1986) develop the

notion of complete parametric encompassing tests and discuss how they can be

applied to testing nonnested hypotheses. The CPE tests are closely related

to the tests of Gourieroux, Monfort, and Trognon (1983): both approaches

rely on the notion of a pseudo-true value in the alternative model. The

tests derived by MR and GMT lead to well-known tests in nested situations,

and are similar in spirit to the tests derived here. To compare the CPE

tests and the CME tests the CPE principle must be extended to the case where

the conditional distribution of y given x and joint distribution of

(y-i .
z. ),..., (y z ) are not completely specified. Letting b (a ) denote the

pseudo-true value of f} under H_ , the Wald encompassing test (WET) is based on

T
1/2

(£T
- b

T
(Q

T
)). (6.6)

It can be shown that when the regressors are treated as nonrandom (or
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strictly exogenous), (6.6) and (3.6) are asymptotically equivalent up to

multiplication by a sequence of uniformly positive definite matrices. Thus,

in this case, the CPE and CME tests are asymptotically equivalent, and the

CME test can be viewed as a computationally simple robust version of the CPE

tests of Mizon and Richard (1986) and GMT (1983). The equivalence breaks

down for general dynamic models, partly because the pseudo-true value

function becomes a complicated function of the parameters of the distribution

of y (including a) . In fact, strictly speaking, the CPE tests as developed

by Mizon and Richard (1986) cannot be computed for all cases considered here

because the null hypothesis in this paper only specifies E(y |x ), whereas

the derivative of the pseudo-true value function can depend on the joint as

well as the conditional distribution of y given x . As this function isJ t
6

t

needed to compute the limiting distribution of the CPE statistic, one must

specify more than E(y |x ) under H Nevertheless, in some cases the

"natural" way of operationalizing a CPE test leads to a test asymptotically

equivalent to the corresponding CME test. If the alternative model is

linear, e.g. u (x ,/3) = w B, it is sensible to choose

r T -, -1 T

Vo> ^

t=l
7 w' w V w' m ( x , q )u

. t t A
, t t

v
t' o

/

t-1

(but note that b (a ) is generally random). In this case it is

straightforward to show that (6.6) and (3.6) lead to asymptotically

equivalent tests.

When the CPE test and the CME test are not asymptotically equivalent it

is difficult to determine analytically which has superior power properties.

It is unlikely that one test uniformly dominates the other in terms of

asymptotic local power. Comparing the powers of the tests in situations
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where they are not asymptotically equivalent requires a detailed study that

is beyond the scope of the current paper. But it is useful to note that when

the two tests are not asymptotically equivalent the CME tests have

significant computational advantages, as well as being easy to "robustify."

As exposited by GMT (1983) and Mizon and Richard (1986), the CPE

principle has broad applicability. However, the current application of the

encompassing principle also applies to situations more general than WNLS

.

The approach used in sections 3 and 5 can be invoked in any setting where

estimators are defined through optimization problems, including the general

maximum likelihood setting. But in more general settings the resulting tests

suffer from one of the same drawbacks as the CPE tests: calculation of the

A

test statistic requires estimation of the asymptotic variance of /T(/3 - /3 )

under H Nevertheless, the approach of this paper never requires one to

find or even to characterize in any way the pseudo-true value function. The

extension to general (quasi) maximum likelihood estimation is left to future

work, primarily because the the statistics would no longer be very easy to

compute

.

7 . Conclusions

The conditional mean tests developed in this paper are applicable to

testing nested and nonnested hypotheses for cross section or dynamic

conditional means. There are several attractive features of these test.

First, they can be computed by using linear least squares regressions after

the original estimation. Second, they do not require horr.cskedasticity cr

other second moment assumptions , and can be computed using any /T- consistent
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estimators. Finally, the CME tests are asymptotically equivalent to well

known tests in special cases, such as the LM test for nested models and the

Durbin-Wu-Hausman test for comparing two WNLS estimators of the same

parameters

.

Further work needs to be done to investigate the finite sample

properties of the statistics proposed here. Ericsson (1983) has compared the

powers of the regression F-test mentioned in Example 4.1 to the DM test, and

the F-test compares favorably for many alternatives. One might expect the

CME tests to perform well in more general nonlinear, dynamic models, but this

remains to be seen. In addition, it would be useful to further investigate

the relationship between the complete parametric encompassing tests of Mizon

and Richard (1986) and the CME tests.

The nonnested tests extend easily to the case of more than one

alternative regression function. One merely includes the gradients (or

weighted gradients) of all competing models as indicators. The same

regression procedures are still appropriate. Also, CME tests can be derived

in a straightforward manner for multivariate models that are estimated by

multivariate WNLS.
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